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Abstract
Micro-core architectures are intended to deliver high performance at a low overall

power consumption by combining many simple central processing unit (CPU) cores,

with an associated small amount of memory, onto a single chip. This technology is

not only of great interest for embedded, Edge and IoT applications but also for High-

Performance Computing (HPC) accelerators. However, micro-core architectures are

difficult to program and exploit, not only because each technology is different, with its

own idiosyncrasies, but also because they each present a different low-level interface to

the programmer. Furthermore, micro-cores have very constrained amounts of on-chip,

scratchpad memory (often around 32KB), further hampering programmer productivity

by requiring the programmer to manually manage the regular loading and unloading

of data from the host to the device during program execution. To help address these

issues, dynamic languages such as Python have been ported to several micro-core ar-

chitectures but these are often delivered as interpreters with the associated performance

penalty over natively compiled languages, such as C.

The research questions for this thesis target four areas of concern for dynamic pro-

gramming languages on micro-core architectures: (RQ1) how to manage the limited

on-chip memory for data, (RQ2) how to manage the limited on-chip memory for code,

(RQ3) how to address the low runtime performance of virtual machines and (RQ4)

how to manage the idiosyncratic architectures of micro-core architectures. The focus

of this work is to address these concerns whilst maintaining the programmer productiv-

ity benefits of dynamic programming languages, using ePython as the research vehicle.

Therefore, key areas of design (such as abstractions for offload) and implementation

(novel compiler and runtime techniques for these technologies) are considered, re-

sulting in a number of approaches that are not only applicable to the compilation of

Python codes but also more generally to other dynamic languages on micro-cores ar-

chitectures.

RQ1 was addressed by providing support for kernels with arbitrary data size through

high-level programming abstractions that enable access to the memory hierarchies of

micro-core devices, allowing the deployment of real-world applications, such as a ma-

chine learning code to detect cancer cells in full-sized scan images. A new abstract

machine, Olympus, addressed RQ2 by supporting the compilation of dynamic lan-

guages, such as Python, to micro-core native code. Olympus enables ePython to close

the kernel runtime performance gap with native C, matching C for the LINPACK and

an iterative Fibonacci benchmark, and to provide, on average, around 75% of native C
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runtime performance across four benchmarks running on a set of eight CPU architec-

tures. Olympus also addresses RQ3 by providing dynamic function loading, support-

ing kernel codes larger than the on-chip memory, whilst still retaining the runtime per-

formance benefits of native code generation. Finally, RQ4 was addressed by the Eithne

benchmarking framework which not only enabled a single benchmarking code to be

deployed, unchanged, across different CPU architectures, but also provided the under-

lying communications framework for Olympus. The portability of end-user ePython

codes and the underlying Olympus abstract machine were validated by running a set

of four benchmarks on eight different CPU architectures, from a single codebase.
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As the cost of powering a supercomputer or a datacenter increases,

next generation exascale systems need to be considerably more

power- and energy-efficient than current supercomputers to be of

practical use.

Performance and Architecture Lab (PAL) at PNNL, “Tackling the

Power and Energy Wall for Future HPC Systems” [1]

1
Introduction

1
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The new generation of supercomputers, known as exascale computing, are de-

signed to process 1018 double precision floating point operations per second (FLOPS)

[2]. Whilst this will significantly increase the processing power of exascale machines

over the previous generation of supercomputers, the increasing energy consumption

of successive generations is approaching a limit known as the power wall [1]. The

Defense Advanced Research Projects Agency (DARPA) has set a power consumption

target of 20 Megawatts (MW) for exascale machines, resulting in an energy efficiency

figure of 50 GFLOPS per Watt [3]. In order to achieve this, the use of hybrid High-

Performance Computing (HPC) architectures with graphics processing units (GPUs)

as accelerators has increased, such as the 4:1 ratio of GPUs to central processing units

(CPUs) per node of the new OLCF Frontier exascale supercomputer [4]. Other novel

architectures for HPC have been introduced, including innovative micro-core1 proces-

sor architectures that consist of many, low energy cores combined with small amounts

of memory on a single chip, such as the 256 core Kalray MPPA [5], the 256 core Sun-

way SW26010 [6], the 1024 core Adapteva Epiphany-V [7] and the 2048 core PEZY-

SC2 [8]. These micro-core architectures have the promise of overcoming the power

wall due to the high energy efficiency of their designs, for example, the class-leading

70 GFLOPS per Watt of the the 64-core Adapteva Epiphany-IV [7] [9]. Furthermore,

a number of these processor architectures have already been proven in supercomputer

designs, such as the PEZY-SC2 used in the Shoubu system B, ranked #1 in the June

2019 Green500 list [10], and the Sunway SW26010 used in the Sunway TaihuLight,

ranked #3 in June 2019 Top500 [11].

1.1 Motivation

The power efficiency of micro-core architectures is not only of interest for HPC but

also for embedded systems and edge computing [12], where micro-core architectures

such as the Adapteva Epiphany-III [13] and XMOS XCore [14] have been successfully

used for commercial applications. For example, the Epiphany-III has been used by Er-

icsson for Long-Term Evolution (LTE) baseband signal processing [15]. Whilst these

architectures provide the high energy efficiency and low overall power consumption

levels required for embedded devices, micro-cores are notoriously difficult to program

and take advantage of; each technology is different with its own idiosyncrasies, such

1Although the term manycore is commonly used, we define micro-cores as manycores with ex-

tremely small amounts of on-chip, scratchpad RAM (circa 32 - 64KB) without hardware cache support.
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as the topology of the Network-on-Chip (NOC), and they each present a different low-

level interface to the programmer. Although manufacturers have made great progress

in developing the hardware, parallel programming and compilation techniques have

not evolved quickly enough to exploit this effectively [16]. Fundamentally, writing

parallel, scalable code is difficult and requires the programmer to consider multiple

levels of parallelism to get good runtime performance [17]. For micro-core architec-

tures, this problem is exacerbated by the design objective to reduce power consumption

whilst increasing runtime performance. For example, hardware-controlled caches are

replaced by extremely limited (≤64KB) on-chip scratchpad Random-Access Memory

(RAM) in order to reduce the silicon area by around 34% and provide up to a three

times decrease in the per-access energy consumption [18]. However, to date, these

technologies have tended to result in significant runtime performance overheads, re-

quired the programmer to ensure their code fits within the limited on-chip memory,

provided limited choices around data location and size, and provided little, if any,

portability across architectures. As evidenced by ePython [19], at the start of this re-

search a Python interpreter for the Epiphany-III, dynamic programming languages can

significantly reduce the programming effort required to overcome these complexities

in comparison to the provided, low-level C software development kits (SDKs) [20].

1.2 Research questions

Based upon the hypothesis that dynamic programming languages greatly simplify the

development of codes for micro-core devices, this research addresses four challenges

for dynamic programming languages on these architectures:

RQ1 How to manage the limited on-chip memory for data? Many codes, including

standard benchmarks such as LINPACK [21], require more data memory than

micro-core devices provide.

RQ2 How to manage the limited on-chip memory for code? Real-world codes,

such as image processing, are larger than the available, extremely limited (c.

32KB), on-chip memory [22].

RQ3 How to address the low runtime performance of virtual machines? Whilst

virtual machines (VMs) are easier to implement and port to different architec-

tures than compilation to native code [23], they introduce a significant runtime

performance overhead.



Chapter 1. Introduction 4

RQ4 How to manage the idiosyncratic architectures of micro-core architectures?
The unique features of each micro-core architecture, coupled with their own

specific drivers and toolset, frustrate the development, testing and portability of

both user codes and the underlying runtime support [22].

The focus is to address these questions whilst maintaining the programmer productivity

benefits of dynamic programming languages, using ePython as the research vehicle.

Therefore, key areas of design (such as abstractions for offload) and implementation

(novel compiler and runtime techniques for these technologies) have been considered,

resulting in a number of approaches that are not only applicable to the compilation

of Python codes but also more generally to other dynamic languages across a range

micro-cores architectures.

1.3 Research software outputs

Figure 1.1: ePython architecture showing host and device components created and

updated by this research.

In order to address RQ1, RQ2 and RQ3, this research added a number of new

components to ePython, in addition to updates to the existing components. Figure 1.1

shows the high-level architecture of ePython, grouped by the components running on

the host (left-hand side) and on the device (right-hand side), highlighting the compo-

nents that have been introduced or updated. The key new components are:

• The Olympus native code compiler for ePython, highlighted by A in Figure 1.1.
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• The Olympus native code abstract machine for dynamic programming languages

targeting micro-core architectures (Section 4.3.3) B , which replaces the ePython

virtual machine running on the device C .

• A new communications protocol and library to support a new pass by reference

model (Section 3.2.2.1) for ePython kernel functions and device memory hierar-

chies (Section 3.2.2.2) D .

• A dynamic function loading mechanism for ePython kernels (Section 3.3.1) E .

• The Merlin prototype virtual machine (Section 4.3.2), created to support in-

vestigations into optimising the bytecode size and runtime performance of the

ePython virtual machine F .

1.4 Contributions

This thesis provides the following contributions:

• The first pass by reference semantics model for data passed as arguments to ker-

nels off-loaded to micro-core accelerators, thereby preserving the programming

paradigm of dynamic languages running on traditional CPUs (Section 3.2.2.1)

and providing the basis for the prefetching of host vector slices, addressing RQ1.

• A compact model and implementation (circa 900 bytes) for supporting memory

hierarchies and memkinds [24] within dynamic languages on micro-core accel-

erators, to enable the deployment of kernels with arbitrary-sized data (Section

3.2.2.2), addressing RQ1.

• The Olympus portable, compact (on average, 1.4 to 2 times bigger than native

C), high-performance abstract machine for dynamic languages (Section 4.3.3)

that matches (GM2 = 101.0%) the runtime performance of native C kernels for

both the LINPACK and an iterative Fibonacci sequence benchmark, across eight

different CPU architectures (Section 6.5.2). Olympus achieves an average (GM)

of almost 75% of the runtime performance of native C, across four different

benchmarks on all eight CPU architectures (Section 5.3), addressing RQ3.

2Geometric mean.
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• A dynamic function loading model for micro-cores (Section 3.3.1) that supports

the arbitrary loading and unloading of kernel functions, enabling the deployment

of kernels with code size larger than the on-chip memory with an initial memory

footprint up to 30% smaller than the equivalent hand-crafted C kernels (Section

6.4), addressing RQ2.

• The Eithne micro-core benchmarking framework [25] that provides a suite of

benchmarks that can be run across a number of different devices, with a layered

architecture enabling the addition of new C benchmarks with minor modification

to the original codes (Section 5.2.2). Eithne abstracts over the idiosyncrasies of

different micro-core architectures and provides the underlying communication

framework for the Olympus abstract machine, addressing RQ4. Prior to Eithne,

there were no benchmarking frameworks for micro-core devices and it remains

unique in this regard at the time of submission of this thesis.

1.5 Publications

The following peer-reviewed papers and posters were published during the research of

this thesis and form part of the content of Chapters 3, 4, 5 and 6:

• Maurice Jamieson and Nick Brown (in press), “Performance of the Vipera frame-

work for DSLs on micro-core architectures,” Euro-Par 2022: DSL-HPC work-

shop, 2022 [26].

• Maurice Jamieson and Nick Brown, “Compact native code generation for dy-

namic languages on micro-core architectures,” in Proceedings of the 30th ACM

SIGPLAN International Conference on Compiler Construction, ser. CC 2021.

Association for Computing Machinery, 2021, pp. 131–140 [27].

• Maurice Jamieson, Nick Brown, and Sihang Liu, “Having your cake and eating

it: Exploiting Python for programmer productivity and performance on micro-

core architectures using ePython,” in Proceedings of the 19th Python in Science

Conference : SciPy 2020, 2020, pp. 97–105 [20].

• Maurice Jamieson and Nick Brown,“Benchmarking micro-core architectures for

detecting disasters at the edge,” in 2020 IEEE/ACM HPC for Urgent Decision

Making (UrgentHPC), 2020, pp. 27–35 [28].
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• Maurice Jamieson and Nicholas Brown, “High level programming abstractions

for leveraging hierarchical memories with micro-core architectures,” Journal of

Parallel and Distributed Computing, vol. 138, pp. 128-138, 2020 [22].

Other publications:

• Maurice Jamieson and Nick Brown, “A Framework for Benchmarking Micro-

Core Accelerators”, Poster presented at Supercomputing 2019 (SC19), Denver,

Colorado, 2019 [29].

• Nicholas Brown and Maurice Jamieson, “Leveraging hierarchical memories for

micro-core architectures”, Extended abstract 5th International Conference on

Exascale Applications and Software, Edinburgh, United Kingdom, 2018 [30].

1.6 Thesis structure

The structure of the thesis is as follows:

• Chapter 2 describes the background to micro-core architectures in the context

of the alternative technologies, specifically GPUs and field-programmable gate

arrays (FPGAs), followed by an introduction to ePython and an overview of

related work regarding accelerating dynamic programming languages, with par-

ticular focus on Python.

• Chapter 3 details the design considerations for the implementation of dynamic

languages on micro-core architectures, with particular regard to micro-core ac-

celerators. Firstly, enhancements to the existing ePython memory model are

considered, including memory hierarchy support. Secondly, changes to the lan-

guage to support native code generation and dynamic code loading. Thirdly,

native code generation options, specifically just-in-time (JIT) and ahead-of-time

(AOT) compilation. Finally, virtual machine and bytecode modifications to un-

derpin the implementation of a JIT compiler for ePython.

• Chapter 4 details the implementation of the native code compiler, abstract ma-

chine and memory model to enable the support for arbitrary kernel data and code

size, allied to increasing runtime performance to that of kernels hand-written in

C.
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• Chapter 5 describes the challenges and solutions to providing a range of differ-

ent micro-core architectures to support the research, including the creation of a

novel benchmarking framework (Eithne [28]) to quickly assess new micro-core

architectures and a new soft-core design (Cerberus [31]) running on FPGAs to

provided additional micro-core targets. This is followed by a description of the

experimental environment, including the specifications of test devices, compilers

and selection of benchmarks.

• Chapter 6 presents and analyses the benchmark results used to assess the ma-

jor areas of research that address the challenges for dynamic programming lan-

guages on micro-cores architectures: managing arbitrary kernel data size, in-

creasing kernel runtime performance through native code generation and man-

aging arbitrary large kernel code size.

• Chapter 7 provides a summary of the thesis, highlighting the conclusions, major

contributions, research impact and future work.



The top 100 instructions account for all the instructions used by all

the processors. This leads us to question why most current proces-

sors have more than 100 instructions.

Mutigwe et al., “Instruction Set Usage Analysis for

ApplicationSpecific Systems” Design [32]

2
Background and related work

9
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2.1 Overview

This chapter discusses the background and related work to this research. Section 2.2

details the drivers behind micro-core designs and provides an overview of their ar-

chitecture. A summary of the architecture and main features of GPUs is provided in

Section 2.3, followed by an overview of field-programmable gate arrays (FPGAs) in

Section 2.4. The ePython programming language is introduced in Section 2.5. Finally,

Section 2.6 discusses related work for accelerating dynamic programming languages.

2.2 Micro-core processors

As discussed in Chapter 1, although new generations of CPUs have provided increased

runtime performance, it has been at the cost of increasingly unsustainable power con-

sumption. As shown in Figure 2.1, traditional CPU Instruction Set Architectures

Figure 2.1: Processor instruction set size (number of opcodes)

(ISAs), such as those for the Intel x86, MIPS and PowerPC, are large in comparison

to newer ISAs for the ARMv7, Epiphany-III, MicroBlaze and RISC-V. When we con-

sider that complex ISAs with large numbers of instructions require more silicon area

than simple ISAs [33] with a lower number of instructions, it would suggest that a large

number of simple CPU cores would provide a better foundation for increasing runtime

performance at low levels of power consumption. A possible drawback of simple cores

is that they may not provide enough richness in their instruction set to satisfy current



Chapter 2. Background and related work 11

application codes. However, as shown in Figure 2.2, the average ISA utilisation rate

for the MIPS, PowerPC, Intel x86 and x86-641 ISAs for ten C benchmark applications

that form part of the SPEC CPU2006 benchmark suite was between 5 and 20 percent

for both the GNU Compiler Collection C compiler (GCC) and Portable C Compiler

(PCC) [32]. When we calculate the number of instructions used by the GCC and PCC

Figure 2.2: Average processor instruction utilisation by GCC and PCC compilers [32]

compilers, we find that between 59 (MIPS) and 107 (PowerPC) instructions are used

for this SPEC CPU2006 benchmark subset. If we consider that the ARMv7, Epiphany-

III, MicroBlaze and RISC-V ISAs shown in Figure 2.1 have between 40 (ARMv7) and

76 (RISC-V) instructions, and that the SPEC CPU2006 benchmark suite is supported

on the ARMv7 [34], we can conclude that the large CPU ISAs are not mandatory, even

for the speed optimisation (-O3) levels of the GCC and PCC compilers.

When comparing the ARM, Epiphany-III, MicroBlaze and RISC-V ISA size against

the other ISAs, it should be noted that the x86, x86-64, PowerPC and MIPS64 ISAs

include single instruction, multiple data (SIMD) / vector processing instructions, such

as Streaming SIMD Extensions (SSE) and MMX [35] for the x86, AltiVec2 [36] for

the PowerPC and the MIPS SIMD Architecture (MSA) [37]. These SIMD instruction
1Also referred to as x64, which will be used in the remaining chapters of this thesis.
2Also known as Vector Multimedia Extension (VMX) for IBM processors and Velocity Engine for

Apple processors.
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set extensions not only increase runtime performance but also significantly increase

the instruction count. For example, a Fortran Finite-Difference Time-Domain (FDTD)

method code was compared with a version that uses SSE intrinsic3 functions with

the latter providing twice the runtime performance of the standard Fortran implemen-

tion [38]. Furthermore, [39] found that for a neural network code, SSE provided 3.7

times and MMX 4.1 times the runtime performance of the standard C code. However,

Intel’s SSE2, SSE3 and SSE4 extenstions add a total of 204 instructions [40] to the x86

ISA, with MMX adding an additional 57 instructions [35], a significant increase con-

sidering the x86 instruction set is 659 instructions [32]. Moreover, these SIMD exten-

sions often require the use of intrinsic functions [38] or assembly language code [39]

to achieve the best runtime performance. For example, for a number of kernels, includ-

ing the Sum of Absolute Differences (SAD), the Sum of Absolute Transformed Dif-

ferences (SATD) and Discrete Cosine Transformation (DCT), the auto-vectorisation

code of the GCC, Clang and Intel C (ICC) compilers only delivers, at best, 28% of the

hand-tuned variants [41]. Considering that these three most popular compilers for the

x86 / x86-64 ISAs are unable to generate code that leverages the full runtime perfor-

mance the SIMD instructions, such ISA extensions could be considered as instruction

set bloat as they consume valuable silicon area and increase both design complexity

and power consumption [42].

The power consumption benefits of simpler cores, coupled with the fact that tra-

ditional CPU ISAs have instruction set bloat as demonstrated by [32], helps underpin

the drive to create micro-core designs with a large number of simple cores on a single

chip. The 16-core Adapteva Epiphany-III, shown in Figure 2.3, is an example of a

micro-core design that provides 32 GFLOPS at a maximum power draw of 2 Watts,

thereby delivering a GPU competitive 16 GFLOPs/Watt [43]. The 64-core Adapteva

Epiphany-IV delivers a class-leading 64 GFLOPS/Watt [44] [9]. Micro-core architec-

tures are not only of great interest for embedded, edge, and Internet of Things (IoT) ap-

plications, but also demonstrate potential in HPC, as discussed in Chapter 1. However,

whilst competing technologies, such as GPUs, can deliver comparable GFLOPS/Watt,

it is the low absolute power consumption of micro-core architectures that makes them

appropriate for edge applications in the field, performing tasks such as Digital Sig-

nal Processing (DSP) [45]. For example, the 2W overall power consumption of the

Epiphany-III is significantly lower than the average 194W for GPUs [46]. For edge

applications that are often battery powered in the field, power consumption is critical

3GCC built-in functions to generate SSE code.
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but there is often the runtime performance challenge where these applications have

to execute within clearly defined time limits and micro-core architectures can deliver

this balance of runtime performance and power efficiency. For example, although the

Epiphany-III is relatively old (designed in 2013), it still delivers competitive runtime

performance for DSP applications relative to specialised commercial hardware [12].

Figure 2.3: Adapteva Epiphany-III architecture [13]

Although micro-core accelerator architectures are attractive, they typically require

device-specific knowledge and code, with kernel codes written in low-level C software

development kits (SDKs). This increases the effort and understanding required to de-

ploy applications to these architectures, especially when one considers the extremely

small amounts of on-chip scratchpad memory (SPM) available, typically less than

64KB. Ideally, programmers should be able target micro-cores using high-level pro-

gramming languages that abstract over the idiosyncrasies of the underlying architec-

ture and provide significantly increased productivity over coding in low-level C, allied

with sufficient runtime performance to enable the deployment of real-world applica-

tions on these technologies. A number of standard parallel programming technologies,

for example OpenCL [47] and OpenMP [48], have been ported to micro-cores that

help with the control and data transfer aspects of parallel programming. However, the

OpenCL implementation is incomplete with partial support for the OpenCL 1.1 stan-

dard [49] and the OpenMP implementation implements a subset of the OpenMP 4.0

standard [50]4. Furthermore, they still require low-level C programming knowledge

and an understanding of the bespoke architectural complexities of each micro-core tar-

get. A number of dynamic languages have been ported to micro-core architectures such

as the Epiphany, including Erlang [52] and Lisp [53]. At varying levels of maturity,

4At the time of submission, the OpenMP implementation has been updated to be adaptive, whereby

application-specific OpenMP runtime system (RTS) libraries deployed to reduce the memory footprint

of the RTS and allow full OpenMP 4.0 support [51]
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they have been implemented using interpreters, with the associated runtime perfor-

mance overhead, but the problem remains that the critical memory limits of micro-

cores severely impacts the viability of these approaches. Effectively, we want to have

our cake and eat it [20]; the high-level parallel programming abstractions and produc-

tivity of dynamic programming languages, coupled with the runtime performance of

technologies based on C (OpenCL, OpenMP and OpenACC [54]).

2.2.1 Micro-core architecture

      Host DRAM                                                                       

ARM A9 Epiphany-III

Shared DRAM

core core 
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core & 
SRAM 

core & 
SRAM 
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Figure 2.4: Typical micro-core architecture

Figure 2.4 shows a typical high-level micro-core architecture, in this example it

is for the Adapteva Epiphany-III5. The Parallella single board computer (SBC) has a

two-core ARM Cortex-A9, provided by the Xilinx Zynq-7000 series SoC (System on a

Chip) and 16-core Epiphany-III micro-core processor. Each individual core has 32KB

of SRAM (Static Random-Access Memory) but is able to access the SRAM of any

other core on the Epiphany chip (for clarity, only neighbouring inter-core connections

are shown) and the cores are able to access the off-chip shared 32MB DRAM (Dynamic

Random-Access Memory) area within the host DRAM memory (1GB). The ARM

cores are also able to access the memory of each Epiphany-III core via the glue logic

within the Xilinx Zynq-7010 FPGA fabric, providing a form of UVA support6 on the

5The Cerberus FPGA micro-core design using the Xilinx MicroBlaze and RISC-V PicoRV32 soft-

cores running on the Xilinx PYNQ described, in Section 5.2.1, is similar in architecture.
6The micro-core local memory is mapped into the host CPU’s address space via a kernel device

driver and the shared memory area on the host is mapped into the address space of the micro-cores.
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Parallella.

Micro- 
core

Addressable shared external  DRAM

Not directly accessible external DRAM

Remote core SRAM

On-core SRAM
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1GB
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Figure 2.5: Adapteva Parallella micro-core memory hierarchy [22]

Figure 2.5 shows the memory hierarchy for the Adapteva Parallella, where the mul-

tiple levels of the hierarchy are increasingly larger but also increasingly slower as you

move out from each micro-core. For example, the 32KB of local on-core SRAM is

significantly faster (up to 64 times) than the 32MB of shared host DRAM. With no

hardware caching support for the on-chip SRAM, significant programming effort is

required to leverage the off-chip DRAM, whilst maintaining a high level of runtime

performance for device kernels.

2.3 Graphics Processing Units (GPUs)

Whilst GPUs were originally designed to offload graphics operations for the display

frame buffer from the CPU [57], they are now commonly used as General-Purpose

GPU (GPGPU) parallel accelerators for scientific codes (including matrix multiplica-

tion and LU factorization [58]). GPUs, have a large number of streaming multipro-

cessors (SMs) containing multiple scalar processor cores. For example, as shown in

Figure 2.6, the Nvidia Ampere GA100 has 128 SMs, each with sixty four 32-bit in-

teger, sixty four 32-bit floating point and eight 64-bit floating point scalar processor

cores. Within an individual SM, the binary is split up into thread blocks containing a

number of warps, which are a collection of threads that execute the same instruction

concurrently. This model whereby the same code (single instruction) is downloaded

to the SM and different sections of the code are executed at the same time (multiple

threads) is called Single Instruction Multiple Thread (SIMT) [59]. The model has lim-

itations as each thread within a warp must execute exactly the same instruction per

However, the address space is not unified as the addresses referenced in the code on the host and micro-

cores are different for the same physical address within the shared memory.
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Figure 2.6: Nvidia Ampere GA100 GPU architecture [55]
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Figure 2.7: CPU / GPU memory architecture [56]

cycle (or that CUDA core is deactivated). Whilst this lockstep suits certain highly vec-

torised codes, the Multiple Program Multiple Data (MPMD) model of micro-cores is
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more flexible, thereby supporting a larger number of general purpose codes.

Figure 2.7 shows the memory separation of typical CPU and GPU architectures.

Historically, the programmer had to explicitly copy to and from the GPU memory us-

ing the underlying platform-specific APIs. Nvidia developed the CUDA [60] parallel

programming platform to simplify the deployment of parallel codes to their GPUs,

thereby providing a higher-level GPGPU (General-Purpose Computing on Graphics

Processing Units) architecture. The management of the separate CPU and GPU mem-

ory address spaces was addressed with the introduction of supported Unified Virtual

Addressing (UVA) in CUDA version 4. For example, if codes on the GPU contain

pointers to an area of memory on the CPU, CUDA performs the transfers transparently

with the associated non-local memory access performance overhead. The implemen-

tation of UVA is relatively basic and, as one might expect, repeatedly accessing CPU

memory incurs a significant runtime performance penalty. CUDA version 6 introduced

core core core core 

core core core core 

core core core core 

core core core core 
        

        

        

        

        

        

        

        

Unified memory

CPU GPU

Figure 2.8: GPU Unified Memory Architecture (UMA) [56]

the Unified Memory Architecture (UMA), as shown in Figure 2.8, for Nvidia Pascal

and later architectures. This builds upon UVA’s virtual address space and provides

additional support to transparently move memory to the GPU, effectively treating the

GPU memory as a large cache. There are a number of memory movement strategies;

the simplest strategy moves memory on a page fault, with more advanced strategies,

such as pre-fetching, to minimise the non-local memory transfer overhead. Although

the pre-fetching performance of UMA is comparable to explicit transfers into a pre-

allocated buffer on the GPU using UVA, the latter is still the fastest mechanism to

copy between the CPU and GPU [56]. As expected, these strategies are significantly
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faster than using non-prefetched UMA transfers, due to the non-local access overhead

(page migration) of the latter. Although this makes UMA attractive, the runtime per-

Table 2.1: Comparison of non-UMA and UMA programming models [61]

Step Non-UMA UMA
1. CPU serial code and data initialization CPU serial code and data initialization

2. Data transfer to the GPU Parallel kernel execution and implicit data transfer

3. Parallel kernel execution Synchronization between CPU and GPU

4. Data transfer back to the CPU CPU serial code

5. CPU serial code

formance benefits are dependent on the memory access patterns, with complex access

patterns resulting in about a 2 times decrease in runtime performance [61]. Crucially,

UMA also requires explicit hardware support within GPUs, with the resultant silicon

area overhead and related power consumption increase [62]. Furthermore, the current

implementation of UMA provides little additional developer productivity through the

marginal improvement in code complexity when compared to the non-UMA program-

ming model [61], as shown in Table 2.1.

2.4 Field-programmable gate arrays (FPGAs)

Figure 2.9: FPGA architecture [63]

FPGAs are user-programmable semiconductor devices that contain a matrix of

logic blocks, as shown in Figure 2.9, that can be configured to create complex logic cir-

cuits, often replacing application-specific integrated circuits (ASICs), but are increas-

ingly used as HPC accelerators. FPGAs are configured using a bitstream, generated by
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the VHSIC Hardware Description Language (VHDL) or Verilog hardware description

language (HDL). Whilst accelerator codes could be written directly in VHDL or Ver-

ilog, higher-level programming languages such as Xilinx High-level Synthesis (HLS)

C [64] or OpenCL C [65] and toolkits such as SYCL [66] are more commonly used.

The increasing use of FPGAs for HPC accelerators is driven by the fact that FPGAs use

significantly less energy than GPUs for comparable levels of runtime performance. For

example, [67] found that an OpenCL K-nearest neighbour (KNN) algorithm running

on a FPGA used 10% of the energy of the equivalent code running on a GPU.

FPGAs can also be configured as processor cores, known as soft-cores, which can

then be programmed like traditional CPUs. Furthermore, these soft-core designs can

include application-specific extensions, such as the RISC-V Posit Enhanced Rockit

Chip (PERC) that replaces the IEEE-754 2008 floating point unit (FPU) with a Posit

Processing Unit (PPU) for better accuracy and precision [68]. Furthermore, larger

FPGAs can support designs with multiple, interconnected soft-cores, using the avail-

able on-chip block RAM (BRAM) for local memory, thereby enabling the creation

of micro-core processors similar to the Adapteva Epiphany-III discussed in Section

2.2. The proprietary 1680-core RISC-V GRVI Phalanx massively parallel accelerator

is an example of such a design targeting HPC. The GRVI Phalanx has a stated peak

throughput of 420,000 MIPS at a clock speed of 250MHz on a XCVU9P FPGA [69].

On a much smaller scale, the Cerberus soft micro-core processor presented in Section

5.2.1 is another example, created to support the research of this thesis. However, it

should be noted that soft-cores have restricted clock rates, for example 250MHz for

the GRVI Phalanx and 100MHz for Cerberus, limiting the runtime performance of

each individual core in comparison to traditional hard CPU cores.

2.5 ePython

Dynamic programming languages such as Python [70], R [71], Ruby [72], JavaScript

[73] and Lua [74] provide high-level, interactive programming environments. These

languages have seen a significant growth in popularity over static, compiled program-

ming languages such as C/C++, Fortran and Java [75] due to their greatly increased

productivity, in terms of a reduced number of lines of code and time taken for the pro-

grammer to develop an equivalent solution [76]. The increased programmer produc-

tivity benefits led to the creation of ePython [19] that implemented a subset of Python

2.7 and, at the start of this research, specifically targeted the Epiphany-III. However,
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designed with portability across micro-core architectures in mind, it has been ported

to additional micro-core architectures and has evolved from its initial purpose as an

educational language for parallel programming to its use as a research vehicle for un-

derstanding how to program micro-core architectures.

Figure 2.10: ePython architecture, including VM memory map [19]

The ePython architecture is shown in Figure 2.10. The components outlined in

blue on the left of the diagram run on the host, including the Python compiler that

generates bytecode and the monitor that manages kernel launch and communications.

The ePython VM that runs on the device, consisting of the bytecode interpreter and

runtime libraries, is outlined in red. As the VM also runs on the host, it possible to run

virtual cores to simulate larger devices. To the right of the diagram is the Epiphany-III

memory map for each core, including the symbol table, communications area, inter-

preter stack and heap. Although the interpreter is tiny at around 24KB, it amounts to

75% of the total core SRAM on the Epiphany-III and after the symbol table, bytecode

and communications areas are included, there is just over 6KB available for the stack

and heap. This very small memory space available to kernel data severely restricts the

applications that can be deployed to the Epiphany-III with ePython. However, it is

possible for the bytecode, stack and heap to be placed in the 32MB of shared memory,

with the associated runtime performance impact [22].
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1 from parallel import reduce

2 from random import randint

3

4 a = reduce(randint(0,100), "max")

5 print "The highest random number is " + str(a)

Listing 2.1: Collective message reduction example [20]

Codes written in ePython can either be run standalone as shown in Listing 2.1,

using the default virtual core running on the host for messaging between the host and

device cores, or offloaded as kernels from within a Python script running on the host,

as shown in Listing 2.2. The default ePython parallel programming model is single

program, multiple data (SPMD), where a single kernel is deployed to all cores that

each operate on different data. However, ePython also supports multiple programs,

multiple datastreams (MPMD), where each core can execute a different kernel that

processes different data. For MPMD, in the standalone mode, the placement of kernels

on specific cores is controlled by the ePython -c command line argument, which can

take a specific core or a range of cores for targeting the kernel. For offloaded kernels,

the function decorator7, that marks the function as a kernel for offloading, provides the

target parameter that allows the target core(s) for the kernel to be specified, as shown

in Listing 2.2.

7Similar to directives in OpenMP [48] and OpenACC [54]
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1 @offload(target=[4,5,6,7])

2 def module1(LOOPS, BATCHES):

3 D1 = 0.3999999946405E-1

4 D2 = 0.96E-3

5 D3 = 0.1233153E-5

6 E2 = 0.48E-3

7 E3 = 0.411051E-6

8 s = 0.0

9 u = 0.0

10 v = 0.0

11 w = 1.0

12 x = 1.0/LOOPS

13

14 for count in range(BATCHES):

15 for i in range(LOOPS-1):

16 v = v + w

17 u = v * x

18 s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3)))

19 return s

Listing 2.2: Example ePython offloaded kernel

The example in Listing 2.2 also shows how values can be passed from the host

to the kernels running on the cores via function parameters (LOOPS and BATCHES in

module1()) that perform an implicit data transfer. The offloading and data transfer

model is described further in Section 3.2.1, which also details the additions to ePython

created by this research to overcome the on-chip memory constraints. As part of the

parallel programming support, ePython provides core-to-core and host-to-core com-

munications via the send() and recv() functions, as well as collective communica-

tions via the reduce() function call with the operations max, min, sum and prod. The

bcast() function is provided to broadcast a value from one Epiphany core to all the

other cores [19]. With these functions, ePython programmers are able to create parallel

codes that leverage the multiple cores of the Epiphany micro-core processor. Listing

2.1 illustrates a simple example of the reduce() function call with the max operation

to determine the maximum random number between 0 and 100, displayed by each

core.

The ePython VM and host-based monitor are written in C with portability across

architectures a key design aim. As micro-core architectures have very limited memory,
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the device code does not use the standard C library. Instead, the support and device-

specific code is contained within the ePython runtime library. The result is that the C99

standard interpreter is portable across architectures, with only a new runtime library

required for each new architecture, including the API calls for memory management

and garbage collection, and communication between micro-cores and the host.

2.6 Accelerating Python codes

There are a number of technologies for offloading computation to micro-cores, includ-

ing OpenCL [77], BSP [78], OpenMP [79] and MPI [80] on the Adapteva Parallella.

However, not all are fully implemented, for example OpenMP and MPI. Furthermore,

whilst these C-based technologies provide insight into the mechanics of kernel offload-

ing and communications, ePython already provides these capabilities. Therefore, the

focus of the investigations presented here are techniques to increase the performance

of dynamic programming languages.

The Python programming language is, at the time of writing this thesis, the most

popular programming language [75]. Whilst Python is very popular with program-

mers, its use of an interpreter results in performance significantly slower than stati-

cally compiled languages, such as C [81] and Fortran [82]. This has driven the need

to overcome the performance overhead of the interpreter and the restrictions imposed

by the global interpreter lock (GIL), which effectively makes all Python codes single-

threaded by preventing multiple threads from executing Python bytecode at the same

time [83]. This has resulted in technologies to increase the performance of exist-

ing, single-threaded Python codes through the compilation to native code, including

Cython [84] and MicroPython [85]. The GIL limitation on multi-threading, coupled

with the high-throughput parallel processing of GPUs, has resulted in work to lever-

age GPUs from within Python, including Numba [86], Copperhead [87], Parakeet [88],

ALPyNA [89] and PyCUDA [90]. However, unlike Numba, Copperhead, Parakeet and

ALPyNA, PyCUDA does not abstract the generation of GPU code but instead embeds

CUDA C code directly within the Python source code. Therefore, it is more related

to C-based technologies, rather than the approaches taken by the other technologies to

accelerate Python-like codes on GPUs (and CPUs).

The high-level approach of Numba, Copperhead and Parakeet is similar, whereby

they define an embedded domain specific language (eDSL) and utilise Python function

decorators (directives) to annotate the code to be compiled to native code or offloaded
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to GPUs. For example, Copperhead uses the @cu decorator to mark Copperhead lan-

guage functions, Parakeet uses the @PAR decorator and Numba defines the @jit dec-

orator to target CPUs, and the @cuda.jit decorator to target GPUs and perform the

necessary data transfer. Listing 2.3 is an example of the Numba @jit decorator to

generate native code for the go fast function. The timing loop between lines 15 and

18, allied with the “DO NOT REPORT THIS...” comment on line 14 highlight that the

JIT compilation time impacts the overall code runtime. The nopython=True param-

eter of the @jit decorator, hints to the Numba compiler that the function code can be

executed outside the standard Python interpreter, thereby increasing runtime perfor-

mance. Whilst Numba’s JIT compiler can speed up codes by a factor of around 20

times that of the standard Python interpreter [91], the generated code is larger than the

memory available on micro-core architectures, necessitating a different approach for

resource-constrained devices.

Although Copperhead uses a similar decorator approach to Numba, the eDSL uses

function primitives to provide data-parallelism for single-dimensional arrays (vectors)

of data. The primitives include map(), reduce(), gather(), scatter(), repli-

cate(), zip(), permute() and scan() [87]. Parakeet also employs function prim-

itives to provide data-parallelism on arrays, with codes in both languages appearing

very similar, as shown by Listings 2.4 and 2.5.
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1 from numba import jit

2 import numpy as np

3 import time

4

5 x = np.arange(100).reshape(10, 10)

6

7 @jit(nopython=True)

8 def go_fast(a): # Function is compiled and runs in machine code

9 trace = 0.0

10 for i in range(a.shape[0]):

11 trace += np.tanh(a[i, i])

12 return a + trace

13

14 # DO NOT REPORT THIS... COMPILATION TIME IS INCLUDED IN THE

EXECUTION TIME!

15 start = time.time()

16 go_fast(x)

17 end = time.time()

18 print("Elapsed (with compilation) = %s" % (end - start))

19

20 # NOW THE FUNCTION IS COMPILED, RE-TIME IT EXECUTING FROM CACHE

21 start = time.time()

22 go_fast(x)

23 end = time.time()

24 print("Elapsed (after compilation) = %s" % (end - start))

Listing 2.3: Numba JIT example [92]

Copperhead uses CodePy [93] to generate OpenMP C code for CPUs and PyCUDA

to generate CUDA code for GPUs, achieving 45 to 100% of the performance of hand-

coded CUDA code [87]. Parakeet, like Numba, uses LLVM [94] to generate code

for CPUs and generates CUDA parallel thread execution (PTX) [95] code for GPUs,

returning performance 2.4 times slower to 76% of that of hand-coded CUDA, where

the majority of the overhead is due to PTX compilation [88]. Both technologies allow

Python programmers to leverage GPUs to accelerate their codes without needing to

understand the complex programming mechanics of CUDA and embed the accelerated

code within their standard Python codes, providing greater accessibility and produc-

tivity than using alternatives such as PyCUDA.
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1 @cu

2 def spmv_csr(vals, cols, x):

3 def spvv(Ai, j):

4 z = gather(x, j)

5 return sum(map(lambda Aij, xj: Aij*xj, Ai, z))

6

7 return map(spvv, vals, cols)

Listing 2.4: Copperhead example [87]

1 def add(x,y):

2 return x + y

3

4 def sum(x):

5 return parakeet.reduce(add, x)

6

7 @PAR

8 def norm(x):

9 return math.sqrt(sum(x*x))

Listing 2.5: Parakeet example [88]

ALPyNA adopts a different technique to generating GPU code than the eDSL and

function decorator approach of Numba, Copperhead, Parakeet. Rather than requir-

ing the programmer to select and annotate the Python functions that will be generated

as GPU kernels, ALPyNA analyses loop data dependencies and performs automatic

loop parallelisation to generate CUDA kernels for GPUs. ALPyNA leverages the con-

strained execution flow of Python loops, provided by iterator guarantee of the range()

function and lack of a jump (goto) construct, to enable the static and dynamic analy-

sis for auto-parallelisation [89]. ALPyNA only targets GPUs, using the LLVM-based

Numba to generate the code. As Listing 2.6 shows, ALPyNA supports nested loop par-

allelisation and does not require hints or annotations, making it trivial for the Python

programmer to take advantage of the performance increase of up to 1000 times that of

the standard Python interpreter (CPython) [89].
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1 def matmul(mat_a, mat_b, mat_c):

2 ma_rmax, ma_cmax = np.shape(mat_a)

3 b_rmax, mb_cmax = np.shape(mat_b)

4 for k in range(ma_cmax):

5 for i in range(ma_rmax):

6 for j in range(mb_cmax):

7 mat_c[i][j] = mat_c[i][j] + mat_a[i][k] * mat_b[k][j]

Listing 2.6: ALPyNA example [89]

Whilst Numba, Copperhead, Parakeet and ALPyNA provide compelling examples

of code generation technologies for CPUs and GPUs, they integrate with the CPython

interpreter, restricting their use to traditional desktop8 and HPC systems, rather than

extremely memory-constrained bare metal embedded, IoT and micro-core devices.

MicroPython [96], a version of Python for embedded devices, implements native code

generation on embedded CPUs via two emitters, native and viper [97], defining the

@micropython.native and @micropython.viper decorators to select the emitter

for native code generation. The native emitter lowers the MicroPython bytecode to

machine code and performs calls to VM functions for operations such as arithmetic

calculations, binary operations and comparisons. Effectively, this method removes the

overhead of the VM’s dispatch loop, whilst leveraging the existing VM functions and

capabilities. The viper emitter takes this approach further by also generating machine

code instructions for operations, rather than calling the VM functions. As expected,

this increases performance yet further as arithmetic operations are performed inline

rather than via a procedure call. This results in performance approximately 10 times

that of the native emitter and around 24 times faster than the VM interpreter [98].

The MicroPython cross-compiler can also use the emitters to generate native code on

the host, instead of on the device by the standard compiler. It should be noted that

the emitters on the device are not JIT compilers as the native code is generated be-

fore execution begins and the bytecode is not profiled to select compilation candidates.

For MicroPython’s embedded targets, the latter approach allows a single MicroPython

code file to be deployed to devices with different CPUs (e.g. ARM and Xtensa) where

it is then compiled to the specific machine code of the CPU before execution, providing

functionality similar to that provided by Java bytecode and the associated JIT compiler

8Here, the definition of desktop is any computer, irrespective of the processor or RAM, running an

end-user operating system, such as Linux, Windows or macOS.
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within the VM. Whilst MicroPython is specifically designed to target embedded de-

vices, this approach precludes targeting micro-core architectures as it requires 256KB

code memory for the VM and compiler, as well as a minimum of 8KB of RAM for the

stack and heap [99].



The advent of multicore processors has shifted the burden of im-

proving program execution speed from chip manufacturers to soft-

ware developers.

Kulkarni et al., “Optimistic Parallelism Requires

Abstractions” [100]

3
Design of enhancements to ePython

29



Chapter 3. Design of enhancements to ePython 30

3.1 Overview

Figure 3.1: ePython architecture highlighting components discussed in this chapter

This chapter sets out the design decisions for the enhancements to ePython to ad-

dress the key research questions: RQ1 (How to manage the limited on-chip memory

for data?), RQ2 (How to manage the limited on-chip memory for code?) and RQ3

(How to address the low runtime performance of virtual machines?). Whilst some of

the techniques are applicable to delivering dynamic languages on embedded devices,

the focus here is on the design details required to provide programmers with capabili-

ties to enhance the development of kernels in dynamic languages that are offloaded to

the micro-core accelerator architectures described in Chapter 2.

Although there are a number of technologies for accelerating kernels written in

Python on GPUs, such as Numba discussed in Chapter 2, ePython [19] is currently

the only technology that supports offloading kernels written in a dynamic language

to micro-core accelerators. While the techniques described in this chapter are appli-

cable to dynamic languages more widely, the discussion will focus on extending and

enhancing ePython as this is the primary research vehicle for this work.

Figure 3.1 shows the ePython architecture, including the existing virtual machine

and new Olympus native code abstract machine components and compiler, highlight-

ing those that are discussed in this chapter. Enhancements to the existing ePython

memory model, A in Figure 3.1, are discussed in Section 3.2.2. Changes to the lan-

guage to support native code generation B are examined in Section 3.4.1 and dynamic

code loading C is covered in Section 3.3.1. The underlying implementation is dis-

cussed in Chapter 4.
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3.2 Managing arbitrary data size (RQ1)

3.2.1 Domain Specific Language for micro-cores

Whilst ePython was originally developed as a language for teaching parallel program-

ming on the Epiphany-III micro-core architecture [19], it was later developed into

an eDSL within Python1 running on the host to enable the offloading of kernels to

micro-core accelerators [101]. Here, specific functions can be annotated as kernels for

offloading to the micro-cores and there are a set of communication functions that allow

the programmer to control the transfer of data to and from the host [102]. For example,

Listing 3.1 illustrates how the @offload function decorator can be used to mark the

helloworld() function for download to the micro-cores for execution. This example

also shows the implicit transfer of data to and from the micro-cores; the values of the

input parameters a=10 and b=20, and the return value (a list of the value 30, one value

for each core in the micro-core accelerator2).

1 from epython import offload

2

3 @offload

4 def helloworld(a,b):

5 print "Hello World"

6 return a+b

7

8 print helloworld(10, 20)

Listing 3.1: Synchronous ePython kernel launch example [102]

The @offload decorator can also be passed parameters to control the execution

of the kernel. For example, in Listing 3.2, the helloworld() function is marked for

asynchronous execution by the async=True argument. In this example, the kernel

function returns an ePython handle that can then be checked to determine if execution

has completed; the handler.wait() function call will block the host Python script’s

execution until the handle indicates that the kernel has completed. The @offload

directive also has parameters that determines the set of cores (or a single core) that

1The ePython eDSL can be embedded within any Python environment running on the host. As

the standard Python interpreter written in C (CPython) was used for ePython, CPython and Python are

synonymous in this work.
2In the case of a single Adapteva Epiphany-III processor, a list of 16 elements of the value

30(a+b⇒10+20) is returned i.e.[30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30]
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will execute the kernel function, enabling different kernels to execute on the micro-

cores at the same time. More information on the communication functions, including

copy to device() and copy from device(), can be found in the ePython tutorials

on GitHub [103].

1 from epython import offload

2

3 @offload(async=True)

4 def helloworld(a,b):

5 print "Hello World"

6 return a+b

7

8 handler=helloworld(10, 20)

9 print handler.wait()

Listing 3.2: Non-blocking asynchronous ePython kernel launch example [102]

3.2.2 Host / device memory model

The ePython eDSL provides the programmer with a rich set of features with which

to write and control kernels deployed to the micro-core accelerators. However, the

implicit data transfer of offloaded kernel functions imposes the restriction that the ker-

nel cannot begin executing until the data transfer is complete. Whilst this might be

expected, and is certainly acceptable for simple values, such as a and b in Listings

3.1 and 3.2, it becomes more problematic for large compound objects. These copy on

load3 or eager copy semantics limit kernel runtime performance as they prevent the

overlapping of communications and computation. Furthermore, whilst the eager copy

model makes sense for GPUs, it necessitates that there is sufficient memory on the ac-

celerator to hold the copied data [22]. When we take into account the tens of kilobytes

of on-chip memory in micro-core devices, this reduces the viability of real-world ap-

plications on these architectures. For example, running the LINPACK benchmark [21]

on the Adapteva Epiphany-III using the Eithne framework discussed in Section 5.2.2,

the problem size had to drop by orders of magnitude from the default N = 1000 to

N = 50 in order to fit within the micro-core’s on-chip memory [28].

3The required kernel data is copied over to the device before the kernel executes. Therefore, kernel

execution does not begin until after the data is transferred.
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3.2.2.1 Pass by reference

Not only does the eager copy model restrict runtime performance and the amount of

data that can be passed to a kernel function, it also does not follow the standard Python

pass by reference model for compound objects. Whilst CUDA UMA supports pass by

reference for kernel functions [104], this is provided by explicit hardware support, as

mentioned in Section 2.3. However, micro-cores do not have this hardware support and

the default model is explicit copying. Therefore, this requires that the support is imple-

mented in the programming technology to work around the lack of explicit hardware

support. From a programmer’s perspective, it would be preferable for eDSL kernel

function calls to behave in exactly the same manner as standard Python functions run-

ning on the host. In other words, the kernel should be able to not only access passed

compound object values but also be able to update them in place, per pass by reference

semantics. Furthermore, the pass by reference model provides a mechanism whereby

kernel functions can access host vectors that are much larger than the available on-

chip memory; when a host vector element is referenced in the kernel, an implicit data

transfer is performed to retrieve each element. Likewise, when an element is updated

locally, the new value is sent back to the host to update the original vector. Without

additional programmatic control, these data transfers block the device core execution

until they complete [22]. Whilst this mechanism follows Python semantics and enables

access to data structures larger than the on-core memory, the resulting runtime perfor-

mance impact of transferring each element individually is undesirable. To address this

issue, the prefetching of host vector slices was introduced by extending the @offload

decorator’s parameters. Figure 3.2 details the prefetch parameters, showing the re-

lationship between the host vector, the data being prefetched and the local (on-core)

vector slice.

The prefetch argument is keyed by the parameter name of the kernel function to

which the prefetching configuration applies, buffer size determines the amount of

memory allocated on the device for the local vector slice, elements per prefetch

controls the length of each transfer slice, distance is the number of elements ahead

of the current index that triggers the prefetch and access modifier (readonly or

readwrite) determines if the local slice is immutable. The access modifier pa-

rameter is an additional optimisation that removes the requirement to automatically

transfer the local vector slice values back to the host if they are marked readonly (im-

mutable). Listing 3.3 shows the prefetch parameters for the example kernel function
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@offload(prefetch={parameter name, buffer size, elements per prefetch, 
distance, access modifier})

…

0 1000

elements per prefetch

buffer size

distance

Host vector

Figure 3.2: ePython @offload decorator prefetch parameters

mykernel(). Like the example in Figure 3.2, the prefetch parameters for a and b

have a local size of 10 elements (buffer size), two elements will be fetched at a time

for each vector (elements per prefetch), with elements being prefetched 10 elements

ahead of the current indices (distance) and the local vector slices are immutable, negat-

ing the requirement to copy the local elements back to the host. When the kernel is

first executed, the local slice will be preloaded with the with the first n elements of the

host vector, where n is the buffer size.

Currently, the parameters are explicit to allow the programmer set the values and

control the transfers. However, in future these parameters could be inferred by the un-

derlying technology and set automatically to optimise the transfers, using similar SPM

tiling techniques to [105] and [106]. However, the current ePython model demonstrates

the general approach from a technology perspective, as well as the associated benefits

of its implementation within a dynamic language running on micro-core architectures.

Extending the model to include an automatic memory tiling approach is beyond the

scope of this research.

The ability to prefetch host vector slices not only improves runtime performance by

providing the opportunity to overlap communication and computation through direct

memory access (DMA) transfers but also by transferring a larger block of data than for

each individual vector index access, where significantly fewer messages are created

that have to be responded to by the host4. For instance, on the Adapteva Epiphany-III,

4Depending on the messaging implementation, the host listener process may get swamped by a

large number of individual messages, forcing the device cores to wait.
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transferring larger blocks of data increases the overall effective bandwidth between

the host and the device by up to 19 times for blocks of 8192 bytes versus blocks of 8

bytes [107]. Similar behaviour was observed by [80] for inter-core data transfers on

the Adapteva Epiphany-III.

1 from epython import offload

2 import random

3

4 nums1=[0] * 1000

5 nums2=[0] * 1000

6

7 for i in range(1000):

8 nums1.append(random.randrange(0,100,1))

9 nums2.append(random.randrange(0,100,1))

10

11 @offload(prefetch={a,10,2,10,"readonly"}, {b,10,2,10,"readonly"})

12 def mykernel(a, b):

13 ret_data=[0] * len(a)

14 i=0

15 while i < len(a):

16 ret_data[i]=a[i] + b[i]

17 i+=1

18 return ret_data

19

20 print mykernel(nums1, nums2)

Listing 3.3: ePython prefetching example by annotating the @offload decorator

[22]

3.2.2.2 Memory kinds

As discussed in Section 2.2.1, micro-core accelerators have a memory hierarchy, with

increasing size and decreasing performance of the memory as you move out from the

micro-cores (as shown for the Adapteva Parallella in Figure 2.5). The prefetching

example in Listing 3.3 makes implicit use of this memory hierarchy, where objects

in the non-directly accessible DRAM of the host Python interpreter’s heap are avail-

able locally to the kernel functions running on the micro-cores. However, it would

be beneficial to provide fine-grained control over the allocation of objects within the

memory hierarchy. For example, it would be useful to be able to access objects within

the memory of the other cores on the device; on the Adapteva Epiphany-III, it is 27
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times faster to load kernel codes onto a single core and from there distribute them to

the other cores, in comparison to the standard method of loading the codes onto each

core directly from the host [108]. To achieve required level of control over the area

of the memory hierarchy within which objects reside, memory kinds [24] were intro-

duced through the memkind ePython package that contains the Host, Shared, Device

and Local5 classes that allocate objects in the non-accessible host memory, the shared

off-chip memory, another core’s memory on the device and the local on-core memory,

respectively. Listing 3.4, although functionally identical to Listing 3.3, illustrates how

the host level in the memory hierarchy can be explicitly selected by using the Host

memkind class for objects nums1 and nums2.

1 from epython import offload, memkind, types

2 import random

3

4 nums1=memkind.Host(types.int, 1000)

5 nums2=memkind.Host(types.int, 1000)

6

7 for i in range(1000):

8 nums1.append(random.randrange(0,100,1))

9 nums2.append(random.randrange(0,100,1))

10

11 @offload(prefetch={a,10,2,10,"readonly"}, {b,10,2,10,"readonly"})

12 def mykernel(a, b):

13 ...

Listing 3.4: Using memory kinds to control where objects are located [22]

The memory kind classes make it trivial for the programmer to change where in the

memory hierarchy an object is allocated; all that is required is to change the memkind

class to the one that manages objects in the desired area of the memory hierarchy. The

underlying library and memory kind manages the low level details of this. Irrespective

of where a variable is allocated, it is the reference that is passed to the micro-cores and

the runtime manages the loads and stores. To create a kind representing a new level

in the memory hierarchy requires a new Python class, inheriting from the Kind class,

with all details about that level of hierarchy encapsulated inside the kind; everything

else remains unchanged [22].

5Originally, the Microcore class allocated objects in the local SRAM of the micro-core [22] but it

was replaced by the Local class when Device class provided access to other on-device memory.
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3.3 Managing arbitrary code size (RQ2)

3.3.1 Dynamic code loading

Whilst ePython supports the execution of bytecode from within the off-chip shared

memory area, there is a five times runtime performance penalty over running the byte-

code from the on-chip SRAM [19] and the mechanism does not support dynamic func-

tion loading. In order to maximise the precious on-chip memory, it would be bene-

ficial to be able to dynamically load and unload functions from within kernels. This

is achieved by introducing a new Python decorator, @dynamic, which has the same

functionality as the @offload decorator but indicates to the compiler that the function

should be marked for dynamic loading. Listing 3.5 shows the use of the @dynamic

function decorator, where the add and add nums functions marked for dynamic load-

ing. This example also demonstrates that functions can be dynamically loaded at dec-

laration or any point later in a kernel’s execution through the use of the defer=True

decorator argument.

1 from epython import dynamic

2

3 @dynamic(defer=True)

4 def add(x,y):

5 return x+y

6

7 @dynamic

8 def add_nums():

9 global add

10 add = fetch_function("add")

11 print(add(3,4))

12 del(add)

13

14 add_nums()

Listing 3.5: Dynamic loading function declaration example [27]

The ability to delay the loading of dynamic functions provides the programmer with a

high degree of control over the memory usage of functions within a kernel; dynamic

functions are are loaded into space allocated within the runtime’s heap and can be

marked for deletion by using the Python del() function, as shown in add nums() in

Listing 3.5. In contrast, existing ePython functions continue to consume memory after
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they are loaded. Whilst there is no implicit support for dynamic function prefetch-

ing6 and deletion, the first-class nature of Python functions means that as long as a

dynamic function is loaded and assigned to a reference before it is used, the loading

can take place anywhere within the execution of the kernel that the programmer deems

most beneficial. The ePython fetch function() call is blocking and kernel execu-

tion waits until the function is fetched from the host, heap memory is allocated and the

function loaded into the heap block. However, the alternative request function()

is non-blocking and returns a handle which can then be interrogated to determine if

the function has been transferred and can be loaded into on-chip memory with load -

function()7.

The @dynamic function decorator abstraction drives the compilation technology

to support dynamic function loading within ePython kernels running on micro-cores.

As Sections 6.4.1 and 6.4.2 demonstrate, this abstraction is an important first step

that provides valuable capabilities for codes running on micro-cores and future work

could automate this further, such as dynamic function prefetch and auto-deletion from

memory.

3.4 Increasing kernel runtime performance (RQ3)

3.4.1 ePython object typing

Python is a dynamically typed language where objects8 can change their type through-

out the program’s execution. For example, an object instantiated with an integer literal

can become a string or a list at a later point in the code. In contrast, statically typed

languages, such as C, Fortran and Java, once an object is declared as a particular type, a

compiler error will be raised if an attempt is made to change its type later in the code9.

Like Numba [86], the ePython compiler performs type inferencing where object types,

including function parameters, are determined from their surrounding environment.

For example, it can be inferred that a variable is a floating point (real) number if it is

6Functions marked with the default @dynamic decorator that are not deferred are prefetched by the

ePython runtime at kernel start-up.
7Originally, load function() performed a blocking fetch from the host and load into on-chip

memory [27].
8For the sake of simplicity, all source programming language elements, for example, numbers,

strings, lists, arrays and functions will be referred to as objects.
9Accepting any implicit type coercion rules.
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declared with a real number literal or a function’s parameters are integers if integer lit-

erals are passed to a specific function call. However, the type inferencing is performed

statically by the ePython compiler by traversing the Abstract Syntax Tree (AST) at

compile time, rather than dynamically at execution time as performed by the Numba

JIT compiler [109]. It is important to note that ePython objects retain their fully dy-

namic nature, in line with standard Python behaviour. This dynamic nature does not

impose any undue complications for the implementation of an interpreted version of

the language but it becomes problematic when the code is statically compiled to native

code. One approach is to tag each object with its current type and dynamically inter-

rogate this tag on every object access and perform the necessary memory operations

based on the this type information. This is the method implemented within the ePython

interpreter but it introduces an overhead that would be preferable to remove in order to

maximise the benefits of native code generation. Ideally, in order to minimise the run-

time performance gap between statically typed programming languages and natively

compiled dynamic languages, dynamic type checking should be removed as much as

possible. This requires that objects are statically typed checked, with the associated

restriction imposed on codes that use dynamic typing. Whilst for most target scientific

kernels this is not an undue restriction as they have monomorphic10 objects, it might

appear to be a significant restriction for other Python codes. However, considering the

Awesome Python list of applications [110] where approximately 80% of the objects

in the code are monomorphic [111], it is reasonable to conclude that constraints on

dynamic typing in Python can be made in order to improve runtime performance. Fur-

thermore, although objects might be statically typed, dynamic type checks removed

and typed object access introduced, type changes can be supported by creating new

type declarations and updating the typed access when an object’s type changes.

3.4.1.1 Type inferencing

The underlying approach used in this work, is similar to gradual type inferencing [112],

simple type freezing [113], and the type inferencing performed by [114] and [115].

Polymorphic compound types, such as Python lists are more problematic as each ele-

ment can be of a different type, thereby requiring type tagging of the elements, unlike

a traditional vector or array where all elements are of the same type. The simplest solu-

tion for these data types would involve boxing [116] the elements along with their type

10An object is monomorphic if its type does not change during the execution of the code after it has

been declared or assigned an intial value.
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and performing type checking at runtime, with the associated runtime performance

and storage overheads11. As the primary focus of this work is accelerating scientific

kernels, support is provided for typed vectors and arrays, with their associated runtime

performance and storage benefits, rather than generic lists.

3.4.1.2 Dynamic typing and polymorphism

Whilst it is simple to infer the type for literals, function definitions are more problem-

atic. For example, the compiler is unable to infer the types for the x and y parameters

of add() function in Listing 3.5 from the declaration. However, it is possible to infer

from the add nums() function that they are both integers for this code. This informa-

tion can then be used to type the x and y parameters as integers for code generation.

If x had a value of 3.3 instead, the compiler could infer that x was a real number and

type the add() function declaration accordingly. As Python is a dynamically typed

language, it is possible for x and y to be any type that supports the + operator, for

example, integers, reals and lists. This means that add() is an implicit parametric

polymorphic function [117], adding complexity to the mechanism of statically typing

functions for code generation as the compiler needs to consider all combinations of

a function’s input parameter types and the associated return types. The solution is

to implement a form of type scheme for function signatures (input parameter and re-

turn types) described by [118], where a template is created for each function body or

lambda (ń) and its signature, which is then copied for each function application or beta

(B) reduction. During the type inference phase of compilation, for all B reductions, the

argument types are substituted in the template and then the ń is typed to determine

the return type. The typed signature and ń are then added as a variant to the func-

tion’s definition. During code generation, these typed variants are used to generate

the code that is executed for each combination of function argument types, with the

generated function name mangled12 to include the input parameter and return types,

thereby supporting the polymorphic nature of dynamically typed functions. This pro-

cess is transparent to the programmer, with the only overhead of increased binary size

11Even if we assume a single byte for each element’s type tag, this amounts to a 25% memory

footprint overhead for integer values.
12The name mangling scheme is simple and leverages the fact that Python does not allow the $

character in object names, unlike C99 Universal Character Name identifiers [119]. The generated name

starts with oly , then the return type, followed by a $, then the ePython function name, another $ and

the argument types. For example, the add() function that takes two integers and returns an integer

would have the following mangled name: oly i$add$ii.
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for codes with a number of function variants.

programlisting4_1

let(0,0) β

idhelloworld:none λ

let(1,1) let(1,2) β let(0,0)

ida:none idb:none idrtl_print:void literal"Hello World":string return

+

ida:none idb:none

idhelloworld:integer λ

let(1,1) let(1,2) β

ida:integer idb:integer idrtl_print:void literal"Hello World":string return

+

ida:integer idb:integer

idrtl_print:void β

idoly_i$helloworld$ii:integer literal10:integer literal20:integer

Figure 3.3: ePython AST example

Figure 3.313 shows the AST generated for the example in Listing 3.1. In the Olym-

pus AST, all ńs are stored on the left-hand side of the tree, with all other nodes chained

on the right-hand side. The declaration node for the helloworld() function with the

initial, untyped ń shown by the tree with id nodes a and b with type none can be seen

on the left of the diagram. The typed variant is on the right and below, with the typed

(integer) a and b parameters and return type. The typed B reduction is shown on the

right-hand side of the AST where it is applied to the two integer arguments (10 and

20). The diagram also shows the mangled function name (oly i$helloworld$ii) in

the left-hand id of the B node, representing the variant of the helloworld function

that takes two integer parameters and returning an integer value. As the creation of ń

variants is driven from the B reductions, the original, untyped template ń is never used

to generate code, and no ń code bodies are generated if no corresponding B reductions

are performed.

13The AST diagram was generated using the Olympus dotgen code generator, which creates a

Graphviz .dot file directly from an ePython source file. This can then be rendered by Graphviz in

a number of image formats, including EPS, PDF, SVG and PNG.
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1 def inc(x):

2 if x < 100:

3 return x+1

4 else:

5 return "Too big"

6

7 def dec(y):

8 if y > 0:

9 return y - 1

Listing 3.6: Multiple function return types

Without discussing the merits of the inc function Listing 3.6, it should be noted

that the proposed type inferencing design does not attempt to address Python functions

with polymorphic return types, even though there are possible use-cases for construc-

tor functions that return different value types. As ePython does not currently sup-

port classes / objects and to reduce algorithmic complexity within the type inferencing

phase, the Olympus ePython compiler does not implement dynamic fallback [112] for

instances when it cannot infer object types and will return an error for cases such as

that shown in Listing 3.614. However, it should be noted that return types are coerced,

such that an ePython function that returns both integer and real values will have a re-

turn type of real, as integers are promoted to reals by the type inferencer when coercing

the two types. Furthermore, to avoid dynamic fallback, [112] propose a strategy for

evolving dynamically typed programs to statically typed programs:

“ In one state, type inference removes unnecessary assumptions of the dy-
namic type, so that elimination of any remaining dynamic types in the code
requires either reasoning outside the static type system, or restructuring
the code. In the other state, the programmer either introduces further
type annotations or restructures parts of the program to conform to the
static type discipline. ”

This strategy can also be applied to ePython codes, whereby the second state can

be used to allow the type inferencer to determine static types for program objects.

For example, the return type of the dec function in Listing 3.6 is ambiguous as it can

either be a numeric value when dec is greater than 0 or None otherwise. Whilst this

14However, the current approach does not preclude implementing dynamic fallback in the future,

through the introduction of a dynamic type within the Olympus abstract machine and the requisite

boxing of the return values.
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is the same behaviour as Python, it is still problematic for later use of the returned

None value. In this example, the addition of the line return 0 at the end of the dec

function allows the type inferencer to determine a static return type (integer). In the

case of the Olympus abstract machine, if y is real, the final integer return value (0)

will be promoted to a real and the corresponding real variant added to the ń node.

For most codes, especially scientific kernels, the Olympus approach, allied to strategy

of [112], provides behaviour close to that of Python, whilst greatly simplifying the type

inferencing algorithm.



Supporting the required functionality [on micro-cores], which was

originally designed for shared-memory multiprocessors, can be a

very difficult procedure due to limited resources.

Agathos and Dimakopoulos, “Adaptive OpenMP Runtime System

for Embedded Multicores” [50]
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4.1 Overview

Figure 4.1: ePython architecture highlighting components discussed in this chapter

This chapter sets out the implementation of the enhancements to ePython to address

RQ1 (How to manage the limited on-chip memory for data?), RQ2 (How to manage

the limited on-chip memory for code?) and RQ3 (How to address the low runtime

performance of virtual machines?).

Figure 4.1 shows the ePython architecture, including the existing virtual machine

and new Olympus native code generation abstract machine components and compiler,

highlighting the components that are discussed in this chapter. The support for arbi-

trary sized data (RQ1), A in Figure 4.1, is examined in Section 4.2, including the

communications model and memory hierarchy implementation. The techniques to in-

crease runtime performance (RQ3) through enhancements to the VM and the intro-

duction of native code generation (Olympus), including compiler structure, runtime

memory model and type management B , are discussed in Section 4.3. The dynamic

function loading model developed to support arbitrary kernel code sizes (RQ2) C is

described in Section 4.4. The investigations into the impact on runtime performance

(RQ3) and bytecode size of different addressing modes within a VM, supported by the

creation of the new Merlin virtual machine D , are discussed in Section 4.3.2.



Chapter 4. Implementation of enhancements to ePython 46

4.2 Managing arbitrary data size (RQ1)

This section details the enhancements to ePython to support the ability for kernels to

escape the restrictions on data size that the limited on-chip memory of micro-cores

impose. A brief comparison with GPUs, will be provided to help set the context and

background for the ePython enhancements. The discussion will then focus on how the

pass by reference kernel data model (Section 3.2.2.1) can be delivered on micro-core

architectures, including: the limitations imposed by the CPython interpreter on the

host, the new protocol required to support the pass by reference kernel data model and

the underlying functions required to support the design. As the memory hierarchy and

memkinds, discussed in Section 3.2.2.2, are vital in providing the programmer with a

high-level set of features to manage memory constraints, the implementation changes

to support them will also be discussed, even if these are relatively trivial once the pass

by reference kernel data model is implemented.

4.2.1 Communication model

As mentioned in Section 2.2.1, implementing a form of unified virtual addressing

(UVA) on micro-core architectures requires both hardware and software support. On

both the Adapteva Parallella and Xilinx PYNQ boards the hardware support for this

UVA-like memory model is provided via IP blocks within the FPGA fabric of the

Zynq-7000 SoCs and software support within the micro-core runtime support execut-

ing on the host. The support for UVA in ePython is provided by a set of runtime

communication primitives1 (Section 4.2.4) using mailboxes [120] to support commu-

nications between the micro-cores and the host. As shown in Figure 4.2, the original

kernel data transfer model was to explicitly copy the data across to the micro-cores

at kernel execution time and back to the host on kernel exit, in the same manner as

the non-UMA GPU programming model in Table 2.1. Whilst this eager communica-

tion model is simple and well understood, the disadvantage is that the kernel has to

wait until the data has been transferred before execution can start. Ideally, we would

like to initiate kernel execution as soon as possible and transfer the data as it is re-

quired in a manner similar to UVA “Zero-Copy” memory [104] or UMA. Here, a

reference to the data is passed to the device at kernel invocation and the data is pulled

from the host using this reference, as shown in Figure 4.3. The advantage of this lazy

1A set of native functions that implement low-level functionality to provide a base for building

higher-level abstractions for the programmer.
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Figure 4.2: ePython copy and launch communications model
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Figure 4.3: ePython reference and pull communications model

communication model is that it matches the Python pass by reference semantics for

function calls, where function parameters that are compound objects, such as lists, are

references (pointers) to the original objects, rather than copies made on entry to the

function. Crucially, this model allows access to the host memory2 that is significantly

larger than the tiny amounts of micro-core on-chip memory. The underlying mecha-

nism for passing references to host Python heap objects to device kernel functions will

be discussed in Section 4.2.2 below.

4.2.2 Host Python integration

Host (ARM A9) Device (Epiphany-III)

ePython ePython ePython ePython

ePython ePython ePython ePython

ePython ePython ePython ePython
Xfer listener

CPython

ePython ePython ePython ePython

Sh
ar

ed
 D

R
A

M

16 channels
32 cells

16 channels
32 cells

Figure 4.4: ePython communications architecture for the Adapteva Parallella [22]

In contrast to the static copy and launch model described in 4.2.1, where the data is

simply copied to the shared DRAM on the function call, the pass by reference model

2This is not direct physical access to the host memory from the device kernels but is provided by

the host / device communications discussed in Sections 4.2.2, 4.2.3 and 4.2.4.
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is dynamic, requiring a new communications architecture, as shown in Figure 4.4. The

implementation for ePython consists of a CPython module on the host containing the

Python interpreter interface and host / device communication functions. The module

also includes a pthread [121] listener that responds to requests from the device kernels.

This listener thread only acquires the CPython interpreter’s Global Interpreter Lock

(GIL) [83] while it is accessing Python heap objects in order to minimise the impact

on the host Python script and to increase the responsiveness of the listener to device

requests.

An area of the host shared DRAM, shown in Figure 2.4 and Figure 4.4, is used for

the communication channels between the host CPU and the micro-cores, typically this

is one per core, although for large core counts these can be multiplexed. Each channel

has thirty two3 1KB cells, enabling up to thirty two concurrent transfers between the

host and each of the micro-cores, with larger data payloads occupying multiple cells

at the expense of the number of concurrent transfers. The host module allocates the

communications channels and cells in shared memory using the allocateShared-

Buffer() function, which is unique for each micro-core architecture. For example,

the Adapteva Parallella version uses the e alloc() function from the Epiphany Hard-

ware Utility Library (eLib) [122] and the Xilinx PYNQ version, for the MicroBlaze

and RISC-V, uses the cma alloc() function from the Contiguous Memory Allocator

(CMA) library [123], that allocates an area of shared memory visible to both the host

processor and micro-core device. Both these libraries provide an abstraction over the

specific, low-level implementation of the device driver within the Linux kernel.

4.2.2.1 CPython integration limitations

The Python module interacts with the CPython interpreter and, similar to ALPyNA

[89] and Parakeet [88], provides access to a subset of Python types (scalars and lists)

within the interpreter’s heap4, with the limitation that scalar variables cannot be up-

dated from within device kernels. This is in line with the standard Python program-

ming model as scalars are immutable in Python, whereby updates to a scalar do not

change it’s value but point it to a new object containing the new value. Within the

CPython interpreter, all variables of the same value point to the same object in mem-

3This number is configurable based on the amount of shared memory available. It was arbitrarily

set at thirty two for the Adapteva Parallella as 32KB is the maximum amount of SRAM per core.
4As this functionality is provided by a Python module written in C, it would be possible to also

provide access objects external to the host Python interpreter’s heap.
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ory and when their value is updated the variables change ID (reference) to point to the

new value object, as shown in Listing 4.1. In this example, the IDs for x and the value

2 are the same (9780832) and the ID for y[2] changes from 9780832 to 9780896 (the

ID for the value 4) after the line y[2] = 4. However, as expected, the ID for the list y

remains the same after element 2 is updated as lists are mutable. Therefore, whilst we

can pass scalar variables to the device kernel functions, they cannot be updated even

if we wished to deviate from the standard Python programming model. Since lists are

mutable and the Python C API [124] allows us to create new scalar values and update

the lists stored in the host Python interpreter’s heap, we can pass and update data using

lists.

1 x = 2

2 print(id(x)) # prints 9780832

3 print(id(2)) # prints 9780832

4 x += 2

5 print(id(x)) # prints 9780896

6 print(id(4)) # prints 9780896

7 y = [ 0,1,2,3 ]

8 print(id(y)) # prints 139692247033344

9 print(id(y[2])) # prints 9780832

10 y[2] = 4

11 print(id(y)) # prints 139692247033344

12 print(id(y[2])) # prints 9780896

Listing 4.1: Python scalar immutability and IDs

4.2.3 Communication protocol

A low-level communications protocol, Xfer, was designed to support the pass by refer-

ence model discussed in Section 4.2.1. The protocol uses a control header that contains

the operation, variable ID, variable type, size / length, message originator and mes-

sage target, followed by the data. The Xfer protocol operations are listed in Table

4.1. The operations marked in italics are extensions to the Xfer protocol to support the

Eithne benchmarking framework discussed in Section 5.2.2. The communication re-

quests consist of matched pairs of messages i.e. a request is made by the originator and

a new message is created by the target in response. For example, a GET request from a

device micro-core for an external variable’s value is matched by a SET message from

the host containing the data. As mentioned in Section 4.2.2, each message occupies
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Table 4.1: Xfer communication protocol operations used to support ePython VM mem-

ory hierarchy access, pass by reference kernel data model and Olympus abstract ma-

chine host / kernel communications

Operation Description

CLEARED Channel cell is cleared and available for transfers

GET Request the value of a variable

SET Message contains the value of a variable

REGISTER Register an external variable for transfers

READ Reserve the cell for a subsequent GET operation

WRITE Reserve the cell for a subsequent SET operation

DEBUG Turn on debug output from Xfer monitor

TERMINATE Request from host to terminate device kernel

LOAD Dynamic function load request

one or more 1KB cells within a channel, with both the device and host writing to the

same cell(s) for a single request message pair. Request and response messages can-

not be written to an Xfer cell unless the operation field contains CLEARED, preventing

the cell being reused before processing is complete. If a new communications request

cannot be satisfied by the number of free cells, the request is blocked until the required

number of cells are available. The message flow between the device and host for an

external (host) variable data request is shown in Figure 4.5. This flow describes a sim-

Figure 4.5: Xfer external variable data request message flow

ple blocking external variable request where the device waits until the data is returned
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from the host before continuing execution. In this example, the micro-core is request-

ing the value of an external variable stored on the host. The micro-core writes a READ

operation to the next available channel cell to reserve it. It then creates the request

for the variable value and once written to the cell, it updates the operation to GET. In

a blocking request as shown in Figure 4.5, the micro-core will now poll the cell oper-

ation (blocks). The host listener will respond to GET request and will update the cell

operation to WRITE, reserving the cell, lookup the variable value and write it to the cell

and then update the operation to SET when complete. The micro-core will now load

the variable value into local memory and update the cell’s operation to CLEARED when

complete, releasing the cell for future transfers.

The protocol also includes the REGISTER, TERMINATE and DEBUG operations that

register external variables on the host, terminate kernel execution and enable / disable

debugging in the Xfer monitor program. The LOAD operation is used both by the Eithne

framework and the Olympus native code abstract machine to support dynamic function

loading (Section 4.4).

The CPython variables passed by reference to kernel functions are referred to as

external variables in ePython as they are external to the ePython heap on the micro-

cores. These variables are marked by the share with device() Python primitive that

underlies the @offload function decorator. The mapping between the host CPython

and device ePython variable IDs is held on the host to save the precious memory on the

micro-core device5 and to simplify the communication calls. The mapping is created

when the kernel functions are downloaded to the micro-cores and additional external

variable registration calls are made that include the CPython variable IDs which are

then returned by REGISTER messages, created by the device runtime, containing the

corresponding ePython variable IDs. For the ePython interpreter, the symbol table

was extended to include a flag to indicate if the variable reference is local and directly

accessible, or if it is external (on the host) and non-directly accessible. This flag is then

checked during kernel execution and if zero, the variable is accessed directly as before

but if the flag is non-zero a getExternalVariable() call is made that sends an GET

message to the host listener to retrieve the data, if required. For Olympus kernels, there

are specific external variable access macros that lookup the variable ID and perform

the getExternalVariable() call, if required. The listener looks up the ID mapping

table, retrieves the data and returns an SET message containing the data to the device.

5In fact, the changes to the ePython VM outlined here had to be smaller than 1.2KB in order to fit

within the existing memory map and the Epiphany’s SRAM constraints.
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4.2.4 ePython communication primitives

Table 4.2 itemises the blocking communication primitives that underpin the pass by

reference data transfer model discussed Section 3.2.2.1. The value() primitive re-

quests the value of an external (host Python) variable and waits for the response (blocks).

The get slice() function requests a slice of an external list (vector) and allocates

space on the micro-core to store it. The set slice() updates the slice of the external

list with the contents of the local micro-core list. The get slice byref() primitive

requests a slice of an external list and updates an existing local micro-core list.

Table 4.2: ePython Xfer blocking communication primitives

Primitive Description

value() Returns the value of a host Python variable

get slice() Returns a new on-core slice of a host Python list

set slice() Updates a slice (or the whole) of the host Python list

get slice byref() Returns a slice of host Python list into the provided buffer

The Xfer communications protocol and primitives are the same for both the VM

and Olympus abstract machine versions of ePython, with only the underlying imple-

mentation of the primitives changed to reflect the different memory models. For ex-

ample, whilst external variables in the interpreter are stored in the symbol table along

with local variables, Olympus external variables are reference types stored in a special

area of the heap. This allows the IDs for Olympus external variables to be encoded,

along with a dirty flag, within their corresponding heap block header field. The dirty

flag is used to determine whether or not the getExternalVariable() call is made to

retrieve the data from the host. Therefore, the underlying communication primitives

are implementation agnostic.

Table 4.3: ePython Xfer non-blocking communication primitives

Primitive Description

async get slice() Returns a handle to a request for a list slice

async set slice() Updates a slice of a host Python list, returning a handle

value byref() Loads a slice of a host Python list into the provided buffer

wait() Wait for the completion of an asynchronous transfer

ready() Returns true if the asynchronous transfer has completed
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The set of primitives listed in Table 4.3 support non-blocking requests, where com-

munications and processing can be overlapped to prevent the kernels waiting on ex-

ternal variable data to be returned from the host. To support this, a new variable type

handle was added to the ePython types, with non-blocking external data access prim-

itives returning a handle containing a reference to the specific channel cell that was

used to initiate the original request for external data. The async get slice() non-

blocking primitive requests an external list slice from the host and returns a handle

that is then used load the data when it is available. The async set slice() primitive

sends a message to update an external list slice, returning a handle that can then be used

later by the micro-core to confirm the update has been made on the host. The value -

by ref() primitive loads the slice of an external list into the local micro-core memory,

using the handle previous created by a previous async get slice() call. The wait()

primitive blocks execution until the handle confirms that the transfer is complete. A

new ready() runtime primitive was added to test whether a non-blocking data transfer

has completed by checking the status of the cell referenced by the handle variable. As

shown in Figure 4.5, this can reduce the micro-core waiting time for pre-fetched ex-

ternal data requests to the amount of time it takes the micro-core to load the data from

the channel cell(s), rather than the full amount of time from initiating the request to the

host (shown as on-demand wait time).

Whilst the primitives are available to the ePython programmer, their direct use is

not required as the @offload function decorator’s parameters allow the programmer

to control the automatic transfers, including the variables to be pre-fetched, the size of

the local buffer on the micro-core to store the data and the amount fetched at a time, as

detailed in Section 3.2.2.1.

4.2.5 Memory hierarchies and memkinds

The changes to support the host Python integration (Section 4.2.2), the new com-

munication model (4.2.1) and ePython communication primitive functions (Section

4.2.4), coupled with a finer-grained selection of target location (local, shared or exter-

nal memory) for variables and functions, provide the basis for the memory hierarchy

and memkinds functionality (Section 3.2.2.2). Previously, ePython kernels and data

could execute locally or from the shared memory area [101]. With memkinds, it is

possible for the programmer to specify which level in the hierarchy a particular vari-

able resides through the use of the Host (external), Shared, Device (other on-device
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Figure 4.6: Memory map for the Olympus abstract machine on the Adapteva Parallella
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core) and Local memkind classes described in Section 3.2.2.2. The memkind objects

contain the type, location and number of elements to be allocated, and are underpinned

by the heap allocator within the ePython runtime. For the VM, the heap allocator al-

ready supports creating variables within shared memory. For the Olympus abstract

machine, as shown in Figure 4.6 for the Adapteva Parallella6, the heap was divided

into areas for each of the memkinds: local core memory (Local memkind), on-device

memory (Device), shared (Shared) memory and external (Host7) memory. The general

kernel stack and heap objects are stored within the local memory area, shown in green

at the top left of Figure 4.6. The on-device objects are directly addressed from the

relevant heap of another core on the device (omitted from the diagram for clarity). The

shared objects are directly referenced from a separate heap located within the shared

memory area on the host, highlighted in green at the bottom right of Figure 4.6. The

local copies of external objects are held within a separate are of on-chip memory below

6On the host, the Xfer channel / cell and ePython control area in shared memory, the CPython

interpreter and the Linux memory map (kernel, drivers etc.) are not shown for clarity.
7Specifically, these are variables within the host CPython heap.
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the local heap. As discussed in Section 4.2.3, transfer to and from the host memory

can be implicit or via direct calls to the communication primitives.

The memory map for the Xilinx PYNQ MicroBlaze and RISC-V micro-core design

is similar but with the memory available to the CPython heap reduced to 512MB [125].

Whilst it is possible to directly access the memory of other cores on the device, for both

the Parallella and PYNQ micro-cores, within the Olympus abstract machine, this is not

currently supported by the ePython VM.

Although GPUs and micro-cores have architectural similarities, as discussed in

Section 2.2.1, the latter have more flexible programming models when they support

memory hierarchies. Whilst the implementation of the pass by reference kernel data

model required a number of changes including a C Python integration module, a

new communications protocol between the micro-cores and host, and changes to the

ePython device code, the benefits for the programmer are clear. By accessing the non-

directly accessible 1GB of memory on the host, kernel codes can overcome both the

32KB on-chip and the 2MB per core shared memory restriction on the Adapteva Paral-

lella. Furthermore, as this area is already used to support the communication channels

/ cells and kernel launch / control messaging, increasing the size or number of chan-

nels would put further pressure on this limited resource. The ability to support kernels

running on the micro-cores that can manage data sets equivalent to even modest desk-

top machines, enables a much greater set of real world applications to be run on the

supported micro-core devices.

4.3 Increasing kernel runtime performance (RQ3)

4.3.1 Native code generation options

Whilst implementations of dynamic languages, such as Python, for micro-core archi-

tectures greatly reduce the time and effort to develop applications in comparison to

using the provided C software development kits (SDKs), there remains a significant

runtime overhead of interpreting dynamic languages over compiled C binaries. There

are two major approaches to accelerating Python codes: ahead-of-time (AOT) and just-

in-time (JIT) compilation. AOT statically compiles the Python source code before it

is executed and JIT dynamically profiles the bytecode8 as it is loaded at runtime, se-

8Although bytecode is a specialisation of a portable code format, namely a single-byte opcode, and

the terms are often used interchangeably, in this work opcode will refer to the instructions themselves
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lecting the most appropriate sections of code (hotspots) for native code generation.

AOT compilation is usually performed on the host, leveraging the significantly greater

amounts of memory than is available on the device but it can also be performed on

the device where all bytecodes are translated to native code before execution (Mi-

croPython) [126]. JIT compilation, by its nature, has to be performed on the device

executing the bytecode.

As discussed in Section 2.5, the ePython VM only requires 24KB of on-chip mem-

ory, including the interpreter, runtime support and communication libraries, which is

significantly smaller than the 256KB required by MicroPython [85]. However, Mi-

croPython provides the viper AOT native code compiler that increases code runtime

performance by a factor of seven [126] over the interpreter. Here, the key question is

whether AOT or JIT compilation is the most applicable on micro-core architectures.

Furthermore, for both approaches, the design of the virtual machine9 [127] has an im-

pact on runtime performance and ease of implementation, where the different models

for opcode addressing will impact runtime performance relative to code generation

complexity [128]. This is important for a JIT compiler as it profiles the executing

opcodes and then selects targets for optimisation, with the remainder of the opcodes

being executed by the interpreter. Therefore, it is of value to improve the runtime

performance of the existing virtual machine itself and understand the trade-offs of the

different options. For example, whilst a register-based virtual machine would be ex-

pected to outperform a stack-based alternative, as is the case for the Lua programming

language [74], the code generation complexity for a register-based virtual machine is

significantly greater due to operations such as register allocation [129]. Furthermore,

different opcode addressing models can impact the size of the opcode binaries and any

conflicts between code size, runtime performance and compiler complexity need to be

explored.

4.3.2 The Merlin virtual machine

The runtime performance of different opcode dispatch models was also of interest,

bearing in mind that certain options, such as computed gotos (GCC labels as val-

ues) [130], are not available across all compilers. Therefore, as part of designing a

and bytecode refers to the file containing them.
9Here, the definition of virtual machine comprises the opcodes and the interpreter. The two are

interlinked as the opcodes are executed by the interpreter but the underlying implementation is not

necessarily coupled to the design of the opcodes, for example, different opcode dispatch models.
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JIT compiler for ePython, the Merlin virtual machine10 [131] was designed and built

to support the comparison of stack-based, three-address and register opcode modes,

as well as the comparison of switch table, function pointer and computed goto dis-

patch modes. Furthermore, Merlin supported a review the existing ePython bytecode

and virtual machine design to determine if improvements to bytecode size and runtime

performance could be obtained. The Merlin virtual machine was also designed to be

portable across different processor architectures (including Epiphany-III, MicroBlaze,

RISC-V and SPARC) and C compilers (including GCC, Clang, SDCC and CodeWar-

rior), to determine any impact on the implementation of a new virtual machine due to

the features of different CPU architectures. As part of the project’s portability objective

(RQ4), processor architectures with different byte ordering, such as the Epiphany-III

and SPARC, were chosen to expose, and remediate, the issues of developing a cross-

platform virtual machine with a common bytecode. Furthermore, the byte alignment

requirements of the Epiphany-III and SPARC impact the virtual machine’s memory

model including the layout / padding of elements on the stack and the block structure

of the heap manager, making them ideal targets for the design of a new virtual machine.

Merlin makes extensive use of C macros, as shown in Listing 4.2, to abstract the

opcode dispatch model from the individual opcode declarations and underlying pro-

cessor architectural differences. This enables the reuse of opcode definitions across

different dispatch models (controlled by a compiler flag), and supports the implemen-

tation of multiple opcode addressing models at the same time. The OPCODE BEGIN and

OPCODE END macros delineate the opcode definitions and abstract the underlying dis-

patch mechanism. The macro definitions for the different opcode dispatch models are

listed in Appendix D.

10Merlin was not based on the existing ePython VM as the ePython bytecode is a flattened, to-

kenised parse tree, with symbol table references, thereby precluding the assessment of different ad-

dressing modes on bytecode size and runtime performance.



Chapter 4. Implementation of enhancements to ePython 58

1 OPCODE_BEGIN(ADD) /* Stack-based */

2 DEBUG_OUT(ADD);

3 tmp1 = POP;

4 tmp2 = POP;

5 PUSH(tmp1 + tmp2);

6 NEXT;

7 OPCODE_END

8

9 OPCODE_BEGIN(ADDM) /* Three-address */

10 DEBUG_OUT(ADDM);

11 GET_ADDRESS(tmp1);

12 GET_ADDRESS(tmp2);

13 GET_ADDRESS(tmp3);

14 ACC = ILOAD(tmp2) + ILOAD(tmp3);

15 ISTORE(tmp1, ACC);

16 NEXT;

17 OPCODE_END

18

19 OPCODE_BEGIN(ADDXY) /* Register-based */

20 DEBUG_OUT(ADDXY);

21 ACC = X + Y;

22 NEXT;

23 OPCODE_END

Listing 4.2: Example Merlin opcode definitions

The Merlin bytecode is little-endian to match the majority of target processors

but support for big-endian processors, such as the SPARC and PowerPC, is provided

by swapping the operand byte ordering as the opcodes are loaded on these targets.

Macro definitions manage data and address sizes, byte ordering and alignment, en-

abling the construction of virtual machines with differing data width and address size;

for example a 32-bit data width with 16-bit addressing, suitable for the 32KB and

64KB Epiphany, MicroBlaze and RISC-V micro-cores. In Merlin, like the Pascal

p-machine [132], memory addresses are offsets within a frame rather than memory

locations and the virtual machine contains opcodes for block / function entry (ENTER

/ LEAVE), scope management (GLOBAL, LOCAL and SCOPE) and scoped memory access

opcodes (e.g. local LDI / STI and global LDGI / STGI). A cross overlay file for the

Python-based SB-Assembler [133] was created to enable tests to be written in an as-

sembly language for the Merlin virtual machine, greatly simplifying the creation of
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codes to investigate the trade-offs discussed in Section 4.3. The runtime performance

and bytecode size comparisons of the different opcode addressing models are presented

and discussed in Section 6.3.1.

4.3.3 Olympus compiler and abstract machine

A key driver for the design of either a JIT or AOT compiler is not only to improve

runtime performance, whilst ideally reducing the memory footprint, but also to main-

tain the high-level programming features of dynamic programming languages, such

as closures [134] and dynamic typing. These features introduce runtime complexities

that require careful implementation to avoid excessive runtime performance overheads.

For example, managing dynamic types by boxing and unboxing the values introduces

significant marshalling overheads for each reference / update [116], or the runtime per-

formance impact of managing free variable references in closures by chaining up the

environment [135] links. Over and above the requirements that dynamic languages

place on the approach to native code generation, a key requirement in designing a new

AOT compiler for ePython was to retain as much of the existing runtime support as

possible, as it provides mature parallel programming features, with the required un-

derlying communications support. The main components of the ePython environment

were isolated: the compiler, interpreter, communications and runtime code. Whilst

the interpreter would not be required in the new design, elements such as the symbol

table, and associated data structures, are used as part of the ePython runtime support

and were carried across to the new native code generation environment.

At a high level, the native code generation approach employed in this work is sim-

ilar to that of the MicroPython viper emitter in that native code is generated for all

Python source code, rather than leveraging interpreter functions for the execution of

arithmetic and comparison operations. However, in this work, C source code is gen-

erated that is compiled to a native binary for download and execution on a micro-core

device. A number of existing programming languages have used this approach for tra-

ditional computing environments, including Eiffel [136], Haskell [137] and Lua (Pal-

lene / Titan AOT compiler) [138]. Whilst Haskell has deprecated the C backend in

preference to a new LLVM [94] backend, the former is still beneficial for porting to a

new platform as it produces vanilla code, requiring only GCC, as and ld tools [139].

Likewise, C was chosen as the backend for the ePython AOT compiler to enhance

portability, particularly as a number of the target micro-core architectures, including
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the Adapteva Epiphany and Xilinx MicroBlaze, are not supported by LLVM11. Fur-

thermore, code generators, such as MicroPython’s emitters, need to be specifically

written to support new processor instruction set architectures (ISAs), and the C back-

end ensures that native code generation is immediately available on all micro-core

platforms that ePython supports. Crucially, the approach adopted here generates high-

level C source code that retains the overall structure of the Python source program

rather than emitting machine code representations of the bytecode (MicroPython) or

disassembling / translating the bytecode to native code (Numba). The C source code

generation approach was adopted in order to leverage the extensive optimisation ca-

pabilities within modern C compilers, including register allocation, data flow analysis,

instruction selection and scheduling, data dependency management and scalar optimi-

sations [129].

4.3.3.1 Overview

The new Olympus abstract machine was designed to meet the requirements for the

AOT compilation of dynamic languages, such as ePython, and leverages the experi-

ence gained developing the Merlin virtual machine, specifically its memory model.

The Olympus approach describes a high-level abstract machine in C that supports dy-

namic programming languages and provides a simple target for the source language

(ePython) compiler. This approach of generating C code, with associated abstract ma-

chine mnemonics12, is informed by the Anubis13 abstract machine and is similar to the

cross-platform, macro-based, code generation approach used by [143]. However, the

Olympus abstract machine addressing model, based on that for Merlin, is static and

generated by the compiler, whereas the Anubis abstract machine performs dynamic

chaining through the environment to lookup objects, in a similar manner to the search-

ing of the symbol table in the ePython virtual machine. Furthermore, the Olympus

model separates object addressing from the operation mnemonics, enabling the sup-

port for all areas of micro-core memory hierarchies and the placement of objects on

the stack or in the heap, as required. The Olympus memory addressing model is de-

11At the start of this research, only GCC supported the RISC-V.
12Macros or functions that represent abstract machine instructions e.g. DECLR to declare a real object,

STI to store an integer, ADDRL to address a local object and MKLAMBDA to create the structure containing

a ń and its static environment. Appendix F contains a listing of all of the Olympus mnemonics.
13Anubis [140] is a persistent [141] Object-Oriented programming language that contains powerful

programming abstractions, such as first-class procedures [142] and anonymous functions (ńs) [23], with

their respective closure support.
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scribed in Section 4.3.3.2. The mnemonic model allows code generation complexity

to be managed in the compiler or abstract machine, as is expedient. For example, the

instructions required to copy a function return value before the stack frame is retracted

could be generated individually by the source language compiler or they could be im-

plemented as steps within the function APPLY and RET mnemonics. Moreover, if the

complexity is hidden within the abstract machine mnemonics, the code generation rou-

tines within the compiler do not need to be changed if the decision is made at a later

date to manage source function return values using C’s in-built function call mech-

anisms. Currently, the mnemonic model allows Olympus to manage cross-compiler

issues. For example, the different function call order of GCC and Clang is managed by

the EXPR mnemonic that performs no operation for GCC but stacks the return values

of expression mnemonics containing multiple function calls to ensure the correct eval-

uation order for Clang. The Olympus code generator does not need to be aware of the

C compiler being used to compile the generated abstract machine mnemonics, it only

has to emit a wrapping EXPR mnemonic for expressions containing multiple function

calls.

ePython parser 
(Flex & Bison)

AST  
& code generation 

(Olympus)

Compiler Runtime

Abstract machine 
(Olympus)

Standard functions
& communication 

(ePython)

Figure 4.7: New Olympus and existing ePython components

The Olympus codebase includes functionality to support code generation for the

abstract machine, including a new AST library. Figure 4.7 outlines the new Olympus

and existing ePython components (highlighted in grey) that comprise the new ePython

native code generation framework.

Figure 4.8 shows the Olympus code generation phases for a dynamic language

such as ePython. For ease of development and testing, the phases are pipelined i.e.

the module to generate the AST in Phase 1 is separate from that which traverses the

AST to generate the Olympus abstract machine code in Phase 4 and the output of one

phase (the AST) can be piped into another. This also allows the AST to be dumped

as a textual representation, or to generate a graph using Graphviz [144]. The textual
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AST files enabled the testing of individual AST processing phases 2-4 (type inference,

basic optimisation and code generation), without having to run the code end-to-end. A

downside of this approach was the impact to both the AST writing / parsing code when

structural changes were made to the AST, increasing development effort. However,

this was offset by the reduction in the time taken to fault-find code generation issues,

as they could be isolated phase by phase where the textual representation of an AST

of previously compiled ePython codes from Phase 1 could be used as the test input for

each phase and the visual representation (Graphviz) of the output AST inspected.

.h & .c files

Parse source code  
&  

generate AST

ePython
source file

Type AST 
(type inference)

Optimise  AST 
(optional)

Generate  
Graphviz file 

(.dot)

Generate Olympus 
C source files

.dot file

.h & .c files

Generate  
Merlin assembly

language file 

AST

.asm file

AST

or

or

AST AST

AST

Phase 1 Phase 2 Phase 3 Phase 4

Figure 4.8: Olympus code generation phases

As shown in Figure 4.8, the code generation phase (Phase 4) can support different

pluggable code generator targets, for example, Olympus abstract machine C source

code and Merlin assembly language files (.asm), thereby allowing different target code

to be generated from the same AST. Two code generators have been fully developed

to support the research aims of the project: one for the Olympus C abstract machine

and another for the Graphviz .dot file format to allow the structure of the AST to

be inspected. The feasibility of pluggable executable code generators was tested by

creating a code generator for a subset of the Merlin assembly language. The key driver

for the pluggable code generator target API was to enable the future implementation of

an ePython bytecode target to allow the replacement of the existing ePython monolithic

compiler and the future implementation of hybrid Olympus native code / bytecode

kernels.
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4.3.3.2 Memory model

The main departure of the Olympus abstract machine from simple transpiled14 code

is that the objects in the target code are not translated to C variables but to elements

within environments containing frames, as shown in Figure 4.9. Therefore, all memory

management is managed by the abstract machine, not the C compiler and runtime; this

includes function stacks, argument passing and return values. Furthermore, as libc,

the C runtime library is often too large to be used on many micro-core architectures,

the abstract machine also provides a simple, compact heap manager.

...
vector #1
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1

2

3

argument #1

complex #1
r

i

vector #1

argument #1

argument #2

scope level 0
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...
scope level n

local

global

string #1

real #1

...

real #2

env[0][1]

env[1][2]

Display Environment Heap

Frame

frame #1

frame n-1

frame n

string #1

Figure 4.9: Display, environment and frame structure

The generated code declares all objects within frames as shown in Figure 4.9, that

grow downwards from the top of memory. Following [145], a display [146] is created

that holds references to the frames, allowing object indexing via scope (lexical) level

and offset. Olympus objects are lexically scoped by the compiler based on their nested

scope level, rather than dynamically scoped at runtime. The scope level is inverse to the

lexical level i.e. referencing an object in the enclosing scope increases the scope level,

and the scope level and offset are the static-distance coordinate of the object [129].

The compiler calculates and maintains the levels and offsets of the objects within the

environment, increasing runtime performance as the addressing is performed statically

within the compiler, rather than at runtime by chaining up the environment. A a new

frame is created for each function call (B reduction) and the display in the abstract
14A form of source-to-source compilation where objects in the source language code are transformed

into equivalents in the target language.
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machine is updated to manage the access to objects in outer frames (enclosing scope).

For most function calls, a new entry is created in the display but recursive calls reuse

the same display entry updated to point to the new frame for each invocation. This

allows all objects to be referenced by scope level and offset for recursive functions,

thereby maintaining the ability to access all objects by indexing from a base pointer,

negating the requirement to chain up the environment list to find objects in outer scope

levels.

Figure 4.9 also shows that all fixed-size objects can be allocated in a frame or in

the heap. Here, a complex number is declared in frame n-1, rather in the heap as for

the vector in frame n. Allocating space for objects in the frame is much quicker than

allocating them in the heap as the process of memory allocation is simpler, where the

frame pointer is just decremented by the required amount. This model allows decisions

to be made within the compiler regarding the best placement for composite data types.

A more detailed explanation of the management of environments can be found

in [146], and [135] discusses the issues with simple displays for environment and clo-

sure support. These are standard techniques for the implementation of a static block-

structured programming language, such as C, Pascal or Java. For the Olympus abstract

machine, these mechanisms are being used to support type freezing (discussed in Sec-

tion 3.4.1.1) for a dynamic programming language, such as Python. Effectively, the

dynamic typing of Python is being translated, or frozen, into a static typing model

that can be supported by traditional static block-structured language implementation

techniques15. Similar to [135], an environment link is created within the frames that

is used to support the copying of frames to the heap for functions that return objects

within the closure to enable them to be referenced once the frame is retracted. Without

this copy and update of the display to point to the closure now stored in the heap, these

references would be dangling after retraction. This is the approach taken by Lua [74]

and was chosen for Olympus as the vast majority of kernels executing on the micro-

cores do not use closures. Furthermore, as the allocation and deallocation mechanisms

for frames stored on the stack are much more efficient than for those stored within the

heap, it was deemed preferable to impact these less common closure-utilising codes in

preference to impacting all codes, including general scientific kernels.

15It is important to note that full block-structure support (environments) is required to support Python

features such as lambdas, rather than the more limited block-structured model of C.
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4.3.3.3 Type management

All target object declarations are typed, either via type inference performed on the

AST for the vast majority of codes or directly from type annotations16 in the source

code. Furthermore, all object access is similarly typed, with dynamic changes of an

object type resulting in a new typed declaration and updated typed access from that

point of execution onward. This is managed by creating a new ASTdeclaration and

associated ASTidentifier node within the AST with the updated type. It is important

to note that this does not require the abstract machine to allocate any additional space

within the stack frame for the new object as, by default, compound types (arrays and

complex numbers) are allocated in the heap, with a reference to the new object replac-

ing the previous value stored within the frame. This model removes the requirement

to perform dynamic runtime type checking and this approach to typing is similar to

the simple type freezing performed by [113] in that runtime type checks are not per-

formed on objects, thereby eliminating the associated overhead and increasing runtime

performance.

4.3.3.4 Memory management

Listing 4.3 is an example of the typed object access in the generated C code for the

memory layout visualised in Figure 4.9. In this example, the real part of the complex

object at the enclosing (foreign) scope level 1 and offset 2 (ADDRF(1,2)) is being set to

the value 4.3 by the store complex real (STCR) mnemonic. The second line updates the

integer element indexed by the object at offset 0 (LDI(ADDRL(0))) of a vector stored

in the heap and declared in the local scope at offset 1 (ADDRL(1)), the value 42 .

1 STCR(ADDRF(1,2),4.3);

2 STAI(ADDRL(1),LDI(ADDRL(0)),42);

3 STR(ADDRF(4,1),10.0);

Listing 4.3: Object access example

Figure 4.9 also highlights that the scope level increases outwards from the local

block (or function) scope, with local objects having a scope level of zero. This enables

the C compiler to use indexed addressing from the frame pointer (env) to access local

16In the case of ePython, these are the type constructor functions int(), float() and str() which

can be considered similar to the casting operators in C, and can be used to help the compiler infer types

when it returns an error that it is unable to do so.
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objects, thereby increasing runtime performance for local objects and loop block in-

dices, as the compiler can use indexed addressing to directly access the local objects.

Furthermore, the indexing of outer scope levels directly removes the need to chain up

environment frames to locate non-local objects, with the corresponding runtime perfor-

mance overhead. This model also allows support of Python 3 nonlocal objects [147]

that are declared in the nearest enclosed scope level.

In the generated C code, the object access APIs are implemented as mnemonics that

directly update the frame elements within the environment and include the required

casting to and from the current object type. This is illustrated at line 3 of Listing 4.3,

where the STR and ADDRF mnemonics combined expand to ((*(Real*)(&((Value*)

memory→senv[(level)])[(offset)]))=(Real)(value)). These not only access

the frame element directly, but also ensure that the value is stored correctly in memory.

As in this example, casting a real value to and from the generic Value field within the

static environment (memory→senv). Whilst, conceptually, Olympus utilises an envi-

ronment link described by [135], the implementation is different. The approach here

is to store the current display frame (memory→frame) as the ń’s static environment

within the Lambda structure created by the MKLAMBDA mnemonic at the time of dec-

laration. This allows the Olympus abstract machine to support first-class and nested

functions.

The variable referencing mnemonics of the initial Olympus memory referencing

model performed the addressing of objects within the frames directly. However, in

order to support multiple levels in the memory hierarchy and compound types such

as complex numbers on the stack, as well as in the heap, the separation of addressing

from access within the mnemonics was required. The new model also simplified the

implementation of object references (the & operator in ePython and the id() function

in Python) within the abstract machine as the ADDRL and ADDRF mnemonics can pro-

vide the object address within the stack or the heap. The implementation of object

references and the unified Memory structure discussed in Section 4.3.3.5, enables the

integration of Olympus applications with C frameworks, such as the Eithne bench-

marking framework [25] and MPI (Message Passing Interface) [48].
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4.3.3.5 Function stack frame management

1 void oly_i$add$ii(Memory *memory, Object *self) {

2 STI(ADDRL(0),(LDI(ADDRL(1))+LDI(ADDRL(2)));

3 }

Listing 4.4: Generated function example

As shown in Listing 4.4, all generated Olympus functions are passed two parame-

ters, a pointer to the current Memory structure17 and the current object pointer (self).

As detailed in Listing 4.4, the memory structure contains the dynamic environment of

frames (memory→display), the current frame (memory→frame), the static environ-

ment of frames (memory→senv), and pointers to the heap, the expression value and

function return stacks. The self function parameter is a reference to an Object type

which allows the abstract machine to support Object-Orientation, where a function

is a method (member function) of an object, similar to the implicit this pointer in

non-static member functions in C++ [148] and the self parameter in CPython meth-

ods [149].

1 typedef struct memory {

2 Word size; /* Heap size */

3 Byte *top, *limit, *base, *free; /* Heap pointers */

4 Frame tos, *display, *dbase; /* Stack and display pointers */

5 Frame frame, *senv; /* Current frame & static environment */

6 Value *vs, *rs; /* Value and return stack pointers */

7 } Memory;

Listing 4.5: Olympus memory structure

Listing 4.4 illustrates that Olympus functions do not use the C function stack

frames for source language (ePython) function parameters or return values. There-

fore, the function parameters and return value are declared within the same frame as

the function’s local objects and form part of the overall frame size, managed by the

Olympus abstract machine, as shown in Figure 4.10. The return value is at offset 0

within the frame, with the parameters starting at offset 1 and local objects following

17The original Olympus function call interface discussed in [27] passed the environments individu-

ally, using global pointers for the heap, expression value and return stacks. However, not only did this

approach complicate integration with C frameworks when using Olympus functions as callbacks but

it was also incompatible with support for multithreaded Olympus functions, necessitating the Memory

structure approach discussed here.
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the last parameter. For example, if there were any local objects declared in the add()

function in Listing 4.4, the index of the first variable would be equal to 3.

...
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Figure 4.10: Olympus stack frame structure

Function parameters or local objects that are pointers are placed in the pointer

frame at the beginning of the stack frame, just after the return value, and all other

non-pointer function objects are placed afterwards in the value frame. The placement

(update of offsets) is performed by the compiler, with the Olympus abstract machine

mnemonics for pointer and non-pointer object access remaining unchanged. This lay-

out18, coupled with the pointer count field in the Stack Control Word (SCW), allows

the deliberately simple heap compactor to quickly update stack pointer objects when

heap blocks are moved down in memory to reclaim space. This design was chosen due

to its low memory footprint, both in terms of heap pointer management structures and

18The use of separate pointer and non-pointer stack frame areas is similar to the separate pointer and

main stacks in S-algol [150] except that, for Olympus, the areas are within the same frame, simplifying

the abstract machine access mnemonics.
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the heap compaction algorithm code. Furthermore, this design removes the require-

ment to implement double-indirect pointers [151] for heap objects. This increases

object access performance, particularly for in-heap arrays and complex numbers, at

the expense of additional complexity in the compiler to manage the placement of func-

tion parameters and local objects into the correct frame area, rather than trivial offsets

from frame pointer. However, the complexity, including the movement from one stack

area to another if an object type changes from a non-pointer to a pointer type and vice

versa, is constrained within the compiler code generation phase using an AST opera-

tion19 node that updates the object’s offset, thereby placing it in the correct stack area,

and then updating all references using the object’s unique AST ID field. The same

process allows Python keyword (named) parameters, as shown in Listing 4.6, to be

supported by the abstract machine, where the parameter names are used to map the

offsets. Fundamentally, the mapping of offsets is managed by the compiler at compile

time, rather than at runtime by the Olympus abstract machine and the simple offset-

based addressing model remains unchanged, with its associated memory footprint and

runtime performance benefits.

1 maurice@vipera:˜/build/scratch$ cat parampos.py

2 def fn(a,b,c):

3 print(a + b + c)

4

5 fn(b="b", c="c", a="a")

6

7 maurice@vipera:˜/build/scratch$ python3 parampos.py

8 abc

9 maurice@vipera:˜/build/scratch$

Listing 4.6: Python keyword parameter example

The Memory structure model not only simplifies the frame management (stack re-

traction) but also provides the capability to support the removal of C function bodies

for static (non-dynamically loaded) Olympus functions and allow the implementation

to use C jumps to labels (gotos) or GCC labels as values [152] or even enable the

inlining [148] of Olympus functions. Crucially, by leveraging frames within an en-

vironment, the decoupling of objects from the underlying C storage mechanisms not

19AST operation nodes allow functions to be called dynamically as the AST is processed. Here, it

is required as the update of the reference offsets cannot be static (when the object update AST node is

created or a separate pass) as this would break the previous object references.
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only provides support for the dynamic and Object-Oriented features of many source

languages, but also for the implementation of dynamically loaded functions, which is

described in Section 4.4.

4.3.3.6 Code management

def add(x,y):
    return x + y

r1=3.3 
r2=5.5
i1=4
i2=5

i3=add(i1,i2) 
r3=add(r1,r2)

print("i3=i1+i2=", i3, "\n") 
print("r3=r1+r2=", r3, "\n")

#include "add_oly_externs.h"

void oly_i$add$ii(Memory *memory, Object *self) {
RETI((LDI(ADDRL(1))+LDI(ADDRL(2))));
}

void oly_r$add$rr(Memory *memory, Object *self) {
RETR((LDR(ADDRL(1))+LDR(ADDRL(2))));
}

#ifndef ADD_OLY_EXTERNS_H
#define ADD_OLY_EXTERNS_H

#include "olympus.h"

/* User defined functions in 'add' */ 
extern void oly_i$add$ii(Memory*, Object *self);
extern void oly_r$add$rr(Memory*, Object *self);

/* Native functions used by 'add' */
extern void rtl_print(Int,...);

#endif /* ADD_OLY_EXTERNS_H */ 

#include "add_oly_externs.h" 
 
#define OLY_ENV_SIZE 8+2
 
void module(Memory *memory) {
#ifdef SYMBOL_TABLE
  initialise_symbol_table(OLY_ENV_SIZE);
#endif
  MKENV(memory,OLY_ENV_SIZE);
  DECLL("add",ADDRL(0),MKLAMBDA(oly_i$add$ii,3));
  DECLL("add",ADDRL(1),MKLAMBDA(oly_r$add$rr,3));
  DECLR("r1",ADDRL(2),3.300000);
  DECLR("r2",ADDRL(3),5.500000);
  DECLI("i1",ADDRL(4),4);
  DECLI("i2",ADDRL(5),5);
  DECLI("i3",ADDRL(6),(MKBETA(LDL(ADDRL(0))),
 PARAMI(1,"x",LDI(ADDRL(4))),PARAMI(2,"y",LDI(ADDRL(5))),
   APPLYI(LDL(ADDRL(0)))));
  DECLR("r3",ADDRL(7),(MKBETA(LDL(ADDRL(1))),
 PARAMR(1,"x",LDR(ADDRL(2))),PARAMR(2,"y",LDR(ADDRL(3))),
   APPLYR(LDL(ADDRL(1)))));
  rtl_print(3,11,"i3=i1+i2=",5,LDI(ADDRL(6)),11,"\n");
  rtl_print(3,11,"r3=r1+r2=",7,LDR(ADDRL(7)),11,"\n");
}

add_oly_externs.h

add_oly_main.c

add_oly_functions.c

add.py

Figure 4.11: Olympus generated file structure
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Figure 4.11 presents the structure and contents of the files generated for a simple

ePython example (add.py). For all source language files, the Olympus code generator

(olygen) creates three C source files:

• A <filename> oly main.c file containing the main body of the source file

• A <filename> oly functions.c file containing all of the Olympus generated

functions from the source file

• A <filename> oly externs.h file containing all the C function references,

including the Olympus generated functions and standard functions provided by

the Olympus abstract machine runtime

Where <filename> is the source language filename less the extension (e.g. .py).

The separation of the generated functions from the main body of the source file

enables the support of dynamic function loading, as well as separate compilation and

object linking. For the latter, the oly main.o object file can be discarded for programs

that link to the functions in the oly functions.o object file (referenced by the oly -

externs.h header file). In the same manner, for the former, the oly functions.o

object files are interrogated and loaded into memory on the device by the dynamic

function loader. The original implementation of dynamically loaded functions only

separated out the dynamic functions from the main body file but the approach was

widened for all functions to simplify the implementation, whilst providing support for

separate compilation, which greatly simplifies the development and debugging of non-

trivial programs. The ePython source and generated Olympus abstract machine files

for the Sieve of Eratosthenes benchmark are listed in Appendix C.

The Olympus code generation model was specifically designed to address runtime

performance and memory constraint concerns. Furthermore, the design needed to be

flexible to be able to support the peculiarities of differing micro-core architectures. As

shown in Chapter 6, the approach is widely portable to a number of different processor

architectures, whilst also generating compact and fast code, that not only matches the

runtime performance of native C for the Fibonacci and LINPACK benchmarks (Section

6.5.2) but also results in a significantly increased amount of precious on-chip memory

available for kernel data required for scientific codes.



Chapter 4. Implementation of enhancements to ePython 72

4.4 Managing arbitrary code size (RQ2)

As discussed in Section 4.2, on-chip SRAM is a precious resource on micro-core de-

vices and must be carefully managed in order to run complex codes. What is true for

kernel data is also true for kernel code and techniques need to be developed to enable

the execution of arbitrary sized native code kernels. There are two aspects to managing

this on micro-core architectures:

1. Reducing the footprint of compiled kernels and associated runtime support, for

example math libraries.

2. Enabling dynamic loading and unloading of binary code to allow the execution

of codes larger than the on-chip SRAM.

To achieve the first aspect, the code generation mechanisms need to be designed to

produce as compact code as is possible and this can be aided by selecting C compiler

options that reduce the generated binary size. However, the target codes are scientific

kernels, there is a trade-off between code size and runtime performance. Judicious se-

lection of individual low-level C compiler options will provide the optimal balance for

specific kernels and runtime functions. However, the focus of this work is developing

techniques to support the second aspect, namely mechanisms to overcome the on-chip

memory restriction via dynamic code loading and management. With this in mind,

an investigation to find the best compiler optimisation flag combinations for the test

kernels and runtime support functions was not undertaken and the code was compiled

with the GNU GCC -O3 and -Os compiler options.

As the ePython VM requires approximately 24KB of on-chip memory, when com-

piled with -Os, this determines the minimum footprint of deployed kernels. The

ePython VM could be modified to dynamically load and unload functionality, such

as the garbage collector and native (standard) functions, to reduce the minimum foot-

print of the VM. However, this would require significant structural re-engineering of

the VM, including the implementation of a dynamic loader for native C functions.

This loader would need to resolve all external symbols within the dynamically loaded

C function, necessitating the chaining through the compiled Executable and Linkable

Format (ELF) [153] object files to ensure all external references are marked and loaded.

In other words, a dynamic loader for C functions would have to dynamically load all

the symbols and functions it references and then the symbols and functions that any of

these functions reference, and so on. The limited on-chip RAM precludes performing
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this resolution on the device as all binaries are stripped [154] prior to downloading

to the device to save memory. Whilst the problem of symbol resolution remains for

dynamically loaded Python functions, we have much greater control over the process

and can introduce features within the Python compiler to help simplify the implemen-

tation. For example, the dynamic functions in the Python source code can be annotated

to help the compiler manage the dynamic linking process by marking these functions

and compiling them separately from the rest of the kernel code. The next section will

detail how the abstract machine and memory model discussed in Chapter 3 can be

leveraged to support the dynamic loading of natively-compiled Python kernels.

4.4.1 Olympus dynamic function loading

For ePython kernels, the @dynamic decorator was introduced to mark functions for

dynamic loading on the device, as shown in Listing 3.5 in Chapter 3. When defer

is set to False or is unset, as for the add nums function, the compiler generates the

code in Listing 4.7. The function body code is replaced by the DYNLDF API call, which

initiates the download of the add nums function from the host, allocates the space in the

device’s heap to hold the function code and declares it within the current frame at offset

1. This is the only modification required to the generated code C to support dynamic

loading, the existing lookup and function application mechanisms remain unchanged.

1 DECLL(1,"add_nums",DYNLDF("oly_i$add_nums$ii",1));

Listing 4.7: Dynamically loaded function declaration example

The DYNLDF API call takes the mangled name of the ePython function that is used to

lookup the correct compiled code variant of the original function in the on-host symbol

table and loader, based on the applied function’s argument and return types. If multiple

variants of the function are applied in the code, the corresponding variant declaration

statements and associated dynamic loading calls will automatically be generated by

the compiler. The API is also passed the total count of the function’s parameters and

local variables to enable the runtime to allocate a frame of the correct size on the de-

vice. Apart from the function code residing in the heap, rather than the binary code

segment, the execution is the same as dynamically dispatched, statically loaded func-

tions. The runtime performance and memory implications of the two function loading

and dispatch models will be discussed in Chapter 6.
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1 DECLL(0,"add",NULL);

2 ...

3 STL(ADDRL(0),DYNLDF("oly_i$add$ii",2));

Listing 4.8: Deferred dynamically loaded function example

Listing 3.5 illustrated how ePython leverages Python’s first-class function support

to enable the deferment of dynamic function loading, using the @dynamic(defer=True)

decorator and mark the function add for deletion from the heap after it has been exe-

cuted. Listing 4.8 shows the code that is generated for these dynamic functions where

loading is deferred to a later point of execution after declaration. This allows the pro-

grammer to control the exact time during a kernel’s execution a function is loaded and

marked for deletion. The model allows the programmer a large amount of flexibility,

with the ability to choose whether functions are statically bound to the binary that is

downloaded to the device or to download the function at runtime, either when declared

or just before execution and retain or delete them from the heap as the kernel execution

profile demands.

The ability to separate the loading of a dynamic function from the declaration also

allows the ePython compiler to implement a dynamic code loading strategy tuned to a

kernel’s particular execution profile. Furthermore, as the code for dynamic functions is

stored within the abstract machine heap, it can be discarded (freed) as required, thereby

alowing the excution of much larger kernels than is possible with previous static code

loading model.

The key hypothesis is that kernels with dynamically loaded functions can signif-

icantly reduce the memory requirements and enable codes of arbitrary size to be ex-

ecuted. Crucially, these codes are significantly larger than the kilobytes of memory

available on micro-core devices. At a minimum, the model described here need only

load a resident bootstrapper which contains the core support for marshalling and con-

trol of dynamically loaded functions. These can then be retrieved on-demand and

marked for removal then garbage collected as the heap becomes exhausted for other

objects.

4.4.2 Implementing the dynamic loader support

Figure 4.12 outlines the key components of the dynamic loader when applied to ePython.

The updates to support dynamic code loading in the abstract machine were relatively
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Figure 4.12: ePython dynamic loader architecture

minor; as the memory model already provided the abstraction of the variables and

functions from the underlying C runtime, the modifications were mainly concerned

with the request / transfer of the dynamic functions from the host and their loading

into the heap. However, the changes to the host-based compiler and device support

functions were more significant, requiring changes to the compiler, the Python integra-

tion module and monitor, and a new object file parser.

There are effectively two options available for dynamic loading; (1) make all user

functions dynamic or (2) allow the programmer to select which functions they would

like to be dynamically loaded. Initially, the former approach was chosen for ease

of implementation but for increased flexibility the latter was introduced to allow the

programmer to annotate dynamic functions. During the traversal of the Python AST

during code generation, functions that are annotated with the @dynamic decorator, as

shown in Listing 3.5, are placed in a separate C source file, with another file containing

the bootstrap loader and dynamic loading calls for the relevant functions. A dynamic

function symbol table is generated by the compiler and loaded by ePython on the host,

which is then used to map the kernel dynamic function requests to the correct object

file, highlighted in green in Figure 4.12.

The GCC C compiler is used to generate code for the target platforms (Epiphany-

III, MicroBlaze, RISC-V, SPARC, MIPS32 and x86), resulting in ELF object files.

Figure 4.13 illustrates the ELF file structure, highlighting the linkage between the dif-

ferent sections that need to be traversed to access the required function binary code.

The dynamically loaded functions are keyed by their name and the host-side symbol
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table provides the mapping between the ePython source view and generated C function

names.

Figure 4.13: ELF file structure [153]

The dynamic object file created by the native compiler is parsed when the kernel

is downloaded to the devices. The required functions are loaded into memory, based

on the entries in the symbol table, and then the ELF parser checks that the file is of

the correct binary format (for the micro-architecture in question) and raises an error if

the file is incorrect for the target device. The ELF object file contains function sizes,

which are stored in memory along with the functions themselves to allow the device

dynamic loader to allocate the correct amount of memory in the heap. As the compiler

has previously inserted the number of local variables and arguments into the function

declaration code, the abstract machine is able to allocate the correct frame space for

future function calls.

4.4.3 Summary

By leveraging the existing Olympus abstract machine memory model, the changes

required to support dynamic loading within the generated C code are trivial. This is

not to diminish the amount of work required to implement the ELF object file parser

and the dynamic function symbol table / loader but serves to highlight the flexibility

that the abstract machine and its associated memory model provide.

The dynamic loading model enables further memory savings, as well as support-

ing arbitrary sized codes, that in concert with the memory hierarchy work discussed
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in Section 4.2, enables the deployment of complex Python codes to micro-core de-

vices. A key benefit of the Olympus code generation and dynamic loading approach

is that it provides the compiler with options to optimise the resulting code for run-

time performance where static function dispatch is possible, using dynamic dispatch

where required and also providing points for the loading (and unloading) of dynamic

functions, based on the execution profile of the code.



Many aspects of the physical world may be modeled with Partial

Differential Equations (PDEs) and lend a hand to predictive capa-

bility to aid the scientific discovery and engineering optimization.

The HPCG benchmark is used to test an HPC machine’s ability to

solve these important scientific problems.

Dongarra et al., “A new metric for ranking high-performance

computing systems” [155]

5
Experimental Environment

78
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5.1 Overview

Figure 5.1: ePython architecture highlighting components evaluated by the benchmarks

discussed in this chapter

This chapter describes the experimental environment used to evaluate the imple-

mentation of the enhancements to ePython to address RQ1 (How to manage the lim-

ited on-chip memory for data?), RQ2 (How to manage the limited on-chip memory for

code?) and RQ3 (How to address the low runtime performance of virtual machines?),

across a range of CPU architectures. Micro-cores introduce additional challenges over

and above those for traditional CPUs, including the availability and access to these

architectures for development and testing. Section 5.2 details the approach to selecting

additional micro-core architectures in addition to the Adapteva Epiphany-III, includ-

ing the design of a new FPGA-based micro-core design, Cerberus, discussed in Sec-

tion 5.2.1. The design of Cerberus, a custom RISC-V multi-core CPU design based

on the PicoRV32 and MicroBlaze soft-cores, also required the ability to quickly assess

the applicability of existing soft-core designs, resulting in the creation of the Eithne

micro-core benchmarking framework detailed in Section 5.2.2.

Figure 5.1 shows the ePython architecture, including the existing virtual machine

and new Olympus native code generation abstract machine components and compiler,

highlighting the components that were evaluated by the benchmarks discussed in Sec-

tion 5.3.3. The support for arbitrary sized data (RQ1), including the communications

model and memory hierarchy implementation, A in Figure 5.1, was evaluated by

the cancer cell detection machine learning (ML) code discussed in Section 5.3.3.1.

The techniques to increase runtime performance (RQ3) through enhancements to the

VM and the introduction of native code generation (Olympus), including compiler

structure, runtime memory model and type management B , were evaluated by the Fi-

bonacci sequence, Jacobi iteration, LINPACK and Byte Sieve benchmarks in Sections



Chapter 5. Experimental Environment 80

5.3.3.2, 5.3.3.3, 5.3.3.4 and 5.3.3.5, respectively. The dynamic function loading model

C developed to support arbitrary kernel code sizes (RQ2) was evaluated by the Jacobi

iteration code in Section 5.3.3.3.

5.2 Additional micro-core architectures

In order to address the portability challenge of Section 1.2 and confirm that the ePython

architecture supports rapid porting to new micro-core architectures, additional plat-

forms in addition to the Adapteva Parallella (Epiphany-III) were required. Three op-

tions were shortlisted for the project:

• The University of Washington’s RISC-V-based Celerity [156]

• The University of Manchester’s ARM-based SpiNNaker [157]

• A custom micro-core processor implemented on an FPGA

Each option was then evaluated in terms of capability, tool support and availability.

The Celerity was rejected due to the extreme memory limitations, with only 4KB code

and 4KB data on-chip RAM it was not possible to reduce the ePython virtual machine

(VM) from 24KB to 4KB. The architecture was immature and there was a concern

that undiscovered bugs may significantly impact project timelines. Furthermore, the

project would have to rely on simulators and remote access to servers in the USA,

with the associated risks that the simulator may differ in subtle ways from the actual

hardware and the inability to access the platform could impact the project timelines.

The SpiNNaker was rejected due to the specialised systems architecture, tooling and

availability. For example, the SpiNNaker network message length is only 256 bytes,

sending larger messages would require packaging, whereby the messages are split into

packets on the source, tagged with sequence numbers and collated on the target. Fur-

thermore, the networking design was optimised to support spiking neural networks

and is not general purpose, resulting in failed network transfers if cores do not process

messages within a short, preset time. The work required to manage message transfer

failures, coupled with the lack of native support for messages over 256 bytes, was as-

sessed as having a significant impact to the project timeline. Finally, the availability

of the development board may be limited at crucial times due to its primary use for

demonstrations and workshops. The FPGA micro-core implementation was selected

due to the flexibility within the design, productionised tooling for the Xilinx PYNQ

board, and local availability of the board that could meet the project timelines.
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5.2.1 Cerberus soft micro-core processor

Figure 5.2: Cerberus 16-core RISC-V micro-core processor design

The decision to implement a micro-core architecture using a FPGA necessitated the

design of a new soft-core accelerator with similar features to the Adapteva Epiphany

micro-core, namely a number of inter-connected cores, each with a small amount (c.

64KB) of fast, on-chip scratchpad RAM and access to an area of slower, off-chip

DRAM, shared with the CPU on the host. Although the micro-core accelerator de-

sign should be able to support a number of different soft-cores, the Xilinx MicroB-

laze [158] and PicoRV32 [159] RISC-V soft-cores were chosen to support this re-

search, with the latter being discussed in detail in this section. Whilst the MicroBlaze

and PicoRV32 soft-cores are generally used as standalone CPUs in embedded designs,

an inter-connected grouping of them1, with associated limited scratch-pad RAM per

core (32KB - 128KB), within a single IP block2 visible to the host processor forms a

1Each core can communicate with each other core through mapped memory areas within their local

memory map, in a similar manner to the Epiphany-III micro-core.
2An IP (intellectual property) block is a reusable component within a FPGA design and can be hard
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micro-core processor. The resultant design, Cerberus, is shown in Figure 5.2. Each

individual micro-core, 1 in Figure 5.2, is connected to a Xilinx Advanced eXtensible

Interface v4 (AXI4) [160] interconnect IP block 2 to form the micro-core processor

bus that maps the individual core block RAM (BRAM), providing the on-chip scratch-

pad memory, into the host CPU’s memory map. A second AXI4 interconnect 4 forms

the bus that connects the micro-cores back to the Zynq ARM Processing System 3 ,

mapping the host shared memory area into each micro-core’s memory map. The Xilinx

Interrupt (IRQ) concatenator IP block 5 informs the ARM CPU that the micro-cores

have faulted or completed processing. The other elements on the diagram are support

components, including clock generators and interrupt controllers.

The detailed design of a single micro-core is shown in Figure 5.3. A PicoRV32

soft-core, i in Figure 5.3, is connected to an internal AXI4 interconnect that enables

connection to both the host shared memory and Port A of the local dual-ported BRAM

ii via a Xilinx BRAM controller iii . The host CPU access to the local core RAM

is provided via separate BRAM controller iv connected to Port B of the BRAM. Al-

though the PicoRV32 core is a von Neumann processor, where the instructions and data

share a common bus, the Cerberus design also supports Harvard processors, such as the

Xilinx Microblaze, where the instructions and data have separate buses, by using the

AXI4 interconnect memory mapping to alias the instruction and data buses to the same

BRAM block. PicoRV32 core access to the ARM Processing System (PS) DRAM is

provided by the AXI Interconnect v . Although the PicoRV32 can scale to a fmax of

450MHz on a 7-series Xilinx FPGA [159], the Zynq FPGA speed rating and Cerberus

design limits the AXI and fabric clock vi to 100MHz on the Xilinx PYNQ due to

negative slack [161]. Negative slack is the condition where the timing constraints of

a circuit are not met due to the distance between components and is often exacerbated

by intermediate components in the path. It might be possible for the negative slack to

be reduced enough to allow the fmax to be increased through the application of careful

floorplanning [162], although 100MHz is sufficient for evaluating this research and, as

such, was deemed out of scope.

The Cerberus design can be scaled from a single core up to 64 cores as a single

accelerator. For this project, both RISC-V and MicroBlaze four, eight and 16 core Cer-

berus bitsteams running on the Xilinx PYNQ board were used for porting the ePython

VM, the development of the native code generation runtime, benchmarking and test-

ing. Cerberus is Open Source and the RISC-V versions are available for download

(physical device) or soft (consisting of a collection of FPGA logic cells).



Chapter 5. Experimental Environment 83

from GitLab [31].

Figure 5.3: Cerberus RISC-V micro-core design

Figure 5.4 shows the PYNQ’s Zynq-7020 FPGA utilisation for the 1x32KB, 2x32KB,

4x32KB, 8x32KB, 12x32KB and 16x32KB RISC-V Cerberus designs. The green ar-

eas are the logic blocks for the Cerberus processor, the yellow areas are the clock

generator blocks and the red areas are the AXI4 interconnect blocks. As expected, the

Cerberus processor and BRAM blocks (green vertical bars) increase with the number

of cores, with the AXI4 interconnect and clock generator blocks remaining relatively

constant in size but being dispersed across the FPGA fabric. For the 16x32KB design,

the limiting factor to the number of cores is not the general Lookup Tables (LUTs)

on the FPGA, whose utilisation is around 67% but the on-chip BRAM utilisation at

91%. Therefore, as the BRAM allocation per core increases, the number of cores that

can be implemented on the fabric decreases, irrespective of the amount of free LUTs.

For example, the Zynq-7020 can only support a four core 128KB RISC-V Cerberus

processor.
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Figure 5.4: Cerberus RISC-V FPGA allocation

5.2.1.1 RISC-V soft-core selection

The selection of a soft-core for the Cerberus processor was not trivial as there were

over 40 implementations of the RISC-V architecture alone at the time of design. Fur-

thermore, the 32-bit RISC-V ISA has a number of extensions over the base integer ISA

(RV32I), including:

• A - atomic instructions

• M - integer multiplication and division

• F - single-precision floating-point

• D - double-precision floating-point

• C - compressed instructions

• V - vector operations

These extensions (or variants) of the RISC-V ISA have runtime performance and

power consumption trade-offs. They also have an impact in the amount of LUTs and

timing constraints required to implement the processor on the FPGA fabric. Therefore,

it is essential to be able to quickly assess the trade-offs of each option before commit-

ting to a particular ISA variation or a specific soft-core implementation of the same

RISC-V ISA variation. Whilst it might appear that the simplest approach is to run

a number of currently available benchmarks, the process is not as simple in practice.

Even using a Cerberus design for a number of soft-cores, the tiny amounts of on-chip
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memory make running traditional benchmarks difficult and the communications be-

tween the host CPU and micro-cores under test need to be addressed. Furthermore,

many RISC-V soft-cores are not verified and may not implement all of the required

features of the RISC-V ISA. For example, although the DarkRISCV is a pipelined

RISC-V soft-core that is three times faster than the PicoRV32, it is not verified and

does not fully implement the RV32I base ISA [163]. Partially-implemented ISAs can

create issues when compiling kernels, as the compiler may use instructions from the

ISA that are not supported by the unverified soft-core. These can be difficult to track

down without disassembling the kernel binaries and comparing the generated instruc-

tions with those supported by the soft-core, which may not be documented and require

interrogating its VHDL or Verilog source code. These issues make compiling a com-

plex codebase, such as the ePython VM, hazardous on a new, unverified soft-core and

a simpler approach is required.

As discussed in Section 5.2.1, the PicoRV32 soft-core supports the AXI4 bus,

greatly simplifying integration with other IP blocks, and the host CPU, to create a

micro-core accelerator. Based on the ease of integration and that it is verified for the

RV32IMC ISA, which includes compressed instruction support that can reduce the size

of compiled binaries by around 37% [164], the PicoRV32 was chosen to form the basis

of the RISC-V Cerberus processor.

5.2.2 Eithne micro-core benchmarking framework

5.2.2.1 Architecture overview

To simplify the comparison of different micro-core architectures, a benchmark frame-

work was required to quickly assess a micro-core’s suitability for the project. As a

benchmarking framework for micro-core architectures did not exist, a new framework,

Eithne3, was designed to meet this requirement. The deployment of codes to differ-

ent micro-core architectures is time consuming due to the idiosyncratic nature of each

micro-core architecture. For example, Adapteva provide user space libraries for load-

ing and communicating with the Epiphany-III processor, whereas on the Xilinx PYNQ

FPGA, kernel device drivers and the continuous memory area (CMA) library, which

require superuser (root) access, are used for loading code and communicating with the

soft-cores. By having a standard framework managing the code launch and commu-

nications, that is tested separately from the benchmark codes, a stable and consistent

3Eithne (/Enj9/ ”enya”): Gaelic for ”kernel” or ”grain”.



Chapter 5. Experimental Environment 86

Figure 5.5: Eithne micro-core benchmarking framework architecture

environment for running codes can be provided, greatly simplifying the addition of

new benchmarks. The architecture of the Eithne framework is shown in Figure 5.5.

The framework has a layered plug-in architecture to support multiple benchmarks and

devices, including simulating a device as a thread running on the host. The benchmark

host and kernel codes are highlighted in blue, and sit on top of the purple components

that encompass the Eithne framework and all the underlying hardware support. A set

of application programming interface (API) calls provide kernel control, communica-

tions, memory management, as well as support for metrics collection and reporting.

The layers can be reused across devices or a specific layer can be tailored for a device,

as required, providing portability and configurability. Crucially, support for a new

board or a new communications interface is just a new layer within the existing frame-

work; different processors and architectures can be added without requiring changes

to the other layers or the benchmarks themselves.

The control layer on the host manages the transfer and launch of kernels. The

communications layer on both the host and device manage the transfer of data and

control messaging. On the PYNQ and the Parallella boards, Eithne implements com-

munications via shared memory between the host ARM processor and the micro-core

device. Nascent support for communications over a serial link (UART) was built for

the OpenISA RISC-V Vega board, with the communications protocol (Xfer) used for

the shared memory implementation being extended to include software flow control

(XON/XOFF) and a 32-bit cyclic redundancy check (CRC) of the packets transferred

over the serial link.
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Figure 5.6: LINPACK flow using the Eithne framework

5.2.2.2 Host and device communications flow

A set of benchmarks (LINPACK, Jacobi, DFT and FFT)4 were updated to use the

framework APIs by separating out the host driver code from the kernels. Once this

was done, they were available on all devices that Eithne supports. Once modified to

use the Eithne APIs, the benchmark driver code and kernels do not to be modified

to run on a new device, only relevant Eithne framework layers need to be updated to

support that technology.

Figure 5.6 details the flow for the LINPACK benchmark using the Eithne frame-

work. The input data is created on the host and the kernel binary is downloaded to

the device and the communications listener is started5. Once the device listener has

indicated to the host that it is ready, the input data for the first kernel is transferred

to the device. Once this has been successfully transferred6, the kernel is launched on

4Available from the Eithne GitLab repository [25].
5When the Eithne framework is loaded on the host, the micro-cores are halted or placed in a wait

state until an explicit API call is made to start them.
6The communications protocol always sends acknowledgment once a message has been actioned.
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the device and its execution time is then recorded when complete. The kernel output

data is transferred over to the host, where it is validated. Next, the input data for the

second kernel is sent to the device and once transferred, the second kernel is launched

and its execution time is recorded when complete. Finally, the second kernel’s output

data is transferred to the host and validated, and the benchmark results are calculated.

Although the specific flow is different for each benchmark, the overall process is the

same, with all the communications being initiated from the host, and that data transfer

and kernel execution are separate allowing both to be timed individually.

5.2.2.3 Eithne API kernel modifications

1 void kernel_init(EithneTargetId id, EithneSharedMem buffer) {

2 EithneKernel kernels[] = { sgefa, sgesl };

3

4 EITHNE_INIT_DEVICE(vars, id, buffer + EITHNE_DATA_OFFSET, buffer,

kernels);

5

6 EITHNE_REGISTER_ARRAY(vars, A, EITHNE_FLOAT_ARRAY, a, N*LDA);

7 EITHNE_REGISTER_ARRAY(vars, B, EITHNE_FLOAT_ARRAY, b, N);

8 EITHNE_REGISTER_ARRAY(vars, IPVT, EITHNE_INTEGER_ARRAY, ipvt, N);

9 EITHNE_REGISTER_SCALAR(vars, JOB, EITHNE_INTEGER, job);

10 EITHNE_REGISTER_SCALAR(vars, RESULT, EITHNE_INTEGER, info);

11

12 EITHNE_START_LISTENER;

13 }

Listing 5.1: LINPACK kernel Eithne API calls

Listing 5.1 outlines the kernel init() function added to the LINPACK kernel.

This is called by Eithne when the kernel is loaded onto the device and sets up the com-

munications buffer on the device, registers the variables that are to be shared with the

host and starts the listener. The only other modifications required to the original kernel

code wrapping of the sgefa and sgesl functions to pass the transferred variables as

Eithne kernels have a void parameter list.

Details of the protocol are described in Section 4.2.3
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5.2.2.4 Host driver code

1 buffer = EITHNE_ALLOC_MEM(sizeof(float)*N*LDA);

2

3 EITHNE_INIT_HOST(vars, HOST_ID, buffer + EITHNE_DATA_OFFSET,

buffer);

4

5 EITHNE_INIT_CORES(16);

6 EITHNE_START_CORES(16);

7

8 EITHNE_REGISTER_ARRAY(vars, A, EITHNE_FLOAT_ARRAY, a, N*LDA);

9 EITHNE_REGISTER_ARRAY(vars, B, EITHNE_FLOAT_ARRAY, b, N);

10 EITHNE_REGISTER_ARRAY(vars, IPVT, EITHNE_INTEGER_ARRAY, ipvt, N);

11 EITHNE_REGISTER_SCALAR(vars, JOB, EITHNE_INTEGER, job);

12 EITHNE_REGISTER_SCALAR(vars, RESULT, EITHNE_INTEGER, info);

13

14 EITHNE_SEND(vars, TARGET_ID, A);

15

16 t1 = cpu_time ( );

17 EITHNE_EXECUTE(TARGET_ID, SGEFA);

18 t2 = cpu_time ( );

19

20 EITHNE_RECV(vars, TARGET_ID, A);

21 EITHNE_RECV(vars, TARGET_ID, IPVT);

22 EITHNE_RECV(vars, TARGET_ID, RESULT);

Listing 5.2: LINPACK host Eithne API calls

Listing 5.2 details the Eithne API calls that were added to the LINPACK host code.

First, an area of shared memory large enough to transfer the biggest data item is cre-

ated with the EITHNE ALLOC MEM() call, which also allocates an additional area for

the communications protocol control area. Next, the Eithne framework is initialised,

including the list of variables to be transferred, the ID for the host, the shared memory

communications buffer and control area7. Then the micro-cores are initialised (the lis-

tener and kernels are downloaded) and then started using the EITHNE START CORES()

call. Whilst the cores are wating, we register the variables that we wish to transfer

to and from the kernels using the EITHNE REGISTER API calls. These APIs support

a number of types, including arrays and complex numbers. The value of a variable,

7These can be in separate, disjoint areas of memory but are in consecutive areas of shared memory

in most cases.
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for example the input array A, is transferred using the EITHNE SEND() and EITHNE -

RECV() API calls, which take the target ID of a specific core on the micro-core device

as an argument. The kernels are executed using the EITHNE EXECUTE() call and the

example shows how the timing of the kernel execution can be separated from the data

transfer. If we want to time the communications to ascertain latency or bandwidth, we

can wrap the appropriate messaging APIs within timing calls.

5.2.3 Eithne initialisation and data transfer timings

The Eithne API calls for the LINPACK host code in Listing 5.2 only time the SGEFA

kernel execution and do not include the framework initialisation, variable registration

and data transfer timings. However, it would be beneficial to understand the over-

head of the Eithne framework initialisation and the data transfers between the host and

device executing the kernels. Listing 5.3 illustrates the timing points for the Eithne ini-

tialisation and variable registration API calls on the host for the LINPACK benchmark.

Listing 5.4 shows the timing points for the data transfers to and from the host to the

device.



Chapter 5. Experimental Environment 91

1 t1 = cpu_time();

2 buffer = EITHNE_ALLOC_MEM(sizeof(float)*N*LDA);

3

4 EITHNE_INIT_HOST(vars, HOST_ID, buffer + EITHNE_DATA_OFFSET,

buffer);

5

6 EITHNE_INIT_CORES(16);

7 EITHNE_START_CORES(16);

8 t2 = cpu_time();

9

10 ...

11

12 t1 = cpu_time ();

13 EITHNE_REGISTER_ARRAY(vars, A, EITHNE_FLOAT_ARRAY, a, N*LDA);

14 EITHNE_REGISTER_ARRAY(vars, B, EITHNE_FLOAT_ARRAY, b, N);

15 EITHNE_REGISTER_ARRAY(vars, IPVT, EITHNE_INTEGER_ARRAY, ipvt, N);

16 EITHNE_REGISTER_SCALAR(vars, JOB, EITHNE_INTEGER, job);

17 EITHNE_REGISTER_SCALAR(vars, RESULT, EITHNE_INTEGER, info);

18 t2 = cpu_time ();

Listing 5.3: Eithne initialisation and registration code, with associated timing calls, for

the LINPACK benchmark

1 t1 = cpu_time();

2 EITHNE_SEND(vars, TARGET_ID, A);

3 t2 = cpu_time();

4

5 ...

6

7 t1 = cpu_time();

8 EITHNE_RECV(vars, TARGET_ID, A);

9 EITHNE_RECV(vars, TARGET_ID, IPVT);

10 EITHNE_RECV(vars, TARGET_ID, RESULT);

11 t2 = cpu_time();

Listing 5.4: Eithne data transfer code, with associated timing calls, for the LINPACK

benchmark

Table 5.1 details the timings for these points for the Olympus and native C LIN-

PACK benchmark kernels, compiled at optimisation level -O3, running on the Adapteva

Parallella. The Olympus kernel initialisation time on the host is, on average, approx-
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imately 7% (M = 1.4ms) longer than for the native C kernel and can be explained by

the additional time required to transfer the slightly larger Olympus kernel binary to the

Epiphany-III device. The variable registration code on the host is identical for both the

Olympus and native C kernels and although there is a 20% (M = 1µs) time difference

between both kernel types, this difference can be attributed to other processes running

on the host that impact the running of the kernel driver program.

Table 5.1: Mean (M) and maximum Eithne initialisation and data transfer times (sec-

onds) for the LINPACK benchmark Olympus and native C kernels on the Adapteva

Parallella (-O3)

Eithne operation Olympus mean8 Olympus max native C mean native C max

Initialisation 0.01952 0.02647 0.01817 0.02522

Variable registration 0.000004 0.000019 0.000005 0.000019

Data transfer to device 0.001156 0.001198 0.001154 0.001198

Data transfer from device 0.000365 0.000406 0.000357 0.000405

The data transfers to and from the micro-core device are dependent on the listener

thread on the host and are, therefore, impacted by other processes running on the host.

The worst case difference between Olympus and native C kernels for the data transfer

to the Epiphany-III is only 0.17% (2µs) and there is no measurable difference between

the maximum transfer times. The maximum difference in transfer time between Olym-

pus and native C kernels on the Parallella is only 2.19% (8µs) for the transfer from the

device and the difference between the maximum transfer times from the device is only

0.25% (1µs).

One interesting aspect of the results detailed in Table 5.1 is the significant dif-

ference in data transfer times to and from the Epiphany-III, where data transfer to the

device is around 3 times slower than the data transfer from the device. This is due to the

host / device interface of the Parallella, where Epiphany core data pulls from the host

DRAM are approximately 3 times slower than Epiphany core data pushes to the host

DRAM, due to asymmetric bandwidth [107]. The Eithne framework utilises a listener

running on the micro-cores which performs the host data transfers and consequently

it exhibits this mismatch between data transfers to and from the host. However, on

the Parallella this implementation is still advantageous as core-initiated data transfers

exhibit up to a 27 times increase in bandwidth over host-initiated data transfers [107].

8Each kernel (Olympus and native C) was executed 100 times.
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5.3 Test environment

5.3.1 CPU selection

In order to support the assessment of the implementation discussed in Chapter 4, a

number of different platforms and processors were selected, including micro-cores

and traditional CPUs, as detailed in Table 5.2. As processor ISAs can have a signif-

Table 5.2: Test environment board specifications, including CPU architecture, memory

size and operating system

Machine Arch CPU RAM OS

Adapteva Parallella 32-bit 2x9 650MHz Cortex-A9 (ARM) 1GB Ubuntu 16

Adapteva Parallella 32-bit 16x 600MHz Epiphany-III 32KB per core bare metal

Xilinx PYNQ-Z2 32-bit 8x 100MHz MicroBlaze 64KB per core bare metal

Xilinx PYNQ-Z2 32-bit 8x 100MHz PicoRV32 RISC-V 64KB per core bare metal

Creator Ci20 32-bit 2x 1.2GHz XBurst MIPS32 1GB Debian 10

HP 15-g093 64-bit 4x AMD A4-6210 AMD64 4GB WSL10

Sun ULTRA 5 64-bit11 1x 400MHz UltraSPARC-IIi 512MB Solaris 10

HiFive Unmatched 64-bit 4x 1GHz U740 RISC-V 16GB Ubuntu 21

icant impact on both the compiled kernel runtime performance and binary size, the

MIPS32 (XBurst), Intel x86 (AMD64), SPARC (UltraSPARC-IIi) and 64-bit RISC-

V (U740), were included as targets for comparison with the micro-core CPUs. The

SPARC was selected as an alternative to the x86 as it has been used until recently for

supercomputers in the TOP500 list [165] and the SPARCv8 LEON series of proces-

sors are used by the European Space Agency (ESA). Furthermore, it is a traditional

Berkeley Reduced Instruction Set Computer (RISC) architecture with register win-

dows that, for large C programs running on the SPARC, can show a 33% to 50%

reduction in the number of load and store instructions generated over a non-register

window RISC processor [166], such as the RISC-V, MicroBlaze, MIPS and PowerPC.

The SPARCv9 UltraSPARC-IIi was also chosen as a primary development target it is

big endian and has strict byte alignment constraints that exercise the Merlin virtual ma-

chine and Olympus abstract machine implementations. Furthermore, this selection of

CPUs tested portability between 32-bit and 64-bit processors with varying alignment

9Refers to the number of cores within the CPU.
10Windows Subsystem for Linux on Microsoft Windows 10
11Olympus abstract machine and native C benchmark codes compiled to 32-bit binaries, with 32-bit

integers and single-precision floating point on the SPARCv9.
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constraints and byte ordering.

5.3.2 C compiler selection

The C compilers listed in Table 5.3 were used to compile and run the ePython virtual

machine, the Merlin virtual machine, the Olympus abstract machine codes and native

C benchmarks, to obtain the results for Chapter 6. Additional C compilers were used

Table 5.3: C compiler versions by CPU architecture

CPU C compiler Version

ARM Cortex-A9 gcc 5.4.0

Epiphany-III e-gcc 5.4.0

MicroBlaze mb-gcc 5.2.0

PicoRV32 riscv32-unknown-elf-gcc 8.2.0

MIPS32 gcc 8.3.0

AMD64 (x64) gcc 9.4.0

SPARCv9 gcc 5.5.0

RISCV64 gcc 10.3.0

to test the portability of the Merlin virtual machine and Olympus abstract machine,

including Clang [167] on macOS 10.15, the Small Device C Compiler (SDCC) [168]

and OpenWatcom C [169] on Windows 10.

5.3.3 Benchmark selection

A number of benchmarks were selected to test the key areas of implementation: mem-

ory hierarchy support for arbitrary data, dynamic code loading for arbitrary-sized ker-

nels and the native code abstract machine to increase kernel runtime performance. A

description of each benchmark and the reason for their selection is provided in Sec-

tions 5.3.3.1, 5.3.3.2, 5.3.3.3 and 5.3.3.4. Table 5.4 details the mapping of benchmark

execution to CPU.

For all benchmarks, the results reported in Chapter 6 were averaged over 100 exe-

cution runs.

5.3.3.1 Machine learning (ML) image processing

A parallel machine learning code for cancer cell detection within 3D scan images was

chosen to test the runtime performance of the new pass by reference kernel data model,
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Table 5.4: CPU / benchmark mapping

CPU ML image Fibonacci Jacobi LINPACK Byte Sieve

ARM Cortex-A9 ✓ ✓ ✓ ✓ ✓

Epiphany-III ✓ ✓ ✓ ✓ ✓

MicroBlaze ✓ ✓ ✓ ✓ ✓

PicoRV32 - ✓ ✓ ✓ ✓

MIPS32 - ✓ ✓ ✓ ✓

AMD64 (x64) - ✓ ✓ ✓ ✓

SPARCv9 - ✓ ✓ ✓ ✓

RISCV64 - ✓ ✓ ✓ ✓

discussed in Section 3.2.2.1. This code was also used to test the model’s viability in

supporting real world applications on micro-cores using dynamic languages by pro-

viding support for arbitrary sized kernel data. The parallel ML code was run using

the ePython VM using the 16 cores of the Epiphany-III and the 8 cores of the MicroB-

laze micro-core architectures, and compared against equivalent single-threaded Python

code running on the ARM Cortex-A9 and AMD64 processors.

5.3.3.2 Fibonacci sequence

A simple iterative Fibonacci sequence code [170] was used to determine the runtime

performance and bytecode size of the different Merlin virtual machine opcode address-

ing modes, discussed in Section 4.3.2, and to compare the runtime performance of the

Merlin VM against the Olympus abstract machine and native C. The Fibonacci code

was written in Merlin assembly language, ePython and C, and run on a single ARM

core. The Fibonacci code was also compiled to the Olympus abstract machine for

comparison of the memory access and simple looping construct runtime performance

between Olympus and native C on the CPUs listed in Table 5.4.

The listings for the Merlin assembler, ePython and C Fibonacci codes are in Ap-

pendix A and are available at [171].

5.3.3.3 Jacobi iteration

As [155] highlights, solving partial differential equations is common in engineering

and scientific HPC codes. Therefore, a benchmark code for solving Laplace’s partial

differential equation for diffusion via Jacobi iteration was chosen to compare the run-

time performance of the ePython VM against the Olympus abstract machine code. It
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was also used to compare the binary size and runtime performance of statically and

dynamically loaded functions within Olympus kernels, at GCC compiler optimisation

levels -Os and -O3. The serial Jacobi code was run on a single core, with a problem

size (NX) of 100 and 10000 maximum iterations.

The ePython and C Jacobi iteration codes are available at [171].

5.3.3.4 LINPACK

The LINPACK benchmark [21] measures the floating point performance of a computer

by solving a matrix problem using LU decomposition. It is a long-established bench-

mark, having been introduced in 1979, and is the standard benchmark used to rank su-

percomputer runtime performance for the Top500 [165] list. The C version [172] was

selected to benchmark the runtime performance (MFLOPS12) of the Cerberus micro-

core designs (MicroBlaze and PicoRV32 RISC-V) against the Epiphany-III. However,

as LU factorisation is commonly used in scientific and industrial applications, such

as design automation, machine learning and signal processing [173], LINPACK was

also selected to compare the runtime performance of the Olympus abstract machine13

against native C, at GCC compiler optimisation levels -Os and -O3. For both the Cer-

berus and Olympus abstract machine investigations, a serial version of the LINPACK

code was run on a single core. Due to the extremely small memory available on the

micro-core devices, the problem size n was 50 and for traditional CPUs n = 1000. The

code listings are in Appendix B.

The original LINPACK benchmark code can be found at [172] and the ePython and

C versions are available at [171].

5.3.3.5 Sieve of Eratosthenes (Byte Sieve)

The Sieve of Eratosthenes benchmark [174], often referred to as Byte Sieve, is com-

monly used to test compiler code generation runtime performance and efficiency [175]

[176]. The standard C and a new ePython version of the benchmark were used to de-

termine the runtime performance of integer array access and looping constructs of the

Olympus abstract machine relative to native C, to augment the Jacobi and LINPACK

benchmarks that perform floating point array access and calculations. The standard

Sieve benchmark is serial and both versions were run on a single core of all the CPUs

12Million Floating Point Operations per Second
13An ePython version of LINPACK was written and compiled to Olympus abstract machine code.
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listed in Table 5.4. Like LINPACK, due to the limited memory on the micro-core de-

vices, the flag array size was reduced (SIZE = 4095) on the Epiphany-III, MicroB-

laze and PicoRV32 micro-cores. On the other CPUs, per the original benchmark,

SIZE = 8190. Whilst the C version of the benchmark uses a byte (char) array to

store the flags, the ePython version uses an (int) array, as this is the base numeric

type. This results in the original flag array size requiring 32KB of memory due to the

32-bit integers on the micro-core devices. As this is the total memory available on the

Epiphany-III for both data and code, the size of the flag array was reduced correspond-

ingly.

The original Sieve benchmark code, in a number of languages including C, can be

found in [174] and the ePython and C versions used in this work can be found at [171].

5.3.4 Benchmark rationale and approach

The ML image processing code discussed in Sections 5.3.3.1 and 6.2 was chosen to

assess the practicability of running real-world codes on the ePython VM after the intro-

duction, by this work, of the pass by reference kernel data model, host data prefetching,

memory hierarchy and memkind additions discussed in Sections 3.2.2 and 4.2.

The key focus of the benchmarks discussed in Sections 5.3.3 and 6.3.2 was to de-

termine the viability of the Olympus abstract machine on micro-core architectures in

terms of binary code size and runtime performance. As C is the dominant alternative

programming language for these devices, codes written in ePython and compiled to

native code via the Olympus abstract machine were compared against native C ver-

sions in terms of binary code size and runtime performance. The Fibonacci sequence,

Jacobi iteration, LINPACK and Byte Sieve benchmarks were run across a number of

devices to determine any impacts to the binary code size or runtime performance of

the Olympus abstract machine by the underlying CPU architecture. Furthermore, by

running the benchmarks on a number of 32 and 64-bit RISC and CISC CPUs, includ-

ing a mix of little and big-endian architectures, issues affecting the portability of the

Olympus abstract machine could be determined and addressed.

The choice of benchmark was driven by the limited on-chip memory of the micro-

core devices. For example, on the Epiphany-III, the LINPACK binary, compiled at

optimisation level -O3 is approximately 11KB, requiring the default Olympus heap

size of 24KB to be reduced. Whilst this issue can be offset through the use of dynamic

function loading, per the custom Jacobi benchmark discussed in Sections 6.4.1 and
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6.4.2, the benchmarks were chosen for their binary codes to be compact enough to

execute from a monolithic binary deployed to the micro-core devices.

The Fibonacci sequence benchmark was chosen as it is simple to code in assembly

language, thereby enabling the comparison of the different addressing modes in the

Merlin VM and a comparison of Merlin against the ePython VM, Olympus and native

C. It was also used for Olympus abstract machine and native C binary code size and

runtime performance comparisons. It was chosen as part of these investigations due to

it being a simple iterative loop code that enables the comparison of basic integer opera-

tions and looping constructs as the static / dynamic function call dispatch overheads are

not present, in contrast to more complex benchmark codes. The LINPACK and Jacobi

iteration benchmarks solve Partial Differential Equations (PDEs) that are common in

HPC codes [155] and are candidates for offloading to micro-core accelerators or GPUs.

Furthermore, LINPACK is commonly used to measure the floating point performance

of a machine, for example for the Top500 list [165]. In this work, LINPACK is used to

determine the floating point operation overhead within the Olympus abstract machine

in comparison to native C and to determine if the Olympus C source code elicits vector

opcodes by the C compiler. The Jacobi iteration was chosen to test the floating point

array access performance, as well as the the runtime performance of native C math

library function calls14 from within Olympus. The Sieve of Eratosthenes (Byte Sieve)

was designed to test integer array operation, looping construct and control structure

runtime performance [174].

Each Olympus and native C benchmark code were compiled at GCC optimisation

levels -Os and -O3 for each CPU architecture, resulting in 64 unique benchmark re-

sults. As Section 6.5 highlights, this selection of benchmarks was sufficient to evaluate

Olympus in terms of runtime performance and binary code size, as well as determining

the portability of the approach, across different CPU architectures.

14For the PicoRV32 Jacobi kernel, a custom C math library was created that contained only the code

required to support the sqrtf and powf C functions.



The performance of a computer is a complicated issue, a function of

many interrelated quantities. These quantities include the applica-

tion, the algorithm, the size of the problem, the high-level language,

the implementation, the human level of effort used to optimize the

program, the compiler’s ability to optimize, the age of the compiler,

the operating system, the architecture of the computer and the hard-

ware characteristics.

Dongarra et al., “The LINPACK Benchmark: past, present and

future” [21]

6
Results
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6.1 Overview

Figure 6.1: ePython architecture highlighting components evaluated by the benchmark

results discussed in this chapter

This chapter presents the results of the benchmarks to assess the implementation

of the enhancements to ePython to address RQ1 (How to manage the limited on-chip

memory for data?), RQ2 (How to manage the limited on-chip memory for code?) and

RQ3 (How to address the low runtime performance of virtual machines?).

Figure 6.1 shows the ePython architecture, including the existing virtual machine

and new Olympus native code generation abstract machine components and compiler,

highlighting the components that were evaluated using the benchmark results discussed

in this chapter. Section 6.2 focuses on the work undertaken on memory hierarchies, A

in Figure 6.1, to support arbitrarily large data (RQ1) within ePython kernels running

on the VM. Section 6.3 discusses the size and runtime performance of Olympus native

code kernels (RQ3) B against native C using a number of standard benchmarks across

a number of processor architectures. Section 6.4 covers the runtime performance and

usability of the dynamic function loading support (RQ2) within the Olympus abstract

machine C , with particular focus on the Epiphany-III. The results of the investigations

into the impact on runtime performance and bytecode size of the different addressing

modes of the Merlin virtual machine (RQ3) D are discussed in Section 6.3.1.

6.2 Managing arbitrary data size (RQ1)

6.2.1 ML image processing

The pass by reference model provided by the memory hierarchy support within ePython

enables the deployment of kernels that require arbitrary-sized data to be deployed to
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the target micro-cores architectures. This was tested by running a Machine Learning

application to detect cancer cells in 3D lung scan images from the 2017 Data Science

Bowl [177] data science competition to develop lung cancer detection algorithms. The

National Cancer Institute (NCI) provided thousands of high-resolution 3D lung scans

to test the detection codes. In this work, the NCI images are used differently to the

competition, where the evaluation of whether micro-core architectures and the paral-

lelism that they provide can benefit the area of machine learning, rather than compe-

tition’s concern regarding accuracy of prediction. A simple neural network with one

hidden layer of 100 neurons which splits the 3D CT lung scans into two groups, 70%

for training and 30% for testing was developed by [101]. Here, the input pixels of the

image are distributed amongst the micro-cores for the acceleration of the linear algebra

involved in training the model and the back-propagation. Each micro-core is operating

on a separate part of the overall image in parallel and where previously each image was

copied on to the micro-cores on kernel invocation, the new offload approach means that

these images now remain in host memory with a reference to them passed to the micro-

cores on kernel invocation. The previous eager copy approach was shown to perform

competitively against Python and native implementations, but the limited memory of

micro-cores meant that images had to be interpolated down from a maximum on-disk

size of over 100MB to a size that the input data and neural network could fit within

the shared memory area on the host. For example, 32MB on the Adapteva Parallella.

Here, the same ML code is being used as a benchmark but the modified behaviour of

kernel invocation as described in Section 3.2.2.1 means that we can run the full sized

images for the first time.

The ML benchmark has two data transfer options: on-demand and pre-fetching.

The former transfers the data from the host for each data request in the kernel running

on the micro-cores. The latter option pre-fetches the data before it is required by the

kernel code. Figure 6.2 illustrates runtime performance results for ePython with the

new pass by reference model for both on-demand and pre-fetching, against the previous

eager data copying on kernel invocation under ePython. Also included are runs on the

ARM host using CPython for the kernels and a native implementation which calls into

Numpy for the kernels, which has been compiled with GCC -O3 optimisation level.

There is also an implementation via CPython on AMD64, where like the ARM, the

AMD64 result is based on execution on a single core. As detailed in Table 6.1, for each

configuration, there are two results; feed forward is the time taken to do a forward pass

of the neural network and combine gradients is the time taken to calculate gradients
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for a batch of training data. There is also the model update phase, which is the time

taken to update the model with the gradients for the batch. However, these results are

not discussed as they are not impacted by the memory management strategy (eager

data copy, on-demand or pre-fetch) for the reason that the phase does not rely on data

transfer from the host.

Table 6.1: Lung cancer machine learning feed forward and combine gradients phase

mean (M) runtimes: small images (seconds)

Strategy / CPU Feed forward Combine gradients

Epiphany eager data copy 0.03728 0.04135

Epiphany on-demand 0.7678 0.7731

Epiphany pre-fetch 0.03110 0.02994

MicroBlaze eager data copy 0.02254 0.02773

MicroBlaze on-demand 0.2765 0.2796

MicroBlaze pre-fetch 0.02161 0.02125

ARM Python 3.846 3.795

ARM Native 0.01040 0.04748

AMD64 Python 0.2133 0.2098

The results in Figure 6.2, where the vertical axis is log scale, represent the mean

(M1) runtime values for 150 scaled down, interpolated, images processed using ePython

on the Epiphany and MicroBlaze micro-cores, CPython on the ARM and AMD64, and

native C on the ARM. For these experiments there are 3600 input pixels distributed

amongst the micro-cores, with a hidden layer of 100 neurons. There are two key data

structures, a matrix of input-hidden layer weights distributed among the micro-cores

and a vector of hidden layer-output neuron weights. Each small image, passed for ker-

nel invocations is 14.4KB. Forward feed involves a dot product on the weight matrix

with the image, and a second dot product on the resulting values with the hidden layer-

output neuron weight vector. Combining gradients, done for each image involves a dot

product and an outer product. However, the model weights are not updated until after

the batch of 10 images completes. For these small images, each kernel involves around

45000 floating point operations.

It can be seen that the original ePython kernel invocation version, ePython ea-

ger data copy, for both the Epiphany and MicroBlaze, compares favourably against

the CPython and native versions, running on a single core, on the ARM host and

AMD which is due to the parallelism provided by the Epiphany and MicroBlaze.
1M denotes the arithmetic mean and SD denotes standard deviation.



Chapter 6. Results 103

The ePython on-demand versions represent the benchmark relying on the modified

behaviour described in Chapter 3, with accesses performed on-demand and not taking

advantage of pre-fetching. The ePython pre-fetch results represent a version of the

code using the new pass by reference model and pre-fetching optimisation.
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Figure 6.2: Comparing memory management strategies: Lung cancer machine learn-

ing runtimes: small images. Mean (M) runtime in seconds, with error bars denoting

standard deviation (log scale)

For both the Epiphany and MicroBlaze, the on-demand version of this benchmark

is significantly slower than the existing, eager data copy, behaviour of ePython. This

is because the micro-cores retrieve individual elements of data, one at a time, and for

each of these it must block until the transfer has completed. In contrast, the results in

Table 6.1 highlight that the pre-fetch version of the benchmark provides on average up

to 1.4 times (M = 1.38, SD = 0.085) better runtime performance for the calculation of

gradients on the Epiphany than the existing eager data copy ePython implementation

and is almost 25 times (M = 24.69, SD = 0.002) faster than the on-demand data copy

approach for the Epiphany. The pattern is similar for the MicroBlaze, although the

differences are less. The runtime performance improvement of pre-fetching over eager

data copying is due to two factors, firstly the kernel can start as soon as the single

reference is copied across rather than the entire data, and secondly the new data transfer

mechanism enables the ePython module running in CPython to communicate directly

with the ePython VM on the micro-cores rather than having to go via the ePython host

process.
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Table 6.2: Lung cancer machine learning feed forward and combine gradients phase

mean (M) runtimes: large images (seconds)

Strategy / CPU Feed forward Combine gradients

Epiphany on-demand 1299 1308

Epiphany pre-fetch 40.10 40.92

MicroBlaze on-demand 549.4 553.7

MicroBlaze pre-fetch 44.49 41.95

ARM Python 2138 2301

AMD64 Python 352.0 328.0

Before the support for arbitrary-sized data, enabled by the introduction of memory

hierarchy support in the ePython VM, it was impossible for these Python kernels to

process the full sized images on the micro-cores. To test the impact of the on-demand

and pre-fetch memory management strategies on the processing of large (full-sized)

images by the same ML code used to process the small images, the code was run on a

set of 20 different large images on the micro-core devices and compared with the se-

rial Python code running under CPython on the ARM and AMD64 CPUs. Figure 6.3,

where the vertical axis is log scale, illustrates the runtime performance of the machine

learning benchmark for a forward pass through the neural network (feed forward) and

calculation of gradients (combine gradients) in ePython on the Epiphany and MicroB-

laze micro-cores, when running with the full sized images (again both on-demand and

pre-fetch versions) and CPython on the ARM host and AMD64 using the same sized

hidden layer as previously. Similarly to the small images, enabling the pre-fetching of

data is much faster than the on-demand approach. From Table 6.2, the mean feed for-

ward speed up is 13 times (M = 12.60, SD = 0.004) for the MicroBlaze and 32 times (M

= 32.33, SD = 0.136) for the Epiphany. The results for combine gradients are similar,

with a mean speed up of 13 times (M = 13.20, SD = 0.005) for the MicroBlaze and 32

times (M = 31.96, SD = 0.109) for the Epiphany. The full sized images are, on average,

around 7 million pixels which is 1966 times larger than the small, interpolated, images

of 3600 pixels. The average, single precision, input data that must be transferred to the

micro-cores for each kernel is around 30 MB.

Crucially, not only does the support for memory hierarchies with data pre-fetch

within the ePython VM allow the processing of full-sized images on the micro-cores

but also, as Figure 6.3 illustrates, facilitates the runtime performance gains provided

by running the ML code in parallel across a number larger number of cores, as found
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Figure 6.3: Comparing memory management strategies: Lung cancer machine learn-

ing runtimes: large images. Mean (M) runtime in seconds, with error bars denoting

standard deviation (log scale)

on the Epiphany and MicroBlaze micro-cores.

6.3 Increasing kernel runtime performance (RQ3)

6.3.1 Merlin virtual machine

6.3.1.1 Fibonacci benchmark: kernel code size and runtime performance

Based on the runtime performance (Section 6.2) and memory footprint of the ePython

VM (24KB on the Epiphany-III), it was hypothesised that a native code generation ap-

proach would be required to address RQ1 and RQ3, rather than enhancing the existing

VM with a JIT compiler. In order to verify this hypothesis, which would determine

the future development approach of the project, the Merlin VM (Section 4.3.2) was

developed to determine if improvements could be made in terms of runtime perfor-

mance and memory footprint. The Merlin VM was then compared with the existing

ePython VM and native C using a single benchmark, a simple iterative Fibonacci se-

quence benchmark [170] (Section 5.3.3.2 and code listings in Appendix A) as this had

to be hand-coded in low-level Merlin assembly language. This code was chosen due

to it being a simple iterative loop code that enables the comparison of basic integer

operations, conditionals and looping constructs; these are the fundamental operations
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of a VM interpreter. More complex benchmark codes, such as LINPACK, introduce

function call dispatch overheads that need to be avoided in order to be able to deter-

mine the raw runtime performance of the Merlin interpreter, specifically the dispatch

loop (NEXT operation in Listing 4.2) and memory addressing / access. Fundamentally,

the simple Fibonacci code assesses the baseline runtime performance and minimum

binary code size / memory footprint of the interpreter.

It was also important to understand the impact of the different addressing models

within Merlin. Therefore, stack-based, three-address and register-based opcode ad-

dressing versions of the Merlin Fibonacci benchmark were coded and compared in

terms of runtime performance and bytecode size, as shown in Table 6.32.

Table 6.3: Merlin virtual machine / ePython VM comparison (ARM Linux -Os)

ePython Stack Three-address Register

Dispatches N/A 20 12 12

Bytecode size (bytes) 131 85 86 66

Runtime size (bytes) 71576 6505 6505 6505

Execution time (secs) 253.6 25.31 11.35 10.37

Code saving (bytecode) N/A 35.11% 34.35% 49.60%

Speedup N/A 10.02x 22.35x 24.56x

Relative to the stack-based model, both the three-address and register-based models

provide higher runtime performance, at 2.23 times and 2.44 times respectively. This is

increase in runtime performance is obtained by the 40% reduction in opcode dispatches

for both models, due to the removal of stack operations. The sizes of the bytecodes

for this benchmark are very similar (2% difference). The register-based bytecode is

smaller than the stack-based and three-address bytecode due to the reduced number of

memory load and store instructions required. For example, ADDXY adds the contents of

the X and Y registers and stores them in the accumulator register (A), coupled with the

use of the register-to-register copy instructions, Transfer Y to X (TYX) and Transfer Ac-

cumulator to Y (TAY) instructions, the memory load and store operations are removed.

The Merlin assembly source for the stack-based, three-address and register-based Fi-

bonacci code can be found in Appendix A, Listings A.1, A.2 and A.3, respectively.

The source for the C, ePython and generated Olympus code are listed in Appendix A,

Listings A.4, A.5, A.7, A.8 and A.9 respectively.

2All execution times are based on binaries produced by GGC C with the -Os optimisation level

unless otherwise stated.
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As shown in Table 6.3, Merlin provides a significant runtime performance improve-

ment of between 10 to 25 times3 over the existing ePython VM, with the register-based

code providing the highest runtime performance. This is combined with a bytecode

size saving of between 35% to 50%, with, again, the register-based code returning

the largest reduction with respect to ePython. These results indicate that significant

runtime performance and bytecode size improvements could be made to the exist-

ing ePython VM by implementing the features of the Merlin register-based addressing

model. In and of itself these results are interesting but as shown in Table 6.4, the fastest

Merlin addressing model (register-based) is still between 11 to 12.5 times slower than

native C. Furthermore, the overall code size for C is also up to 78% smaller than the

combined bytecode and interpreter binary size for Merlin.

Table 6.4: Merlin VM, Olympus abstract machine and C binary comparison (ARM Linux)

Merlin Merlin Olympus Olympus C C
(-Os) (-O3) (-Os) (-O3) (-Os) (-O3)

Bytecode size (bytes) 66 66 N/A N/A N/A N/A

Runtime size (bytes) 6505 6744 4224 4252 1409 1491

Execution time (secs) 10.37 9.844 1.351 0.826 0.902 0.826

Code saving (total) N/A -3.64% 31.99% 36.95% 78.34% 77.89%

Speedup N/A 1.05x 7.67x 12.55x 11.50x 12.55x

The Merlin virtual machine accounts for around one fifth of the 32KB of memory

available on the Epiphany-III. Additionally, considering that this size does not include

ePython runtime support or communications functions, the overall size of a JIT com-

piler based on a design similar to Merlin is unlikely to fit within the 32KB of memory

available. Whilst this memory footprint could be ameliorated by running code from the

off-chip shared memory (32MB per core), per the existing ePython VM, codes incur a

significant runtime performance overhead when using this capability [19], in addition

not all micro-core architectures provide a large shared memory space. Furthermore, the

generation of the register-based code from Python source code is complex due optimal

register allocation being NP-complete4 [178], making it a less attractive compilation

target than the simple stack-based model, setting aside the runtime performance and

size benefits of the former.

Table 6.4 highlights that the register-based addressing mode of Merlin is between
3The ePython script was pre-compiled to bytecode for separate execution, removing the parsing /

compilation overhead.
4Nondeterministic Polynomial-time complete.
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7 and 12.5 times slower than the Olympus native code abstract machine for the Fi-

bonacci code, depending on the compiler optimisation level(-Os or -O3). However,

the approximate 30% overall code saving provided by the Olympus abstract machine

is, perhaps, a more interesting comparison as it includes functions to support dynamic

languages that are absent from the native C code. The overall code size difference be-

tween Merlin and Olympus would be reduced for more complex kernels as the relative

increase in bytecode size is likely to be smaller than that of the generated Olympus

binary code [179]. Furthermore, to help free the precious on-chip memory further, a

dynamic loader for Merlin could also be implemented to allow both virtual machine

functions and kernel bytecode to be loaded, and unloaded, as required.

The Fibonacci code provides the baseline runtime performance and binary code

size results for the interpreter. Whilst this is a simplistic benchmark, it clearly demon-

strates that native code generation provides kernels that are up to 37% smaller and up

to 12.5 faster than the fastest memory addressing (register-based) model of the Mer-

lin VM, which more complex benchmarks would obscure due to additional overheads

involved in execution. This benchmark alone is sufficient to conclude that a native

code generation approach can provide higher runtime performance at a lower memory

footprint than a new VM with a JIT because additional benchmarks, for instance al-

ternative simple looping and memory access codes, would provide limited additional

insights due to the same underlying VM operations and memory access pattern.

6.3.2 Olympus abstract machine

It was necessary to validate the Olympus abstract machine by evaluating the runtime

performance and memory footprint of the generated code for standard scientific kernels

on the micro-core devices, rather than just on the host. This was achieved by reusing

the Eithne micro-core benchmarking framework, discussed in Section 5.2.2, originally

developed to benchmark micro-core architectures and configurations. The framework

runs on a number of hard and soft processor architectures, with a smaller and less

complex codebase than the ePython runtime, coupled with a simpler communications

model. Therefore, porting to a new processor or architecture is easier and quicker, re-

quiring much less effort than porting the complete ePython runtime, enabling kernels

to be deployed quickly for prototyping and testing. This was vital to ensure the Olym-

pus abstract machine was able to support the target RISC-V (PicoRV32) micro-cores

that were unsupported by ePython the time this researched commenced. As Eithne de-
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ploys and executes C-based kernels, Olympus test codes were wrapped by Eithne API

calls for testing on the supported architectures.

6.3.2.1 Fibonacci benchmark: kernel code size

Table 6.5: Fibonacci kernel binary code size (bytes)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 3682 4678 1942 2886

MicroBlaze 3912 4976 3392 4476

PicoRV32 19006 19450 900 1328

ARM32 10306 10966 5284 5903

MIPS32 16761 17458 8438 9227

AMD64 16528 17904 7914 9274

SPARCv9 16126 16930 8478 9310

RISCV64 12411 13195 6608 7329

The simple Fibonacci sequence code (Section 5.3.3.2), used to compare the Merlin

addressing models in Section 6.3.1, was repurposed to compare the memory access and

looping runtime performance, along with the kernel binary code size, between Olym-

pus and native C kernels at compiler optimisation levels -Os and -O3. The kernels

were run on the Adapteva Epiphany-III, Xilinx MicroBlaze and PicoRV32 RISC-V

micro-cores, and the ARM Cortex-A9, MIPS32, AMD64, SPARCv9 and 64-bit RISC-

V traditional CPUs. The Olympus and native C kernel binary sizes for the Fibonacci

code are detailed in Table 6.5. On the Epiphany-III, the Olympus kernel binary code

size ranges from 1.6 times bigger than the native C kernel at -O3 to around two times

bigger at -Os. The MicroBlaze shows a similar pattern, with the Olympus kernels

being 1.1 times bigger than native C at -O3 and 1.15 times bigger at -Os. As Figure

6.4 shows, the kernel binary size difference between Olympus and native C at the dif-

ferent compiler optimisation levels is more consistent, at around two times bigger, for

the traditional CPUs. For example, the Olympus kernels are between 1.8 (-O3) and

1.87 (-Os) times bigger than native C on the RISCV64. Likewise, on the SPARCv9,

the difference ranges between 1.82 (-O3) and 1.90 (-Os) times bigger than native C,

and on the MIPS32 the range is between 1.89 (-O3) and 1.99 (-Os) times bigger. The

striking difference between the Olympus and native C kernel binary code sizes on the

PicoRV32 is due to the peculiarity of the custom GNU linker file (Listing E.1 in Ap-

pendix E) required by the PicoRV32 and its inclusion of space for the Olympus heap
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(16384 bytes). The impact of the custom PicoRV32 linker file on the reported Olympus

kernel binary size is explained in detail in Section 6.3.2.7 (Byte Sieve benchmark).
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Figure 6.4: Comparing native C and Olympus kernel code size across architectures:

Fibonacci benchmark

Figure 6.4 highlights that the Olympus kernels compiled at -Os are not signifi-

cantly smaller than those compiled at -O3, with the average (M) difference in size

between Olympus and native C kernels compiled at -Os and -O3 of 11.76%. Consid-

ering the binary code size of the Epiphany-III Olympus kernel compiled at -O3 is 4678

bytes, coupled with the default 16KB heap available, the Olympus native code abstract

machine looks to provide a viable alternative, for simple codes, to the ePython VM,

where the VM size of 24KB on the Epiphany-III restricts the available heap to 3840

bytes (Figure 2.10). Although the Olympus kernel binaries are, at a worst case, on

average (M = 183.6%) approximately two times larger than the native C counterparts,

the small absolute binary size of simple Olympus kernels5 in comparison to the mem-

ory footprint of the ePython VM, and thereby enabling significantly more available

memory for kernel data, is the key takeaway of these results.

6.3.2.2 Fibonacci benchmark: runtime performance

From Table 6.6 it can be calculated that, on the Epiphany-III, the native C kernels

runtimes are between parity (1.0) and 1.6 times faster than Olympus kernels, at com-

5Excepting the PicoRV32 for the reasons detailed in Section 6.3.2.7.
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Table 6.6: Fibonacci kernel mean (M) runtime (seconds)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 1.333 0.7498 0.8329 0.7499

MicroBlaze 13.50 3.499 4.499 3.499

PicoRV32 95.98 29.99 49.99 36.49

ARM32 1.239 0.4507 0.5255 0.4506

MIPS32 1.501 0.4170 0.6677 0.4174

AMD64 0.3407 0.1607 0.1931 0.1615

SPARCv9 4.349 0.8630 0.6163 0.8586

RISCV64 0.9009 0.3993 0.4992 0.2982

piler optimisation levels -O3 and -Os, respectively. A similar range is demonstrated

on the AMD64, where the native C Fibonacci kernels are between parity (1.0) and

1.8 times faster than the Olympus kernels, at -O3 and -Os, respectively. The largest

range is found on the SPARCv9 where the native C kernels are between parity (1.0)

and 7.1 times faster than Olympus. The latter figure for the SPARCv9 is interesting as

it suggests that the GCC compiler optimisations performed at -Os, that exclude the op-

timisations that impact the binary code size [180], are unable to optimise the Olympus

abstract machine code effectively, in comparison to the excluded optimisations that are

available at -O3. The error bars on Figure 6.5 show that although the average (M) ker-

nel runtimes for Olympus and native C kernels for the SPARCv9 and AMD64 at -O3

are almost identical, there is variance in the runtime figures, SD = 0.060 for Olympus

and SD = 0.055 for native C on the SPARCv9 and SD = 0.012 for both Olympus and

native C on the AMD64. Similarly, on the ARM32 and MIPS32, the Olympus average

(M) kernel runtimes are parity with native C (M = 1.000 on the ARM32 and M = 0.999

on the MIPS32) but the variance is significantly smaller at SD = 0.00029 for Olympus

and SD = 0.00020 for native C on the ARM32 and SD = 0.00140 for Olympus and

SD = 0.00050 for native C on the MIPS32. The -Os and -O3 variance for the average

(M) runtime figures for the ARM32 and MIPS32 are of the same scale as those for

the Epiphany-III, MicroBlaze and PicoRV32. This is surprising considering that the

ARM32 and MIPS32 CPU kernels are running on multitasking operating systems, per

the SPARCv9 and AMD64, whereas the micro-core (Epiphany-III, MicroBlaze and

PicoRV32) kernels are running on bare metal, where very little variance would be ex-

pected on such devices as no other codes are executing on the micro-cores at the same

time as the kernels.

The -O3 PicoRV32 (RISCV32) kernel runtime results are surprising, where Olym-
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Figure 6.5: Comparing native C and Olympus runtime performance across architec-

tures: Fibonacci benchmark. Mean runtime (M) in seconds, with error bars denoting

standard deviation (log scale)

pus is 1.22 times faster than native C, especially when the reverse is found on the

RISCV64, where native C is 1.34 times faster than Olympus. The PicoRV32 result

suggests that the 32-bit RISC-V compiler optimisations at -O3 for the native C kernel

might be impacted by the generation of the compressed (RV32C) instructions, favour-

ing the Olympus code. The RISCV64 is the only CPU where the Olympus Fibonacci

kernel runtime cannot match native C, suggesting that the GCC compiler is unable to

optimise the Olympus abstract machine code effectively for the 64-bit RISC-V ISA.

Detailed investigation of the -O3 Olympus and native C kernel disassembly listings

across all the CPUs would be required to ascertain if the relatively poor optimisation

of the Olympus code at -O3 on the RISCV64 is due to a specific characteristic of the

Olympus abstract machine code or the 64-bit RISC-V architecture.

Overall, the key takeaway from the simple Fibonacci sequence Olympus kernel

runtime performance results is that the Olympus abstract machine integer memory

access model and looping constructs do not impose a significant runtime overhead

relative to native C, across the majority of CPUs used to execute the benchmark.
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Figure 6.6: Comparing native C and Olympus kernel code size (-O3) across architec-

tures: Jacobi benchmark

6.3.2.3 Jacobi benchmark: kernel code size

As shown in Figure 6.6, the speed optimised Olympus binaries are similar in size to

native C on the Epiphany-III, MicroBlaze, MIPS32 and SPARCv9, with the Olympus

binary sizes between 6-31% larger than the native C binaries on the micro-core archi-

tectures. However, there is a marked difference on the the AMD64, where the Olympus

binaries are 74% larger. The AMD64 results in comparison to the other 64-bit CPU

(SPARCv9) suggest that the C compiler for the x86 is more capable at optimising the

native C kernel for size as well as runtime performance. The MicroBlaze Olympus

kernel binary is only about 6% larger than the native C kernel binary, as highlighted

by the results in Table 6.7. In this case, the Olympus abstract machine overhead may

be small in comparison to the kernel function codes. Considering that the kernel bina-

ries were compiled for runtime performance (-O3) rather than size (-Os), the overall

Olympus kernel binary size is viable on the micro-core architectures as they all require

less than 50% of the available on-chip RAM and are less than a third bigger than the

equivalent native C kernel binaries.

These results significantly enhance the usability of the Olympus approach; the re-

sulting binaries have, on average, less than a 42% runtime performance overhead over

native C but still require less than 50% of the extremely limited memory of the tar-

get micro-core devices, providing significantly more available memory for kernel data
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Table 6.7: Jacobi kernel binary code size (bytes -O3)

CPU Olympus native C

Epiphany-III 9870 7398

MicroBlaze 18588 17428

PicoRV32 26728 18344

ARM32 8537 6329

MIPS32 12844 10160

AMD64 12932 3350

SPARCv9 13287 9798

RISCV64 10477 7952

than the previous VM approach. Furthermore, as will be discussed in Section 6.4.1,

there are options to reduce the initial Olympus kernel memory footprint further through

dynamic code loading.

6.3.2.4 Jacobi benchmark: kernel runtime performance

A standard Jacobi code from [181], that is bundled with the Eithne framework [29],

was written for Python and the runtime performance of the native C and Olympus

versions were compared across a number of CPUs, as shown in Figure 6.7. As the
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main concern was to assess the code generation runtime performance improvements,

a single-core, serial version of the benchmark, with a problem size (NX) of 100 and

10000 maximum iterations was run on all platforms6. As expected, the native C ker-

nels were faster than the Olympus versions, as detailed in Table 6.8. Across the eight

CPUs, the native C kernels were 1.6 times quicker on average (M = 1.57), with the

Olympus kernels on the PicoRV32 and SPARCv9 matching the runtime performance

of the native C kernels. This is due to the small problem size and simple codes, reflect-

ing the results for the Olympus and native C Fibonacci codes listed in Table 6.6. When

the problem size (NX) was increased to 500, the SPARCv9 Olympus runtime was 14%

slower than the native C version. Comparing this result to the average 43% runtime

performance overhead of the Olympus abstract machine over native C on the other

processors suggests the Olympus environment model may be leveraging the advantage

of the SPARCv9’s register windows [166].

Table 6.8: Jacobi kernel mean (M) runtime performance (seconds -O3)

CPU Olympus native C

Epiphany-III 0.1255 0.06107

MicroBlaze 1.377 0.9904

PicoRV32 122.8 119.8

ARM32 0.1093 0.07733

MIPS32 0.1218 0.09433

AMD64 0.03589 0.01563

SPARCv9 0.3006 0.3019

RISCV64 0.07781 0.02479

The runtime performance of the Epiphany-III relative to the MIPS32 and SPARCv9

processors is surprising, especially when the clock rate of the XBurst MIPS32 core

(1.2GHz) is twice that of the Epiphany-III (600MHz). However, this partly explained

by the fact that the kernels are executing bare metal on the Epiphany-III, MicroBlaze,

and PicoRV32, whereas they are running as POSIX threads on the MIPS32 (Linux),

AMD64 (Windows Subsystem for Linux) and SPARCv9 (Solaris). Furthermore, the

Epiphany-III is a superscalar design that can execute two floating point operations and

one integer instruction per clock cycle [13], in comparison to the more simple pipelined

architecture of the XBurst [182].
6The problem size of 100 is significantly smaller than the default size of 1000 but was required to

enable the data to fit within the limited on-chip memory of the micro-cores.
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6.3.2.5 LINPACK benchmark: kernel code size

As mentioned in Section 5.3.3, LINPACK was selected to exercise the Olympus ab-

stract machine, over and above the initial investigations using the Jacobi benchmark

in discussed Sections 6.3.2.4 and 6.3.2.3. The key issue is to determine if specific

memory access patterns impact the size or runtime performance of the code generated

for the abstract machine. For example, whether significant array access operations and

calculations stimulate the C compiler to generate vector instructions, such as the Vec-

tor Multiply (VMUL), Vector Multiply Accumulate (VMLA) and Vector Multiply Subtract

(VMLS) from the ARM NEON SIMD instruction set extension [183] or does the Olym-

pus abstract machine mnemonics prohibit their use by the compiler, thereby impacting

runtime performance?
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Figure 6.8: Comparing native C and Olympus kernel code size across architectures:

LINPACK benchmark

The same approach as with the Jacobi benchmark was used, where the source

ePython codes were compiled to C source and wrapped by Eithne API calls for ex-

ecution on the target architectures. Figure 6.8 shows the size of the Olympus kernels

relative to the hand-coded native C versions when compiled at optimisation levels -

Os and -O3. The diagram illustrates that the C kernels are significantly smaller than

the Olympus kernels on all platforms, at both compiler optimisation levels, for the

LINPACK benchmark. Table 6.9 highlights that the difference in kernel size ranges

from around 1.5 times bigger than native C on the Epiphany-III to 2.6 times bigger
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on the MIPS32, using -O3. Interestingly, the difference ranges from around 2 times

bigger than native C on the Epiphany-III to around 3 times bigger on the MIPS32 and

AMD64. As these results are similar to those for the Jacobi kernels, this suggests

that the Olympus mnemonics generate wordy C code, whereby a significantly larger

number of underlying operations (machine opcodes) are generated by the C compiler

in comparison to the equivalent native C operation. Furthermore, this wordy code

is harder for the C compiler to optimise for size, resulting in the elevated range in

comparison to optimisation level -O3. However, it should be noted that the Olympus

kernels include a full compacting heap manager and other runtime functions required

to support the dynamic features of ePython that are absent from the static native C

LINPACK kernel.

The LINPACK results need to be set in context; although the best case -O3 Olym-

pus kernel size on the Epiphany-III micro-core is 50% bigger than the native C kernel,

this only amounts to a 3.7KB overhead. The 10KB Olympus kernel binary allows

for 22KB of data to be allocated, which is approaching 70% of the available on-chip

SRAM of an individual Epiphany-III core. This is an excellent code to data ratio for

a micro-core architecture, especially considering that this is at a high level of com-

piler optimisation. Furthermore, considering that the full Olympus runtime library is

at least 2KB on the micro-core devices, the overhead of the Olympus abstract machine

mnemonics and environments model is only around 1KB on the Epiphany-III when

compiled with -O3 optimisation level.

The figures for the MicroBlaze reflect the use of the floating-point emulation option

for the LINPACK benchmark. Unsurprisingly, the code size difference is greater on the

MicroBlaze in comparison to the Epiphany-III, at between 2 and 2.6 times larger (for

both compiler optimisation levels), due to the increased number of operations gener-

ated by the Olympus mnemonics over native C, which is amplified by the floating-point

emulation code required for the MicroBlaze LINPACK benchmark.

Considering the difference between the compiler optimisation levels for the Olym-

pus abstract machine code, there is up to a 20% advantage, on the Epiphany-III, in

terms of code size in selecting -Os over -O3. However, for the SPARCv9 the advan-

tage is minimal (0.048%) and is actually detrimental on the ARM32 (-1.67%). Over-

all, there is an average increase in code size of 7.5% selecting -O3 over -Os, which

needs to be considered relative to any runtime performance advantage gained by se-

lecting the higher compiler optimisation level. For a micro-core architecture, such as

the Epiphany-III, the code size saving of 20% (approximately 1.8KB) could be sig-
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Table 6.9: LINPACK kernel code size (bytes)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 8904 10708 4124 7012

MicroBlaze 14008 15780 5456 7048

PicoRV32 32484 33348 19056 20420

ARM32 14171 13935 5731 5909

MIPS32 23772 24460 8166 9258

AMD64 22111 24279 7376 9929

SPARCv9 22876 22887 8602 9917

RISCV64 15903 16415 5795 6445

nificant. Therefore, it is important to understand any runtime performance differences

between the two compiler optimisation levels.

As discussed in Chapter 5, the different benchmarks were chosen to determine if

the kernel algorithm impacted the size and runtime performance of Olympus kernels

versus those written in native C. The results for the kernel code size comparison be-

tween Olympus and native C at optimisation level -O3 for the Jacobi and LINPACK

benchmarks have similar ranges, with the Olympus kernels being between 1.06 and 3.8

times the size of native C kernels for the Jacobi benchmark. This indicates that whilst

the memory access profiles of different algorithms impacts the size of the Olympus

kernels, the range is still relatively constrained between parity (1.06 times) and almost

4 times for both the benchmarks.

6.3.2.6 LINPACK benchmark: kernel runtime performance

The LINPACK benchmark provides a measurement of the processor’s performance

by calculating the number of floating point operation per second (FLOPS). Figure 6.9

shows the single-core runtime performance results for LINPACK on the target pro-

cessor architectures, compiled using the -Os and -O3 compiler optimisation levels.

Whilst the results vary widely across the architectures, the runtime performance dif-

ference between the Olympus and native C kernels is very small. However, from Table

6.10, it can be calculated that the Olympus LINPACK kernel compiled at -Os is 1.7

times faster than native C on the Epiphany-III and is marginally faster (1.5%) on the

ARM32. Although the runtime performance advantage of Olympus kernels on the

7On the PicoRV32 at GCC optimisation level -O3, both the Olympus and native C benchmarks

abort with a “The matrix A is apparently singular” LINPACK error. As both versions of the benchmark

fail, it is suspected that there is a code generation issue for the PicoRV32 at this level of optimisation
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Figure 6.9: Comparing native C and Olympus runtime performance across architec-

tures: LINPACK benchmark. Mean runtime (M) in seconds, with error bars denoting

standard deviation (log scale)

Table 6.10: LINPACK kernel mean (M) runtime performance (MFLOPS)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 139.4 193.5 83.99 106.0

MicroBlaze 0.06038 0.06048 0.06113 0.06117

PicoRV32 0.02516 N/A7 0.02563 N/A

ARM32 67.74 66.61 66.71 69.67

MIPS32 65.90 75.60 75.40 81.08

AMD64 521.0 563.0 652.5 695.6

SPARCv9 49.81 59.40 70.78 68.96

RISCV64 51.63 54.00 57.48 56.57

ARM32 is reversed at -O3, where native C is 4.6% faster, the advantage is actually

slightly increased at -O3 on the Epiphany-III to 1.8 times faster than native C. On the

other architectures, native C is between about 1.2% on the MicroBlaze and 42% on

the SPARCv9 faster than Olympus at -Os and between about 7.2% on the MIPS32 and

24% on the AMD64 faster at -O3.

Analysing the runtime performance advantage of Olympus kernels over native C

on the Epiphany-III and at -Os on the ARM32 requires knowledge of the peculiarities

of the Epiphany-III and looking at the assembly language generated by the C compiler.

that requires further investigation.
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In the case of the Epiphany-III, there are four modes for the floating point unit (FPU)

that can be specified at compile time. From [122]:

• caller: Any mode at function entry is valid, and retained or restored when the

function returns, and when it calls other functions. This mode is useful for com-

piling libraries or other compilation units you might want to incorporate into

different programs with different prevailing FPU modes, and the convenience of

being able to use a single object file outweighs the size and speed overhead for

any extra mode switching that might be needed, compared with what would be

needed with a more specific choice of prevailing FPU mode.

• truncate: This is the mode used for floating point calculations with truncating

(i.e. round towards zero) rounding mode. That includes conversion from floating

point to integer.

• round-nearest: This is the mode used for floating point calculations with round-

to-nearest-or-even rounding mode.

• int: This is the mode used to perform integer calculations in the FPU, e.g. integer

multiply, or integer multiply-and-accumulate.

The default FPU mode is caller, which results8 in native C kernels being 1.7 times

faster than Olympus. The truncate FPU mode does not provide a significant improve-

ment (2.1%) of native C kernels over Olympus. The round-nearest mode provides a

2.1 times runtime performance improvement of native C over the Olympus abstract

machine. As detailed in Table 6.10, the int FPU mode, executing integer operations

as well as floating point operations in the FPU, delivers a 1.66 and 1.83 times run-

time performance advantage of Olympus kernels over native C at for -Os and for -O3,

respectively. This result is surprising but considering that the Epiphany-III is a super-

scalar design that can execute two floating point operations and one integer instruction

per clock cycle [13], it is possible to surmise that the Olympus mnemonics can take

advantage of the additional two integer operations per clock cycle afforded by the int

FPU mode. For example, the memory addressing requires additional offset calcula-

tions for each object reference that could perhaps be performed by the FPU, which

coupled with their volume could prevent the pipeline from stalling. However, it is dif-

ficult to determine this from the disassembled kernel binary assembly language listing.

8The FPU mode comparisons were all performed using the -O3 compiler optimisation level.
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The advantage of the LINPACK benchmark is that it validates and outputs the calcula-

tion results, which were compared to validate that the same results were obtained for

all FPU mode configurations and the runtime performance advantage of the int FPU

mode was not due to the kernels exiting early due to a floating point error or a similar

issue.

The minor runtime performance advantage of Olympus over native C on the ARM

at the -Os compiler optimisation level can be explained by the additional 21 APSR nzcv

opcodes in the native C kernel. This opcode transfers the floating-point status flags are

transferred the ARM application program status register (APSR) and, as [183] state:

“ These instructions stall the ARM until all current NEON or VFP opera-
tions complete. ”

It is also interesting to determine from the disassembly listing of the ARM Olympus

kernel that the ARM NEON vector / SIMD instructions (e.g. VLDR, VLMUL and VSTR)

are being issued by the C compiler for the Olympus mnemonics, thereby taking ad-

vantage of this parallel processing capability of the ARM processor for the LINPACK

benchmark.

6.3.2.7 Sieve of Eratosthenes benchmark: kernel code size
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Figure 6.10: Comparing native C and Olympus kernel code size across architectures:

Sieve benchmark

As discussed in Section 5.3.3.5, the Jacobi and LINPACK benchmarks test the

floating point performance of the Olympus abstract machine. Therefore, the Sieve
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of Eratosthenes (Sieve) benchmark was selected to determine the size efficiency and

integer performance of Olympus relative to handwritten (native) C. Figure 6.10 shows

the size of the Sieve kernels compiled with -Os and -O3 compiler optimisation levels

for all CPUs.

Table 6.11: Sieve benchmark code size (bytes)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 3678 4666 1938 3126

MicroBlaze 4520 5724 3708 5516

PicoRV32 26668 27160 4980 5540

ARM32 6894 7602 5178 5826

MIPS32 11701 12582 8097 8894

AMD64 11615 13039 7720 9080

SPARCv9 12195 13059 8231 9019

RISCV64 9185 10025 6470 7264

Whilst, as detailed in Table 6.11, the Olympus kernel sizes are between near parity9

and 1.9 times10 that of the native C kernels for the other CPUs, the difference for the

PicoRV32 is striking, with the Olympus kernel size around 5 times larger for both

-Os and -O3. However, when these PicoRV32 Olympus kernel sizes are compared

with the Jacobi and LINPACK kernels, the overall size is comparable; the Olympus

Sieve kernel size is approximately 27KB, the Jacobi kernel is around 27KB and the

LINPACK kernel is about 33KB for compiler optimisation level -O3. In comparison,

the native C Sieve kernel is 5.5KB, the Jacobi kernel is around 18KB and the LINPACK

kernel is 20KB, for the same compiler optimisation level. The Olympus kernel binary

size similarity can be explained by the fact that the GCC compiler allocates space11

in the kernel ELF file (Figure 4.13) for the statically allocated C array used for the

heap in the Olympus abstract machine. This is best illustrated by the size of the .bss

segment12 reported by the GNU size utility for the Olympus Sieve kernel on the

Epiphany-III, as shown in Listing 6.1, where the Olympus abstract machine heap is

24KB, and the 8MB default heap size of the RISCV64 desktop (threaded) kernel, as

shown in Listing 6.2.

9MicroBlaze GCC optimisation level -Os.
10Epiphany-III GCC optimisation level -O3.
11The resulting binary file size does not increase; when the code is loaded, the heap base (start)

address is offset by the required amount.
12The Block Started by Symbol (BSS) segment contains the uninitialised objects of an ELF binary.

For example, uninitialised global variables, such as the Olympus heap array.
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1 text data bss dec hex filename

2 4666 1208 25336 31210 79ea e_task.elf

Listing 6.1: Output of GNU size for Epiphany-III Olympus Sieve kernel

1 text data bss dec hex filename

2 9185 928 8001440 8011553 7a3f21 threaded_sieve.elf

Listing 6.2: Output of GNU size for RISCV64 Olympus Sieve kernel

1 text data bss dec hex filename

2 54668 0 0 54668 d58c rv_task.elf

Listing 6.3: Output of GNU size for PicoRV32 Olympus Sieve kernel

In contrast, for the PicoRV32, as shown in Listing 6.3, there is is only a single

.text segment, containing the executable code, static values, strings and the Olympus

heap array. This is due to the custom GNU linker file (Listing E.1 in Appendix E) that

is required to set up the memory map on the bare-metal PicoRV32 micro-core. The

Epiphany-III and MicroBlaze micro-cores require similar custom linker files. How-

ever, the PicoRV32 file is unique in that the KEEP [184] command is used to prevent

the linker from performing dead code removal on the .text segment, which is vital

to ensure that the PicoRV32 register initialisation is performed. As the register ini-

tialisation subroutine (Listing E.2 in Appendix E) is not referenced in the C source

code, it would be removed by the GCC linker when the kernel binary is created, if

the KEEP command was not used. As all functions are placed in the .text segment

and no dead code removal is performed, all unused library functions will also be kept

in the final binary, unlike the binaries for other CPUs. Although this is an issue for

PicoRV32 binaries, it impacts both Olympus and native C kernels. Therefore, a more

detailed discussion of possible mitigations for this issue will not be provided, except

to highlight the benefits of the dynamic code loading mechanism assessed in Section

6.4.

The single .text code segment of PicoRV32 binaries obfuscates accurate com-

parisons of Olympus abstract machine and native C kernel binary sizes for this CPU.

The size of the statically allocated C array for the Olympus abstract machine could be

subtracted from the overall kernel size to provide an indicative code size for compar-
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ison with the corresponding native C kernel but in the case of the Sieve kernel, this

results in Olympus kernel sizes of 2092 bytes at -Os and 2584 bytes at -O3, which are

approximately 50% of the size of the equivalent native C kernel binaries. Therefore,

code size comparisons between Olympus and native C PicoRV32 kernels need careful

analysis. However, direct comparisons can be made for the other CPUs.

In comparison to the LINPACK kernels, the Sieve Olympus kernels are closer in

size to the native C kernels, ranging from near parity to 1.9 times for Sieve versus 2 to

3 times for LINPACK. This can be explained by the significantly lower complexity of

the Sieve code versus that of LINPACK, where not only will the simpler source code

generate less of the wordy Olympus abstract machine mnemonics relative to native C

but also the integer-based code will generate less casting operations in comparison to

the floating point code of LINPACK. In terms of Olympus kernel size between GCC

optimisation levels -O3 and -Os, the results are more comparable at 27% for Sieve

and 20% for LINPACK. The 7% size reduction provided by -Os over -O3 for the

Sieve Olympus kernels suggests that the Olympus integer memory access code can be

optimised for size more fully by GCC than the floating point memory access code (at

-O3), accepting that the floating point will still require additional casting operations,

irrespective of the processes performed by the compiler to reduce the binary size.

6.3.2.8 Sieve of Eratosthenes benchmark: kernel runtime performance

Figure 6.11 shows that, across compiler optimisation levels -Os and -O3, the Sieve

benchmark displays a wider runtime performance gap between the Olympus and na-

tive C kernels than was observed for the Jacobi and LINPACK benchmarks, discussed

in Sections 6.3.2.4 and 6.3.2.6, respectively. From Table 6.12, the Olympus Sieve ker-

nel runtime performance ranges from approximately 1.4 times slower than native C

on the Epiphany-III to over 5.5 times slower13 on the RISCV64. For all CPUs apart

from the AMD64, the difference between Olympus and native C kernel runtime perfor-

mance is smaller at compiler optimisation level -O3 than at -Os. On the RISCV64, the

native C Sieve kernel is 5.5 times faster than the Olympus kernel at -Os but is only 4

times faster at -O3. Whilst the kernel runtime performance difference between the -Os

and -O3 GCC optimisation levels is greatest for the RISCV64, all of the RISC CPU

Olympus kernels close the runtime performance gap with the native C kernels at -O3.

In comparison, the CISC AMD64 (x86-64) native C kernels are 1.7 times faster than

13Both bounds of the range at compiler optimisation level -O3.
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Figure 6.11: Comparing native C and Olympus runtime performance across architec-

tures: Sieve benchmark. Mean runtime (M) in seconds, with error bars denoting stan-

dard deviation (log scale)

Olympus at -Os and 2 times faster at -O3. This suggests that GCC is able to leverage

the additional registers available on the RISCV64 (32 registers [164]) over those avail-

able on the AMD64 (16 registers [164]) to optimise the Olympus abstract machine

code at -O3 optimisation level. However, the results for the Epiphany-III, MIPS32

and SPARCv9 suggest that the additional registers available on the Epiphany-III (64

registers) [122] do not provide an advantage over the 32 available on the the MIPS32

and SPARCv9 [33]. The approximate 3% narrowing of the runtime performance gap

between native C and Olympus kernels at -O3 over -Os on the Epiphany-III, is signif-

icantly less than the 13% and 20% narrowing of the runtime performance gap at -O3

on the MIPS32 and SPARCv9, respectively.

The results of the Sieve benchmark when compared to those obtained for Jacobi

and LINPACK suggest that the Olympus abstract machine is sub-optimal for integer

operations. It is possible to conjecture that the runtime performance overhead of the

Olympus Sieve kernels is due to the fact that GCC is able to optimise the memory

access of the C kernel byte array elements, where an integer, rather than a character, is

read from memory at a time14, thereby reducing the total number of memory accesses

in comparison to the Olympus kernel. However, the runtime performance figures for

14Four bytes on the Epiphany-III, MicroBlaze, PicoRV32 and ARM32, and eight bytes on the

AMD64, SPARCv9 and RISCV64.
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the AMD64 do not reflect this hypothesis, as the native C kernel is only 1.7 times faster

than the Olympus kernel at -Os and about 2 times faster at -O3.

Table 6.12: Sieve benchmark native C and Olympus kernel mean (M) runtime (seconds)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 4.972 3.475 2.760 1.996

MicroBlaze 48.23 32.70 17.78 14.94

PicoRV32 358.6 N/A15 140.8 94.52

ARM32 12.53 9.135 4.629 3.443

MIPS32 13.79 9.211 3.683 2.858

AMD64 3.895 2.868 2.319 1.409

SPARCv9 30.93 18.80 6.763 5.060

RISCV64 14.61 11.12 2.676 2.755

On the PicoRV32, the Olympus -O3 kernel froze and did not return a value to

the host, even though the kernel successfully executed when compiled at optimisa-

tion level -Os. Furthermore, although the GCC documentation [180] states that op-

timisation level -Os enables all of the -O2 level optimisations except those listed in

Listing 6.4, the PicoRV32 Olympus Sieve kernel also froze when compiled for the

PicoRV32 at -O2. The kernels were found to successfully execute at -Os plus the

-falign-functions, -falign-jumps, -falign-loops and -falign-labels op-

tions. Analysis of the options that comprise the GCC -O3 optimisation level deter-

mined that the -fdevirtualize-speculatively option applied to the previous -Os

plus additional options configuration caused the Olympus Sieve kernels to freeze. The

-fdevirtualize-speculatively option description from [180] states:

“ Attempt to convert calls to virtual functions to speculative direct calls...
[C]hange the call into a conditional deciding between direct and indirect
calls. The speculative calls enable more optimizations, such as inlining. ”

It is possible to speculate that, although no C++ code forms part of the Olym-

pus abstract machine or the Eithne framework, the function pointers used to dispatch

functions within the abstract machine and the Eithne framework are being incorrectly

devirtualized by GCC, leading to invalid optimisation that results in the kernels freez-

ing. As both the Olympus and native C LINPACK kernels freeze at optimisation level

-O3 on the PicoRV32 and the Eithne framework uses function pointers to dispatch ker-

nel functions, it is possible to infer that the GCC issue is located within the generation

of the Eithne kernel launch code, rather than that for the Olympus abstract machine.
15The Olympus Sieve kernel freezes at compiler optimisation level -O3.
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1 -falign-functions -falign-jumps -falign-loops

2 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc

3 -freorder-blocks-and-partition -fprefetch-loop-arrays

Listing 6.4: -O2 optimisation flags disabled at -Os [180]

Table 6.12 highlights an anomaly for the native C Sieve kernel runtime performance

on the RISCV64, where the -Os kernel is marginally (0.079 seconds) faster than the

-O3 kernel, yet the Olympus -O3 kernel is 24% (3.49 seconds) faster than the -Os

kernel. However, the difference is small enough to be considered insignificant to the

findings of the benchmark results.

6.4 Managing arbitrary code size (RQ2)

To validate the benefits of the Olympus dynamic binding and code loading approach in

terms of runtime performance and kernel size, an updated version of the Jacobi bench-

mark was developed that used a modified version of the original Olympus compiler

and abstract machine to create function calls to preserve a programming language’s

block structure [146], whereby each Python while loop body is wrapped in a gener-

ated C function that is then called for each loop iteration. This option was originally

used as the default for the Olympus compiler since declaring and calling a function im-

plicitly creates a new scope level (Olympus stack frame) within which new variables

are declared. The runtime performance impact is small as the loop bodies are inlined

by the C compiler at optimisation level -O3, removing the cost of the function call,

leaving only the overhead of creating the desired Olympus stack frame. The Olym-

pus ePython compiler no longer uses this approach as Python does not support block

structured loop constructs However, a simple modification to remove the stack frame

creation and mark the generated functions for dynamic loading, provided a mechanism

to generate C source code that could then be modified to support the evaluation of the

code size and runtime performance of the following function dispatch models16:

• Static dispatch: functions are statically bound to the executable and optimised

for direct execution
16These synthetically created kernel variations were also deployed and timed using the Eithne bench-

marking framework.
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• Dynamic dispatch: functions are statically bound to the executable but dynami-

cally dispatched via lookup in the environment

• Dynamic binding: functions are dynamically loaded by the kernel and dispatched

via lookup in the environment

These function dispatch models were chosen to confirm the hypothesis that the

dynamic dispatch model, required by dynamic binding / function loading introduces a

runtime performance overhead in comparison to the static dispatch model where the

C compiler is able to optimise the function call, or even inline the code. For statically

bound kernels, the Olympus compiler can directly call the generated C functions if

they are non-recursive and do not declare any local variables, as they do not need an

Olympus stack frame. However, for most functions, dynamic dispatch is used which

creates the required stack frame, looks up the function in the environment and applies

it. Listing 6.5 shows the the dynamic function dispatch call for the initialise()

function in the Olympus Jacobi kernel. The Olympus stack frame is created by MKBETA,

the LDL macro references the initialise() function code referenced at offset 15 in

the frame, the two PARAMA macros add the u k and u kp1 arrays as arguments and

the APPLYV macro applies the void function. As dynamically bound functions need to

be dynamically dispatched, as they are linked to the kernel at runtime, it is crucial to

understand the runtime performance overhead of this dispatch model.

1 (MKBETA(LDL(ADDRL(15)),

2 PARAMA(0,"u_k",LDA(ADDRL(1))),

3 PARAMA(1,"u_kp1",LDA(ADDRL(2))),

4 APPLYV);

Listing 6.5: Olympus dynamic dispatch function call example

To compare the lookup and dispatch overhead, the compiler was modified to gen-

erate both dynamically17 and statically dispatched function calls within the generated

C file, with the dispatch model selected by a C compiler #define directive, as shown

in Listing 6.6. This code could then be compiled manually and deployed to the micro-

cores using the Eithne framework.

17As discussed, this dynamic dispatch has been modified to remove the standard MKBETA call to

create the stack frame.
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1 while(LDI(ADDRL(7))<=LDI(ADDRL(0))) {

2 #ifdef DYNAMIC_DISPATCH

3 (LDL(ADDRL(11)),

4 APPLYV);

5 #else

6 oly_v$a1$v(env,self);

7 #endif

8 INCI(ADDRL(7));

9 }

Listing 6.6: Olympus static and dynamic function call example

Listing 6.7 shows the generated dynamic function loading calls in the dynamically

bound Olympus Jacobi kernel, using the DYNLDF API to retrieve an Olympus generated

function from the host. As the Jacobi kernel also requires the native C powf() and

sqrtf() functions, these are loaded by the eithne get function() calls.

1 DECLL(11,"oly_a1",DYNLDF("oly_v$a1$v",0));

2 DECLL(12,"oly_a2",DYNLDF("oly_v$a2$v",0));

3 DECLL(13,"oly_a3",DYNLDF("oly_v$a3$v",0));

4 DECLL(14,"oly_a4",DYNLDF("oly_v$a4$v",0));

5 DECLL(15,"initialise",DYNLDF("oly_v$initialise$RR",3));

6 d_powf=eithne_get_function("d_powf");

7 d_sqrt=eithne_get_function("sqrtf");

Listing 6.7: Olympus Jacobi kernel dynamic binding and loading

6.4.1 Jacobi benchmark: dynamically loaded code size

Before evaluating the different function dispatch models, the same kernels were used

to compare the the code size for statically and dynamically bound Jacobi kernels on the

target micro-cores (Epiphany-III, MicroBlaze and PicoRV32), compiled with the GCC

compiler -Os and -O3 optimisation levels, as shown in Figure 6.12. As expected, the

dynamically bound kernels are smaller than the statically bound versions for both -Os

and -O3 compiler optimisation levels. Again, as expected, the kernels compiled with

GCC -Os are smaller than those compiled with -O3 optimisation. For the Epiphany-III

and MicroBlaze with hardware FPU, the differences between the static and dynamic

kernels is small, as the size of the dynamically loaded functions are relatively small

in comparison to the overall kernel runtime support code. However, the differences
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Figure 6.12: Comparing static and dynamic Olympus kernel size across architectures:

Jacobi benchmark

are much more marked for the software floating point versions of the kernels for both

the MicroBlaze and PicoRV32. For these micro-cores, the additional code required

to provide floating point emulation required by the kernel functions is significant. As

Table 6.13 details, the statically bound kernel for the MicroBlaze is between 49% and

53% bigger than the dynamically bound kernel for the -O3 and -Os compiler opti-

misation levels, respectively. Similar results are obtained for the PicoRV32, where

dynamic binding provides a saving of between 44% and 46% in initial kernel code

size. Whilst the kernels still require the dynamically bound functions to be loaded into

memory before execution, which will add to the overall memory footprint, these can

be unloaded after use to save memory. There are clear benefits to dynamically loading

and unloading kernel functions that require floating point support, considering that the

dynamically bound kernels for both the hard FPU and soft floating point emulation on

the MicroBlaze are identical for each compiler optimisation level, indicating that all

floating point operations are within the dynamically bound functions.

Table 6.13: Static and dynamic Olympus Jacobi kernel size (bytes)

Micro-core Dynamic -Os Dynamic -O3 Static -Os Static -O3

Epiphany-III 5498 6782 5914 7686

MicroBlaze (hard FPU) 6468 7972 8632 10228

MicroBlaze (soft FP) 6468 7972 13636 15504

PicoRV32 (soft FP) 13850 14732 25600 26056
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Table 6.14: Epiphany-III modified Jacobi kernel code size (bytes) for ePython VM, Olym-

pus dispatch models and native C

Variant Runtime Bytecode Functions Total

ePython VM 21522 2329 - 23851

Static dispatch 9810 - - 9810

Dynamic dispatch 12162 - - 12162

Dynamic loading 6774 - 1088 7862

Native C 7398 - - 7398

A comparison of the same Python version of the Jacobi benchmark running on

the ePython VM is provided in Table 6.14, which details the overall code size for

the different Jacobi benchmark variants, with the VM size including the interpreter,

runtime support and bytecode, and the Olympus dynamic loading including the static

binary (kernel and runtime support), plus the dynamically loaded kernel functions. The

non-applicable entries in the table are marked with a dash; for example, bytecode is not

applicable for the Olympus and native C variants. As expected, for the overall deployed

binary size, the native C variant of the code is the smallest, with dynamically loaded

Olympus variant trailing by only 464 bytes. This is followed by the Olympus variant

with all functions statically bound and dispatched at 9810 bytes, where the compiler

is able to optimise function calls. The dynamic dispatch variant is 24% bigger, as the

dynamic dispatch method requires more code (function lookups in the environment)

and prevents the C compiler from optimising the function calls via inlining. Finally,

the ePython VM variant of the benchmark has the smallest compiled code (bytecode)

size but requires the VM of around 22KB to execute.

It should be noted that the static dispatch option can only be used for very simple

codes, where the Olympus compiler can detect simple function calls that do not need

new frames, for example, those without local variables. Therefore, for most functions

the compiler will generate code that uses the dynamic dispatch model. Whilst this op-

tion produces code that is approximately 64% larger than native C overall, it uses only

51% of the overall memory required by the ePython VM variant and has an approxi-

mately 30% smaller initial memory footprint than the native C kernel. Therefore, for

the same Python source code, the Olympus dynamically loaded kernel functions can

provide significantly more of the micro-cores’ limited on-core memory is available for

data.
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6.4.2 Jacobi benchmark: dynamic loaded code runtime performance
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Figure 6.13: Relative mean (M) kernel runtime performance and binary code size for

the modified Jacobi benchmark on the Adapteva Epiphany-III. Left y-axis (log scale) is

the kernel runtime in seconds (blue) and right y-axis is the kernel and support code size

in bytes (orange)

Figure 6.13 shows the relative code sizes and runtime performance for all the

benchmark variants. The native C benchmark kernel has the fastest execution time at

0.053 seconds and the static dispatch code generation variant is round 2 times slower

at 0.115 seconds. The dynamic dispatch model decreases runtime performance rela-

tive to the static dispatch model by approximately 5 times at 0.539 seconds and the

dynamic loading version is only marginally slower at 0.566 seconds. As shown in

Table 6.15, the default dynamic function dispatch code generation version is signifi-

cantly faster than the VM version, which requires around 201 seconds to execute the

same Python kernel. However, it should be noted that ePython is also executing the

bytecode from significantly slower off-chip memory (150 MB/s maximum bandwidth

obtainable in practice [185]), as the kernel bytecode and heap requirements are too

large to allow the bytecode to execute from on-chip RAM. Considering that code of

the dynamic loading version also only requires approximately a third of the memory

to execute, not only is there a significant runtime performance increase over the VM,

but also the ability to handle much more data at the same time, as well as being able to

execute arbitrary sized codes via dynamic function loading. This greatly increases the
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practical applications that dynamic languages can support on micro-core architectures.

Table 6.15: Epiphany-III modified Jacobi kernel mean (M) runtimes (seconds), with

associated standard deviation (SD), for ePython VM, Olympus dispatch models and

native C

Variant M runtime SD

ePython VM 201.54 0.2189

Static dispatch 0.1149 0.00001

Dynamic dispatch 0.5390 0.00066

Dynamic loading 0.5658 0.00062

Native C 0.0526 0.00001

The synthetic Jacobi benchmark uses a modified version of the original Olympus

compiler and abstract machine, where the runtime performance overhead over native C

is higher than that for the LINPACK and Sieve of Eratosthenes benchmarks, which use

the latest version of the compiler and abstract machine. The abstract machine has un-

dergone a number of iterations and refinements during the research to provide greater

runtime performance, particularly with respect to memory addressing and stack frame

management. A detailed description of the current Olympus abstract machine can be

found in Sections 4.3.3.4 and 4.3.3.5. It is important to note that the Olympus LIN-

PACK and Sieve of Eratosthenes benchmark kernels use dynamic function dispatch

and the runtime performance of the Olympus LINPACK kernels can match, or even

exceed, that of the native C kernels and are, at worst, 5.5 times slower for the Sieve

benchmark, in comparison to the factor of 10 slow down exhibited for the synthetic

Jacobi dynamic loading benchmark. Therefore, the development of the Olympus ab-

stract machine over time has significantly reduced the runtime performance gap with

native C, even for kernels with the default dynamic function dispatch.

6.5 Summative Olympus / native C analysis

6.5.1 Summative analysis: kernel code size

Table 6.16 details the Olympus to native C kernel binary size ratios for the Fibonacci,

Jacobi, LINPACK and Byte Sieve benchmarks for all CPUs outlined in Section 5.3.1,

compiler optimisation level -O3. Table 6.16 also provides the geometric means (GM)

for all benchmarks per CPU and all CPUs per benchmark. The smallest Olympus
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Table 6.16: Kernel binary size ratios between Olympus and native C at -O3, including

geometric means (GM) of all benchmarks per CPU and all CPUs per benchmark.

CPU Fibonacci Jacobi LINPACK Byte Sieve GM

Epiphany-III 1.621 1.334 1.527 1.493 1.490
MicroBlaze 1.112 1.067 1.700 1.038 1.203
PicoRV32 2.309 1.010 1.232 1.945 1.538
ARM32 1.858 1.349 2.358 1.305 1.666
MIPS32 1.892 1.264 2.642 1.415 1.729
AMD64 1.931 3.860 2.445 1.436 2.262
SPARCv9 1.818 1.356 2.308 1.448 1.694
RISCV64 1.800 1.318 2.547 1.380 1.699

GM 1.761 1.424 2.028 1.414
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Figure 6.14: Geometric mean of the ratio of Olympus to native C kernel binary size for

all benchmarks per CPU, where native C kernel binary size equals 1

kernel binary size ratio is approximately parity with native C, obtained by the Jacobi

benchmark on the PicoRV32, yet the same benchmark yields the highest ratio of around

four times that of native C on the AMD64. The PicoRV32 result can be explained by

the additional code required to support software floating point emulation relative to

the kernel code size, for both the Olympus and native C kernels. This is supported by

the PicoRV32 LINPACK Olympus code size ratio of around 1.2 times that of native C

and the approximate two times ratio of both the integer-only Fibonacci and Byte Sieve

kernels. From the perspective of the Jacobi code on the AMD64, the GCC compiler
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appears particularly adept at optimising the C code for both size and performance, in

comparison to the Olympus kernel code.

Figure 6.14 illustrates that across all benchmarks, the Olympus kernel binary size

ratio is highest on the AMD64, further supporting the assertion that the Olympus ab-

stract machine code is wordy, with associated possible additional register spillage code

on this CPU18, in comparison to the native C kernel code. However, as Table 6.18

highlights, this does not appear to unduly impact performance on the AMD64 (GM =

75.34% of native C performance).

Table 6.16 highlights that the average of Olympus benchmark kernel sizes on the

ARM32, MIPS32, SPARCv9 and RISCV64 are all around 1.7 (GM = 1.666 to GM =

1.729) times bigger than native C, with the smallest average size ratio across the bench-

marks being attained by the MicroBlaze (GM = 1.203). As Figure 6.15 shows, the

LINPACK benchmark kernels have the highest average code size ratio (GM = 2.028)

across the CPUs, followed by the Fibonacci (GM = 1.761), Jacobi (GM = 1.424) and

Byte Sieve benchmarks (GM = 1.414).
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Figure 6.15: Geometric mean of the ratio of Olympus to native C kernel binary size for

all CPUs per benchmark, where native C kernel binary size equals 1

18The AMD64 (x86-64) has 16 registers in comparison to the 32 (64 for the Epiphany-III) of the

other CPUs.
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6.5.2 Summative analysis: kernel runtime performance

Table 6.17 details the maximum runtime performance attained by the Olympus abstract

machine kernels in comparison to native C, for the Fibonacci, Jacobi, LINPACK and

Byte Sieve benchmarks for all CPUs listed in Section 5.3.1, at GCC compiler optimisa-

tion level -O3. As mentioned in Sections 6.3.2.6 and 6.3.2.8, values for the LINPACK

and Byte Sieve benchmarks on the PicoRV32 are not available as the RISC-V 32-bit

GCC compiler 8.2.0 produces invalid code that cannot be executed.

Table 6.17: Maximum runtime performance ratio between Olympus and native C at -O3

CPU Fibonacci Jacobi LINPACK Byte Sieve

Epiphany-III 101.0% 49.11% 196.2% 57.71%

MicroBlaze 100.2% 71.94% 98.95% 45.77%

PicoRV32 121.7% 97.64% N/A19 N/A

ARM32 100.3% 78.84% 97.69% 39.89%

MIPS32 103.2% 78.19% 95.13% 31.46%

AMD64 133.3% 100.0% 100.0% 51.38%

SPARCv9 129.9% 182.8% 86.55% 32.98%

RISCV64 75.81% 32.17% 95.90% 25.20%

The maximum Olympus runtime performance, at 196.2% of native C, is obtained

by the LINPACK benchmark on the Epiphany-III, where it is feasible to surmise that

the Olympus mnemonics are able to leverage the additional two integer operations per

clock cycle of the Epiphany-III FPU int mode to prevent the pipeline from stalling,

in comparison to the native C code (Section 6.3.2.6). The second highest runtime

performance ratio achieved by Olympus, at 182.8% of native C, was for the Jacobi

benchmark on the SPARCv9. However, when the minimum and maximum runtime

figures for both Olympus and native C Jacobi kernels are compared on the SPARCv9,

the minimum runtimes are identical and the maximum runtimes differ by 0.02s, sug-

gesting that the results are I/O bound, as supported by the mean ratio of M = 100.4%,

detailed in Table 6.18.

As listed in Table 6.18 and shown in Figure 6.16, the Olympus geometric mean

(GM) runtime ratios for all benchmarks per CPU are below 100% except for the Pi-

coRV32, where the lack of data for the LINPACK and Byte Sieve benchmarks, coupled

with the 121.7% ratio of the Fibonacci benchmark, skew the Olympus GM ratio value

19GCC 8.2.0 for RISC-V (rv32imc) produces invalid code for both Olympus and native C versions

of the LINPACK and Byte Sieve benchmarks at optimisation level -O3.
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Table 6.18: Mean (M) Olympus runtime performance versus native C at -O3, including

geometric means (GM) of all benchmarks per CPU and all CPUs per benchmark.

CPU Fibonacci Jacobi LINPACK Byte Sieve GM

Epiphany-III 100.0% 48.66% 182.6% 57.45% 84.52%
MicroBlaze 100.0% 71.94% 98.86% 45.68% 75.50%
PicoRV32 121.7% 97.60% N/A N/A 109.0%
ARM32 99.99% 70.75% 95.62% 37.69% 71.06%
MIPS32 100.1% 77.45% 93.24% 31.03% 68.81%
AMD64 100.5% 80.65% 80.95% 49.13% 75.34%
SPARCv9 92.19% 100.4% 86.14% 26.92% 68.07%
RISCV64 95.85% 31.86% 95.45% 24.79% 51.85%

GM 101.0% 68.47% 101.0% 37.31%

on this processor. When this value is set aside, the Epiphany-III has the highest average

runtime ratio (GM = 84.52%). Whilst again, this value is impacted by the high LIN-

PACK value (M = 182.6%) on this processor, the Byte Sieve value (M = 57.45%) is

the highest of all the CPUs, with both the the SPARCv9 (M = 26.92%) and RISCV64

(M = 24.79%) attaining less than a third of native C runtime performance. Overall,

average Olympus runtime ratio (GM = 37.31/%) for the Byte Sieve benchmark across

all CPUs suggests that the Olympus abstract machine is poor at handling simple inte-

ger array codes like Byte Sieve. However, initial investigations on the RISCV64 [26]

suggest that this poor runtime performance in comparison to native C may be due to

the use of a while loop in the ePython code. An ePython for loop uses an internal C

loop index variable, whereas the while loop uses a user-defined ePython (Olympus)

variable for the loop index. The for loop native C index variable not only controls

the loop iteration but is also used to update the ePython list element; in contrast, the

while loop requires a lookup of the index variable in the Olympus environment for

both loop control and list element updates, impacting runtime performance. The use

of an ePython for loop for the Byte Sieve benchmark code can result in the for loop

kernel being 3 times faster than the while loop version at -O3 [26].

Figure 6.16 shows that for the MicroBlaze, ARM32, MIPS32 and RISCV64 the

maximum Olympus runtime performance figures are approximately equal to native

C (the runtime ratios are around 100%). The Epiphany-III, PicoRV32, AMD64 and

SPARCv9 maximum runtime performance ratios all exceed native C, with the signif-

icantly higher Epiphany-III and SPARCv9 figures (M = 196.2% and M = 182.8%,

respectively), as discussed earlier in this section. Figure 6.16 also shows that the geo-
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Figure 6.16: Maximum and geometric mean (GM) of the ratio of Olympus to native C

kernel runtime for all benchmarks per CPU, where native C kernel runtime equals 100%

metric mean of Olympus runtime ratios for the Fibonacci, Jacobi, LINPACK and Byte

Sieve benchmarks per CPU are all below native C (100%) except for the PicoRV32,

which is marginally higher (GM = 109.0%) due to the lack of values for LINPACK

and Byte Sieve, coupled with the high average ratio for the Fibonacci benchmark (M

= 127.7%).
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Figure 6.17 shows that the maximum Olympus runtime ratios for the Fibonacci,

Jacobi and LINPACK benchmarks are above native C, with only the Olympus runtime

ratio for Byte Sieve being significantly lower at 57.71%. The average Olympus runtime

ratio for Byte Sieve (GM = 37.31%) across the CPU architectures is also the lowest of

all the benchmarks. The ratios for for the Fibonacci and LINPACK benchmarks are

comparable to native C (both GM = 101.0%), and the Jacobi benchmark achieves an

average across the CPUs of almost 70% of native C performance (GM = 68.47%).

6.6 Desktop comparison: LINPACK benchmark

This work is focused on techniques to manage the limited micro-core on-chip mem-

ory for data (RQ1) and code (RQ2), as well as addressing the low performance of

virtual machines (RQ3) for dynamic languages on these architectures. As the compa-

rable dynamic language compilation technologies discussed in Chapter 2 do not target

micro-core devices, the runtime performance and code size of ePython kernels gener-

ated for the Olympus abstract machine have been compared to native C. However, to

set these results in context to the analogous desktop compilation technologies, a com-

parison between the Python interpreter (CPython), Cython, Numba JIT, Olympus and

native C for the LINPACK benchmark on an Intel i5 (macOS) was performed. Table

6.19 lists the versions of Python, Cython and Numba used for the comparison and the

ePython and native C LINPACK source listings can be found in Appendix B. The LIN-

PACK benchmark results (problem size n = 1000) for each technology were averaged

(M) over 100 execution runs.

Table 6.19: Desktop Intel i5 (macOS) interpreter and compiler versions

Technology Version

Python (CPython) 3.9.13

Cython 0.29.30

Numba 0.55.2

Clang 13.1.6
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Figure 6.18: Comparing Olympus mean (M) runtime performance (MFLOPS) and bi-

nary code size (bytes) with Python, Cython, Numba and native C on the Intel i5. Left

y-axis is the kernel floating-point performance in MFLOPS (blue) and right y-axis is the

kernel binary code size in bytes (orange)

6.6.1 LINPACK benchmark: code size

Table 6.20 details the LINPACK benchmark binary code size20 for each technology.

The Cython, Olympus and native C codes were compiled using Clang at optimisation

level -O3. The Olympus binary is around 4 times bigger than the Python and Numba

bytecode. However, the Olympus binary includes all the runtime support required to

execute the code, whereas Python and Numba require the interpreter, which is approx-

imately 3MB for version 3.9.13 on macOS. This results in the overall binary memory

footprint of CPython and Numba being over 91 times bigger than that of Olympus.

Cython is 6 times larger than Olympus but it is important to note that the Cython code

includes all the functions and objects required to support Python codes, thereby replac-

ing the interpreter. As shown in Figure 6.18, the Olympus binary is twice as large as

the native C binary, which is the same as the difference between Olympus and native

C LINPACK kernels compiled using GCC for the Epiphany-III (Section 6.3.2.5).

20This is the bytecode size for CPython and Numba.
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Table 6.20: LINPACK benchmark binary size on Intel i5 (macOS) for Python (CPython),

Cython, Numba, Olympus and native C

Technology bytes

Python (CPython) 8031

Cython (-O3) 196608

Numba (JIT) 8419

Olympus (-O3) 32768

Native C (-O3) 16384

6.6.2 LINPACK benchmark: runtime performance

Table 6.21 details the floating point performance of the LINPACK benchmark in MFLOPS

for Python, Cython, Numba, Olympus and native C. As shown in Figure 6.18, Olym-

pus and native C provide significantly greater MFLOPS performance than Python,

Cython and Numba; Olympus compiled at optimisation level -O3 is 218 times faster

than Python, is almost 130 times faster than Cython native code (compiled at -O3) and

33 times faster than Numba.

Table 6.21: LINPACK benchmark mean (M) MFLOPS on Intel i5 (macOS) for Python

(CPython), Cython, Numba, Olympus and native C, with standard deviation (SD)

Technology MFLOPS (M) SD

Python (CPython) 12.22 0.5943

Cython (-O3) 20.58 0.2598

Numba (JIT) 81.33 4.592

Olympus (-O3) 2663 118.6

Native C (-O3) 3047 147.5

Whilst it should be possible to increase the runtime performance of the Cython

binary by using type hints and ctypes, the Olympus code does not require the pro-

grammer to add this information to achieve this level of runtime performance. The key

point is that although Olympus was designed for micro-core architectures, it generates

binaries that are significantly faster than Cython and Numba on the desktop.

These results confirm that the Olympus design can not only scale from 32-bit

micro-cores to 64-bit desktop CPUs but also out-perform comparable Python com-

pilation technologies, both in terms of binary code size and runtime performance, for

the LINPACK benchmark.
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6.7 Summary

The Olympus abstract machine delivers kernel runtimes that can, on average, match

native C for the Fibonacci and LINPACK benchmarks (GM = 101.0%) across eight

different CPU architectures (Section 6.5.2). Furthermore, this is achieved whilst gen-

erating kernel binaries that are, on average, between 1.4 times (GM = 1.424) and two

times (GM = 2.028) bigger than native C across the CPU architectures (Section 6.5.1).

These results are compelling; the Olympus abstract machine closes the performance

gap of ePython codes with native C, whilst at the same time as delivering binary code

sizes that not only fit within the micro-core’s on-chip RAM, for standard benchmarks

such as LINPACK, but also are able to benefit from the Olympus dynamic code load-

ing approach (Section 6.4.1). Furthermore, these results were obtained from a single

code for each benchmark running on all of the different technologies listed in Section

5.3.1. Additionally, ePython can now deliver this level of runtime performance whilst

providing the programmer with significantly increased productivity imparted by the

dynamic code loading and memory hierarchy support to manage arbitrarily-sized code

and data on idiosyncratic micro-core devices, in comparison to manually managing

these techniques in native C using different, CPU-specific APIs and libraries. These

capabilities significantly increase the dynamic language applications that can be de-

ployed to micro-cores. For example, the ability to run the ML cancer detection codes

on full-sized images.

The challenge with evaluation against other prior work beyond C is that such tech-

nologies do not support the tiny memory spaces of the target micro-core devices. Com-

parable technologies discussed in Chapter 2, such as Numba and MicroPython, require

far more memory, as discussed in Section 6.6.1. For example, MicroPython requires

at least 256KB [99], eight times more memory than the target devices of this work.

However, over and above the comparison of Olympus to the comparable desktop tech-

nologies discussed in Section 6.6, some general comparisons can be drawn based on

previously published work; for instance, the MicroPython versus C runtime perfor-

mance comparison [96] reveals that MicroPython is approximately 87 times slower

than C. Assuming that these values are for the interpreter, and that the Viper code gen-

erator is 7 times faster [126], MicroPython is still 12 times slower than hand-crafted

C. In comparison, Olympus matches native C runtime performance for the Fibonacci

and LINPACK benchmarks across the CPU architectures (Figure 6.17), and, as a worst

case, is only around 4 times slower than native C on the RISCV64 for the Sieve bench-
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mark (Table 6.18). In comparison to Micropython’s Viper compiler, this is a signifi-

cantly higher level of runtime performance. Furthermore, when we consider that the

Olympus dynamic code loading approach can deploy kernels that have a smaller initial

footprint than the equivalent native C binaries (Section 6.4.1), the approach is even

more compelling in comparison to the minimum 256KB code and 8KB RAM (for the

stack) required by MicroPython [99].



The [micro-core] architecture presents many features and con-

straints which contribute to software design challenges for the appli-

cation developer. Addressing these challenges within the software

stack that supports application development is critical to improving

productivity and expanding the range of applications for the archi-

tecture.

Ritchie and Ross, “Advances in Run-Time Performance and

Interoperability for the Adapteva Epiphany Coprocessor” [108]

7
Conclusions and future work
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7.1 Conclusions

This thesis has explored the investigation, design and implementation of new program-

ming techniques that simplify the development of codes on micro-core architectures

using dynamic programming languages, such as Python, whilst closing the associated

runtime performance gap with codes written natively in C. Specifically, this thesis ad-

dressed the following research questions regarding the design and implementation of

dynamic languages on micro-cores:

RQ1 How to manage the limited on-chip memory for data?

RQ2 How to manage the limited on-chip memory for code?

RQ3 How to address the low runtime performance of virtual machines?

RQ4 How to manage the idiosyncratic architectures of micro-core architec-
tures?

This is driven by micro-core architectures providing an interesting option for overcom-

ing the issues imposed by the end of Moore’s Law [186] and Dennard Scaling [187].

However, if the first two research questions are not addressed, these architectures re-

main untenable; without the ability to overcome the memory limitations of micro-

cores, their application to solving real-world problems using dynamic languages is

extremely limited, as demonstrated by the limited use of the Adapteva Epiphany-III.

This field is moving very fast and since this research began, RISC-V has grown sig-

nificantly and the Epiphany is becoming obsolete. Initially, it appeared that RISC-V

would play a role in the embedded domain, rather than HPC, but now with the devel-

opment of the European Processor Initiative (EPI) RISC-V accelerator [188], its role

is becoming more prominent in HPC.

As demonstrated in Section 6.2, the support of memory hierarchies within ePython

was critical in enabling a cancer cell detection code to operate on full-size (30MB)

images, rather than being limited to smaller, 3600 pixel, interpolated images. Fur-

thermore, the ability to deploy codes of arbitrary size using the dynamic code loading

support within the Olympus abstract machine reduced the initial memory footprint of

kernels by up to 30% over those developed using native C, thereby freeing up more

precious on-chip memory for data (demonstrated by the Jacobi benchmark results in

Section 6.4).
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Whilst the ePython virtual machine provided a productive environment to deploy

parallel codes written in a dynamic language to micro-core architectures, the runtime

performance overhead of the interpreter limited its use for real-world codes. There are

several potential approaches to increasing the runtime performance of dynamic lan-

guages, and this research began with the question of AOT or JIT compilation. There

is prior work here, for example MicroPython performs the compilation of bytecode to

native code on the device [126] similar to JIT except that the bytecode is not profiled

as is common for JIT compilers, rather the bytecode is just lowered to native code.

However, an alternative approach was taken for this work, similar to that employed by

the Pallene / Titan compiler [138] for Lua [74]. Here, the source language compiler,

running on the host, emits C source code that is then compiled to generate native bi-

nary executables. For ePython, this approach resulted in kernel runtime performance

that was comparable to or, in some cases could exceed, native C kernels, as confirmed

for the LINPACK benchmark in Section 6.3.2.6, and, at a worst-case, was around four

times slower than native C for the Sieve of Eratosthenes benchmark, at compiler opti-

misation level -O3 (Section 6.3.2.8). However, one should bear in mind that developing

kernels in native C requires an extensive understanding of C memory structures, linker

scripts and the associated device SDKs. Furthermore, a single Python code is portable

across these architectures, which is not the case for the standard C codes. Crucially, as

demonstrated in Section 6.3.1, the Olympus abstract machine delivered runtime per-

formance, on average (GM), of around 75% that of native C across four benchmarks

on eight CPU architectures (Section 6.5.2) and over 300 times that of the ePython vir-

tual machine for an iterative Fibonacci code, with an overall memory footprint up to

17 times smaller than the VM (Section 6.3.1).

This work has also addressed the final concern, namely the portability of user codes

and underlying runtime support. A mix of 32-bit, 64-bit, little-endian, big-endian,

CISC and RISC CPU architectures were specifically chosen to run the benchmarks to

exercise portability issues for the Olympus abstract machine. All of the benchmarks

run unmodified across all the supported platforms and the Olympus abstract machine

builds from a single codebase, which results in significant programmer productivity

gains. All device-specific code is managed within the mnemonics and runtime sup-

port functions, with the generated Olympus abstract machine code remaining the same

across all platforms. Furthermore, the ePython virtual machine was also shown to

be portable to several of micro-core architectures (Adapteva Epiphany-III, Xilinx Mi-

croBlaze and PicoRV32 RISC-V) with the minimum of effort.
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Consequently it is concluded that, based on this research, one is able to have their

cake and eat it. Namely, it is possible for programmers to develop codes in produc-

tive dynamic languages, such as Python, and for these to run without modification

across many micro-core architectures, resulting in runtime performance similar to na-

tive code, whilst utilising unlimited code and data sizes.

7.2 Summary of contributions

The extremely limited amount of on-chip memory (between 32KB and 64KB) presents

significant challenges to implementing dynamic languages on micro-core architec-

tures. Overcoming these challenges requires a holistic approach to design and imple-

mentation for both the host and device components. As much heavy lifting as possible

needs to be performed on the host, with the abstract machine / runtime being as simple

as possible to reduce code size and increase runtime performance as much as possible.

Whilst there are a number of approaches to accelerating dynamic languages on embed-

ded / IoT devices, including MicroPython [85], they are still too large (c. 256KB for

MicroPython) to deploy to micro-core devices, such as the Adapteva Parallella. The

key contributions of this work for the design and implementation of dynamic languages

on micro-core architectures are:

• The first pass by reference semantics model for kernels offloaded to micro-core

accelerators, addressing RQ1.

• Support for arbitrary-sized data through a compact model for device memory

hierarchy support, addressing RQ1.

• Support for arbitrary-sized kernel codes through a dynamic loading model for

natively generated functions, addressing RQ2.

• The Olympus portable, compact (on average between 1.4 and 2 times larger than

native C), high-performance abstract machine (on average (GM), 75% of the

runtime performance of native C) and an associated memory addressing model

for dynamic programming languages, addressing RQ3.

• The Eithne micro-core benchmarking framework, addressing RQ4.
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7.3 Research impact

In addition to the contributions of this work, the technologies developed as part of the

project have also had wider impact. The Olympus ePython native code compiler and

abstract machine have formed part of Vipera [189], a framework for implementing dy-

namic languages on micro-core architectures. Vipera is a deliverable of the ePython

commercialisation project, funded by EPSRC (Engineering and Physical Sciences Re-

search Council) via an Impact Acceleration Account (IAA), to widen the developer

community and provide the basis for future commercialisation and industry collabora-

tion for vPython1 and related Olympus technologies.

The Eithne [190] benchmarking framework and the Cerberus [31] FPGA RISC-V

micro-core design outputs of this research project will form part of the RISC-V testbed

project for the ExCALIBUR Hardware and Enabling Software (H&ES) Programme [2].

Eithne will provide the framework for users to deploy and run benchmark codes on

the soft-core, multi-core RISC-V processors, based on the Cerberus design, deployed

on the FPGA cards within the testbed. Coupled with Vipera, these technologies will

significantly reduce the effort required to develop and deploy codes in Python, C and

Fortran to soft-core and physical RISC-V processors, supporting the HPC developer

community in the drive towards exascale computing.

7.4 Limitations

7.4.1 ePython language

ePython is a subset of Python 2.7, with some version 3 features such as nonlocal vari-

able support. However, a major limitation in terms of Python compatibility is the lack

of support for Object-Oriented Programming. Whilst the Olympus abstract machine

can support a simple OO model (Section 4.3.3.5), adding full Python OO program-

ming features to ePython would require support for dynamic method dispatch within

the Olympus abstract machine, coupled with additional functionality in the ePython

compiler to manage classes and their associated inheritance hierarchies.

1The development of ePython to leverage the features of Vipera, including seamless C integration

and separately compiled module support.
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7.4.2 Type inferencing

The type inferencing model for ePython is simple due to its restricted type system;

ePython does not support classes, polymorphic composite types (e.g. Python lists con-

taining different element types) or polymorphic function return types (multiple types

returned from a function). Thus, functions can only have a single return type or re-

turn values that can be coerced to a single type. A more complex type inferencing

model [191] would be required to support these features, coupled with the inclusion of

dynamic fallback [112] with boxed types, particularly for polymorphic lists. Further-

more, whilst Olympus supports dynamically typed programming languages, they must

be strongly typed per Python, Perl or Ruby, rather than weakly typed per JavaScript.

7.4.3 C integration / Olympus application binary interface

Whilst integration with C is provided by ePython, the Olympus abstract machine de-

fines its own application binary interface (ABI) for the generated functions2. Although

this allows closure support across C compilers, the consequence is that Olympus func-

tion calls are incompatible with the native C ABI. This precludes generating object

files that are directly compatible with C codes and programmers need to be aware of

Olympus ABI (memory model, including environments / function stack) to call Olym-

pus functions from C codes.

7.4.4 Limited micro-core architecture evaluation

The Cerberus micro-core design was developed (Section 5.2.1) due to the lack of ad-

ditional micro-core architectures, over and above the Adapteva Epiphany-III, available

at the beginning of this research. The Xilinx MicroBlaze and RISC-V (PicoRV32)

based versions of Cerberus provided flexible development and testing platforms for

the Olympus abstract machine, particularly with respect to the portability of the tech-

nology across architectures. However, coupled with the Epiphany-III, the Cerberus

designs only provided a limited set of micro-core architectures for the evaluation of

the Olympus abstract machine.

2Function parameters and return values are managed by Olympus within the environment frames,

rather than by the C compiler directly.
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7.5 Future work

7.5.1 Automatic memory management for data and code

Whilst this work demonstrated the importance of prefetching, further exploration is ad-

vised. This is not an easy topic [106], and likely automatic approaches to do this will be

highly architecture specific. Furthermore, the dynamic loading and unloading of ker-

nel functions is manually performed by the programmer. Ideally, the compiler should

analyse the data access patterns and automatically select the optimal memory transfer

profile, or tiling [106] and [192], for each kernel. Correspondingly, writing efficient

parallel codes is difficult and techniques that select an optimal code implementation

strategy [193], coupled with the automatic management of the dynamic loading [194]

and unloading [195] of kernel functions, would not only simplify the development of

codes on micro-cores but would also maximise the amount of precious on-chip mem-

ory available for data on these architectures.

7.5.2 Optimisation of the Olympus abstract machine

7.5.2.1 Mnemonics: size versus runtime performance

Whilst the Olympus abstract machine has been proven to provide a high level of run-

time performance on micro-core architectures, the generated binary code is up to 4

times larger than the same kernel coded in native C (Section 6.5.1). As kernel func-

tions can be loaded and unloaded dynamically this is not a major blocker, however

it would be beneficial to explore this aspect in more detail and optimise further. Al-

though there is the trade-off between code size and runtime performance, it would be

beneficial to provide programmers with a more granular option to select code size over

runtime performance over and above the -Os and -O3 C compiler optimisation levels.

This could be implemented globally, at a file level or for each function. At present, the

Olympus mnemonics are implemented as a mixture of C macros and functions, with

the majority being the former. Whilst this delivers the required runtime performance,

the mnemonics produce wordy C source code that inflates the binary code size. An ap-

proach would be to implement all of the mnemonics as C functions that can be inlined

or called via standard function call, as selected by the programmer. The former op-

tion would provide the same runtime performance as the current macro-based model,

with the latter providing the ability to deliver smaller kernel binaries. This approach

could be combined with the automated selection of the C compiler’s optimisation flags
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similar to that performed by AcovEA [196] and AcovSA [197], which optimise the

flags over a number of execution runs to provide the ideal combination that maximise

runtime performance. Furthermore, the optimiser could be configured to balance run-

time performance and code size, further enhancing the applicability of this technique

to native code generation for micro-core architectures.

7.5.2.2 Automatic dynamic function selection

The Olympus dynamic function loading support allows the programmer to overcome

the limit of kernel code size imposed by micro-core device memory. However, to

fully optimise the memory available for data, the programmer must manually imple-

ment the dynamic loading and freeing strategy. The compiler-assisted, adaptive run-

time support approach of [51] provides an average 27% reduction in the deployed

kernel size by only linking the OpenMP support functions specifically required by

the kernel. Whilst this adaptive runtime support function mechanism is designed for

statically-linked OpenMP kernels, a similar method of kernel analysis could be applied

for Olympus dynamically loaded functions. Furthermore, as the ePython host-based

function loader parses ELF files to extract the required dynamic function requested by

the device, there is no additional development required to separate out runtime library

functions into separate object files to support adaptive runtime support. Moreover, as

the compiler already adds external function references to the <filename> oly ex-

terns.h file (outlined in Section 4.3.3.6), the current function reference management

could be updated to insert dynamic function loading requests or static references based

on heuristic selection criteria.

7.5.2.3 Data types

On micro-core and embedded devices, the design of data structures can have a major

impact on the number of elements that can be supported. The Sieve of Eratosthenes

benchmark (Section 5.3.3.5) highlighted, on the Epiphany-III, that the native C bench-

mark can support the full 8190 flag array size as it uses byte (char) elements, whereas

ePython / Olympus use int (4 byte) elements, requiring the full 32KB of the on-chip

memory. The ability to specify other data types other than integer or , real and

complex for arrays, such as byte, from within ePython would allow the programmer to

deploy kernels with size-optimised data structures. There are no intrinsic limitations

within the Olympus abstract machine to providing this support, as it already supports
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char arrays for strings and has been designed to support size-specific data types, such

as uint8 t and int16 t. The only modifications required are the definition of new

mnemonics for the required type and arrays of the type. The source language (ePython)

would need to be updated to provide a mechanism to specify the type. In the specific

case of byte arrays, a standard function that returns a new byte array and updates to the

compiler type management would suffice3, as the new mnemonics would allow access

to arrays and array elements of the new type.

7.5.2.4 Register allocation

At present, all CPU register allocation is performed by the C compiler. Therefore, the

runtime performance impact of manual register allocation / hinting for critical Olym-

pus abstract machine variables (current frame / stack pointer, return stack and heap

pointer) is unknown. Although the current model simplifies the code generation rules

within the compiler, it would be valuable to confirm if this is optimal for CPU archi-

tectures with a limited register set (e.g. x86) particularly for the -Os C compiler op-

timisation level. In this manner it might be possible to increase runtime performance

further for specific codes.

7.5.3 Compiler intermediate representation

Currently, a number of languages, including Julia [198] and Haskell [139], generate

LLVM intermediate representation (LLVM IR) code [94], which is then compiled by

LLVM to provide a native binary. The decision to generate C source code rather than

LLVM IR for the Olympus abstract machine was driven by the fact that LLVM does

not support two of the target micro-core architectures (Adapteva Epiphany-III and Xil-

inx MicroBlaze). Whilst Olympus supports a number of C compilers over and above

GCC, including Clang, the fact that the Glasgow Haskell Compiler (GHC) LLVM code

generator can out-perform the previous C-based generator by nearly 3 times [137] sug-

gests that it would be beneficial to understand the trade-off between the simplicity of

generating abstract machine mnemonics in C and the runtime performance benefits of

directly generating LLVM IR code, per GHC. More widely, the Olympus abstract ma-

chine could utilise Multi-Level Intermediate Representation (MLIR) [199], which will

generate both LLVM-IR and C code (EmitC dialect [200]). Lowering through MLIR

3The AST needs to be aware of byte and arrays of bytes to support the correct type inferencing and

the generation of element access code.
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dialects could help encode aspects such as register allocation in a more bespoke man-

ner but one in which the infrastructure is shared with other MLIR technologies and

approaches.

7.5.4 Additional device support: GPUs and FPGAs

One advantage of generating C source code is the ability to target C-based languages,

such as OpenCL C [47] and Xilinx HLS C [64], thereby allowing Olympus to target

GPUs and FPGAs. However, targeting OpenCL C and HLS C isn’t a trivial update to

the existing C abstract machine code generator as both languages have restricted C lan-

guage support that impacts the underlying Olympus mnemonic implementation. For

example, neither language supports function pointers, which are currently used within

the Olympus abstract machine. OpenCL C++ does support limited function pointers

and lambdas but doesn’t support kernel functions calling other kernel functions [201].

Therefore, the Olympus function dispatch model would require modification to use C

labels and goto jumps. However, the current function dispatch model was designed

with this restriction in mind and was one of the deciding factors in managing the

function stacks, parameters and return values within the Olympus abstract machine

environment, rather than relying on the underlying C function ABI management.
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A
Fibonacci sequence code listings

1 ;---------------------------------------------------------------

2 ; fib.asm - Fibonacci test using basic stack-based opcodes

3 ;---------------------------------------------------------------

4 .cr merlin

5 .tf fib.v12,bin

6 .dl 65566 ; VM version number

7 .dl END-6 ; Bytecode length

8

9 ALLOC 6*4 ; 8+16

10 LLI 50000000 ; Load integer literal onto stack

11 DUP ; Duplicate TOS

12 JSR FIB ; Jump to subroutine

13 LDI I ; Load TOS with integer from memory @I

14 CALLX PRINT ; Call #0 user defined PRINT function

15 HALT

16

17 FIB: STI COUNT ; Store TOS integer value @COUNT

18 CALLX PRINT

19 SLI A, 0x01 ; Store integer literal in memory @A

20 SLI B, 0x01

174
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21 SLI C, 0x01

22 SLI I, 0x00

23

24 LOOP: LDI A ; Load A onto stack

25 LDI B

26 ADD ; Add TOS-1 and TOS, result on TOS

27 STI C ; Store top of stack in memory @C

28 LDI B

29 STI A

30 LDI C

31 STI B

32 INCM I ; Increment integer value in memory @I

33 LDI I

34 LDI COUNT

35 LT ; Set FLAGS to true if TOS-1 < TOS

36 BEQ LOOP ; Branch to LOOP if FLAGS is true

37 RTS ; Return from subroutine

38

39 END .eq $ ; End marker for code size calc above

40 .sm RAM

41 A .dl 0

42 B .dl 0

43 C .dl 0

44 I .dl 0

45 COUNT .dl 0

46 PRINT .eq 0

Listing A.1: Stack-based Fibonacci Merlin assembly listing

1 ;---------------------------------------------------------------

2 ; fib_fast.asm - Fibonacci test using three address opcodes

3 ;---------------------------------------------------------------

4 .lf fib_fast.lst

5 .cr merlin

6 .tf fib_fast.v12,bin

7 .dl 65566 ; VM version number

8 .dl END-6 ; Bytecode length

9

10 ALLOC 5*4

11 LLI 50000000 ; Load integer literal onto stack

12 DUP ; Duplicate TOS

13 JSR FIB ; Jump to subroutine
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14 LDI I ; Load TOS with integer from memory @I

15 CALLX PRINT ; Call #0 user defined PRINT function

16 HALT

17

18 FIB: STI COUNT ; Store TOS integer value in memory @COUNT

19 CALLX PRINT

20 SLI A, 0x01 ; Store integer literal in memory @A

21 SLI B, 0x01

22 SLI C, 0x01

23 SLI I, 0x00

24

25 LOOP: ADDM C, A, B ; Add values @A and @B, store in memory @C

26 MOV A, B ; Copy integer in memory @B to memory @A

27 MOV B, C

28 INCM I ; Increment integer value in memory @I

29 BLT I, COUNT, LOOP ; Branch to LOOP if value @I < @COUNT

30 RTS ; Return from subroutine

31

32 END .eq $ ; End marker for code size calc above

33 .sm RAM

34 A .dl 0

35 B .dl 0

36 C .dl 0

37 COUNT .dl 0

38 I .dl 0

39 PRINT .eq 0

Listing A.2: Three-address Fibonacci Merlin assembly listing

1 ;---------------------------------------------------------------

2 ; fib_reg.asm - Fibonacci test using register opcodes

3 ;---------------------------------------------------------------

4 .lf fib_reg.lst

5 .cr merlin

6 .tf fib_reg.v12,bin

7 .dl 65566 ; VM version number

8 .dl END-6 ; Bytecode length

9

10 ALLOC 2*4

11 LLI 50000000 ; Load integer literal onto stack

12 DUP ; Duplicate TOS

13 JSR FIB ; Jump to subroutine
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14 LDI I ; Load TOS with integer from memory @I

15 CALLX PRINT ; Call #0 user defined PRINT function

16 HALT

17

18 FIB: STI COUNT ; Store TOS integer value in memory @COUNT

19 CALLX PRINT

20 LLA 0x01 ; Load integer literal into accumulator

21 LLX 0x01

22 LLY 0x01

23 SLI I, 0x00 ; Store integer literal in memory @I

24

25 LOOP: ADDXY ; Add X & Y registers, store in accumulator

26 TYX ; Transfer (copy) Y register to X register

27 TAY

28 INCM I ; Increment integer value in memory @I

29 BLT I, COUNT, LOOP ; Branch to LOOP if value @I < @COUNT

30 RTS ; Return from subroutine

31

32 END .eq $ ; End marker for code size calc above

33 .sm RAM

34 COUNT .dl 0

35 I .dl 0

36 PRINT .eq 0

Listing A.3: Register-based Fibonacci Merlin assembly listing

1 #include <stdio.h>

2 #include <time.h>

3

4 float cpu_time ( void )

5 /****************************************************************/

6 /*

7 Purpose:

8 CPU_TIME returns the current reading on the CPU clock.

9

10 Discussion:

11 The CPU time measurements available through this routine are

12 often not very accurate. In some cases, the accuracy is no

13 better than a hundredth of a second.

14

15 Licensing:

16 This code is distributed under the GNU LGPL license.
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17

18 Modified:

19 06 June 2005

20

21 Author:

22 John Burkardt

23

24 Parameters:

25 Output, float CPU_TIME, the current reading of the CPU clock,

26 in seconds.

27 */

28 {

29 float value;

30

31 value = ( float ) clock ( )

32 / ( float ) CLOCKS_PER_SEC;

33

34 return value;

35 }

36 /****************************************************************/

37

38 void timestamp ( void )

39 /****************************************************************/

40 /*

41 Purpose:

42 TIMESTAMP prints the current YMDHMS date as a time stamp.

43

44 Example:

45 31 May 2001 09:45:54 AM

46

47 Licensing:

48 This code is distributed under the GNU LGPL license.

49

50 Modified:

51 24 September 2003

52

53 Author:

54 John Burkardt

55

56 Parameters:

57 None

58 */
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59 {

60 # define TIME_SIZE 40

61

62 static char time_buffer[TIME_SIZE];

63 const struct tm *tm;

64 size_t len;

65 time_t now;

66

67 now = time ( NULL );

68 tm = localtime ( &now );

69

70 len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p",

tm );

71

72 printf ( "%s\n", time_buffer );

73

74 return;

75 # undef TIME_SIZE

76 }

77 /****************************************************************/

78

79 int fib(float n){

80 int a=1, b=1, c=1, i=0;

81 while(i<n) {

82 c = a + b;

83 a = b;

84 b = c;

85 i++;

86 }

87 return i;

88 }

89

90 int main(void) {

91 float t1;

92 float t2;

93 float time;

94

95 timestamp ( );

96 t1 = cpu_time ( );

97 printf("%d\n", fib(50000000));

98 t2 = cpu_time ( );

99 time = t2 - t1;
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100 printf("%fs\n", time);

101 timestamp ( );

102 }

Listing A.4: Fibonacci C listing

1 import time

2

3 def fib(n):

4 a=1

5 b=1

6 c=1

7 i=0

8 while i<n:

9 c = a + b

10 a = b

11 b = c

12 i+=1

13 return i

14

15 n = 50000000.0

16 times = 0.0

17

18 timestamp()

19 print(n,"\n")

20

21 t1 = cpu_time()

22 i=fib(n)

23 t2 = cpu_time()

24 time = t2 - t1

25

26 print(i,"\n")

27 print(time,"s\n")

28 timestamp ()

Listing A.5: Fibonacci ePython listing

1 native include(time)

2 #*****************************************************************

3 # float cpu_time ( )

4 #*****************************************************************

5 #
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6 # Purpose:

7 # CPU_TIME returns the current reading on the CPU clock.

8 #

9 # Discussion:

10 # The CPU time measurements available through this routine are

11 # often not very accurate. In some cases, the accuracy is no

12 # better than a hundredth of a second.

13 #

14 # Licensing:

15 # This code is distributed under the GNU LGPL license.

16 #

17 # Modified:

18 # 06 June 2005

19 #

20 # Author:

21 # John Burkardt

22 #

23 # Parameters:

24 # Output, float CPU_TIME, the current reading of the CPU clock,

25 # in seconds.

26 def cpu_time():

27 return native(->float) clock( ) / native const(CLOCKS_PER_SEC)->

float

28

29

30 #*****************************************************************

31 # void timestamp ( void )

32 #*****************************************************************

33 #

34 # Purpose:

35 # TIMESTAMP prints the current YMDHMS date as a time stamp.

36 #

37 # Example:

38 # 31 May 2001 09:45:54 AM

39 #

40 # Licensing:

41 # This code is distributed under the GNU LGPL license.

42 #

43 # Modified:

44 # 24 September 2003

45 #

46 # Author:
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47 # John Burkardt

48 #

49 # Updated for ePython:

50 # Maurice Jamieson

51 #

52 # Parameters:

53 # None

54 def timestamp():

55 # Turn off GCC compiler warnings as we’re performing a number of

56 # implicit casts - store the previous diagnostic settings

57 native pragma ’GCC diagnostic push’

58 native pragma ’GCC diagnostic ignored "-Wformat"’

59 native pragma ’GCC diagnostic push’

60 native pragma ’GCC diagnostic ignored "-Wint-conversion"’

61 native pragma ’GCC diagnostic push’

62 native pragma ’GCC diagnostic ignored "-Wincompatible-pointer-

types"’

63

64 TIME_SIZE = 40

65 time_buffer = native malloc(41)

66 now = native time ( native const(NULL) )

67 tm = native localtime ( &now )

68

69 len = native strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S

%p", tm)

70

71 native printf ( "%s\n", time_buffer )

72

73 # Restore previous GCC diagnostic settings

74 native pragma ’GCC diagnostic pop’

75 native pragma ’GCC diagnostic pop’

76 native pragma ’GCC diagnostic pop’

77

78 return

Listing A.6: ePython time module listing

1 #include "fib_oly_externs.h"

2

3 #define OLY_ENV_SIZE 16+3

4

5 void module(Memory *memory) {

6 #ifdef SYMBOL_TABLE
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7 initialise_symbol_table(OLY_ENV_SIZE);

8 #endif

9 MKENV(memory,OLY_ENV_SIZE);

10 DECLL("cpu_time",ADDRL(0),MKLAMBDA(oly_r$cpu_time$,1));

11 DECLL("timestamp",ADDRL(1),MKLAMBDA(oly_v$timestamp$,6));

12 DECLL("fib",ADDRL(2),MKLAMBDA(oly_i$fib$r,6));

13 DECLR("n",ADDRL(3),50000000.000000);

14 DECLR("times",ADDRL(4),0.000000);

15 (MKBETA(LDL(ADDRL(1))),APPLYV(LDL(ADDRL(1))));

16 rtl_print(2,7,LDR(ADDRL(3)),11,"\n");

17 DECLR("t1",ADDRL(5),(MKBETA(LDL(ADDRL(0))),APPLYR(LDL(ADDRL(0)))));

18 DECLI("i",ADDRL(6),(MKBETA(LDL(ADDRL(2))),PARAMR(1,"n",LDR(ADDRL(3))

),APPLYI(LDL(ADDRL(2)))));

19 DECLR("t2",ADDRL(7),(MKBETA(LDL(ADDRL(0))),APPLYR(LDL(ADDRL(0)))));

20 DECLR("time",ADDRL(8),(LDR(ADDRL(7))-LDR(ADDRL(5))));

21 rtl_print(2,5,LDI(ADDRL(6)),11,"\n");

22 rtl_print(2,7,LDR(ADDRL(8)),11,"s\n");

23 (MKBETA(LDL(ADDRL(1))),APPLYV(LDL(ADDRL(1))));

24 }

Listing A.7: Generated Olympus main file for ePython Fibonacci benchmark

1 #include "fib_oly_externs.h"

2

3 void oly_r$cpu_time$(Memory *memory, Object *self) {

4 RETR((EXPR(Real,clock(),/,Real,CLOCKS_PER_SEC)));

5 }

6

7 void oly_v$timestamp$(Memory *memory, Object *self) {

8 #pragma GCC diagnostic push

9 #pragma GCC diagnostic ignored "-Wformat"

10 #pragma GCC diagnostic push

11 #pragma GCC diagnostic ignored "-Wint-conversion"

12 #pragma GCC diagnostic push

13 #pragma GCC diagnostic ignored "-Wincompatible-pointer-types"

14 DECLI("TIME_SIZE",ADDRL(1),40);

15 DECLI("time_buffer",ADDRL(2),malloc(41));

16 DECLI("now",ADDRL(3),time(NULL));

17 DECLI("tm",ADDRL(4),localtime((Pntr)(ADDRL(3))));

18 DECLI("len",ADDRL(5),strftime(LDI(ADDRL(2)),LDI(ADDRL(1)),"%d %B %Y

%I:%M:%S %p",LDI(ADDRL(4))));

19 printf("%s\n",LDI(ADDRL(2)));

20 #pragma GCC diagnostic pop
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21 #pragma GCC diagnostic pop

22 #pragma GCC diagnostic pop

23 RETV;

24 }

25

26 void oly_i$fib$r(Memory *memory, Object *self) {

27 DECLI("a",ADDRL(2),1);

28 DECLI("b",ADDRL(3),1);

29 DECLI("c",ADDRL(4),1);

30 DECLI("i",ADDRL(5),0);

31 while ((LDI(ADDRL(5))<LDR(ADDRL(1)))) {

32 STI(ADDRL(4),(LDI(ADDRL(2))+LDI(ADDRL(3))));

33 STI(ADDRL(2),LDI(ADDRL(3)));

34 STI(ADDRL(3),LDI(ADDRL(4)));

35 STI(ADDRL(5),(LDI(ADDRL(5))+1));

36 };

37 RETI(LDI(ADDRL(5)));

38 }

Listing A.8: Generated Olympus functions file for ePython Fibonacci benchmark

1 #ifndef FIB_OLY_EXTERNS_H

2 #define FIB_OLY_EXTERNS_H

3

4 /* System required and user requested includes in ’fib’ */

5 #include "olympus.h"

6

7 #include "time.h"

8

9 /* User defined functions (including variants for polymorphism) in ’

fib’ */

10 extern void oly_r$cpu_time$(Memory*, Object*);

11 extern void oly_v$timestamp$(Memory*, Object*);

12 extern void oly_i$fib$r(Memory*, Object*);

13

14 /* Native functions used by ’fib’ */

15 extern Void rtl_print(Int,...);

16

17 #endif /* FIB_OLY_EXTERNS_H */

Listing A.9: Generated Olympus external functions file for ePython Fibonacci

benchmark
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1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <string.h>

5 #include <time.h>

6 #include <unistd.h>

7

8 #include "eithne.h"

9 #include "kernels.h"

10

11 #define TARGET_ID 1

12

13 #define SLEEP_TIME 0000

14

15 int main ( );

16 double cpu_time ( );

17 float r8_abs ( float x );

18 float r8_epsilon ( );

19 float r8_max ( float x, float y );

20 float r8_random ( int iseed[4] );

185
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21 float *r8mat_gen ( int lda, int n );

22 void timestamp ( );

23 void printarray(const char*, float*, int);

24

25 int info=1;

26 int job;

27

28 /*****************************************************************/

29 int main ( )

30 /*****************************************************************/

31 /*

32 Purpose:

33

34 MAIN is the main program for LINPACK_BENCH.

35

36 Discussion:

37

38 LINPACK_BENCH drives the float precision LINPACK benchmark

program.

39

40 Modified:

41

42 25 July 2008

43

44 Parameters:

45

46 N is the problem size.

47 */

48 {

49 float *a;

50 float a_max;

51 float *b;

52 float b_max;

53 float cray = 0.056;

54 float eps;

55 int i;

56 int *ipvt;

57 int j;

58 float ops;

59 float *resid;

60 float resid_max;

61 float residn;
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62 float *rhs;

63 float t1;

64 float t2;

65 float time[6];

66 float total;

67 float *x;

68

69 EithneSharedMem eithne_buffer;

70 static EithneVariable variables[5];

71 eithne_buffer = EITHNE_ALLOC_MEM(sizeof(float)*N*LDA);

72

73 EITHNE_INIT_HOST(variables, HOST_ID, eithne_buffer +

EITHNE_DATA_OFFSET, eithne_buffer);

74

75 /* This will load the code onto the cores */

76 EITHNE_INIT_CORES(1);

77 EITHNE_START_CORES(1);

78 usleep(SLEEP_TIME);

79

80 timestamp ( );

81 printf ( "\n" );

82 printf ( "LINPACK_BENCH\n" );

83 printf ( " C version\n" );

84 printf ( "\n" );

85 printf ( " The LINPACK benchmark.\n" );

86 printf ( " Language: C\n" );

87 printf ( " Datatype: Single precision real\n" );

88 printf ( " Matrix order N = %d\n", N );

89 printf ( " Leading matrix dimension LDA = %d\n", LDA );

90

91 ops = (float) ( 2 * N * N * N ) / 3.0 + 2.0 * (float) ( N * N );

92 /*

93 Allocate space for arrays.

94 */

95 a = r8mat_gen ( LDA, N );

96 b = ( float * ) malloc ( N * sizeof ( float ) );

97 ipvt = ( int * ) malloc ( N * sizeof ( int ) );

98 resid = ( float * ) malloc ( N * sizeof ( float ) );

99 rhs = ( float * ) malloc ( N * sizeof ( float ) );

100 x = ( float * ) malloc ( N * sizeof ( float ) );

101

102 /*
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103 We want to:

104

105 Define a, b, ipvt, job and result as Eithne variables in

kernels.h

106

107 The following register the variables on the host side:

108 */

109 EITHNE_REGISTER_ARRAY(variables,A,EITHNE_FLOAT_ARRAY,a,N*LDA);

110 EITHNE_REGISTER_ARRAY(variables,B,EITHNE_FLOAT_ARRAY,b,N);

111 EITHNE_REGISTER_ARRAY(variables,IPVT,EITHNE_INTEGER_ARRAY,ipvt,N);

112 EITHNE_REGISTER_SCALAR(variables,JOB,EITHNE_INTEGER,job);

113 EITHNE_REGISTER_SCALAR(variables,RESULT,EITHNE_INTEGER,info);

114

115 a_max = 0.0;

116 for ( j = 0; j < N; j++ )

117 {

118 for ( i = 0; i < N; i++ )

119 {

120 a_max = r8_max ( a_max, a[i+j*LDA] );

121 }

122 }

123

124 for ( i = 0; i < N; i++ )

125 {

126 x[i] = 1.0;

127 }

128

129 for ( i = 0; i < N; i++ )

130 {

131 b[i] = 0.0;

132 for ( j = 0; j < N; j++ )

133 {

134 b[i] = b[i] + a[i+j*LDA] * x[j];

135 }

136 }

137

138 /* Kernel #1 - SGEFA */

139 /*

140 Variable types and sizes have been defined above -

141 (slices with offset and size can be sent /received by other

functions)

142 */
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143

144 EITHNE_SEND(variables, TARGET_ID, A);

145

146 t1 = cpu_time ( );

147

148 /* The kernel listener will execute the requested function */

149 EITHNE_EXECUTE(TARGET_ID, SGEFA);

150

151 t2 = cpu_time ( );

152

153 /* Output variables from SGEFA */

154 EITHNE_RECV(variables, TARGET_ID, A);

155 EITHNE_RECV(variables, TARGET_ID, IPVT);

156 EITHNE_RECV(variables, TARGET_ID, RESULT);

157

158 if ( info != 0 )

159 {

160 printf ( "\n" );

161 printf ( "LINPACK_BENCH - Fatal error!\n" );

162 printf ( " The matrix A is apparently singular.\n" );

163 printf ( " Abnormal end of execution.\n" );

164 return 1;

165 }

166

167 time[0] = t2 - t1;

168

169 job = 0;

170

171 /* Kernel #2 - SGESL */

172 EITHNE_SEND(variables, TARGET_ID, A);

173 EITHNE_SEND(variables, TARGET_ID, B);

174 EITHNE_SEND(variables, TARGET_ID, IPVT);

175 EITHNE_SEND(variables, TARGET_ID, JOB);

176

177 t1 = cpu_time ( );

178

179 /* The kernel listener will execute the requested function */

180 EITHNE_EXECUTE(TARGET_ID, SGESL);

181

182 t2 = cpu_time ( );

183

184 /* Output variables from SGESL */
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185 EITHNE_RECV(variables, TARGET_ID, B);

186

187 time[1] = t2 - t1;

188

189 total = time[0] + time[1];

190

191 free ( a );

192 /*

193 Compute a residual to verify results.

194 */

195 a = r8mat_gen ( LDA, N );

196

197 for ( i = 0; i < N; i++ )

198 {

199 x[i] = 1.0;

200 }

201

202 for ( i = 0; i < N; i++ )

203 {

204 rhs[i] = 0.0;

205 for ( j = 0; j < N; j++ )

206 {

207 rhs[i] = rhs[i] + a[i+j*LDA] * x[j];

208 }

209 }

210

211 for ( i = 0; i < N; i++ )

212 {

213 resid[i] = -rhs[i];

214 for ( j = 0; j < N; j++ )

215 {

216 resid[i] = resid[i] + a[i+j*LDA] * b[j];

217 }

218 }

219

220 resid_max = 0.0;

221 for ( i = 0; i < N; i++ )

222 {

223 resid_max = r8_max ( resid_max, r8_abs ( resid[i] ) );

224 }

225

226 b_max = 0.0;
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227 for ( i = 0; i < N; i++ )

228 {

229 b_max = r8_max ( b_max, r8_abs ( b[i] ) );

230 }

231

232 eps = r8_epsilon ( );

233

234 residn = resid_max / ( float ) N / a_max / b_max / eps;

235

236 time[2] = total;

237 if ( 0.0 < total )

238 {

239 time[3] = ops / ( 1.0E+06 * total );

240 }

241 else

242 {

243 time[3] = -1.0;

244 }

245 time[4] = 2.0 / time[3];

246 time[5] = total / cray;

247

248 printf ( "\n" );

249 printf ( " Norm. Resid Resid MACHEP X

[1] X[N]\n" );

250 printf ( "\n" );

251 printf ( " %14f %14f %14e %14f %14f\n", residn, resid_max,

eps, b[0], b[N-1] );

252 printf ( "\n" );

253 printf ( " Factor Solve Total MFLOPS Unit

Cray-Ratio\n" );

254 printf ( "\n" );

255 printf ( " %9f %9f %9f %9f %9f %9f\n",

256 time[0], time[1], time[2], time[3], time[4], time[5] );

257

258 /*

259 Terminate.

260 */

261 EITHNE_FINALISE_CORES;

262

263 free ( a );

264 free ( b );

265 free ( ipvt );
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266 free ( resid );

267 free ( rhs );

268 free ( x );

269

270 printf ( "\n" );

271 printf ( "LINPACK_BENCH\n" );

272 printf ( " Normal end of execution.\n" );

273

274 printf ( "\n" );

275 timestamp ( );

276

277 return 0;

278 # undef LDA

279 # undef N

280 }

281

282 /*****************************************************************/

283 double cpu_time ( void )

284 /*****************************************************************/

285 /*

286 Purpose:

287

288 CPU_TIME returns the current reading on the CPU clock.

289

290 Discussion:

291

292 The CPU time measurements available through this routine are

often

293 not very accurate. In some cases, the accuracy is no better

than

294 a hundredth of a second.

295

296 Licensing:

297

298 This code is distributed under the GNU LGPL license.

299

300 Modified:

301

302 06 June 2005

303

304 Author:

305
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306 John Burkardt

307

308 Parameters:

309

310 Output, float CPU_TIME, the current reading of the CPU clock, in

seconds.

311 */

312 {

313 float value;

314

315 value = ( float ) clock ( )

316 / ( float ) CLOCKS_PER_SEC;

317

318 return value;

319 }

320

321 /*****************************************************************/

322 void timestamp ( void )

323 /*****************************************************************/

324 /*

325 Purpose:

326

327 TIMESTAMP prints the current YMDHMS date as a time stamp.

328

329 Example:

330

331 31 May 2001 09:45:54 AM

332

333 Licensing:

334

335 This code is distributed under the GNU LGPL license.

336

337 Modified:

338

339 24 September 2003

340

341 Author:

342

343 John Burkardt

344

345 Parameters:

346
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347 None

348 */

349 {

350 # define TIME_SIZE 40

351

352 static char time_buffer[TIME_SIZE];

353 const struct tm *tm;

354 size_t len;

355 time_t now;

356

357 now = time ( NULL );

358 tm = localtime ( &now );

359

360 len = strftime(time_buffer,TIME_SIZE,"%d %B %Y %I:%M:%S %p",tm );

361

362 printf ( "%s\n", time_buffer );

363

364 return;

365 # undef TIME_SIZE

366 }

367

368 /*****************************************************************/

369 float r8_abs ( float x )

370 /*****************************************************************/

371 /*

372 Purpose:

373

374 R8_ABS returns the absolute value of a R8.

375

376 Modified:

377

378 02 April 2005

379

380 Author:

381

382 John Burkardt

383

384 Parameters:

385

386 Input, float X, the quantity whose absolute value is desired.

387

388 Output, float R8_ABS, the absolute value of X.



Appendix B. LINPACK benchmark code listings 195

389 */

390 {

391 float value;

392

393 if ( 0.0 <= x )

394 {

395 value = x;

396 }

397 else

398 {

399 value = -x;

400 }

401 return value;

402 }

403

404 /*****************************************************************/

405 float r8_epsilon ( )

406 /*****************************************************************/

407 /*

408 Purpose:

409

410 R8_EPSILON returns the R8 round off unit.

411

412 Discussion:

413

414 R8_EPSILON is a number R which is a power of 2 with the property

that,

415 to the precision of the computer’s arithmetic,

416 1 < 1 + R

417 but

418 1 = ( 1 + R / 2 )

419

420 Licensing:

421

422 This code is distributed under the GNU LGPL license.

423

424 Modified:

425

426 01 September 2012

427

428 Author:

429
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430 John Burkardt

431

432 Parameters:

433

434 Output, float R8_EPSILON, the R8 round-off unit.

435 */

436 {

437 const float value = 2.220446049250313E-016;

438

439 return value;

440 }

441

442 /*****************************************************************/

443 float r8_max ( float x, float y )

444 /*****************************************************************/

445 /*

446 Purpose:

447

448 R8_MAX returns the maximum of two R8’s.

449

450 Modified:

451

452 18 August 2004

453

454 Author:

455

456 John Burkardt

457

458 Parameters:

459

460 Input, float X, Y, the quantities to compare.

461

462 Output, float R8_MAX, the maximum of X and Y.

463 */

464 {

465 float value;

466

467 if ( y < x )

468 {

469 value = x;

470 }

471 else
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472 {

473 value = y;

474 }

475 return value;

476 }

477

478 /*****************************************************************/

479 float r8_random ( int iseed[4] )

480 /*****************************************************************/

481 /*

482 Purpose:

483

484 R8_RANDOM returns a uniformly distributed random number between

0 and 1.

485

486 Discussion:

487

488 This routine uses a multiplicative congruential method with

modulus

489 2**48 and multiplier 33952834046453 (see G.S.Fishman,

490 ’Multiplicative congruential random number generators with

modulus

491 2**b: an exhaustive analysis for b = 32 and a partial analysis

for

492 b = 48’, Math. Comp. 189, pp 331-344, 1990).

493

494 48-bit integers are stored in 4 integer array elements with 12

bits

495 per element. Hence the routine is portable across machines with

496 integers of 32 bits or more.

497

498 Parameters:

499

500 Input/output, integer ISEED(4).

501 On entry, the seed of the random number generator; the array

502 elements must be between 0 and 4095, and ISEED(4) must be odd.

503 On exit, the seed is updated.

504

505 Output, float R8_RANDOM, the next pseudorandom number.

506 */

507 {

508 int ipw2 = 4096;
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509 int it1;

510 int it2;

511 int it3;

512 int it4;

513 int m1 = 494;

514 int m2 = 322;

515 int m3 = 2508;

516 int m4 = 2549;

517 float one = 1.0;

518 float r = 1.0 / 4096.0;

519 float value;

520 /*

521 Multiply the seed by the multiplier modulo 2**48.

522 */

523 it4 = iseed[3] * m4;

524 it3 = it4 / ipw2;

525 it4 = it4 - ipw2 * it3;

526 it3 = it3 + iseed[2] * m4 + iseed[3] * m3;

527 it2 = it3 / ipw2;

528 it3 = it3 - ipw2 * it2;

529 it2 = it2 + iseed[1] * m4 + iseed[2] * m3 + iseed[3] * m2;

530 it1 = it2 / ipw2;

531 it2 = it2 - ipw2 * it1;

532 it1 = it1 + iseed[0] * m4 + iseed[1] * m3 + iseed[2] * m2 + iseed

[3] * m1;

533 it1 = ( it1 % ipw2 );

534 /*

535 Return updated seed

536 */

537 iseed[0] = it1;

538 iseed[1] = it2;

539 iseed[2] = it3;

540 iseed[3] = it4;

541 /*

542 Convert 48-bit integer to a real number in the interval (0,1)

543 */

544 value =

545 r * ( ( float ) ( it1 )

546 + r * ( ( float ) ( it2 )

547 + r * ( ( float ) ( it3 )

548 + r * ( ( float ) ( it4 ) ) ) ) );

549
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550 return value;

551 }

552

553 /*****************************************************************/

554 float *r8mat_gen ( int lda, int n )

555 /*****************************************************************/

556 /*

557 Purpose:

558

559 R8MAT_GEN generates a random R8MAT.

560

561 Modified:

562

563 06 June 2005

564

565 Parameters:

566

567 Input, integer LDA, the leading dimension of the matrix.

568

569 Input, integer N, the order of the matrix.

570

571 Output, float R8MAT_GEN[LDA*N], the N by N matrix.

572 */

573 {

574 float *a;

575 int i;

576 int init[4] = { 1, 2, 3, 1325 };

577 int j;

578

579 a = ( float * ) malloc ( lda * n * sizeof ( float ) );

580

581 for ( j = 1; j <= n; j++ )

582 {

583 for ( i = 1; i <= n; i++ )

584 {

585 a[i-1+(j-1)*lda] = r8_random ( init ) - 0.5;

586 }

587 }

588

589 return a;

590 }
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Listing B.1: LINPACK C benchmark with Eithne API calls

1 #include "eithne.h"

2 #include "kernels.h"

3

4 static EithneVariable variables[5];

5

6 static float a[N*LDA];

7 static float b[N];

8 static int ipvt[N];

9 static int job;

10 static int info=6;

11

12 static void saxpy ( int n, float da, float dx[], int incx, float dy

[], int incy );

13 static float ddot ( int n, float dx[], int incx, float dy[], int

incy );

14 static void sgefa(void);

15 static void sgesl(void);

16 static void sscal ( int n, float sa, float x[], int incx );

17 static int isamax ( int n, float dx[], int incx );

18 static float r8_abs ( float x );

19

20 void kernel_init(EithneTargetId id, EithneSharedMem buffer) {

21 EithneKernel kernels[] = { sgefa, sgesl };

22

23 EITHNE_INIT_DEVICE(variables, id, buffer + EITHNE_DATA_OFFSET,

buffer, kernels);

24

25 EITHNE_REGISTER_ARRAY(variables, A, EITHNE_FLOAT_ARRAY, a, N*LDA);

26 EITHNE_REGISTER_ARRAY(variables, B, EITHNE_FLOAT_ARRAY, b, N);

27 EITHNE_REGISTER_ARRAY(variables, IPVT, EITHNE_INTEGER_ARRAY, ipvt,

N);

28 EITHNE_REGISTER_SCALAR(variables, JOB, EITHNE_INTEGER, job);

29 EITHNE_REGISTER_SCALAR(variables, RESULT, EITHNE_INTEGER, info);

30

31 EITHNE_START_LISTENER;

32 }

33

34 /*****************************************************************/
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35 static void saxpy ( int n, float da, float dx[], int incx, float dy

[], int incy )

36 /*****************************************************************/

37 /*

38 Purpose:

39

40 SAXPY computes constant times a vector plus a vector.

41

42 Discussion:

43

44 This routine uses unrolled loops for increments equal to one.

45

46 Modified:

47

48 30 March 2007

49

50 Author:

51

52 FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

53 C version by John Burkardt

54

55 Reference:

56

57 Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

58 LINPACK User’s Guide,

59 SIAM, 1979.

60

61 Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

62 Basic Linear Algebra Subprograms for Fortran Usage,

63 Algorithm 539,

64 ACM Transactions on Mathematical Software,

65 Volume 5, Number 3, September 1979, pages 308-323.

66

67 Parameters:

68

69 Input, int N, the number of elements in DX and DY.

70

71 Input, float DA, the multiplier of DX.

72

73 Input, float DX[*], the first vector.

74
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75 Input, int INCX, the increment between successive entries of DX

76

77 Input/output, float DY[*], the second vector.

78 On output, DY[*] has been replaced by DY[*] + DA * DX[*].

79

80 Input, int INCY, the increment between successive entries of DY

81 */

82 {

83 int i;

84 int ix;

85 int iy;

86 int m;

87

88 if ( n <= 0 )

89 {

90 return;

91 }

92

93 if ( da == 0.0 )

94 {

95 return;

96 }

97 /*

98 Code for unequal increments or equal increments

99 not equal to 1.

100 */

101 if ( incx != 1 || incy != 1 )

102 {

103 if ( 0 <= incx )

104 {

105 ix = 0;

106 }

107 else

108 {

109 ix = ( - n + 1 ) * incx;

110 }

111

112 if ( 0 <= incy )

113 {

114 iy = 0;

115 }

116 else
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117 {

118 iy = ( - n + 1 ) * incy;

119 }

120

121 for ( i = 0; i < n; i++ )

122 {

123 dy[iy] = dy[iy] + da * dx[ix];

124 ix = ix + incx;

125 iy = iy + incy;

126 }

127 }

128 /*

129 Code for both increments equal to 1.

130 */

131 else

132 {

133 m = n % 4;

134

135 for ( i = 0; i < m; i++ )

136 {

137 dy[i] = dy[i] + da * dx[i];

138 }

139

140 for ( i = m; i < n; i = i + 4 )

141 {

142 dy[i ] = dy[i ] + da * dx[i ];

143 dy[i+1] = dy[i+1] + da * dx[i+1];

144 dy[i+2] = dy[i+2] + da * dx[i+2];

145 dy[i+3] = dy[i+3] + da * dx[i+3];

146 }

147 }

148 return;

149 }

150 /*****************************************************************/

151 static float ddot ( int n, float dx[], int incx, float dy[], int

incy )

152 /*****************************************************************/

153 /*

154 Purpose:

155

156 DDOT forms the dot product of two vectors.

157
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158 Discussion:

159

160 This routine uses unrolled loops for increments equal to one.

161

162 Modified:

163

164 30 March 2007

165

166 Author:

167

168 FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

169 C version by John Burkardt

170

171 Reference:

172

173 Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

174 LINPACK User’s Guide,

175 SIAM, 1979.

176

177 Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

178 Basic Linear Algebra Subprograms for Fortran Usage,

179 Algorithm 539,

180 ACM Transactions on Mathematical Software,

181 Volume 5, Number 3, September 1979, pages 308-323.

182

183 Parameters:

184

185 Input, int N, the number of entries in the vectors.

186

187 Input, float DX[*], the first vector.

188

189 Input, int INCX, the increment between successive entries in DX

190

191 Input, float DY[*], the second vector.

192

193 Input, int INCY, the increment between successive entries in DY

194

195 Output, float DDOT, the sum of the product of the corresponding

196 entries of DX and DY.

197 */

198 {
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199 float dtemp;

200 int i;

201 int ix;

202 int iy;

203 int m;

204

205 dtemp = 0.0;

206

207 if ( n <= 0 )

208 {

209 return dtemp;

210 }

211 /*

212 Code for unequal increments or equal increments

213 not equal to 1.

214 */

215 if ( incx != 1 || incy != 1 )

216 {

217 if ( 0 <= incx )

218 {

219 ix = 0;

220 }

221 else

222 {

223 ix = ( - n + 1 ) * incx;

224 }

225

226 if ( 0 <= incy )

227 {

228 iy = 0;

229 }

230 else

231 {

232 iy = ( - n + 1 ) * incy;

233 }

234

235 for ( i = 0; i < n; i++ )

236 {

237 dtemp = dtemp + dx[ix] * dy[iy];

238 ix = ix + incx;

239 iy = iy + incy;

240 }
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241 }

242 /*

243 Code for both increments equal to 1.

244 */

245 else

246 {

247 m = n % 5;

248

249 for ( i = 0; i < m; i++ )

250 {

251 dtemp = dtemp + dx[i] * dy[i];

252 }

253

254 for ( i = m; i < n; i = i + 5 )

255 {

256 dtemp = dtemp + dx[i ] * dy[i ]

257 + dx[i+1] * dy[i+1]

258 + dx[i+2] * dy[i+2]

259 + dx[i+3] * dy[i+3]

260 + dx[i+4] * dy[i+4];

261 }

262 }

263 return dtemp;

264 }

265

266 /*****************************************************************/

267 static void sgefa (void)

268 /*****************************************************************/

269 /*

270 Purpose:

271

272 SGEFA factors a real general matrix.

273

274 Modified:

275

276 16 May 2005

277

278 Author:

279

280 C version by John Burkardt.

281

282 Reference:
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283

284 Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,

285 LINPACK User’s Guide,

286 SIAM, (Society for Industrial and Applied Mathematics),

287 3600 University City Science Center,

288 Philadelphia, PA, 19104-2688.

289 ISBN 0-89871-172-X

290

291 Parameters:

292

293 Input/output, float A[LDA*N].

294 On intput, the matrix to be factored.

295 On output, an upper triangular matrix and the multipliers used

to obtain

296 it. The factorization can be written A=L*U, where L is a

product of

297 permutation and unit lower triangular matrices, and U is upper

triangular.

298

299 Input, int LDA, the leading dimension of A.

300

301 Input, int N, the order of the matrix A.

302

303 Output, int IPVT[N], the pivot indices.

304

305 Output, int SGEFA, singularity indicator.

306 0, normal value.

307 K, if U(K,K) == 0. This is not an error condition for this

subroutine,

308 but it does indicate that SGESL or DGEDI will divide by zero if

called.

309 Use RCOND in SGECO for a reliable indication of singularity.

310 */

311 {

312 int j;

313 int k;

314 int l;

315 float t;

316 /* Originally function parameters */

317 int lda=LDA;

318 int n=N;

319
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320 /*

321 Gaussian elimination with partial pivoting.

322 */

323 info = 0;

324

325 for ( k = 1; k <= n-1; k++ )

326 {

327 /*

328 Find L = pivot index.

329 */

330 l = isamax ( n-k+1, a+(k-1)+(k-1)*lda, 1 ) + k - 1;

331 ipvt[k-1] = l;

332 /*

333 Zero pivot implies this column already triangularized.

334 */

335 if ( a[l-1+(k-1)*lda] == 0.0 )

336 {

337 info = k;

338 continue;

339 }

340 /*

341 Interchange if necessary.

342 */

343 if ( l != k )

344 {

345 t = a[l-1+(k-1)*lda];

346 a[l-1+(k-1)*lda] = a[k-1+(k-1)*lda];

347 a[k-1+(k-1)*lda] = t;

348 }

349 /*

350 Compute multipliers.

351 */

352 t = -1.0 / a[k-1+(k-1)*lda];

353

354 sscal ( n-k, t, a+k+(k-1)*lda, 1 );

355 /*

356 Row elimination with column indexing.

357 */

358 for ( j = k+1; j <= n; j++ )

359 {

360 t = a[l-1+(j-1)*lda];

361 if ( l != k )
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362 {

363 a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda];

364 a[k-1+(j-1)*lda] = t;

365 }

366 saxpy ( n-k, t, a+k+(k-1)*lda, 1, a+k+(j-1)*lda, 1 );

367 }

368

369 }

370

371 ipvt[n-1] = n;

372

373 if ( a[n-1+(n-1)*lda] == 0.0 )

374 {

375 info = n;

376 }

377

378 return;

379 }

380

381 /*****************************************************************/

382 static void sgesl (void)

383 /*****************************************************************/

384 /*

385 Purpose:

386

387 SGESL solves a real general linear system A * X = B.

388

389 Discussion:

390

391 SGESL can solve either of the systems A * X = B or A’ * X = B.

392

393 The system matrix must have been factored by SGECO or SGEFA.

394

395 A division by zero will occur if the input factor contains a

396 zero on the diagonal. Technically this indicates singularity

397 but it is often caused by improper arguments or improper

398 setting of LDA. It will not occur if the subroutines are

399 called correctly and if SGECO has set 0.0 < RCOND

400 or SGEFA has set INFO == 0.

401

402 Modified:

403
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404 16 May 2005

405

406 Author:

407

408 C version by John Burkardt.

409

410 Reference:

411

412 Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,

413 LINPACK User’s Guide,

414 SIAM, (Society for Industrial and Applied Mathematics),

415 3600 University City Science Center,

416 Philadelphia, PA, 19104-2688.

417 ISBN 0-89871-172-X

418

419 Parameters:

420

421 Input, float A[LDA*N], the output from SGECO or SGEFA.

422

423 Input, int LDA, the leading dimension of A.

424

425 Input, int N, the order of the matrix A.

426

427 Input, int IPVT[N], the pivot vector from SGECO or SGEFA.

428

429 Input/output, float B[N].

430 On input, the right hand side vector.

431 On output, the solution vector.

432

433 Input, int JOB.

434 0, solve A * X = B;

435 nonzero, solve A’ * X = B.

436 */

437 {

438 int k;

439 int l;

440 float t;

441 /* Originally function parameters */

442 int lda=LDA;

443 int n=N;

444

445 /*
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446 Solve A * X = B.

447 */

448 if ( job == 0 )

449 {

450 for ( k = 1; k <= n-1; k++ )

451 {

452 l = ipvt[k-1];

453 t = b[l-1];

454

455 if ( l != k )

456 {

457 b[l-1] = b[k-1];

458 b[k-1] = t;

459 }

460

461 saxpy ( n-k, t, a+k+(k-1)*lda, 1, b+k, 1 );

462

463 }

464

465 for ( k = n; 1 <= k; k-- )

466 {

467 b[k-1] = b[k-1] / a[k-1+(k-1)*lda];

468 t = -b[k-1];

469 saxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 );

470 }

471 }

472 /*

473 Solve A’ * X = B.

474 */

475 else

476 {

477 for ( k = 1; k <= n; k++ )

478 {

479 t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 );

480 b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda];

481 }

482

483 for ( k = n-1; 1 <= k; k-- )

484 {

485 b[k-1] = b[k-1] + ddot ( n-k, a+k+(k-1)*lda, 1, b+k, 1 );

486 l = ipvt[k-1];

487
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488 if ( l != k )

489 {

490 t = b[l-1];

491 b[l-1] = b[k-1];

492 b[k-1] = t;

493 }

494 }

495 }

496

497 return;

498 }

499

500 /*****************************************************************/

501 static void sscal ( int n, float sa, float x[], int incx )

502 /*****************************************************************/

503 /*

504 Purpose:

505

506 SSCAL scales a vector by a constant.

507

508 Modified:

509

510 30 March 2007

511

512 Author:

513

514 FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

515 C version by John Burkardt

516

517 Reference:

518

519 Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

520 LINPACK User’s Guide,

521 SIAM, 1979.

522

523 Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

524 Basic Linear Algebra Subprograms for Fortran Usage,

525 Algorithm 539,

526 ACM Transactions on Mathematical Software,

527 Volume 5, Number 3, September 1979, pages 308-323.

528
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529 Parameters:

530

531 Input, int N, the number of entries in the vector.

532

533 Input, float SA, the multiplier.

534

535 Input/output, float X[*], the vector to be scaled.

536

537 Input, int INCX, the increment between successive entries of X.

538 */

539 {

540 int i;

541 int ix;

542 int m;

543

544 if ( n <= 0 )

545 {

546 }

547 else if ( incx == 1 )

548 {

549 m = n % 5;

550

551 for ( i = 0; i < m; i++ )

552 {

553 x[i] = sa * x[i];

554 }

555

556 for ( i = m; i < n; i = i + 5 )

557 {

558 x[i] = sa * x[i];

559 x[i+1] = sa * x[i+1];

560 x[i+2] = sa * x[i+2];

561 x[i+3] = sa * x[i+3];

562 x[i+4] = sa * x[i+4];

563 }

564 }

565 else

566 {

567 if ( 0 <= incx )

568 {

569 ix = 0;

570 }



Appendix B. LINPACK benchmark code listings 214

571 else

572 {

573 ix = ( - n + 1 ) * incx;

574 }

575

576 for ( i = 0; i < n; i++ )

577 {

578 x[ix] = sa * x[ix];

579 ix = ix + incx;

580 }

581 }

582 return;

583 }

584

585 /*****************************************************************/

586 static int isamax ( int n, float dx[], int incx )

587 /*****************************************************************/

588 /*

589 Purpose:

590

591 ISAMAX finds the index of the vector element of maximum absolute

value.

592

593 Discussion:

594

595 WARNING: This index is a 1-based index, not a 0-based index!

596

597 Modified:

598

599 30 March 2007

600

601 Author:

602

603 FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

604 C version by John Burkardt

605

606 Reference:

607

608 Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

609 LINPACK User’s Guide,

610 SIAM, 1979.
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611

612 Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

613 Basic Linear Algebra Subprograms for Fortran Usage,

614 Algorithm 539,

615 ACM Transactions on Mathematical Software,

616 Volume 5, Number 3, September 1979, pages 308-323.

617

618 Parameters:

619

620 Input, int N, the number of entries in the vector.

621

622 Input, float X[*], the vector to be examined.

623

624 Input, int INCX, the increment between successive entries of SX

625

626 Output, int ISAMAX, the index of the element of maximum

627 absolute value.

628 */

629 {

630 float smax;

631 int i;

632 int ix;

633 int value;

634

635 value = 0;

636

637 if ( n < 1 || incx <= 0 )

638 {

639 return value;

640 }

641

642 value = 1;

643

644 if ( n == 1 )

645 {

646 return value;

647 }

648

649 if ( incx == 1 )

650 {

651 smax = r8_abs ( dx[0] );

652
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653 for ( i = 1; i < n; i++ )

654 {

655 if ( smax < r8_abs ( dx[i] ) )

656 {

657 value = i + 1;

658 smax = r8_abs ( dx[i] );

659 }

660 }

661 }

662 else

663 {

664 ix = 0;

665 smax = r8_abs ( dx[0] );

666 ix = ix + incx;

667

668 for ( i = 1; i < n; i++ )

669 {

670 if ( smax < r8_abs ( dx[ix] ) )

671 {

672 value = i + 1;

673 smax = r8_abs ( dx[ix] );

674 }

675 ix = ix + incx;

676 }

677 }

678

679 return value;

680 }

681

682 /*****************************************************************/

683 static float r8_abs ( float x )

684 /*****************************************************************/

685 /*

686 Purpose:

687

688 R8_ABS returns the absolute value of a R8.

689

690 Modified:

691

692 02 April 2005

693

694 Author:
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695

696 John Burkardt

697

698 Parameters:

699

700 Input, float X, the quantity whose absolute value is desired.

701

702 Output, float R8_ABS, the absolute value of X.

703 */

704 {

705 float value;

706

707 if ( 0.0 <= x )

708 {

709 value = x;

710 }

711 else

712 {

713 value = -x;

714 }

715 return value;

716 }

Listing B.2: LINPACK C benchmark kernel file

1 import linpack_bench_externs

2 import time

3

4 #*****************************************************************

5 def main():

6 #*****************************************************************

7 #

8 # Purpose:

9 #

10 # MAIN is the main program for LINPACK_BENCH.

11 #

12 # Discussion:

13 #

14 # LINPACK_BENCH drives the double precision LINPACK benchmark

program.

15 #

16 # Modified:
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17 #

18 # 25 July 2008

19 #

20 # Parameters:

21 #

22 # N is the problem size.

23 #

24 N = 1000

25 LDA = N + 1

26 cray = 0.056

27 times = [0.0]*6

28

29 realsize = native sizeof(cray)

30 if realsize == 4:

31 precision = "Single"

32 else:

33 precision = "Double"

34

35 timestamp ( )

36 print ( "\nLINPACK_BENCH\n" )

37 print ( " vPython (Olympus) version\n" )

38 print ( "\n The LINPACK benchmark.\n" )

39 print ( " Language: Python\n" )

40 print ( " Datatype: ", precision, " precision real\n" )

41 print ( " Matrix order N = ", N, "\n" )

42 print ( " Leading matrix dimension LDA = ", LDA, "\n" )

43

44 ops = ( 2 * N * N * N ) / 3.0 + 2.0 * ( N * N )

45

46 #

47 # Allocate space for arrays.

48 #

49 a = [0.0] * LDA * N

50 r8mat_gen ( a, LDA, N )

51

52 b = [0.0] * N

53 ipvt = [0] * N

54 resid = [0.0] * N

55 rhs = [0.0] * N

56 x = [0.0] * N

57

58 a_max = 0.0
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59 j = 0

60 while j < N:

61 i = 0

62 while i < N:

63 a_max = r8_max ( a_max, a[i+j*LDA] )

64 i += 1

65 j += 1

66

67 i = 0

68 while i < N:

69 x[i] = 1.0

70 i += 1

71

72 i = 0

73 while i < N:

74 b[i] = 0.0

75 j = 0

76 while j < N:

77 b[i] = b[i] + a[i+j*LDA] * x[j]

78 j += 1

79 i += 1

80

81 #t1 = [0.0]

82 t1 = cpu_time ( )

83

84 info = dgefa ( a, LDA, N, ipvt )

85

86 if ( info != 0 ):

87 print ( "\nLINPACK_BENCH - Fatal error!\n" )

88 print ( " The matrix A is apparently singular.\n" )

89 print ( " Abnormal end of execution.\n" )

90 return 1

91

92 #t2 = [0.0]

93 t2 = cpu_time ( )

94 times[0] = t2 - t1

95

96 t1 = cpu_time ()

97

98 job = 0

99

100 dgesl ( a, LDA, N, ipvt, b, job )
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101

102 t2 = cpu_time ( )

103

104 times[1] = t2 - t1

105

106 total = times[0] + times[1]

107 #

108 # Compute a residual to verify results.

109 #

110 r8mat_gen ( a, LDA, N )

111

112 i = 0

113 while i < N:

114

115 x[i] = 1.0

116 i += 1

117

118 i = 0

119 while i < N:

120 rhs[i] = 0.0

121 j = 0

122 while j < N:

123 rhs[i] = rhs[i] + a[i+j*LDA] * x[j]

124 j += 1

125 i += 1

126

127 i = 0

128 while i < N:

129 resid[i] = (rhs[i]*-1)

130 j = 0

131 while j < N:

132 resid[i] = resid[i] + a[i+j*LDA] * b[j]

133 j += 1

134 i += 1

135

136 resid_max = 0.0

137 i = 0

138 while i < N:

139 resid_max = r8_max ( resid_max, r8_abs ( resid[i] ) )

140 i += 1

141

142 b_max = 0.0
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143 i = 0

144 while i < N:

145 b_max = r8_max ( b_max, r8_abs ( b[i] ) )

146 i += 1

147

148 eps = r8_epsilon ( )

149

150 residn = resid_max / (float(N)) / a_max / b_max / eps

151

152 times[2] = total

153 if ( 0.0 < total ):

154 times[3] = ops / ( 1.0E+06 * total )

155 else:

156 times[3] = -1.0

157

158 times[4] = 2.0 / times[3]

159 times[5] = total / cray

160

161 native printf ( "\n" )

162 native printf ( " Norm. Resid Resid MACHEP

X[1] X[N]\n" )

163 native printf ( "\n" )

164 native printf ( " %14f %14f %14e %14f %14f\n", residn,

resid_max, eps, b[0], b[N-1] )

165 native printf ( "\n" )

166 native printf ( " Factor Solve Total MFLOPS

Unit Cray-Ratio\n" )

167 native printf ( "\n" )

168 native printf ( " %9f %9f %9f %9f %9f %9f\n", times[0],

times[1], times[2], times[3], times[4], times[5] )

169

170 #

171 # Terminate.

172 #

173 print ( "\n","LINPACK_BENCH\n" )

174 print ( " Normal end of execution.\n\n" )

175

176 timestamp ( )

177

178 return 0

179

180
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181 main()

Listing B.3: LINPACK ePython benchmark main file

1 external r8_epsilon()[locals:1]->float

2 external r8_abs(float)[locals:1]->float

3 external r8_random(int*)[locals:12]->float

4 external r8mat_gen(float*,int,int)[locals:3]

5 external r8_max(float,float)[locals:1]->float

6 external daxpy(int,float,float*,int, float*,int)[locals:4]

7 external ddot(int,float*,int,float*,int)[locals:5]->float

8 external dscal(int,float,float*,int)[locals:3]

9 external idamax(int,float*,int)[locals:4]->int

10 external dgefa(float*,int,int,int*)[locals:5]->int

11 external dgesl(float*,int,int,int*,float*,int)[locals:3]

Listing B.4: LINPACK ePython benchmark externals file

1 #*****************************************************************

2 def r8_epsilon():

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # R8_EPSILON returns the R8 round off unit.

8 #

9 # Discussion:

10 #

11 # R8_EPSILON is a number R which is a power of 2 with the

property that,

12 # to the precision of the computer’s arithmetic,

13 # 1 < 1 + R

14 # but

15 # 1 = ( 1 + R / 2 )

16 #

17 # Licensing:

18 #

19 # This code is distributed under the GNU LGPL license.

20 #

21 # Modified:

22 #
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23 # 01 September 2012

24 #

25 # Author:

26 #

27 # John Burkardt

28 #

29 # Parameters:

30 #

31 # Output, double R8_EPSILON, the R8 round-off unit.

32 #

33

34 value = float("2.220446049250313E-016")

35

36 return value

37

38

39 # NOTE: Place function calls here to create the typed variants you

need

40

41 # Default for linpack_bench:

42 # r8_epsilon () -> float

43 r = r8_epsilon()

Listing B.5: LINPACK ePython benchmark r8 epsilon file

1 #*****************************************************************

2 def r8_abs(x):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # R8_ABS returns the absolute value of a R8.

8 #

9 # Modified:

10 #

11 # 02 April 2005

12 #

13 # Author:

14 #

15 # John Burkardt

16 #

17 # Parameters:
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18 #

19 # Input, double X, the quantity whose absolute value is desired.

20 #

21 # Output, double R8_ABS, the absolute value of X.

22 #

23

24 value = 0.0

25 if ( 0.0 <= x ):

26 value = x

27 else:

28 value = (x*-1)

29

30 return value

31

32

33 # NOTE: Place function calls here to create the typed variants you

need

34

35 # Default for linpack_bench:

36 # r8_abs ( float x ) -> float

37 r = r8_abs(0.0)

Listing B.6: LINPACK ePython benchmark r8 abs file

1 #*****************************************************************

2 def r8_random(iseed):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # R8_RANDOM returns a uniformly distributed random number between

0 and 1.

8 #

9 # Discussion:

10 #

11 # This routine uses a multiplicative congruential method with

modulus

12 # 2**48 and multiplier 33952834046453 (see G.S.Fishman,

13 # ’Multiplicative congruential random number generators with

modulus

14 # 2**b: an exhaustive analysis for b = 32 and a partial analysis

for
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15 # b = 48’, Math. Comp. 189, pp 331-344, 1990).

16 #

17 # 48-bit integers are stored in 4 integer array elements with 12

bits

18 # per element. Hence the routine is portable across machines with

19 # integers of 32 bits or more.

20 #

21 # Parameters:

22 #

23 # Input/output, integer ISEED(4).

24 # On entry, the seed of the random number generator; the array

25 # elements must be between 0 and 4095, and ISEED(4) must be odd.

26 # On exit, the seed is updated.

27 #

28 # Output, double R8_RANDOM, the next pseudorandom number.

29 #

30 #

31 ipw2 = 4096

32 it1 = 0

33 it2 = 0

34 it3 = 0

35 it4 = 0

36 m1 = 494

37 m2 = 322

38 m3 = 2508

39 m4 = 2549

40 one = 1.0

41 r = 1.0 / 4096.0

42 value = 0.0

43 #

44 # Multiply the seed by the multiplier modulo 2**48.

45 #

46 it4 = iseed[3] * m4

47 it3 = it4 / ipw2

48 it4 = it4 - ipw2 * it3

49 it3 = it3 + iseed[2] * m4 + iseed[3] * m3

50 it2 = it3 / ipw2

51 it3 = it3 - ipw2 * it2

52 it2 = it2 + iseed[1] * m4 + iseed[2] * m3 + iseed[3] * m2

53 it1 = it2 / ipw2

54 it2 = it2 - ipw2 * it1

55 it1 = it1 + iseed[0] * m4 + iseed[1] * m3 + iseed[2] * m2 + iseed
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[3] * m1

56 it1 = (it1 % ipw2 )

57 #

58 # Return updated seed

59 #

60 iseed[0] = it1

61 iseed[1] = it2

62 iseed[2] = it3

63 iseed[3] = it4

64 #

65 # Convert 48-bit integer to a real number in the interval (0,1)

66 #

67 value = r * ( ( it1 ) + r * ( ( it2 ) + r * ( ( it3 ) + r * ( (

it4 ) ) ) ) )

68

69 return value

70

71 # NOTE: Place function calls here to create the typed variants you

need

72

73 # Default for linpack_bench:

74 # r8_random ( int iseed[4] ) -> float

75 d = r8_random([0]*4)

Listing B.7: LINPACK ePython benchmark r8 random file

1 external r8_epsilon()->float

2 external r8_abs(float)[locals:1]->float

3 external r8_random(int*)[locals:12]->float

4

5 #*****************************************************************

6 def r8mat_gen(a,lda,n):

7 #*****************************************************************

8 #

9 # Purpose:

10 #

11 # R8MAT_GEN generates a random R8MAT.

12 #

13 # Modified:

14 #

15 # 06 June 2005

16 #
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17 # Parameters:

18 #

19 # Input, integer LDA, the leading dimension of the matrix.

20 #

21 # Input, integer N, the order of the matrix.

22 #

23 # Output, double R8MAT_GEN[LDA*N], the N by N matrix.

24 #

25 init = [ 1, 2, 3, 1325 ]

26

27 j = 1

28 while j <= n:

29 i = 1

30 while i <= n:

31 a[i-1+(j-1)*lda] = r8_random ( init ) - 0.5

32 i += 1

33 j += 1

34

35 return

36

37

38 # NOTE: Place function calls here to create the typed variants you

need

39

40 # Default for linpack_bench:

41 # r8mat_gen ( float*, int lda, int n )

42 arr = [0.0] * 4

43 r8mat_gen(arr,0,0)

Listing B.8: LINPACK ePython benchmark r8mat gen file

1 #*****************************************************************

2 def r8_max(x,y):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # R8_MAX returns the maximum of two R8’s.

8 #

9 # Modified:

10 #

11 # 18 August 2004
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12 #

13 # Author:

14 #

15 # John Burkardt

16 #

17 # Parameters:

18 #

19 # Input, double X, Y, the quantities to compare.

20 #

21 # Output, double R8_MAX, the maximum of X and Y.

22 #

23

24 if ( y < x ):

25 return x

26 else:

27 return y

28

29

30 # NOTE: Place function calls here to create the typed variants you

need

31

32 # Default for linpack_bench:

33 # r8_max ( float x, float y ) -> float

34 r = r8_max(0.0,0.0)

Listing B.9: LINPACK ePython benchmark r8 max file

1 #*****************************************************************

2 def daxpy(n,da,dx,incx,dy,incy):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # DAXPY computes constant times a vector plus a vector.

8 #

9 # Discussion:

10 #

11 # This routine uses unrolled loops for increments equal to one.

12 #

13 # Modified:

14 #

15 # 30 March 2007
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16 #

17 # Author:

18 #

19 # FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

20 # C version by John Burkardt

21 #

22 # Reference:

23 #

24 # Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

25 # LINPACK User’s Guide,

26 # SIAM, 1979.

27 #

28 # Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

29 # Basic Linear Algebra Subprograms for Fortran Usage,

30 # Algorithm 539,

31 # ACM Transactions on Mathematical Software,

32 # Volume 5, Number 3, September 1979, pages 308-323.

33 #

34 # Parameters:

35 #

36 # Input, int N, the number of elements in DX and DY.

37 #

38 # Input, double DA, the multiplier of DX.

39 #

40 # Input, double DX[*], the first vector.

41 #

42 # Input, int INCX, the increment between successive entries of DX

43 #

44 # Input/output, double DY[*], the second vector.

45 # On output, DY[*] has been replaced by DY[*] + DA * DX[*].

46 #

47 # Input, int INCY, the increment between successive entries of DY

48 #

49 #

50 if ( n <= 0 ):

51 return

52

53 if ( da == 0.0 ):

54 return

55 #

56 # Code for unequal increments or equal increments
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57 # not equal to 1.

58 #

59 if ( (incx != 1) or (incy != 1) ):

60 if ( 0 <= incx ):

61 ix = 0

62 else:

63 ix = ( (n*-1) + 1 ) * incx

64

65 if ( 0 <= incy ):

66 iy = 0

67 else:

68 iy = ( (n*-1) + 1 ) * incy

69

70 i = 0

71 while i < N:

72 dy[iy] = dy[iy] + da * dx[ix]

73 ix = ix + incx

74 iy = iy + incy

75 i += 1

76

77 # Code for both increments equal to 1.

78 #

79 else:

80 m = n % 4

81

82 i = 0

83 while i < m:

84 dy[i] = dy[i] + da * dx[i]

85 i += 1

86

87 i = m

88 while i < n:

89 dy[i ] = dy[i ] + da * dx[i ]

90 dy[i+1] = dy[i+1] + da * dx[i+1]

91 dy[i+2] = dy[i+2] + da * dx[i+2]

92 dy[i+3] = dy[i+3] + da * dx[i+3]

93 i += 4

94

95 return

96

97 # NOTE: Place function calls here to create the typed variants you

need
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98

99 # Default for linpack_bench:

100 # daxpy ( int n, float da, float* dx, int incx, float* dy, int incy

)

101 daxpy(10,0.0,[0.0]*10,1,[0.0]*10,1)

Listing B.10: LINPACK ePython benchmark daxpy file

1 #*****************************************************************

2 def ddot(n,dx,incx,dy,incy):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # DDOT forms the dot product of two vectors.

8 #

9 # Discussion:

10 #

11 # This routine uses unrolled loops for increments equal to one.

12 #

13 # Modified:

14 #

15 # 30 March 2007

16 #

17 # Author:

18 #

19 # FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

20 # C version by John Burkardt

21 #

22 # Reference:

23 #

24 # Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

25 # LINPACK User’s Guide,

26 # SIAM, 1979.

27 #

28 # Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

29 # Basic Linear Algebra Subprograms for Fortran Usage,

30 # Algorithm 539,

31 # ACM Transactions on Mathematical Software,

32 # Volume 5, Number 3, September 1979, pages 308-323.

33 #
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34 # Parameters:

35 #

36 # Input, int N, the number of entries in the vectors.

37 #

38 # Input, double DX[*], the first vector.

39 #

40 # Input, int INCX, the increment between successive entries in DX

41 #

42 # Input, double DY[*], the second vector.

43 #

44 # Input, int INCY, the increment between successive entries in DY

45 #

46 # Output, double DDOT, the sum of the product of the

corresponding

47 # entries of DX and DY.

48 #

49

50 dtemp = 0.0

51

52 if ( n <= 0 ):

53 return dtemp

54 #

55 # Code for unequal increments or equal increments

56 # not equal to 1.

57 #

58

59 if ( incx != 1 or incy != 1 ):

60 if ( 0 <= incx ):

61 ix = 0

62 else:

63 ix = ( (n*-1) + 1 ) * incx

64

65 if ( 0 <= incy ):

66 iy = 0

67 else:

68 iy = ( (n*-1) + 1 ) * incy

69

70 i = 0

71 while i < n:

72 dtemp = dtemp + dx[ix] * dy[iy]

73 ix = ix + incx

74 iy = iy + incy
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75 i += 1

76

77 #

78 # Code for both increments equal to 1.

79 #

80 else:

81 m = n % 5

82

83 i = 0

84 while i < m:

85 dtemp = dtemp + dx[i] * dy[i]

86 i += 1

87

88 i = m

89 while i < n:

90 dtemp = dtemp + dx[i ] * dy[i ] + dx[i+1] * dy[i+1] + dx[i

+2] * dy[i+2] + dx[i+3] * dy[i+3] + dx[i+4] * dy[i+4]

91 i += 5

92

93 return dtemp

94

95

96 # NOTE: Place function calls here to create the typed variants you

need

97

98 # Default for linpack_bench:

99 # ddot ( int n, float* dx, int incx, float* dy, int incy ) -> float

100 r = ddot(0,[0.0]*4,0,[0.0]*4,0)

Listing B.11: LINPACK ePython benchmark ddot file

1 #*****************************************************************

2 def dscal(n,sa,x,incx):

3 #*****************************************************************

4 #

5 # Purpose:

6 #

7 # DSCAL scales a vector by a constant.

8 #

9 # Modified:

10 #

11 # 30 March 2007
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12 #

13 # Author:

14 #

15 # FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

16 # C version by John Burkardt

17 #

18 # Reference:

19 #

20 # Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

21 # LINPACK User’s Guide,

22 # SIAM, 1979.

23 #

24 # Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

25 # Basic Linear Algebra Subprograms for Fortran Usage,

26 # Algorithm 539,

27 # ACM Transactions on Mathematical Software,

28 # Volume 5, Number 3, September 1979, pages 308-323.

29 #

30 # Parameters:

31 #

32 # Input, int N, the number of entries in the vector.

33 #

34 # Input, double SA, the multiplier.

35 #

36 # Input/output, double X[*], the vector to be scaled.

37 #

38 # Input, int INCX, the increment between successive entries of X.

39 #

40 if ( n <= 0 ):

41 return

42 elif ( incx == 1 ):

43 m = n % 5

44

45 i = 0

46 while i < m:

47 x[i] = sa * x[i]

48 i += 1

49

50 i = m

51 while i < n:

52 x[i] = sa * x[i]
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53 x[i+1] = sa * x[i+1]

54 x[i+2] = sa * x[i+2]

55 x[i+3] = sa * x[i+3]

56 x[i+4] = sa * x[i+4]

57 i += 5

58 else:

59 if ( 0 <= incx ):

60 ix = 0

61 else:

62 ix = ( (n*-1) + 1 ) * incx

63

64 i = 0

65 while i < n:

66 x[ix] = sa * x[ix]

67 ix = ix + incx

68 i += 1

69

70 return

71

72

73 # NOTE: Place function calls here to create the typed variants you

need

74

75 # Default for linpack_bench:

76 # dscal ( int n, float sa, float* x, int incx )

77 dscal(0,0.0,[0.0]*4,0)

Listing B.12: LINPACK ePython benchmark dscal file

1 external r8_epsilon()->float

2 external r8_abs(float)[locals:1]->float

3

4 #*****************************************************************

5 def idamax(n,dx,incx):

6 #*****************************************************************

7 #

8 # Purpose:

9 #

10 # IDAMAX finds the index of the vector element of maximum

absolute value.

11 #

12 # Discussion:
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13 #

14 # WARNING: This index is a 1-based index, not a 0-based index!

15 #

16 # Modified:

17 #

18 # 30 March 2007

19 #

20 # Author:

21 #

22 # FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch,

Pete Stewart.

23 # C version by John Burkardt

24 #

25 # Reference:

26 #

27 # Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,

28 # LINPACK User’s Guide,

29 # SIAM, 1979.

30 #

31 # Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,

32 # Basic Linear Algebra Subprograms for Fortran Usage,

33 # Algorithm 539,

34 # ACM Transactions on Mathematical Software,

35 # Volume 5, Number 3, September 1979, pages 308-323.

36 #

37 # Parameters:

38 #

39 # Input, int N, the number of entries in the vector.

40 #

41 # Input, double X[*], the vector to be examined.

42 #

43 # Input, int INCX, the increment between successive entries of SX

44 #

45 # Output, int IDAMAX, the index of the element of maximum

46 # absolute value.

47 #

48 value = 0

49

50 if ( n < 1 or incx <= 0 ):

51 return value

52

53 value = 1
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54

55 if ( n == 1 ):

56 return value

57

58 if ( incx == 1 ):

59 dmax = r8_abs ( dx[0] )

60

61 i = 1

62 while i < n:

63 if ( dmax < r8_abs ( dx[i] ) ):

64 value = i + 1

65 dmax = r8_abs ( dx[i] )

66 i += 1

67 else:

68 ix = 0

69 dmax = r8_abs ( dx[0] )

70 ix = ix + incx

71

72 i = 1

73 while i < n:

74 if ( dmax < r8_abs ( dx[ix] ) ):

75 value = i + 1

76 dmax = r8_abs ( dx[ix] )

77

78 ix = ix + incx

79 i += 1

80

81 return value

82

83 # NOTE: Place function calls here to create the typed variants you

need

84

85 # Default for linpack_bench:

86 # idamax ( int n, float* dx, int incx ) -> int

87 r = idamax(0,[0.0]*4,0)

Listing B.13: LINPACK ePython benchmark idamax file

1 external r8_epsilon()->float

2 external r8_abs(float)[locals:1]->float

3 external r8_random(int*)[locals:12]->float

4 external r8mat_gen(float*,int,int)[locals:3]
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5 external r8_max(float,float)[locals:1]->float

6 external daxpy(int,float,float*,int, float*,int)[locals:4]

7 external ddot(int,float*,int,float*,int)[locals:5]->float

8 external dscal(int,float,float*,int)[locals:3]

9 external idamax(int,float*,int)[locals:4]->int

10 external dgefa(float*,int,int,int*)->int

11 external dgesl_proxy(float*,int,int,int*,float*,int)

12

13 #*****************************************************************

14 def dgesl(a,lda,n,ipvt,b,job):

15 #*****************************************************************

16 #

17 # Purpose:

18 #

19 # DGESL solves a real general linear system A * X = B.

20 #

21 # Discussion:

22 #

23 # DGESL can solve either of the systems A * X = B or A’ * X = B.

24 #

25 # The system matrix must have been factored by DGECO or DGEFA.

26 #

27 # A division by zero will occur if the input factor contains a

28 # zero on the diagonal. Technically this indicates singularity

29 # but it is often caused by improper arguments or improper

30 # setting of LDA. It will not occur if the subroutines are

31 # called correctly and if DGECO has set 0.0 < RCOND

32 # or DGEFA has set INFO == 0.

33 #

34 # Modified:

35 #

36 # 16 May 2005

37 #

38 # Author:

39 #

40 # C version by John Burkardt.

41 #

42 # Reference:

43 #

44 # Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,

45 # LINPACK User’s Guide,

46 # SIAM, (Society for Industrial and Applied Mathematics),
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47 # 3600 University City Science Center,

48 # Philadelphia, PA, 19104-2688.

49 # ISBN 0-89871-172-X

50 #

51 # Parameters:

52 #

53 # Input, double A[LDA*N], the output from DGECO or DGEFA.

54 #

55 # Input, int LDA, the leading dimension of A.

56 #

57 # Input, int N, the order of the matrix A.

58 #

59 # Input, int IPVT[N], the pivot vector from DGECO or DGEFA.

60 #

61 # Input/output, double B[N].

62 # On input, the right hand side vector.

63 # On output, the solution vector.

64 #

65 # Input, int JOB.

66 # 0, solve A * X = B;

67 # nonzero, solve A’ * X = B.

68 #

69 #

70 # Solve A * X = B.

71 #

72 if ( job == 0 ):

73 k = 1

74 while k < n:

75 l = ipvt[k-1]

76 t = b[l-1]

77

78 if ( l != k ):

79 b[l-1] = b[k-1]

80 b[k-1] = t

81

82 daxpy ( n-k, t, a+k+(k-1)*lda, 1, b+k, 1 )

83 #b[k:k+(n-k)] = daxpy ( n-k, t, a[(k+(k-1)*lda):(k+(k-1)*lda)

+(n-k)], 1, b[k:k+(n-k)], 1 )

84

85 k += 1

86

87 k = n
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88 while k > 0:

89 b[k-1] = b[k-1] / a[k-1+(k-1)*lda]

90 t = (b[k-1]*-1)

91

92 daxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 )

93 #b = daxpy ( k-1, t, a[(0+(k-1)*lda):(0+(k-1)*lda)+(k-1)], 1,

b, 1 )

94

95 k -= 1

96 #

97 # Solve A’ * X = B.

98 #

99 else:

100 k = 1

101 while k <= n:

102 t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 )

103 #t = ddot ( k-1, a[(0+(k-1)*lda):(0+(k-1)*lda)+(k-1)], 1, b, 1

)

104

105 b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda]

106 k += 1

107

108 k = n - 1

109 while k > 0:

110 b[k-1] = b[k-1] + ddot ( n-k, a+k+(k-1)*lda, 1, b+k, 1 )

111 #b[k-1] = b[k-1] + ddot ( n-k, a[(k+(k-1)*lda):(k+(k-1)*lda)+(

n-k)], 1, b+k, 1 )

112

113 l = ipvt[k-1]

114

115 if ( l != k ):

116 t = b[l-1]

117 b[l-1] = b[k-1]

118 b[k-1] = t

119 k -= 1

120

121 return

122

123

124 # NOTE: Place function calls here to create the typed variants you

need

125
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126 # Default for linpack_bench:

127 # dgesl ( float* a, int lda, int n, int* ipvt, float* b, int job )

128 dgesl([0.0]*4,0,0,[0]*4,[0.0]*4,0)

Listing B.14: LINPACK ePython benchmark dgesl file

1 external r8_epsilon()->float

2 external r8_abs(float)[locals:1]->float

3 external r8_random(int*)[locals:12]->float

4 external r8mat_gen(float*,int,int)[locals:3]

5 external r8_max(float,float)[locals:1]->float

6 external daxpy(int,float,float*,int, float*,int)[locals:4]

7 external ddot(int,float*,int,float*,int)[locals:5]->float

8 external dscal(int,float,float*,int)[locals:3]

9 external idamax(int,float*,int)[locals:4]->int

10 external dgefa_proxy(float*,int,int,int*)->int

11 external dgesl(float*,int,int,int*,float*,int)

12

13 #*****************************************************************

14 def dgefa(a,lda,n,ipvt):

15 #*****************************************************************

16 #

17 # Purpose:

18 #

19 # DGEFA factors a real general matrix.

20 #

21 # Modified:

22 #

23 # 16 May 2005

24 #

25 # Author:

26 #

27 # C version by John Burkardt.

28 #

29 # Reference:

30 #

31 # Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,

32 # LINPACK User’s Guide,

33 # SIAM, (Society for Industrial and Applied Mathematics),

34 # 3600 University City Science Center,

35 # Philadelphia, PA, 19104-2688.

36 # ISBN 0-89871-172-X
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37 #

38 # Parameters:

39 #

40 # Input/output, double A[LDA*N].

41 # On intput, the matrix to be factored.

42 # On output, an upper triangular matrix and the multipliers used

to obtain

43 # it. The factorization can be written A=L*U, where L is a

product of

44 # permutation and unit lower triangular matrices, and U is upper

triangular.

45 #

46 # Input, int LDA, the leading dimension of A.

47 #

48 # Input, int N, the order of the matrix A.

49 #

50 # Output, int IPVT[N], the pivot indices.

51 #

52 # Output, int DGEFA, singularity indicator.

53 # 0, normal value.

54 # K, if U(K,K) == 0. This is not an error condition for this

subroutine,

55 # but it does indicate that DGESL or DGEDI will divide by zero if

called.

56 # Use RCOND in DGECO for a reliable indication of singularity.

57 #

58

59 #

60 # Gaussian elimination with partial pivoting.

61 #

62 info = 0

63 k = 1

64

65 while k < n:

66 #

67 # Find L = pivot index.

68 #

69 l = idamax ( n-k+1, a+(k-1)+(k-1)*lda, 1 ) + k - 1

70

71 #l = idamax ( n-k+1, a[((k-1)+(k-1)*lda):((k-1)+(k-1)*lda)+(n-k

+1)], 1 ) + k - 1

72
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73 ipvt[k-1] = l

74 #

75 # Zero pivot implies this column already triangularized.

76 #

77 if ( a[l-1+(k-1)*lda] == 0.0 ):

78 info = k

79 k += 1

80 continue

81 #

82 # Interchange if necessary.

83 #

84 if ( l != k ):

85 t = a[l-1+(k-1)*lda]

86 a[l-1+(k-1)*lda] = a[k-1+(k-1)*lda]

87 a[k-1+(k-1)*lda] = t

88 #

89 # Compute multipliers.

90 #

91 t = (-1.0 / a[k-1+(k-1)*lda])

92

93 dscal ( n-k, t, a+k+(k-1)*lda, 1 )

94

95 #a[(k+(k-1)*lda):(k+(k-1)*lda)+(n-k)] = dscal ( n-k, t, a[(k+(k

-1)*lda):(k+(k-1)*lda)+(n-k)], 1 )

96

97 #

98 # Row elimination with column indexing.

99 #

100 j = k + 1

101 while j <= n:

102 t = a[l-1+(j-1)*lda]

103 if ( l != k ):

104 a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda]

105 a[k-1+(j-1)*lda] = t

106 daxpy ( n-k, t, a+k+(k-1)*lda, 1, a+k+(j-1)*lda, 1 )

107

108 #a[(k+(j-1)*lda):(k+(j-1)*lda)+(n-k)] = daxpy ( n-k, t, a[(k+(

k-1)*lda):(k+(k-1)*lda)+(n-k)], 1, a[(k+(j-1)*lda):(k+(j-1)*lda)

+(n-k)], 1 )

109

110 j += 1

111 k += 1
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112

113 ipvt[n-1] = n

114

115 if ( a[n-1+(n-1)*lda] == 0.0 ):

116 info = n

117

118 return info

119

120

121 # NOTE: Place function calls here to create the typed variants you

need

122

123 # Default for linpack_bench:

124 # dgefa ( float* a, int lda, int n, int* ipvt ) ->int

125 r=dgefa([0.0]*4,0,0,[0]*4)

Listing B.15: LINPACK ePython benchmark dgefa file



C
Sieve of Eratosthenes code listings

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <string.h>

5 #include <time.h>

6 #include <unistd.h>

7

8 #include "eithne.h"

9 #include "kernels.h"

10

11 #define TARGET_ID 1

12 #define SLEEP_TIME 0000

13

14 int main(void);

15 float cpu_time(void);

16 void timestamp(void);

17 void printarray(const char*, float*, int);

18

19 static int result=0;

20

245
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21 /* Main data transfer and kernel control function for

22 * Sieve of Erastosthenes benchmark.

23 */

24 int main(void) {

25

26 float t1, t2, time;

27 EithneSharedMem eithne_buffer;

28 static EithneVariable variables[1];

29

30 eithne_buffer = EITHNE_ALLOC_MEM(sizeof(int));

31

32 EITHNE_INIT_HOST(variables, HOST_ID, eithne_buffer +

EITHNE_DATA_OFFSET, eithne_buffer);

33

34 /* This will load the code onto the cores */

35 EITHNE_INIT_CORES(1);

36 EITHNE_START_CORES(1);

37

38 usleep(SLEEP_TIME);

39

40 timestamp();

41

42 EITHNE_REGISTER_SCALAR(variables, RESULT, EITHNE_INTEGER, result);

43

44 printf("Sieve of Erastosthenes - %d iterations...\n",ITERATIONS);

45

46 t1 = cpu_time();

47

48 /* The kernel listener will execute the requested function */

49 EITHNE_EXECUTE(TARGET_ID, SIEVE);

50

51 t2 = cpu_time();

52

53 /* Output variables from SIEVE */

54 EITHNE_RECV(variables, TARGET_ID, RESULT);

55

56 time = t2 - t1;

57

58 /* Terminate */

59 EITHNE_FINALISE_CORES;

60

61 printf("There are %u primes less than %u\n", result, SIZE);
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62 printf("%fs\n", time);

63

64 timestamp();

65

66 return 0;

67 }

68

69 /************************************************************/

70 float cpu_time ( void )

71 /************************************************************/

72 /*

73 Purpose:

74

75 CPU_TIME returns the current reading on the CPU clock.

76

77 Discussion:

78

79 The CPU time measurements available through this routine are

often

80 not very accurate. In some cases, the accuracy is no better

than

81 a hundredth of a second.

82

83 Licensing:

84

85 This code is distributed under the GNU LGPL license.

86

87 Modified:

88

89 06 June 2005

90

91 Author:

92

93 John Burkardt

94

95 Parameters:

96

97 Output, float CPU_TIME, the current reading of the CPU clock, in

seconds.

98 */

99 {

100 float value;
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101

102 value = ( float ) clock ( )

103 / ( float ) CLOCKS_PER_SEC;

104

105 return value;

106 }

107

108 /************************************************************/

109 void timestamp ( void )

110 /************************************************************/

111 /*

112 Purpose:

113

114 TIMESTAMP prints the current YMDHMS date as a time stamp.

115

116 Example:

117

118 31 May 2001 09:45:54 AM

119

120 Licensing:

121

122 This code is distributed under the GNU LGPL license.

123

124 Modified:

125

126 24 September 2003

127

128 Author:

129

130 John Burkardt

131

132 Parameters:

133

134 None

135 */

136 {

137 # define TIME_SIZE 40

138

139 static char time_buffer[TIME_SIZE];

140 const struct tm *tm;

141 size_t len;

142 time_t now;
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143

144 now = time ( NULL );

145 tm = localtime ( &now );

146

147 len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p",

tm );

148

149 printf ( "%s\n", time_buffer );

150

151 return;

152 # undef TIME_SIZE

153 }

Listing C.1: Sieve benchmark host driver code with Eithne API calls

1 #include "eithne.h"

2 #include "kernels.h"

3

4 static EithneVariable variables[1];

5 static char flags[SIZE+1];

6 static int count;

7

8 static void sieve(void);

9

10 /************************************************************/

11 /* Initialise the kernel function pointer table */

12 /************************************************************/

13 void kernel_init(EithneTargetId id, EithneSharedMem buffer) {

14 static EithneKernel kernels[] = { sieve };

15

16 EITHNE_INIT_DEVICE(variables, id, buffer + EITHNE_DATA_OFFSET,

buffer, kernels);

17

18 EITHNE_REGISTER_SCALAR(variables, RESULT, EITHNE_INTEGER, count);

19

20 EITHNE_START_LISTENER;

21 }

22

23 static void sieve(void) {

24 unsigned int i, prime, k, iter;

25

26 for (iter = 1; iter <= ITERATIONS; iter++)

27 {
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28 count = 0;

29 for (i = 0; i <= SIZE; i++) flags[i] = TRUE;

30 for (i = 0; i <= SIZE; i++)

31 {

32 if (flags[i])

33 {

34 prime = i + i + 3;

35 for (k = i + prime; k <= SIZE; k += prime)

36 {

37 flags[k] = FALSE;

38 }

39 count++;

40 }

41 }

42 }

43 }

Listing C.2: Sieve benchmark C kernel code with Eithne API calls

1 #ifndef KERNELS_H_

2 #define KERNELS_H_

3

4 # ifdef THREAD

5 # define SIZE 8190

6 # else

7 # define SIZE 4095

8 # endif

9 # define ITERATIONS 10000

10

11 enum kernel { SIEVE };

12 enum sharedvar { RESULT=0 };

13

14 extern void kernel_init(EithneTargetId id, EithneSharedMem buffer);

15

16 #endif /* KERNELS_H_ */

Listing C.3: Sieve benchmark C kernel include file

1 native include(kernels)

2 import time

3

4 SIZE=native const(SIZE)
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5 ITERATIONS=native const(ITERATIONS)

6 flags=[0]*(SIZE+1)

7 i=0

8 prime=0

9 k=0

10 count=0

11 iter=1

12

13 timestamp()

14 print( "Sieve of Erastosthenes - ", ITERATIONS, " iterations...\n")

15

16 t1 = cpu_time()

17

18 while iter<=ITERATIONS:

19 count = 0

20 i=0

21 while i<= SIZE:

22 flags[i] = TRUE

23 i+=1

24 i=0

25 while i<= SIZE:

26 if flags[i] == TRUE:

27 prime = i + i + 3

28 k = i + prime

29 while k <= SIZE:

30 flags[k] = FALSE

31 k += prime

32 count+=1

33 i+=1

34 iter+=1

35

36 t2 = cpu_time()

37 time = t2 - t1

38 print("There are ", count, " primes less than 8190\n")

39 print(time, "s\n")

40 timestamp()

Listing C.4: ePython Sieve benchmark

1 #include "sieve_oly_externs.h"

2

3 #define OLY_ENV_SIZE 16+2

4
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5 void module(Memory *memory) {

6 MKENV(memory,OLY_ENV_SIZE);

7 DECLL("cpu_time",ADDRL(0),MKLAMBDA(oly_r$cpu_time$,1));

8 DECLL("timestamp",ADDRL(1),MKLAMBDA(oly_v$timestamp$,6));

9 DECLI("SIZE",ADDRL(2),8190);

10 DECLI("ITERATIONS",ADDRL(3),10000);

11 DECLA("flags",ADDRL(4),NEWARR(sizeof(Int),1,(LDI(ADDRL(2))+1)));

12 Int $init4$[] = { 0 };

13 for (int i=0; i<DIM(ADDRL(4),0); i++) {

14 STAI(ADDRL(4),i,$init4$[i%(sizeof($init4$)/sizeof($init4$[0]))]);

15 };

16 DECLI("i",ADDRL(5),0);

17 DECLI("prime",ADDRL(6),0);

18 DECLI("k",ADDRL(7),0);

19 DECLI("count",ADDRL(8),0);

20 DECLI("iter",ADDRL(9),1);

21 (MKBETA(LDL(ADDRL(1))),APPLYV(LDL(ADDRL(1))));

22 rtl_print(3,11,"Sieve of Erastosthenes - ",5,LDI(ADDRL(3)),11,"

iterations...\n");

23 DECLR("t1",ADDRL(10),(MKBETA(LDL(ADDRL(0))),APPLYR(LDL(ADDRL(0)))));

24 while ((LDI(ADDRL(9))<=LDI(ADDRL(3)))) {

25 STI(ADDRL(8),0);

26 STI(ADDRL(5),0);

27 while ((LDI(ADDRL(5))<=LDI(ADDRL(2)))) {

28 STAI(ADDRL(4),LDI(ADDRL(5)),TRUE);

29 STI(ADDRL(5),(LDI(ADDRL(5))+1));

30 };

31 STI(ADDRL(5),0);

32 while ((LDI(ADDRL(5))<=LDI(ADDRL(2)))) {

33 if (((IDXI(ADDRL(4),LDI(ADDRL(5))))==TRUE)) {

34 STI(ADDRL(6),((LDI(ADDRL(5))+LDI(ADDRL(5)))+3));

35 STI(ADDRL(7),(LDI(ADDRL(5))+LDI(ADDRL(6))));

36 while ((LDI(ADDRL(7))<=LDI(ADDRL(2)))) {

37 STAI(ADDRL(4),LDI(ADDRL(7)),FALSE);

38 STI(ADDRL(7),(LDI(ADDRL(7))+LDI(ADDRL(6))));

39 };

40 STI(ADDRL(8),(LDI(ADDRL(8))+1));

41 }STI(ADDRL(5),(LDI(ADDRL(5))+1));

42 };

43 STI(ADDRL(9),(LDI(ADDRL(9))+1));

44 };

45 DECLR("t2",ADDRL(11),(MKBETA(LDL(ADDRL(0))),APPLYR(LDL(ADDRL(0)))));
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46 DECLR("time",ADDRL(12),(LDR(ADDRL(11))-LDR(ADDRL(10))));

47 rtl_print(3,11,"There are ",5,LDI(ADDRL(8)),11," primes less than

8190\n");

48 rtl_print(2,7,LDR(ADDRL(12)),11,"s\n");

49 (MKBETA(LDL(ADDRL(1))),APPLYV(LDL(ADDRL(1))));

50 }

Listing C.5: Generated Olympus mnemonic main file for ePython Sieve benchmark

1 #include "sieve_oly_externs.h"

2

3 void oly_r$cpu_time$(Memory *memory, Object *self) {

4 RETR((EXPR(Real,clock(),/,Real,CLOCKS_PER_SEC)));

5 }

6

7 void oly_v$timestamp$(Memory *memory, Object *self) {

8 #pragma GCC diagnostic push

9 #pragma GCC diagnostic ignored "-Wformat"

10 #pragma GCC diagnostic push

11 #pragma GCC diagnostic ignored "-Wint-conversion"

12 #pragma GCC diagnostic push

13 #pragma GCC diagnostic ignored "-Wincompatible-pointer-types"

14 DECLI("TIME_SIZE",ADDRL(1),40);

15 DECLI("time_buffer",ADDRL(2),malloc(41));

16 DECLI("now",ADDRL(3),time(NULL));

17 DECLI("tm",ADDRL(4),localtime((Pntr)(ADDRL(3))));

18 DECLI("len",ADDRL(5),strftime(LDI(ADDRL(2)),LDI(ADDRL(1)),"%d %B %Y

%I:%M:%S %p",LDI(ADDRL(4))));

19 printf("%s\n",LDI(ADDRL(2)));

20 #pragma GCC diagnostic pop

21 #pragma GCC diagnostic pop

22 #pragma GCC diagnostic pop

23 RETV;

24 }

Listing C.6: Generated Olympus mnemonic functions file for ePython Sieve benchmark



D
Merlin Engine (VM) code listings

1 #define OPCODE_BEGIN(op) op:

2 #define OPCODE_END goto NEXT_OPCODE;

3 #define OPCODE_REGISTRATION

4 #define OPCODE_REGISTRATION_BEGIN OP_REG_BEGIN: \

5 while(1) { \

6 switch((Address)*cp) {

7 #define OPCODE_REGISTRATION_END \

8 } \

9 NEXT_OPCODE: ; } return;

10 #define OPCODE_REGISTER(op) case op ## _OP: goto op; break

11 #define OPCODE_DISPATCH(op) goto *opcodes[(op)]

Listing D.1: Merlin Engine switch table dispatch macro definitions

254
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1 #define OPCODE_BEGIN(op) void op(void) {

2 #define OPCODE_END }

3 #define OPCODE_REGISTRATION register_opcodes()

4 #define OPCODE_REGISTRATION_BEGIN void register_opcodes(void) { \

5 FN_REGISTRATION;

6 #define OPCODE_REGISTRATION_END }

7 #define OPCODE_REGISTER(op) (opcodes[op ## _OP]=(op))

8 #define OPCODE_DISPATCH(op) opcodes[(op)]()

Listing D.2: Merlin Engine function pointer dispatch macro definitions

1 #define OPCODE_BEGIN(op) op:

2 #define OPCODE_END goto NEXT_OPCODE;

3 #define OPCODE_REGISTRATION

4 #define OPCODE_REGISTRATION_BEGIN OP_REG_BEGIN:

5 #define OPCODE_REGISTRATION_END \

6 NEXT_OPCODE: OPCODE_DISPATCH(*cp); \

7 goto NEXT_OPCODE;

8 #define OPCODE_REGISTER(op) (opcodes[op ## _OP]=&&op)

9 #define OPCODE_DISPATCH(op) goto *opcodes[(op)]

Listing D.3: Merlin Engine computed GCC gotos dispatch macro definitions



E
PicoRV32 support files

1 MEMORY {

2 mem : ORIGIN = 0x00000000, LENGTH = 0x0000EC00

3 sdata : ORIGIN = 0x0000EC00, LENGTH = 0x00000800

4 }

5

6 SECTIONS {

7 . = 0x000000;

8 .text : {

9 _init*(.text);

10 trap_vector*(.text);

11 *(.text);

12 KEEP(*(.text))

13 *(*);

14 } > mem

15 .sdata : {

16 __global_pointer$ = . + 0x800;

17 *(.srodata.cst16) *(.srodata.cst8) *(.srodata.cst4) *(.srodata

.cst2) *(.srodata .srodata.*)

18 *(.sdata .sdata.* .gnu.linkonce.s.*)

19 } > sdata

256
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20 _edata = .; PROVIDE (edata = .);

21 end = .;

22 _end = end;

23 }

Listing E.1: Custom PicoRV32 linker file

1 _init:

2 li x0,0

3 li x1,0

4 li x2,STKPTR

5 li x3,0

6 li x4,0

7 li x5,0

8 li x6,0

9 li x7,0

10 li x8,0

11 li x9,0

12 lw a0,-4(sp)

13 lw a1,-8(sp)

14 li x12,0

15 li x13,0

16 li x14,0

17 li x15,0

18 li x16,0

19 li x17,0

20 li x18,0

21 li x19,0

22 li x20,0

23 li x21,0

24 li x22,0

25 li x23,0

26 li x24,0

27 li x25,0

28 li x26,0

29 li x27,0

30 li x28,0

31 li x29,0

32 li x30,0

33 li x31,0

34 jal main

35 sw a1, -8(sp)

36 sw a0, -4(sp)
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37 _end:

38 ebreak

Listing E.2: PicoRV32 register initialisation assembly language file



F
Olympus mnemonics

1 ADDRL(offset) // Local address at offset

2 ADDRF(level,offset) // Foreign address at level and offset

3 REF(pntr) // Dereference pointer

4

5 DECLI(name,addr,value) // Declare integer

6 DECLR(name,addr,value) // Declare real

7 DECLB(name,addr,value) // Declare boolean

8 DECLL(name,addr,value) // Declare lambda

9 DECLS(name,addr,value) // Declare string

10 DECLA(name,addr,value) // Declare array

11 DECLP(name,addr,value) // Declare pointer

12 DECLC(name,addr,value) // Declare complex number

13

14 LDI(addr) // Load integer

15 LDB(addr) // Load boolean

16 LDR(addr) // Load real

17 LDC(addr) // Load complex number

18 LDS(addr) // Load string

19 LDA(addr) // Load array

20 LDP(addr) // Load pointer

259
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21 LDL(addr) // Load lambda

22

23 STI(addr,value) // Store integer

24 STR(addr,value) // Store real

25 STB(addr,value) // Store boolean

26 STC(addr,value) // Store complex number

27 STS(addr,value) // Store string

28 STA(addr,value) // Store array

29 STP(addr,value) // Store pointer

30 STL(addr,value) // Store lambda

31

32 IDXI(addr,idx) // Integer array index

33 IDXR(addr,idx) // Real array index

34 IDXB(addr,idx) // Boolean array index

35 IDXL(addr,idx) // Lambda array index

36 IDXS(addr,idx) // String array index

37 IDXA(addr,idx) // Array of arrays index

38 IDXP(addr,idx) // Pointer array index

39 IDXC(addr,idx) // Complex number array index

40

41 LDAI(addr,idx) // Load integer array element

42 LDAR(addr,idx) // Load real array element

43 LDAB(addr,idx) // Load boolean array element

44 LDAC(addr,idx) // Load complex number array element

45 LDAS(addr,idx) // Load string array element

46 LDAA(addr,idx) // Load array of arrays element

47 LDAP(addr,idx) // Load pointer array element

48 LDAL(addr,idx) // Load lambda array element

49

50 STAI(addr,idx,value) // Store integer array element

51 STAR(addr,idx,value) // Store real array element

52 STAB(addr,idx,value) // Store boolean array element

53 STAC(addr,idx,value) // Store complex number array element

54 STAS(addr,idx,value) // Store string array element

55 STAA(addr,idx,value) // Store array of arrays element

56 STAP(addr,idx,value) // Store pointer array element

57 STAL(addr,idx,value) // Store lambda array element

58

59 STCR(addr,value) // Store complex number real value

60 STCI(addr,value) // Store complex number imaginary value

61

62 MKENV(mem,size) // Make new environment
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63 MKLAMBDA(code,size) // Make lambda

64 DYNLDF(name,size) // Dynamically load function

65 MKBETA(lambda) // Make beta reduction

66

67 PARAMI(offset,name,value) // Set integer parameter value

68 PARAMR(offset,name,value) // Set real parameter value

69 PARAMB(offset,name,value) // Set boolean parameter value

70 PARAMS(offset,name,value) // Set string parameter value

71 PARAML(offset,name,value) // Set lambda parameter value

72 PARAMP(offset,name,value) // Set pointer parameter value

73 PARAMA(offset,name,value) // Set array parameter value

74 PARAMC(offset,name,value) // Set complex number parameter value

75

76 APPLYI(lambda) // Apply lambda returning integer

77 APPLYR(lambda) // Apply lambda returning real

78 APPLYB(lambda) // Apply lambda returning boolean

79 APPLYS(lambda) // Apply string lambda returning string

80 APPLYL(lambda) // Apply lambda returning lambda

81 APPLYP(lambda) // Apply lambda returning pointer

82 APPLYA(lambda) // Apply lambda returning array

83 APPLYC(lambda) // Apply lambda returning complex number

84 APPLYV(lambda) // Apply void lambda

85

86 RETI(val) // Return integer from lambda

87 RETR(val) // Return real from lambda

88 RETB(val) // Return boolean from lambda

89 RETS(val) // Return string from lambda

90 RETL(val) // Return lambda from lambda

91 RETP(val) // Return pointer from lambda

92 RETA(val) // Return array from lambda

93 RETC(val) // Return complex number from lambda

94 RETV // Return from void lambda

95

96 MKARR(addr,size,...) // Make array on the stack

97 NEWARR(size,...) // Make array in the heap

98 CPYARR(target,src) // Copy array

99 DIMS(addr) // Dimensions of array

100 DIM(addr,dim_no) // Specific dimension of array

101

102 MKCMPLX(addr,rreal,ireal) // Make complex number on the stack

103 NEWCMPLX(rreal,ireal) // Make complex number in the heap

104 CMPLXR(addr) // Real part of complex number
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105 CMPLXI(addr) // Imaginary part of complex number

106

107 NOP // No operation

108 INCI(addr) // Increment integer

109 DECI(addr) // Decrement integer

110 EXPR(ltype,lhs,op,rtype,rhs) // Expression wrapper
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