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SUMMARY
Automated microscopy and computational image analysis has transformed cell biology, providing quantita-
tive, spatially resolved information on cells and their constituent molecules from the sub-micron to thewhole-
organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue mi-
croscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical
tool set for which the required data are readily captured using standard protocols and microscopy equip-
ment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tis-
sues in terms of the applicability of different statistical measures and their accuracy and demonstrate how
spatial analyses offer a great deal more than just basic quantification of biological variance. Ultimately, we
highlight how statistical modeling can help reveal the hierarchical spatial processes that connect the prop-
erties of individual cells to the establishment of biological function.
INTRODUCTION

Since the first demonstrations of the microscope by Robert

Hooke and Antonie van Leeuwenhoek in the 17th century,1 the

analysis of cell images has been amainstay of biological science.

For most of the past few hundred years this analysis would have

provided qualitative, descriptive information as the expert biolo-

gist deciphered the image in their microscope eyepiece and

hand-recorded it on paper. Now, of course, digitization provides

us with quantified images, stored as a matrix of pixel values,

upon which we can perform unlimited mathematical manipula-

tions and assessments. This technical advancement continues:

in the past decade the application of machine learning algo-

rithms has provided automated cell identification and feature

extraction,2–4 while alternative imaging modalities can now

display spatially resolved proteomics and genomics.5–7 Thus,

today, accurate spatial data on cells, their neighbors, and their

tissue environment are a mainstay of cell biology. The task of ex-

tracting information and knowledge from these measurement

sets necessitates passing judgment on the reliability of the

data and on their ability to differentiate the patterns of biological

structure and process from random variations. This is where the

calculation of spatial statistics becomes paramount in providing

quantified confidence values for the variations seen within an im-

age. Here we focus on the application of statistical techniques to

tissue-image data. We address topics in spatial correlation,

spatial mapping, and spatial structure and process, and highlight

four important areas in the analysis of spatial data: (1) tissue clas-

sification, the statistical assessment of the tissue microenviron-
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ment; (2) spatial correlations, the assessment of the position

dependence of multivariate cell factors; (3) neighbor and neigh-

borhood relationships, the quantification of cell clustering; and

(4) tissue morphology metrics, the quantification of the global

patterns of biological mechanisms and processes.

A BRIEF, SELECTIVE HISTORY

Much of the foundational work on spatial statistics was done in

the 1950s through the 1970s, and its legacy is visible in the

named metrics that are commonly used today. For example,

we have P.A.P. Moran’s ‘‘I’’ index,8 a correlation metric between

two cells, based on their respective distances from the popula-

tion centroid; R.C. Geary’s ‘‘c’’ index,9 a correlationmetric deter-

mined by the direct separation distance of two cells; and B.D.

Ripley’s ‘‘K’’ index,10 a measure of cell density across increasing

spatial ranges. Widespread application of these mathematical

techniques to practical applications was enabled by the growing

analytical capability of computers and focused on the spatial

features of landscapes. In geography, statistical analysis pro-

vided urban planners with tools tomanage building development

and the associated traffic flows11; in economics, product supply

and distribution networks could be optimized12; and in ecology,

the spatial interactions of species within an environment could

be quantified.13 The field of spatial statistics is therefore well es-

tablished in the geographical sciences, with mathematical tools

now widely available in comprehensive and well-established

software packages referred to as geographical information sys-

tems (GIS).14,15 For example, spatstat provides simulations of
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Table 1. A selection of open-source software packages for statistical analysis of cell images

Package Capability Year Reference

Squidpy spatial graphing, neighborhood proximity

tests, spatial autocorrelation tests

2022 https://pypi.org/project/squidpy/30

Giotto spatial correlation, spatial domain

detection, pattern simulation

2021 https://rubd.github.io/Giotto_site/31

ImaCytE interactive visual analysis of cell

microenvironment

2021 https://github.com/biovault/ImaCytE32

Spark spatial regression using generalized linear

spatial models (GLSMs)

2020 https://xzhoulab.github.io/SPARK/33

SpatialDE Gaussian process regression 2018 https://github.com/Teichlab/SpatialDE34

histoCAT neighborhood analysis: permutation test of

local interaction pairs compared with

random distributions

2017 https://bodenmillergroup.github.io/

histoCAT/35

For an extensive list of available software see https://htmlpreview.github.io/?https://github.com/drieslab/awesome-spatial-data-analysis/blob/main/

review_spat_trns_methods.html.
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point process models and parametric and non-parametric

regression,16 and GeoDa provides local and global spatial corre-

lation and cluster analysis.17

The quantitative analysis of image data for cell biology is, by

comparison, a relatively recent phenomenon, with the first

detailed reports appearing in the early 2000s18,19 and open-

source software such as CellProfiler becoming available in

2006.20 However, progress over the past 20 years has been

rapid, and automated cell segmentation is now routine in both

cultured cells21 and tissue section images,22,23 facilitated by,

for example, pixel-level classification using deep-learning artifi-

cial neural networks.24 Early efforts in this field concentrated

on nucleus identification and then watershed cell outline seg-

mentation using fluorescent molecules to additionally label spe-

cific sub-cellular targets.25 The current state of the art now al-

lows multiplexed imaging in 40 or more channels, with

advanced techniques such as imaging mass cytometry

providing protein mapping7 and spatial transcriptomics enabling

single-cell identification of gene expression.5 While single-cell

imaging capabilities advance, the expanding use of digital pa-

thology and the development of 3D in vitro cell cultures (e.g., or-

gan on a chip) call for the analysis of cellular relations within the

context of complex, heterogeneous tissue environments.26

The acquisition of dense multiplexed datasets from modern

microscopy has triggered the development of a wide range of

computational tools for image analysis, many of which provide

spatial statistical measures. For example, within the widely

used, open-source image processing platform ImageJ (https://

imagej.nih.gov/ij/), there are plug-ins for point pattern analysis

(Spatial statistics 2D/3D27), assessment of object interaction

through spatial interaction potentials (MosaicIA28), and machine

learning tools (deepImageJ29), to name but a few. A selection of

other widely used open-source packages is provided in Table 1.

It is clear that the development of spatial statistics for cell

biology is well beyond its infancy; there is a multiplicity of anal-

ysis tools, providing local and global statistical indices that are

well proven. However, the field has not yet reached the maturity

of geographical analysis, where spatial statistics are common-

place, being part of the standard mathematical toolset of the

discipline. We are some way from realizing single-cell measures
2 Cell Reports Methods 2, 100348, November 21, 2022
that are as ubiquitous as the p value is in describing statistical

relevance at the population level. While there will undoubtedly

be further development of the mathematical tools for statistical

assessment, in light of the substantial capability already avail-

able, we focus in the following sections on the challenges and

opportunities relating to the application of statistical measures

for cellular analysis. We consider which statistic is most appro-

priate for a given image, the use of local (cell-to-cell) and global

(population) metrics, and the influence of tissue environment and

look forward to possibilities for data-driven, statistics-based

models of cell transport and behavior in tissue.

ASSESSING CELLS WITHIN THE HETEROGENEOUS
TISSUE LANDSCAPE

Spatial analysis of tissue begins with the identification of cell out-

lines (cell segmentation) and centroid locations (Figures 1A and

1B) and the extraction of shape, intensity, and position features.

From these a range of statistical measures can be calculated at

local and global levels (Figures 1C and 1D). However, if meaning-

ful conclusions are to be drawn from the statistics, the heteroge-

neity of the tissue must be considered. Care is needed in this

respect, for many spatial indices assume underlying homogene-

ity of the imaged area, considering the frequency of occurrence

of cells within a specified tissue region and then comparing this

with a null hypothesis of random distribution. For example, Rip-

ley’s K statistic assesses whether the number of cells within an

area of radius r is proportional to pr2, as expected for a spatial

Poisson process.10 Thus, when assessing the question of statis-

tical relevance, an expectation value (statistically most likely) for

the test statistic is often calculated via random permutation of

objects across all possible locations.36,37 However, for cells

within tissue, the null hypothesis of randomization is not useful,

as we may expect considerable heterogeneity (global spatial

autocorrelation) as the norm (Figure 1E). Indeed, for tissues

with heterogeneous structure, areas of the image may be inac-

cessible or unoccupied by cells (e.g., luminal regions), and this

context must be corrected for in the analysis method.

Discussion of the issue of non-homogeneity of the sample

space and its influence on measures of statistical significance
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Figure 1. Considering local and global spatial

statistics and the influence of the tissue envi-

ronment

(A and B) Computerized image analysis now readily

provides segmentation of cell nucleus and cyto-

plasm in tissue and the location of the centroid po-

sition. In this example, (A) is a typical field of cells for

which (B) shows the cell outlines (magenta line) and

centroid positions (black circle) obtained by seg-

mentation based on fluorescent staining of mem-

brane and nucleus.

(C and D) Within quasi-homogeneous tissue, sta-

tistical analysis can be applied in a straightforward

manner to identify spatial correlations of cell phe-

notypes or spatial patterning in cell markers. For

example, in (C), a spatial gradient in pixel intensity is

shown, such as would result from differing expres-

sion of fluorescent molecular biomarkers; while

(D) depicts the definition of a local neighborhood

(red dashed circle) within which the numbers of cells

of specific types (shown in yellow and red) may be

assessed for comparison to a hypothesis of random

distribution.

(E) However, many biological samples will display a heterogeneous cellular environment, and in this case, care must be taken. Here, the image shows a tissue

cross section with a clear meta-structure in which the cell positions are primarily determined by the tissue morphology. Now the definition of a cell neighborhood

will lead to a test statistic for the selected cells (highlighted in red) that is highly significant, i.e., indicative of a pattern that is far from random.We need to be aware

that, while we have a significant statistic, we do not have a significant result; this is just a reflection of the underlying tissue morphology rather than a directed

biological response.
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can be found within the literature on geographical spatial ana-

lyses.38,39 There are means by which a heterogeneous environ-

ment can be statistically assessed. In particular, Monte Carlo

techniques can be used to randomly allocate cell phenotype

onto the positional grid obtained by cell segmentation,31,40 i.e.,

a randomization onto themeasured spatial pattern. These random

sets can then be used to define the null distribution of the test sta-

tistic, with which measured values may be compared using p

values or similar indicators of significance. However, the chal-

lenges posed by spatial heterogeneity remain underappreciated

and so care must be taken when interpreting spatial indices,

else statistical significance may constitute a positive test of bio-

logical activity (e.g., immune cell congregation) or just refelct the

underlying tissue morphology (e.g., high epithelial cell density

within membranes). In Figure 1E, for instance, the chosen circular

intestinal crypt region exhibits a marked clustering of cells for

which colocation metrics would be high. However, this is merely

a reflection of the tissue morphology and would not signify a bio-

logically surprising congregation of cells. Alterations to the size of

the defined ‘‘local’’ region in this examplewould also produce high

variation in the test metric due to the underlying morphology.

All of the above highlights the need to recognize, quantify, and

classify tissue morphology, so that justifiable comparisons can

be made in the knowledge that a common tissue structure is be-

ing assessed. The ability to routinely segment cells within an im-

age and to quantify cell position provides a powerful analysis

tool, which can, and should, be implemented as part of basic mi-

croscopy assessment. A rudimentary demonstration of the

benefit of this is discussed below with an example.

Basic quantification of an image can provide immediate

insight into the spatial distribution of cells. In the example shown

in Figure 2, visual inspection of the image in which the centroids
of all cells within a section of mouse ileum are highlighted in yel-

low (Figure 2A) shows a morphology that is typical of gut tissue,

with clearly defined clusters of cells separated by voids. This in-

homogeneity in cell distribution can be readily quantified by

calculating the density of cells within a circular area of increasing

radius, located at the center of the image (the core concept of

Ripley’s K statistic). For a random spatial distribution, we would

expect this metric to be constant and equal to the total cell num-

ber divided by total area. Spatial patterning introduces non-line-

arity to the cell number-area relationship and is identified by the

presence of maxima in specific radial bands. The result for the

image in Figure 2A is plotted as the relative percentage increase

in area density comparedwith the randomdistribution value (Fig-

ure 2B), and three features become apparent from the plot: (1) no

cells are within a radius of 30 pixels, as this is the minimum cell

diameter and hence the minimum packing distance; (2) a peak

at �100 pixels corresponds to the typical cell separation within

the large cell clusters; and (3) a second peak at �800 pixels cor-

responds to themean separation of the clusters themselves, i.e.,

the spacing introduced by the presence of voids in the tissue.

The same image can be analyzed to show only a specific sub-

set of cells, such as T cells (Figure 2C). Here, the spatial distribu-

tion of cells is not so easily assessed by eye; the T cells are pre-

sent throughout the tissue section, but it is difficult to make a

judgment on whether this is an even spread. Straightforward

calculation of cell density can again provide valuable quantitative

information. If the image is re-plotted, this time to show all cells,

and a false color scale is used to display the local T cell density

(T cells/area in a circle centered on each cell, with radius equal to

103 the mean cell diameter), this now clearly shows higher than

expected T cell numbers within the lower half of the section

(Figure 2D). This shows how simple cell density measurements
Cell Reports Methods 2, 100348, November 21, 2022 3



Figure 2. Extracting spatial metrics from tis-

sue images

(A) Highly informative statistics can be extracted

from straightforward calculation of spatial cell den-

sity. The image shows a section of mouse ileum

where the centroids of all cells are highlighted in

yellow. These can be used to calculate cell density

within a given region, in this case, the circular region

indicated in red.

(B) The result for image (A) is plotted in (B) as the

relative percentage increase in area density

compared with the random distribution value. Three

features are immediately apparent in the plot (shown

with arrows): (1) no cells within a radius of 30 pixels,

as this is the minimum cell diameter; (2) a peak at

�100 pixels corresponding to the typical cell sepa-

ration within the large cell clusters; and (3) a second

peak at �800 pixels corresponding to the mean

separation of the clusters themselves, i.e., the

spacing introduced by the presence of voids in the

tissue.

(C) The same image from (A) can be analyzed to

show only a specific sub-set of cells (T cells, iden-

tified by the presence of the CD3 cell differentiation

marker and with centroid positions highlighted in

red). Here, any deviation from random spatial

patterning cannot be reliably ascertained by eye.

(D) When the image is re-plotted using a false color

scale to display the local T cell density, this re-im-

aging clearly shows higher than expected T cell

numbers within the lower half of the section.
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can provide quantitative information that cannot be extracted

from visual inspection alone.

A more sophisticated analysis of spatial relationships can

be gained by using geometric graphs to classify and differen-

tiate tissue. As an example, we look at a longitudinal section

of mouse ileum containing a Peyer’s patch lymphoid follicle

(Figure 3). This gut tissue has a diverse morphology with

different local structures visible for the villous mucosa (region

1), villous crypts (region 2), muscularis layer (region 3), and

lymphoid tissue (region 4) (Figure 3A). Clearly, analysis of

this image cannot proceed under the assumption of spatial

homogeneity. One route to quantifying tissue geometry and

therefore classifying local structure is to use graph theory,41

whereby transformation of cell centroid positions to a graph

provides an abstracted and quantified description of the tis-

sue (Figure 3B). Multivariate data matrices can be constructed

using a range of graph metrics (e.g., number of nodes, fraction

of end and isolated nodes, shortest path between nodes,

node eccentricity, etc.), which describe both local and global

cell-cell relationships. Applying data clustering and dimen-

sional reduction techniques to the graph data matrix provides

identification and visualization of similar tissue regions based

on their multivariate graph metrics. In this example, we can

see that a principal-component analysis of 40 areas from

the sections depicted in the image of the mouse ileum shows

the different tissue regions clearly as differentiated clusters

(Figure 3C). Hence, here we see that the detailed image of

the tissue becomes transformed to a simplified representation

of points (nodes) at the cell centroid positions, joined by

straight lines to nearest neighbors (edges). This translation
4 Cell Reports Methods 2, 100348, November 21, 2022
of a segmented-cell image to a graph of nodes and edges

provides a powerful and computationally efficient analysis

tool, for it captures the important cell-to-cell relationships in

a simple mathematical construct, whose various metrics pro-

vide a generalized numerical description of tissue

morphology. Approaches such as this can identify regions of

similar topology within the heterogeneous structure of a single

tissue section or establish structural similarity in multiple im-

ages from different samples, e.g., across a patient study

set. Again, open-source software is available to aid in the con-

version of a tissue image to a node network, e.g., cytoNet.42

Ultimately, the important point to remember is that any statis-

tical assessment of spatial pattern in tissues is inherently multi-

scale, influenced by local cell-to-cell interactions and the glob-

ally coordinated behavior of many cells. We therefore need to

be aware of these different scales when choosing a suitable

test statistic and in interpreting its value.43

SPATIAL CORRELATIONS

A substantial part of the literature on spatial analysis in cell

biology describes the application of test statistics at a popula-

tion level.33 Here, the analysis of spatial relationships is not

resolved in a position-dependent manner; rather, valuable bio-

logical insight is gained through a more generalized identifica-

tion of those cell-to-cell interactions that depend upon spatial

location. In these approaches, the correlation of position to

other cell metrics is assessed using mixed model regression

techniques with the aim being to establish whether there is a

general spatial dependence of the observed characteristic



Figure 3. Using geometric graphs to clas-

sify and differentiate tissue

(A) The image shows a longitudinal section of

mouse ileum containing a Peyer’s patch lymphoid

follicle. Four distinct regions, consisting of the

villous mucosa, villous crypts, muscularis layer,

and lymphoid tissue, are marked on the image

(labeled 1 to 4). The magenta outlines define 10

sub-fields within the image, for each of the four

tissue regions.

(B) Left and right images show the transformation

of image fields to graph networks with nodes

defined by cell centroid positions and edges

joining cells (representing the four tissue regions

indicated by the filled magenta sections in [A]).

(C) A principal-component analysis of the 40 im-

age sub-sections (magenta sections in [A]), in

which the different tissue regions clearly appear

as differentiated clusters.
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rather than trying to spatially resolve the biology.44 The general

approach when using regression techniques is to assume that

observations are independent, but if there is a hidden spatial

dependence between the correlates, then this no longer holds,

and the regression residuals will not be random, i.e., they will

contain a spatial weighting. For example, comparison of im-

mune cell phenotypic markers is highly likely to produce dis-

tance-dependent regression residuals, as the need for molecu-

lar transport between cells necessitates a spatial aspect to

immune response.45

While mathematically spatial regression can be implemented

in various forms, the general hypothesis underlying the tech-

nique can be understood through the concept of a spatial

lag.46 This is represented by a term, qi,j = rwiyj, which captures

the relationship of the dependent variable, y, on its value at

nearby locations (indexed by j). Here, wi is a spatial weights ma-

trix and r a spatial coefficient, determining the strength of the

spatial effect. The index, i/j, refers to specific cells. By including

qi,j in the regression equation, the distance of a cell to its

neighbor becomes a predictor variable rather than a residual

effect:

yi = xib+
X
j

qi;j + ui: (Equation 1)

The xib term captures the spatially independent component of

the correlation of yi with the explanatory variable, xi, and ui now

represents a true random distribution of the regression residuals,

i.e., the fundamental random variability in the correlation

variables.

Regression analysis has been heavily used in spatial transcrip-

tomics to assess positional dependencies in gene expres-

sion.31,47 Here a variety of Gaussian process models have

been used to quantify gene expression covariance through pair-

wise distance measures of spatial points.34 The specific mathe-

matical form chosen for the spatial variance term, qi,j, captures

the behavior of the underlying spatial processes. Thus, this

approach can provide biological insight as well as data statistics,

with the correspondence of the measurement set to different

variance functions being assessed, i.e., do cell-to-cell correla-

tions follow an exponentially decaying, linear or periodic spatial

dependency? Examples of applications could include the study

of metabolic zoning in the liver, analysis of cell signaling gradi-

ents, or macrophage translocation of ingested particles.

Following work in geostatistics,48 generalized linear spatial

models (GLSMs) have also been used for regression analysis

of non-Gaussian data.33 This removes assumptions as to the un-

derlying structure of the data and so can providemore robust hy-

pothesis testing in situations of low sample/count number.

NEIGHBOR AND NEIGHBORHOOD RELATIONSHIPS

Perhaps the most compelling application of spatial statistics in

tissue imaging is in the generation of spatially resolved metrics,

enabling the mapping of statistical variations across the tissue.

These local statistics of cell association provide a visualization

of the cell neighborhood that is so important in determining the

biology of the tissuemicroenvironment, e.g., identifying cell clus-
6 Cell Reports Methods 2, 100348, November 21, 2022
tering or spatial patterning due to signaling gradients. The basic

spatial concept in constructing local metrics is the cell neighbor-

hood: an area a, centered on cell i, the cell of interest, and

defined by a radius, r. The construction of a test statistic involves

calculation of distance-dependent indices, relating cell i to other

chosen cells within area, a. These may be all other cells in the

neighborhood, e.g., in measures of cell clustering, or involve

specific sub-sets of cells, e.g., in assessing colocation of

different phenotypes.

To understand the general mathematical approach to statisti-

cal testing of local spatial correlation, we present a generalized

form of metric that captures the basic principles:

G =
X
i;j

CijWij: (Equation 2)

The cell-cell relationships within the locality are quantified by

Cij, a matrix containing the values of the chosen association

metric, x, between pairs of cells, identified by the indices i and

j. The particular form of the association metric can vary, and so

Cij can be populated in a variety of ways, depending upon the

manner in which spatial interactions are quantified. For example,

for Moran’s I, it is a product of cell distance from a mean popu-

lation center, Cij = ðxi � xÞðxj � xÞ, whereas for Geary’s c it is

determined by the direct separation of cells i and j, Cij =

ðxi � xjÞ2. The summation sign in Equation 2 tells us that the as-

sociation metric is calculated for all cells, i and j, i.e., it calculates

the relationship of every cell to all others in the image field. To

invoke locality, therefore, a spatial filter is required. This is pro-

vided byWij, a weight matrix describing the relationship between

points i and j. Wij acts as a selection filter because its value at

specific i and j indices determines the scale of the correlation.

For example, a binary Wij will have matrix values equal to 1 for

the j points that lie within the local region, a, of point i, and equal

to 0 for all points outside of a. This therefore limits calculation of

the test statistic for cell i, to consider only those relationships

occurring within the defined local area. Other forms of Wij can

provide alternative filter functions, e.g., a distance-dependent

exponential decay in association strength between cells i and j

provides a statistic based on all relationships but with declining

influence of the more distant cells. The metric, G, in Equation 2

quantifies the degree of spatial association between cells, but

it provides us with no information on whether this association

is statistically significant, i.e., there is no comparison provided

through which we can assess if the measured association is un-

expected. In the full equation for a spatial statistic, therefore, ex-

pressions such as G become the numerator in a larger expres-

sion, in which the denominator determines the scale, and

therefore the relevance, of any spatial association.

Local spatial statistics can be disarmingly simple to implement

and convey immediate visual impact; however, they can also be

subtle and complex in their formulation, and care must be taken

when interpreting them. An example highlighting this point is

presented in Figure 4, which compares two metrics, the Getis-

Ord statistic (GO)49 and the local colocation quotient (LCQ).50

For a hypothetical population of cells generated by randomly

selecting �100 cells from a segmented image of a lymphoid tis-

sue (Figure 4A), both GO and LCQ are calculated (Figure 4B) for



Figure 4. The statistics of the cell neighborhood

(A) A hypothetical sub-population of cells is generated by randomly selecting �100 cells from a segmented image of a lymphoid tissue (identified by red circles).

Analysis can then be undertaken to assess the spatial distribution of the 100 chosen cells (referenced as cell - B) compared with the whole of the cell population

(referenced as cell - A).

(B) Local neighborhood statistics are calculated by defining a circular region around each cell of type B and counting the number of cells of each type within this

region (nA and nB) and the total number in the image (NA and NB).

(C–F) TheGetis-Ord z index (C andD) and the local colocation quotient (LCQ) (E and F) are calculated for different scales of local neighborhood (size indicated by a

white circle in the lower left of [C]–[F]) and used to assess whether there is clustering of a particular cell type. The cell - B sub-population is false colored according

to the values of the relevant spatial statistic. The resulting images are highly dependent upon the metric chosen and the length scale used in its calculation.
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different scales of local neighborhood (Figures 4C–4E). Both

metrics follow the common metrological approach of local sta-

tistics in counting cell frequency within the neighborhood of

each cell of the chosen phenotype, in this case, the occurrence

of cell type A within a circular region of radius r around each of
cell type B. While the two metrics share a common philosophy,

their mathematical forms are quite different:

GO =
nB=NB

� nA=NA

s
�
nB=NB

� ; (Equation 3)
Cell Reports Methods 2, 100348, November 21, 2022 7
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LCQ =
nB=nA

ðNB � 1Þ=ðNA � 1Þ
; (Equation 4)

where NA is the global number of all cells and NB is the global

number of cells of type B. nA is the local number of all cells

and nB the local number of cells of type B.

The GO metric determines the degree of clustering by the

difference between the fraction of cell type B and the fraction

of all cells within the local region. By adopting a difference

measure, the GO technique has the additional ability

to show cell sparsity (nB/NB < nA/NA) as well as clustering

(nB/NB > nA/NA). Relevance is indicated by comparison to

the standard deviation in the local cell fraction across all mea-

surement locations. The LCQ, on the other hand, has a numer-

ator that calculates the proportion of neighborhood cells that

are cell type B and a denominator that determines measure-

ment relevance by comparison with the global proportion of

cell type B. As the radius defining a cell’s local area is

adjusted, the way in which the changing numbers of neighbor

cells alter the statistics depends on the test metric chosen.

Here, in the example shown in Figure 4, for the smaller neigh-

borhood, the two metrics show similar maps with only a few

cells showing significant clustering (Figures 4C and 4E), as ex-

pected given the random selection process. However, for

larger local regions, the two statistics diverge (Figures 4D

and 4F). The GO index continues to show some variation in

local cell density, albeit at lower significance levels. The

reduction in the metric numerator as the larger local region

becomes more representative is offset by reduction also of

the denominator, as variability across the larger localities is

smaller. In contrast, the LCQ tends to unity as the larger local-

ity radius promotes sampling homogeneity and the local pop-

ulations are near identical to the global cell mix.

Moreover, area effects also come into play for cells close to

the image edge, where incomplete coverage of the local neigh-

borhood must be corrected for.51 To summarize, the various

spatial statisticsmay look similar in their function but can provide

quite different outputs dependent upon the specifics of their

mathematical structure and implementation. Thus, the user

must be aware when assessing the scientific import of spatial re-

lationships and using them to draw conclusions about biological

significance.
TISSUE MORPHOLOGY METRICS

The linkage between biological function and spatial organiza-

tion is well appreciated,52,53 and this provides an opportunity

to move spatial statistics beyond quantifying numerical vari-

ance to using the mathematics to determine and predict biolog-

ical processes by modeling. When employed at the tissue level,

spatial statistics can capture the design principles and opera-

tional processes of the complex biosystem, elucidating cell dif-

ferentiation in morphogenesis, for example,54 or quantifying cell

phenotype interactions in disease progression.55 Many tissue

characteristics stem from emergent properties of the system,

and so a complete understanding requires a holistic view
8 Cell Reports Methods 2, 100348, November 21, 2022
across the whole topology of the tissue. For this we need to

shift from local cell-cell or cell-neighborhood statistics and

consider the global relationships between each and every

cell. The challenge is to build spatial interactions, and the rela-

tionships they describe, into the statistical framework, so that

processes such as diffusion, or directed transport between

source and sink, can be enumerated in terms of cell position.

Once again, the geographical sciences provide a large litera-

ture of previous work of use to the cell biologist. Of particular

interest are spatial interaction models, which describe move-

ment and exchange between spatial locations and so quantify

the outcomes of the system dynamics.56,57 In general terms,

these may be seen as descriptions of the movement of popu-

lations and of information, processes that translate immediately

into the biological sphere in considering cell migration and cell

signaling. In these models the key conceptual foundation is of a

spatial interaction between two points, i and j, that is inversely

proportional to a distance vector, dbi,j.
58 This provides a math-

ematical construct that is both straightforward to interpret and

a powerful tool for spatial process modeling. The use of a dis-

tance-based vector immediately relates the strength of interac-

tion to spatial proximity, while the exponent, b, encodes spe-

cific process forms. For example, b = 2 corresponds to

‘‘gravity models’’ in which a physics-based concept of interac-

tion fields is used to describe spatial interactions that decline

as 1/d2i,j in analogy to gravitational field strength. Direction

within an interaction is determined by the sign of b, where a

positive exponent describes repulsive interaction forces leading

to spatial dispersion, while a negative b describes attractive

forces and spatial clustering.

Another set of mathematical tools that has been widely used

for biological studies are point-process models,59 which have

been deployed from the tissue level down to sub-cellular scales.

They have strong compatibility with quantitative tissue studies as

they combine the analysis of spatial process with statistical

probability. The null hypothesis here is an assumption of a pro-

cess that leads to random distributions of objects across space,

i.e., spatial independence of the measurement set. This corre-

sponds to a Poisson spatial process. Ripley’s K index quantifies

the deviation of a set of points from such a random distribution,

and an assessment of cell position was included in Ripley’s orig-

inal paper.10 The Poisson distribution of cells in 3D has also been

studied,60 as has the spatial distribution of cell mitosis.61 Exten-

sions of this approach to describe more complex situations

involve the inclusion of spatial dependence into the test statistic.

For example, a common approach in adapting the point process

to address position-dependent datasets is to use Cox pro-

cesses. These are described by an altered Poisson statistic in

which the intensity, l (mean number of events per unit area), is

not constant but becomes a spatially dependent variable. This

describes a physical situation in which measurement variability

is greater than expected for a random set, and the resulting prob-

ability prediction functions are known as overdispersed Poisson

or negative binomial distributions.62 Examples of biological ap-

plications of these statistics include parasite counts in epidemi-

ology63 and endosomal uptake of particles by mammalian

cells.64,65 The point-process framework is highly adaptable, al-

lowing tissue-structure descriptions that go beyond simple
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single-population cell distributions. For example, marked point-

process models incorporate additional information linked to

each spatial point; this allows discrimination between cell phe-

notypes so that their interactions in the context of different tissue

structures may be investigated.66 The examples discussed

throughout this perspective highlight an important aspect of tis-

sue structure: much of the image in each case (Figures 1E and 3)

does not contain cells. Point-process models are able to calcu-

late the probability of absent points and so can account for voids

caused, for instance, by stroma, necrotic tissue, or blood vessels

intersecting the image plane.67

Another powerful process-based analysis models spatial

interaction using Gibbs processes. Like Poisson and Cox pro-

cesses, the analysis is based on probabilistic determination of

object distributions, and is based on a conceptual framework

from thermodynamics in which the existence of the system is

in one of multiple possible states (i.e., occupancy of specific

spatial positions) and is described by a probability density func-

tion, P. For spatial interactions between objects separated by a

distance, d, we have the general formulation of68:

PðdÞ = qðdÞexp½� B ðdÞ�; (Equation 5)

where Ø is an interaction potential (described by a mathematical

function) determining the strength of interaction and q is a den-

sity parameter describing the number of possible interactions

at distance d.

To provide a concrete example, consider the interaction be-

tween two cell phenotypes, A and B. Here, the term exp[�Ø(d)]

would describe the probability of interaction between a pair of

disparate cells separated by a distance, d. The overall probabil-

ity of interaction will also depend on the relative frequency of

cell types A and B, and this is described by q(d). Thus, the over-

all probability expression combines the likelihood of a type A

and a type B cell interacting across a distance d and the likeli-

hood that a given pair of cells will be of disparate phenotypes.

The particular form of Ø can be chosen from a range of options

according to the scale, strength, and distance dependence of

the process to be modeled. As for the spatial interaction

models discussed earlier in this section, the sign of the interac-

tion potential determines the direction of the spatial process. If

Ø = 0, the interaction leads to a randomized Poisson distribu-

tion, while Ø > 0 produces spatial dispersion and Ø < 0 spatial

clustering.

Statistics is most commonly used to discriminate or compare

datasets, for example, to test a set of measurements against a

null hypothesis or to evaluate local cell density. In the context of

tissues, however, the examples above show that statistical

metrics may be applied to integrate information so as to gain

a holistic view. Many aspects of tissue function involve emer-

gent properties understandable only through study of the coor-

dinated action of all constituent cells. This synchronized

behavior can be captured by statistical process-oriented

models. Spatial statistics can, therefore, provide a comprehen-

sive tool for systems biology, capable of quantifying the inter-

action of system components (e.g., molecules and cells) and

the behavior of the whole system (the interactome of the whole

tissue).
CONCLUDING THOUGHTS

We have entered an age in which microscopy information is

almost always captured digitally, and so any reporting of tissue

image data should contain some element of statistical analysis.

If cell-to-cell interactions are of interest, then their spatial statis-

tics clearly need to be collected; however, even if single cells are

the objects of study, wider spatial dependencies in the expres-

sion of cell markers need to be captured to unravel the complex-

ities of the biological system. Much of present practice and sci-

entific literature on spatial statistics comes from expert groups in

response to the demands of specific techniques, e.g., the need

to assess 40 parallel channels of data collected with sub-cellular

resolution over many thousands of microns by an imaging mass

cytometer. Routine spatial analysis for microscopy by the wider

biology community is not yet established, and there is still a ten-

dency to extract signal information from cells using segmenta-

tion but then to lose all morphological context of the cells to their

environs as population-based cytometry approaches are imple-

mented. However, the tools and resources for the task are avail-

able and are being further developed, and so our call to the com-

munity is to adopt, adapt, and integrate these statistical

techniques into your analysis workflows. We finish with two

quotes, chosen to broaden appreciation of the power of spatial

statistics, and to encourage a view of them as powerful descrip-

tors of process, not just quantifiers of current biological state re-

corded by an image:

. form ever follows function, and this is the law. Where

function does not change, form does not change.—

Sullivan69

Structure without function is a corpse; function without

structure is a ghost.—Vogel and Wainwright70

Theseare salient reminders thatpattern inbiologyalwaysserves

a purpose, and that the complex, multiscale processes and inter-

actions that characterize biological organisms are evident in the

blueprint of their tissue and cell morphologies—the morphologies

that are quantitatively captured by spatial statistics.
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