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Abstract 12 

The late Quaternary is characterized by the extinction of many terrestrial megafauna, which 13 

included tortoises (Family: Testudinidae). However, limited information is available on how 14 

extinction shaped the phenotype of surviving taxa. Here, based on a global data set of carapace 15 

length, we investigate the temporal variation, spatial distribution, and evolution of tortoise body 16 

size over the past 23 million years, thereby capturing the effects of Quaternary extinctions in this 17 

clade. We found a significant change in body size distribution characterized by a reduction of 18 

both mean body size and maximum body size of extant tortoises relative to fossil taxa. This 19 

reduction of body size occurred earlier in mainland (Early Pleistocene 2.588-0.781 Ma) than in 20 

island tortoises (Late Pleistocene/Holocene 0.126-0 Ma). Despite contrasting body size patterns 21 

between fossil and extant taxa on a spatial scale, tortoise body size showed limited variation 22 

over time until this decline. Body size is a fundamental functional trait determining many aspects 23 

of species ecologies, with large tortoises playing key roles as ecosystem engineers. As such, the 24 

transition from larger-sized to smaller-sized classes indicated by our findings likely resulted in 25 

the homogenization of tortoises’ ecological functions and diminished the role of tortoises in 26 

structuring the vegetation community. 27 

Keywords: late Quaternary extinction, size-biased extinction, body size downgrading, 28 

Testudinidae, carapace length, trait variation 29 
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Introduction 31 

Large-bodied terrestrial herbivores, generally referred to as megafauna, became extinct in large 32 

numbers during the late Quaternary (50 000–10 000 years before present) [1,2]. Broad scale 33 

megafauna extinctions shifted the body size distribution within surviving populations or 34 

communities towards a higher proportion of small-bodied animals [3]. Such changes can have 35 

severe consequences for ecosystem functioning, because megafaunal species provide 36 

ecosystem services not easily compensated by smaller-sized species [3–6]. For example, 37 

megaherbivores consume large amounts of specific plants and cycle nutrients, thereby shaping 38 

the environment they inhabit [7–10] and affecting plant population dynamics (including growth, 39 

densities, and dispersal distances) [6,11]. Accordingly, studying size-biased extinction events 40 

and associated macroevolutionary shifts in body size might help explain ecological patterns 41 

present today [9,12]. 42 

Large-sized reptiles experienced high rates of extinctions during the late Quaternary but have 43 

been much less studied than mammals which are the focus of a majority of studies investigating 44 

the consequences of species extinctions on body size [1,2,5,6,12–17]. For instance, numerous 45 

species of giant (carapace lengths of ≥ 1.5 m, e.g., Titanochelon schafferi, Megalochelys atlas 46 

[14]) tortoises (Family: Testudinidae) were abundant during most of the Pleistocene until 47 

becoming extinct before the Holocene (22 species of the family Testudinidae, five species of the 48 

family Meiolaniidae) [7,14,17,18]. Extinction rates of tortoises proportionally increased on islands 49 

compared to the mainland as 80% of extinctions during the Holocene and 100% of extinctions 50 

since the year 1500 affected island living tortoise species (16 species of the family Testudinidae 51 

and the last 2 species of the family Meiolaniidae) [14,17]. As such, large body size and insularity 52 

have been identified as playing important roles in the extinctions of tortoise taxa [17], with giant 53 

tortoises only persisting on two remote archipelagos today: the Galápagos islands and the 54 

Aldabra Atoll [14]. These giant tortoises are recognized ecosystem engineers and their loss has 55 
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been found to cause declines in plant diversity and consequent habitat degradation [8–10]. The 56 

availability of fossil data provides the opportunity to describe the tempo and mode of body size 57 

variation in relation to extant tortoises [19]. 58 

Giant tortoises are common in the fossil record since the late Paleogene [20–22] and causal 59 

explanations for their extinction during the Quaternary have been investigated [14]. The potential 60 

causes of extinction of large tortoises in the late Quaternary include hominin and human 61 

exploitation concomitant with global and local changes in climate and habitat [23,24]. These 62 

extinctions of terrestrial tortoises appear to be non-random, with the complete extirpation of 63 

species in the family Meiolaniidae and the highest proportion of extinctions among extant turtles 64 

in the family Testudinidae[14]. Intensive hunting and exploitation of specific tortoise populations 65 

by hominins have further been identified to cause a decrease in mean tortoise body size - 66 

sometimes so severe and with an obvious link to human activity that tortoise body size has been 67 

used to estimate human population density [25–27]. However, we still lack a comprehensive 68 

understanding of how body size distributions and dynamics in tortoises changed following 69 

extinctions on a global scale. 70 

Body size is a key functional trait, because it scales with many physiological and ecological 71 

processes, e.g., metabolic rate, locomotion, energetic demands generation time, longevity, 72 

range size, predation, competition and even extinction risk [17,28–30]. Several studies have 73 

investigated body size patterns and distributions in extant turtles and tortoises [31–33], yet few 74 

have connected those observations to the fossil record [17,19]. The overall pattern in extant 75 

turtles and tortoises shows a right-skewed body size distribution such that small-bodied taxa are 76 

more abundant than large-bodied taxa [31–33]. Such a right-skewed body size distribution is 77 

common in the animal kingdom [34,35]. Although mainland tortoises and freshwater turtles 78 

exhibit a right-skew in the distribution of body size, insular tortoises display a left-skewed 79 

distribution, i.e., a higher frequency of large-bodied taxa [33]. Further, studies suggest that 80 
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extant turtles and tortoises have habitat-dependent differences in body size optima, with 81 

freshwater turtles and mainland tortoises having a smaller body size optimum than marine turtles 82 

and island tortoises [31–34]. These differences in body size optima match investigations in the 83 

fossil record, which provides evidence of both gigantism and miniaturization in tortoises (family: 84 

Testudinidae) [19]. Although body size data of fossil and extinct turtles and tortoises is available 85 

and many studies investigate body size patterns in extant turtles and tortoises, much less is 86 

known about how extant body size patterns compare with patterns from the fossil record. 87 

Here, we investigate the temporal pattern of variation in body size in fossil and extant tortoises 88 

(family: Testudinidae) over the last 23 million years, i.e., from the Early Miocene throughout the 89 

Quaternary until today. Specifically, we asked how the megafauna extinction affected body size 90 

patterns in tortoises. To answer our research question, we first compare body size distributions 91 

over time between island and mainland species. Second, we assess the differences in mean 92 

body size between fossil and extant tortoises in both the mainland and on islands. Lastly, we 93 

evaluate the tempo and mode of body size evolution over the entire time series. Our results 94 

show that the Quaternary megafauna extinction resulted in a clear shift in tortoise body size and 95 

we discuss possible implications for ecosystem function. 96 
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Material & Methods 98 

Data collection 99 

We obtained body size data for fossil and extant tortoises (Family: Testudinidae) from several 100 

sources. We used midline straight carapace length (SCL, in mm) as our measurement of body 101 

size. Midline SCL is the most common metric for body size in turtles in the literature and allows 102 

comparison with other published results even though it does not account for the dome shape of 103 

the turtle shell [14,31–33]. Fossil data were gathered from the late Early Miocene until the 104 

Holocene (23 – 0.0117 Ma). We used the FosFarBase (http://www.wahre-staerke.com, last 105 

accessed March 2017), the Paleobiology Database (PBDB; http://paleobiodb.org, last accessed 106 

July 2018), and Rhodin et al. [14] to identify key references (see Table S1). We obtained body 107 

size values for the fossil taxa from the primary literature and in some cases from the PBDB. The 108 

fossil data consists of 390 records and includes additional information on taxonomy, localities (n 109 

= 196) and age (Table S2, Fig. S1). Locality age was available at the stratigraphic stage level in 110 

most cases. We binned the age data to ensure a comparable sample size among bins (e.g., the 111 

two earliest stages of the Miocene were lumped in a single time bin; Table 1). In the binned data 112 

13 of 31 fossil genera were not sampled in one or more time bins between their first and last 113 

occurrences. Rather than assume the presence of the genera in those intervening time bins, we 114 

treated them as missing values instead of estimating body size (further details on the data 115 

treatment are provided in the SOM, Fig, S4). For extant tortoise taxa, we collected SCL data by 116 

both measuring specimens from the collection of the Museum für Naturkunde Berlin (n = 67) and 117 

gathering body size data from the literature (Table S2, n = 173). In total, we collected data from 118 

31 genera and 169 species across fossil and extant tortoises (Tables S1 and S2).  119 

Body size estimation 120 

For some fossil specimens (n = 99) the carapace was not preserved or was too incomplete to 121 

measure SCL. In these cases, we used other skeletal elements such as plastron length (PL) and 122 
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appendicular elements to estimate SCL (Table S1). For SCL estimation from PL, we used 123 

multivariate imputation by chained equations from the R package mice [36] to extrapolate 124 

missing data via a Bayesian linear regression (method = “norm”, Fig. S2) from extant and fossil 125 

taxa. For SCL estimations from femora and humeri, we used ratios between the appendicular 126 

elements and SCL based on Hutterer et al. [37] and Franz et al. [38], respectively. Several 127 

publications provided scaled figures instead of measurements, from which we measured either 128 

SCL directly or PL, humeri, or femora lengths for estimating SCL. 129 

Analyses 130 

All analyses were performed in the R software environment [39,40]. First, we generated 131 

randomized sample-based accumulation curves using the vegan package [41] to determine if 132 

our sampling was sufficient to capture the diversity of tortoises over the past 23 Ma (discussion 133 

of preservation bias is in the SOM). These curves were created both at the species and genus 134 

level. Given that genera are better sampled than species (Fig. S3A-B), we performed all 135 

subsequent analyses at the genus level (further details on the data treatment in SOM, Fig. S5 + 136 

S6).  137 

Body size distribution analysis 138 

To explore body size distributions and means, we calculated the moments (mean, median, 139 

variance, skewness, kurtosis; Table 1), and determined the range (minimum, maximum values; 140 

Table 1) of SCL (raw and log-transformed) using the moments R package [42]. We compared 141 

body size distributions of fossil vs. extant tortoises on islands and the mainland by fitting a non-142 

parametric kernel density function to each group and calculating the areas of overlap (= overlap 143 

indices) [43–45] using the R package overlapping [44,45]. We further evaluated differences in 144 

mean body size between these groups using an unpaired Wilcoxon rank sum test. To assess for 145 

body size differences among adjacent time bins we used the Kruskal-Wallis test and Dunn’s test 146 

for multiple comparison [46]. We further compared the maximum values between the early 147 
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(2.588 – 0.5 Ma) and the late Quaternary (0.5 – 0.1 Ma) by conducting an outlier analysis. 148 

Lastly, we investigated the relationship between body size, latitude, and age using a generalized 149 

additive model (GAM) [47] (statistical details are in the SOM). 150 

Temporal body size variation 151 

To investigate the mode of body size evolution, we used the paleoTS package [48]. First, we 152 

calculated the mean SCL per genus within time bins and then summarized total mean SCL per 153 

time bin. Since mean values were used for this analysis, we also included additional data based 154 

on published studies on extant tortoise species that provided data on means and standard 155 

deviations (n = 1728, Table S3) and incorporated them into our genus SCL means that were 156 

then summarized per time bin. We tested for three common models of trait evolution: stasis, 157 

where the trait mean fluctuates around a constant mean (no significant change); generalized 158 

random walk (GRW), where the trait mean increases or decreases over time (directional 159 

change); and unbiased random walk (URW), where the trait mean changes over time but without 160 

moving the trait in a specific direction (non-directional change). The latter model assumes that 161 

trait changes do no accumulate so as to generate a trend towards a larger or smaller mean 162 

value. Model fits were based on maximum-likelihood estimation and model support is reported 163 

as the small-sample Akaike Information Criterion (AICc), with the lowest values indicating the 164 

best supported model (Table 2). Model-fitting was performed first for the entire data set and in 165 

separate analyses for mainland and island taxa.  166 
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Results 167 

Body size distributions 168 

We found that tortoise body size exhibits a bimodal and right-skewed distribution, indicating a 169 

higher proportion of smaller body sizes than larger body sizes (Table 1; Fig. 1A). The pattern of 170 

bimodality with two body size peaks is maintained when splitting the data into fossil and extant 171 

taxa, with an overlap of 70% between the two distributions (Fig. 1B). We also detected a bimodal 172 

body size distribution when comparing mainland and island taxa. In contrast to the pattern found 173 

between fossil and extant tortoises, the body size distribution of mainland taxa is right-skewed 174 

while island taxa are left-skewed, resulting in an overlap of 37% (Fig. 1C). When comparing the 175 

body size distributions of fossil and extant taxa across mainland and insular habitats, we found 176 

an overlap index of 45% and 66% respectively (Fig. 1D). Further, we observed that on islands 177 

extant tortoises exhibit a platykurtic body size distribution whereas fossil taxa show a unimodal 178 

left-skewed distribution (Fig. 1D). On the mainland, extant tortoises exhibit a unimodal 179 

distribution whereas fossil taxa have binomial right-skewed distribution (Table 1, Fig. 1D). 180 

Body size trends over time and space 181 

The mean body size of extant taxa is significantly smaller than fossil taxa in both insular and 182 

mainland habitats (islands: W = 590.5, p < 0.01; mainland: W = 7095, p < 0.01; Fig. 2A). This is 183 

also the case when comparing extant and fossil tortoises and insular and mainland habitats 184 

separately (extant vs. fossil: W = 23625, p < 0.01, Fig. S9A; insular vs. mainland W = 13963, p < 185 

0.01, Fig. S9B). Pairwise comparisons of mean body size between adjacent time bins showed 186 

few significant differences (2/11 comparisons; Fig. 2B, Table S4): between the Late Pleistocene 187 

and the Recent (P < 0.01) and between the Langhian and Serravallian in the Middle Miocene (P 188 

< 0.01; Fig. 2B, Table S4). Finally, the smoothers from the GAM analysis for age and latitude 189 

were both significant. The GAM shows two peaks for both age and latitude. SCL shows a large 190 

peak around 7 Ma (Messinian) and a small peak around 14 Ma (Langhian) in age. Further, SCL 191 
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shows a large peak around 0 degrees (equator) and a smaller peak around 30 degrees latitude 192 

(Fig. S7). Body size declines towards the present and higher latitudes (Fig. S7). Analyzing outlier 193 

values only in the Quaternary identified maximum values for body size between 1800 and 2050 194 

mm SCL in the early Quaternary (2.588 – 0.5 Ma) in contrast to outlier values between 1240 and 195 

1300 mm SCL in the late Quaternary (see Fig. S8). 196 

Evolutionary patterns 197 

We found stasis to be the model that best described our data, with an Akaike weight of 85.1% 198 

(Table 2). This was also the case for mainland and island tortoises, although model support was 199 

greater for the mainland than for the island taxa, 94.1% vs. 70.8%, respectively (Table 2). Body 200 

size trajectories are characterized by a gradual increase throughout the Miocene for tortoises 201 

overall and on the mainland (5.33 - 23 Ma; Fig. 3A). The increase in body size is consistent 202 

when analyzing mainland taxa alone (Fig. 3B). On islands, the earliest record is from the 203 

Messinian (Late Miocene) and exceeded the body size of mainland species (Fig. 3B-C). For all 204 

tortoises, as well as on the mainland and on islands, body size reached a peak in the Messinian 205 

(Late Miocene) and Gelasian (Early Pleistocene). Following the first peak, body size declined 206 

during the Pliocene until another increase in the Gelasian. After this second peak, body size 207 

exhibited a striking decline, which was greater and occurred earlier in mainland compared to 208 

island taxa (Fig. 3B). Island taxa showed a first gradual decline in body size from the Early 209 

Pleistocene to the Late Pleistocene followed by a second sharp decline at the Pleistocene-210 

Holocene boundary (Fig. 3C).   211 
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Discussion 212 

We found that the body size distribution of fossil and extant tortoises is bimodal and right 213 

skewed (Fig 1A). This pattern has been previously reported both in turtles and tortoises 214 

[19,31,33] and is common in the animal kingdom [34,35]. Our results further indicate that the late 215 

Quaternary extinctions resulted in a marked shift in body size distribution (Fig. 1, S8) and the 216 

reduction of mean body size from fossil to extant tortoises (Figs. 2-3). The change in body size 217 

distribution is more nuanced in island tortoises than in mainland taxa (Fig. 1D). In the mainland, 218 

there is a clear transition from a bimodal to a unimodal and skewed body size distribution. On 219 

islands, body size range is virtually the same between fossil and extant taxa, but the frequency 220 

of large-bodied taxa is lower in the extant sample, where the overall distribution is also more 221 

uniform (Fig. 1D). The contrasting body size distributions of fossil and extant taxa (Fig. 1B-C) is 222 

likely driven by the extinction of large-bodied species. This is corroborated by differences 223 

observed in average body size over time and space. Despite finding little variation of body size 224 

over time (Fig. 2B) and stasis as the general mode of body size evolution (Fig. 3A-C), extant 225 

tortoises are on average significantly smaller than their fossil conspecifics (even with extant giant 226 

tortoise genera Aldabrachelys on Aldabra and Chelonoidis on Galápagos reaching large body 227 

sizes > 1 m Fig.  2A), a pattern also found in mammals [49], birds [5,13], and other reptiles 228 

[17,50].  229 

We found significant differences in mean body size in two time intervals (Langhian – 230 

Serravallian, 15.97 – 11.608 Ma; Late Pleistocene – Recent, 0.0126 - 0 Ma; Fig 2B). 231 

Interestingly, these shifts in mean body size coincide with different events in the earth’s history: 232 

the transition from the Mid Miocene climatic optimum to the cooling trend of the younger 233 

Neogene [51,52] and Quaternary and the exploitation and extirpation of many tortoise species 234 

during the late Quaternary when humans and other hominins spread throughout the world. On a 235 

more local level, shifts in body size could be due to ecological stress caused by orogenic 236 
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changes that altered the climate and prevailing habitat structure. For example, Cadena and 237 

Jaramillo [53] hypothesized that shifting geographic features such as the uplifting of the Andes 238 

and associated changes in river systems and drainages affected the distribution of Miocene 239 

turtles in South America. However, such local changes in body size are more difficult to 240 

investigate than large-scale patterns due to the incompleteness and bias of the fossil record 241 

(further discussion of impact on our results are in the SOM). Our observed shifts in body size 242 

occurred over short time intervals, and therefore they are not deemed significant when testing 243 

for the general mode of phenotypic evolution over the past 23 Ma, and therefore the analysis 244 

supports stasis as the best fitting model to our data [54]. We suggest that the simultaneous 245 

trends of miniaturization and gigantism [19] yields a result of no shift in the mean body size of 246 

tortoises over time and as a consequence supports the pattern of stasis at the family level (Fig. 247 

S10). Moreover, the distribution of genera throughout the time bins in our data as well as the 248 

heterogeneous dynamics of body size within genera, results in a uniform pattern of mean body 249 

size throughout the sampling period (Fig. S11). In summary, mean body size of tortoises has not 250 

exhibited marked fluctuations over 23 Ma, but large and rapid changes have resulted in a 251 

smaller mean body size and shifted body size distribution patterns in extant tortoises relative to 252 

their fossil counterparts. 253 

Phylogenetic analysis have provided refined insights into body size evolution across vertebrates 254 

[55–60]. However, we excluded phylogenetic comparative methods from our approach for two 255 

reasons. First, body size is an easily preserved trait for tortoises because of their hard bony 256 

shell, but traits needed to infer taxonomy and subsequently build a phylogeny are scarcer in the 257 

fossil record of tortoises because they are based on skulls which, along with other appendicular 258 

elements, are often not preserved [61,62]. Second, the taxonomy of fossil tortoises is 259 

inconsistent, in part because fossil taxa have historically often been grouped and named based 260 

on body size alone [63]. Although the taxonomy of fossil tortoises has been revised in great 261 

detail in some regions and illuminated phylogenetic relationships of fossil taxa [18,61,62,64–69], 262 
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there are still many fossil records that have not been reevaluated taxonomically, which is 263 

necessary to put them into a larger phylogenetic context with confidence (for discussion of this 264 

issue see [18]). For these reasons, not conducting a phylogenetic analysis allowed us to include 265 

body size data from records lacking phylogenetic information as well as avoid a potential bias 266 

due to the historical practice of naming fossil tortoise taxa based on size class, in conjunction 267 

with the heterogeneity of recent reexamination of this tradition (for a phylogenetic-focused 268 

approach to tortoise body size evolution see [19]). 269 

Taken together, our results suggest a reduction of tortoise body size [49], as evidenced by an 270 

increase in the frequency of small taxa and the loss of bimodality in size distribution and hence, 271 

of the large size peak (Fig. 1A-D). This was likely due to the extinction of the largest species 272 

during the late Quaternary [49]. The pattern of body size reduction occurred through different 273 

processes in mainland and island species. For example, mainland taxa went from two body size 274 

peaks to a single size peak, and island taxa moved from a left-skewed distribution to a uniform 275 

distribution in body size. The difference in timing of extinctions between mainland and islands 276 

has been attributed to the delayed arrival of humans on islands matching with the geographic 277 

extirpation patterns of tortoises [14], whereas discrepancies in body size patterns between 278 

mainland and island ecosystems might be due to specific habitats and associated changes 279 

[61,70]. Body size transitions such as those found here for tortoises have also been observed in 280 

terrestrial mammals following the late Quaternary extinctions [49,71]. However, general trends in 281 

the distribution of body sizes of insular mammals differ from those of insular tortoises [72], with 282 

insular mammals having mostly multimodal and right-skewed distributions [72]. The prevailing 283 

explanation for this pattern is that (herbivore) mammals generally adhere to the island size rule 284 

where small animals evolve larger body size on islands and vice versa [73]. Body size patterns 285 

of extant tortoises, i.e. larger species on islands than on the mainland, also seem to follow the 286 

island rule. However, biogeographic studies on dispersal patterns of tortoises and consideration 287 

of the fossil record have revealed that large-bodied taxa evolved on the mainland and later 288 



	

14 
 

dispersed to islands where they became even larger, therefore contradicting the island rule 289 

[32,74]. The later extinction of all large-bodied tortoises on the mainland and almost all large-290 

bodied tortoises in islands generated the body size pattern present in extant taxa [14]. 291 

The overall reduction in body size of extant turtles resulted in the homogenization of ecological 292 

functions, with potential severe consequences for ecosystems [9]. Multiple studies have shown a 293 

major role for larger-bodied animals providing important ecosystem services [3,4,13]. For 294 

example, giant tortoises are recognized to maintain ecosystems through grazing, browsing, 295 

trampling, selective feeding, nutrient cycling, and seed dispersal [7,9,10]. Observational data 296 

suggests that smaller-sized animals can also be effective seed dispersers [75–79] and large size 297 

does not necessarily result in longer gut retention time [80]. However, megaherbivores play a 298 

more important role in this regard compared to smaller animals because they usually consume 299 

larger amounts of food and thereby seeds, can eat larger fruits, exploit a larger area and move 300 

over longer distances [3–6]. For example, the loss of mammalian megaherbivores has been 301 

associated with changes in plant communities, vegetation structure, biome shifts, fire activity, 302 

and nutrient cycling [3,4,6]. Similarly, the disappearance of endemic, large tortoises on the 303 

Galápagos islands has resulted in the loss of wetland habitats [9]. The impact of the recent 304 

extinction of giant tortoises is so severe that rewilding programs with non-native extant giant 305 

tortoises have been developed to restore these lost ecosystem services [9,10]. While we can 306 

estimate the effect of giant tortoise extinctions on island ecosystems with some precision given 307 

that some taxa still remain and several extinctions are rather recent, the ecological impacts of 308 

giant tortoise extinctions on continents are less clear. Mainland tortoises were disproportionately 309 

affected by the extinction of megafaunal taxa with the eradication of all giant taxa on continents 310 

[14]. Mainland giant tortoises were not the largest herbivores in their respective communities and 311 

their ecological functions were shared with mammalian megafauna [13] in contrast to insular 312 

taxa, making giant tortoises on islands potentially less redundant and therefore more unique 313 

ecosystem engineers than on the mainland. Regardless of whether or not giant tortoises played 314 
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unique ecological roles on the mainland, the sheer extent of their extinction in conjunction with 315 

mammalian megafauna extinctions likely altered ecosystem functioning [3,13].  316 

In conclusion, based on the role of extant and recently extinct giant tortoises as ecosystem 317 

engineers, the body size downgrading following the extinction of giant tortoises likely resulted in 318 

the homogenization of ecological functions and a large-scale reorganization of their ecosystems, 319 

especially on the mainland where none of the megafaunal species remain. Further research is 320 

needed to discern interactions of fossil giant tortoises with other extinct megaherbivores and 321 

their concrete niches and synergy within mainland ecosystems. Such investigations may provide 322 

more insight into community structures and impacts of community-wide megafauna loss.                                            323 
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Figure legends 528 

Figure 1: A) Body size distribution of all tortoises is bimodal and right-skewed: small body sizes 529 

are the most frequent. B) Temporal comparison of body size distribution shows extant and fossil 530 

taxa are both bimodal and right-skewed: small body sizes are more frequent than large body 531 

sizes. Body size overlap is high between fossil and extant tortoises. C) Spatial comparison of 532 

body size distribution shows it is right-skewed and bimodal in mainland tortoises while it is left-533 

skewed and bimodal in insular tortoises. Body size overlap is low between mainland and insular 534 

tortoises because of the contrasting skew. D) Left: Body size distribution of extant taxa on 535 

islands is rather uniform. Body size distribution of fossil taxa on islands is unimodal and, in 536 

contrast to all other groups, left-skewed: large body sizes are the most frequent. Body size 537 

overlap is low between fossil and extant tortoises in islands. Right: Body size distribution of 538 

mainland tortoises is right-skewed for extant and fossil taxa and bimodal for fossil tortoises but 539 

unimodal for extant tortoises due to lack of large-bodied taxa. Body size overlap is high between 540 

fossil and extant tortoises on the mainland due to the preserved cluster of small-bodied taxa. 541 

Figure 2: Comparison of tortoise body size on spatio-temporal scales. Bold lines indicate 542 

medians, boxes indicate lower and upper quartiles, whiskers indicate largest and smallest 543 

observations and outliers represent extreme values. Mean straight carapace length per genera 544 

are depicted as grey circles with error bars indicating the respective standard deviation. A) 545 

Comparison of extant and fossil body size in island and mainland taxa. Extant tortoises have a 546 

smaller mean body size than fossil ones on both, islands and the mainland. B) Comparison of 547 

straight carapace length across all time bins. Numbers refer to number of genera per group. 548 

Smallest average carapace length and variance is found in extant tortoises. 549 

Figure 3: Evolutionary trajectory of straight carapace length (SCL) over time for A) all taxa, B) 550 

mainland taxa, and C) island taxa. Points and bars represent the mean carapace length within 551 

each time bin and standard errors, respectively. Black dashed line depicts the mean carapace 552 
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length averaged across all time bins. Grey background indicates the different epochs: from the 553 

Miocene over the Pliocene to the Pleistocene (from light to dark). Letters indicate the 554 

stratigraphic stages from the Miocene to the Recent( B/A = Burdigalian/Aquitanian, L = 555 

Langhian, S = Serravallian, T = Tortonian, M = Messinian, Z = Zanclean, P = Piacencian, G = 556 

Gelasian, EP = Early Pleistocene, MP = Middle Pleistocene, LP = Late Pleistocene, R = 557 

Recent). Body size increases consistently until the Late Miocene (Messinian), briefly dips and 558 

rises again in the Pliocene and then steadily drops with onset of the Pleistocene for all tortoises 559 

and mainland tortoises. The oldest and largest island tortoises are known from the Late Miocene 560 

and also experience a dip and subsequent rise during the Pliocene and then drop during the 561 

Pleistocene. 562 
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Tables 563 

Table 1: Descriptive statistics of straight carapace length (SCL) for the entire data set (all) as well as different subgroups, i.e. per time 564 
bin (min - max Ma), extant and fossil tortoises, mainland and insular taxa in general and for extant and fossil tortoises separately. The 565 
table contains sample size (Individuals), number of species (Species), number of genera (Genera), minimum, maximum, mean, median, 566 
variance, skewness, kurtosis, as well as the corresponding log values of straight carapace length. Time ranges, mean age per bin, 567 
corresponding stratigraphic stages and epochs, and respective sample sizes (on individual, species and genus level). Apart from the 568 
most recent time bin, which includes all extant genera, the Early Pleistocene contains the highest sample size. 569 
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All 630 169 31 80.0 2500 434.7 270.0 164134.09 2.14 7.99 5.8 5.6 0.69 2.73 

Recent (0-0.0117 

Ma) 

252 64 18 80.0 1300 329.3 242.2 67449.64 1.85 5.92 5.6 5.5 0.59 2.72 

Late Pleistocene 

(0.0117-0.126 Ma) 

50 19 8 102.4 1250 446.9 342.4 68527.81 1.16 3.58 6.0 5.8 0.22 2.50 

Middle Pleistocene 

(0.126-0.781 Ma) 

53 13 7 132.0 1800 389.2 293.0 97470.85 3.03 12.2

7 

5.8 5.7 1.42 5.51 
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Early Pleistocene 

(0.781-1.806 Ma) 

57 27 12 96.5 2000 463.1 263.8 161825.86 1.75 5.77 5.9 5.6 0.71 2.43 

Gelasian (1.806-

2.588 Ma) 

31 14 8 118.9 2050 553.5 194.9 407449.36 1.31 3.14 5.8 5.3 0.93 2.11 

Piacencian (2.588-

3.6 Ma) 

21 14 9 90.0 1600 606.1 428.0 274229.86 0.99 2.49 6.0 6.1 0.02 2.03 

Zanclean (3.6-5.332 

Ma) 

26 14 8 164.9 2500 952.0 857.5 478925.31 1.10 3.56 6.6 6.8 -0.42 2.32 

Messinian (5.332-

7.246 Ma) 

11 8 5 140.0 2100 919.7 729.6 552706.72 0.38 1.64 6.4 6.6 -0.24 1.42 

Tortonian (7.246-

11.608 Ma) 

48 23 10 105.0 1540 444.8 250.0 172995.44 1.55 3.93 5.8 5.5 0.85 2.64 

Serravallian 

(11.608-13.82 Ma) 

31 11 6 111.0 1500 373.3 220.0 159888.34 2.15 6.12 5.6 5.4 1.46 4.11 

Langhian (13.82-

15.97 Ma) 

14 10 7 270.0 1600 745.6 700.0 235193.56 0.29 1.52 6.4 6.4 0.04 1.16 
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Burdigalian/Aquitani

an (15.97-23.03 Ma) 

36 16 10 113.0 1100 372.1 273.3 69970.94 1.44 4.05 5.7 5.6 0.53 2.37 

Fossil 378 116 24 90.0 2500 505.0 285.4 216559.77 1.84 6.16 5.9 5.7 0.66 2.43 

Insular 147 56 19 80.0 2000 578.0 500.0 159787.40 1.01 3.94 6.1 6.2 -0.28 2.06 

Mainland 483 129 29 81.0 2500 391.1 250.0 157622.64 2.64 10.4

9 

5.7 5.5 1.05 3.70 

Extant insular 96 32 12 80.0 1300 471.3 353.0 118529.81 0.82 2.48 5.9 5.9 0.01 1.77 

Extant mainland 156 41 15 81.0 830 241.9 221.0 16402.64 1.97 8.58 5.4 5.4 0.29 3.01 

Fossil insular 51 26 10 150.0 2000 778.9 750.0 178351.30 1.11 4.06 6.5 6.6 -0.37 3.14 

Fossil mainland 327 98 24 90.0 2500 462.3 270.0 209518.11 2.11 7.29 5.8 5.6 0.93 2.96 
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Pagebreak 
 570 
Table 2: Model-fitting results for the complete data set as well as mainland and insular subsets comparing three models (GRW = 571 
Generalized Random Walk, Unbiased Random Walk, and Stasis). Stasis is the best supported model (largest Akaike weights in bold) for 572 
all three data sets with the highest model support for insular data. 573 

Data Model Log Likelihood K AICc Akaike Weight 

	 Stasis -71.71 2 148.9 0.851 

All URW -75.36 1 153.2 0.103 

	 GRW -74.63 2 154.8 0.046 

	 Stasis -74.9 2 155.3 0.708 

Island URW -77.72 1 157.9 0.195 

	 GRW -76.89 2 159.3 0.097 

	 Stasis -52.73 2 112.5 0.941 

Mainland URW -123.9 1 250.5 0.000 

	 GRW -55.51 2 118 0.059 

574 
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