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Summar_v 

Summary 

The processing power of the computer has increased at extraordinary rates over the 

last few decades. However, even today's fastest computer can take several hours to 

find solutions to some complex mathematical problems, and there are instances when 

a high powered supercomputer may be impractical, with the need for near instant 

solutions just as important. One approach to this kind of problem is through machine 

learning. This research investigates the application of various neural network 

techniques, and aims to solve known complex inverse problems in the field of 

magnetic and optical recording. 

Investigations were conducted to determine anisotropy distributions from transverse 

susceptibility data ( an area of magnetism which is proving to be very important, as it 

gives information about the overwrite characteristics of the media). The neural 

networks produced results which were very impressive, and compared well with other 

more conventional methods (solutions were obtained in a fraction of the time). More 

importantly, it suggested that this technique was indeed feasible, and could be used to 

solve a series of similar inverse problems. 

The neural network was then modified to investigate diffraction patterns from a 

compact disc. This was an interesting application which had practical uses in industry, 

as the idea of reducing the testing time for each disc was very attractive. Simulations 

on theoretical data were successful, and suggested that this method could be carried 

out experimentally on an online testing system. 

The final part of the research involved the extraction of important features from 

magnetisation maps and magnetic force microscopy images. The use of neural 

networks to study general image analysis is well established, but its use in magnetism 

was quite novel. The results obtained were surprisingly good as the images 

investigated hardly contained enough data for the human eye to observe, and features 

such as percolation and vortices were observed on a variety of samples. This success 

has prompted suggestions as to ways in which this approach can be expanded to solve 

similar problems. 
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Chapter 1 Introduction To Magnetism and Magnetic Recording 

Chapter 1 
Introduction To Magnetism and Magnetic Recording 

1.1 Introduction 

The principles of basic magnetism can be traced back before the birth of Christ to a 

mineral called magnetite, which was found to attract iron and also magnetise a piece 

of iron which was rubbed against it. This later found its use as a sailor' s compass, 

which was made from a shaped piece and allowed to turn on a pivot. However, it 

wasn' t until centuries later that the first scientific study of magnetism was carried out, 

by William Gilbert (1540-1603). He experimented with lodestones and iron magnets, 

and explained a clear picture for the earth's magnetic field. This was to be the last 

significant discovery for more than a century and a half, until 1825, when the first 

electromagnet was made by Hans Christian Oersted. 

In 1898, the first evidence of magnetic recording appeared with the invention of the 

telegraphone, by Valdemar Poulsen. Nowadays, magnetic recording plays a vital role 

in modem society and its success is partly due to its versatility, and its applicability in 

many applications, such as audio and video recording and the storage of digital 

information on a computer hard disk. 
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Chapter 1 

1.2 The Basics of Magnetism 

1.2.1 Magnetic Fields 

Introduction To Magnetism and Magnetic Recording 

A material which has been magnetised will have a force associated with it which 

appears at the poles. The poles always come in pairs and are located near the ends of 

the magnet. Around each pole there is a magnetic field, and calculations show that 

this field is proportional to the product of the pole strength and the field strength. 

Therefore, the field created by a unit pole will have an intensity of 1 Oe at a distance of 

1cm from the pole, and can be calculated using: 

(1.1) 

where p is the pole strength and dis the distance from the pole. The directions of the 

fields arising from the magnetic material were first introduced by Michael Faraday, 

and they show the fields leaving one pole (north) towards the other (south). This is 

illustrated in Figure 1.1. 

Figure 1.1: The magnetic field of a magnet 

2 



Chapter 1 Introduction To Magnetism and Magnetic Recording 

1.2.2 Magnetic Moments 

The magnetic moment is a very important quantity in all types of magnets, and when 

the magnet is placed at an angle 0 to a uniform field H a couple will act on it which 

causes the magnet to rotate parallel to the field. This moment can be defined using 

equation 1.2 (when the field is lOe and Bis 90°): 

m =pl (1.2) 

where pis the strength of the poles at each end of the magnet and/ is the separation. 

1.2.3 Magnetic Susceptibility 

One of the most important characteristics of a magnetic material is its susceptibility. 

This is defined as the ratio of the magnetism M ( M = ~ , where v is the volume) to the 

magnetic field strength H: 

M x=
H 

(1.3) 

A magnetisation curve is a plot of M against H, and the susceptibility can be measured 

directly from it. Materials which have a linear M-H curve include diamagnets, 

paramagnets and antiferromagnets, and these retain no magnetism when the magnetic 

field is removed. Nonlinear M-H curves arise from ferromagnets and ferrimagnets, 

and the susceptibility varies with applied field, giving rise to a hysteresis loop (Figure 

1.2). 

The loop provides us with information about three important parameters: the 

remanent magnetisation M,, the coercivity He and the squareness MIMs-

3 



Chapter I Introduction To Magnetism and Magnetic Recording 

Magnetisation 

-HI 
C 

Figure 1.2: A typical hysteresis loop 

The value of Mr gives information about the amount of magnetisation left in the media 

when the applied field is reduced to zero. It is dependent on the direction and 

magnitude of the previously applied field. The coercivity He is the field strength when 

the magnetisation is zero. The ratio of M/Ms (squareness) gives the degree to which 

the material retains its magnetisation in the presence of no applied field. 

1.2.4 Magnetic Domains 

A domain is a region throughout which the magnetisation is constant, and a domain 

wall is an interface between regions in which the spontaneous magnetisation has 

different directions. The magnetisation must at some point change direction, be it 

within or at the wall. For a sample with a single domain, the energy due to the 

demagnetising field is proportional to the volume of the specimen. Thus, as the 

volume of the sample becomes large, it becomes more favourable (in terms of energy) 

for domain walls to form (Figure 1.3). 

4 



Chapter 1 Introduction To Magnetism and Magnetic Recording 

Domain I Wall Domain 2 
I 

f f f i i i i 
I 
I 

Figure 1. 3 : Domain walls within a sample 

The figure shows a rather oversimplified representation of the domain walls. In reality 

there is a change of magnetisation within the wall itself. The domain wall in the figure 

would have a large exchange energy associated with it (because the spins adjacent to 

the wall are anti-parallel). The exchange energy for a pair of atoms with the same spin 

can be calculated by: 

E,x = - 2JS2 cos0 (1.4) 

where J is the exchange integral and 0 is the angle between the spins. This energy can 

decrease if the 180° change in spin direction takes place gradually over a number of 

atoms. However, the spins in the wall are now pointing towards noneasy directions. 

The crystal anisotropy energy within the wall is now higher than the adjoining 

domains. Whilst the exchange energy tries to make the wall as wide as possible, the 

anisotropy energy tries to make the wall thin (in order to reduce the number of spins 

pointing in noneasy directions). The thickness of the wall can be approximated by 

equation (1.5), and its derivation can be found in Cullity [l]: 

(1.5) 

where r5 is the wall thickness, Tc is the Curie temperature and K is the anisotropy 

constant. The smaller the anisotropy constant, the thicker the wall; therefore the wall 

thickness increases with temperature (as K decreases with temperature). 

5 



Chapter 1 Introduction To Magnetism and Magnetic Recording 

1.3 Anisotropy 

Anisotropy is found in almost all magnetic materials, and it means that the magnetic 

properties depend on the direction in which they are measured, and it is of great 

practical interest in the choice of a magnetic material (2]. It is therefore necessary to 

have some understanding of the theory of anisotropy. There are several types of 

anisotropy, namely: crystal, shape, stress and exchange. There are other sources of 

anisotropy (such as those due to surface effects), but of all the anisotropies, crystalline 

anisotropy is the only intrinsic property of the material, as the others are extrinsic 

properties which are dependent on the preparation of the sample. 

1.3.1 Crystal Anisotropy 

Crystal anisotropy arises mainly due to spin-orbit coupling, which then gives rise to a 

preferred direction for the magnetic moment. This coupling is very strong, and keeps 

neighbouring spins parallel, or antiparallel to one another. However, the exchange 

energy associated with it is isotropic, and depends on the angle between adjacent 

spins (and not on the direction of the spin axis relative to the crystal lattice). In a 

system with uniaxial anisotropy the magnetocrystalline energy can be calculated using 

equation ( 1. 6): 

(1.6) 

where Ki are the anisotropy constants (which are dependant on the material) and r/> is 

the rotation of the moment away from the easy axis. The strength of the anisotropy in 

a crystal is measured by the magnitude of these anisotropy constants, which can be 

measured using torque curves (a torque magnetometer). These determine the torque 

which is required to rotate the magnetisation away from an easy direction as a 

function of the angle of rotation. 

6 



Chapter 1 Introduction To Magnetism and Magnetic Recording 

1.3.2 Shape Anisotropy 

A polycrystalline sample which has no preferred orientation of its grains has no crystal 

anisotropy. It has a spherical shape and the applied field will magnetise it equally in 

any direction. However, if it is non-spherical then it will be easier to magnetise it 

along a long axis (rather than the short axis). The applied field along the short axis 

must be stronger in order to produce the same field inside the sample. Therefore, the 

shape of the sample must be a source of anisotropy - hence shape anisotropy. 

The shape anisotropy is due to the shape dependence of the demagnetising field on the 

magnetic sample (which is due to the formation of uncompensated poles on its 

surface). The demagnetising field is proportional to and opposes the magnetisation 

that it creates, and is given by equation (1. 7): 

(1.7) 

where Ne, is the demagnetising factor ( and is dependent on the shape of the sample); 

and the magnetostatic energy which is associated with the demagnetising field at 

saturation is given by: 

(1.8) 

1.3.3 Exchange Anisotropy 

Exchange anisotropy was an effect discovered by Meiklejohn and Bean [3 , 4], and is 

to be found in materials which consist of ferromagnetic and antiferromagnetic layers 

in contact; and is the result of exchange coupling between the spins at the interface of 

the two layers. 
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The energy of a ferromagnet due to exchange anisotropy is given by equation (1.9): 

E =-K cos(0) (1.9) 

where 0 is the rotation of the magnetisation of the ferromagnet away from the easy 

direction and K is the anisotropy constant. The main requirements for a material to 

exhibit exchange anisotropy are (in an ideal situation, where crystal imperfections and 

domain wall formations are ignored): 

• The sample should be field-cooled through the Neel temperature (the temperature 

at which a sample changes from paramagnetic to antiferromagnetic). 

• There should be intimate contact between the ferromagnetic and antiferromagnetic 

materials. 

• There should be strong crystalline anisotropy in the antiferromagnet. 

1.4 Magnetic Materials 

1.4.1 Particulate Media 

Particulate materials are a very important type of magnetic recording media, and is 

used mainly in recording tape. The ideal particulate media has isolated long ellipsoidal 

particles suspended longitudinally in a matrix (as shown in Figure 1.4). 

Figure 1.4: Particulate recording media 
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However, a real magnetic material is never as perfect as this in reality. Figure 1.5 

shows an image of a simulated particulate medium [5] with the non-aligned particles 

(a) and the aligned particles (b). 

Figure 1.5 : Simulated particulate media (a) non-aligned (b) aligned 

As particulate magnetic media are most commonly used in audio tape applications, it 

is important to ensure recorder and reader compatibility; and the AC bias, signal 

current and frequency equalisation must be standardised. Improvements m 

performance include such things as particle alignment and morphology. 

The most common magnetic material used for particulate media is an oxide of iron 

called gamma ferric oxide (Fe2O3) . However, modern high coercivity particulate 

media are formed of metal rather than oxide particles (Fe particles with a small 

amount of Co to help against oxidation). Although elemental metals or alloys can be 

used, it is more difficult to control the morphology of metals than oxides. Elemental 

metals and alloys are better suited for film deposition. 
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1.4.2 Thin Film Media 

Thin film media usually consist of cobalt based alloys, which often possess a 

hexagonal crystal structure in which magnetocrystalline anisotropy aids in achieving a 

high coercivity. Hence, thin film media have been thoroughly studied for their 

application in hard disks. 

A hard disk consists of several layers of varying thickness. The substrate is usually an 

aluminium alloy with some sort of overcoat to increase surface hardness, reduce 

corrosion, and improve the adhesion of the metal film. The undercoat is followed by a 

thin coat of the magnetic material. This coat is followed by a protective overcoat. In 

order to minimise the transition width, and hence the minimum separation required 

between two successive tracks, the magnetic layer is made as thin as possible. Figure 

1. 6 shows a cross-section through a typical hard disk. 

lOµm 

Figure 1. 6: Cross-section through a typical hard disk 

The magnetic layer and the underlayer are the two most important layers in the media. 

The data is recorded onto the magnetic layer (which is usually a combination of cobalt 

and nickel), and has a typical thickness of about 200-S00A. The underlayer (usually 

chromium) has a typical thickness of about 1000-2000A, and is the layer onto which 

the magnetic layer is sputtered. The properties of the magnetic layer are dependent on 

the thickness of the underlayer; and as its thickness increases, the coercivity increases 

and the remanence decreases. 
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1.5 Stoner-Wohlfarth Theory 

In 1955 a single-domain particle model was proposed by Stoner and Wohlfarth [6]. 

The particle is assumed to be ellipsoidal in shape, and the shape anisotropy is the 

determining force in the orientation of the particle' s magnetisation, overriding 

exchange and crystalline anisotropies. It is possible to represent the angle of 

orientation of the magnetisation with the uniaxial anisotropy easy direction by 0, and 

the anisotropy energy by: 

E an = -K sin 2 0 (1.10) 

where K is the anisotropy constant. The two cases that arise are when the particle is 

either perpendicular or parallel to the field. 

• If the particle is perpendicular to the field, then it will be rotated away from the 

easy axis and into the direction of the field (then this gives rise to completely 

reversible changes in the magnetisation). This is illustrated in Figure 1.7(a). 

• If the particle is parallel to the field, then the magnetisation will remain in its 

original direction. When the field is strong enough in the opposite direction, the 

magnetisation will line up parallel, and can be made to follow the direction of the 

applied field (Figure 1.7(b)). 

(a) M (b) M" 

M, 

He .. 
H H ~ 

Figure 1.7: Hysteresis loops with applied field (a) perpendicular (b) parallel to particle 
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1.6 The Magnetic Recording Process 

The recording process is the method in which information is stored on a magnetic 

medium (this is illustrated in Figure 1.8). Information is written by applying a current 

through the coil windings, which has the effect of inducing a magnetic fringing field 

across the gap. The field direction depends on the direction of the current flowing 

through the windings, and thus determines the direction of the recorded information. 

The recorded information will be retained in the medium after the medium has passed 

the head gap. 

Signal current 

V 

Figure 1.8: The recording process 

Information can also be read from the recorded media in a similar manner, by basically 

doing the reverse of the writing process. As the medium passes beneath the head gap, 

the stray field from the magnetisation in the medium induces a field in the bead. This 

then induces a current in the coil windings, which is amplified and converted back into 

its original form. The voltage can be determined by making use of the reciprocity 

theorem, which states that the magnitude of the induced flux in the head by the 

recording medium passing by the head is proportional to the magnetisation of the 

medium and is also proportional to the field which would be induced in the head if it 

was excited by a unit current. 
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1.6.1 AC and DC Erasure 

The erasure of a magnetic sample is of great importance, as it leads to further areas of 

study, such as overwrite. There are several methods available to demagnetise a 

sample; the two important ones being AC and DC erasure. 

In the DC erasure method a positive saturating field H sar is applied, before the 

application of a negative field H1. The field is then reduced to zero and the remanent 

magnetisation measured. The sample is then subjected to H sat again before the 

application of the next negative field H2. This sequence is repeated until Mirr has 

completely reversed. The DC demagnetised state occurs when the remanent 

magnetisation is zero. Figure 1.9 shows a M-H plot for a sample with DC erasure: 

M 

:H,a1 

Figure 1.9: Typical minor hysteresis loops with DC erasure 

In the AC erasure method the magnetic sample is placed in the vicinity of a large, 

alternating field. The magnitude of this field is much greater than the coercivity of the 

sample, thus causing the moments to align with the field direction. The alternating 

field is then reversed and the moments switch into the new field direction. This 

process is repeated, causing the sample to be rapidly taken around the hysteresis loop. 

The field is then slowly decreased or the sample is slowly removed from the influence 

of the field (both have the same effect and both are subjected to an alternating field of 

13 
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decreasing amplitude). This has the effect of causing the sample to trace (decreasing) 

minor hysteresis loops, until the origin is reached and the sample has zero 

magnetisation in zero field (as illustrated in Figure 1.10). 

M 

Figure 1. 10: Typical hysteresis loop with AC erasure 

1.6.2 Recording Media 

Information is stored in a medium in the form of written bits, which are denoted by 

regions of constant magnetisation within the medium. The direction of recorded 

magnetisation is strongly influenced by the magnetic anisotropy in the medium. This 

gives rise to the terms easy and hard directions of magnetisation, and they relate to 

the energy which is required to induce a magnetisation along a specific axis. There are 

three modes of operation which can be used in thin film media: longitudinal, 

transverse and perpendicular recording (as illustrated in Figure 1.11). 

14 
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(a) 

_____. 

(b) 

/ 

(c) 

t t 
Figure 1.11 : Modes of recording (a) longitudinal (b) transverse (c) pe,pendicular 

Longitudinal recording media has the magnetisation of each particle parallel to the 

plane of the medium and the recorded tracks are parallel to the motion of the medium. 

In perpendicular recording the magnetisation of each particle is perpendicular to the 

plane of the media, which has the possibility of obtaining much higher recording 

densities. The disadvantage is that a very small readback voltage is produced in the 

reading head. Transverse recording has the recorded information written 

perpendicular to the direction of motion of the media ( and parallel to the plane of the 

medium). The preferred current mode of recording is the longitudinal method, as the 

remanent magnetisation is much higher along the longitudinal direction. 

The requirements for a recording medium can be investigated by considering the 

recording process itself If a magnetic material were to be placed in the presence of an 

externally applied magnetic field, then when the strength of the field is at such a level 

that the moments of the magnetic particles are aligned with the field, then the sample 

is said to be at saturation magnetisation. Initially, as the field is reduced, the moments 

will undergo a reversible change. But if a negative field were applied ( above a critical 
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level) the moments would undergo irreversible changes. These changes are illustrated 

by plotting the hysteresis loop for the sample. 

The ideal magnetic medium should be a thin film of small thickness giving rise to a 

square hysteresis loop (with a high remanence M, and high coercivity He)- Materials 

with a high coercivity and high Ms are generally used in recording media ( compounds 

are typically cobalt based). 

1. 7 Magnetic Force Microscopy 

Magnetic force microscopy is a development of the non-contact mode of Atomic 

Force Microscopy [7], and is a technique used for studying micromagnetic features in 

magnetic media, which become increasingly difficult to measure as the bit densities of 

storage media continue to increase. Storage densities in the range of gigabit/square 

inch have produced magnetic features smaller than the wavelength of light. Extremely 

high-resolution magnetic imaging is becoming a requirement for the design and 

manufacture of most data storage devices. A typical example is for measuring the 

head performance on hard disks. 

Magnetic force microscopy (MFM) utilises the power of the scanning probe 

microscope [8, 9], by scanning a tiny ferromagnetic probe over a sample. The MFM 

then maps the stray magnetic fields close to the sample surface. It boasts many 

capabilities that complement existing imaging methods; its resolution is consistently 

better than 50nm (which is superior to optical techniques, such as Kerr microscopy). 

The sensitivity is also sufficient to image individual submicron particles. Fields can be 

imaged through the nonmagnetic and opaque overcoats often applied to hard disks. 

The imaging is usually done under ambient conditions, and it requires little or no 

sample preparation, with results obtained in a few minutes. 
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1.7.1 Scanning Probe Microscope 

In order to understand the principles of the MFM, it is best to look at the scanning 

probe microscope (SPM), from which the MFM technique is derived [10]. An SPM 

probe consists of a sharp tip (Figure 1.12) mounted on a weak cantilever spring. 

Figure 1.12: A close-up of a SPM tip 

The tip is brought close to the sample and a piezoelectric scanner moves the probe in 

a raster pattern. The interactions between the tip and sample deflect the cantilever; 

and the deflection is then monitored by reflecting a laser beam off the cantilever into a 

segmented photodiode (as illustrated in Figure 1. 13). The image is formed by 

mapping this laser-detected deflection during the scanning process. 

Display 

Computer and 
feedback 
controller 

Detector 

.- Sample 
'--..------.-~ 

Piezoelectric 
._ tube scanner 

Figure 1.13: Schematic of a scanning probe microscope 
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The SPM brings the tip into direct contact with the sample, and the vertical position 

of the sample is adjusted using feedback to keep the cantilever deflection at a constant 

value while scanning. The resulting vertical offset is displayed as a three-dimensional 

image of the surface topography. 

1.7.2 Magnetic Force Microscope 

In an MFM the tip is magnetically sensitised by coating it with a ferromagnetic 

material. The tip is scanned several tens or hundreds of nanometres above the sample, 

avoiding any contact with the sample. Magnetic field gradients exert a force on the 

tip's magnetic moment, and monitoring the tip/cantilever response gives a magnetic 

force image. In order to increase the sensitivity, the cantilever is oscillated near its 

resonant frequency ( ~ 1 OOkHz) with a piezoelectric element. The gradients in the 

magnetic forces on the tip shift the resonant' frequency of the cantilever. A magnetic 

force image is then created by monitoring the changes in oscillation amplitude or 

phase. 

A maJor problem with the MFM is the influence of surface topography on the 

detection of magnetic data. The magnetic and topographic data should ideally be kept 

separate in order to give a more accurate magnetic image, and reveal correlations 

between magnetic and structural features. One method of achieving this is using a 

technique called lift-mode, which scans the surface twice (see Figure 1.14). On the 

first pass, topographical information is recorded using tapping-mode (where the 

oscillating cantilever lightly taps the surface). Magnetic force data is acquired during 

the second pass, for which the tip is raised to a pre-selected height (about 20-200nm). 

18 
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Topography 

Non-contact force 

Figure 1.14: Lift-Mode technique 

The lift height is added on a point-by-point basis to the stored topographical data, 

thus keeping the tip-sample separation constant and preventing the tip from 

interacting with the surface. These two-pass measurements are taken for every scan 

line to produce separate topographic and magnetic force images of the same area. 

1.7.2.1 Applications in Data Storage Methods 

An MFM can provide valuable information about almost any recording medium. In a 

hard disk, the width, skew and spacing of the tracks can be measured very accurately 

to evaluate head performance (as shown in Figure 1. 15). 

(a) Topography (mm) (b) Magnetic force image (µm) 

Figure 1. 15: Images qf tracks on a hard disk 
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In a particulate media, such as digital audio tape, the separation of the topographic 

and magnetic information can show how particle characteristics affect the recorded 

information. Orientation of the particles becomes visible, and the magnetic signal 

weakens considerably as the bit spacing approaches the particle size. This 

demonstrates that an MFM can image magnetic structure in recording media. 

However, the imaging of magnetically ' soft' materials (such as those used in thin-film 

inductive and magnetoresistive heads) can be more difficult, as the domains in 

magnetically soft materials are easily perturbed by any stray fields produced by the 

magnetised tip. Thick (several micron) films such as those used in head yokes can also 

be imaged, where weak stray fields cause a cantilever frequency shift of as small as 

O. lHz (relative to an 80kHz resonance). Such small signals put an emphasis on 

precision, low-noise scanning and signal detection. 
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Chapter 2 
Introduction To Neural Networks 

2.1 Introduction 

The idea of an artificial neural network came about by the better understanding of the 

human brain, and the recognition that the brain works in a completely different way to 

a computer. In 1911 Ramon y Cajal [11] suggested that the brain consisted of neurons 

as its basic building blocks. These can be compared to silicon logic gates in a 

computer, but whereas logic gates function in the nanosecond region, the neurons in 

the human brain function in the microsecond region. This difference in speed is 

compensated for by the brain, by the sheer number of neurons present. Shepherd and 

Kock [12] estimated that there are on average about 10 billion neurons and 60 trillion 

connections in the human brain. Basically, a neural network is a machine which has 

been designed to model the way in which a human learns, and is described by 

Aleksander and Morton (13] as being: 

A massively parallel distributed processor that has a natural propensity for storing 

experimental knowledge and making it available for use, by which the knowledge has 

been acquired by the network through a learning process 
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The strengths of the connections between neurons (known as synaptic weights) are 

adjusted in an orderly fashion using a learning algorithm so as to store knowledge. 

This idea is the basis of computational neural networks. In the following sections a 

computational model of the neuron is outlined, and some typical network 

architectures and learning processes are described. 

2.2 The Model of a Neuron 

As mentioned, the neuron is the fundamental building block for any neural network. 

Each one consists of three elements (which are also illustrated in Figure 2.1 ): 

• A series of connecting links, which can be altered individually by changing its 

weight. 

• An adder which sums the input signals. 

• An activation function, where a threshold can be applied to limit the output of the 

model neuron. 

Input 
signals 

x" 

u 

Summing 
junction 

i----Output (y) 

Threshold (0) 

Figure 2.1: Model of a neuron 

Mathematically, the summing action of the neuron can be described by equation (2.1 ), 

whilst the overall output of the neuron by equation (2.2). 

11 

U= LW1X1 
}= I 

(2.1) 

22 



Chapter 2 Introduction To Neural Networks 

y = (fJ (u-0) (2.2) 

where 

X1, X2, .. . , Xn = input signals 

w1, W2, ... , W n = synaptic weights 

0 = threshold 

(fJ = activation function 

y = output of the neuron 

The activation function ( (fJ) describes the output of the neuron with respect to the 

activity level ( v) at the input, given by equation (2.3). 

·if V '?. 0 

if V < 0 

where vis the internal activity level of the neuron, given by equation (2.4). 

,, 

V = LWj X j - 0 
j = I 

(2.3) 

(2.4) 

From equation (2.4), the output of the neuron gives a value of 1 if the total internal 

activity level of that neuron is not negative and a value of O otherwise. This model is 

sometimes referred to as the McCulloch-Pitts model of the neuron [14]. 

2.3 Network Architectures 

The organisation of the neurons in a neural network is closely linked with the learning 

algorithm that is used to train the network. The simplest form of neural network is 

called a perceptron, which consists of a single neuron. There are four main 

architectures available (which are all based on this principle): 
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2.3.1 Single-layer feedforward network 

A single-layer feedforward network consists of two layers of neurons, the input layer 

and the output layer (Figure 2.2). The input layer is projected onto the output layer in 

the forward direction only (hence the name feedforward). 

Input layer Output layer 

Figure 2.2: Single-layer feedforward network 

The term 'single-layer' refers to the output layer of the network, as no computation is 

performed by the input layer (and hence it is not counted). 

2.3.2 Multi-layer feedforward network 

A multi-layer feedforward network (Figure 2.3) is similar to the single-layer network, 

but it consists of one or more hidden neurons. The function of the hidden neurons is 

to intervene between the external input neurons and the output of the network. By 

incorporating hidden layers the network is able to extract higher-order statistics, 

which becomes useful when the input layer becomes large. In Figure 2.3 the network 

is fully connected, since every node in each layer is connected to every other node in 

the adjacent forward layer. The outputs of the neurons in the input layer are used as 

inputs to the second layer (i.e. 1st hidden layer), and the output of the second layer 

provide the inputs to the third layer etc. for the whole of the network. 
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Input layer Hidden layer Output layer 

Figure 2.3: Multi-layer feedforward network 

2.3.3 Recurrent networks 

A recurrent network (Figure 2.4) differs from the previous two mentioned 

architectures in that it contains at least one feedback loop. A typical example would 

be a network with a single layer of neurons with each neuron feeding its output signal 

back to the inputs of all the other neurons. 

Outputs 

l.nputs 

Figure 2.4: Recurrent network with hidden layers 
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Recurrent networks may or may not consist of hidden layers. The use of feedback in 

the network can have a large impact on the performance of the network. 

2.3.4 Lattice structures 

A lattice structure (Figure 2.5) consists of arrays of neurons which vary in 

dimensions. The dimension of the lattice refers to the number of dimensions of space 

in which the data lies. A lattice network can be compared to a feedforward network, 

but with the output layer arranged in rows and columns. 

Inputs 

Figure 2.5: Two-dimensional lattice network 

Each of the architectures are designed for a particular application and have their 

advantages and disadvantages. The single layer network is the simplest type and 

requires hardly any processing power, but may not be as accurate as the multi-layer 

network, whose hidden layers allow it to extract higher order statistics. Recurrent and 

lattice networks are more complex, as in most cases they involve the feedback of the 

output signals into the inputs (through delay operators). However, they are 

advantageous to use when the network is required to be continuously trained (as 

opposed to trained once). 
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2.4 Learning Processes 

One of the most important features of a neural network is its ability to learn from its 

surroundings, thus greatly improving its performance. The network is able to learn by 

making slight adjustments to its synaptic weights, which occur after each cycle of the 

training data. In the ideal case, the neural network gains more knowledge about its 

environment after each iteration of the learning process. There are several ways of 

thinking about the learning process. The one proposed by Mendel and McLaren [15] 

1s: 

Learning is a process by which the free parameters of a neural network are adopted 

through a conhnuing process of stimulation by the environment in which the network 

is embedded The type ~f learning is determined by the manner in which the 

parameter changes take place. 

The process is summarised in Figure 2.6. 

Network is Network responds differently Network undergoes 

r+ stimulated ~ to environment because ... changes as a >--

by environment of changes result of stimulation 

Figure 2.6: The learning process 

The learning process is considered to consist of a set of learning algorithms and 

learning paradigms. Three of the most common learning algorithms are described 

briefly below. 

1. Error-correction learning - The error signal is the difference between the required 

output value and the actual output value. The error signal is then used to minimise 

the difference between the required and actual output values. 
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2. Hebbian learning - can be summarised by two rules: 

• If two neurons on either side of a connection are activated simultaneously, then 

the strength of that connection is increased. 

• If two neurons on either side of a connection are not activated simultaneously, 

then the strength of that connection is decreased (or in some cases eliminated). 

3. Competitive learning - The neurons in the output layer of the neural network 

compete to be activated, and only one neuron can be activated at any one time. A 

neuron is able to learn by moving weights from inactive to active input nodes. If a 

particular neuron does not respond to an input pattern, then no learning takes place 

in that neuron. 

For this work the error-correction learning algorithm has been adopted, as the 

simplicity of our problem allows the use of such a basic algorithm. The error signal is 

the difference between the target response and the actual response; and is summarised 

by equation (2.5). 

where 

ek(n) = error signal 

dk(n) = desired response 

Yk(n) = actual response 

(2.5) 

The goal of the error-correction learning is to minimise a cost function based on the 

error signal ek(n ), so that the actual response of each output neuron approaches the 

target response of that neuron. A criterion which is used for the cost function is the 

mean-square-error criterion ( which is defined as the mean-square value of the sum of 

squared errors). 
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2.4.1 Supervised Learning 

In this mode of learning the neural network is supervised by a teacher. The teacher 

will have knowledge about the environment (this environment is unknown to the 

neural network), in the form of input-output examples, which is used to train the 

network. When a neural network is presented with a set of training examples the 

teacher is able to provide the network with the desired output for particular examples. 

The network parameters are adjusted due to the influence of the training data and the 

error (the difference between the actual response and the desired response). The 

supervised learning method is illustrated in Figure 2. 7. 

Environment 

State of environment 

Teacher 

~--~-~ Actual 

Learni.ng 
System 

response 

Error signal 

Figure 2.7: Supervised learning 

The weights of the neurons in the neural network are adjusted as a result of the 

training examples and the calculated error; the aim being to be able to calculate the 

input-output relation without the presence of the teacher. This form of learning makes 

use of the error-correction learning rule. The performance of the network is measured 

in terms of the mean-squared error, which is averaged over all possible input-output 

examples. In order for the performance of the network to improve, the operating 

point has to move down successively towards a minimum point on the error surface, 

eventually towards the global minimum. 
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2.4.1.1 Backpropagation Learning Algorithm 

Every learning process must have an associated learning algorithm. One such 

algorithm is the backpropagation learning algorithm [16], which derives its name from 

the fact that errors are back-propagated through the network on a layer-by-layer 

basis . 

During the forward pass the synaptic weights of the network are all fixed, but during 

the backward pass, the synaptic weights are adjusted depending on the error signals, 

with the intention of making the actual response of the network move closer to the 

desired response. The correction applied to a particular weight in the network is given 

by the delta rule (equation (2.6)). 

where 

tiwJi = weight correction 

T/ = learning rate parameter 

4(n) = local gradient 

y ;(n) = input signal of neuron} 

(2.6) 

The rate at which the back-propagation algorithm learns depends mainly on two 

factors, the learning rate parameter T/, and the momentum a. The smaller the learning 

parameter, the smaller will the changes be to the synaptic weights in the network. If 

the learning parameter is set too large, thus speeding the rate of learning, the network 

may become unstable. 

The learning rate can be increased without making the network unstable by modifying 

equation (2.6) to include a momentum term, thus giving equation (2.7), which is 

known as the generalised delta rule (Rumelhard et al. [17]). 
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where 

a = momentum constant 

~wJi = weight correction 

77 = learning rate parameter 

0(n) = local gradient 

y;(n) = input signal of neuron} 

(2.7) 

The incorporation of the momentum term represents a small modification to the 

update of the weights, but still has a great effect on the learning rate of the network. It 

can also prevent the learning process from going into a shallow local minimum on the 

error surface. 

The back-propagation algorithm can be summarised by five main steps: 

1. Initialisation - The synaptic weights of the network are randomised. 

2. Presentation of training examples - The network is presented with a set of training 

examples. 

3. Forward computation - The net internal activity and error signal are calculated. 

4. Backward computation - The local gradient of the network is calculated by back

propagation, a layer at a time. 

5. Iteration - The network is presented with new examples of the training data until 

the mean-squared error is reduced to about 1 % of its initial value. 

It has been suggested (Russo [ 18] and Guyon [ 19]) that the design of a neural 

network which uses the back-propagation learning algorithm is more down to trial 
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and error than any scientific rules. However, there are a few ways in which the 

algorithm can be improved: 

1. The initialisation of the weights in the network should be uniformly distributed 

inside a small range. However, the range should not be made too small, as it can 

cause the learning to be very slow initially. 

2. All neurons in the multi-layer perceptron should learn at the same rate. Neurons 

with many inputs should have a smaller learning rate parameter than neurons with 

few inputs. 

3. For an on-line system, the weights should be adjusted m a pattern-by-pattern 

fashion instead of a batch updating method. 

4. The order in which the training patterns are presented to the network should be 

randomised from one epoch (presentation) to the next. 

2.4.1.2 Conjugate-Gradient Method 

The conjugate-gradient method consists of choosing 'conjugate directions' of 

minimisation that do not interfere with each other, and performing a line minimisation 

along that direction. The conjugate gradient method will always locate the minimum 

of any quadratic function of N variables in at most N steps. 

For a non-quadratic function (e.g. the training of a multi-layer perceptron) the process 

is iterative. The weight vector of the network is updated using equation (2.8). 

w(n + 1) = w(n) + ry{n) p(n) (2.8) 
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where 

w(n) = weight vector 

ry(n) = learning rate parameter 

p(n) = direction vector 

Introduction To Neural Networks 

The direction vector p(0) is initially set equal to the negative gradient vector g(n) at 

the initial point, given by equation (2.9). 

p(0) = -g(0) (2.9) 

Each successive direction vector is then calculated as a linear combination of the 

current gradient vector and the previous direction vector (equation (2.10)). 

p(n + 1) = -g(n + 1) + /J(n) p(n) (2.10) 

where 

/J(n) = time-varying parameter 

The time-varying parameter /J(n) can be calculated using two rules; the Fletcher

Reeves [20] formula, and the Polak-Ribiere [21] formula. In the case of a quadratic 

function, both rules reduce to the same form. 

Kramer and Sangiovanni-Vincentelli [22] studied the use of the conjugate-gradient 

method for the supervised training of multi-layer perceptrons. They showed that the 

conjugate-gradient method had advantages over the standard backpropagation 

method, mainly in that it required fewer epochs ( and thus quicker to train the neural 

network); but the disadvantage being that the conjugate-gradient method proved to be 

computationally more complex. 
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2.4.2 Unsupervised Learning 

Unsupervised learning (self-organising learning) differs from supervised learning in 

that there is no external teacher present to oversee the learning process, which is 

illustrated in Figure 2.8. A network which is being trained by unsupervised learning is 

not provided with any learning examples, instead it is presented with only the input 

patterns. Once the network has recognised any regularities within the input patterns, it 

can develop the ability to create internal representations for encoding specific 

features. From there the network can then create new classes automatically. 

State of 
environment 

" Learning 
Environment 

~ System 

Figure 2.8: Unsupervised learning 

The self-organising network, which is generally used for unsupervised learning is 

based on competitive learning. Only one neuron in the output (competitive) layer can 

be activated at any one time, and is thus called the winner neuron. 

The neurons are normally situated at the nodes of a lattice that is normally of one or 

two dimensions. These neurons become selectively tuned to various input patterns, 

and their positions become ordered with respect to each other so that a meaningful 

co-ordinate system is created for the different input features. 

The unsupervised learning approach is discussed in greater detail later in the work, in 

particular the network architecture and its ability to extract features from magnetic 

based images (such as magnetisation maps and MFM images). 
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2.4.2.1 Kohonen Self-Organising Network 

One model of an unsupervised network was proposed by Kohonen [23], and is called 

the Kohonen self-organising network. The network is an example of a self-organising 

feature map, where neurons are placed at the nodes of a one or two dimensional 

lattice. The model tries to capture the important features of the computational maps in 

the brain and still remain computationally tractable. 

A one dimensional lattice of neurons usually contains two different types of 

connections: Forward connections are arranged from the primary source of excitation, 

whilst the lateral feedback connections are internal to the network. Figure 2.9 

illustrates the Kohonen network model. 

Competitive layer 

0 0 0 0 0 0 
0 0 0 0 0 0 

0 e O O O 0 
0 0 0 0 0 0 

lnput layer 

Figure 2.9: Kohonen model 

In order to start the learning process, and the development of the self-organising 

feature map, the competitive layer must be initialised. The input pattern data is 

simultaneously presented to the neurons in the competitive layer in a parallel fashion, 

and the network is trained for a set number of epochs. During this period the neurons 

become tuned to particular input patterns, and their locations in the lattice become 

ordered with respect to each other. 
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The goal of the self-organising map algorithm which was developed by Kohonen [23) 

is to transform an input pattern of a particular dimension into a one or two dimension 

discrete map. This algorithm can be summarised as: 

1. A one or two dimensional lattice of neurons whose purpose is to compute simple 

mathematical functions. 

2. A mechanism to compare the functions and select a neuron with the largest 

discriminant function value. 

3. A network that activates the selected neuron (and the neighbouring neurons). 

The accuracy of the self-organising map is dependent on the number of iterations of 

the learning algorithm, the choice of values for the learning-rate parameter 1J and the 

neighbourhood function, which decides the number of neurons which surround the 

winning neuron ( e.g. a neighbourhood value of 1 will include every neuron within a 

radius of 1 to the winning neuron). As there is no theoretical method for selecting 

these values, they have to be estimated on a trial and error basis. 

However, the learning-rate parameter should be time-varying. During the first 1000 

iterations it should be close to 1, then it should decrease slowly towards about 0. 1. 

The topological ordering in the competitive layer occurs at the initial phase of the 

algorithm. The lateral effect of the winning neuron on the activity of its neighbours 

can be accounted for by making the topological neighbourhood around the winning 

neuron decay with distance (Ritter et al. [24), Lo et al. [25]) i.e. the further the 

neurons are from the winning neuron, the less effect there is on them due to the 

winning neuron. This is illustrated in Figure 2.10. 
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Amplitude 

0 

Distance from winning neuron 

Figure 2.10: Neighbourhood decay.function 

2.4.3 Pattern Recognition 

The process of pattern recognition is discussed in greater detail in Chapter 5, but is 

summarised in this section. A pattern classifier is required to classify an input signal 

into a finite number of classes, so that the average probability of it being misclassified 

is minimised. The most important task is to decide where boundaries between two 

classes should be. It should be noted however, that a feature map is only intended to 

visually demonstrate the relationships between the input data. The feature map should 

therefore not be used on its own in a pattern classification system. 

Pattern classification can be improved substantially by using a self-organising feature 

map together with a method of supervised learning. The adaptive pattern classifier 

(Figure 2.11) is one such method. 

Input 
vector 

Self organising 
feature map 
algorithm 

Linear classifier 

Teacher 

] 

Labelled 
classes 

Figure 2.11: Adaptive pattern class[fier using IMS algorithm 
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The self-organising feature map acts as a pre-processor, and takes the form of a two

dimensional lattice of say a 3x3 matrix of neurons (the input data). This data is then 

projected onto the self-organising map in an orderly manner. The linear adaptive 

classifier consists of two neurons and is fed by the outputs of the self-organising 

feature map. The linear classifier then labels and categorises the output data (using the 

least mean squared algorithm). 

2.5 Knowledge Representation 

The idea of knowledge representation can be considered as: what information is made 

explicit and how the information is encoded for later use. The definition suggested by 

Fischler and Firschein [26] is: 

Knowledge ref ers to stored information or models used by a person or machine to 

inte,pret, predict, and appropriately respond to the outside world. 

The subject of knowledge representation within a neural network becomes very 

complicated. However, there are some rules which are noted [27]: 

• Similar inputs from similar classes normally produce similar representations inside 

the neural network, and should by classified in the same group. There are several 

methods for determining the similarity between inputs (the reader is referred to 

Haykin [28] for more details). 

• Items that are to be classified in different groups should be given widely different 

representations in the network. 

• If a particular feature is important, then several neurons should be used to 

represent that item in the network. 
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• Any prior information should be built into the design. The network is then spared 

the time of not having to learn them. 

2.6 The Advantages of Neural Networks 

It would be almost impossible to justify the use of neural networks without first 

mentioning some of their advantages. It can be recalled that a neural network derived 

its power through its massively parallel structure and its ability to learn and hence 

generalise (i.e. to produce intelligible results with unseen data). These make it possible 

for a neural network to solve problems of such a large scale that would seem 

impossible using conventional methods. 

However, it should be understood that a neural network cannot be used alone to solve 

a problem; but should be integrated into another system. The problem should then be 

divided into simpler problems, with a neural network assigned to each task ( e.g . 

pattern recognition, control system etc.). These are just some of the advantages which 

it is felt should be mentioned (as suggested by Haykin [28]): 

1. Nonlinearity - A neural network is a non-linear system, which is an important 

feature especially if the input data is of a non-linear form (e.g. speech analysis). 

2. Input-output mapping - In a supervised learning neural network the system is 

trained with a unique input and a desired output (which is selected at random from 

a training set). The network is thus able to learn from these examples by 

composing an input-output mapping for that particular problem. 

3. Adaptivity - A neural network is very good at adapting to the problem at hand; and 

can be trained to deal with an environment where minor changes occur in the 

conditions (and can even be adapted to the environment in real-time). 
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4. Fault tolerance - If a neural network were to be constructed in hardware, then its 

tolerance to faults is very high with hardly any degradation in performance, even 

under adverse operating conditions (Bolt [29]). This is due to the distributed 

nature of information in the network, where a damaged neuron will have little 

effect on the overall system. 

5. Evidential response - In the case of the pattern classifier, a neural network can be 

designed to provide information not only about which particular pattern to select, 

but also about the accuracy of the decision made (and hence can be used to 

improve the classification performance of the network). 

6. Uniformity of analysis and design - All neural networks have one thing in common, 

in that they are all information processors. However, this feature manifests itself in 

different methods: 

• All neural networks are constructed of neurons. 

• Learning algorithms and theories can be used m a wide variety of neural 

network applications. 
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Chapter 3 
Determination of Anisotropy Distributions From Transverse Susceptibility Data 

3.1 Introduction 

The idea of transverse susceptibility was first discussed by Gans [30] in 1909; and 

subsequently several other scientists have worked on the subject, both theoretically 

and experimentally. In this chapter the transverse susceptibility of a particulate media 

is investigated (using theoretical models and experimental samples). 

The transverse susceptibility of a magnetic material can be defined as being the change 

in magnetisation (.JM) with respect to a small AC field applied perpendicular to a DC 

bias field H. This was discussed by Aharoni et al [31], on the basis of the Stoner

Wohlfarth model, and is given by (3 .1). 

(3 .1) 

The theoretical and experimental values for the transverse susceptibility are linked by 

a texture function, which is dependent on the particulate media itself. This chapter 

discusses the determination of the transverse susceptibility, both theoretically and 

experimentally, and explains the correlation between them. 

41 



Chapter 3 Determination of Anisotropy Distributions From Transverse Susceptibility Data 

The importance of this problem can be emphasised by taking a look at the effect that 

varying the values of the anisotropy K and anisotropy distribution f (K) have on a 

magnetic material. Figure 3.1 shows a plot of K against f(K), and illustrates the 

consequences of varying these. 

f(K) Anis~tropy 

Supcrpara 111agnct1s111 Problem "11 h 0Ycnn11~ 

K 

Figure 3 .1: The consequences of varying anisotropy on a magnetic material 

When the value of K decreases and becomes very small, the thermal activation energy 

and the applied external magnetic field can easily flip the particles away from their 

preferred orientation, and as a result they behave like paramagnetic atoms but with 

giant magnetic moments. This has the effect of them having no remanence and thus 

cannot store information. 

However, when the value of K increases, it is much more difficult to cause the 

particles to change from their preferred orientation. The field required to overwrite 

the information becomes large, and as a result the distribution of K and not just its 

mean value becomes important. 

It is possible to have an ideal mean value of K which is between the 

superparamagnetic regime and the regime giving rise to overwrite problems, but if the 

distribution is too wide there will still be a problem. The value of K can quite easily be 

determined, but the determination of the distribution of K becomes a very complex 

problem. 
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3.2 Theoretical Determination of the Transverse Susceptibility 

In 1957 Aharoni et al [3 l] carried out work on theoretical express10ns for the 

transverse susceptibility of a Stoner-Wohlfarth system, which showed that the theory 

for a randomly oriented system predicts a characteristic curve with peaks at ±HK and 

He. In systems such as doped barium ferrite particles [32] and yFe20 3 the 

determination of HK is difficult due to a wide distribution of the anisotropy field which 

causes the peak to be suppressed, whereas in an aligned system the peaks at ±HK are 

well defined [3 3]. In order to understand this concept, some knowledge of the effects 

of texture is important. Hoare et al [34] defined such a function, with independently 

controllable in-plane CJ"e and out-of-plane CJ"; distributions as in equation (3 .2). 

where 

A = normalising constant 

0~ = angle between applied field and projection of easy axis into plane 

CJ"e, CJ";= control the distributions in and out of the plane respectively 

(3 .2) 

Theoretical expressions for the transverse susceptibility can be extended to include the 

texture function (Hoare et al [34]), given by equation (3.3): 

z1 l f"/2 3 ( cos
2 

0M f2" 2 ---J, - - -------,-----,- x J, cos rjJ 
Xo - 2,r O 2 h cos0M +cos 2(0M -0K) ° K 

(3 .3) 
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where 

o-e , a-;= control the distributions in and out of the plane respectively 

0; = projection of 0K into the plane of the tape 

A = normalising constant 

h = H /HK = reduced applied field 

0K, </>K = orientations of the easy axis 

Equation (3.3) can be simplified: 

where 

and 

(3.4) 

(3.6) 

By doing this, the computational complexity is substantially reduced. Values for 0K 

which are not known can be calculated by linear interpolation. In order to model real 

media, it is necessary to include a texture function. 
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The orientational texture is found to be dependent on several factors, primarily the 

orienting field and the action of shearing during the coating process. Thus, it should 

be assumed that the texture function does not have cylindrical symmetry. Figure 3 .2 

shows the variation of Xr with reduced field h, for systems with varying degrees of 

texture. 
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Figure 3 .2: Variation of Xr with different degrees of texture 

From Figure 3.2 (a), there is an indication of a broad distribution of the easy axis, 

implying a random distribution. The presence of the He peak (at -0.5) is obvious. 

However, as the degree of texture is increased, the height of the He peak decreases, 

and in ( d) has almost disappeared. This is due to strong enhancement of the HK peak 

caused by texturing. The method of enhancing the degree of texture, suggesting a 

very well aligned system, is used experimentally to determine the value of K. 

45 



Chapter 3 Determination of Anisotropy Distributions From Transverse Susceptibility Data 

Theoretically, the value of K may be calculated using equation (3.7). 

where 

Ms = saturated value of magnetisation 

K1 = constant for a particular material 

HK = anisotropy field 

(3 .7) 

In a real system it is necessary to include a distribution of the values of HK, which take 

into account the variation of particle shapes, which can be accounted for by 

integrating the x, curve with either a log-normal distribution function, as in equation 

(3.8) or a Gaussian distribution function, as in equation (3.9). 

(3.8) 

(3.9) 

for a particular field Hand x,(H/ HK) is the kernel defined by equation (3.3). The 

kernel has a well defined cusp at H = HK. However, the HK distributions lead to 

rounded peaks which compare well with experimental data obtained by Pareti and 

Turilli [35], and a comparison shows that the shoulder is partially absorbed into the 

main HK peak, which suggests that the peak at He may easily become indistinguishable 

from the main HK peaks in practice, which thus complicates the determination of the 

mean value of HK. 
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Figure 3.3 shows the effect of integrating the x, curve with a distribution function 

(log-normal, with C5H = 0.1). 
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Figure 3.3: Effect of integrating thez, curve with a distribution.function 

3.3 Experimental Determination of the Transverse Susceptibility 

The experimental value of the transverse susceptibility can be determined with a set

up shown in Figure 3. 4. The system consists of a coil C 1, which generates an 

alternating magnetic field H of variable amplitude and frequency (general ranges are 

1-20Oe and 1-60kHz respectively). 

t 

s N 

Figure 3. 4: Experimental apparatus to measure the x, of a sample 
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A pick-up system C2 is placed in the centre of CJ, which consists of two coils wound 

in opposite ways, so as to achieve a zero signal when no sample is present. The whole 

system is then placed between the poles of an electromagnet (with a typical maximum 

of about 15-20kOe), which provides the bias field (H) and is perpendicular to the 

driving field ( h ). The sample is then placed inside the pick-up coil. 

The signal which is produced due to the sample is detected by a lock-in amplifier, and 

according to Lenz's law (at constant H) is: 

where 

cP = magnetic flux of the sample 

K = geometrical factor 

a= unit vector of the pick-up coil 

M = magnetic moment of the sample 

h = ho sin mt = driving field 

dM; / dh1 = components XiJ of the susceptibility tensor 

(3.10) 

According to Pareti and Turilli [35], the direction of Ji and the pick-up coil are along 

the z axis (hlH), dM/dli = dM, /dh, = z1 and dh /dt = dh, /dt = h0mcos0Jt , thus: 

(3.11) 

which means that the detected signal v is proportional to the reversible transverse 

susceptibility of the sample. Measurements are made with the DC field perpendicular 

to the direction of texture and the AC field parallel to it, as this is the configuration 

which is assumed in the theoretical calculations. Work carried out [34, 35] show that 
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the form of the x, curve is strongly dependent upon the texture, and that there are 

only the peaks at ±HK present, as the peak at He has completely disappeared. 

3.4 The Inverse Problem 

As discussed in Chapter 1, inverse problems are concerned with determining causes 

for a desired or an observed effect. They might not have a solution in the strict sense, 

and solutions might not be unique and/or might not depend continuously on the data. 

In the case of the transverse susceptibility problem, the anisotropy field distribution is 

to be determined from experimental data. This can be summarised as follows: 

where 

a) 

X1 (H)= f J(y)xx1(H,HK )dy 
0 

j(y) = distribution function (unknown) 

y =HK/HK 
M 

x 1 (H) = experimental value of transverse susceptibility 

x 1 ( H /HK) = theoretical value of transverse susceptibility 

(3.12) 

Given the known kernel x 1 ( H /HK) and a set of experimental data, the problem is to 

determine thef(y). The aim is to train the neural network using theoretically generated 

z1 results to recognise specific relationships between x, and the distribution function. 

When the network has been trained sufficiently, then a real set of experimental data 

will be applied to test the feasibility of the method. The process is illustrated in Figure 

3.5. 
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Figure 3.5: The inverse problem (applied to the transverse susceptibility problem) 

The value of f(y) can be calculated using several methods; one method, which will be 

discussed is the maximum entropy approach. However, these methods are known to 

be quite complex computationally, which is practically undesirable. One way of 

reducing the computational time is to use neural networks, which can be trained to 

solve a problem beforehand. This approach will be discussed in detail later in this 

chapter. 

3.5 The Maximum Entropy Approach 

3.5.1 Introduction 

The distribution of HK values, which were generated by integrating the distribution 

functionf(y) with Xi, can be deconvoluted using a maximum entropy approach. This is 

a powerful technique which provides an extension of the established principles of 

rational inference. Its intention is to extract the conclusions from given data and any 

prior knowledge of the circumstances. It should be noted however, that the method is 

not guaranteed to compensate for inadequate data or badly designed experiments. The 

main use of the maximum entropy method is to go from incomplete and noisy data to 

some description of the underlying physical system. 
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3.5.2 Practical Considerations 

In the majority of scientific investigations, measurements are taken and then processed 

to arrive at conclusions. Data processing can be thought of as the conversion of the 

measured data to arrive at conclusions, which can be summarised by the following 

expressions (Daniel, [36]). If N numbers are to be determined from K observations 

(where K is finite and N is small or infinite), then four cases arise: 

1. N < K 

This situation implies that there is inconsistent data and experimental errors. 

2. N = K 

There is an unique solution, but an unstable problem may occur when a lot of data 

values contain almost identical information about the conclusions. 

3. N > K 

In this case there is insufficient data, and the problem is usually unsolvable, due to 

many conclusions being consistent with the same data. The most common 

approaches to solving this situation is: 

• Assume that the ' rough curve' being sought is actually smooth and has a simple 

functional form (known as model fitting) . 

• Invent sufficient extra data to get N = K. 

4. N = oo 

There is no solution to this problem. 
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3.5.3 Simulated Annealing 

The problem of maximum entropy can also be solved using a simulated annealing 

algorithm, which is based on the analogy between the simulation of the annealing of 

solids and the problem of solving large combinational optimisation problems. 

In condensed matter physics, annealing is known as a thermal process for obtaining 

low energy states of a solid in a heat bath. In this process the solid is heated up by 

increasing the temperature of the heat bath to a maximum value at which particles in 

the solid randomly arrange themselves in the liquid phase. The temperature of the heat 

bath is then lowered carefully to cool the liquid. The particles arrange themselves in 

the low energy ground state of a corresponding lattice (provided the maximum 

temperature is sufficiently high and the cooling is carried out sufficiently slowly). As 

the temperature decreases, the Boltzmann distribution concentrates on the states with 

lowest energy, and finally as the temperature approaches zero, only the minimum 

energy states have a non-zero probability of occurrence. However, if the liquid is 

allowed to cool too rapidly the solid is not allowed to reach thermal equilibrium at 

each temperature level, hence the solid will be forced into a meta-stable state rather 

than into the ground state. 

3.5.4 The Deconvolution of Hx Distributions 

The simulated annealing approach can be used to deconvolute HK distributions, 

assuming the kernel was integrated with a log-normal distribution: 

(3 .13) 

This approach was investigated by Chantrell et al. The value of j(y) was calculated by 

taking the average of the last 20% of values at each temperature, (the first 80% were 
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used to ensure thermal equilibrium at each temperature). The starting temperature TM 

was set so that the average energy change per move was roughly 0.2kTM. 

It was shown that reasonable fits to the original curve could be obtained by selecting 

the ratio between successive temperatures greater than O. 5. The plots in Figure 3. 6 

show the formation of .f(y) values for four decreasing temperatures. The log-normal 

distribution curve is shown for comparison. 
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Figure 3.6: Fits to log-normal distribution using simulated annealing 

The investigation by Chantrell et al showed that it required another two sets of 

decreasing temperatures before a stable solution could be reached. Figure 3. 6(b) 

shows that at the lowest temperature a good estimation of the log-normal distribution 

is achieved. 

3.6 Application of Neural Networks 

3.6.1 Introduction 

The application of a neural network technique to solve the magnetic inverse problem 

is quite novel, but the research to be presented here shows that such a method can be 

used to solve such a problem, with many advantages. The selected approach was to 
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train the neural network with theoretically generated x, data (by integrating the kernel 

with a log-normal or Gaussian distribution function), test it with other sets of 

theoretical x, data, and then apply a set of experimental x, data. 

As the theoretical data sets can be generated quite easily for a wide selection of 

distribution functions, there was a plentiful supply of data to train the network. In 

such a situation it is possible to make use of the supervised learning method, together 

with a network configuration called the multi-layer perceptron. 

3.6.2 Multi-layer Perceptron 

The multi-layer perceptron is one of the most important types of neural networks. 

Sometimes referred to as a multi-layer feedforward network, the network typically 

consists of a set of sensory units (source nodes) that constitute the input layer; one or 

more hidden layers of computation nodes, and an output layer of computation nodes, 

as illustrated in Figure 3. 7 The input signal propagates through the network in a 

forward direction, on a layer-by-layer basis. 

Input layer Hidden layer Output layer 

Figure 3.7: A basic multi-layer perceptron network 

The network shown here is fully connected, which means that a neuron in any layer of 

the network is connected to all the neurons in the previous layer. Signal flow through 
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the network progresses in a forward direction, from left to right and on a layer-by

layer basis. 

There are many cases where multi-layer perceptrons have been applied successfully to 

solve some difficult problems by training them in a supervised manner using the 

popular error back-propagation algorithm. This algorithm is based on the error

correction rule, and basically consists of two passes through the different layers of the 

network; a forward pass and a backward pass (see Figure 3.8). In the forward pass an 

activity pattern is applied to the sensory nodes of the network, and its effect 

propagates through the network layer-by-layer. Finally, a set of output signals are 

produced as the response of the network. 

-----+ Function signals 

◄------ Error signals 

Figure 3.8: Two basic signal flows in a multi-layer perceptron 

During the forward pass the synaptic weights of the network are all fixed. However, 

during the backward pass the synaptic weights are all adjusted in accordance with the 

error-correction rule. The synaptic weights are adjusted so as to make the actual 

response of the network move closer to the desired response. 

In the majority of cases, a multi-layer perceptron network configuration is trained in a 

supervised manner. The input and output neurons in the network are subjected to 

training sets, with known input-output relations (which forms the basis for supervised 

learning, which was discussed in Chapter 2). However, as it will become clear the 
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type and arrangement of the input-output relations can have a considerable effect on 

the results obtained from the network. 

3.7 Data Preparation and Network Optimisation 

3.7.1 Introduction 

Before training a neural network, the data which is to be presented must be arranged 

in a specific format. The format can make a significant difference to the results 

obtained from the network. Since a multi-layer perceptron requires a training set to 

consist of input-output related patterns, it was decided to use an array of input 

neurons to represent the x and y values of the curve and a single output neuron to 

represent the standard deviation of the distribution function. The networks used in this 

chapter were simulated using the Stuttgart Neural Network Simulator [37]. 

To summanse, the problem in essence was to train the network with a set of 

theoretically generated data and then investigate its performance with another set of 

theoretical data, before finally testing it with experimentally obtained data. 

3.7.2 Data Preparation 

It was necessary to normalise both theoretical and experimental data points to similar 

values for presentations to the network, in order to create a sufficiently general 

network capable of dealing with a variety of materials. The value of HK does not 

remain constant for each sample; it usually ranges from 2-5k0e, depending on the 

particular material investigated. 

As most of the information resides around the HK peak it was seen as desirable to 

normalise the data so that HK peaked at a fixed value (2-5k0e ), hence eliminating the 

need to train the network with all variations of the x, curve. Figure 3. 9 illustrates 

areas of the Xr curve which are used in this work. At low fields the theoretical model 
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which the work is based on fails as is discussed later, and at high fields the data is 

envisaged to be redundant, as there is no great change with varying distributions. 

It was also noticed that the X1 value could be normalised along the y axis; since the 

value of X1 did not fall below 0.5. Thus by altering they axis from 0.5-1.0, it was 

possible to amplify the diversity between the x, curves. 
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Figure 3.9: Normalisation qf training curve 

Having decided on the format of the training patterns, a series of x, curves was 

generated by integrating the kernel with a variety of distribution functions ( equations 

(3 .8) and (3.9)) with standard deviations ranging from 0.05 to 0.75. 

3. 7 .3 Training Set Size 

The quantity of training examples is at this point yet to be finalised. However, the 

number of training examples required can be estimated to a first order approximation 

using equation (3.14), using a result derived by Baum and Haussler [38]: 

w 
N>

& 
(3 .14) 
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where 

N = is the number of examples 

W = the total number of synaptic weights in the network 

B = the fraction of errors permitted on test 

Thus, with an error of 10%, the number of training examples should be approximately 

10 times the number of synaptic weights in the network. If the curve is represented by 

50-100 data points, then even a small network ( 4-8 hidden neurons) will require about 

2000-8000 training examples. Here an alternative method is used, overcoming the 

need for a large training set, called early stopping (Nelson and Illingworth (39]). This 

generally consists of: 

• Dividing the available data into training and validation sets. 

• Increasing the number of hidden neurons. 

• Using small initialisation values. 

• Using a slow learning rate parameter. 

• Calculating the validation error during training. 

• Stopping the training when the validation error reaches a minimum. 

The advantages of using this training method is that it is fast, and can be applied to 

networks in which the number of weights exceeds the size of the training set. From 

these points, it would be feasible to use a training set of only about 100 examples. 

The network was trained using the technique of cross-validation (Stone (40], Janssen 

et al [ 41 ]), where the generated data set is randomly divided into a training set and a 

test set. The training set is further divided into two sets: 

• A set used to train the network (training set). 

• A set used to evaluate the performance of the network ( validation set), which 

should be approximately 10% of the training set. 
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To test this theory, a simulation was conducted on a network of various dimensions 

(but with all other parameters fixed), with training sets consisting of 50, 100 and 500 

examples. Validation sets consisted of 5, 10 and 50 examples respectively. Figure 

3 .10 compares the mean squared error as a function of number of epochs (i.e. 

training) required to sufficiently train a network. 
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Figure 3.10: Comparison of the training time required with various data set sizes 

It is clear from Figure 3. 10 that a network trained on a small training set will 

generalise quicker than one trained on a larger set. However, this doesn't imply that it 

will perform better when a test set is applied. 
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Figure 3.11: Comparison of the distribution fanction errors with various data set sizes 
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Figure 3 .11 shows the error in the distribution function from the output of the 

network when a test set is applied at the inputs. It can be seen that the training set 

with 100 examples tends to give the best results, with a network size of about 4-8 

hidden neurons in 1 hidden layer being sufficient. The 500 example set performed 

rather poorly; it is envisaged that the reason for this is that a 500 example set 

contained too much information for a 'small' network to handle. It would have been 

possible to increase the size of the network, but this would slow the calculations 

down (the smaller data set could solve the same problem quicker anyway). However, 

when the network size was increased, the error for the 500 example set decreased. 

3. 7.4 Input Data Points 

In determining the optimal number of data points to represent the Xi curve, several 

samples were created (with various distributions) and sampled using 25, 50 and 100 

data points. 

As the number of input neurons (and subsequent connections to the hidden layer) in 

the network is equivalent to the data points selected, it is crucial to decide on a 

suitable number of data points. Figure 3.12 shows the results of various simulations 

conducted using different sample points. 
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Figure 3.12: Comparison of the distribution.function errors with various sample points 
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From Figure 3 .12, it can be concluded that a training set with 50 x and y values is 

sufficient to provide a satisfactory generalisation, as there is no significant 

improvement in performance by increasing the number of data points. A small 

network is observed to give a large error, as there are insufficient neurons in the 

hidden layer to extract important features from the curve. There is a small increase in 

the error as the size of the network increases, which is due to the lack of information 

in the training set (as defined in equation (3 .14)) compared to the number of weights 

in the network. If the size of the training set is increased to compensate for the extra 

weights in the network, then the error is observed to decrease, but at the expense of 

the time required to train the network. 

Since the linearly sampled x values are identical in each example, it is feasible to 

remove them from the training set without any loss in accuracy, thus presenting the 

network with the sampled y values only (hence only 50 input neurons are required). 

3. 7 .5 Stopping Criteria and Choice of Learning Algorithm 

The back-propagation algorithm cannot, in general, be shown to converge, nor are 

there well-defined criteria for stopping its operation. However, there are some 

reasonable criteria which can be used to terminate the weight adjustments in the 

network. Kramer and Sangiovanni-Vincentelli [ 42] suggested a stopping criteria: 

• The back-propagation algorithm is considered to have converged when the 

Euclidean norm of the gradient vector reaches a sufficiently small gradient 

threshold. 

• The back-propagation algorithm is considered to have converged when the 

absolute rate of change in the average squared error per epoch is sufficiently small 

(i.e. about 0.1-1 % per epoch). 
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A neural network which has been designed to generalise well will result in a correct 

input-output mapping ( even without having been trained with a particular pattern). 

However, when a neural network learns too many input-output relations, the network 

memorises the training data and is less able to generalise between patterns. 

The mean-squared error curve can indicate that the network has been trained 

sufficiently, whilst the validation error (the error calculated over the validation set) 

can indicate when a network is being overtrained. Thus, an increase in the validation 

error is a clear indication that the network is being overtrained, and becoming too 

familiar with the training set, which leads to poor generalisation. It is thus favourable 

to stop training before this point is reached. This behaviour was observed in our 

study, as shown in Figure 3.13. 

.... 
g 

Ill 
"C 

~ 

0.21 

0.18 

0.15 

0.12 

& 0.09 
,:/) 

~ 0.06 (I) 

~ 
0.03 

0.00 

...... ·-

0 100 200 

Stop training when validation 
error reaches minimum 

300 400 

Epochs 

•···· Validation error 
- Training error 

500 600 700 

Figure 3. 13: Illustration of over training a network 

A mean-squared error of less than 0.01 (<10% of initial error) as shown by Figure 

3 .13 was considered sufficiently accurate for the applications considered here, since 

this is of the order of the error in experimental data. 

So far the use of the back-propagation method has been satisfactory, particularly for 

demonstration purposes and initial testing. However, it does have its limitations, 

which is mainly the vast number of epochs required to train a network. This prompted 
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the possibility of trying a different learning algorithm, which could train quicker than 

the back-propagation method, but still provide accurate results. 

The conjugate-gradient learning algorithm consists of choosing 'conjugate directions' 

of minimisation that do not interfere with each other, and performing a line 

minimisation along that direction. The conjugate-gradient method will always locate 

the minimum of any quadratic function of N variables in at most N steps (see Haykin 

[28]). Kramer and Sangiovanni-Vincentelli [ 42] studied the use of the conjugate

gradient method for the supervised training of multi-layer perceptrons. They showed 

that the conjugate-gradient method required fewer epochs (the number oftimes that a 

pattern is presented to the network) than other methods, such as the standard 

backpropagation method. The disadvantage being that the conjugate-gradient method 

proved to be computationally more complex. This was also observed during our 

simulations, with training reduced by a factor of 1 0; typically: 

• Back-propagation method: 400-500 epochs 

• Conjugate-gradient method: 50-70 epochs 

3.7.6 Optimal Network Size and Parameters 

The first part of the simulation involves the determination of the optimal values for the 

learning-rate parameter r, and the momentum constant a (see Section 2.4.1.1), which 

are set according to any one of three definitions (Haykin [28]): 

1. The r, and a that, on average, yield convergence to a local minimum in the error 

surface of the network with the least number of epochs. 

2. The r, and a that, for either the worst-case or on average, yield convergence to the 

global minimum in the error surface with the least number of epochs. 
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3. The 77 and a that, on average, yield convergence to the network configuration that 

has the best generalisation, over the entire input space, with the least number of 

epochs. 

Table 3 .1 shows the parameters which are of importance, and the typical ranges to 

which they should be set. 

Parameter Symbol Typical Range 

No. of hidden neurons M 

Learning-rate parameter 17 

Momentum constant a 

Table 3.1: Variable parameters.for use with the multi-layer perceptron 

Simulations were carried out on a network (with 8 hidden neurons) to observe the 

effect of changing the learning-rate and momentum. It should be noted however, that 

a lower mean-squared error (which has been obtained quickly) does not necessarily 

imply a good generalisation. Figures 3.14 and 3.15 show the results using the back

propagation and conjugate-gradient methods respectively. 
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From the Figures 3.14 and 3.15, it is clear that the conjugate-gradient method takes 

fewer epochs. As the value of the learning-rate parameter has less effect on the time 

required, it is decided to choose a mid-range value of about 0.25 for 77. 

Simulations were also conducted with various momentum values, but it was observed 

that increasing it made the system rather unstable, with the effect that the network 

gave a poor generalisation, and could not be trained every time. It was therefore 

decided to fix the momentum constant at a nominal value of O. 1. 

Having settled on values for the network parameters, the second part of the 

simulation considers the optimal number of neurons in the hidden layer. For practical 

reasons, it is recommended to begin with the smallest number of neurons possible. 

Consequently the classification error was studied as a function of the network 

configuration. Figure 3. 16 shows the error in the distribution function for three test 

sets (with a network trained using the chosen parameters with a log-normal 

distribution). 
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Figure 3.16: Comparison of the distribution junction errors with 3 test sets 

From Figure 3.16 it can be seen that the average error is lowest at 8-16 hidden 

neurons in 1 hidden layer. It can therefore be deduced that a configuration of 8 hidden 

neurons in I hidden layer is sufficient to minimise the error with a reasonably small 

network. These values are summarised below in Table 3 .2. 

Parameter Value 

No. of hidden neurons 8-16 

Learning-rate parameter 0.25 

Momentum constant 0.1 

No. of training sets 100 

Input neurons ( data points) 50 

Learning algorithm Conjugate Gradient 

Table 3.2: Variable parameters for use with the multi-layer perceptron 

It must be stressed that these parameters are a specific result for our study; in general 

each application will require a similar analysis, since other problems may give rise to a 

stronger dependence on the performance of the network on its detailed configuration. 
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3.8 Results 

3.8.1 Using Theoretical Data 

The results obtained so far have demonstrated that a network can be trained to 

recognise a log-normal distribution function from x, data and to determine with high 

accuracy the standard deviation. However, one parameter which has been overlooked 

so far is the type of distribution which is applied to the data. The sensitivity of the x, 
data to the type of distribution function is investigated (as well as the degree of 

distribution). 

The approach used was to generate a training set calculated using log-normal and 

Gaussian distributions. The curves were generated in a similar manner to the previous 

curves: 100 curves were generated with a log-normal distribution and 100 with a 

Gaussian distribution. The type of distribution was also encoded into the output 

patterns, hence training the neural network with the distribution function value and 

distribution type. Once trained, the value and type of distribution is expected at the 

output when a test set is applied to the network. This is illustrated in Figure 3 .17. 

Figure 3.17: The determination of the value and type of distribution using I network 

The errors in recognition of the type of distribution function and the value of the 

standard deviations were then determined for the test set of data. The results are 

presented in Figure 3.18, from which it can be observed that the neural network has 

determined the distribution function value to within ±0.075 in all cases, and has 

determined the type of distribution to a minimum certainty of 95% in all cases. 
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Figure 3.18: Errors in the distribution.function and classification accuracy 

It can be observed that this method is not quite as accurate as the method using only 

one type of distribution, as more information is being dealt with, and consequently 

more weights in the network. 

However, if the network is divided into two separate networks ( one for determining 

the distribution value, and one for determining the type of distribution), then the 

accuracy improves considerably. This set-up is illustrated in Figure 3 .19. 
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Figure 3 .19: The determination of the value and type of distribution using 2 networks 

Here, the type of distribution is encoded into one training set, whilst the value of the 

distribution is encoded into another training set (both have identical Xr data). 
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Figure 3.20: Errors in the distribution.function and classification accuracy 

It was observed that the neural networks could determine the value of the distribution 

function to within ±0. 006 in all cases, and determine the type of distribution to a 

minimum certainty of 98.5% in all cases (the% value is the percentage probability of 

the distribution either being Gaussian or log-normal), as seen in Figure 3.20. 

This increase in accuracy is attributable to the division of the one network into two 

separate networks, thus considerably reducing the number of weights required. The 

configuration of the networks are summarised in Table 3.3 . 

Parameter 
Network 1 

( distribution value) 
Network2 

( distribution type) 

Input neurons ( data points) 50 50 

Hidden neurons 16 8-16 

Output neurons 1 

No. of training sets 100 100 

No. of epochs required 40-50 35-40 

Table 3 .3: Summary of the network parameters 
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3.8.2 Using Experimental Data 

Having determined a network architecture which yields optimum results when 

presented with theoretical data, the goal is to apply ' real' experimental data to the 

network. Here the results obtained when transverse susceptibility data of a Cr02 

sample was used is outlined, initially on a network trained with log-normal 

distributions only, and then on a network trained with log-normal and Gaussian 

distributions. Figure 3 .21 shows the results of applying an experimental data set to the 

trained network (log-normal distributions only). 
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Figure 3.21: Plot of CTvaluesfor experimental test runs 

From Figure 3 .21 and other numerical data, it can be observed that the network was 

able to determine the distribution function to a mean value of 0.292 with a standard 

error of 6x 10-3. Thus, the network is shown to train reproducibly and to give 

consistent estimates of the value of o: The inverse problem for this data set has also 

been solved using maximum entropy techniques [43], from which the distribution 

function of the experimental data was found to be 0.291. The agreement between the 

two techniques gives enhanced confidence in the solutions obtained, and in the use of 

the x,, for the determination of HK distribution functions. 

When an experimental data set was presented to an optimised neural network, which 

was trained with log-normal and Gaussian distributions (and retrained after each test 

70 



Chapter 3 Determination of Anisotropy Distributions From Transverse Susceptibility Data 

run using identical parameters), the network was also able to determine the most 

likely type of distribution associated with the sample (as illustrated in Figure 3.22). 
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Figure 3.22: Plot of a values and distribution type for experimental test runs 

This was determined with a mean value of 0.292 with a standard error of 6xl 0·3_ The 

network determined with a 99. 5% certainty that the experimental HK distribution was 

of the log-normal form. 

It can be observed that the application of experimental data produced results which 

were not as accurate when contrasted to the application of theoretical data sets. It 

should be recalled that the kernel used in the theoretical calculations is essentially that 

derived by Aharoni et al [31] and which is based on the assumption of the Stoner

Wohlfarth coherent mode of magnetisation reversal. It has been shown [44] that the 

reversible transverse susceptibility (RTS) falls into a class of 'stiffness' measurement 

based on magnetisation rotation. Here the Stoner-Wohlfarth model is a good 

approximation as long as the magnetisation remains close to saturation, which is 

normally the case when determining HK values of 2kOe or greater. 

However, the current work presents the neural network with experimental data 

extending to small fields, where it might be expected that non-uniform magnetisation 

states could develop, with an as yet theoretically unknown effect on the RTS. A 
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detailed comparison of the experimental data with the predicted kernel showed a 

systematic discrepancy in small fields, which is interpreted intuitively as arising from 

non-uniform magnetisation modes. As a result, the effects of removing the low-field 

data was investigated and also the high field data where the effects of the HK 

distribution might be expected to be less pronounced. This essentially concentrates the 

data around the peak, in the area containing the HK information. 
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Figure 3 .23 : Comparison of experimental curve with the neural network prediction 

Figure 3 .23 compares the x, curve predicted by the neural network with the actual 

experimental x, curve which was used to test the network, and shows the region at 

which the predicted curve fits the experimental curve. 
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3.9 Summary 

In this chapter it has been demonstrated that a neural network approach can be used 

to solve an inverse magnetic problem to approximately the same degree of accuracy 

as other conventional methods, and accomplished instantaneously once the network 

has been trained, as opposed to several hours using the simulated annealing method. 

Using a multi-layer perceptron neural network, which was chosen due to the 

possibility of creating numerous sample data sets, theoretically generated Xr data were 

applied in order to select the optimal settings. It was discovered that the preparation 

of the training data was an important part of the study; partially due to failures in the 

model at low fields and redundancy of data at higher fields. 

It was observed that a neural network with about 8-16 hidden neurons in 1 hidden 

layer was sufficient, using 100 training sets, to be successfully trained in 

approximately 40-50 epochs. 

The accuracy obtained using theoretical data gave much confidence in the application 

of experimental data to a trained network. Results showed that the value of the 

distribution could be obtained repeatedly to within ±0.01 of that obtained with the 

maximum entropy approach. 

However, tests on theoretical data with distributions of <J < 0.1 and <J> 0.65 proved 

to be less accurate (±0.05), which is believed to be mainly due to the deficiency of 

data points around the HK peak for <Y < 0.1, and due to the deficiency of data points in 

the high field for <Y > 0.65. It can therefore be concluded that a neural network 

approach is feasible to determine the distribution of HK when 0.1 < <Y < 0.65, at which 

point the accuracy is comparable to conventional methods. This range is considered to 

be quite reasonable, as it includes most of the values encountered experimentally. 
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Chapter 4 
Analysis of Compact Disc Pit Geometries Using Optical Diffraction Methods 

4.1 Introduction 

The compact disc was developed by Philips and Sony in the early 80s to meet the 

demands for storing high quality audio. The storage capacity required to fulfil this 

application was so high that the compact disc was soon to find itself being used in 

many non-audio applications where mass data storage was a requirement [45]. As a 

result, several variations of the original format were developed, such as CD-R, CD

RW, CD-I etc. 

The compact disc has several advantages over the old LP (not only in terms of the 

audio quality) such as size and durability. Because data is read by a focused laser 

beam, there is no degradation from repeated playings, and the effect of dust and 

surface damage is minimised. Digital signal processing permits the use of error 

correction and other techniques to further improve the reliability of the stored data. 

The density of information on a compact disc is about 100 times greater than that of 

an LP. It has about 3xl09 pits crammed onto its surface, which makes it vulnerable to 

defects and scratches. 
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However, the data is recorded with error correction codes which permit the detection 

and correction of errors. The specifications for the compact disc system were jointly 

developed by Philips and Sony and are defined in the standards document known as 

the Red Book (IEC Standard BNNlS-83-095) [46]. All disc and player manufacturers 

must obtain a compact disc license to utilise these specifications. Disc dimensions are 

defined in the standard, as are pit dimensions, the physical formations of which encode 

data. 

The disc itself is generally made from a polycarbonate plastic, although any 

transparent material with a refraction index of 1.55 may be used. Some of the 

parameters are listed in Table 4.1. If any of these parameters are inaccurate ( especially 

those in the µm range), due to manufacturing defects, then reproduction can be 

compromised. 

Parameter Value 

Playing time 74 minutes, 33 seconds 

Laser wavelength 780nm 

Rotational speed 1.2 - 1.4ms·' 

Diameter 120mm 

Thickness 1.2mm 

Track pitch 1.6µm 

Minimum pit length 0.833µm (1 .2ms·') to 0.972µm (1.4ms"1
) 

Maximum pit length 3.05µm (1.2ms"1
) to 3.56µm (1.4ms·') 

Pit depth ~ 0.1 lµm 

Pit width ~ o.5µm 

Table 4.1: The compact disc specification (Red Book) 

The physical specifications of the compact disc are shown in Figure 4.1. The 

innermost part of the disc does not contain any data (it simply provides somewhere 

for the player to firmly hold the disc). The data is recorded on a 35.5mm wide section; 

with a lead-in area which contains non-audio data used to control the player. 
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Laser beam Information (pits) 

Figure 4.1: Physical specifications and construction of a compact disc 

A transparent plastic surface substrate forms the majority of the disc's 1.2mm 

thickness. The data consists of a series of pits, which are impressed along its top 

surface and are covered with a very thin (50-l00nm) coating of a metal, such as 

aluminium. Another thin (10-30µm) plastic layer protects the metalised pit surface, on 

.top of which the label is printed. A laser beam is used to read the data, and is applied 

from below the disc and passes through the transparent substrate and back again. The 

beam is focused on the metalised data surface inside the disc. 

From Figure 4.2 it can be observed that the pit dimensions are of a micrometre scale. 

In order to measure the geometries of the pits, it is necessary to use measurement 

techniques which are capable of analysing such small structures [47]. However, it 

must also be remembered that the total data recording surface is quite large ( about 

124cm2
), which makes the analysis of the whole disc a very laborious task. 

Information is stored digitally on the surface of the disc, in the form of pits and lands, 

which have varying lengths (Figure 4.2). A disc has just one track of pits arranged in a 

continuous spiral running from the inner circumference to the outer. It is 

advantageous to start the data on the inside and work out, as the outer part of the disc 

is prone to manufacturing defects. The quicker rotation speed at the outer part of the 

disc means that the data has to read quicker in this area (thus increasing the 

probability of errors). 
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Figure 4.2: The pit and lands on a compact disc 

A number of measurement techniques are currently in use, such as optical, atomic 

force microscopy, stylus contact etc. [ 48], each with its specific advantages and 

disadvantages. Whilst a scanning electron microscope can measure pit geometries to a 

high degree of accuracy, it can only do this for areas of less than 50µm2 at any one 

time [ 49]. Therefore, to cover the whole recording area of a compact disc, would 

make this method unsuitable for an on-line measurement technique. Measurements 

can only be made prior to the application of the protective layer of lacquer, as the tip 

needs to be in relatively close contact with the surface of the disc. 

An SEM image can be a very useful tool for comparing the accuracy of other 

methods. The image in Figure 4.3 shows a small section of a CD surface obtained 

with an SEM. 

Figure 4.3: Compact disc pit swface from an SEM image 
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However, there is a technique which satisfies most of the requirements necessary for 

on-line measuring. It is a non-destructive method ( on both the macroscopic and 

microscopic scale), covers a greater area than an electron microscope, and is generally 

quicker. The technique of optical diffraction detects the intensity distribution of light 

diffracted by the 3D pit structure into diffraction orders. It should be noted that the 

pit dimensions are not measured in a direct way; interpretation of the data is required 

to convert the intensity measurements into pit dimensions (the inverse problem). 

This chapter introduces the theory of diffraction, in particular its application to optical 

discs, discusses various methods of measuring the diffracted light, and explains how 

neural network techniques may be used to analyse these intensity distributions from 

the diffraction measurements, thus solving the inverse problem, and determining the 

relevant pit geometries. 

4.2 Diffraction Theory 

Diffraction is the phenomenon which occurs when a single slit is placed on a barrier, 

and from the slit, a new wave front is radiated as though it came from a point source. 

A diffraction grating contains a series of slits. As a result of interference, a wavefront 

will leave the grating only in directions where light from all the slits are in phase [50]. 

This occurs straight ahead and at a variety of other angles. The angle of the 1st order 

wave is a function of the wavelength of the light and the spacing of the slits ( equation 

(4.1)). 

where 

m = order (0, 1, 2, .. . ) 

p = period of grating 

0; = angle of incidence 

0m = angle of diffraction 

(4.1) 
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In practice, diffraction also occurs from the objective lens system, due to the lens 

acting as a circular aperture source, which produces Fraunhofer diffraction rings 

around the central light spot. These rings are of importance and are referred to as Airy 

rings, and the pattern they produce is referred to as the Airy pattern, as illustrated in 

Figure 4.4. 

Half power level - - , -
I 

' I 

i O 
PLO :o i□~•dinglare, 

-+: :..-Scanning spot 1. 7 µm 
I I 

Figure 4.4: The Airy pattern obtained when reading .from a compact disc 

From Figure 4.4 it can be seen that the intensity minimum falls approximately on 

adjacent pit tracks, so as to avoid interference during the reading process. The form of 

the Airy pattern is a function of the light wavelength and the numerical aperture of the 

lens. 

The diameter of the laser beam has been specifically selected so that it is equal to the 

width of the half-intensity of the Airy pattern (this is illustrated in Figure 4.4). The 

first dark ring intentionally falls on the adjacent track, and provides us with good 

crosstalk performance. The track pitch is therefore determined by the degree of 

crosstalk which can be tolerated (taking into consideration the of a slightly defocused 

beam with a slight tracking error). Once the relation between the geometry and order 

intensities has been established theoretically, the measurement of these intensities 

gives information on the 3D geometry (and the solution to the inverse problem). 
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0111 order re . ected beam 

I 
I 

Incident beam 

Figure 4.5: The CD pit surface acting as a diffraction grating 

The surface of a compact disc can be thought of as a reflection grating, which acts 

similar to a diffraction grating. Thus, the pits on the CD also cause interference to 

occur. The smaller the pits in relation to the wavelength of the light, the greater is the 

angle at which light is reflected. The light diffracted by the grating consists of a single 

zero-order and multiple first-order beams, as shown in Figure 4.5. 

4.2.1 Theoretical Measurement Techniques 

There are two primary mathematical diffraction models which can be applied to the 

problem, which differ in complexity. The vectorial diffraction theory should be used 

for this problem, as the pit dimensions are of the same order as the wavelength as the 

laser light. However, as the vectorial polarisation effects are very small, it is 

advantageous to use the much simpler scalar diffraction model, where results do not 

differ very significantly from those given by the vectorial model (the reader is referred 

to Pasman [51] for a more thorough explanation of the vectorial diffraction theory). 

By applying scalar diffraction theory [52] to the compact disc surface (which acts as a 

diffraction grating), the far-field diffraction pattern F,. can be plotted with respect to 
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pit geometries, given by equation (4.2), and derived from first principles by Sekizawa 

et al [53]. 

( ) { ( ) [ ( )] 
sin[2n{N + ½)Pq]} 

~ q = (P -W)sinc[(P - W)q] + Wsinc Wq exp - j1r 4f +Pq x . ( ) 
sm 1rPq 

where 

Fr( I;) = far field diffraction pattern 

q = spatial frequency axis 

P = track pitch 

W= pit width 

D = pit depth 

A = wavelength oflaser (780nm) 

(4.2) 

Thus by inserting q =n/P into equation (4.2), the intensities of the zeroth can be 

derived, first and second order beams, given by equations (4.3), (4.4) and (4.5) 

respectively: 

(4.3) 

(4.4) 

(4.5) 
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From the above equations the values for the track pitch (P), pit width (W) and the pit 

depth (D) can be derived. If 0 denotes the angle subtended by the zeroth beam and the 

first diffracted light, the track pitch is given by: 

;i, 
P=--

sin(0) 
(4.6) 

The pit width and depth are calculated using equations (4.7) and (4.8) respectively: 

p -,(ffl211 W=-cos -
nrc I ,, 

(4.7) 

A I 
D = - cos-

4rc 
(4.8) 

From the above relations, the track and pit parameters are determined only from the 

observable quantities (10, ! ,,, Ji,,). These relations assume that the incident beam 

impinges on the disc perpendicularly. However, if the incident beam impinges on the 

disc at an angle 00 then equations (4.6) and (4.8) become: 

P= ;i, 
co~ 00 ) sin( 0) 

(4.9) 

(4.10) 

82 



Chapter 4 Analysis of Compact Disc Pit Geometries Using Optical Diffraction Methods 

In our investigations, it is assumed for the time being that the laser beam strikes the 

disc perpendicularly (and can therefore ignore equations (4.9) and (4.10)). Equation 

(4.7) shows that the pit width normalised by the track pitch (W/P) is calculated by the 

observable intensity ratio (linlln) . 

However (W/P) is a single-value function only when n = 1 at a typical parameter 

range (P = 2µm, W = between 0.3 and 1.0µm), as shown in Figure 4.6 (where the 

measuring order (n = 1, 2) is taken as a parameter). Therefore, the width must be 

found by (fi/11). 

1.0 

0.8 

0.6 

12n 1 I,, 

0.4 

0.2 

0 0.1 

n = 1 

0.2 0.3 

W I P 

When (WIP) is situated between 
0.25 and 0.5 (which is a typical 
parameter range), the optimum 
n is found to be 1. 

0.4 0.5 

< . :> 
Typical parameter range 

Figure 4.6: The relationship between the pit width normalised by the track pitch and 

the diffracted light intensity ratio (Ii,/1,J 

Taking these conditions into consideration, the above equations can be used to derive 

an equation for the diffracted intensity distribution, given by equation ( 4 .11): 
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{ [ ] }

2 

1 sin 2rc(N +½)Pi; 
I = - , (P - W)sinc[(P - W}<;] + Wsinc{ws} [ . ( ) l coin('f +P<;)] 

P sm rcPi; 

1 { . sin[21e(N +½)Pi;] . [ 4D 1}
2 

+ 'z Wsmc(Wi;). . ( ) .sm rc(-y+ Pi;) 
P sm JrPi; 

(4.11) 

The ;2 term (which is dependent on the pitch width) has been added to the equation 

in order to normalise the intensity to the same order as the values obtained m 

equations (4.3), (4.4) and (4.5). The c; term (spatial frequency axis) is defined as: 

sin(0) 
i; = -

A, 
(4 .12) 

These equations can be used to plot the intensity distribution against the angle of 

diffraction with a variety of pit geometries, as illustrated in Figure 4.7. However, 

some parameters in equation (4.11) can be changed, depending on the set-up of the 

experimental apparatus. 

In general, the intensities of the spectra are altered by the width and depth of the pits, 

and the positions of the spectra are altered by the track pitch. It should also be noted 

that the positions of the spectra are not affected by multiple reflections within the disc 

substrate [ 54]. 

84 



Chapter 4 

0.70 

0.60 

0.50 

-~ 0.40 
::: 
" ] 0.30 

0.20 

0.10 

0.00 

0.70 

0.60 

0.50 

t 0.40 
::: 
~ 
..5 0.30 

0.20 

0.10 

0.00 

0.70 

0.60 

0.50 

-~ 0.40 

!i 
..5 0 .30 

0.20 

0.10 

0.00 

0 

0 

0 

10 

10 

10 

Analysis of Compact Disc Pit Geometries Using Optical Diffraction Methods 

' W= 0.5µm, D = 0.07µm, ,1,= 780nm , (a) 

20 30 40 50 60 70 80 90 
Angle of diffraction ( deg) 

P = l.6µm, D = 0.07µm, ,1, = 780nm (b) 
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Angle of diffraction ( deg) 

I P = l.6µm, W = 0.5µm, ,1, = 780nm (c) 
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Angle of diffraction (deg) 

Figure 4.7: The intensity distribution at various diffraction angles (a) variable track 

pitch (b) variable pit width (c) variable pit depth 
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4.3 Experimental Measurement Techniques 

The pit and track geometries on a compact disc can be measured experimentally 

( using optical methods) in a variety of ways which are briefly discussed here. 

4.3.1 Three Detector Arrangement 

This method involves the setting up of three separate detectors ( one for each 

diffracted beam), which are placed at different angles to measure the intensity of each 

beam. The 0th and 1st order detectors are necessary to measure the track pitch. The 

optional 2nd order detector is necessary to measure the width and depth of the pits. 

The diagram in Figure 4. 8 shows a typical arrangement. 

]' 
0 
00 
t:,, ... 
(l) 
V, 
co 
~ 

Section of compact disc 

• 

\ 
Detectors 

Figure 4.8: Three detector arrangement 

Angle 

The advantage of this arrangement is that it is relatively simple to set-up, requiring 

only three detectors. However, the diffraction profile is not plotted very accurately. 
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4.3.2 Multi-element Array Arrangement 

The multi-element array uses the same principle as the three detector arrangement, 

except that in this case the whole intensity distribution can be plotted (see Figure 4. 7). 

The number or points on the plot depends on the number of pixels in the array. Figure 

4.9 shows the arrangement of a typical multi-element array. 

The multi-element array offers many advantages over the three detector arrangement, 

as it is capable of plotting the diffraction profile to a higher degree of accuracy. The 

number of detectors could be varied, but about nine would be sufficient (3 for each 

beam to be detected). 

,...._ 

§ 
0 :;-00 
t:, ·.; 

s:: .... ~ 
(l) -!; Vl 
(<l 

~ 
• • 

' Detectors 

Section of compact disc 

Figure 4.9: Multi-element array arrangement 

4.3.3 CCD Camera Arrangement 

A CCD camera can be thought of as being a high definition equivalent of the multi

element array, with the advantage that it can measure the intensity on more than one 

axis ( and with greater resolution), as illustrated in Figure 4. 10. 
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Figure 4.10: CCD camera arrangement 

The CCD camera arrangement is the most accurate method (its resolution is several 

thousand pixels), and can plot the diffraction profile very accurately, but at the cost of 

the processing power required. 

4.4 Application of Neural Networks 

It is envisaged that the solution to the diffraction problem can be solved substantially 

quicker by using neural networks. Conventional methods analyse the intensity 

distribution graph produced by the detectors, then calculate each of the required 

parameters. As there are millions of pits and tracks which must be analysed to 

accurately measure the quality of the disc, it would require a substantial amount of 

time to cover the whole surface. However, a neural network approach would already 

be trained with a wide variety of these graphs ( either theoretically generated, or 

experimentally obtained), so that the required parameters could be easily determined 

from the output of the network. This comparison is explained in Figures 4.11 (a) and 

(b) . 
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Figure 4.11 : (a) Conventional testing method 
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Figure 4.11: (b) Neural network testing method 

As it is possible to generate several training sets, using equation ( 4 .11 ), it is feasible to 

use a multi-layer perceptron network in a supervised learning manner to solve this 
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inverse problem. The reader is referrect'to Section 3.6.2 for details on the multi-layer 

perceptron. 

4.5 Data Preparation and Network Optimisation 

4.5.1 Introduction 

The importance of data preparation has already been emphasised; However, as it is 

such an important part of the initial investigation towards successful training, the 

methods involved will be summarised with regards to this problem. 

The multi-layer perceptron is trained using a set of input-output related patterns, with 

an array of input neurons to represent they values from the diffraction curve (these 

are obtained from the outputs of the CCD camera). The outputs of the networks 

represent the pit width, pit depth and track widths of the disc. 

To summanse, the problem in essence is to train the network with a set of 

theoretically generated data and then investigate its performance with another set of 

theoretical data. The testing was concluded by applying a set of 'noisy' and 

experimental data (which was generated theoretically). However, as a wide selection 

of ' real ' experimental data couldn't be obtained, the viability of using such a method 

had to be considered. 

4.5.2 Data Preparation 

The data which is obtained in this problem depends on the chosen experimental 

arrangement. If the three detector arrangement were to be used, then it would be 

sufficient to chose data points around the angles at which these were set. With a 

detector array, more data points would be required, and with a CCD camera 

arrangement, it would be necessary to have as many data points as possible. 
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In this study, it was decided to concentrate on the CCD camera option, as this is the 

one which gives the greatest accuracy experimentally, due to the resolution of the 

diffraction pattern obtained, and is the preferred method which is being developed for 

use in industry. Figure 4.12 shows a simulated typical diffraction pattern which can be 

obtained. 

Required data 

0 Angle (degrees) 

, P= l.6µm 
! W= 0.5µm 
I D= 70nm 

90 

Figure 4.12: Theoretical d~ffraction pattern.from a CCD camera device 

It is assumed (in the ideal case) that the image obtained is symmetrical around the 

incident beam, and is feasible to take data samples along a single axis This has the 

advantage of considerably reducing the number of data points required. 

4.5.3 Input Data Points 

Even though a typical CCD camera is capable of a resolution of several hundred 

pixels, it would be impractical to use so many data values, as they are proportional to 

the number of neurons which are in the input layer of the neural network. 

However, as the diffraction pattern ranges from 0° to 90°, it would seem reasonable 

to have one data point per 1 °, and still be able to describe the curve with a reasonable 

degree of accuracy (using 91 data points). The number of data points could be 

reduced further if the number of parameters to be found were reduced (i.e. the track 

width and pit depth can be found without knowing the intensity of the 2nd order beam; 

hence angles above about 45°-50° are not required, as the 1st order beam appears 

between about 10°-45°). 
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4.5.4 Training Set Size 

If use is made of the early stopping and cross-validation techniques agam (see 

Chapter 3 for details), then the number of training examples can be reduced 

substantially. However, in this case there are three parameters of concern, which have 

to be determined to a high degree of accuracy ( as an inaccuracy of only ± 1 µm can 

make a significant difference to the read-back from the laser). In Chapter 3, it was 

observed that about 3 00 training patterns was sufficient to train the network, which 

can be used as a rough estimation of the number required for this problem. It was 

decided to train the network with a set of 100, 500 and 1000 patterns, which consist 

of various values for the track pitch, pit width and pit depth ( other parameters are 

assumed to be constant). 

12.0 1 ■ 100 patterns ■ 500 patterns ■ 1000 patterns 

0.0 +----+------,>----+----+---+----+----+----+------
1 X 2 1X4 lX\6 lx 32 lx 64 2 x2 2x 4 2xl6 2x 32 2X 64 

Network Configuration (Layers X Neurons) 

Figure 4 .13: Average errors for P, Wand D with various data set sizes 

Figure 4.13 shows the average errors in the Pitch P, Width Wand Depth D from the 

output of the neural network when a test set is applied at the inputs. It can be seen 

that the training sets with 100 and 1000 examples tends to perform rather poorly, 

which is envisaged as having too little and too much data respectively. The 500 

example data set gave a good result, with about 32 neurons in the hidden layer (it also 

gave a good result with 64 neurons in the hidden layer, but for practical reasons the 

lowest acceptable number is selected). 
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4.6 Results 

4.6.1 Using Theoretical Data 

The results obtained so far demonstrate that a network can be trained to recognise 

several parameters from a diffraction pattern to a relatively high degree of accuracy. 

In this section the determination of system parameters using a single neural network is 

investigated. 

The approach used was to generate a training set with various parameters (P: 

1.5µm➔l.7µm, W: 0.3µm➔0.7µm and D: 0.07µm➔0.17µm), which were in the 

ranges accepted in the Red Book of CD standards [46]. A total of 500 curves were 

generated (keeping one parameter constant, whilst varying the other two) with the 

diffraction pattern, and the values of P, Wand D encoded into the output patterns. 

Once trained, the values for P, Wand Dare expected at the output when a test set is 

applied to the network. This is illustrated in Figure 4.14. 

I • • • •••••••• ••••• • •• ••• • • • •• • •• • • • • I • ••••• ••••• • • •••• • • • • • • •••••••• • ••••••••• •••••1 . . . . . . . . . 
' • .--------,. Track pitch (P) · · I !:_· 

Track pitch (P) _ 

Pit width (W) 

1 

Training Pit width (W) 
patterns 

Pit depth (D) 

Diffraction intensity 11 I Pit dep
th 

(D) I .. 
data (I) Training 1 ! Testing 

. --- -------------- -- --- -- -------------------... .. ······ ·· ·····-----------------------.. ----.. --- --- ---------------------------.............. . 

Figure 4.14: The determination of P, Wand Dusing I network 

The errors in recognition of the values of P, Wand D were then determined for the 

test set of data. The results are presented in Figure 4.15, from which it can be 

observed that the neural network has determined the track pitch with an error of 3% 

(±0.04µm) , the pit width with an error of 3.5% (±0.03µm) and the pit depth with an 

error of 6.5% (±0.05nm). These are at the best configuration of32 neurons in l layer. 
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12.0 ■ Track pitch (P) ■ Pit width (W) ■ Pit depth (D) 

2.0 

0.0-l-----+---+---+- --+----+---+----+---+----+--+ 
I X 2 I X 4 I X 16 I X 32 I X 64 2 X 2 2 X 4 2 X 16 2 X 32 2 X 64 

Network Configuration (Layer.; X Neurons) 

Figure 4.15: Errors in the values of P, Wand D for various network configurations 

Recalling the methods used in Chapter 3, of dividing the network into a number of 

separate networks ( one for determining each unknown parameter) then the accuracy 

is found to improve considerably. This set-up is illustrated in Figure 4.16. 

······;"~~~;t~:~~;·······················i~;·· ➔·■· ➔ ·1·····~==~::h~~)······· 
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Pit depth (D) 

Diffraction intensity 
data(/) 

patterns . 
~------~ 

Pit width (W) 

::;;:; ➔ • ➔ -I _Pit-dep_th (D_) _ 

' ' ' ' ' ' ' ' ' ' ' ' . . . . . . 
Training l ! Testing . . 

....... ...... ..... ........ .. . ...... ........................ .. ... .. ..... ......... ---..... -. . --····· .. .. .... .. .. .. .. ......... ..... --------- --- -- --- -- -- -----

Figure 4.16: The determination qf P, Wand Dusing 3 networks 

The values for P, W and D are encoded into each training set ( all are trained with 

identical input data), and applied to a separate network. The results obtained are 

shown in Figure 4. 1 7. 
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Figure 4.17: Errors in the values of P, Wand D for various network configurations 

From Figure 4.17, it can be observed that the neural networks could determine the 

track pitch with an error of 2. 75% (±0.03µm) , the pit width with an error of 2.5% 

(±0.02µm) and the pit depth with an error of 4% (±0.04nm), which is an improvement 

of about 40% over the other method. This increase in accuracy is attributable to the 

division of the one network into three separate networks, thus considerably reducing 

the number of weights required. The configuration of the networks are summarised in 

Table 4.2. 

Parameter 
Network 1 Network2 Network 3 

{ track Eitch P} {Eit width W) {Eit deEth D2 
Input neurons (data points) 91 91 91 

Hidden neurons 32 32 32 

Output neurons 1 1 1 

No. of training sets 500 500 500 

No. of epochs required 50-100 50-100 50-100 

Table 4.2: Summary of the network parameters 

4.6.2 Using Simulated Experimental Data 

Having determined a network architecture which yields optimum results when 

presented with theoretical data, the goal is to apply 'real' experimental data to the 
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network. However, as this data was difficult to obtain at the time of the research ( due 

to the reluctance of the manufacturers to make public the quality of their CD 

fabricating methods), it was decided to simulate this data by adding random noise to 

the diffraction curve, as illustrated in Figure 4.18. 

(a) 0% random noise 

Reqnired data 

0 Angle (degrees) 

(b) 25% random noise 

0 Angle (degrees) 

' P = l.6µm 
I W= 0.5µm 

D = 70nm 

90 

P= l.6µm 
W= 0.5µm 
D = 70nm 

90 

Figure 4.18: The application of random noise to simulate experimental data 

The theoretical diffraction patterns were subjected to 5% and 25% random noise 

(Figure 4. 18 (a) and (b) respectively). It is envisaged that this level of noise would 

never be experienced in a real situation; but is a good test as to the limits of the neural 

network technique. 

A total of 500 training sets were created with various parameters, together with 50 

validation sets. Test sets were created with P=l.6µm, W=0.5µm and D=70nm, and 

5% and 25% random noise was applied to each set (these are shown in Figure 4.18). 

From simulations conducted on theoretical data, it was observed that a system of 3 

networks with about 16 hidden neurons in 1 hidden layer was sufficient to solve the 

problem to an acceptable degree of accuracy. It was thus decided to use this set-up 
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again to solve this problem. Figure 4 .19 shows the results of applying ' simulated 

experimental' data to the trained network for the 5% and Figure 4.20 for the 25% 

random noise samples. 
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Figure 4.19: Errors in determining P, Wand D for sample with 5% random noise 
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Figure 4.20: Errors in determining P, Wand D for sample with 25% random noise 

From Figures 4.19, Figure 4.20 and other numerical data, it can be observed that the 

networks were able to determine some of the unknown parameters to a high degree of 

accuracy. Table 4.3 summarises the errors which were obtained. 

Noise Track pitch P Pit width W Pit depthD 

5% ±3% ±4% ±31% 

25% ±3% ±10% ±32% 

Table 4.3: Average errors observed for the unknown parameters 
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The determination of the pit depth was rather poor, which is envisaged as being due 

to diffraction data being less sensitive to changes in parameters in the nanometre 

scale. However, it should be noted that a system with 25% noise would be 

unacceptable in a real experimental measurement. 

4.7 Summary 

In this chapter it has been demonstrated that a neural network approach can be used 

to solve an optical inverse problem to a high degree of accuracy, and accomplished in 

a fraction of the time taken by conventional measurement methods. 

Using a multi-layer perceptron neural network, which was chosen due to the 

possibility of creating numerous sample data sets, theoretical diffraction pattern data 

were generated, and several simulations were performed in order to determine the 

optimal settings. However, it was determined that one neural network was 

insufficient, and had to be separated into three networks ( something which proved to 

be very successful, as the accuracy was observed to improve by about 40%). 

It was observed that a neural network with about 8-16 hidden neurons in 1 hidden 

layer was sufficient, using 500 training sets, to be successfully trained in 

approximately 50-100 epochs. The accuracy obtained using theoretical data gave 

much confidence in the application of 'experimental' data to the trained network. 

Results showed that the values of the track pitch, pit width and pit depth could be 

determined to a high degree of accuracy, even with a very noisy data set (greater than 

would be observed experimentally). 

These factors, together with the speed at which a trained network can determine 

unknown parameters leads us to believe that a neural network approach could be used 

in an on-line system during the CD manufacturing and testing process. Further 

research is now being carried out by Aerosonic to investigate the feasibility of using 

such a method in their CD analysing systems. 
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Chapter 5 
Analysis of Magnetisation Maps and MFM Images of Thin Film Media 

5.1 Introduction 

In this chapter neural network techniques are applied to analyse magnetisation maps 

and magnetic force microscope images of thin film media, both of which were 

introduced in the first chapter. Here the models for the thin film media are outlined 

and magnetic force microscope which were used to create the sample images, and 

how the data is applied to a neural network in order to extract features from them 

(some of which may not be visible to the human eye). 

This chapter also introduces a completely different approach to neural networks. In 

the previous problems the goal has been to generate suitable training sets, then use 

them to train a neural network. However, in this case data sets which are considered 

too large for a supervised learning approach are being dealt with. It is thus necessary 

to consider using an unsupervised learning method, and the self-organising map. 

These are discussed in greater detail later in the chapter, together with the techniques 

which can be used to analyse the results, and comparisons are made with other 

conventional image analysing methods. 
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5.2 Thin Film Media Model 

The study of magnetic processes at the sub-micron level, such as those found in thin 

film media, is called micromagnetics. The grains are typically around 200A and have a 

high magnetic moment. The first theoretical study of magnetic grains was developed 

by Stoner and Wohlfarth [6], which considered a single-domain elliptical particle in 

the presence of an external field H . It is based on the calculation of the extrema of 

the energy function, as given in (5.1). 

E = K sin 2 0-MH cos(a-0) (5.1) 

where 

K = uniaxial anisotropy constant 

0 = angle between the direction of magnetisation and the easy axis 

a= the angle between the easy axis and the direction of the applied field 

These parameters are shown diagrammatically in Figure 5 .1. 

fl 

Figure 5.1 : Parametersfor the Stoner-Wohlfarth particle 

In the model the two extremes are when the particle is at an orientation of 0° 

(parallel) and 90° (perpendicular) to the field. When the particle is perpendicular to 

the field, it will be rotated away from the easy axis and into the direction of the field, 

which gives rise to completely reversible changes in the magnetisation. However, if 

the particle is parallel to the field, then the magnetisation will remain in its original 
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direction. When the field is strong enough in the opposite direction, the magnetisation 

will line up parallel, and can be made to follow the direction of the applied field. 

In this work, several thin film models were created with a variety of features . 

Recorded bits were simulated by allowing a series of oppositely magnetised regions 

relax, subject to the influence of a decreasing applied field, which was carried out 

using an energy gradient descent technique. The model is characterised by two 

important parameters: 

• h; is the value of the mean interaction field relative to the intrinsic coercivity. 

• c• is a field representative of the exchange coupling between grains. 

The micromagnetic modelling of thin film media is the theoretical investigation of the 

interaction effects which occur between an externally applied magnetic field and a 

system of interacting magnetic particles. The modelling of the thin film media can be 

better understood by studying the magnetisation reversal mechanisms of non

interacting single domain particles. 

The micromagnetic models which model the interactions are generally based on a 

hexagonal structure, where each nodal point represents the position of a magnetic 

grain; and the most common arrangement is hexagonal close packing (HCP). Using a 

HCP arrangement to model the structure of thin film media ensures that a high areal 

packing fraction is achieved. One of the models [55] of magnetisation reversal treats 

the magnetic grains as single domain particles. In simulations conducted by Walmsley 

et al [56], and used in this research, the modelling was of HCP cobalt with grains in 

the 200A diameter regions (which is well below the diameters for the existence of 

multidomain behaviour). 

The model assumes that each grain has a moment N( with constant magnitude ( and a 

direction which is aligned with the local effective field at the grain centre) at 

equilibrium. One method of modelling the magnetisation reversals in the thin films is 
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to model the motion of moments within each grain. The expression for a single grain 

is based on a dynamical approach using the Landau-Lifshitz equation: 

dM - - ,,i - { - - ) -=yM xH-- M x \M x H 
dt M 

(5.2) 

where M is the moment of the grain and H is its effective field . Equation (5.2) 

rotates the moment vector until it is aligned with its local effective field (the 

equilibrium position). The magnetisation reversal method involves taking a system 

from saturation magnetisation in a particular direction to saturation magnetisation in 

the opposite direction (which is conducted by applying an external field) . The model 

studies the transition of the system from positive saturation to negative saturation. 

5.21 Magnetisation Maps 

Magnetisation maps are basically a visual method of plotting the magnetisation of the 

grains in the magnetic sample. Each direction is represented by a different colour 

(Figure 5.2), which makes it easier to visualise patterns than with a greyscale image. 

©08(S)CD080 
■ ■■ ■ ■ ■ ■■ 

Figure 5.2: Magn,etisation map orientation colour scale 

5.2.2 Samples Used 

Several simulations were performed using the thin film media model to create a series 

of samples of varying densities (measured in kilo flux closures per squared inch) and 

patterns. The values for the mean interaction field h; and the intrinsic coercivity of the 
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grains c* are also varied. The introduction of low coercivity LC grains gives rise to 

increased percolation (when there is significant statistical clustering). 

Low coercivity grains arise due to stacking faults which convert the grains from 

having a hexagonal close packed structure (HCP) to a face centred cubic structure 

(FCC). HCP cobalt has a large anisotropy, whereas FCC cobalt has a lower 

anisotropy, and therefore a reduced coercivity. 

The samples were chosen as they present a series of challenges for analysis. Samples 

1, 2 and 3 have written bits, but an increasing tendency for vortex formation. In 

sample 1 the interaction field parameter is low at 0.1 and in 2 and 3 this parameter is 

0. 5 ( the difference between 2 and 3 is the inclusion of LC grains which gives rise to 

increased percolation when there is significant statistical clustering). 

Samples 4 and 5 were chosen because they have a different magnetisation structure 

(i.e. no written bits). However, samples 4 and 5 differ because the AC erasure is 

essentially isotropic whereas the DC erasure leads to 'stripe-like' domain structures 

(more information about AC and DC erasure is given in Chapter 1). 

Sample 1 : 1024 grains with 4 recorded bits, hF0 .1, c• =0. 2 

Sample 2: 1024 grains (0% LC) with 10 recorded bits, hF0.5, c*=0.l 

Sample 3: 1024 grains (15% LC) with 10 recorded bits, hF 0.5, c*=o.1 

Sample 4: 4096 grains AC erased state, hF 0.5, c•=o.1 and 0% LC grains 

Sample 5: 4096 grains DC erased state, h,=0.5, c•=o.1 and 0% LC grains 

Simulations were initially performed on a system comprising 1024 grains (Figure 5 .3 ), 

with 4 bits recorded along one dimension (sample 1). The use of such a small sample 

was necessary to test the neural network set-up prior to the application of larger 

samples. 
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Figure 5 .3: Magnetisation map of a system with 4 written bits 

Simulations were also performed on systems comprising 16,384 grains, with periodic 

boundary conditions to eliminate the edge effects (Figure 5.4). The physical size of 

the system is 5µm2
, with 40 bits recorded along one dimension (thus giving a 

recording density corresponding to ~400kfci). 

The introduction of LC grains results in inferior transitions when the concentration is 

sufficiently high such that there is significant statistical clustering of grains, as 

illustrated in Figure 5.4(b). It has been shown [57] that this affects the micromagnetic 

parameters and recording properties of thin film media. The introduction of LC grains 

results in a significant increase in percolation, which is clearly evident when 

comparing the magnetisation maps. A plot of the magnetisation averaged across the 

tracks shows a qualitative indication of the degree of media noise present [58]. 

(a) 0% LC grains (b) 15% LC grains 

Figure 5.4: Magnetisation map with h;=O.l, C *=O.l 
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In order to study the underlying magnetic structure of the sample, it was also 

necessary to investigate samples with no written bits. Several samples were generated 

using both AC (Figure 5.5) and DC (Figure 5.6) erasure (which was described in 

Section 1.61), again with and without the introduction of LC grains. 

The samples comprised 16,384 grains, with periodic boundary conditions to eliminate 

the edge effects. However, in order to reduce the processing time, the samples were 

reduced to 4096 grains. This also has the added advantage that one section of the 

sample can be used to train a neural network, and another section can be used to test 

it. 

(a) 0% LC grains (b) 15% LC grains 

Figure 5.5: AC erased state with h;=0.5 and C*=0.1 

(a) 0% LC grains (b) 15% LC grains 

Figure 5.6: DC erased state with h;=0.5 and C*=0. J 
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5.3 Application of Neural Networks 

The use of neural network techniques for image analysis is well established, and has 

proven to be a very efficient method in several cases. However, their use in the area of 

magnetism is not well established. In the previous chapters, much use was made of the 

supervised learning method, and the multi-layer perceptron, as it was possible to 

generate vast amounts of data for these applications. In the case of thin film data, it is 

not feasible to generate a large amount of training data because of the excessive 

computer processing time involved. In such instances, use will be made of the 

unsupervised learning method. 

5.3.1 Unsupervised Learning 

The unsupervised learning method has already been introduced in Chapter 2, but 

briefly, unsupervised learning is the process in which a neural network learns without 

the presence of an external teacher to oversee the learning process. A network which 

is being trained by unsupervised learning is not provided with any learning examples, 

instead it is presented with only the input patterns. Once the network has recognised 

any regularities within the input patterns, it can develop the ability to create internal 

representations for encoding specific features. In this chapter the process will be 

discussed in relation to the application of the magnetisation maps and :MFM data. 

5.3.2 Self-Organising Maps 

The self-organising map (developed by Kohonen (59]) is probably one of the most 

popular neural network models. It belongs to the category of competitive learning 

networks. It is based on unsupervised learning, and little needs to be known about the 

characteristics of the input data. The SOM can be used to detect features inherent to 

the problem and thus has also been called SOFM, the Self-Organising Feature Map. 
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5.3.2.1 The SOM Algorithm 

The basic idea of the SOM is simple yet effective; its goal is to transform high 

dimensional input data into one or two dimensional data, and do this in a topological 

ordered fashion. The map can be arranged in either a rectangular or hexagonal fashion 

( as illustrated in Figure 5. 7). This flexibility has several advantages, especially in 

magnetism, as several samples are of the HCP type. However, for simplicity it was 

decided to make use of the rectangular arrangement only for this work. 

(a) Rectangular (b) Hexagonal 

Figure 5.7: Various SOM arrangements 

The SOM algorithm (developed by Kohonen [59]) can be summarised by five basic 

steps: 

1. Initialisation - Random values are selected for the initial weights of the neurons 

( the weights must be different for each neuron, and it is preferable to keep the 

values quite low). 

2. Sampling - A sample xis randomly drawn from the input data set and its similarity 

to pre-set vectors (which are stored in the SOM) is computed. 

3. Similarity Matching - The best-matching neuron ;(x) in the SOM is found at a 

particular time n ( using the common Euclidean distance measure): 
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i(x)= argi rninllx(n)-will j= l, 2, . .. , N (5.3) 

4. Updating - The synaptic weights of the neurons are adjusted (using the update 

formula): 

(5.4) 

where T/(n) is the learning rate parameter, and A;(xln) is the neighbourhood 

function centred around the best-matching neuron i(x). Both values are varied 

dynamically during the learning process. 

5. Continuation - Repeat steps 2-4 until there is no noticeable changes in the feature 

map. 

The success of the formation of the map depends on the values chosen for the 

learning-rate parameter and the neighbourhood function. As there is no theoretical 

method for choosing the values, they must be selected on a trial and error basis. 

However, there are a few guidelines to facilitate the successful formation of the 

feature map: 

• The learning-rate parameter T/(n) should initially be set to 1, and after a few 

hundred iterations should decrease in value (to about 0.1) with time. The 

topological ordering of the weights take place during the initial iterations. 

• Adjacent neurons belong to the neighbourhood A;<x>Cn) of the best-matching 

neuron i(x) (see Figure 5.8). The neighbourhood function initially includes all the 

neurons in the SOM, and decreases with time to include only a few neighbouring 

neurons. 
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Figure 5.8: Neighbourhood.function 

When the SOM has converged the output feature map will show the important 

statistical characteristics of the input, as the basic aim of the SOM algorithm is to 

store a large set of input vectors by finding a smaller set of prototypes, so as to find 

an approximation to the original input space. This is illustrated in Figure 5.9: 

•••••••• •••••••• •••••••• 
Discrete output • • • • • • • • 

space A • • • . ~l • • • 

• X 

Continuous 
input space X 

Figure 5.9: Relationship between the map and the weight of the best-matching neuron 
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5.3.2.2 Visualising the SOM Using U-Matrix Diagrams 

The SOM is easy to visualise, and over the years several visualisation techniques have 

been devised. Due to the inherently intricate nature of the SOM, however, not one of 

the visualisation methods discovered so far, has proven to be superior to others. 

The unified distance matrix (U-matrix) representation of the self-organising map 

visualises the distances between the neurons ( see Figure 5 .10), and provides a better 

method of visualising the boundaries between clusters on the SOM. It is derived from 

the graphical methods to illustrate the clustering of reference vectors in the SOM by 

Ultsch and Siemon [60]. Kraaijveld et al. [61] later suggested a method in which 

relative distances between neighbouring reference vectors are represented by shades 

of grey (and eventually colour). 

The distance between the adjacent neurons is calculated and presented with different 

colourings between the adjacent nodes. A dark colouring between the neurons 

corresponds to a large distance and thus a gap between the reference values in the 

input space. A light colouring between the neurons signifies that the reference vectors 

are close to each other in the input space. Light areas can be thought of as clusters 

and dark areas as cluster separators. This is an useful way of finding clusters in the 

input data without having any prior information about the clusters. 

Figure 5.10: U-matrix representation of the self-o,ganising map 
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The black dots in the figure represent the neurons, and in this example the 

representation reveals that these is a separate cluster in the upper right corner ( as the 

clusters are separated by a dark gap). Thus, teaching a SOM and representing it with 

the U-matrix offers a fast way to get an insight oftbe data distribution. 

In our simulations, the U-matrix is used to visualise similar features within the 

magnetisation map or MFM image from the clustered regions on the SOM. These are 

encoded with their original positions, so that they can be replotted later. 

5.3.3 Image Coding Techniques 

In order to extract features from images such as magnetisation maps and MFM 

images it is important to have a better understanding of the fundamental image coding 

techniques [62]. 

A typical image may at first seem to contain an enormous amount of information, but 

by taking a closer look it becomes obvious that much of the data is not uncorrelated. 

The aim of image coding techniques is to take advantage of the correlations in the 

inmge to find representations which are considerably smaller, yet which sacrifices a 

relatively small error (an example of this is a JPEG image). The relevance of this 

technique to the investigation lies in the fact that it is of interest to only extract a few 

features from a complex image. As an example, consider the simple picture of the car 

in Figure 5.11. 

Figure 5 .11: Original pixelised image 
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The image coding breaks the picture up into small blocks and then approximates each 

block in some manner. Typically, a set of filters are chosen such that linear 

combinations of the filters can be used to approximate different image blocks. The 

mean-squared difference between the original and the reconstructed image is used as 

the error measure. 

The picture in Figure 5 .11 is now divided into 26x 11 non-overlapping blocks. The 

blocks are then applied to a neural network ( or more specifically a self-organising 

map), and the weights that the network has learned are represented as a series of eight 

masks (shown in Figure 5.12). The number of masks was selected so as not to loose 

too much information. Each mask shows the set of weights associated with a single 

output. Positive weights are represented by a white colour, negative weights by black 

and a zero weight by grey. 

_J ■~--...~~~ 
Figure 5.12: The masks which were learned by the network 

It is now possible to code the image, using these masks, and represent it with only 

eight different symbols (hopefully without loosing too much of the original 

information): 

Figure 5.13: Coding of image using learned masks 

From the reconstructed image, it can be seen that some of the data has been lost, but 

the important data is still present. More importantly, it has been possible to use just 
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eight symbols to represent an image (using more symbols would greatly improve the 

quality of the reconstructed image). This method seems ideally suited to our problem; 

being able to represent a complex magnetic sample with a small number of masks 

(without too much loss of detail), thus making it much simpler to pinpoint certain 

features which may be present (and hence represented by a particular mask). This 

method has been adapted and is used in the remainder of this chapter to extract 

features from complex magnetic images. 

5.4 Feature Extraction From Magnetisation Maps 

The magnetisation maps in Figures 5.3-5 .6 give a good representation of the actual 

structure of a sample. From these maps it is possible to visualise many different 

features, such as the written bits, percolations, vortices etc. Several methods are 

available [56] to show the presence of these features. However, in this chapter they 

are investigated through the use of neural networks, and demonstrated that such a 

method can work just as well as a conventional method (and possibly much quicker), 

using a selection of samples (described in section 5.2). 

5.4.1 Pre-processing Techniques 

The data fed to a SOM includes all the information that a network gets. If erroneous 

data is fed to the SOM, the result is also erroneous or of bad quality. Erroneous data 

must be filtered using prior knowledge of the problem domain and common sense. As 

the main interest is the observation of domain structures within the sample, there are 

several methods available. However, the three which are of most interest to us are the 

calculation of the moments, divergence and curl. As the investigation is only 

concerned with the magnitude of the moments, divergence and curl of the 

distributions, it is feasible to plot only the absolute value of each expression. A black 

pixel represents a zero, and a green pixel represents the maximum value for each 
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image. The ratio of black pixels to green pixels increases as the exchange parameter 

increases, which indicates that the size of the magnetically correlated regions increases 

with stronger intergranular coupling. 

Any data which is to be applied to a neural network needs to be pre-processed, and 

this case is no exception. If the raw data was applied to the self-organising map, then 

the moment orientations would be observed, but it would be impossible to observe 

any other features in the sample. To do this it is necessary to use pre-processed data 

which seek known features. 

5.4.1.1 Moment Analysis 

The moment analysis of M gives the measure of localised flux closure within a vector 

field . For each grain i in the system, the following vector sum is calculated: 

Lrx(vi\) (5.5) 
j e n,n 

where the sum is over those grains which are considered to be the nearest neighbours 

of grain i , and r is the vector between the centres of grain i and grain j. Figure 5 .14 

shows the effect of applying moment analysis to the sample with 4 written bits (Figure 

5.3). 

Figure 5 .14: Moment analysis of a sample with 4 written bits 
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This technique has proven successful [56] in predicting the positions of the centres of 

vortices within a magnetisation distribution. 

5.4.1.2 Divergence 

The divergence of M measures the degree of continuity of the magnetisation 

distribution, and is a function of position. If a medium with a 2-dimensional 

magnetisation distribution M(x,y) is considered, then the divergence is given by: 

- aM aM divM = __ x +--y 
ax ay (5.6) 

The divergence of the magnetisation is calculated numerically by forward differences. 

The elements of a rectangular array, J(m,n) (m = 0, 1, 2, M-1 and n = 0, l , 2, N-1), 

are assigned a value which corresponds to the angle of magnetisation of the grain 

whose centre is closest to the centre of the element. The partial derivatives 

corresponding to the position (m, n) is given by: 

cos(J(m + 1,n))- cos(J(m,n)) 

& 

aMY = sin(J(m,n + l)) - sin(J(m,n)) 

ay & 

Figure 5. 15 shows the divergence of the sample in Figure 5. 3. 

(5 .7) 

(5.8) 
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Figure 5 .15: Divergence of a sample with 4 written bits 

5.4.1.3 Curl 

The curl of a vector field measures the amount of rotation within the field . It can be 

expressed as: 

(5.9) 

This is calculated numerically, using forward differences similar to those used in the 

calculation of the divergence of M. Figure 5.16 shows the curl of the sample in 

Figure 5.3. 

Figure 5.16: Curl of a sample with 4 written bits 
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5.4.2 Data Preparation 

After using various methods to pre-process the raw data, it must still be prepared 

before applying it to the self-organising map. A problem arises due to the grains in the 

sample being rather 'disorderly' i.e. not in an orderly grid (which is desirable when 

presenting data to a grid-like self-organising map). Therefore, the grains in the 

original data are arranged into a grid of the same dimension. This is illustrated in 

Figure 5. 17, from where it can be seen that there is only a slight loss in quality. 

(a) Original image (b) Arranged data 

Figure 5 .17: Arrangement of magnetisation map grains into an orderly grid 

In order for the self-organising map to pick up specific features it must be supplied 

with data about a particular grain and also its nearest neighbours. The image is then 

sampled into regions of 4, 16 and 64 grains (grids of 2x2, 4x4 and 8x8 respectively). 

The reason for doing this is to identify features of variable sizes e.g. vortices which 

may consist of several grains diameter. For a sample of 1024 grains (32x32 grains) 

there is no need to use a grid any larger than about 2x2, as this will only increase the 

probability of finding more than one feature within the grid; and thus making it 

difficult to classify it into any particular group on the self-organising map (the grid 

size will also determine the number of neurons in the input layer of the self-organising 

map). The images in Figure 5 .18 show how a magnetisation map is sampled in a raster 

fashion so that each grid is sampled. 
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(a) 4 grains sampled with 2x2 grid 
(to detect centre of vortices) (b) 16 grains sampled with 4X4 grid 

(to detect small vortices) (c) 64 grains sampled with 8x8 grid 
(to detect larger vortices) 

Figure 5 .18: Sampling a magnetisation map with 2 x 2, 4 x 4 and 8 x 8 grids 

Each grid now represents a series of grains in the magnetisation map. The neural 

network is capable of placing these grids ( only one grid size can be applied to each 

neural network) into groups in an organised manner, dependent on the features within 

them (in this case the number of groups has been restricted to 8). The features which 

are specific to each group can be observed. In Figure 5 .19 the groups which were 

determined in the image sampled with a 2 x2 grid are shown. 

Figure 5 .19: The features present in the 8 groups in the SOM (using 2 x 2 grids) 

From the above figure it is quite clear what each group represents. However, it should 

be noted that these are only approximations (or the closest matches) for the contents 

of each group. For clarity, each group has been assigned a specific colour and then 

replotted in their original positions. By doing this it is possible to observe what 

features are present in different regions of the original magnetisation map (Figure 

5.20). It should be stressed that the following magnetisation maps are reconstructions 

of the original ( created by the self-organising map). 
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Figure 5.20: Replotting the SOM groups in their original positions 

As the main interest is the observation of vortices ( assuming that vortices are present 

in the original data), there is a high probability that the neural network will have seen 

them and assigned a specific group to represent a region where a vortex might reside 

(as a vortex can go in the clockwise or anti-clockwise direction, it may be possible 

that more than one group has been assigned). It is then possible to observe where 

these occur in the original magnetisation map. In the following sections the 

application of this method to observe vortices in several samples is investigated, and 

the results compared with other conventional methods. 

5.4.3 Network Optimisation 

The above example made use of 8 classification groups to represent different features. 

In essence, each group is actually a neuron in the output layer of the self-organising 

map. Therefore, if the number of groups are increased then the number of neurons 

much also be increased accordingly. In this section the optimal size of the self

orgarusmg map (number of groups) and the amount of training required is 

investigated. 

An investigation was conducted on a system sampled using 2x2 grids (using the 

sample above), so that the optimal number of groups could be determined. It is 

estimated that the minimum number of groups should be about 8; the groups being: 
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• 6 groups for grains pointing in a particular direction ( ~60° increments) 

• 2 groups for grains that rotate - one to represent clockwise rotation, and the other 

for anti-clockwise rotation 

There is theoretically no maximum number of groups which could be used. For 

example, if 256 groups were used (32 grains by 32 grains, sampled in 2x2 grids), this 

would give each sampled grid it's own group - a rather pointless task, as there are 

only a few specific features which are of interest. 

However, if just 2 groups were used, the opposite would happen, and only two 

general features would be observed. To investigate this problem a system has been set 

up with 4, 8, 24 and 48 groups. The results obtained are shown in Figure 5.16. 

Figure 5 .21 : Effect of varying the number of classification groups 
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From Figure 5.21 it can be observed that representing the magnetisation map with 4 

classification groups is inadequate ( as there are so many features present in the 

original map). However, it is also noticeable that there is no significant improvement 

in quality when the number of groups is increased to 24 and 48. It can therefore be 

concluded that a system with about 8 classification groups is sufficient to provide an 

accurate representation of the original magnetisation map. 

The other important factor when training a neural network is the amount of training 

required. This was first encountered in Chapter 3 whilst dealing with supervised 

learning, and similar problems arise in this case too. If the training is insufficient then 

the self-organising map is unable to fully organise the features onto the output map. 

Overtraining will result in the map being too familiar with a particular pattern, and 

thus unable to accurately organise the map. It is feasible to stop the training when the 

mean squared error has reached about 0.1% of it' s initial value and fails to decrease 

further. 

75 
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Figure 5.22: The error values w.r.t training and the outputs obtained 
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Figure 5.22 shows how the error decreases with training (for a system with 8 groups), 

and shows the outputs obtained from the self-organising map at different periods 

during the training. From these results, and other data it can be concluded that the 

neural network can be sufficiently trained in about 250 epochs, and shows no 

improvement with further training. It should be noted that this amount of training is 

only relevant to a system of this size (1024 grains), and an increase in system size 

(number of grains) would require more training. However, increasing the system size 

makes it difficult to visualise the output data. 

From these investigations, it has been determined that for a system of this size, 3 

neural networks can be constructed to recognise features of various sizes. Their 

parameters are summarised in Table 5.1. 

Sample Grid Input Neurons 
Classification Groups Training 

(Output Neurons) (Epochs) 

2 x 2 4 8 250 

4x4 16 8 230 

8 x 8 64 8 220 

Table 5 .1: Optimal neural network parameters 

5.4.4 Results 

The self-organising maps which were created in the previous section are now used to 

extract features from five sets of samples, and are compared with results obtained 

using methods discussed in Section 5.4.1.1 for calculating the presence of vortices. 

The samples are presented to the SOM in 2x2, 4x4 and 8x8 grids (so that different 

sized vortices can be observed), after which the features present will be organised into 

similar groups. 
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From these, it is then possible to see which groups contain the traces of a vortex (at 

this point the user must decide which group closely represents a vortex). By replotting 

the data in their original positions on the magnetisation map it is possible to observe 

where each feature occurs ( and the groups which contain vortices are highlighted in a 

different colour (yellow) to emphasise their positions). 

Sample 1 

The sample was prepared and presented to three self-organising maps (the method is 

explained in previous sections), with parameters set as in Table 5.1. The results 

obtained (and the features extracted) are shown in Figure 5.23 . 

(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

Figure 5 .23 : Neural network results with various grid sizes 

In the figures, the features which represent the probability of the presence of a vortex 

are shown in green. It can be observed from Figure 5.23 (a) that several small vortices 

exist, and that they are a local phenomena. Larger vortices are less common in this 

sample, which is not unexpected, as the written bits are only a few grains each. 

These images are then compared with the moment calculation method, and the 

positions of the vortices observed. These similarities are shown in Figure 5.24 (with 

similar features circled in black and red). 
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(a) Neural network (b) Moment analysis 

Figure 5 .24: Comparison of results 

From Figure 5.24 it can be observed that the results obtained using a neural network 

method are similar to that obtained with the moment calculation method, and a further 

comparison to the original data in Figure 5.25 shows that the neural network method 

has the capability to effectively recognise vortices simply from the topology of the 

magnetisation map. 

Figure 5 .25: Confirmation of results with origi,nal data 
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Sample 2 

The sample was prepared and presented to three self-organising maps using the same 

method as before, with parameters set as in Table 5.1. The results obtained (and the 

features extracted) as shown in Figure 5.26. 

(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 x 8 grid 

Figure 5.26: Neural network results with various grid sizes 

In this sample it can be observed that there are not so many vortices present, which is 

due to the size of the written bit. In Figure 5 .26 ( c) it can be seen that there are no 

large vortices present, which is again attributable to the bit length. 

These images are then compared with the moment calculation method, and the 

positions of the vortices observed. These similarities are shown in Figure 5.27 (with 

similar features circled in black and red). 

(a) Neural network (b) Moment analysis 

Figure 5.27: Comparison of results 
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From the above images it can be seen that there are a few similar features which were 

extracted. However, there are a few features one method may have extracted, but the 

other missed (and vice versa). It is envisaged that the reason for this discrepancy is 

that the neural network has detected features which may be similar to a vortex. 

However, a further comparison to the original data shows that the neural network 

method is very effective. 

Figure 5.28: Confirmation of results with original data 

Sample 3 

The sample was prepared and presented to three self-organising maps using the same 

method as before, with parameters set as in Table 5.1. The results obtained (and the 

features extracted) as shown in Figure 5 .29. 

(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

• • - ■ 
■ - -

■ - ■ ■ ■ 
■ _ ... • • 

• ■ 

Figure 5.29: Neural network results with various grid sizes 
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From Figure 5.29 (a) is obvious that there are many more vortices present, which is 

attributed to the introduction of LC grains into the sample. The absence of larger 

vortices is again due to the length of the written bits. A comparison with the moment 

calculation method further confirms our prediction, and these similarities are shown in 

Figure 5.30. 

(a) Neural network (b) Moment analysis 

Figure 5.30: Comparison of results 

It is apparent that some of the vortices have been extracted by the neural network 

method, but others have also been found. Some of the vortices found in the moment 

calculation were also observed with the 4x4 grid data set. A further comparison to the 

original data shows that the neural network method is very effective. 

Figure 5.31: Confirmation of results with original do.ta 
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From the images obtained, it can be seen that the vortices tend to form at the 

transitions. It is rather difficult to observe this phenomenon with the moment 

calculation method, but the neural network seems to emphasise it. 

The samples so far have all consisted of a series of written bits, of varying sizes, with 

and without the introduction of LC grains. The following samples have no written bits 

and are of higher densities. 

Sample 4 

This sample has no written bits, but has been subjected to AC erasure. The sample 

was erased using a simulated annealing approach, which tends to lead to the 

nucleation of large numbers of small vortices. The results obtained (and the features 

extracted) as shown in Figure 5.32. 

(a) 2 X 2 grid (b) 4 x 4 grid (c) 8 x 8 grid 

- • •• -: • •• • - ■ •• • • • • • ■ • • -·· • • •• ■ . - ■ ■ ■ • - • •• -
I ... . • ■ 

• I • • • I • ■ ■ ■ • • I • ■ ■ 
• • .. --■I. • - - -. • 

Figure 5.32: Neural network results with various grid sizes 

From Figure 5.32 it can be seen that there are many more vortices present in the 

sample, and as there are no bits written to the sample there is an increase in the 

number of larger vortices. These images are then compared with the moment 

calculation method, and the positions of the vortices observed. These similarities are 

shown in Figure 5.33 (with similar features circled in black and red). 
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(a) Neural network (b) Moment analysis 

Figure 5.33: Comparison of results 

It is interesting to observe that the moment analysis shows the presence of many 

vortices, which confirms the results obtained using the neural network method. The 

results seem to be capable of picking out various sized vortices, which is evident from 

Figure 5.33 (which is for the 4x4 grid), and also from Figure 5.32 (a) which shows 

the presence of several small vortices. 

Figure 5.34: Confirmation of results with original data 

The comparison with the original data looks very promising, as it shows that the 

neural network method works rather well with larger sized vortices (which are harder 

to detect, as there are so many variations). 
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Sample 5 

This sample also has no written bits, but has been subjected to DC erasure. The 

sample was prepared and presented to three self-organising maps using the same 

method as before, with parameters set as in Table 5.1. The results obtained (and the 

features extracted) as shown in Figure 5.35 . 

(a) 2 x 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

- • .. •• -- ■ L• ■ 

■ • • • .. • -. ■ -■ - • -• - • ■ - -- • 
•• . --. _ ... ■ I ■ • - • • ■ -- .. ■ .. . I • ■ • 

•• •• - ■ I ■ ■ • • • ., .. ■ • • -
Figure 5.35: Neural network results with various grid sizes 

The presence of many vortices of variable sized is agam observed, which is not 

unreasonable in this type of sample. It is interesting to notice that with a 2x2 grid, the 

vortices are bundled together, which tends to suggest that there are several small 

vortices grouped together at the domain boundaries. 

(a) Neural network (b) Moment analysis 

Figure 5.36: Comparison of results 
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From the above image it is observed that the results obtained using a neural network 

method are similar to that obtained with the moment calculation method, and a further 

comparison to the original data shows that the neural network method is very 

effective in providing an unbiased determination of vortex structures. 

Figure 5.37: Comparison of results with original data set 

Figure 5.37 confirms the idea that vortices tend to form at the boundaries of domains, 

and the stripe effect is typical of a DC erased sample. 

In this section it has been shown that a neural network method is capable of 

identifying features such as vortices within a sample to roughly the same degree of 

accuracy as other conventional methods, and in some cases manages to highlight areas 

which were not apparent with the moment analysis method. 

In the following sections, the same methods are applied to simulated MFM images. If 

these are successful, then they would suggest that it would be possible to extract 

features from real experimental MFM images, something which could prove to be 

very useful practically. 
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5.5 The MFM Model 

The basics of the magnetic force microscope has already been discussed in Chapter 1. 

However, in this chapter an introduction is given to an MFM simulation [63], from 

the study conducted using a model which was developed at the computational 

magnetism group [ 64]. The model is partly based on the theoretical model of the 

deflection of a cantilever arm in an AFM experiment [65]. This calculates the energy 

which arises from a dipolar interaction by one atom in the sample with one in the tip: 

where 

E = - r . r M . fJ dVsamp/edVtip 
Jvr;p Jvsample 

M = magnetisation of the tip 

H = stray field of the sample 

V1;p = volume of the tip 

V sample = volume of the sample 

(5.12) 

The force of interaction lies along the direction perpendicular to the surface of the 

sample (z-axis), and is given by: 

aE 
F =--

z az (5 .13) 

When the magnetisation of the tip is perpendicular to the sample surface then the 

information about the magnetic domains is better observed than when it is parallel. 

The model discovered that the size and shape of the tip also affected the magnitude of 

the detected force. Wadas and Griitter [66] outlined an analytical approach to the 

model using a frustum shaped tip. The force due to a frustum shaped tip is calculated 

by discretising the volume, by placing a number of cuboids along the vertical direction 

of the tip. 
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W Magnetic tip 

(a) 

~ 
Longitudinal bit pattern 

(b) 

Distance 

Figure 5.38: (a) The stray field above a medium (b) The.force exerted on the tip 

From Figure 5.38 it can be seen that the force exerted on the tip by the stray fields is 

at a maximum at the transition between the bits and is at a minimum at the centre of 

the bits. The reason for this is due to the vertical component of the stray field being at 

its highest at the transition and at its lowest at the centre of the bits. 

The MFM simulation relies on the force that is created when a magnetised sample 

interacts with a magnetised tip. The two main steps to finding this force is the 

calculation of the interaction between the tip and sample space, and then overlaying 

the models into the sample space. The calculation to determine the magnetic field 

strength from the sample at the tip is a sixth fold integral (as the integration has to be 

conducted over the entire sample and the tip) : 

(5.14) 

where 

µ = the magnetic moment of the tip 

r = the vector between the sample and the tip 
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Equation 5.14 states that the effect of the whole tip in 3-dimensions must be 

calculated on the sample (and done over the entire sample volume). As the tip and the 

sample can be considered to consist of discrete cubes, the effect of every cube in the 

tip with every cube in the sample must be calculated, as illustrated in Figure 5.39 (it is 

assumed that there are no interactions between dipoles constituting the tip). 

I 
Tip 

I; 
f 

V 

Sample 

Figure 5.39: Interactions between cubes in the tip with cubes in the sample 

The force exerted on the tip can be calculated using: 

F = fv(ff -M}tv (5.15) 

where 

H = the magnetic field strength 

M = the magnetisation of the sample 

F = the force exerted on the tip ( over the entire sample) 

This can also be represented as: 

(5.16) 

(5.17) 
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(5.18) 

where Mx, My and Mz are the components of the sample magnetisation (in the thin 

films considered here, Mz is zero). The important component of the force is Fz, which 

is the vertical component. The partial differentials are determined by analytically 

calculating the differential at the points where the magnetic field strength is known 

and then interpolating to give the partial differential at the required point. 

5.5.1 MFM Sample Images 

(a) Original Image (b) Corresponding MFM image 

Figure 5 .40: Effect of applying an MFM simulation to a sample with 4 written bits 

The images in Figure 5. 40 show the effect of applying the MFM simulation (from 

Section 5.5) to the sample with 4 written bits (640nm2
) . The tip shape was a pyramid 

consisting of 1 Onm3 cubes (700Oe saturation magnetisation) and the sample space 

was 300x300x 100nm and discretised into 10nm cubes (1400Oe saturation 

magnetisation). 
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5.6 Investigation of Optimal MFM Scanning Height 

The MFM image in Figure 5. 40 was produced at a scanning height of 200nm. 

However, this height can be varied and is found to have a considerable effect of the 

quality of the output image. It is known that when the cantilever is close enough to 

the surface its response is determined primarily by short range forces on the tip, which 

are coupled to the surface topography. When the tip is positioned farther from the 

surface ( where the short range forces are negligible) the cantilever responds to long 

range, magnetic force gradients acting on the tip. Therefore, in order to produce an 

image which can be used for feature extraction, the optimal scanning height must be 

found. 

In this section the effect of varying the MFM tip scanning height is investigated, by 

creating a series of images and applying them to a self-organising map. By comparing 

them with the original magnetisation map, it is then possible to calculate an error 

function associated with each image, and deduce a region of scanning heights which 

produce the best MFM images. 

The investigation was conducted on a magnetic sample 640nmx640nm in size, 1024 

grains and with four written bits. The tip of the MFM was set at 20nm intervals from 

0nm to 220nm. 

5.6.1 Network Optimisation 

In this investigation the size and parameters of the network is not that important; the 

input number of neurons is pre-determined by the resolution of the input MFM image. 

As it is not ofinterest to find any particular features here (merely an error value), then 

the size of the output layer becomes less relevant too. However, for practical reasons, 

this will be set to 8 neurons (the value used in Section 5.4). As the resolution of the 

MFM images are identical to those of the magnetisation maps, it is likely that the 

training required will be the same too (approximately 250 epochs). 
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5.6.2 Results 

The system was set-up with identical parameters for each simulation, barring the 

sample height. The images produced are shown in Figure 5. 41. 

Figure 5. 41 : MFM images produced at different scanning heights 

From the above figure, it can be observed that some scanning heights produce better 

images, but by applying them to a neural network it is possible to calculate an error 

value for each image, and thus predict a narrow range of optimal scanning heights. 
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This was done by applying the various images to the neural network, and observing 

how the data was organised on the self-organising map. The output was then 

compared to original raw data, based on the ability of the neural network to 

accurately group different features. The results are presented in Figure 5.42, from 

which it can be seen that the accuracy is at a maximum in the region where the images 

appear to be visually better (which is what would be expected). However, the neural 

network has also been able to reduce the optimal scanning height region to give a 

more accurate estimation. 
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Figure 5.42: The accuracy obtained at various scanning heights 

It can be concluded that the optimal scanning height is in the region of 100nm-150nm. 

It should be noted that this value is dependent on the size of the grains in the magnetic 

sample, and is not a 'magic' value for the scanning height of any system. In the next 

section some features in MFM images are investigated, and use will be made of the 

findings from this section. 
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5. 7 Feature Extraction From MFM Images 

In Section 5 .4 features such as vortices were successfully extracted from 

magnetisation maps. In reality it is not always possible to use such images, especially 

in experimental cases, where methods such as magnetic force microscopy are better 

suited. However, unlike a magnetisation map, it is envisaged that the MFM image 

doesn' t contain adequate data to extract useful information about the underlying 

structure of the sample, and therefore alternative methods to those used with 

magnetisation maps will have to be developed. In this section, two different methods 

are proposed for finding vortices in an MFM image, each one approaching the 

problem from a different perspective: 

• Using the MFM simulation, work back to an approximate magnetisation map, and 

use neural network methods discussed in Section 5. 4 for the task of finding 

vortices. 

• Create an MFM image of a simple vortex, and use a neural network to compare 

features found in a series of MFM test samples. 

Each method will be discussed in greater detail in the following sections, together 

with the feasibility of using that particular method. 

5.7.1 Method 1 

In the first method the idea is to work back to the magnetisation map ( or at least an 

approximate map) from the MFM image, using the simulation described in Section 

5.5, but in ' reverse'. However, the problem with this approach is that during the 

MFM simulation the orientation of the moments is not preserved in the creation of the 

MFM image. The MFM image contains information about the position of the 

moments and the force which they exerted on the tip; and since a moment pointing in 

one direction might have exerted the same force on the tip as a moment pointing in 
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another direction, it would be almost impossible to determine from the force alone 

which direction the moment was pointing towards (recall from Figure 5.38 that force 

is exerted on the tip at transitions only). It is therefore considered too complex to 

attempt this method. 

5. 7 .2 Method 2 

The second method involves the creation of a vortex to be used by the neural network 

for training purposes. A vortex consisting of a few grains was created in a 

micromagnetic structure which had all its moments aligned in parallel (Figure 

5.43(a)), and even though such a 'perfect' vortex would hardly ever be observed in a 

real sample, it gave an insight as to what features (i.e. shading patterns) to look for in 

the corresponding MFM image (Figure 5.43(b)). 

(a) Original vortex 
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(b) Corresponding MFM image 

Figure 5. 43 : MFM image of a vortex structure 

5.7.2.1 Data Preparation 

Before the MFM images can be presented to the SOM, it is necessary to arrange the 

pixels into a grid-like fashion (so as they align with the neurons in the SOM). This is 

illustrated in Figure 5.44, from where it can be seen that there is only a slight loss in 

quality. 
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(a) Original data (b) Arranged data 

Figure 5.44: Arrangement of grains into an orderly grid 

The same process was conducted on the five test samples. As the test vortex is about 

2-4 grains in diameter, the MFM images were sampled into regions of 4, 15 and 64 

grains (grids of 2x2, 4x4 and 8x8), using the method outlined in Section 5.4.2. The 

reason for doing this is to identify features of variable sizes e.g. vortices which may 

consist of several grains in diameter. Figure 5.45 shows how the MFM image is 

sampled using this method. 

( ) 
4 grains sampled with 2x2 grid 

a (to detect centre of vortices) (b) 16 grains sampled with 4X4 grid 
(to detect small vortices) (c) 64 grains sampled with 8x8 grid 

(to detect larger vortices) 

Figure 5.45: Sampling an MFM image with 2x2, 8x8 and J6x]6 grids 

Each grid now represents a series of pixels in the MFM image. The neural network is 

capable of placing these grids ( only one grid size can be applied to each neural 

network) into groups in an organised manner dependent on the features within them 

(in this case the number of groups has been restricted to 8). The features which are 

specific to each group can be observed (Figure 5.46). 
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Figure 5. 46: The features present in the 8 groups in the SOM (using 2 x 2 grids) 

From the above figure it is rather difficult to observe exactly what each group 

represents (but becomes clearer when they are plotted later). However, as only 

vortices are being looked for, which have a known type of structure (see Figure 

5.43(b)), it is only a small matter of comparing the eight groups (and other generated 

groups) to see which is the closest match to the vortex image. 

5.7.2.2 Network Optimisation 

Each group has then been assigned a specific colour and replotted in their original 

positions. By doing this it is possible to observe what features are present in different 

regions of the original MFM image (Figure 5.47). It should be noted that these 

colours do not represent the value of the MFM force, but rather an allocated group. 

Figure 5.47: Replotting the SOM groups in their original positions 

The amount of training required by the neural network vanes from problem to 

problem, therefore it is necessary to repeat the process of determining how much 
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training is required. Training can be terminated when the mean squared error has 

reached about 0 .1 % of its initial value and fails to decrease further. 

75 

o~-------+--1-----------+- -1----+---4-----+-__. 
0 100 200 300 

Epochs 
400 500 600 

Figure 5.48: The error values w.r.t training and the outputs obtained 

Figure 5.48 shows how the error decreases with training (for a system with 8 groups), 

and shows the outputs obtained from the self-organising map at different periods 

during the training. From these results, and other data it can be concluded that the 

neural network can be sufficiently trained in about 200 epochs, and shows no 

improvement with further training. It should be noted that this amount of training is 

only relevant to a system of this size ( 1024 grains), and an increase in system size 

would require more training. However, increasing the system size makes it difficult to 

visualise the output data. 

From these investigations, it has been determined that for a system of this size, 3 

neural networks can be constructed to recognise features of various sizes. Their 

parameters are summarised in Table 5.2. 
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Sample Grid Input Neurons 
Classification Groups Training 

(Output Neurons) (Epochs) 

2x2 4 8 240 

4 x 4 16 8 220 

8 X 8 64 8 200 

Table 5.2: Optimal neural network parameters 

5. 7 .2.3 Results 

For simplicity, identical samples to those used in previous sections will be used with 

the above self-organising maps to observe features in the MFM images. They will then 

be compared with results obtained using methods discussed in Section 5.4. 1. 1 for 

calculating the presence of vortices. The samples are: 

Sample 1: 1024 grains with 4 recorded bits, h,=0.1 , C"'=0.2 

Sample 2: 1024 grains (0% LC) with 10 recorded bits, h,=0.5, C"'=0.l 

Sample 3: 1024 grains (15% LC) with 10 recorded bits, h;=0.5, C"'=0.1 

Sample 4: 4096 grains AC erased state, h,=0.5, C"'=0.1 and 0% LC grains 

Sample 5: 4096 grains DC erased state, h,=0.5, C "'=0.l and 0% LC grains 

Sample 1 

The sample was prepared and presented to three self-organising maps (the method is 

explained in the previous sections), with parameters set as in Table 5.2. The results 

obtained (and the features extracted) as shown in Figure 5.49. 
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(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

Figure 5.49: Neural network results with various grid sizes 

From Figure 5.49, it appears that the neural network method has extracted the 

possibility of numerous vortices, most of which lie along the bit transitions. Some of 

the larger vortices ( of about 4 grains in diameter) have been detected, but it is not 

entirely clear why some of the very large vortices have be detected (when it is very 

unlikely that they exist). The probable reason for this is due to the loss of data during 

the simulation ( and thus the inability to distinguish between two or more neighbouring 

vortices). 

In Figure 5.50 these results are compared to results obtained with the moment 

analysis, and the vortices detected overlaid onto the original data. 

(a) Neural network (b) Original data 

Figure 5.50: Comparison of results 

From these results it can be observed that there are some similar regions in the sample 

with the probability of vortices. It is interesting to notice· that all three methods which 
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have been investigated give approximately the same results, even if not all vortices 

appear in each set of results. This is however a significant development. It is known 

that the determination of magnetisation configurations from MFM configurations is an 

inverse problem which has no direct mathematical solution. 

The neural network approach, rather than looking for a rigorous solution of the 

inverse problem instead uses local topological features to characterise the underlying 

magnetisation structures. Although this cannot give solutions which are unambiguous, 

the investigations here give some evidence that the features of the MFM image have 

sufficient information to determine with reasonable certainty the underlying 

magnetisation structure. Although this requires further investigation, the results here 

are of sufficient interest to justify it. 

Sample 2 

The sample was prepared and presented to three self-organising maps (the method is 

explained in the previous sections), with parameters set as in Table 5.2. The results 

obtained (and the features extracted) as shown in Figure 5.51. 

(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

Figure 5. 51 : Neural network results with various grid sizes 

The SOM seems to be able to extract quite a few vortices from the MFM image. In 

Figure 5.51 (a) they roughly lie at equal intervals vertically, which is expected on a 

sample with regular written bits. The identification of very large vortices (Figure 5. 51 

( c)) is rather surprising, as the written bits are only a few grains wide. 
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(a) Neural network (b) Original data 

Figure 5.52: Comparison qfresults 

In Figure 5.52 the MFM results are compared with the results obtained from the 

moment analysis. It is interesting to notice that the MFM results were better than 

those obtained with the magnetisation map. 

Sample 3 

The sample was prepared and presented to three self-organising maps (method is 

explained in previous sections), with parameters set as in Table 5.2. The results 

obtained (and the features extracted) as shown in Figure 5.53. 

(a) 2 X 2 grid (b) 4 X 4 grid (c) 8 X 8 grid 

Figure 5. 53: Neural network results with various grid sizes 

This sample has a series of written bits, but with the introduction of LC grains. In 

Figure 5.53 (a) the vortices seem to roughly lie at equal intervals vertically, which is 

expected on a sample of this type. These results can then be compared to those 

obtained with the moment analysis method, as they should produce similar results. 

148 



Chapter 5 Analysis of Magnetisation Maps and MFM Images of Thin Film Media 

(a) Neural network (b) Original data 

Figure 5. 54: Comparison of results 

From Figure 5.54 it can be observed that there are some similar regions in the samples 

with the probability of vortices. The neural network method seems to have picked up 

extra vortices, which were not found with the magnetisation map. 

Sample 4 

The sample was prepared and presented to three self-organising maps (method is 

explained in previous sections), with parameters set as in Table 5.2. The results 

obtained (and the features extracted) as shown in Figure 5.55. 

(a) 2 X 2 grid 

Figure 5.55: Neural nenvork results with various grid sizes 

The neural network approach seems to have worked very well with this particular 

example. The presence of several vortices (of varying sizes) have been detected, 

which is what is expected from this type of sample. 
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(b) Original data 

Figure 5.56: Comparison of results 

In Figure 5.56 the comparison with the original data looks very promising, as it shows 

that the neural network method works rather well with larger sized vortices (which 

are harder to detect, as there are so many variations), and there are several similar 

features which have been detected using both methods. 

Sample 5 

The sample was prepared and presented to three self-organising maps ( method is 

explained in previous sections), with parameters set as in Table 5.2. The results 

obtained ( and the features extracted) as shown in Figure 5. 5 7. 

(a) 2 X 2 grid (b) 4 x 4 grid (c) 8 x 8 grid 

Figure 5.57: Neural network results with various grid sizes 
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In this DC erased sample the presence of several vortices has been detected, and just 

as with the magnetisation map investigation, there are several clusters of small 

vortices. This similarity between results reinforces the feasibility of using a neural 

network method. These results can then be compared to those obtained in the section 

with the moment analysis method. 

(a) Neural network (b) Original data 

Figure 5.58: Comparison of results 

The comparison with the moment analysis method was very encouraging. From 

Figure 5.58 it can be observed that there are several similar regions in the sample with 

the probability of vortices; almost every vortex extracted by the SOM actually exists 

in the original data (and the majority are to found in the transitions between domains). 

Again the neural network analysis of the MFM image has produced reasonable vortex 

assignments. This implies that although, as mentioned previously, the MFM image 

does not contain sufficient information to solve the inverse problem exactly, but there 

is adequate information for the successful observation of vortices. 
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5.8 Summary 

In this chapter methods of extracting features from magnetisation maps and MFM 

images have been investigated. It was discovered that the magnetisation maps 

contained enough data to produce satisfactory results, which compared well with 

other conventional methods. However, in some cases it is possible that there is too 

much data for the neural network to generalise, and hence the reason that some of the 

vortices in the original data are not being recognised. 

The extraction of features from MFM images was initially envisaged as being rather 

difficult, which is thought to be due to the lack of important information in the MFM 

image (which is lost during the simulation, and not present in the first place in an 

experimental image). Two methods were considered to overcome the problem. The 

first one involved working back towards an approximated magnetisation map - a near 

impossible task. The second method involved the generation of vortices and their 

corresponding MFM images, which would then be used by the neural network to 

recognise real vortices in the test MFM images. 

The results obtained were surprisingly good, especially as it was thought there was 

insufficient data present. However, it is this lack of data which has proved to be the 

reason for such good results. By being presented with this amount of data, the neural 

network has been able to generalise better, and hence been able to extract vortices 

which were undetectable with the magnetisation map. 

It should be stressed that these are initial results only, and much more work is 

required to develop the neural network method for this type of application. However, 

overall the results have been impressive, and given further investigation could be 

improved yet again. 
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Chapter 6 
Conclusions & Further Work 

6.1 Conclusions 

Since their development in the early 60s, neural networks have been used in a wide 

variety of applications, and through their continued improvement have proved to be 

very successful. However, their application in magnetic problems has been rather 

slow, and not much work has been done on them. Inverse problems have proved very 

difficult in the past, and as a result have received little attention. It is for that reason 

that the problem was approached with caution, and hoped that neural networks could 

be used effectively to solve some of the problems which had been considered. Their 

application in optical problems was less novel, as some work had already been done 

on other aspects of it by George et al [67], with successful results. 

The first problem that was investigated was the determination of anisotropy field 

distributions in transverse susceptibility data. This area of research is proving to be 

very important, as it gives us information about the switching field distribution, which 

then determines the minimum transition width achievable in a medium. Much work 

has been done on this subject in the past [32, 33, 34]. However, all numerical methods 

used in these investigations relied on mathematical calculations which were very 

complex computationally. 
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Finding the anisotropy field distribution often took several hours to solve on a fast 

parallel processor computer. It was hoped that by using a neural network technique it 

would be possible to achieve similar results in a fraction of the time. Numerous data 

sets were generated by integrating the kernel with a known distribution function (both 

log-normal and Gaussian), and by varying this distribution function, slightly different 

results would be obtained. As it was possible to generate this amount of data (with 

known parameters) it was feasible to use a supervised learning method, with a multi

layer perceptron network. In essence, the neural network was trained to relate 

individual transverse susceptibility curves with a particular distribution function. 

Much of the investigation was involved with the determination of the optimal number 

of data sets needed to train the network, as insufficient data would give poor results 

and excess data would prevent the network from generalising. The network 

parameters (network configuration) were carefully selected, together with the amount 

of training. It was discovered that the results could be improved dramatically by using 

three separate networks instead of one combined one. The optimal neural network 

was found to consist of 8-16 hidden neurons in 1 hidden layer, using 100 training sets, 

and be successfully trained in approximately 40-50 epochs. 

Once the neural network had been sufficiently trained it was possible to apply test 

data (i.e. data which the network was not familiar with). Having achieved accurate 

results with these, experimental data was applied ( using a Cr02 sample) on a network 

trained with log-normal and Gaussian distribution functions. The distribution function 

was determined with a mean value of 0.292 with a standard error of 6xl0·3 . This 

compared favourably with results obtained using the simulated annealing method 

(which gave a result of 0.291). The network also determined with a 99.5% certainty 

that the experimental HK distribution was of the log-normal form. 

The recalculated results fit well over most of the curve, thereby validating the method, 

but disagree in small fields. However, this is not unreasonable as it should be recalled 

that the kernel used in the theoretical calculations is based on the assumption of the 

Stoner-Wohlfarth (S-W) coherent mode of magnetisation reversal. Here the S-W 
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model is a good approximation as long as the magnetisation remains close to 

saturation, which is normally the case when determining Hx values of 2k0e or greater. 

A better agreement might be found if a more realistic model were to be used to 

recalculate the results for comparison with the experiment. However, the 

deconvolution process is not very sensitive to the small field region, and the estimates 

of the Hx distribution is probably not affected. Therefore, it can be concluded that a 

neural network approach is feasible to determine the distribution of HK when 0.1 < a

< 0.65, at which point the accuracy is comparable to conventional methods. 

Secondly, a similar situation was investigated, but applied to an optical problem. This 

involved the determination of important compact disc parameters from the diffraction 

pattern observed when a laser strikes the disc. This was an interesting problem which 

had the opportunity of being applied in an industrial on-line testing system. Due to the 

similarities to the transverse susceptibility problem, this was approached in very much 

the same manner. 

Using a multi-layer perceptron neural network, which was chosen due to the 

possibility of creating numerous sample data sets, theoretically generated diffraction 

data were generated, and several simulations were performed in order to determine 

the optimal settings. Again, it was determined that one neural network was 

insufficient, and had to be separated into three networks (something which proved to 

be very successful, as the accuracy was observed to improve by about 40% ), 

consisting of 8-16 hidden neurons in 1 hidden layer, using 500 training sets, and 

trained in approximately 50-100 epochs. 

The accuracy obtained using theoretical data gave much confidence in the application 

of ' experimental' data to the trained network. Results showed that the values of the 

track pitch, pit width and pit depth could be determined to a high degree of accuracy 

( ±3 %, ±4 % and ±31 % respectively), even with a very noisy data set (greater than 

would be observed experimentally). The determination of the pit depth was rather 

poor, which is envisaged as being due to diffraction data being less sensitive to 

changes in parameters in the nanometre scale. 
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These factors, together with the speed at which a trained network can determine 

unknown parameters leads us to believe that a neural network approach could be used 

in an on-line system during the CD manufacturing and testing process. Further 

research is now being carried out by Aerosonic to investigate the feasibility of using 

such a method in their CD analysing systems. 

Finally the analysis of magnetisation maps and magnetic force microscopy images 

were investigated, primarily the extraction of features such as percolation and 

vortices. This required the use of a completely different approach, using another area 

of neural networks called unsupervised learning. The reason for this was because it 

was not feasible to create a sufficient number of training sets (unlike the problems 

which were encountered previously). Use was made of a specialised neural network 

called a self-organising map, which can arrange specific features from the input data 

into organised output groups. This proved to be very useful, as the features which 

were being sought could be identified by searching within these groups. 

After investigating various image coding and manipulation techniques, together with 

some pre-processing methods, a set of five data sets were prepared. Much of the 

work involved the determination of the optimal number of classification groups, the 

amount of training required, the dimensions of the network and other learning 

parameters. It was found that the neural networks could be trained quite quickly in 

about 200 epochs, and that 8 groups were sufficient to represent the majority of 

information in the original data sets. By sampling the images at various grid sizes it 

was concluded that a variety of different sized vortices could be observed. 

The results obtained when using the magnetisation maps proved to be very 

encouraging, with results which were very similar to those obtained using moment 

analysis, and those obtained by studying the actual raw data. It was possible to 

observe the presence of small vortices of various diameters. However, it was not 

possible to observe larger vortices (greater than about 8 grains across) because there 

is so much variation within a large vortex that a neural network cannot classify it into 

any particular group. 
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In preparation for the study ofMFM images, it was decided to investigate the optimal 

scanning height of the MFM tip. This was done by plotting the simulated images at 

various heights using our model. The results may visually look quite obvious at first, 

but by using neural network techniques it was possible to reduce the range of 

scanning heights, and suggest an optimal value more accurately. 

Having found an optimal scannmg height and used a variety of pre-processing 

techniques in the previous investigations, the application of MFM images seemed to 

be feasible. However, at an early stage some problems were encountered, mainly that 

considerably less data was being dealt with, as important information about the 

orientation of the grains was missing (this was readily available in the magnetisation 

maps). This lack of data let us to investigate another approach. 

Several artificial vortices were created ( of various diameters), and their corresponding 

MFM images created. This gave an idea as to what an MFM image of a vortex looked 

like, and could thus inform the neural network to seek these type of features from the 

:rvIFM image of the test data. Our results seemed quite promising with some samples, 

with the self-organising map being able to map the positions of at least some of the 

vortices in the same place as those found in the magnetisation map (and the original 

raw data). 

The reason why the neural network was able to extract the presence of vortices from 

the MFM images so successfully is possibly due to the lack of data present (something 

which was initially thought to be a disadvantage), and the neural network' s ability to 

generalise when presented with insufficient data. It is envisaged that with further work 

and higher resolution MFM images that this method could be improved further still. 
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6.2 Further Work 

The application of neural network techniques to magnetic and optical inverse 

problems has turned out to be very successful, and the methods used were innovative 

and quite novel in the field of magnetism. The results obtained has strengthened the 

feasibility of applying these methods to solve similar problems, and expand on the 

results already obtained. In this section suggestions are made as to how neural 

networks could be used in any future work. 

The results obtained with the transverse susceptibility data were impressive, and 

proved that neural networks could be used to solve such problems. In magnetism 

there are several similar inverse problems which could be solved substantially quicker 

with this type of method, and some of these are in the process of being investigated. 

Work is currently being conducted on the transverse susceptibility problem, with the 

aim of further developing the theoretical kernel, and applying the method to other 

magnetic samples. 

The investigation of diffraction patterns from a compact disc was an interesting 

application with practical uses in industry. The idea of being able to reduce the time 

taken to scan a disc and process the information was very attractive, and simulations 

on theoretical data suggested that it could be carried out experimentally. This neural 

network approach is now being investigated by Aerosonic with experimental data, 

with the aim of incorporating such a system in their online testing machines to be used 

in industry during the CD manufacturing process. 

The extraction of useful information from magnetisation maps and MFM images was 

successful, and the results obtained were quite impressive. The ability of a neural 

network to extract features from images which hardly contained enough data for the 

human eye to see has prompted suggestions as to how this approach can be expanded 

to solve similar problems. The work is to be investigated further in the near future on 

additional experimental samples. 
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Abstract 

In this paper we describe methods of applying a neural network technique to the magnetic inverse problem of 
determining the anisotropy field distribution from experimental transver1C susceptibility data. In principle, the 
HK distribution represents important experimental information; however, its determination is an inver1C problem of great 
complexity. Using neural networks, we discuss methods in which the standard deviation can be determined to an 
accuracy which is comparable to other conventional methods, and completed in substantially less time. «:> 1999 Elsevier 

Science B.V. All right.~ reserved. 

Keywords: Neural networks; Transverse susceptibility data; Inverse problems 

I. Introduction 

The solutions to mathematical problems, such as those 
encountered in magnetic inverse problems, can in some 
cases be very complex computationally. However, the 
solutions to such problems may be achieved substantially 
quicker using neural networks than with conventional 
methods, without any loss in accuracy. 

The reversible transverse susceptibility (RTS) has been 
studied extensively, both theoretically and experi
mentally, since it was first discussed by Gans [l] in 1909. 
Much of the early work was carried out by Aharoni et al. 
[2], who produced expressions for the transverse suscep
tibility based on a Stoner-Wohlfarth system. The theor
etical expressions predicted a cusp at the anisotropy field 
(Hie), consequently the RTS represents a potentially im
portant technique for the measurement of HK- Experi
mental work conducted by Pareti and Turilli [3] on 

• Corresponding author. Tel.: + 44-1248-382739; fax: + 44-

1248-361429; e-mail: hjones@secs.bangor.ac.uk. 

barium ferrite particles later confirmed the existence of 
these peaks, which appeared to be broad due to the 
effects of a distribution of HK· The distribution of 
HK values can be accounted for theoretically [4] by 
integrating the x, curve with a distribution function. In 
principle, the HK distribution represents important ex
perimental information; however, its determination is an 
inverse problem of great complexity. A ncu.ral network is 
an a rrangement of components which arc intended to 
model the functionality of the human brain [5] . The use 
of neural networks to deconvolute transverse susceptibil
ity data and determine the distribution of HK values is 
a relatively new approach in the field of magnetic inverse 
problems. although it bas been proved possible to solve 
the problem using a maximum entropy approach [6]. 

2. Transnrse susceptibility 

The transverse susceptibility can be defined as being 
the change in magnetisation AM with respect to a small 
AC field applied perpendicular to a DC bias field H, as 
discussed by Aharoni ct al. [2]. The theory for a randomly 

0304-8853/99/S - sec front matter (0 1999 Elsevier Science B.V. All rights reserved. 
PII: S0304-8853(98)00465-X 
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oriented system predicts a characteristic curve with peaks 
at ± HK and H c- Theoretical expressions for 
the transverse susceptibility can be extended to include 
the effects of texture [4]. It is also necessary to include 
a distribution of the values of H ,:, which take into ac
count the variation of particle shapes. The distribution of 
HK values can be accounted for by integrating the 
x, curve with either a log-normal distribution function or 
a Gaussian distribution function. 

3. The inverse problem. and neural network solution 

The inverse problem essentially involves the calcu
lation of the distribution function from known the
oretical and experimental values of x., and can be 
summarised as follows: 

(t) 

where f(y) is the unknown variable (i.e. the distribution 
function) with y = HyjHK., x,(H) the experimental value 
of the transverse susceptibility, and x,(H, H,:) the theoret
ical value of the transverse susceptibility. Given the 
known kernel x,(H, H,:) and a set of experimental data, 
the problem is to determine thcf(y). The aim is to train 
the neural network using theoretically generated x, re
sults to recognise specific relationships between x, and 
the distribution function. and demonstrate the applica
tion of neural networks to the determination of HK distri
bution functions and to describe the practical procedures 
involved. 

For the inverse problem a multi-layer fecdforward 
network was chosen (Fig. 1 ), in which an array of input 
neurons is used to represent the x and y values of the 
curve and a single output neuron to represent the distri
bution function. 

4. Results and discussions 

Before training a neural network, the data which is to 
be presented must be arranged in a specific format, which 

Value of 
► distribution 

function 

Input layer Hidden layer Output layer 

Fig. Multi-layer feedforward network. 

can make a significant difference to the results obtained 
from the network. As most of the information in the 
x, curve resides around the HK peak it was desirable to 
limit the data to this section of the curve. 

A series of x, curves were generated by integrating the 
kernel with a variety of d.istribution functions. The num
ber of training examples required can be estimated to 
a first order approximation. and should be approxim
ately 10 times the number of synaptic weights in the 
network. Therefore, if the curve is represented by 50-100 
data points, then even a small network will require about 
2000-8000 training examples. Here we use an alternative 
method, overcoming the need for a large training set, 
called early stopping [7]. This generally consists of: 

• Dividing the available data into training and valida
tion sets 

• Increasing the nwnber of hidden neurons 
• Stopping the training when the validation error 

reaches a minimum 

The advantages of using this method is that it is fast, and 
can be applied to networks in which the number of 
weights exceeds the size of the training set. From these 
points, it would be feasible to use a training set or only 
about 100 examples. 

We first investigated the effect on the error for a num
ber of network configurations (using training sets consist
ing of log-normal distributions only). lt is observed that 
a training set with 50 x and y values is sufficient to 
provide a satisfactory generalisation, as there is no signif
icant improvement in performance by increasing the 
number of data points. A small network is observed to 
give a large error, as there is insufficient neurons in the 
hidden layer to extract important features from the curve. 
There is an increase in the error as the size of the network 
increases, which is due to the lack of information in the 
training set compared to the number of weights in the 
network. If the size of the training set is increased to 
compensate for the extra weights in the network, then the 
error is observed to decrease, but at the expense of the 
time required to train the network. From this investiga
tion, we can deduce that a configuration of 8 hidden 
neurons in I hidden layer is sufficient to minimise the 
error, and thus demonstrate that a network can be 
trained to recognise a log-normal distribution function 
from x, results and to determine with high accuracy the 
standard deviation. 

However, since the form of the distribution function 
for a given experimental sample is not known before
hand, it is also necessary to investigate the sensitivity of 
the x, data to the type of distribution function. The 
approach used was to generate a training set using log
normal and Gaussian distributions, thus encoding the 
type of distribution into the training set. The errors in 
recognition of the type of distribution function and the 
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Table I 
Summary or results using a variety of dist ributions 

Type o r distribution 

Log-normal 
Log-normal + Gaussian 
Log-normal + Gaussian 

Number of networks 

• I ,pcromcntal .r cu"c 
<>- --:cural nct,.url. .r cu.-c 

lheo<et,Clll l.cmd 

Rc~tl.'II "h(rc neural 

0 

• nc:1\1,•rl. prcJt,tl()ll lits-• 
c,rcumcntal cur,c 

100· 

Fig. 2. Comparison of the cxpcrimcnlal :,:, curve with the neural 
network predicted ,:, curve. 

value of the standard deviations were then determined 
for the test set of data. It was observed that the neural 
network determined the value and type of distribution 
function to an acceptable degree of accuracy, but can be 
concluded that this method is not quite as accurate us the 
method using only one type of distribution. This can be 
attributed to the fact that we arc now dealing with more 
information, and consequently more weights in the 
network. However, if the network is divided into two 
separate networks (one for determining the standard 
deviation, and one for determining the type of distribu
tion), then the accuracy is observed to improve consider• 
ably. This increase in accuracy is attributable to the 
division of the one network into two separate networks, 
thus considerably reducing the amount of tr aining data 
which must be applied to a single network. The results 
obtained using o nly log-normal distributions, and both 
log-normal and Gaussian distributions (1 network and 
2 networks) a re summarised in Tobie I. 

When real experimental data (using CrO2 samples) 
was presented to an optimised neural network. which 
was trained with log-normal and Gaussian distributions 
(based on the theory in Rers. [2,4]), the network was also 
able to determine lhe most likely type of distribution 
associa ted with the sample. This was determined with 
a mean value of0.292 with a standard error or 6 x 10- 3

_ 

Error in a 

± 0.007 
± 0.075 
± 0.006 

Accuracy of classification 

95.0% 
98.5o/. 

The network determined with a 99.5% certainty that the 
experimental HK distribution was of the log-normal 
form. Fig. 2 compares the x, curve predicted by the neural 
network with the actual experimental x, curve which was 
used to test the network, and shows the region at which 
lhe predicted curve fits the experimental curve. T he fitted 
curve devia tes from the experimental curve, probably d ue 
to the effect of non-uniform magnetisation states, as will 
be discussed elsewhere. 

From these results it is feasible to say that a neural 
network technique can be used to determine the type of 
distribution and the distribution value, which is essential
ly the same as that obtained using the maximum entropy 
approach. The advantage of the neural network ap
proach is essentially one of speed. Our estimates suggest 
tha t the neural network approach is 1- 2 orders or magni
tude faster than the maximum entropy approach. 

5. Conclusion 

We have demonstrated, through the use of neural 
networks, tha t a magnetic inverse problem could be 
solved to a high degree of accuracy, and very efficiently. 
The selection of the network parameters was an impor
tant part or the study. Considerable improvement was 
observed when sections of the x, curve were cut-off. 
primarily in the low field. due to failure in the theoretical 
model and in the high field, d ue lo the redundancy of 
data points. The distribution of HK was determined to 
a high degree of accuracy when tested on a trained 
network using theoretically generated experimental data. 
which gives enhanced confidence when applying 'real' 
experimental data to the network. The distribution of 
Hr. was determined to within ± 0.006 ofthe mean value, 
and found to be close to that obtained using the max
imum ent ropy method [8] , when experimental data was 
applied to the network. 

From these conclusions the usefulness of this method 
is evident, but is primarily attributable to the speed and 
accuracy at which the method performs. The application 
of neural networks to anisotropy field distributions 
could, in theory, be extended to cover other results, such 
as those obtained in [3] by Pa reti and Turilli. 
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Abstract. In this paper we describe methods of applying a neural network 
technique to the magnetic inverse problem of determining the anisotropy field's 
distribution from experimental transverse susceptibility data. In principle, the HK 
distribution represents important experimental information; however, its 
determination is an inverse problem of great complexity. Using a neural network 
technique, we discuss methods in which the standard deviation can be determined 
to an accuracy which is comparable to those of other conventional methods and 
completed in s ubstantially less time. 

1 _ Introduction 

The solutions to mathematical problems, such as those 
encountered in magnetic inverse problems, can in some 
cases be very complex computationally. A variety of well 
known methods can be applied to solve such problems. 
However_ in most cases, the time required is considerable. 
In this paper we describe methods of applying neural 
network techniques to magnetic inverse problems and 
demonstrate that solutions to computationally complex 
problems may be achieved substantially quicker using 
neural networks than with conventional methods, without 
any loss in accuracy. 

We apply neural network techniques to tile reversible 
transverse susceptibility (RTS) which has been studied 
extensively, both theoretically and experimentally, since it 
was first discussed by Gans [I] in 1909. Much of the early 
work was carried out by Aharoni et al [2], who in 1957 
produced expressions for the transverse susceptibility based 
on a Stoner- Wohlfarth system. The tbeoretical expressions 
predicted a cusp at die anisotropy field (HK), consequently 
the RTS represents a potentially important technique for 
the measurement of HK . Experimental work conducted 
by Pareti and Turilli [3] on barium ferrite particles later 
confirmed Lhe existence of these peaks, which appeared to 
be broad due 10 the effects of a distribution of HK . The 
dislribulion of HK values can be accounted for theoretically 
[ 4) by integrating the x, curve with a distribution function. 
ln principle, U1e HK distribution represents important 
experimental infonnation: however, its determination is 

0022-3727/98/213028+08$19.50 © 1998 IOP Publishing ltd 

an inverse problem of great complex ity. TI1e ability to 
measure the distribution of the anisotropy field accmately 
is potemially important in the cbaracterization of recording 
media, since it is related to the overwrite characteristics of 
the mediwn. 

An artificial neural network is an anangement of 
components which arc intended to model the functional ity 
of the human brain. It can be thought of as being 
an immensely parallel distributed processor, which bas 
a natural ability for storing knowledge nnd making it 
available for use, the knowledge having been acquired 
by the network through a learning process (Aleksander 
and Morton [5] ). The use of neural networks to 
deconvolute transverse susceptibility data and determine 
the distribution of HK values is a relatively new approach 
in the field of magnetic inverse problems, although it 
has been proved possible to solve the problem using a 
maximwn-entropy approach [6]. Although it is successfol, 
the maximwn-entropy approach bas the disadvantage of 
being computationally expensive. Here we propose and 
test a neural network solution to the inverse problem 
and discuss merbods of applying specific neural network 
techniques in practice. In the following we fi rst outline 
the transverse-susceptibility theory and the inverse problem 
of dctenniuing anisotropy-field distributions. We then 
develop a neural network approacb lo the solution of tbc 
inverse problem. Because of the limited use of neural 
network approaches to magnetic problems we introduce the 
essentials of neural network theory and describe in some 
detail the development and tcsti ng of a network using model 
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RTS data calculated using theoretical expressions given in 
the following sections. We then apply the network to Ci02 

recording medium, obtaining good agreement with previous 
work using a maximum-entropy approach. 

2. The transverse susceptibility 

In this section we will outline the background of the 
RTS, both theoretically and experimentally, explaining the 
relationship between the two. The transverse susceptibility 
can be defined as the change in magnetization 6 M with 
respect to a small ac field applied perpendicular to a de 
bias field H , as discussed by Aharoni el al [2] and given 
by 

The theory for a randomly oriented system predicts a 
characteristic curve with peaks at±HK and He. In systems 
such as doped barium ferrite particles [7] and y -Fe2O3 the 
determination of HK is difficultduc to a wide distribution of 
the an.isotropy field which causes the peak to be suppressed, 
whereas in an aligned system the peaks at ±HK are well 
defined [8]. In order to understand this concept, some 
knowledge of the effects of tcXture is important. 

Theoretical expressions for the transverse susceptibility 
can be extended to include the texture fwictioo (Hoare et al 
[41), given by equation (2): 

i, I 1"/2 
3 ( cos

2 
9M 1:i,, 2 - =- - _____ _;;.:____ COS q>K 

xo 21T o 2 hcos91,1+cos2(91,1 - 8K) o 
exp[ - (,r /2 - 0; )2/(2aJ)] exp[- 4>~/(2aJ)J 

X A d,J,K 

sin(0.1: - 8M) 12,r . 2 + . sm 4>k 
h sm0K o 

exp[-(,r /2 - 0; )2 /(2aJ)] exp[ -,J,i /(2aJ)] ) 
X A d¢K 

x sin 0xd9,: (2) 

where ao and a9 control the distributions in and out of 
the plane, respectively, and ez is the projection of (h into 
the plane of the tape. A is the nonnalizing constant and 
It= H / H,: is the reduced applied field. 0K and <PK are the 
orientations of the easy axis. 

ln a real system it is necessary to include a distribution 
of the values of If K, which takes into account the variation 
of particle shapes. The distribution of HK values can be 
accounted for by integrating the x, curve either with a log
nonnal distribution function, as in equation (3), o r with a 
Gaussian distribution function, as in equation (4): 

1
00 1 

x,(H ) = x,(H/HK)(2 )112 H 
0 7r UHK K111 

(
[ln(H.dHK.,lll) dH 

x exp 2 K~ 
2aH, 

(3) 

1
00 J 

x,(H) = x,(H / H K)(2 )1/2 
0 ,r <fH, 

( 
(I - Hx / HK.,)2 ) dH 

X Cllp - 2 Ku 
2aH, 

(4) 

for a particular field H and x, (/-/ I lh ) is the kernel defined 
by equation (2). The kernel has a well defined cusp at 
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Anistropy distributions 

J-1 = HK . However, the HK distributions lead to rounded 
peaks which compare well with experimental data obtained 
by Pareti and Turilli [3]. This of course complicates the 
determination of the mean value of Hx . However, the 
shape of the xt-H4, relationship must contain information 
on the HK distribution. The aim of the current paper is to 
outline a novel solution of the associated magnetic inverse 
problem, using neural networks. 

3. The inverse problem and its neural network 
solution 

The inverse problem essentially involves the calculation 
of the distribution fwiction from known tl1eoretical and 
experimental values of x, and can be summarized as 
follows: 

1.,C fl l = { ' f(y)x,(H , HK)dy (5) 

where J(y) is the unknown variable (the distribution 
function) with y = HK/Hu, (the mean value), x,(H) 
the experimental value of the transverse susceptibility 
a nd x, (H , HK) the theoretical value of the transverse 
susceptibility. Given the known kernel xt( H, Hd 
determined by equarioo (2) and a set of experimental data, 
the problem is to determine the f (y) . 

Tn the case of the inverse problem the aim is to 
train the neural network using theoretically generated x, 
results to recognize specific relalionships between x, and 
the distribution fw1ctioo. When the neural network has 
repeatedly encountered a representative sample of the 
relationships with which it is likely to be faced, then its 
performance is expected to be almost perfect and it can be 
said tbat the network has been trained to solve the problem. 
It is the aim of this paper to demonstrate the application 
of neural networks to the detennination of HK distribution 
functions and to describe the practical procedures involved. 

Because neural networks have not been used exten
sively in magnetic problems, we outline briefly the basic 
concepts applied in our solution. For ao elltensive intro
duction the reader is referred to the treatment of Haykin 
[9]. The concept of neural networks originated through the 
better understanding of the human brain. Tn 1911 Ramon 
y Cajal [10] introduced the idea of neurons, which can be 
compared to silicon logic gates in a computer, but, wbercas 
logic gates function in the nanosecond region, tbe neurons 
in the hwnan brain function in the microsecond region. This 
difference in speed is compensated for in the brain, by the 
sheer number of neurons present. 

A model of a single neuron consists of three 
fundamental parts (see figure I): 

(i) a series of connecting links, which can be altered 
individually by changing iL~ weight; 

(ii) an adder which swns the input signals; and 
(i ii) an activation function, whereby a threshold can be 

applied to limit the output of the model neuron. 
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Figure 2. A multi-layer feed-folwards network. 

Mathematically, the summing action of the neuron can be 
described by eqUAtiOII (6), whilst the overall output of the 
neuron is given by equation (7): 

(6) 

y = ,p(u - 9) (7) 

where x1, x2 , • • • • x. are the input signals, w1, Wz , . .. , w. 
are the synaptic weights, 8 is the threshold, <p is the 
activation function and y is the output of the neuron. The 
activation function ('I') describes the output of the neuron 
with respect to the activity level ( v) at the input and can 
take a number of forms, the simplest being given by 

.., .. ,J . lo (8) 

where u is the internal activity level of the neuron, given 
by . 

v = LWJXJ -9. (9) 
/ • I 

From equation (9), the output of the neuron gives a value 
of I if the total internal activity level of that neuron is not 
negative and a value of O otherwise. 

For the inverse problem a multi-layer feed-forwards 
network was chosen (see figure 2). This consists of an array 
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of input neurons which are forwards connected to hidden 
neurons. The incorporation of hidden neurons allows the 
network to extract higher-order statistics, which becomes 
useful when the input layer becomes large. The hidden 
layers are then forwards connected to an output layer of 
neurons. 

An important feature of a nelll81 network is its ability 
to learn from its experience, thus greatly improving 
its performance. The network learns by making slight 
adjustments to its synaptic weights after each cycle of the 
learning data. The process comprises three principal steps: 

(i) the network is stimulated by the environment, 
(ii) the network responds differently to its environment 

because of the changes and 
(iii) the network undergoes changes as a result of 

stimulation. 

In our case the network is ' trained' using a set of 
training examples. This consists of calculating a set of 
x,(H) curves for vario\1$ values of f(y) and presenting 
these as a training set IO the network. The weights of the 
neurons are adjusted as a result of the training examples 
and the calculated error. The performance of the network is 
measured in terms of the mean-squared error (equation (10) 
below), which is averaged over all possible input,-output 
examples in the training set In order for the performance 
of the network to improve, the operating point has to move 
down successively towards a minimum point on the error 
surface, be it a local or a global minimum. It should 
be noted thot the solution of the inverse problem is thus 
dependent on the applicability of the model calculations 
giving rise to the kernel. It is necessary to be aware of the 
pot.entia.l effects of systematic differences between theory 
and experiment due to the breakdown of the theory, as will 
be described later. 

A neural network is trained witl1 a learning algorithm. 
The conjugate-gradient learning algorithm consists of 
choosing 'conjugate directions' of minimization that do 
not interfere with each other and perfonning a line 
minimization along that direction. The conjugale-gradient 
method will always locate the minimum of any quadratic 
function of N variables in at most N steps (see Hayltin 
[9) for details). Kramer and Sangiovanni-Vincentelli 
[ II J studied the use of the conjugate-gradient method for 
the supervised training of multi-layer perceptrons. They 
showed that the conjugate-gradient method required fewer 
epochs (the number of times that a pattern is presented 
to the networlc) than other methods, web as the standard 
back-propagation method; the disadvantage being that the 
conjugate-gradient method proved to be computationally 
more complex. 

The training of a neural network can be examined by 
observing the mean-squared error (equation ( I 0)), which is 
plotted against the number of epochs (it should be noted 
that the mean-squared error is not an indication of the 
performance of a network with respect to unseen data): 
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Here N is the total number of input-output patterns 
presented to the network in training, d1 is the desired output 
pattern for Xj, F is a vector function that minimizes the 
mean-squared error, and II • II is the Euclidean norm of the 
enclosed vector. 

4. Results and discussion 

4.1. Preparation of data 

Before training a neural network, the data which are to be 
presented must be arranged in a specific fonnal The format 
can make a significant difference to the results obtained 
from the network. Since a multi-layer perceptron requires 
a training set to consist of input--0utput-related patterns, it 
was decided to use an array of input neurons to represent 
the x and y values of U1e curve and a single output neuron to 
represent the standard deviation of the distribution fw1ction. 

The problem, in essence, was to train the network with 
a set of theoretically generated data and then investigate 
ils perfonnance with another set of theoretical data, before 
finally testing it with experimentally obtained data. It was 
necessary to normalize both theoretical and experimental 
data points to similar values for presentations to the 
network, in order to create a sufficiently general network 
capable of dealing witl1 a variety of materials. The value 
of HK does not remain constant for each sample; it is 
usually in the range 2- 5 kOe, depending on the particular 
material investigated. Because most of the information 
resides around the Hi: peak it was considered desirable 
to normalize the curve to peak at a fixed value in the r,mge 
2- 5 kOe, hence eliminating the need to train the network 
with all variations o f the x, curve. It was also noticed that 
the x, value could be normalized along the y axis; since 
the value of x, did not fall below 0.5. Thus by altering 
the y axis from 0.5 to J.0, it was possible to amplify the 
diversity among the x, curves. 

4.2. Network training and optirnl7.atiou 

Having decided on the format of the training patterns, a 
series of x, curves was generated by integrating the kemel 
with a variety of d istribution functions (equation (3)) with 
standard deviations in the range 0.05-0.75. The quantity of 
training examples is at this point yet to be finalized, as is the 
number of x and y points which will adequately describe 
the x, curve. The number of training examples required 
can be estimated to within a first-order approximation using 
equation ( 11) (using a result derived by Baum and Haussler 
[ 121): 

N > W/e ( 11) 

where N is the 11umber of examples, W the total number of 
synaptic weights in the network and e the fraction of errors 
permitted in a tesL Thus, with an error o f I 0%, the number 
of training examples should be approximately ten times the 
number of synaptic weights in the network. If the curve 
is represented by 50-100 data points, then even a small 
network (4-8 hidden neurons) will require about 2000-
8000 training examples. Here we use an alternative method, 
overcoming the need for a large training set, called early 
stopping (Nelson and 111ingworth [ 13 ]). This generally 
consists of 
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Figure 3. Overtraining a neural network. 

(i) dividing the available data into training and 
validation sets, 

(ii) increasing the number of hidden neurons, 
(iii) using small initialization values, 
(iv) using a slow-learning-rate parameter, 
(v) calculating the validation error during training and 
(vi) stopping the training when the validation error 

reaches a minimum. 

The advantages of using this training method are that it is 
fast and can be applied to 11etworks in which the number 
of weights eKceeds the size of Uie training set. From these 
points, it would be feasible to use a training set of only 
about I 00 examples. The networks used in this study were 
simulated using the Stuttgart Neural Network Simulator 
(14]. 

A neural network which has been designed to generalize 
well will result in a correct input-output mapping (even 
without its having been trained with a particular pattern). 
However, when a neural network learns too many input
output relations, the network memorizes the training data 
and is less able to generalize between patterns. The 
mean-squared error curve cm1 indicate that the 11etwork 
has been trained sufficiently, whilst the validation error 
(the error calculated over U1e validat ion set) can indicate 
when a network is being ovcrtraincd. Thus, an increase in 
the validation error is a clear ind.ication that the network 
is being overtrained and becoming too fami liar with the 
training set, which leads to poor generalization. It -is thus 
favourable to stop training before this point is reached. 
This behaviour was observed in our study, as shown in 
figure 3, which shows the measured error as a function 
of U1e number of epochs for a I 00-example and a 250-
example training set In the case of the I 00-example set the 
errors clearly reach a minimum value after 40-60 epochs. 
For the 250-cxample case the minimum error is reached 
after a larger number of epochs (100-140). This increase 
in training which is required can be accounted for by the 
extra information which has to be learnt A mean squared 
error of less than I% as shown by figure 3 was considered 
sufficiently accurate for the applications considered here, 
since this is of the order of the error in experimental data. 
Consequently a training set of around I 00 data sets was 
used U1roughout this study. 

The network was trained using the technique of cross 
validation (Stone [ 15], Janssen et al [ 161), whereby the 
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Figure 4. A plot of the distribution function errors using 50, 
100 and 200 x and y values using a variety of hidden 
neurons. 

generated dala set is randomly divided into a training set 
and a test set. The training set is further divided into two 
sets: 

(i) a set used to train the network (the training sef) and 
(ii) a set used to evaluate the perfonnance of the 

network (the validation set), which should be approximately 
I 0% of the training set 

We first investigated the elfect of the input data set on the 
error in the calculated values of <T , for a nU1Dber of network 
configurations, characterized by the number of 'layers x 
neurons'. Figure 4 shows the error in the distribution 
function as a fu11ction of the network's configuration for 
a number of data-set sizes when the network was optimally 
trained (connecting lines are shown for clarity). 

From figure 4, it can be conclud.ed that a training set 
with 50 .x and y values is sufficient lo provide a satisfactory 
generalization, insofar as 110 siguificant improvement in 
performa11ce is gained by increasing the number of data 
points. A small 11etwork is observed to give a large error, 
because there are insufficient neurons in tl1e hidden layer to 
extract important features from the curve. There is a small 
increase in the error as the size of the uetwork increases, 
which is due to the lack of information in the training set 
(defined in equation (I I)) compared with the number of 
weights in the network. If the size of the training set 
is increased to compensate for the eKtra weights i11 the 
network, the11 the error is observed to decrease, but at the 
eKpense of the time required to train the network. 

Since the linearly sampled x values are identical in each 
example, it is feasible to remove them from the training set 
without any loss in accuracy, thus presenting the 11etwork 
with the sampled y values only (hence only 50 input 
neurons are required). The experimental detennination 
of the optimal network architecture, when the system is 
trained using the conjugate-gradient learning algorithm, 
depends on a variety of factors, mainly the numbers 
of hidden neurons and training examples. If practical 
considerations are applied to the problem, the criterion used 
is LO start with the smallest mnnber of hidden neurons that 
yields a satisfactory performance; in this case two hidden 
neurons. Consequently we studied the classification error as 
a function of the network's configuration. The dependence 
is rather weak, but the average error was found to be lowest 
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Table 1. A summary of network parameters with only a 
log-normal distribution. 

Parameter Value 

50 
1 layer of 8 neurons 
1 

100 
10 
50 
JQ-40 

100 

Figure 5. A plot of the d,stnbut,on function errors ono 
d1str1bu1ion-1ype classrf,cauon accuracy using one neur<1I 
nctwo,k 

with 8- 16 hidden neurons in one bidden layer. In the rest 
of this work we use a configuration of eight hidden neurons 
in one bidden layer, which was sufficient to minimize the 
error with a reasonably small network. We srress rhat this is 
a specific result for our study; in general each application 
will require a similar analysis, since other problems may 
give rise to a stronger dependence of tbe performance of 
the nerwork on its detailed configuration. 

From the investigations conducted, it can be concluded 
that, for the inverse problem in which only a log-normal 
distriburion bas been applied, a training set of about I 00 
examples (each consisting of 50 y axis values) is sufficient 
to train a network. The size of the network and hence 
the number of synaptic weights required can be reduced 
substantially by omitting the x axis data. The configuration 
of the network is summarized in table I. 

Tbc results obtained so far demonstrate that a network 
can be trained to recognize a log- normal distribution 
function from x, results and to derenuine with high 
accuracy the standard deviation. However, the form of 
the distribution function for a given CKpcrimcntal sample is 
not known beforehand, so it is necessary to investigate the 
sensitivity of the x, data to the type of distribution function. 
The log-normal distribution has a characteristic asymmetry 
which arises for known physical reasons for eKainple in 
particle-size distributions. However, since the fom1 of the 
anisotropy distribution is not known o priori we also allow 
the possibility of a symmetrical distribution, represemed by 
the Gaussian disaibution. 

The approach used was to generate a training set 
calculated using log-nonnal and Gaussian distributions. 
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Tablo 2. A ~urnmary of network pararnerers wrth 
log normal and Gaussian d1Slribut1ons 

Parameter varue 

50 
1 layer of 16 neurons 
1 

100 
10 
50 
40 

Tbe curves were generaied in a similar manner lo the 
previous curves: I 00 curves were generated with a log
normal distribution and 100 with a Gaussian distribution. 
The type of distribution was also encoded into the output 
patterns, hence training the neural network with the 
distribution function's value and disrribmion type. The 
errors in recognition of the type of distribution function and 
the values of the standard deviations were then determined 
for the test set of data. The results are presented in 
figure 5, from which it can be observed that the neural 
network has determined the distribution function's value to 
within ±0.075 in aJI cases and has detennined the type of 
distribution to a minimum cenainty of 95% in all cases. It 
can be concluded that th is method is 1101 quite as accurate 
as the method using only one type of distribution, for we 
are now dealing with more information and consequently 
more weights in the network. 

However. if the network is divided into two separate 
networks ( one for determining the distribution value and 
ooe for detennining the type of distribution), then the 
accuracy improves considerably. From figure 6, it can 
be observed that t.he neural networks have determined Lhe 
value of the distribution function to within ±0.006 in all 
cases and have determined the type of distribution to a 
minimum certainty of 98.5% in all cases. This increase in 
accuracy is attributable to the division of the one network 
into two separate networks, thus collSidcrably reduci□g the 
number of weights required. The co□figurations of the 
networks are summarized in table 2. 

Having determined a network architecture which yields 
optimum results when it is presented wi1b theoretical data, 
the goal is to apply 'real' experimental data to the network. 
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l-lcrc we outline the results obtained when transverse
susceptibility data of a Cr02 sample were used, initially on 
a network trained with log- normal distributions only and 
then on a network trained with log-normal and Gaussian 
distributions. 

Several trials were performed on the optimized neural 
networks (each trained with only log-normal distributions 
and retrained after each test run using identical parameters), 
from which the network was able to detemJ.ine the 
distribution function to a mean value of 0.292 with a 
standard error of 6 x 10-3• Thus, the network is shown 
to train reproducibly and to give consistent estimates of 
the value of <1. The inverse problem for this data set bas 
also been solved using maximum-entropy techniques [ 17], 
from which the distribution function of the experimental 
data was found to be 0.291 . The agreement between the 
two techniques enhances one's confidence in the solutions 
obtained and in the use of tbe x, for the detern1ination of 
H x distribution functions. 

However, when an experimental data set was presented 
to a network which had been trained with log- normal and 
Gaussian distributions the results obtained were poor and 
changing the network's parameters had little effec1 on the 
results. In contrast it was observed that theoretical test sets 
gave accurate results. lt should be recalled that the kernel 
used in the theoretical calculations is essentially that derived 
by Aharoni el al [2], which is based on the assumption 
of the Stoner- Wohlfarth coherent mode of magnetization 
reversal. It has been shown [ 18] that the RTS falls into a 
class of 'stiffness' measurements based on magnetization 
rotation. Here the Stoner-Wohlfarth model is a good 
approximation as Jong as the magnetization remains close 
to santrlltion, which is normally the case when detennining 
H x values of 2 kOe or greater. However, the current 
work presents tbe neural network with experimental data 
extending lo small fields, at which it might be expected that 
non-unifonn magnetization slates could develop, with an as 
yet theoretically unknown effect on the RTS. A detailed 
comparison of the experimental data with the predicted 
kernel revealed a systematic discrepancy in small fields, 
which we interpret intuitively as arising from non-uniform 
magnetization modes. As a result we investigated the 
effects of removing the low-field data and also the high
field data on which tbe effects of the HK distribution 
might be expected to be less pronounced. This essentially 
concentrdtes the data around the peak, in the area containing 
the llx information. If the x, curves are trimmed at low 
and high fields (figure 7), hence training the networ!(, witb 
a smaller section of tbe curve, then the performance of the 
network improves. 

When an experimental data set was presented to an 
optinlized neural network, which was trained with log
normal and Gaussian distributions (and retrained after each 
test mo using identical parameters), the network was also 
able to determine the most likely type of distribution 
associated with the sample. This was determined with a 
mean value of 0.292 with a standard error of 6 x I 0- 3 _ 

The network determined with a 99.5% certainty that the 
experimental H x distribution was of the log-normal form. 
Figure 8 compares the x, curve predicted by the 11eural 
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Figure 8. A comparison of the experimental x, curve with 
the neural network's predicted x, curve. 

network with the actual experimental x, cwve which was 
used to test the network and shows U1e region in which the 
predicted curve fits the experimental cwve. 

From these results it is feasible to say that a neural 
network technique can be used to determine the type of 
distribution and the distribution's value, which is essentially 
the same as that obtained using the maximum-entropy 
approach. The advantage of the neural network approach 
is essentially one of speed. Our estimates suggest that the 
neural network approach is 1- 2 orders of maguitude faster 
than !he maximum-entropy approach. 

5. Conclusion 

We have demonstrated, through the use of neural networks, 
that a magnetic inverse problem could be solved to 
a high degree of accuracy and very efficiently by 
using a multi-layer perceptron network, trained using the 
conjugate-gradient technique. Several input-output-related 
x, curves were generated, using log-normal and Gaussian 
distributions. The selection of the network parameters 
which gave a good generalization was an important part of 
tl1e study, for any changes could have a significant effect on 
the accuracy of the results. The three important parameters 
were the size of the training set, tl1e size of the network 
and the number of epochs allowed to train the network. 

Initial investigations demonstrated that it was necessary 
to normalize the theoretical x, curves with respect to the 

3034 

Publications 

experimental curves, in order to facilitate the learning 
process. Considerable improvement was observed when 
sections of the x, ctuve were cut off, primarily in the low
field region, due to failure in the theoretical model, and 
in the high-field region, due to the redundancy of dala 
points. The conclusion was that more data points could 
be concentrated around the HK peak (where most of the 
valuable information resides). A training set consisting 
of 100 examples, each with 50 data points, was fowid to 
give the best performance in tenns of accuracy and speed. 
By excluding the x axis data (which are identical in each 
pattern) the number of neurons in the network was halved. 

Having generated the training set, the size of the 
network could be determined. It was observed that a small 
network, consisting of two neurons in one hidden layer 
performed poorly, because there are insufficient weighL~ 
present to extract important features from the x, curves. 
However, a large network of 16 neurons in two hidden 
layers also performed poorly, due to the excessive number 
of weights in the network. In gener.il, a configuration 
of eight neurons in one hidden layer performed best for 
our optimized x, curve, for this amounted to a reasonable 
number of weights in U1e network. 

The accuracy of the results was observed to be closely 
related to the number of epochs with which the network 
has been trained. The preferred method is to train the 
network until the mean-squared error for the training 
and validation sets reaches a minimum and to stop well 
before the validation error begins to increase. Using 
U1e conjugate-gradient learning algorithm (which bas beeu 
proved to generalize in a fraction of the time taken by other 
algorithms) the ITaining required about 40 epochs, which 
was sufficient to give very accurate results. 

Having found the optimal parameters for the investiga
tion, the network was presented with theoretical test data, 
from which the network was observed to be highly accu
rate. However, the goal is to apply experimental data to the 
neural network, using the chosen parameters. The distribu
tion of HA" was detennined in all cases to within ±0.006 of 
t11e mean value and was found to be close to that oblained 
using the maximum-entropy method. The type of distri· 
bution was determined to within 99% certainty of being 
log- nonnal. 

Investigations on the network using extreme cases 
indicated that the accuracy rapidly decreased with 
distribution functions above about 0.65, which is due to the 
loss of important data points from the curve section used. 
However, insofar as experimental data rarely have HJ< 
distributions above this value, it is not considered a 
problem. It can therefore be concluded that a neural 
network approach is feasible for determining the value and 
type of distribution of H 1< (when c, <. 0.65) at which 
point the accuracy is comparable to those of conventional 
methods and done in substantially less time. 
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Abatroct- The recording den,ity of thin film media i• 
affected by percolation within the transitions; auch perco
lation hu been shown to occur in areaa where clu1ter1 or 
low coercivity grains lie. In thia paper we preaent aim
ulated Magnetic Force Microscopy (MFM) Images which 
show it is common tor Inter-penetration between adjacent 
written bib to occur close to such clusters. 

lndez Terrna- longitudinal thin film, low coercivlty 
grains, MFM simulations. 

I. INTRODUCTION 

IMPERFECTIONS in epitaxy between the layers in 
thin film media can give rise to stacking faults (1]. We 

model the non-ideal crystallin.ity by introducing low coer
civity (LC) grains to the magnetic microstructure; it has 
already been shown that this affects the macromagnetic 
parametef!I and recording properties of thin film media 
[2]. Further study has shown that both the non-ideal crys
tallinity and the magnitude of the magnetostatic interac
tions significantly influence the form of the 61 plots of the 
systems (3] - [4]. In this paper, we move toward a com
parison with experiment by calculating MFM images and 
investigate the correlations with recorded patterns. The 
main aim is to investigate the percolation phenomenon 
at high recording densities and its manifestation in MFM 
images. 

II. THE MODEL 

Recorded bits are simulated by allowing a series of op
positely magnetised regions relax, subject to the influence 
of a decreasing applied field. This is carried out using an 
energy gradient descent technique [5]. The physical is 
formed from an assembley of grains whose size distribu
tion is Jog-normal with mean diameter of approximately 
20nm and whose centres lie on radially isotropic struc
ture. Such physical irregularity has been shown to be 
very important in the modelling of real systems [6). Our 
simulations assume a magnetic layer whose thickness is of 
the order of the mean diameter of a grain. 

The model is characterized by two important parame
ters: Ii;, the value of the mean interaction field relative to 
the intrinsic coercivity of the grains (the value of /1; for 
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the LC grains is seven times that for the normal grain), 
and c•, a field representative of the exchange coupling 
between grains, again scaled relative to the intrinsic coer
civity. Imperfect grains will have a lower anisotropy than 
hep Cobalt (K = 4.5 x 106 erg/cc) and in the case of LC 
grains K = 5 x 105 erg/cc [2]. Details of the expressions of 
the for the energy components can be found in Reference 
(5]. 

Ill. RESULTS 

The simulations are performed on systems comprising 
16,384 grains; periciclic boundary are used, thus eliminat
ing edge effects. The size of the systems have made the 
use of parallel processing techniques necessary to speed 
up computation time. The physical size of the system 
is 5µm2

; 40 bits are recorded along one dimension, thus 
the density of recorded information corresponds approxi
mately to 400kfci. 

The MFM image is simulated by calculating the per
pendicular component of the force of interaction between 
a pyramid shaped tip and the stray field resulting from 
the magnetisation distribution in the sample. The expres
sion for the energy of interaction between the tip and the 
stray field is formed by integrating dipolar interactions 
over the volumes of the tip and sample (7]. 

We have carried out a $ystematic study of the effects 
of medium coercivity and inter-granular coupling. Gener
ally, the introduction of LC grains results in inferior tran
sitions wh'en the concentration is sufficiently high such 
that there is significant statistical clustering of grains. 
This effect is demonstrated in Figures 1 and 2 which give 
magnetisation maps and MFM images for a system with 
Ii; = 0.1 and c• = 0.1 for 0% and 15% LC grains, respec
tively. 

The introduction of LC grains result in a significant 
increase in percolation. This is clearly evident when com
paring the magnetisation maps; however, such a difference 
is not as pronounced between the MFM images, presum
ably due to the averaging effects intrinsic to the MFM 
technique. 

A plot of the magnetisation averaged across the tracks 
gives a qualitative indication of the degree of media noise 
present. Figure 3 shows the cross-track profiles of the 
magnetisation maps presented in Figures 1 and 2. The 
written tracks are quite clearly defined, however, it is im
portant to note that the maximum magnitude of the cross-
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track magnetisation corresponding to the system with LC 
grains is consistently lower. We have also plotted mag
netisation variance as a function of position, this has a 
direct link to media noise. Figure 4 shows variance in 
magnetisation across the written tracks. As expected the 
variance is greatest in the transition regions. The intro
duction of LC grains gives a slight increase in variance at 
the transition regions. However, the largest effect is to 
increase the variance across the written bit, which can be 
attributed directly to percolation. 

· I 

Pooijon (micron&) 

Fig. 1. 0% LC grain•: (a) Magnetisation map (top). (b) MFM 
image (bottom). Fig. 3. Magnetisation proflleo for systems with h; = 0.1 and 

Fig. 2. 15% LC grafos: (a) Magnetisation map (top). (b) MFM 
image (bottom). 

c· = 0.1. 

08 
0'.LC 

15•. LC ·-

0 6 

1J~~J~k¾tti~ .i 
' 0 4 

02 

] 
2 3 

Podlon (micron■) 

Fig. 4. CrOM-track magnetisation variances for •ystems with 
h; = 0.1 and C" = 0.1. 

A useful way to quantify the degree of correlation in a 
magnetisation microstructure, i.e., the size of uniformly 
magnetised regions is through a correlation function. We 
use a correlation function as follows: 

(1) 

where m; and m; a.re the moments of two grains in the 
system. (r, 8) a.re polar coordinates based on the local 
direction of m;. For clarity of presentation, we fix 8 = 0° 
and plot correlations in the direction of m;. 

Figure 5 shows correlation curves for different interac
tion field strengths. Correlations are plotted as a func-
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tion of grain separation, in units of mean grain diame
ter; we average the correlations values and plot them at 
rounded-down integer values along the independent axis. 
It is interesting to note that the maxima and minima are 
separated by 3 mean grain diameters; this is corresponds 
approximately to the width of the written bits. This is 
the reason for the negative correlations evident at r = 4, 
which arise from correlations between grains in adjacent 
written bits. 

The effect of interaction is to shift { to more positive 
values. In the case of h, = 0.5, the grains are so magneto
statically coupled that no written bits are apparent. This 
results in the loss of the minimum in {Cr). 

0.75 

0.5 

0.25 

-0.25 

123•56789 10 
r (mean grain diameter) 

Fig. 5. Correlation curves for systems with different h.1 with and 
without LC grains (C• = 0). 

In contrast, Figure 6 are correlation curves for systems 
with exchange coupling. Firstly, the correlation values are 
significantly higher, indicating the presence of strongly 
correlated regions with the magnetisation microstructure. 
As a result of this, there is less spread in the maximas 
occuring at r = 1, whid1 suggests that the introduction 
of exchange coupling weakens the effect of the LC grains 
locally by coupling them into the overall magnetisation 
structure. 

0.75 • 

0.5 

0.25 

-0.25 

0%LC,h;.0.1 - -
0% LC, h,-0.5 ··-·· .. ·· 

15%LC,h1-0.1 -
15% LC, hi-0.5 - - --

-o.s '------~ 
1 2 3 4 5 6 7 8 9 10 

r (mean Qfllin diameter) 

Fig. 6. Correlation curves for systems with different h; with and 
without LC grains (c· = 0.2). 
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The spread in the minima occuring at r = 4 is larger for 
the systems with exchange coupling. In particular, in the 
case of low magnetostatic interactions (h, = 0.1), there is 
still evidence of negative correlations which is indicative of 
the formation of vortices and has the effect of destroying 
the homogeneity of the magnetisation distribution. 

IV. CONCLUSIONS 

In this study, we have presented simulated MFM im
ages of thin film media with and without LC grains; the 
images correspond to written tracks recorded at high den
sity. Correlation analysis has shown the influence of mag
netostatic and exchange interactions on the micromag
netic microstructure; in addition, we have shown the ef
fect of adding LC grains to the systems. Low magne
tostatic interactions tend to break-up the homogeneity 
of the magnetisation distribution and promote incipient 
vortices. Such vortices commonly form around clusters of 
LC grains which act as pinning sites, and can be seen in 
the magnetisation maps and corresponding MFM images. 
However, over the longer range the effects of LC grains 
are significant for the less strongly magnetostatically cou
pled grains. The reduction in the depth of the minimum 
in { is especially pronounced for h; = 0.1 and indicates 
significant percolation. 
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