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Abstract: Precise positioning becomes an attractive research area to enhance last-mile 

delivery with drones. However, the reliability of precise poisoning is significantly degraded 

in GNSS-denied environments such as urban canyons. In this case, the excellent 

performance of Visual Inertial Odometry (VIO) in local pose estimation makes visual 

navigation technology more feasible for researchers. However, the accuracy and 

robustness of VIO degrade in faulted conditions. This paper presents a fault-tolerant multi-

sensor fusion navigation system for drones in urban environments. We first performed 

Failure Mode and Effect Analysis (FMEA) in the VIO system to identify potential failure 

mode, which is feature extraction errors. Then, an integrated, loosely coupled EKF-based 

VIO system is proposed for our GNSS/VINS/LIO reference system to mitigate visual and 

IMU faults. The performance of the proposed method was validated by a synthetic dataset 

created using MATLAB, and it has shown improved robustness over Visual odometry and 

state-of-art VINS systems. 

1. Introduction

Recently, drone has been widely used for various applications such as drone delivery which 

requires them to fly close to walls or structures in urban environments that imply a higher risk 

of collision and thus require precise positioning. The Global Navigation Satellite System 

(GNSS) has been the dominant approach for such environments. Still, the accuracy of such 

systems degrades in the presence of signal blockage, GNSS signal denial, multipath effect, and 

limited satellite visibility. However, precise positioning in this scenario can be achieved if some 

additional positioning information is available. The additional information could come from 

the Visual sensor, Lidar, and Inertial Measurement Unit (IMU). Therefore, it has been proposed 

to integrate the GNSS/VINS/LIO system that provides robust and accurate information in urban 

environments. However, integrating multiple sensors can have the possibility of faults, noise, 

or sensor failure. Thus, identifying potential faults and threats is essential for the precise 

positioning of the GNSS/VINS/LIO reference system should be considered.  

With the development of computer vision technology, visual navigation systems are more likely 

to be adopted by researchers to estimate robust positions in the GNSS-degraded environment. 

Visual odometry is reliable and accurate for estimating the pose of robots, ariel drones, rovers, 

and autonomous driving [4]. The accuracy and robustness of VO degrade if observed features 

from the camera are insufficient [14]. IMU sensor has been integrated with VO that forms 
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Visual Inertial Odometry (VIO) system to improve the performance. IMU can provide high-

frequency motion information that modifies the estimation performance of VO [13]. Hence, 

Visual Inertial Odometry can be the solution to various challenges like vital illumination 

changes, rapid motion, and limited field of view [15].  

A multiple-sensor fusion EKF-based framework was proposed, which eliminated GNSS and 

IMU errors and showed that the performance was improved in the presence of multiple faults 

[17]. An integrated EKF-based vision-aided navigation system provided UAVs with drift-free 

velocity and attitude estimation [16]. They focused on eliminating IMU bias faults by adding 

visual sensors but still, results showed estimated position drifted slowly. An adaptive Kalman 

filter-based fault-tolerant Visual-Inertial Navigation (VIO) system was proposed in a hostile 

environment that discussed feature extraction error and carried out the experiment in an open 

sky environment resulting in a positioning accuracy of 1.89m [12]. Zhang C [15] proposed 

another approach based on key-framed Visual Inertial Odometry for the indoor environment 

and achieved relatively accurate positioning with the framework.  

Another robust MSCKF-based VIO framework was proposed to estimate the precision and 

robustness of the system in the presence of dynamic objects and illumination variance [14]. The 

system could reject uncertain features in the correction system of EKF. The validation process 

was carried out in an indoor lab using EuRoc public datasets [14], resulting in a 0.56m position 

error.  

To further improve positioning in challenging urban environments from reference multi-sensor 

systems focused on eliminating GNSS faults, we have carried out research on achieving precise 

positioning with degraded GNSS performance and mitigating visual sensor and IMU faults.  

The main contribution of the paper is proposing a new approach for a fault-tolerant multi-sensor 

navigation system for robust positioning in urban environments. For this purpose, failure mode 

and effect analysis (FMEA) has been conducted on the proposed VIO system for the 

GNSS/VINS/LIO system to extract the high risk of failures in the system: feature extraction 

error. These failure modes result in positioning errors in the reference system. The reference 

system used Kalman Filter for fusion due to the linear structure of observation measurements, 

which struggles to mitigate errors in visual sensors. We have used Extended Kalman Filter 

(EKF) based fusion approach for combing IMU measurements with Visual information. Our 

EKF-based fusion algorithm aims to maintain several camera poses in the state vector and use 

visual measurements from the same features of multiple camera views to update states in the 

presence of either VINS or GNSS.  

Multi-Sensor positioning experiments are carried out to verify the effect of our proposed 

solution for precise positioning in the MATLAB simulated environment. We have compared 

the results with our previous results, showing an increment in error reduction in the VIO 

subsystem. Thus, our proposed fault-tolerant system improves the robustness of positioning 

data. 

2. Failure Mode and Effect Analysis  

To improve precise positioning concerning expected high robustness, it is necessary to have a 

good knowledge of all potential threats and faults. The potential faults that need to be 

considered for enhancing the performance of the multi-sensor fusion navigation system are 

investigated with the fault analysis method: Failure Mode and Effect Analysis (FMEA). To 

achieve precise positioning for the GNSS/VIO/LIO system, the failure modes of the reference 

system can be categorised as follows-  
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 GNSS failure modes 

 VIO failure modes  

 LIO failure modes  

 
Figure 1.  Example of fault tree for GNSS/VIO/LIO system failures 

One of the most popular ways of analysing risk that breaks down failure events into lower-level 

events to allocate risks is fault tree analysis (FTA) [1]. We have conducted FTA based FMEA 

analysis shown in Figure 1 for the reference system. The FMEA analysis for the reference 

system helps us to identify high-risk failures in the system. In the reference system, the visual 

part has a high risk of failure due to GNSS unreliability and navigation scenario in Urban 

Canyon. Therefore, in this paper, we focused on improving visual positioning with degraded 

GNSS performance by identifying nominal faults in visual components and enhancing the 

robustness of the reference system to identify high-risk system failure modes with their 

characteristics, causes, impacts, and mitigation methods [1]. The analysis of failure modes not 

only considers failures related to the system separately but also the integrated architecture. 

Accordingly, in order to identify faults in Visual-Inertial Odometry (VIO) that result in visual 

measurement error, we have categorised the failure modes associated with the visual sensor, 

IMU sensor and integrated VIO system as follows-  

 Visual sensor failure mode  

 IMU sensor failure modes 

 Integrated VIO system failure modes  

Failure in the visual-inertial odometry system could occur at different levels, such as light 

intensity and the number of feature points tracked, leading to positioning error increment. Table 

1 presents a summary of visual sensor failure modes based on existing literature [3], augmented 

with new failure modes identified in this paper. Failure modes of Inertial Measurement Units 

(IMU) are also considered to design fault-tolerant multi-sensor fusion navigation systems for 

drones in urban environments. 
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Table 1 Complied failure modes of Visual Navigation System 

Failure Mode Error Type Effect 

Feature location 

domain error 

Reprojection error Binary association faults may occur in 

the landmark location. 

Feature extraction 

error  

Stochastic geometric 

error  

Given a rise in uncertainty for the 

extracted corner location of the image 

Feature association 

error 

Geometric error  Positioning results contain significant 

bias during feature extraction.  

Feature domain noise Position error and attitude 

error  

Affect geometric measurements for 

camera position  

Intensity domain 

biases  

Data association error Affect visual positioning performance 

such as  overexposure 

Feature domain 

biases  

Data association error and 

feature mismatch 

Results fault in landmark locations that 

cause significant navigation errors and 

could place the vehicle in a hazardous 

position  

Position domain 

covariance error  

Photometric noise  Correlated errors in positioning across 

multiple landmarks  

Position domain 

nominal error 

Photometric error Results in error in the measurements 

between the sensor and the rendered 

image features  

Liniarization erorr  Significant bias and data 

association error  

Convergence failure in nonlinear 

optimisation   

Outlier error Position error  The applied feature is not at the expected 

position.   

Motion blur  Photometric noise  Cause sensor thermal noise and lens blur  

Table 2 represents the specific IMU failure modes extracted from existing literature [2] that 

has been considered in this research.  

Table 2 Complied failure modes of IMU sensor  

Failure Modes Effect 

Random walk in Gyroscope  An error in the gyroscope by taking random steps from 

sample to sample can result in a position error in the 

navigation system.  

Random walk in Accelerometer  Error occurred in accelerometer by front end signal 

processing. 

Bias in Accelerometer Constant bias error in the accelerometer causes error in 

a position that grows over time.   

Bias in Gyroscope Cause angle drift in the system  

Calibration error  Error occurs during the calibration process, which 

results in additional drift in the system. 

 

Analysing failure modes for integrated Visual-inertial Odometry can help identify high-risk 

faults for positioning error, develop the respected fault model, and prevent possible failures. 

There are many works published on fault analysis on GNSS [1] [2] [9], Visual or Inertial 

positioning, but failure modes in precise visual positioning are seldom discussed. For visual 

positioning, error sources are high during the feature extraction step, resulting in positioning 
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errors in the whole system [4]. Hence, we focus on mitigating positioning errors in feature 

extraction failure mode and improving the Visual Inertial Odometry performance.  

3. Proposed Fault-Tolerant Navigation Solution    

As we discussed in the previous section, there are error sources in every domain in the visual 

positioning process identified through FMEA analysis. For visual navigation, it is necessary to 

extract geometric information from images. Generally, intensity values in the image are noisy 

due to various error sources, where these photometric noises represent the raw error in the 

intensity values of the image. As we aim to mitigate visual positioning errors that occur by 

feature association error failure mode in Visual-Inertial Odometry, error propagation in the 

depth estimation must be considered while designing the process model of the system. In 

feature-based Visual Odometry, the procedure starts with extracting more geometric 

information from raw images for positioning. In the beginning, geometric information was 

hidden in raw measurement images that contained a considerable amount of the information 

provided by intensity values of image parameters (pixels). Error during feature extraction can 

be represented as a 2D geometric error in feature location that causes feature location faults in 

the system. While matching 2D feature locations to 3D coordinates, binary association faults 

or feature mismatch errors can occur. Accordingly, IMU sensor failure has also been considered 

as we conduct FMEA analysis. IMU measurements are corrupted by error sources discussed in 

the previous section. IMU failure mode, such as random walk in the accelerometer, is highly 

influenced and causes interruptions in the navigation process. In literature, FMEA analysis for 

designing fault-tolerant visual navigation system is hardly discussed. In this paper, an EKF-

based fault-tolerant Visual Inertial Odometry has been designed based on FMEA analysis 

mitigating positioning error under mentioned visual and IMU fault conditions. To reduce output 

positioning error under significant faults (visual and inertial), a new fault has been added to the 

visual odometry state estimation model to represent feature mismatch error in the propagation 

system.   

3.1 Visual Inertial odometry measurement  

Visual Odometry aims to estimate the motion of the drone from the camera image and find the 

projections of spatial points or correspondence of pixels in consecutive frames [4]. In this paper, 

the feature-point-based VO method has been considered as we propose to reduce feature 

association and feature location failure modes. The feature-based method is based on local 

features of an image considered to be its feature points [4]. The implementation of stereo VO 

based feature based method includes the following steps: 

 Feature extraction 

 Feature matching 

 Depth estimation 

 RASNAC 

 Motion estimation  

In the feature extraction stage, ORB feature points are chosen due to their real-time capability 

and reliability [11]. The feature-matching process named RANSAC has been carried out 

according to Fu [4]. Afterwards, feature mismatch 3D error point has been added with the 

motion estimation model of VO: 
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 [∆𝑿𝒏∆𝒀𝒏∆𝒁𝒏] = [𝑿𝒏𝒀𝒏𝒁𝒏] − 𝑹 [𝑿𝒏−𝟏𝒀𝒏−𝟏𝒁𝒏−𝟏] + 𝒕 

 

(1) 

Here, X,Y, Z are 3D points in the coordinate, ∆𝑋, ∆𝑌, ∆𝑍 are the measurement error, n is the 

current frame and n-1 is the previous frame.  Additionally, we consider the feature mismatch 

error as fault, so camera transition vection 𝑡 and rotation matrix 𝑅 have been taken from the 

integrated stereo camera model in MATLAB.  

3.2 Integrated System  

The designed integrated system is based on the Extended Kalman Filter method [9] for better 

convergence in the estimation. Predicted state estimate �̂�𝑛|𝑛−1, filtered state coverience 𝑃𝑛|𝑛, 

and predicted state coverience 𝑃𝑛+1|𝑛 are estimated by using equations stated on [9]. The rest 

of the steps are the same, except that we estimated visual measurement instead of GNSS 

measurement. The additional feature extraction fault represented by equation (1) is added to the 

visual odometry state estimation step [9] that has been corrected with estimating 𝑃𝑛|𝑛.  

Figure 2 shows the architecture of the proposed VIO integrated system, and the measurements 

come from different parts. 

 
Figure 2. Integrated fault-tolerant Visual-Inertial Odometry system                                    

4. Simulation and Analysis   

In this section, we verify the performance of the proposed solution through simulation 

experiments and compare them with different navigation scenarios.  
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4.1 Simulation setup:  

A Quadrotor-type UAV virtual simulation environment has been created using MATLAB 2022 

Simulink to carry out the experiment shown in Figure 3. In the 3D simulated environment, it is 

feasible to model the UAV prototype and specify the unique mission with prebuild reference 

GNSS/VINS/LIO system incorporation with required sensors like GNSS, IMU, camera, lidar. 

UAV toolbox has been used to create the virtual environment, which features a photorealistic 

environment for UAV flight by rendering the urban environment scenario representing urban 

canyon. Therefore, we have used the UAV delivery package simulation prototype [5] to 

generate the synthetic dataset. Figure 3 displays an example of a virtualised simulation along 

with single camera output.  

 

Figure 4. UAV scenario simulation environment running in MATLAB representing urban canyon that has been 

virtualised as a drone delivery scenario in US city   

The simulation model has been implemented with the help of Simulink, where UAV states are 

shown in Figure 4, where input UAV state has been created from prebuild UAV toolbox model 

named ‘UAV package delivery’ [6] structure. The ground truth block has been taken from UAV 

UAV state through a simple bus signal. Additionally, the other blocks ‘Camera Model’, ‘IMU’ 

are created to generate a dataset to test our proposed fault-tolerate multi-sensor system.  We 

have created a stereo camera model by combining two single ‘front-facing camera’ in the model 

[7]. Here, Table 3 represents the parameters of the IMU sensor.  

Table 3 Parameters of IMU 

Inertial Sensor Frequency Error Term Values 

Gyroscope 100Hz Constant drift 2 ̊ \h 

  Random walk 0.053 ̊ \√h 

Accelerometer  Constant bias 0.01̊ \h 

  Random walk Not considered  

Different abrupt faults have been added to Visual odometry and IMU measurement to analyse 

the proposed system's performance. Visual Odometry carries bias in geometric measurement 

while extracting information during feature matching. For this reason, 3D point error equation 
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(1) has been added to the visual odometry position estimation step [8]. The signal of IMU sensor 

carries accelerometer random walk peak-peak noise of 2 𝑚/𝑠2.  

  

Figure 4. Visual-Inertial Odometry simulation setup using MATLAB 2022 Simulink UAV toolbox    

Figure 4. illustrates the GNSS degraded environment simulated to analyse the proposed VIO 

solution to the reference system. GNSS and LIO components are also implemented in the 

reference system, but we only focus on analysing the visual component performance with our 

proposed solution. Based on the simulated correspondences, we firstly validate EKF based 

fusion algorithm under IMU faults condition [9] with visual odometry. In this case, the error 

state vector contains IMU error measurements (position error, velocity error, attitude error) and  

Visual Odometry measurements (position error, orientation error).   

Figure 5. Generated trajectory of Ground truth 

(green), GNSS (dark-blue), VIO (turquoise-blue), 

and LIO (red) in the simulated GNSS degraded 

environment 

Figure 6. Error comparison between independent 

filters with and without implementation of the 

proposed solution 
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For simulation, we have used MATLAB function ‘insfilterErrorState’to initialise the drone’s 

position aligned with IMU parameters for fusion. To compare the efficiency of the EKF model, 

the filtering result recorded in Figure 6 shows the Visual Odometry positioning error reduction 

after fusion with IMU.  

Table 4 illustrates an RMSE comparison between our proposed system and state-of-art systems. 

It is noted that the Visual Odometry fault (feature mismatching error) dropped almost 87.21% 

after fusion with IMU. Here, positioning error in Visual Odometry is higher because we have 

considered drift conditions in the feature extraction process [8]. 

Table 4 Root Mean Square Error comparison for proposed fault-tolerant multi-sensor navigation system 

Positioning  RMSE (m) Feature Mismatch 

Error 

IMU 

Faults 

Simulation 

environment 

 Visual Odometry 4.67 √ - outdoor 

Visual Inertial 

Odometry 

0.5974 √ √ outdoor 

VINS-MSCKF [14] 0.56 - √ indoor 

VIO [10] 0.641 - - outdoor 

The failure of the VO system during feature extraction steps is considered a nominal fault [4], 

and research has been conducted on mitigating faults such as geometric errors, outlier errors, 

photometric noise, and 3D feature location errors. A recent study showed that VINS-mono 

produced significant errors in position estimation under hostile environments due to failure in 

feature extraction [12]. Another study compared a couple of visual navigation systems, such as 

VINS-Mono, OKVIS, and VIO, on the dataset EuRoc and their positioning errors are 0.646, 

1.147, 0.641[10]. In their paper, they assumed VO with drift-free conditions. In contrast, we 

calculated the long-range drift of VO [8] while estimating the VIO position, and our proposed 

system showed high accuracy and robustness in the presence of multiple faults.  

5. Conclusion   

In this paper, we presented the fault-tolerant loosely coupled Visual-Inertial Odometry (VIO) 

framework, which ensured robust, precise positioning in the presence of multiple faults such as 

feature mismatching error and IMU random walk noise. The design of VIO only considered 

errors that occurred from the scenario and propagation model. The proposed system addressed 

the necessity of failure mode analysis to identify high-risk faults in a system. The experiment 

was carried out in a MATLAB simulation environment using a synthetic dataset and achieved 

an 87.21 % increment in position concerning visual odometry. Finally, the solution 

demonstrates high performance in the considered urban test scenarios and is suitable for an 

integrated multi-sensor system that operates in GNSS-degraded environments. Future work 

remains to achieve precise positioning under camera measurement faults with another high-risk 

visual failure mode, such as feature domain bias simulated in a real-time environment.  
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