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Abstract This study presents the development of an

improved state of charge (SOC) estimation technique for

lithium–sulphur (Li–S) batteries. This is a promising

technology with advantages in comparison with the exist-

ing lithium-ion (Li-ion) batteries such as lower production

cost and higher energy density. In this study, a state-of-the-

art Li–S prototype cell is subjected to experimental tests,

which are carried out to replicate real-life duty cycles. A

system identification technique is then used on the exper-

imental test results to parameterize an equivalent circuit

model for the Li–S cell. The identification results demon-

strate unique features of the cell’s voltage-SOC and ohmic

resistance-SOC curves, in which a large flat region is

observed in the middle SOC range. Due to this, voltage and

resistance parameters are not sufficient to accurately esti-

mate SOC under various initial conditions. To solve this

problem, a forgetting factor recursive least squares

(FFRLS) identification technique is used, yielding four

parameters which are then used to train an adaptive neuro-

fuzzy inference system (ANFIS). The Sugeno-type fuzzy

system features four inputs and one output (SOC), totalling

375 rules. Each of the inputs features Gaussian-type

membership functions while the output is of a linear type.

This network is then combined with the coulomb-counting

method to obtain a hybrid estimator that can accurately

estimate SOC for a Li–S cell under various conditions with

a maximum error of 1.64%, which outperforms the existing

methods of Li–S battery SOC estimation.

Keywords Lithium–Sulphur � State of charge � ANFIS �
Battery � State estimation

1 Introduction

Energy storage systems and their development have been

of main concern during the past years as transportation

systems make their transition to electric powertrains. For

that reason, a remarkable amount of research on different

battery technologies have been conducted to improve their

reliability, energy density and cycle life, as well as

reducing costs associated with their production. One of

those technologies is the use of lithium–sulphur (Li–S)

batteries. When compared to more conventional technolo-

gies such as lithium-ion (Li-ion), some advantages can be

seen such as higher energy density, lower cost of materials

and improved safety [1, 2]. Nevertheless, there are still

some drawbacks that are yet to be solved associated with

this battery technology such as high self-discharge, short

cycle life and poor instantaneous power capabilities [3],

which are currently limiting their commercialization [4].

The challenges that come with the use of this type of

chemistry have already been outlined [5], with scientific

efforts currently being made to improve their chemistry

with the goal of reducing said issues [6] , while also

studying and improving its cycle life [7–10]. As an

example, some breakthroughs are recently reported in [11],

where a combination of optimal chemical and mechanical
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aspects of the binder chemistry has led to significantly

enhanced Li–S batteries with high specific capacity and

long cycle life of initial 1629 mAh/g and 1000 cycles,

respectively. As such, electrochemical studies for Li–S

technologies have been increasing [12] while, in parallel,

engineering works are being conducted, which are related

to the development of battery management systems (BMS)

for Li–S battery. One of the challenges in Li–S BMS

development is the complexity of state-of-charge (SOC)

estimation, which cannot be performed using the standard

approaches developed for Li-ion cells. That is mainly due

to the unique shape of Li–S battery’s voltage curve versus

SOC [13, 14].

Different approaches have been developed for battery

SOC estimation in the literature. Among them, the most

used method, which also serves as benchmark for other

techniques, is called ‘coulomb-counting’ [15]. This method

works based on integration of the load current as shown

below [15]:

SOCcc ¼ SOC0 �
Z t

t0

ciðtÞ
Ct

ds

� �
; 0\SOC\1 ð1Þ

where SOC at a certain time t is determined by knowing an

initial state of charge SOC0 at a time t0; c is the cell’s

coulombic efficiency (non-dimensional), i(t) is the load

current (in A - assumed to be positive for discharging) and

Ct is the cell’s total capacity (Ah). A SOC value of 1 is

equivalent to a fully charged cell, while a value of 0 rep-

resents the opposite condition of a fully depleted battery.

Although the coulomb-counting method is useful, it

suffers from some limitations too. It is not always possible

to have knowledge of conditions of the cell such as its

initial state of charge and capacity [14]. Additionally, this

method suffers from accumulated errors derived from

measurement noise [16, 17]. Using this strategy in Li–S

cells can give an approximation of SOC behaviour; how-

ever, it will only yield accurate results under the ideal

conditions in which the initial state of the battery is known.

As mentioned before, Li–S cells suffer from high self-

discharge rate, which limits the usefulness of this method,

resulting in the need of more robust techniques. One of

these alternatives includes the use of look-up tables or

polynomials for the cell’s parameters, which can then be

related to SOC values [18]. For example, the battery’s

open-circuit voltage (OCV) can be used as an indicator of

SOC. However, this method also comes with its corre-

sponding limitations such as different temperature and

ageing conditions altering the tabulated SOC values. Sub-

sequently, there will be a need of having knowledge of

exact conditions of the cell to cover different variables and

scenarios.

Other battery state estimators that have been studied for

Li–S cells use Long Short-Term Memory Recurrent Neural

Network (LSTM RNN) [19] or Classification Technique

[20]. On the other hand, particle filters and Kalman filter-

based SOC estimators have already been used widely in the

literature, but applied for Li-ion batteries [21, 22]. Their

working principle is based on the reduction of the error

between the measured output of the system and the pre-

dicted output from the filter. Thus, an accurate model of the

battery is required for such methods to be effective.

Another group of advanced battery state estimators use

machine learning techniques to extract the required infor-

mation directly from the measurements (i.e. current, ter-

minal voltage and temperature), or by using an equivalent

circuit network (ECN) model, with most of these being

based on first-order approaches [23, 24]. ECN models have

been widely applied for Li-ion battery state estimation

[25–27]; however, only recently these have been reported

to be used for Li–S batteries [20, 28, 29].

One known technique from the family of machine

learning methods is Adaptive Neuro-Fuzzy Inference

System (ANFIS) [26, 30, 31], which has been successfully

used for Li-ion battery state of charge estimation [13]. In

that previous study, the prediction error minimization

(PEM) algorithm was used for Li–S battery model identi-

fication, and then ANFIS method was used to estimate

SOC based on the identification parameters [13]. The

results obtained in that study were reported to achieve a

mean error of 4% and maximum error of 7% in Li–S cell’s

SOC under realistic application scenarios.

In this study, the work, which has been reported in [13],

is used as a baseline and then extended by proposing an

improved ANFIS estimator for a Li–S cell. The proposed

method combines the forgetting factor recursive least

squares (FFRLS) algorithm and ANFIS together with the

coulomb-counting technique to build a hybrid estimator.

Although the individual elements of the proposed hybrid

method have been used separately in other studies before,

this is the first time that they are combined in one system.

In addition to the novelty of the methodology, the appli-

cation of Li–S cell is also new in comparison with the other

battery chemistries. In comparison with the study in [13],

where only two parameters (i.e. ohmic resistance Ro and

open-circuit voltage Voc) have been used, here four

parameters are identified and used for Li–S SOC estima-

tion. This additional complexity aids in covering areas of

the SOC curve where Voc and Ro are not sufficient to

accurately predict it under certain initial conditions. Fur-

thermore, the new parameters have been added by con-

sidering a proper trade-off between accuracy and speed in

online battery model identification as discussed in [25].
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Thus, expanding on that study, an FFRLS model is

developed, yielding two additional parameters that are then

input into a new improved ANFIS estimator. The baseline

ANFIS and the improved one are then simulated under the

same conditions and the effectiveness of the proposed

method is discussed based on the comparative results. As a

summary, the contributions of this study are as follows:

• The SOC estimator features a combination not used

before of FFRLS and ANFIS, which allows to use four

cell parameters to train the ANFIS network.

• Using a four-parameter ANFIS estimator allows to

accurately calculate SOC under any initial condition

without the limitations imposed by the flat Voc charac-

teristic of the Li–S cell.

• The results obtained in terms of prediction error are

superior to previous studies using ANFIS for a Li–S

cell.

2 Experimental Tests on Li–S Cell

The Li–S prototype cells which are used in this study were

provided by OXIS Energy ltd. [32], with the specifications

presented in Table 1. As shown in Fig. 1, a cell is placed

inside a thermal chamber which controls the temperature at

a desired constant value throughout the test. The cell is

connected to a power supply, which can also act as a power

sink in discharge mode, to apply the desired current load to

the cell. The cycle applied to the cells was the Millbrook

London Transport Bus Cycle (MLTB) [33], shown in

Fig. 2a. The way it was applied is as follows: the cells

started at fully charged condition and the cycle from

Fig. 2a was repeated until the cell reached its cut-off

voltage of 1.9 V, to obtain the complete discharge profile

seen in Fig. 2b. As discussed in the literature [20], the

MLTB cycle needs a lower range of power due to the idle

times and relatively low speeds involved in it, in compar-

ison with other standard drive cycles. Indeed, the most

critical feature that is expected in a city bus application is

the range or in other words, energy on board, for which the

Li–S battery is promising.

Table 1 Specifications of the prototype Li–S cell [20]

Parameter Capacity

Capacity 19 (Ah)

Nominal voltage 2.15 (V)

Cell mass 141 (g)

Maximum voltage 2.6 (V)

Minimum voltage 1.9 (V)

Maximum discharge rate 3C–57 (A)

Maximum charge rate 0.25C–4.75 (A)

Fig. 1 Li–S cell testing equipment: a Computer sending and

receiving data b power source and c thermal chamber with cell
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Fig. 2 Current and voltage profile for MLTB cycle (a) and for full

test (b)
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3 Resistance Model Parameter Identification

As mentioned in the Introduction Section, ANFIS method

has been already used for Li–S SOC estimation in [13]. In

that study, a simple battery model is parameterized, which

only considers the open-circuit voltage (Voc) and the ohmic

resistance (R0), as shown in Fig. 3, in which Vt is the

measured terminal voltage and iL is the load current. To

parameterize such a model based on experimental mea-

surements in real time, an identification technique is nee-

ded. The goal of this is to minimize the error between the

measurement and the model’s output by finding the opti-

mum values of Voc and R0:

RMSE ¼ f ðVoc;R0Þ ¼
1ffiffiffi
n

p
Xn
i¼1

ðVt;i � V̂t;iÞ2

 !0:5

ð2Þ

where V̂t is the estimated value of terminal voltage. If one

has a set of measurement data containing current and

voltage values:

VhistoryðkÞ ¼ ½Vðk � nÞ Vðk � n� 1Þ
Vðk � n� 2Þ :::VðkÞ�

ð3Þ

IhistoryðkÞ ¼ ½Iðk � nÞ Iðk � n� 1Þ
Iðk � n� 2Þ :::IðkÞ�

ð4Þ

where n is the length of the window of values recorded and

k is the current time step, it is then possible to develop a set

of equations for R0 and Voc based on obtaining the mini-

mum value of (2). For this, the gradient of the error is

obtained and set to zero:

rRMSE ¼ of

oVoc

e1 þ
of

oR0

e2 ¼ 0 ð5Þ

where e1 and e2 are the orthogonal unit vectors. The work

conducted in [25] shows a more detailed deduction of the

equations, obtaining the following expressions:

R0 ¼

Pn

i¼1
Vt;iIiPn

i¼1
Ii

� �
�
Pn

i¼1
Vt;i

nPn

i¼1
Ii

n �
Pn

i¼1
I2
iPn

i¼1
Ii

� � ð6Þ

Voc ¼
R0

n
�
Xn
i¼1

Ii þ
1

n
�
Xn
i¼1

Vt;i ð7Þ

Figure 4 shows the parameter identification results

obtained using (6) and (7) with the current and voltage data

from Fig. 2 (b). The Voc curve is characterized by having a

high-gradient zone at high SOCs, then plateauing and

maintaining a relatively constant value. On the other hand,

the Ro curve has a low plateau region in mid-SOCs and

high-gradient zones for values higher than 90% and lower

than 20% SOC. The behaviour of this curve slightly differs

from what was reported in [13], where the Ro high-gradient

zones covered a wider SOC range. The reason behind that

change is related to the difference between the Li–S cells

used in the two studies. The cells that were used in the

previous one had a capacity of 3.4 Ah while the new cells

of this study have a higher capacity of 19 Ah and a lower

resistance. The flat regions of both Ro and Voc curves at the

mid-SOC range cause the system to be less observable.

This results in the method having limited accuracy, as it

will be shown further ahead. Thus, the need of an improved

technique arises, one which yields additional parameters

that can improve robustness in SOC estimation. This is an

important extension of this study in comparison with the

work presented in [13].

Fig. 3 Resistance only equivalent circuit network modelling the

battery
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Fig. 4 Ohmic resistance model identification results at 20�C: a ohmic

resistance, b open-circuit voltage
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4 RC-Equivalent Circuit Network Model
Parameter Identification

In this section, an equivalent circuit network (ECN) model

is parametrized using the forgetting factor recursive least

squares algorithm (FFRLS). The outputs of this system

identification will be the inputs to train the ANFIS network.

The ECN model that is used in this case is a first-order

Thevenin model [34], as shown in Fig. 5, where Vt and Voc

are terminal and open-circuit voltages, respectively; Ro

represents the battery’s ohmic resistance, and Rp and Cp are

polarization resistance and capacitance, respectively. By

doing circuit analysis, it is possible to derive the following

equations which describe the system:

Vt ¼ Voc � Vp � RoIL ð8Þ

dVp

dt
¼ � 1

RpCp

Vp þ
1

Cp

IL ð9Þ

where Vp is the voltage drop across the polarization capaci-

tance and IL is the load current. By taking the Laplace

transform of (9), the following expression is obtained:

s � VpðsÞ ¼ � 1

RpCp

� VpðsÞ þ
1

Cp

ILðsÞ ð10Þ

Thus, the voltage drop across the polarization terms of the

circuit can be expressed as:

VpðsÞ ¼
1
Cp
ILðsÞ

sþ 1
RpCp

ð11Þ

Substituting Vp in frequency domain from (11) into (8):

VtðsÞ ¼ Voc �
1
Cp
ILðsÞ

sþ 1
RpCp

� R0ILðsÞ ð12Þ

The bilinear transform s ¼ 2
T
z�1
zþ1

is then applied to (12) in

order to transfer it from continuous to discrete time

domain:

VtðzÞ � Voc

ILðzÞ
¼ �ðTRp þ TR0 þ 2R0RpC � pÞ

T þ 2RpCp þ ðT � 2RpCpÞz�1

� ðTRp þ TR0 � 2R0RpCpÞz�1

T þ 2RpCp þ ðT � 2RpCpÞz�1

ð13Þ

Knowing that the shifting property of the z-transform

defines x(k) as X(z) and xðk � 1Þ as z�1XðzÞ, it is possible to

obtain an expression that solves for the terminal voltage Vt

as a function of current signal at a time k, and voltage and

current signals from the previous time step k � 1:

VtðkÞ ¼ h1 � Vtðk � 1Þ þ h2 � ILðkÞ
þ h3 � ILðk � 1Þ þ h4

ð14Þ

where the parameters h1, h2, h3 and h4 group the rest of the

terms of the RC network as follows:

h1 ¼ 2RpCp � T

T þ 2RPCP

ð15Þ

h2 ¼ � TRp þ TR0 þ 2R0RpCp

T þ 2RPCP

ð16Þ

h3 ¼ � TRp þ TR0 � 2R0RpCp

T þ 2RPCP

ð17Þ

h4 ¼ 2T

T þ 2RPCP

Voc ð18Þ

As the context of this study requires real-time identification, a

method that can achieve this with relatively low computa-

tional effort and convergence time was required. The FFRLS

algorithm achieves these needs (as it will be shown further

ahead), working by updating the estimates recursively as new

data become available [35]. The recursive form is given by:

ĥðkÞ ¼ ĥðk � 1Þ þ KðkÞ � ½VtðkÞ � /TðkÞ � ĥðk � 1Þ�
ð19Þ

where the parameter vector ĥðkÞ is composed by the vari-

ables shown in Eqs. (15)–(18). The input vector is given by:

/ðkÞ ¼ ½Vtðk � 1Þ; ILðkÞ; ILðk � 1Þ; 1� ð20Þ

Additionally, K is the Kalman gain, calculated as:

KðkÞ ¼ Pðk � 1Þ � /ðkÞ � ½kþ /TðkÞ � Pðk � 1Þ � /ðkÞ��1

ð21Þ

where P is the covariance matrix, given by:

PðkÞ ¼ 1

k
½1 � KðkÞ � /TðkÞ� � Pðk � 1Þ ð22Þ

The constant k is the forgetting factor, it allows to gradu-

ally discard older data and give more weight to new one

[35]. Equation (19) updates the parameters at each step by

reducing the error between the predicted output and the

measured one. Once the vector ĥðkÞ is calculated, it is

Fig. 5 First-order Thevenin RC network battery model
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possible to determine the ECN parameters by rearranging

the terms of Eqs. (9)–(12):

R0 ¼ h3 � h2

1 þ h1

ð23Þ

Rp ¼ �2
h1h2 þ h3

1 � h2
1

ð24Þ

Cp ¼ Tð1 þ h1Þ2

�4ðh1h2 þ h3Þ
ð25Þ

Voc ¼
h4

1 � h1

ð26Þ

To validate the model, it is possible to compare the mea-

sured voltage with its estimated value, using the following

expression:

V̂t ¼ /ðkÞ � ĥðk � 1Þ ð27Þ

By comparing the resulting plots in a close-up view of

one cycle, as shown in Fig. 6, where the voltage estimation

overlaps the measurement, it can be said that the model

behaves as expected. On the other hand, Fig. 7

demonstrates the Thevenin model’s identification results

for the 19 Ah Li–S cell at 20�C, showing the curves for the

two new parameters that will be used to improve the

baseline estimator.

5 Li–S Cell SOC Estimation Using ANFIS

The main idea of the proposed estimation technique is to find

an inverse function which can determine the SOC value

based on the identified ECN model parameters. In general,

each parameter of the ECN model is a function of SOC:

Pi ¼ fiðSOCÞ; i ¼ 1:::n ð28Þ

where Pi is the i-th parameter of the cell model. The

parameter Pi might depend on the cell’s state of health

(SOH) and temperature as well. However, as the experi-

mental test was conducted on a fresh cell at a constant

temperature, these variables do not have an impact on the

cell’s parameters in this case. Since the battery parameters

can be obtained in real time, the inverse of (28) is more

practical. By having a set of ECN model parameters, which

are updated regularly, a nonlinear function (i.e. ANFIS) is

sought to build the following map between them and the

cell’s SOC:

SOC ¼ gðP1;P2; . . .;PnÞ ð29Þ

The ANFIS architecture consists of five layers [36], as

shown in Fig. 9. Here, the squares represent adaptive nodes

and the circles represent fixed nodes. In the first one, the

inputs (Ro and Voc in this case) are fuzzified. The second

one works as a multiplier yielding as output the firing

strengths of each rule. Subsequently, the third layer0 200 400 600 800 1000 1200 1400 1600
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normalizes the previous output, resulting in normalized

firing strengths. The fourth layer consists of the output

membership functions and, finally, the last layer sums the

results of the incoming outputs. The output z of this net-

work can be expressed as:

z ¼
Xn
i¼1

�xizi ¼
Pn

i¼1 xiziPn
i¼1 xi

ð30Þ

where n is the number of inputs, xi are the firing strengths

of each rule, �xi are the normalized firing strengths and

zi ¼ pixþ qiyþ ri are the membership functions with its

tunable parameters pi,qi and ri.

A diagram of the procedure carried for ANFIS training

is depicted in Fig. 8. Schematic of the whole estimation

procedure is depicted in Fig. 10 for both the baseline

estimator and the improved one proposed in this study. The

advantages of using ANFIS as an estimator can be sum-

marized as follows:

• It can be applied to different battery types.

• Unlike coulomb-counting, it is not necessary to know

the cell’s capacity.

• Tunability: the different parameters that define

ANFIS’s structure are easily tunable.

Separate datasets are used for training and testing, which

are based on full discharge cycles as the one shown in

Fig. 2b. In the following sections, more details of the

structure of both the baseline and the improved ANFIS

estimators are presented, and their results are discussed.

5.1 Hybrid ANFIS Structure for the Ohmic

Resistance Model (Baseline Model)

In order to design an ANFIS structure, all the inputs are

characterized by defining a number of membership func-

tions (MFs) for each of them. The optimum number of MFs

as well as their shape for both of the inputs (i.e. Voc and Ro)

was obtained through various iterations to achieve the

minimum estimation error. A schematic of the selected

baseline ANFIS structure is presented in Fig. 12. The

network is built using the fis MATLAB function, which

generates a Sugeno-type fuzzy inference system with one

linear output. Some of the advantages of using such sys-

tems are that they are computationally efficient and work

well with optimization, and it is guaranteed that they willFig. 9 ANFIS architecture [36]

Fig. 10 Schematics of a the baseline and b the improved ANFIS SOC estimators
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output surface continuity [37]. The algorithm uses a com-

bination of least squares and backpropagation gradient

descent methods to model the training dataset [38].

The network is trained using input–output data, from

which the corresponding rules are extracted. Table 2

summarizes the characteristics of the baseline ANFIS

structure. These final specifications were obtained by car-

rying different model iterations, varying the type of

membership function as well as their respective numbers

for each of the inputs. A total of 500 epochs were used in

training, with Fig. 11 showing an optimal step size profile

where it decreases as number if iterations increase. The

reduction in this value shows that once the network is

trained, different datasets are used to test the system. As

mentioned before, these datasets are obtained from the

discharge cycle shown in Fig. 2b. The estimator uses a

multi-mode controller and is classified as hybrid due to

ANFIS being supported by coulomb-counting. The modes

are defined as follows:

• Mode 1: in this mode, the estimator uses Voc data as the

only input, making use of the high-plateau zone shown

in Fig. 10b. Once the Voc value is under a specified

threshold (Vocthreshold ¼ 2:14V ), the controller switches

to the next mode since the voltage remains almost

constant and does not contribute to SOC estimation.

• Mode 2: Once the open-circuit voltage value is under

its threshold, the controller switches from ANFIS to

coulomb-counting. In this case, the initial condition is

the last value that ANFIS calculates under mode 1.

Thus, a smooth transition is obtained between them.

This method is required in the mid-SOC region as both

Voc and Ro present a flat curve as seen from their

identification results, thus no useful information for

SOC can be obtained from ANFIS in that specific

range.

• Mode 3: in this mode, the value of Ro is used at low

SOC range to correct any deviations in coulomb-

counting results due to cumulative measurement noise.

As shown in Fig. 13a, approximately under 20% SOC,

the ohmic resistance increases again, which provides

useful information for ANFIS. Thus, a threshold for

ohmic resistance is defined as R0threshold ¼ 0:009X and,

once the identification values surpass this, with the

additional condition of being at low SOCs, the multi-

mode controller switches from mode 2 to mode 3,

where ANFIS predominates again.

In both Mode 1 and Mode 3, a hybrid weighted combina-

tion of ANFIS and coulomb-counting is used in order to

smooth the fluctuations caused by ANFIS predictions and

the measurement noise. The mathematical formulation of

the hybrid system is as follows:

SOChybrid ¼ W1 � SOCANFIS þW2 � SOCcc

W1 þW2

ð31Þ

where SOCANFIS and SOCcc are the estimations using 100%

ANFIS and 100% coulomb-counting, while W1 and W2 are

their weights, respectively. After testing different combina-

tions and the trade-offs involved with increasing each one’s

weights, the configuration of W1 ¼ 0:9 and W2 ¼ 0:1 is

chosen for Mode 1 and Mode 3. On the other hand, because

ANFIS is as effective in Mode 2, the estimator relies 100%

on coulomb-counting (W1 ¼ 0 and W2 ¼ 1).

Figure 14 shows the SOC estimation results for two

different datasets with current and voltage profiles inputs as

shown in Fig. 2. The real SOC is derived from the exper-

imental tests and the other two curves represent the base-

line ANFIS result (SOCANFIS) and the baseline hybrid (i.e.
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Fig. 11 Baseline ANFIS model step size profile

Table 2 Two-input ANFIS model specifications

Parameter Description

Inputs R0, Voc

Outputs SOC

Input MF type Gaussian

Output MF type Linear

Number of MFs 5, 7

Number of rules 35

Training epoch number 500

Fig. 12 ANFIS structure for resistance model identification method
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coulomb-counting and ANFIS) estimator result

(SOChybrid). The test is started from fully charged state

(SOC ¼ 100%), having a default initial condition of the

estimation set at 40%, which explains the jump at the

beginning of the test. The multi-mode controller and the

three hybrid estimator modes are clearly visible when

observing the SOCANFIS plot in comparison with the

SOChybrid. Above 70% SOC, ANFIS works based on

voltage data (Voc at high-plateau region—mode 1).

Between 70% and 20% SOC, approximately, ANFIS shuts

off and yields a constant value close to 40%, which is not

used for the hybrid estimation, this is where coulomb-

counting predominates (i.e. mode 2). Once SOC drops

Fig. 13 Identification a region used for mode 3 and Voc b used for mode 1
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Fig. 14 Li–S cell SOC estimation using the baseline estimator for

cycle 1 a and cycle 2 b of the same cell
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Fig. 15 Li–S cell SOC estimation using the hybrid baseline estimator

at different initial conditions: a 100%, b 80%, c 50%, d 20%
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below 20%, the controller switches to mode 3, where R0 is

used as the main input of ANFIS. A small fluctuation in the

ANFIS estimator can be seen when switching to this mode.

However, coulomb-counting weighting prevents the hybrid

estimator from adopting this sudden change. It can be seen

that the final estimation is in good agreement with the real

SOC value. Through this, an average and maximum error

of 0.66% and 4.05% are achieved, respectively. It should

be mentioned that the maximum error does not take into

account the convergence of ANFIS from its default initial

condition.

As a next step, tests were conducted with the initial state

of charge lying in each of the modes to evaluate how the

initial condition affects the estimator’s performance. In

order to replicate a real-life scenario, no voltage, current, or

SOC data previous to the starting point are provided to the

estimator. It could be argued that it is possible for a battery

management system (BMS) to store the last read value of

SOC, and use it as initial condition for when the system is

started again. However, Li–S cell’s SOC might be affected

by self-discharge due to internal polysulfide shuttle effect

[39], so the previous stored value of SOC is not necessarily

reliable. Thus, once the system is started, the first SOC

estimation must come from the initial guess and then be

corrected by ANFIS. This infers an issue if the initial state

of charge lies in mode 2, as the estimation would entirely

depend on the initial guess and ANFIS would only be able

to correct it until mode 3 is activated.

Figure 15 shows the estimation results when starting the

baseline estimator from different initial conditions. In each

case, the estimation result is compared against the real

SOC value. For a fully charged initial condition, the esti-

mation and real values overlap each other, showing an

appropriate estimation. However, the fact that ANFIS is

active only in modes 1 and 3 is still an issue since cou-

lomb-counting (dominant in mode 2) needs a known initial

SOC. As seen in Fig. 15b–d, if the initial SOC lies in mode

2, the estimation in this zone will be shifted depending on

the value of the initial condition, which in this case is 40%.

It is only when the controller switches to mode 3 that the

estimator is able to correct itself. These results show the

limitation of using this technique for estimation: although

the average and maximum errors are quite low when the

system starts at a known state of charge (such as fully

charged state), the baseline hybrid estimator is not capable

of accurately determining SOC if the initial value lies in

mode 2, in which ANFIS is not active due to poor

observability in that SOC range.

Table 3 compares the estimation errors for each scenario.

The relatively high values observed when starting at 80%,

50% and 20% are the reason why a second, more robust

identification method and estimator are proposed in this

study, with the goal of increasing observability and reducing

the estimation error regardless of the initial state of the sys-

tem. As it was mentioned earlier, the use of Voc and R0 as

parameters to train ANFIS in [13] was effective because the

cell had a capacity of 3.4 Ah and a resistance curve with a

clearer gradient than the cells of this study. For these new Li–

S cells, however, the capacity is much higher, even though

the chemistry is the same, which results in a flatter Ro curve,

subsequently limiting SOC observability. As a result, there is

a need for development of a more complex system identifi-

cation method, which yields additional parameters that can

be used to train an ‘‘improved hybrid ANFIS’’ structure,

which works throughout the complete SOC range.

As presented in the previous section, the baseline esti-

mator uses a resistance-only model, which yields two

parameters that are not fully observable throughout the SOC

range, resulting in limited prediction capabilities for a 19 Ah

Li–S cell. In this section, an improved version of the baseline

estimator is proposed by using a more advanced identifica-

tion method (i.e. FFRLS) together with the Thevenin RC

network model. As seen in Fig. 7c, the parameter Cp has a

useful gradient versus SOC when it is below 70%, approxi-

mately. This results in improved observability (compared to

the gradient ofR0 that was only significant below 20% SOC).

In addition to that, the parameter Rp also presents some

gradient, although in a shorter SOC range. However, the

most useful characteristic obtained from FFRLS is that there

is a SOC range in which bothVoc andCp have a high gradient.

This means that now, throughout the SOC range, there is

always at least one parameter with a high gradient. From this,

it can be deducted that ANFIS can now be trained in the

complete range of SOC and, consequently, the role of the

coulomb-counting method in mode 2 will be eliminated too.

In other words, the ANFIS network can now work in all three

modes, as opposed to the baseline estimator, where it was

only active in modes 1 and 3, resulting in decreased accuracy

when starting at test in mode 2. It should be said that the

combination of coulomb-counting and the improved ANFIS

is still suggested because the former can contribute to the

smoothness of the estimation results.

With four inputs instead of two, the improved ANFIS

structure has more information to build a more robust rule

set, and consequently, the SOC estimation results are

expected be closer to the real values regardless of the initial

Table 3 Average and maximum estimation errors using the hybrid

baseline estimator at different initial conditions

Initial SOC (%) Average error (%) Maximum error (%)

100 0.96 4.05

80 11.55 14.89

50 9.50 11.06

20 16.37 19.17
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SOC. Figure 16 shows the modified ANFIS structure using

the additional inputs and their respective membership

functions. Having four inputs increases computational time

in comparison with the previous model; hence, the number

of membership functions of each input is slightly reduced,

as well as the number of epochs in order to keep a com-

parable level of computational effort while improving

accuracy. The reduction in number of iterations does not

affect the trained model, as seen in Fig. 17, where a con-

verging behaviour is still present. Table 4 shows an over-

view of the specifications of the improved ANFIS

structure, which its use results in a total computation time

of 5 min (for 19 hours of input data), in comparison with 2

min, which is the simulation time of the baseline model

(for the same length of input data).

Fig. 16 Membership functions and structure of the improved ANFIS estimator
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Fig. 17 Improved ANFIS model step size profile

Table 4 Specifications of the improved ANFIS estimator

Parameter Description

Inputs Voc , R0, Rp, Cp

Output SOC

Input MF type Gaussian

Output MF type Linear

Number of MFs 5, 5, 3, 5

Number of rules 375

Training epoch number 300
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Fig. 18 ECN parameter identification results using FFRLS method: a
R0, b Rp, c Cp, d Voc
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An additional modification made to the improved esti-

mator is the way the multi-mode controller works. The

baseline estimator had three modes where Mode 2 was

relying 100% on the coulomb-counting method. For the

improved estimator, again three different modes are con-

sidered. However, none of them relies entirely on the

support from the coulomb-counting method. That is par-

ticularly important because now, the improved estimator is

able to converge from any given initial condition. The

division of the proposed estimator is as follows, with

Fig. 18 showing how each zone is used as an input for

ANFIS:

• Mode 1: As before, uses Voc as the input for ANFIS.

Once the voltage drops below the threshold Vocthreshold ,

the controller switches to mode 2 which works based on

the polarization capacitance.

• Mode 2: As seen in Fig. 18c, the high-plateau region of

Cp below 75% SOC is used as the sole input for ANFIS.

The data shown in Fig. 18c were filtered, as the raw

identification output fluctuates significantly and would

affect the final estimation results. This relatively linear

result has the advantage of reducing the training and

estimation error.

• Mode 3: This is the region where the most computa-

tional effort is required, using three inputs at the same

time: R0, Rp and Cp. By doing so, the predicted SOC

value will be more reliable than the case of when only

one input is used (such as with the baseline version of

the estimator).

Although none of the estimation modes rely entirely on

coulomb-counting, each one of them uses a hybrid

weighted combination between this technique and the

ANFIS estimator, with the goal of smoothing the fluctua-

tions in SOC estimation. Said hybridization is performed

using the same approach presented in Eq. (30). Another

difference from the baseline hybrid estimator is the way

that the weights are applied. Depending on the mode

number, the estimator varies the weights given to both

coulomb-counting and ANFIS. For example, a greater

weighting is given to coulomb-counting whenever the

estimator output fluctuates more than a given percentage.

The weights in this case are as follows:

WANFIS ¼ 0:3 Wcoulomb�counting ¼ 0:7 ð32Þ

This gives more relevance to coulomb-counting and aids to

maintain the estimation under certain boundaries. Never-

theless, 100% ANFIS predominates throughout the SOC

range. The results are shown in Fig. 19 for two different

cycles of the same cell, with an initial condition of 40%.

Small fluctuations in the estimation are observed around

80% - 60% SOC, which are attributed to OCV behaviour

from the ANFIS training data, as well as the switching

between mode 1 and mode 2, which occurs around said

range. Comparing these results with those from Fig. 14, it

is also observed that the mid-region of SOC was slightly

smoother for the baseline estimator. That can be explained

by understanding that the baseline hybrid method relies

entirely on coulomb-counting in Mode 2, which results in

having a steady decrease in SOC. However, as mentioned

earlier, coulomb-counting is not suitable for real-life

applications since some drift can be present and it does not

work if the initial SOC lies in that region. Even though the

fluctuations are slightly greater, the results from the

improved hybrid ANFIS structure are more reliable as they

are completely based on rules obtained from the experi-

mental data, and it does not rely 100% on coulomb-

counting results.
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Fig. 19 Li–S cell SOC estimation using the improved hybrid ANFIS

estimator and FFRLS for cycle 1 (a) and cycle 2 (b) of the same cell
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Fig. 20 Li–S cell SOC estimation using the improved hybrid ANFIS

estimator at different initial conditions: a 100%, b 80%, c 50%,

d 20%
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Having tuned the proposed improved estimator, differ-

ent tests were carried in the same way as for the baseline

model, with the goal of evaluating its behaviour when

starting at various initial SOC values. Figure 20 demon-

strates Li–S cell SOC estimation results using the improved

hybrid ANFIS estimator at different initial conditions.

These new results show that the issue from the previous

method is not present anymore. Using the improved

method, the estimated SOC value always lies on top of the

real SOC value regardless of the initial condition. A

comparison between the error obtained in these tests with

those from the previous estimator is presented in Table 5.

As mentioned before, the use of Ro and Voc is effective

only when the initial SOC lies in Mode 1 (i.e. high volt-

age). However, when it does not, the error increases sig-

nificantly, and this is corrected by adding the other two

parameters and building a more robust ANFIS structure.

According to the results in Table 5, a maximum error of

1.64% in SOC is achieved using the proposed improved

estimator under any initial condition.

Using four inputs instead of two for ANFIS allows to

carry additional information with regard to the relationship

between the battery’s dynamic characteristics and its state

of charge. In addition to this, since ANFIS is fully con-

nected, if one has n inputs with M membership functions

assigned to each, then the network will be composed of

N ¼ Mn rules [40]. In this case, as shown in Table 4, the

number of membership functions is 5,5,3 and 5. Thus:

N ¼ 53 � 3 ¼ 375 ð33Þ

as it is also shown in Table 4. The greater number of rules

results in having a significantly increased amount of tun-

able parameters, which in turn results in a more accurate

SOC estimation.

6 Temperature effect

In this section, a complementary analysis is performed to

investigate the effect of temperature on the estimation

results. For that purpose, the same MLTB test is conducted

at 10�C, 20�C and 30�C by controlling the temperature

using the thermal chamber. The proposed improved hybrid

estimator is then used to study the effect of temperature.

Figure 21 shows the identification results using FFRLS at

10�C, 20�C and 30�C. Although Voc does not vary signif-

icantly in response to the temperature change, the rest of

the parameters show more sensitivity throughout the whole

SOC range. This is particularly important for parameters

like Cp, which is used for most of the SOC estimation.

These differences indicate that different estimators must be

trained if it is desired to cover different temperatures, as the

threshold values for each of the parameters will change. In

a real application, the BMS reads the temperature of the

cells and according to that, it can switch between different

estimators to display a more accurate SOC value. Applying

that solution, Table 6 presents the SOC estimation errors

obtained from separately trained estimators at 10�C, 20�C

and 30�C under different initial conditions. The results

indicate an acceptable performance by the proposed hybrid

ANFIS estimator at different temperatures, being consis-

tently under 6% maximum error.

Table 5 Average and

maximum SOC estimation

errors under same conditions for

the baseline and the improved

ANFIS methods

Estimation method Initial SOC (%) Average error (%) Maximum error (%)

Baseline hybrid ANFIS method 100 0.96 4.05

80 11.55 14.89

50 9.5 11.06

20 16.37 19.17

Improved hybrid ANFIS method 100 0.43 1.64

80 0.48 1.64

50 0.48 1.31

20 0.54 0.98
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Fig. 21 ECN model identification results at different temperatures: a
Voc , b R0 , c Rp and d Cp
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7 Conclusions

In this study, a promising battery chemistry, that is Li–S,

was investigated with regard to its BMS technology

readiness for real-time applications. A previous study on

Li–S cell SOC estimation was investigated more deeply,

which demonstrated the limitations associated with that

existing technique using two parameters (i.e. voltage and

resistance of the cell) to determine battery SOC. As a

result, the need of developing a more robust estimator was

shown based on comparative quantitative results. As a

solution to this, an improved hybrid ANFIS model was

developed for Li–S cell SOC estimation, showing a sig-

nificant improvement in comparison with the previous

version in the literature as a novelty of this study. Another

unique feature of this work is related to the state-of-the-art

19 Ah Li–S cells, which are used here in comparison with

the 3.4 Ah cells that were used in the literature. According

to the new results, the use of two parameters, Voc and R0, to

train the ANFIS estimator is not sufficient to achieve an

accurate SOC under different initial conditions, even

though it works properly from a fully charged state.

Therefore, there was a need of taking a different approach

and increasing the complexity of the estimator by adding

additional parameters with a more robust system identifi-

cation method. By doing so, it was possible to not only

reduce the average and the maximum estimation errors, but

also to cover different initial charging conditions without

this affecting the convergence rate of the estimator. For the

ambient temperature of 20�C, a maximum error of 1.64%

was obtained when compared to the reference SOC value

derived from the experiments. As a complementary anal-

ysis at the end, the effect of temperature was also inves-

tigated by conducting similar experiments at 10�C, 20�C

and 30�C. Consequently, a switching strategy was pro-

posed to cover a certain range of temperature by training

different estimators. The achievement of these results

contributes to Li–S battery technology being closer to

commercialization. This is due to the development of a

robust estimator which can now be compiled and integrated

onto a BMS board. Nevertheless, a limitation of this study

is the cell-ageing process. In order to consider that, a sig-

nificant number of additional experiments are required to

be able to determine the effect of cell’s state of health

(SOH) on the SOC estimation accuracy, which is left for

future studies. These further experiments could also

include testing at additional temperatures to the ones pre-

sented in this study, which would allow to cover a greater

number of environmental scenarios during vehicle use.
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