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Abstract

Lifelong domain adaptation remains a challenging task
in machine learning due to the differences among the do-
mains and the unavailability of historical data. The ulti-
mate goal is to learn the distributional shifts while retaining
the previously gained knowledge. Inspired by the Comple-
mentary Learning Systems (CLS) theory [31], we propose
a novel framework called Lifelong Self-Supervised Domain
Adaptation (LLEDA). LLEDA addresses catastrophic for-
getting by replaying hidden representations rather than raw
data pixels and domain-agnostic knowledge transfer using
self-supervised learning. LLEDA does not access labels
from the source or the target domain and only has access to
a single domain at any given time. Extensive experiments
demonstrate that the proposed method outperforms several
other methods and results in a long-term adaptation, while
being less prone to catastrophic forgetting when transferred
to new domains.

1. Introduction

Deep neural networks have shown near human level ca-
pabilities in many fundamental computer vision tasks [13].
Humans and animals can continuously acquire new infor-
mation over their lifetime without catastrophically forget-
ting the prior knowledge learned. This ability to continually
learn over time by accommodating new knowledge while
retaining the previously learned knowledge is referred to as
lifelong or continual learning (in our paper, we will continue
to refer to it as lifelong learning). However, artificial neu-

ral networks lack these capabilities as new information in-
terferes with previously learned knowledge and sometimes
the old knowledge completely gets overwritten by the new
one, leading to impaired performance [32]. The root cause
of catastrophic forgetting is that learning requires the neu-
ral network’s weights to change, but the critical change of
weights to past learning results in forgetting.

Following the independent and identical distribution
(iid) assumption, a deep neural network learned from the
training data is ideally expected to perform well on the test
data. However, this assumption may not always hold in the
real-world applications due to the discrepancy between do-
main distributions, and applying the trained model to the
new dataset may also result in negative performance. In
particular, when a model consecutively learns from different
visual domains, it tends to forget the past domains in favour
of the most recent ones. Domain adaptation (DA) methods
based on deep learning have received significant attention in
recent years for mitigating the domain shift from the train-
ing domain to the inference domain [11, 27, 46, 47].

Current domain adaptation methods operate under the
assumption that datasets from both the source and the tar-
get domains are accessible at the same time during train-
ing, which may not be feasible in practice. In addi-
tion, DA algorithms require fully labelled datasets, there-
fore these algorithms require annotating massive training
datasets for newly observed domains, which is a very time-
consuming, cumbersome and expensive process. To re-
lax this constraint, we propose a novel framework called
LLEDA that can address both catastrophic forgetting and
domain-agnostic knowledge transfer without accessing the
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labels either from the source or the target domain, and hav-
ing access to a single domain at any given time.

Motivated by the complementary learning systems [31]
(CLS) theory, we propose a lifelong learning frame-
work that reduces catastrophic forgetting, while facilitat-
ing domain-agnostic knowledge transfer without using or
accessing labelled data or other information from the past
domains at any given time. To the best of our knowledge,
this is an area of domain adaptation that has not yet been
explored. In summary, our work makes the following con-
tributions:

The main contributions of our work are outlined below

1. We propose a novel lifelong learning framework based
on the complementary learning systems theory that
mimics the workings of the human brain for address-
ing lifelong domain adaptation with access to multiple
sequential domains, all while not using any labels.

2. We propose to overcome catastrophic forgetting by
replaying hidden representations rather than raw pix-
els in the context of Lifelong Domain Adaptation, at-
tempting to maximise generalisation between source
and target domains with different distributions.

3. Our proposed self-supervised based approach does not
require access to either source or target labels, hence
saving time and effort to annotate data and assisting
with the labeling bias.

4. Extensive empirical results demonstrate that our
method performs competitively across several bench-
marks, when compared against other approaches.

2. Related Work
Our work fundamentally lies at the intersection of life-

long learning inspired by CLS theory [31], self-supervised
learning, and domain adaptation. [36] categorises catas-
trophic forgetting mitigation using model regularisation,
memory replay or by expanding and training the network.
Regularisation methods identify the network weights that
contribute significantly to retaining knowledge about a pre-
viously learned task and then consolidate them when the
model is updated to learn the subsequent tasks [19, 21,
26]. On the other hand, dynamic architectures modify the
model’s underlying architecture by dynamically accommo-
dating neural resources as it learns new patterns [22, 25,
39]. Similarly, complementary learning systems and replay
methods rely on memory replay by storing samples from
old distributions and regularly feeding them back to the
model to overcome catastrophic forgetting. Alternatively,
the model can be expanded progressively to learn the new
tasks using added weights that propose ways of constraining
the tasks’ objectives to avoid forgetting [20, 29, 40]. In this

paper, we tackle lifelong learning using Latent Replay by
replaying hidden representations rather than raw pixels. We
address the problem of lifelong domain adaptation, where
the domain sequentially changes, in contrast to the majority
of recent research efforts that concentrate on changes with
respect to task/class.

Domain Adaptation: Domain adaptation is a special case
of transfer learning where the goal is to learn a discrimina-
tive model in the presence of domain shift between source
and target datasets. Various methods have been intro-
duced to minimise the domain discrepancy in order to learn
domain-invariant features. Some involve adversarial meth-
ods like DANN [11], ADDA [48] that help align source and
target distributions. Other methods propose aligning distri-
butions through minimising divergence using popular meth-
ods like maximum mean discrepancy [13,14,27,28,46,47],
correlation alignment [4, 44], and the Wasserstein metric
[8, 24]. MMD was first introduced for the two-sample tests
of the hypothesis that two distributions are equally based
on observed samples from the two distributions [14], and
this is currently the most widely used metric to measure
the distance between two feature distributions. The Deep
Domain Confusion Network proposed by Tzeng et al. [49]
learns both semantically meaningful and domain invariant
representations, while Long et al. proposed DAN [27] and
JAN [28] which both perform domain matching via multi-
kernel MMD (MK-MMD) or a joint MMD (J-MMD) crite-
ria in multiple domain-specific layers across domains.

Self-Supervised Learning: Self-Supervised Learning
(SSL) is a paradigm developed to learn visual features from
unlabelled data. Recently, SSL approaches have shown sig-
nificant performance sometimes even surpassing, the per-
formance of supervised baselines [1, 5–7, 10, 16, 17, 53].
These methods use image augmentation techniques to gen-
erate multiple views of a given image and learn a model that
is invariant to these augmentations. Most recent approaches
are divided into two main categories, contrastive and non-
contrastive methods. Contrastive methods learn an embed-
ding space where positive pairs are pulled together, whilst
negative pairs are pushed away from each other [5, 6, 17].
Non-contrastive methods on the other hand remove the need
for explicit negative pairs either by using distillation or by
regularisation of the variance and covariance of the embed-
dings [1, 7, 16, 53]. However, none of these works studied
the ability of SSL methods to learn continually and adap-
tively if they are applied directly. Moreover, very few works
have attempted to use SSL in the lifelong domain adaptation
setting, e.g. [45] is designed using contrastive learning, so
it lacks the capability to adapt using other SSL paradigms.
Another example is [43] where their method adapts well
only if the domain shift is small between the intermediate
domains and is trained using source-labelled data. In this
paper, we present a general-purpose framework to incor-
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Figure 1. Overview of the proposed LLEDA architechture. LLEDA consists of fast learning DA network and slow learning SSL network.
The SSL network learns generic representations using self-supervised learning and DA network helps to overcome domain shift by
optimising DA loss at two levels, DA1- MMD loss between the representations of d4 and s4, and DA2 - MMD loss between memory
representations and current data representations.

porate self-supervised learning approaches into the lifelong
learning process to extract representations.

Algorithm 1: Pseudocode for the proposed Life-
long Domain Adaptation

Input : Current Domain Data D
Memory Data M

for sampled minibatch do
Calculate LSSL loss on D using equation: 5
Calculate LDA1 loss on D using equation: 2
if domain > 1 then

Calculate LDA1 loss on M using equation: 2
Calculate LDA2 loss on M and D using

equation: 2
end if
Add latent representations to memory using

algorithm:2
end for

3. Method
Our overall objective is to update a model continually to

learn distributional shifts while retaining knowledge about

Algorithm 2: pseudocode for saving random latent
representations to memory
M = θ
Ms = memory size
Mc = current memory size
for each batch do

δ = Ms −Mc

Ss = sample size
Ss = min( Ss, δ)
R = random sampling of size Ss from batch
M =M ∪R
Mc = update current memory size

end for

past learnings. Existing domain adaptation and lifelong
learning algorithms address the challenge of domain shift,
however, they require simultaneous access to the source and
the target domains, as well as access to the labelled data or
at the very least, the source domain labels. We propose a
new lifelong domain adaptation framework (shown in figure
1 and algorithm 1), where we continually update a model
to learn the distributional shifts while retaining the prior
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knowledge by replaying the hidden latent representations
instead of the raw pixels, with access to just a single do-
main at any given time and no labelled data from either the
source domain or the target domain.

LLEDA is inspired by the CLS theory [31], where a
the slow-learning SSL network which can be thought of
as an analogy of the neocortex gradually acquires struc-
tured knowledge using self-supervised learning. In addi-
tion, the fast-learning system centred on the hippocampus
helps with the rapid learning of specific domain tasks. The
fast-learning DA network (hippocampus) addresses domain
discrepancy by reducing the distance between the source
and target distributions with their mean embeddings in the
Reproducing Kernel Hilbert Space. We propose a brain-
inspired variant of replay as such we store the internal or
hidden latent representations in a buffer which are replayed
instead of raw-pixels to overcome catastrophic forgetting.
At the same time, the DA network queries the SSL net-
work for quick knowledge acquisition of general represen-
tations. The incurred DA losses (DA1 and DA2) are back-
propagated through both the learners to reduce the domain
shift, interleaved training of the past latent representations
from memory with new domain representations consolidate
the current learning for long-term retention and to overcome
catastrophic forgetting.

3.1. Latent Replay

The mammalian brain has successfully evolved to resist
catastrophic forgetting by reactivating, replaying, and recre-
ating the experience preserved in memories [35, 51]. It re-
tains compressed versions of the crucial information from
past experiences and reactivates by repeating these neural
activity patterns instead of the raw input patterns of prior
experiences. Inspired by this, LLEDA uses latent replay
for storing the feature representations in the latent memory
from a specific layer as a tool to reactivate and replay to
overcome catastrophic forgetting.

We freeze the network below the latent replay layer
to prevent it from deviating from the feature representa-
tions that would have otherwise been generated while feed-
forwarding from the input layer, ensuring that these stored
latent representations are stable and accurate [37]. As our
model does not have access to labels, we follow a simple
approach and thereby store a random subset of past latent
representations in memory and train the network while in-
terleaving with new domain representations [30]. Follow-
ing that, we save the latent representations from both the
DA and the self-supervised networks for the given random
image. During memory consolidation, these memories are
interleaved with new latent representations to form a more
general representation supporting long-term retention and
generalisation when encountering new domain experiences.

As it would be inefficient and impractical to store all past

latent representations in the latent buffer, we instead rela-
tively store only a small number of latent representations
per domain until the buffer reaches the given number. Thus,
at any point in time, the buffer contains a limited size of past
random experiences as shown in algorithm 2.

3.2. Domain-specific Representations Learning

Inspired by Dualnet [38], the DA network efficiently
utilises the generic representations acquired from the self-
supervised network to learn via an adaptation mechanism
quickly. The DA network efficiently acquires the low-
level general representations from the self-supervised net-
work which can later be used to classify the downstream
task alongside reducing the domain shift. It does this in
two ways: Firstly the DA network calculates the domain
shift using representations from block 4 of the Resnet [18]
DA1 as shown in figure 2, during both the memory replay
and the data source propagation. Maximum mean discrep-
ancy (MMD) is calculated between the representations of
DA network and SSL network (DA1) to reduce the do-
main shift. Secondly, MMD is again calculated after the
element-wise multiplication between the memory represen-
tations and the current data stream propagation (DA2) as
shown in figure 2. Finally, we backprapagate these losses
through both networks. Again, back propagating the MMD
loss at two stages (DA1 and DA2) helps more efficiently in
the reduction of domain shift, compared to a single domain
adaptation loss.

Let s4 be the feature representation from the SSL net-
work’s residual block and d4 be the feature representation
from the DA network’s residual block in ResNet [18] as
shown in figure 2, the adapted feature to calculate DA2 loss
is obtained as

d′4 = d4 ⊗ s4 (1)

where ⊗ denotes the element-wise multiplication,the
output of the fast DA network d4, slow SSL network s4 and
the transformed feature d4′ all have the same dimension.

The final layer’s transformed feature d4′ which will be
fed into a DA network’s head to calculate the DA2 loss us-
ing MMD explained later in this section. The fast DA net-
work, therefore, takes advantage of the slow SSL learner’s
rich feature representations resulting in quick knowledge
capture that can be used to reduce domain shift and improve
generalisation leading to better identification of classes in
the downstream classification task.

MMD defines the distance between the two distributions
with their mean embeddings in the Reproducing Kernel
Hilbert Space (RKHS). MMD is a two-sample kernel test
to determine whether to accept or reject the null hypothesis
p = q [14], where p and q are source and target domain
probability distributions. In short, the MMD between the
distributions of two datasets is equivalent to the distance

4



Figure 2. Overview of latent replay. Demonstration of flow of latent representations, the arrows in blue show the latent representation
flow from memory to the network and arrows in pink show the flow of latent representations from network to memory.

Figure 3. Sample images from Digits Dataset

between the sample means in a high-dimensional feature
space and is computed by the following equation:

LMMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

φ(xsi )−
1

M

M∑
j=1

φ(xtj)
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2

H

(2)

=
1

N2

N∑
i=1

N∑
i′=1

k(xsi , x
s
i′)−

2

NM

N∑
i=1

M∑
j=1

k(xsi , x
t
j)

+
1

M2

M∑
j=1

M∑
j′=1

k(xtj , x
t
j′)

(3)

Figure 4. Sample Images from Office-Home Dataset

where φ (.) is the mapping to the RKHS H, k (., .) =
〈φ (.) , φ (.)〉 is the universal kernel associated with this
mapping, and N,M are the total number of items in the
source and target respectively.

3.3. Generalised Feature Learning

The SSL learner is a standard backbone network trained
to optimise an SSL loss in order to learn the general rep-
resentations where labelled data is not available, which is
the case with our scenario. Self-supervised methods learn
to maximise the similarity between embedding vectors pro-
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Figure 5. Sample Images from Office-Caltech Dataset

Dataset Method Average

Digits

Baseline 56.7
DANN 74.5
DAN 72.9
CUA 82.1
GRCL 85.3
LLEDA-S 89.0
LLEDA 86.6

Table 1. Comparison of LLEDA on Digit datasets with state-of-
the-art

duced by encoders fed with different views of the same im-
age. As this is a generic step to harness the representations,
any SSL method can be applied. However, we have used
VICReg [2] to preserve the information content of the repre-
sentations as it does not require a memory bank, contrastive
samples, or a large batch size. VICReg [2] uses a weighted
average of invariance, variance and covariance as follows

l(zi, zj) = λs(zi, zj)+µ[υ(zi)+ υ(zj)]+ ν[c(zi)+ c(zj)]
(4)

Where λ, µ, ν are the hyper-parameters controlling the
importance of each term in the loss. s(zi, zj) is the Invari-
ance, c(zi), c(zj) is covariance and υ(zi), υ(zj) is variance.
The overall objective is given by

L =
∑
IεD

∑
ti,tj∼T

l(zi, zj) (5)

4. Experiments & Results
4.1. Datasets

We compare and evaluate our method against baseline
approaches on a number of benchmark DA datasets, such
as Digits, Office-Home [50] and Office-CalTech [12].

Digit Datasets: We consider standard digits datasets
broadly adopted by the computer vision community.

Dataset Method Average

Office-Home

Baseline 28.7
DANN 57.6
DAN 56.3
CUA 58.6
LDA-CID 59.4
LLEDA-S 60.3
LLEDA 58.2

Table 2. Comparison of LLEDA on Office-Home datasets with
state-of-the-art

Dataset Method Average

Office-Caltech

Baseline 52.3
DANN 81.7
EWC 84.5
CUA 84.8
GRCL 87.2
LLEDA-S 87.5
LLEDA 86.1

Table 3. Comparison of LLEDA on Office-Caltech datasets with
state-of-the-art

MNIST [23] and USPS [9] are hand-written grey-scale im-
ages, with relatively small domain differences. SVHN [33]
includes coloured images of street numbers and contains
more than one digit in each image. Sample images of
the digit datasets are presented in figure 3. We conducted
experiments on two tasks: SVHN → MNIST → USPS
and MNIST → SVHN → USPS. These two scenarios will
allow us to reflect on the performance of lifelong learning
scenarios starting from easy datasets, moving to harder
ones and vice versa.

Office-Home [50]: The office-home data consists of
four visual domains: Art (A), Clipart (C), Real World (R),
and Product (P) each consisting of images from 65 visual
categories totalling 15,500 images in office and home
settings leading to the possibility of defining 12 pair-wise
binary UDA tasks. Sample images of the office-home
datasets are presented in figure 4.

Office-CalTech [12]: This dataset is an extension of the
Office-31 [42] with 10 categories shared by Office-31 and
the CalTech-256 dataset [15]. This dataset has four do-
mains: Webcam (W), DSLR (D), Amazon (A), and Cal-
Tech (C). Sample images of the office-caltech datasets are
presented in figure 5.

4.2. Training Methods

We benchmark our LLEDA method against the baseline
method which simply finetunes the model as new training

6



Method CYCLE-1 CYCLE-2 Avg
SVHN USPS MNIST MNIST USPS SVHN

VICReg 71.3 93.3 94.1 86.7 85.9 88.7 86.6
SimCLR 73.6 94.8 93.8 78.9 87.2 90.5 86.4
BYOL 70.9 95.5 92.6 86.3 88.9 87.5 86.9

Table 4. Ablation: Comparison of LLEDA using different self-supervised methods.

domains come along, we then compare our LLEDA method
with DANN [11] and DAN [27], both of them are classic do-
main adaptation methods and both these methods have ac-
cess to source and target data during training. We also com-
pare LLEDA with LDA-CID [41], CUA [3] and GRCL [45]
which are continual learning methods with access to source
labels. The former is a generative method and the later
ones are replay based methods. We also compare LLEDA-
S method with all the above methods, this is a supervised
version of LLEDA with access to labels.

4.3. Implementation Details

We have 3 stages to our implementation. Firstly, we pre-
train the model with Resnet18 as the base encoder on Ima-
geNet without using memory or performing domain adapta-
tion. We then use the pretrained network and train our net-
work as discussed in the methodology section. In the later
stage, we train a linear classifier on top of a fixed representa-
tion and finally evaluate using the encoder whilst discarding
the MMD projection head.

We pretrain our network using the base encoder ResNet-
18 [18] on Imagenet. During pretraining, we train LLEDA
on two nodes, each consisting of 4 GPUs (Titan Xp GPUs),
using LARS optimizer [52] with a batch size of 512 and
weight decay of le-6 for a total of 100 epochs. We use
the pretrained base encoder trained in the previous step as a
base during the training phase and train the datasets by in-
terleaving the stored memory from the given layer and new
data source representations. We use SGD optimizer with a
batch size of 128 and weight decay of le-4. During finetun-
ing and evaluation, we freeze the trained network (s1, d1
as shown in figure 1) and train a linear classifier on top of
a fixed representation, whilst discarding the MMD part of
the network, which we then use for evaluation. Similar to
most self-supervised models [1, 5, 6, 6, 7, 16, 17, 34, 53], we
report performance by training a linear classifier on top of
a fixed representation to evaluate representations which is a
standard benchmark that has been adopted by many papers
in the literature.

4.4. Results and Analysis

Baseline: We start by training a basic model Mi on do-
main Di, we then finetune the model by training on the next

available sequential domain Di + 1. When this training
reaches the end of the cycle, it often performs badly on
older domains due to catastrophic forgetting, we treat this
as our baseline. In our experiments, we use Resnet18 as our
baseline model.

To start with, LLEDA shows increased performance with
respect to the baseline 56.7% to 86.6% table 1, but it is a
very basic finetuned model. From table ref, we can see that
the performance of LLEDA and LLEDA-S on the Digits
dataset is significantly better than the other state-of-the-art
methods.

Office-Home dataset Again similar to Digits, Office-
Home dataset has an increased performance when com-
pared to the baseline method from 28.7% to 58.2% which
can be seen in table 2, which is expected. The LDA-CID
method has a slight advantage as it has access to labels, so
compared to LLEDA, the accuracy is 1.2% higher. On the
other hand, LLEDA-S with access to labels has an increased
performance of 0.9% compared to the LDA-CID methodol-
ogy.

Office-Caltech dataset: Similar observation here with re-
spect to the baseline comparison, the performance increased
from 52.3% to 86.1% as expected. LLEDA method per-
formed well compared to the other state-of-the-art methods
from table 3. GRCL method is 1.1% higher than LLEDA
as it has a slight advantage due to its access to labels. But
if we compare GRCL with LLEDA-S, LLEDA-S shows a
marginal (0.1%) increase in performance compared to the
GRCL methodology.

Overall even though LLEDA does not have access to la-
bels or access to source datasets, we can clearly observe
from tables-1-3 that the performance of LLEDA i.e, the av-
erage accuracy is comparatively the same or better than the
other methods.

4.5. Ablation Studies

We analyse the effectiveness of LLEDA using experi-
mental cycles to replicate the lifelong learning scenario.
We start by training the image samples from one dataset,
and then continue to train on image samples from the next
dataset. The two cycles we suggest are as follows SVHN
- USPS - MNIST and MNIST - USPS - SVHN, we refer
to these as cycle-1 and cycle-2 respectively. We start by
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Figure 6. Comparison of SSL methods on the Digits dataset

analysing the LLEDA accuracy with respect to the method
of the slow-learning SSL network used. In table 4 and fig-
ure 6, we compare three SSL methods: SimCLR, BYOL
and VICReg. We chose to compare these 3 methods as
the former is a contrastive-based method whereas the lat-
ter two are non-contrastive ones. All three methods feature
different losses and use different techniques to avoid col-
lapse (e.g. negative samples, redundancy reduction, etc).
From table 4, we can see that the average performance of
VICReg is robust in comparison to the average performance
of contrastive-based SimCLR as the latter requires a require
large amounts of contrastive pairs and a higher batch size to
converge. The average performance of VICReg slightly un-
derperforms compared to BYOL, but overall, the compara-
tive performance of all three SSL methods is almost similar.

5. Conclusion & Future Work
Inspired by the way the human brain works and the CLS

theory, we developed LLEDA which can perform competi-
tively in a continual domain adaptation setting storing and
replaying compressed hidden representations rather than the
raw pixel data. We have demonstrated that our model can be
effectively used for downstream continual domain adapta-
tion tasks without having access to any labelled data. Exper-
imental results show that our proposed LLEDA method sig-
nificantly outperforms other advanced methods. We hope
that the impressive outcomes of our study will inspire future
researchers to use source and target unlabeled data in the
lifelong domain adaptation setting. In our future work, we
would like to work on lossy or lossless compression tech-
niques to further compress the latent representations in or-
der to store and replay in a more efficient manner.
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