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REVIEW

Emerging immune-based technologies for high-grade gliomas
Alice Giotta Luciferoa and Sabino Luzzi a,b

aNeurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; bNeurosurgery Unit, 
Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

ABSTRACT
Introduction: The selection of a tailored and successful strategy for high-grade gliomas (HGGs) 
treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic 
landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. 
Identification of immune evasion pathways opens the way to novel immune-based strategies. This 
review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechan-
isms related to the tumor microenvironment and future perspectives to overcome glioma immunity 
barriers are also debated.
Areas covered: An extensive literature review was performed on the PubMed/Medline and ClinicalTrials. 
gov databases. Only highly relevant articles in English and published in the last 20 years were selected. 
Data about immunotherapies coming from preclinical and clinical trials were summarized.
Expert opinion: The overall level of evidence about the efficacy and safety of immunotherapies for 
HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while 
peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor 
immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant 
refinements and development of new routes of drug administration will permit to design of novel 
immune-based treatment algorithms thus improving the overall survival.
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1. Introduction

High-grade gliomas (HGGs) are prevalent brain tumors and 
glioblastoma (GBM) is the most fast-growing and deadly 
accounting for 60% of primary gliomas in the adult population 
[1–7]. Since 2005, the Stupp standard therapy for HGGs con-
sisted of the maximum surgical resection followed by concur-
rent adjuvant chemo and radiotherapy [8,9]. Despite the 
assessed efficacy of the conventional protocol, no improve-
ment in the tumor remission was achieved. The median overall 
survival remains at 14–16 months and the 5-year survival rate 
persists under 10% after diagnosis [10].

The grim prognosis and high rate of recurrence are con-
sequential to the intrinsic tumor heterogeneity, intense self- 
renewal activity, abnormal vascular growth, and immune eva-
sion mechanisms [11–19].

Recent evidence from literature identifies the genesis of 
glioma resilience in the immune suppressive mechanisms. 
Glioma cells secrete chemokines, cytokines, and growth factors 
which promote the recruiting of lymphocytes, T cells CD4+, 
CD8+, Treg, NK cells, monocytes, and macrophages [20,21]. 
The infiltration of a wide range of immune cells builds up an 
immune niche, namely the glioma microenvironment. The 
crosstalk between immune cells and matrix cells manages the 
cancer growth, spreading, and mechanisms of tumor resistance 
[22]. Hence, the glioma microenvironment is strictly related to 
patients’ prognosis, survival, and response to therapy.

On these assumptions, the new therapeutic frontiers 
focused on the design of strategies aimed at modifying 
tumor genomics, manipulating the glioma-related immune 
microenvironment, thus boosting the antitumor immunity.

Advances in translational medicine and the engineering of 
molecular vehicles, such as nanoparticles or attenuated 
viruses, allowed to concretize of novel immunotherapies. The 
most promising approaches included the active and adoptive 
immune technologies, both targeted to the activation of the 
host’s immune system.

The present article overviews the emerging immune-based 
technologies for the HGGs treatment focusing on the alkylat-
ing agents, monoclonal antibodies, vaccines, gene techniques, 
immunomodulatory approaches, and adoptive immunothera-
pies. The composition of the immunosuppressive glioma 
microenvironment, the role of each immune infiltrate in the 
mechanisms of therapeutic resistance, the limitations, and the 
future challenges are furtherly discussed.

2. Classification of immunotherapies for high-grade 
gliomas

As previously described by our group, the immune-based 
technologies were categorized according to the molecular 
targets, mechanism of action, and drugs [23–32]. Two treat-
ment arms were outlined, namely active and adoptive 
approaches. Active immunotherapies were designed to 
directly lyse cancer cells and/or trigger the antitumor immune 
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cascade. Active treatments include checkpoint inhibitors, such 
as the alkylating drugs and monoclonal antibodies; vaccines; 
and some gene-based technologies comprehending oncolytic 
virotherapies and immunomodulatory strategies.

The adoptive immunotherapies provide the transfer of 
autologous or allogeneic engineered T, natural killer (NK), 
and natural killer T (NKT) cells with the aim to restore the 

host antitumoral immune response. Table 1 summarizes the 
classification of immune-based therapies for HGGs (Table 1).

2.1. Active immunotherapies

2.1.1. Checkpoint inhibitors
Checkpoint inhibitors (CPIs) are at the vanguard of immunothera-
pies showing real life-saving benefits for GBM patients. CPIs are 
classified as chemotherapy drugs, which act during distinct phases 
of the cell cycle, and monoclonal antibodies (MAbs).

Alkylating drugs are chemotherapy compounds that 
methylate DNA azotate bases avoiding the binding of double- 
stranded DNAs and glioma cell proliferation. Temozolomide 
(TMZ), combined with surgery and radiotherapy, remains the 
first-line systemic drug in the treatment of HGGs [8,9]. It is 
administered orally as a prodrug, reaches appropriate concen-
trations, and passes the blood–brain barrier (BBB) [33–36]. 
TMZ achieves the tumor site where it is spontaneously con-
verted into its active form, the 5-3-methyltriazen-1-yl- 
imidazole-4-carboxamide (MTIC). MTIC methylates guanine or 
adenine DNA bases on the N7-/O6- or N3-site, respectively, 
resulting in base pair mismatch, DNA rupture, and glioma cell 
apoptosis [37–39]. Accordingly, the therapeutic efficacy of 
TMZ is strictly reliant on the mechanisms of DNA repair 
[40,41]. The O6-methylguanine-DNA methyltransferase 
enzyme, known as MGMT, demethylates the damaged O6- 
methylguanine nucleotide, thus repairing chromatin and 

Article highlights

● The high-grade gliomas aggressiveness and resistance to conven-
tional therapies are owed to the genomic heterogeneity and adap-
tion mechanisms recognized in the tumor immunosuppressive 
microenvironment.

● Immunotherapies strive to manipulate and manage pathways of 
glioma immune escape.

● Bevacizumab, an anti-VEGF-A monoclonal antibody, is approved as 
a second-line treatment for recurrent glioblastoma.

● The vaccinations proved to be useful in enhancing the antitumor 
immune response, although not leading to an increase in survival.

● Gene therapies, based on viral vectors, or immunomodulatory gene 
technologies showed excellent results in vitro studies, but also in 
some clinical trials.

● Immunogenomics and identification of specific tumor antigens let 
the design of adoptive immunotherapies. The CAR T cells are engi-
neered to selectively target glioma cells resulting in oncolysis.

● A better understanding of the resilience pathways will be vital in 
improving immune-based therapies for brain tumors. The future 
challenge is the planning of combined protocols to improve the 
overall and progression-free survival of HGGs patients.

Table 1. Classification of Immunotherapies for High-Grade Gliomas.

Immunotherapies

Active

Checkpoint inhibitors

Alkylating agent TMZ

MAbs

BVZ 
Ipilimumab 
Nivolumab 
Pembrolizumab 
Relatlimab

Vaccine

Rindopepimut 
R123H/IDH1 
IMA950 
HSPCC-96 
DCVax-Brain 
PerCellVac2

Gene-based therapy

Oncolytic viruses

oHSV 
CRAd 
MV 
PVS-RIPO 
oNDV 
Reolysin

Immunomodulatory Genes
IL-4 
IL-12 
IFNβ/γ

Adoptive

T cell

TCR T
CAR T EGFRvIII 

IL-13Ra 
2HER2 
EphA2

NK cell

Allogenic NK
DNRII

CAR NK cells
ADCC

Anti-KIR Abs
Hybrid CD1d-restricted NKT cellsALECSAT

ADCC: antibody-dependent cellular cytotoxicity; ALECSAT: autologous lymphoid effector cells specific against tumor; Anti-KIR Abs: antibody- 
mediated blocking of KIR; BVZ: bevacizumab; CAR T: chimeric antigen receptor; DC: dendritic cell; DNRII: dominant-negative receptor II; EGFRIII: 
epidermal growth factor receptor variant III; EphA2: erythropoietin-producing hepatocellular carcinoma A2; HER2: human epidermal growth 
factor 2; HSPCC: heat-shock proteins peptide complex; IL-13Ra2: interleukin-13 receptor α2; MAbs: monoclonal antibodies; NK: natural killer 
cells; NKT: T lymphocyte-natural killer cells; oNDV: oncolytic Newcastle disease virus; T: T lymphocyte; TMZ: temozolomide. 
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keeping the cell cycle going [42,43]. The methylation status of 
the CpG Islands, within the MGMT promoter, and the conse-
quent enzyme expression is a relevant prognostic factor for 
chemo response to alkylating agents [44–48]. Figure 1 reports 
the TMZ pharmacodynamics and MGMT mechanism of che-
moresistance (Figure 1).

Furthermore, the TMZ exerts a specific immunomodulatory 
effect based on its dosage. In 2011, Mitchell and colleagues 
conducted a preclinical study with the employment of increas-
ing doses of TMZ in murine models, combined with immu-
notherapy. They demonstrated the antitumor effect of TMZ 
and its influence on the host immune response by causing 
lymphopenia. The transient TMZ-induced lymphopenia trig-
gered the immune cascade raising the regulatory T cells 
(Tregs) activity [49]. Also, the systemic administration of 10 
lower concentrations of TMZ in GL261 glioma-bearing mice 
was demonstrated to boost the NK cells within the tumor 
microenvironment. The rationale lies in the overexpression of 
the multidrug resistance protein Abcc3 (ATP Binding Cassette 
Subfamily C Member 3) on NK cells’ surfaces, liable of che-
moresistance to TMZ [50].

The DENDR1 clinical trial tested the TMZ in combination 
with dendritic cell immunotherapy for GBM patients 
(#NCT04801147). Results reported a decrease of peripheral 
CD8 + T cells simultaneously with an overactivation of the 
Abcc3- expressing NK cells [50]. A further preclinical study 
tried the intra-tumoral administration of TMZ through a micro- 
osmotic pump in GL261 models. A local increase of immune 
effector cells was demonstrated [51].

All above-mentioned data demonstrated both systemic and 
sited administration of TMZ results in increased immunostimu-
lant mechanisms and strengthening of concomitant immu-
notherapies [49–52].

The MAbs are tailored proteins acting as human immuno-
globulins. MAbs target specific molecular ligands and mimic 
the host antitumoral response.

The backbone of this strategy is the bevacizumab (BVZ). It 
binds the vascular endothelial growth factor A (VEGF-A) and 
blocks its activation through the VEGF tyrosine kinase receptors, 
upregulated on the surface of glioma cells [53–60]. Impound of 
VEGF-A inhibits cell growth, aberrant tumor vasculogenesis, and 
reduces the vascular density and permeability [54,61–65].

BVZ also plays a pivotal role in the regulation of the anti-
tumoral immune response. VEGF-A supports an immunosup-
pressive glioma microenvironment by impeding dendritic 
cells’ maturation and enhancing the proliferation of Tregs 
[63,66]. BVZ-mediated blockade of the VEGF proved to estab-
lish a favorable immune niche, boost the host immune 
response through a synergistic effect with cell-lytic che-
motherapy, and inhibit glioma stem cells [64,67,68].

In 2009, BVZ was approved by the Food and Drug 
Administration (FDA) as a second-line treatment for recurrent 
GBMs [69,70] (Figure 2(a)).

The programmed cell death protein 1 (PD-1), expressed on 
active lymphocytes, bounds the programmed cell death pro-
tein ligands (PD-L1/2) exposed on the surface of glioma cells. 
This linkage prevents the CD4+ and CD8+ activity and sustains 
the mechanisms of immune escape [71,72]. The nivolumab, 
a MAb IgG directed against PD-1, was tried in many clinical 
trials on recurrent HGGs, but the results are still preliminary 
[73–75] (Figure 2(b)). In 2019, Schalper and his group con-
ducted a single-arm phase II clinical trial testing the nivolumab 
as a neo- and adjuvant treatment for GBMs (#NCT02550249). 
They administered the drug before and after surgery in 30 
cases, compared to a control group treated with the standard 
protocol. Although not showing effective survival benefits, 

Figure 1. The image depicts the pharmacodynamics of temozolomide (TMZ). It is orally administered as a prodrug, converted at the tumor site into the 
5-3-methyltriazen-1-yl-imidazole-4-carboxamide (MTIC), the active form. MTIC methylates bases leading to DNA breakage and apoptosis. If the O6-methylguanine- 
DNA methyltransferase enzyme (MGMT) demethylates the nucleotides and repairs chromatin, the glioma cell develops chemoresistance to TMZ.
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Figure 2. Mechanisms of action of MAbs, (a) Bevacizumab (BVZ), (b) Nivolumab (NVB), and (c) Ipilimumab (IPL) were represented.
(A) BVZ blocks the vascular endothelial growth factor A (VEGF-A) preventing its binding with the vascular endothelial growth factor tyrosine kinases receptor (VEGFR), overexpressed on 
glioma cells. BVZ-mediated blockade of the VEGF inhibits the abnormal angiogenesis within the tumor microenvironment; (B) NVB directly binds the programmed cell death protein 1 (PD- 
1) on the active T-cells, thwarting the CD4+ and CD8+ activity and supporting the immune escape; (C) IPL binds the cytotoxic T-lymphocyte antigen 4 (CTLA-4), a T-cell receptor, deputy to 
the shutdown of the immune cascade. This linkage permits the upregulation of T-cells activity.MHC: Major Histocompatibility Complex; PDL-1/2: Programmed Cell Death Protein-Ligand 1/2; 
TCR: Transgenic T Cell Receptor. 
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administration of nivolumab was revealed to enhance the 
local chemokine infiltration and promote the immune tumor 
microenvironment [75].

Further clinical trials tested the nivolumab and BVZ as 
a combined protocol for HGGs treatment (#NCT03890952, 
#NCT03743662, #NCT03452579). Results were not noteworthy. 
In 2020, Reardon et al. completed a phase 3 randomized 
clinical trial comparing the effects of nivolumab to BVZ in 
patients with recurrent GBMs (#NCT02017717). After treatment 
with TMZ and radiotherapy, 369 patients with relapsed GBM 
were enrolled and divided into two groups treated with nivo-
lumab (3 mg/kg) or BVZ (10 mg/kg) for 2 weeks. Results 
showed equivalent average survival between the two groups, 
with an excellent safety profile for nivolumab [74].

In 2021, pembrolizumab (Mab targeting PD-L1) was 
employed in phase II clinical trials, as monotherapy or com-
bined with BVZ, for recurrent GBMs. No significant increase in 
survival was reported [76]. In 2021, Reardon and his group 
conducted the phase I ‘KEYNOTE-028’ clinical study to prove 
the antitumor effectiveness and tolerance profile of pembroli-
zumab in PD-L1-positive GBMs (#NCT02054806). 
Pembrolizumab (10 mg/kg) was administered every 2 weeks 
for 2 years. Results reported a durable efficacy as monother-
apy, with a low toxicity rate [77]. Two recruiting clinical trials 
are employing the pembrolizumab for recurrent pediatric 
tumors, including HGGs (#NCT02359565; #NCT03173950). 
Results are still pending.

Atezolizumab, a PD-L1 inhibitor, demonstrated potential 
therapeutic effects in a phase II trial for recurrent HGGs, espe-
cially with a high level of CD4+ within the tumor microenvir-
onment [78].

Several preclinical studies investigated the role of T-cell 
immunoglobulin mucin-3 (TIM-3) expression as responsible 
for resistance to TMZ and negative regulator of lymphocyte 
activity [79,80].

A promising strategy may consist of TIM-3 repression via 
engineered siRNA. The downregulation of TIM-3 noticeably 
reduced glioma cell growth and increased the therapeutic 
effect of TMZ [81,82]. The effects of TIM-3 blockades also 
showed a synergic efficacy in combination with anti-PD-1, 
resulting in durable antitumor immunity [83]. More clinical 
studies are needed to develop antibodies against TIM-3, 
expressed on CD4+ and CD8 + T cells.

A further innovative checkpoint inhibitory molecule is the 
T cell immunoreceptor with Ig and ITIM domains (TIGIT). TIGIT 
is potentially involved in cancer immunity, being overex-
pressed on tumor-infiltrating T cells, Tregs, and NK cells [84].

Anti-PD-1 and anti-TIGIT combination therapy demon-
strated an anticancer effect in glioma murine models both in 
improving survival and repressing suppressive Tregs and 
tumor-infiltrating cell activity [85].

The cytotoxic T-lymphocyte antigen 4 (CTLA-4), a T lym-
phocyte receptor, physiologically downregulates the immune 
system. The MAb ipilimumab was designed to block the CTLA- 
4, thus preventing the shutdown of the immune cascade 
(Figure 2(c)). In 2016, the ipilimumab was administered with 
BVZ or TMZ in HGGs treatment. Data showed a good tolerance 
profile without concrete efficacy in patients’ survival [86,87]. In 

2018, Omuro et al. tested in phase III clinical trial ‘CheckMate 
143’ the ipilimumab combined with nivolumab for 40 GBM 
patients. They reported a better safety profile for nivolumab as 
monotherapy, compared with nivolumab and ipilimumab, but 
no survival benefits were noted [88]. An ongoing trial is trying 
nivolumab ± ipilimumab as neo- and adjuvant therapy, but 
the results are still pending (#NCT04606316).

The lymphocyte activation gene-3 (LAG3), found on the 
surface of lymphocytes, regulates CD4+ activity and home-
ostasis. LAG3 was selected as a molecular target for its over-
expression within the glioma microenvironment [89–91]. The 
relatlimab, MAbs anti-LAG3, combined with nivolumab, is cur-
rently under experimentation in phase I clinical trial. The 
estimated completion date is April 2022 (#NCT02658981).

Furthermore, the APX005M, a humanized IgG vs the CD40, 
has been employed in phase I clinical trial for recurrent or 
refractory pediatric brain tumors, showing good preliminary 
results. The estimated study completion date is 
September 2022 (#NCT03389802).

Metabolic enzymes involved in tryptophan (Trp) catabo-
lism, arginase, and CD73, modulate the immune cell function 
and may be considered as immune checkpoint molecules.

Pathways of Trp are crucial in supporting tumorigenesis 
[92]. The essential amino acid Trp is catabolized by the rate- 
limiting enzyme like the indoleamine 2,3-dioxygenase (IDO), 
expressed on 90% of HGGs. IDO activity results in Trp deple-
tion and accumulation of immunosuppressive downstream 
catabolites within the tumor microenvironment [93]. 
Competitive inhibitors of IDO were designed aiming to 
improve the efficacy of standard protocol. The 1-methyl 
L-tryptophan (1MT), an IDO inhibitor, was employed – after 
interferon-γ stimulation – combined with TMZ, bischloroethyl-
nitrosourea, etoposide, and cisplatin. Excellent anticancer 
activity and improvement in chemotherapy efficacy were 
reported in mouse models [94–97].

In 2020, phase I/II clinical trials explored the effect of 1-MT 
combined with chemotherapy regimens in both pediatric and 
adult HGGs gliomas. Results proved a good safety profile and 
relevant efficacy (#NCT02052648, #NCT02502708).

Other studies focused on a dioxygenase involved in Trp 
catabolism, namely the tryptophan 2,3 dioxygenase (TDO) 
[92,98]. An oral TDO inhibitor, 3-(2-(pyridyl)ethenyl)indole 
(680C91), demonstrated immune boosting activity and an 
enhancement of chemotherapy [99–101].

Furthermore, the CD73, an extracellular nucleotidase impli-
cated in adenosine metabolism, is involved in resistance to 
standard therapy and gliogenesis via cell proliferation and rear-
rangement of the extracellular matrix. The CD73 downregula-
tion, via delivery of siRNA-CD73, proved to reduce tumor size by 
45% and inhibit glioma progression in vivo models [102–105].

Nasal administration of cationic nanoemulsion mixed with 
CD73-siRNA demonstrated to suppress the glioma cell prolif-
eration and alter the tumor immune response [106,107].

Table 2 summarizes the main clinical trials on checkpoint 
inhibitors for HGGs treatment (Table 2).

Even considering the undeniable advances in translational 
medicine which allowed the engineering of novel chemother-
apeutic agents and mAbs, some limitations persist. Failure of 
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the existing clinical trials CPIs-based may depend on the 
intrinsic genome heterogenicity, immunosuppressive glioma 
microenvironment, and hitches in reaching the tumor site.

The tumor mutational load, namely glioma mutational bur-
den (GMB), represents a critical prognostic factor in the CPIs 
therapy, also related to poorer survival [108–111]. These 
because immunotherapies are up to the expression of specific 
molecules, while the unpredictable mechanisms of DNA repli-
cation/repair result in ever-changing mutations and the poten-
tial loss of CPIs targets [111].

The further reason for failure consists in the intrinsic nature 
of the central nervous system as a site of immune privilege 
[112,113]. CPIs, as monotherapy, did not demonstrate efficacy 
due to the scarcity within the tumor microenvironment of 
active T cells with the concomitant secretion of immunosup-
pressive cytokines [114,115].

Furthermore, several shortcuts were designed aimed to 
overcome the BBB, including active efflux pumps, molecules 
directed against BBB biomarkers, and personalized administra-
tion routes [116]. Innovative mAb-delivering strategies, 
namely intra-arterial or intracranial injection, nanoparticle, 
and liposomal vectors are currently under investigation. The 
aim is to optimize drug delivery, intra-tumoral uptake, and 
boost immune pathways, generating host antitumor response 
and long-term lymphocytic memory [117–120].

2.1.2. Vaccines
Anticancer vaccination is included in the active immunothera-
pies and is designed to amplify the host immune response 
against glioma cells. The rationale for vaccines lies in the belief 
the central nervous system is an ‘immunological sanctuary.’ 
The brain immune privilege leads to the scarcity of T cells 
within the tumor site, in favor of immunosuppressive mechan-
isms [112,113,121]. Recent advances in translational medicine 
and immunogenomics allowed the detection of several tumor- 
associated antigens (TAAs) [122]. The presentation of TAAs, via 
anticancer vaccines, results in the transition of immunologi-
cally ‘cold’ glioma into an immunogenic one.

Peptide vaccines are composed of synthetic peptides direc-
ted to TAA leading to the stimulation of the anti-tumor 
immune cascade [123–125].

Rindopepimut (Rintega®, Celldex Therapeutics, Inc., 
Phillipsburg, NJ, USA) consists of a 14-mer epidermal growth 
factor receptor variant III peptide (EGFRvIII) combined with 
the keyhole limpet hemocyanin. Apart from the antigen- 
specific immune reaction, intended as the measure of the 
effectiveness of antitumoral vaccines, also cellular immunity 
has a pivotal role [126,127]. Vaccination with rindopepimut 
may activate CD4+ and CD8 + T cells against tumor cells 
exhibiting the EGFRvIII, found in 30% of GBMs [128–133] 
(Figure 3). It was employed in several phase II clinical stu-
dies, namely the ACTIVATE, ACT II–III, and ReACT. All of them 
reported an increase in overall survival and low levels of 
toxicity of the drug [132,134–137]. A further double-blind 
phase III trial, the ACT IV, proved on 745 newly diagnosed 
and surgically treated GBMs, the combination protocol 
including rindopepimut and TMZ [138]. Results were not 
satisfactory, and no survival benefits were reported. In fact, 
the median overall survival was of 20.1 and 20.0 months for 

the rindopepimut group and the control one, respectively. 
Despite the evidence of a vivid anticancer immune stimula-
tion, the failure of the ACT IV protocol may be attributable 
to the downregulation of EGFRvIII-expressing glioma cells, 
resulting in the loss of rindopepimut efficacy.

The expansion of antigen-negative tumor cells, not recog-
nizable by the activated T cells, leads to the malignant 
immune selection, glioma recurrence, and may be considered 
the main cause of failure of vaccine therapies [115,127,139].

Aberration of isocitrate dehydrogenase (IDH) occurs in about 
80% of the glioma genetic landscape representing a histological 
landmark. The R123H IDH1 mutation is the most frequent, found 
in 70% of HGGs [140,141]. Peptide vaccines, comprising the 
R132H, were proved to induce the CD4+ activity by linking the 
major histocompatibility complexes (MHC) [142,143]. In 2021, 
Platten and colleagues demonstrated excellent immunogenicity 
and an increase in 2-years survival in 82% of HGGs patients 
treated with the R123H/IDH1 vaccine [144].

Recent epigenetics advances permitted the development 
of multi-peptide vaccines personalized against multiple TAAs 
[145]. The IMA950 was a specific HGGs peptide vaccine con-
sisting of 11 different antigens. It was employed in many 
clinical trials. Despite a high level of safety and CD8 + T cell 
activation, no survival improvements were reported [146–148].

The personalized Neoantigen vaccine (NeoVax), built by 
personalized neo-TAAs plus multiple-epitope and engineered 
with adjuvant poly-ICLC (polyinosinic–polycytidylic acid and 
poly-L-lysine double-stranded RNA), was employed in 
a phase-I/Ib study for newly diagnosed GBMs. The NeoVax 
proved to boost the neoantigen-specific CD4+ and 
CD8 + T-cells recruitment within the glioma microenviron-
ment, enhancing the local anti-tumor immune response 
[149]. Furthermore, a phase I clinical trial tested the NeoVax 
in a combined protocol with pembrolizumab, TMZ, and radio-
therapy (#NCT02287428). The study is still recruiting.

SurVaxM, a peptide mimic vaccine, was designed to target 
the survivin, a cell-survival protein found in 95% of GBMs. This 
bond may boost the host antitumor immune reaction and 
stimulate glioma cell apoptosis. In a multi-center, phase II 
clinical trial the SurVaxM was injected in 63 patients affected 
by newly diagnosed GBMs, after surgery and therapy with TMZ 
(#NCT02455557). A 96.8% of vaccinated patients did not 
experience disease progression in the first 6 months and 
93.5% of cases had an overall survival of more than 12- 
months. The immunogenicity of SurVaxM was confirmed by 
the identification of survivin-specific antibodies (IgG) and 
CD8 + T-cells recruitment [150].

A prospective, randomized, phase II clinical trial is investi-
gating the SurVaxM with adjuvant TMZ for newly diagnosed 
GBMs (‘SURVIVE’) (#NCT05163080). This study is proposed to 
evaluate the clinical efficacy and survival benefits of the vac-
cine in 265 patients enrolled. The estimated completion date 
is 18 April 2024, but preliminary results reported promising 
immunogenicity of the SurVaxM with limited side effects.

In 2020 at Society for Neuro-Oncology Annual Meeting, the 
INOVIO Pharmaceuticals presented a phase I/II clinical trial 
designed to test the effectiveness and immunogenicity of INO- 
5401 and INO-9012 associated with cemiplimab (mAbs vs PD-1), 
radiation, and TMZ, for 52 GBMs (#NCT03491683). INO-5401 
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consists of 3 DNA plasmids directed to Wilms tumor gene-1 
(WT1), prostate-specific membrane (PSMA) antigens, and 
human telomerase reverse transcriptase (hTERT) gene. INO-9012 
contains a DNA plasmid for transcription of interleukin-12 (IL-12). 
The scheduled completion date of the study is 30 June 2022.

A second-generation strategy was developed to reinforce 
the therapeutic efficacy, including the heat-shock proteins 
(HSPs) within the vaccine compound. HSPs act as intracellular 
chaperones in TAAs presentation and innate and adaptive 
immune activation [151–153].

HSP-peptide complexes (HSPPCs) were adopted in preclini-
cal studies on mouse models and clinical trials [154,155]. In 
2014, in a phase II clinical trial, Bloch et al. administered the 
HSPCC-96 vaccine to GBMs patients after surgical resection. 
The overall survival amounted to 42.6 weeks and no side 
effects were described [156].

Cell-based vaccines represent a promising strategy. They 
mostly consist of autologous dendritic cells (DCs) manipulated 
to present antigens and boosted the immune response 
[157,158]. The DCVax-Brain, composed of DCs and autologous 

glioma TAAs, was tested in phase I and II trials revealing few 
adverse effects [159,160].

The PerCellVac2, another multiple-epitope vaccine, was 
also employed in HGGs treatment. PerCellVac2 was made up 
of allogeneic blood cells combined with customized glioma 
antigens [161–163]. Its clinical efficacy is still debated.

NeoTAA-targeting vaccines demonstrated, in preclinical 
and clinical studies, encouraging results in converting the 
immunosuppressive microenvironment into an immune 
niche. The administration of vaccines in combined protocols 
with standard therapies showed enforced efficacy with low 
toxicity. The maximum immunogenicity of vaccines, assessable 
by the recruitment of immune mediators and T cells, was 
noticed for the rindopepimut. NeoVax, SurVaxM, and INOs 
are the most innovative compounds, now under investigation 
in future trials.

2.1.3. Oncolytic virotherapy
The oncolytic virotherapy employs self-replication-selective 
oncolytic viruses (OVs) competent to selectively infect cancer 

Figure 3. The figure reports the pharmacodynamics of peptide vaccines. Antitumoral vaccination consists of the injection of specific tumor-associated antigens 
which stimulate the host immune cascade. The activated CD4+ and CD8 + T cells cross the blood-brain barrier and selectively strike glioma cells inducing apoptosis.
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cells, induce lysis, and stimulate a robust antitumoral immune 
cascade [27,164–166] (Figure 4(a,b)).

The double-stranded DNA oncolytic herpes simplex virus 
(oHSVs) was the first used in gene-based immunotherapy. 
oHSV was deactivated through the deletion of genes for the 
ribonucleotide reductase (ICP6) (Unique Long39) and the pro-
tein synthesis promoting factor (γ34.5) [167,168]. Since 2000, the 
oHSV1716, made by the inactivation of γ34.5s, was experimen-
ted with by intratumoral inoculation or as combined therapy 
with surgery and dexamethasone in GBMs treatment. Despite 
the low toxicity and evident viral replication within glioma cells, 
no efficacy in increased survival was reported [169–171].

oHSVG207, deleted for γ34.5 and ICP6, is the second- 
generation OVs. It was used as local administration in the 
surgical cavity or as adjuvant therapy with radiation therapy. 
Again, a good safety profile was demonstrated but survival 
resulted not improved [172–175].

The latest OV, the rQNestin34.5, was designed to express 
the ICP34.5 under the control of a nestin promoter. It showed 
better survival in animal models and no side effects in 
a clinical phase I trial (#NCT03152318) [176].

The DNA conditionally replicating adenovirus (CRAds) was 
created by the subtraction of genes that limit the linkage with 
glioma cells (E1A-B). The lack of E1A and E1B proteins inhibits 
the direct binding with cells expressing pRB and p53, respec-
tively. DNX-2401, without E1A protein, selectively replicates in 
the Rb-deficient glioma cells, while the ONYX-015, deleted in 
E1B, targets the tumoral p53-deficient cells [177–181].

At the American Society of Clinical Oncology Annual 
Meeting in 2017, Lang et al. illustrated their results of 
a study on the DNX-2401 for recurrent HGGs, the aim of 
which was to prove the efficacy as monotherapy and the 
synergic effect in combination with the interferon (INF) γ 
[182]. In 2018, the DNX-2401 was tested as a local injection 
in phase I clinical trial recruiting 37 patients with recurrent 
GBMs. A 5-months increase in survival for the study group was 
reported (#NCT00805376) [183].

In 2020, Zadeh and his group conducted a phase II multi-
center study (CAPTIVE-KEYNOTE-192) employing the intra- 
tumoral injection of DNX-240 (tasadenoturev) followed by intra-
venous pembrolizumab (200 mg every 3 weeks up to 2 years or 
until progression) for relapsing GBMs (#NCT02798406). Results 

Figure 4. (a, b) The oncolytic virotherapy uses selective oncolytic viruses qualified to transinfect glioma cells through endocytosis. Viral integration into the cell 
genome leads to the viral progeny assembly and lysis of tumor cells. Oncolysis results in the release of viral particles and tumor antigens which activate the 
antitumoral immune cascade and infection of neighboring cells.
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reported low toxicity, including headache and asthenia, with 
a median survival of 12.5 months [184]. A global, randomized 
phase III trial is scheduled.

The ONYX-015 was tried either via intratumoral injection 
within the surgical cavity [185,186], or combined with adju-
vant chemotherapy (#NCT00006106), but no efficacy has been 
proven.

The enveloped RNA Measles Paramyxovirus (MV) was 
designed to express the mutated hemagglutinin envelope 
glycoprotein (Edmonston strain) able to bind the CD46 of 
HGGs cells [187,188]. MVs were furtherly manipulated to 
increase their oncolytic properties and selectivity for glioma 
cells. MVs were modified by expressing simultaneously the 
circulating carcinogenic embryonic antigen (CEA) [189,190], 
the IL-13 directed to IL-13Rα2 receptor on HGGs cells, or the 
Ab against the EGFRvIII [191–193].

The attenuated type 1 Sabin poliovirus was arranged 
through substitution of the internal ribosomal entry site 
(IRES) with the isoform from human rhinovirus type 2 to 
assemble the nonpathogenic poliorhinovirus (PVS-RIPO) 
[194–196].

PVS-RIPO was administered either alone or with lomustine 
or anti-PDL1 MAbs for pediatric or adult HGGs treatment. 
Results revealed high antitumor effectiveness, but several 
side effects were notified (#NCT03043391, NCT02986178, 
NCT03973879) [197–199].

The Newcastle Disease Virus (NDV) was manipulated to 
selectively target glioma cells, inducing lysis and apoptosis. 
Three oncolytic viral strains of the attenuated NDV were devel-
oped, namely the MTH-68, NDV-HUJ, and Ulster.

In 1999, Csatary and Bakács tested the MTH-68 in the 
treatment of a recurrent GBM, showing a reduction of glioma 
volume simultaneously with a clinical neurological improve-
ment [200]. The same group, in 2004, employed the MTH-68 
for the treatment of adult relapsing GBMs. They reported 
a high survival rate of 5–9 years in 4 patients, of all the 14 
patients treated. No adverse event was described [201]. The 
rationale for the success of MTH-68 oncolytic viral treatment 
for HGGs may lie in the lytic viral capabilities in combination 
with immunomodulating properties. After administration, the 
MTH-68 selectively transinfects glioma cells, by attaching sialic 
acid receptors limited to cancer cells, and self-replicates 
[202,203]. It induces oncolysis, apoptosis, and enhances host 
antitumor immune response [202,204].

Freeman et al. tested the NDV-HUJ in 14 HGGs patients, 3 
of which were long-survival [205]. In 2001, Ulster was adminis-
tered to 11 patients affected by GBMs, after surgery and radio-
therapy, and no substantial advantages were revealed 
compared to conventional therapy [206].

Reovirus, a double-stranded RNA virus, was utilized for the 
capacity to selectively infect glioma cells, overactive Ras signal-
ing pathways, and induce apoptosis [207–209]. In 2014, 
Kicielinski and his group employed the Reolysin, as wild-type 
reovirus, in phase I clinical trial for GBMs treatment reporting an 
increase in overall survival up to 140 weeks [210]. In 2015, these 
findings led to the FDA approval of the Reolysin for HGGs 
therapy [211]. Additionally, the reovirus proved to detain 
a basic role in the activation of the immune cascade through 
the induction of DCs growth, the implementation of the 

proinflammatory cytokine, CD8 + T, and NK cell infiltration 
[212]. The reoviruses administration initiates the mechanism of 
tumor cell adaptation and immune escape, as the overexpres-
sion of PD-1/PD-L1 proteins to counter the immune activity. 
Additional studies are needed to test the association of reovirus 
virotherapy combined with anti-PD-1/PD-L1 MAbs [213,214].

Oncolytic virotherapy is a valuable second-line treatment 
for recurrent HGGs. The replication competent OVs are genetic 
payloads, capable of transinfecting glioma cells and inducing 
oncolysis. The apoptosis causes the release of TAAs, thus 
stimulating a robust immune reaction [27,164].

2.1.4. Immunomodulatory therapies
The immunomodulatory strategies, counted in the active 
approaches, include the immune-genes transferal and 
approaches targeted to the myeloid-derived suppressor cells 
(MDSCs) and tumor-associated macrophages (TAM). All of 
these were projected with the purpose to strengthen the 
antitumor immune response and counteract mechanisms of 
glioma immune evasion.

The immunomodulatory genes are transferred via viral vec-
tors and transcribed for immunostimulant ILs or IFNβ/γ 
[166,215–217] (Figure 4(c,d)).

IL-12 acts by recruiting lymphocytes and antitumoral fac-
tors within the tumor microenvironment [218–220]. The 
recombinant ADvs and γ34.5-deleted-HSV1 viruses, engi-
neered for carrying the IL-12 gene, were administered to trans- 
infect glioma cells in preclinical HGGs animal models [221– 
223]. The results were hopeful, demonstrating a decrease in 
cancer cell activity, but clinical trials are still underway.

Some clinical and preclinical studies used IL-4 as an immu-
nostimulant factor for the recruitment of CD4+ and CD8+ cells 
[224–226]. Okada and Colombo both verified the usefulness of 
the IL-4-HSV-tyrosine kinase (TK) gene transmitted via viral 
vectors, followed by systemic ganciclovir, for refractory HGGs 
therapy. The efficacy of interleukins was also amplified by the 
activation of ganciclovir through the TK enzyme. High antitu-
moral activity and immune activation were revealed [226,227].

Furthermore, IFN-β/γ, delivered by viral carriers or nanopar-
ticles, was used to enhance the host antitumor defenses via 
intratumor injection or systemically. Data from clinical studies 
agreed with the premises and demonstrate a strong activation 
of the immune cascade [228–232].

Natsume and colleagues tested the efficacy of INF-β in rats 
or murine HGGs models. Their results showed a reduction in 
tumor growth, with strong antitumoral activity within the 
tumor microenvironment [233]. Yoshida and his group 
employed the INF-β in human GBMs treatment and reported 
a good safety profile, low level of toxicity, and histological 
evidence of immune cells recruiting [234,235].

IFN-γ was administered as a combination protocol with the 
tumor necrosis factor-α to enhance immunization against 
tumor and cytokine recruitment. Results are still being evalu-
ated [236–239].

A further arm of immunomodulant therapies consists of the 
approaches focused on the MDSCs [240]. MDSCs are immature 
myeloid cells which exert a strong immunosuppressive activity 
within the tumor microenvironment, regulating lymphocyte 
recruitment and mechanisms of immune evasion [241–244]. 
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MDSCs secrete immunosuppressive cytokines, such as the IL- 
10 and TGF-β, stimulating the reactive oxygen species and 
nitric oxide and causing the death of immune cells [245,246]. 
Evidence of the MDSC-mediated immunosuppression pro-
vided the basis for the design of tailored strategies aimed to 
target the glioma MDSCs. The main techniques developed 
include the inhibition of myeloid cell polarization to MDSC; 
the recruitment and depletion of MDSCs; and the fostering of 
their immunosuppressive activity [247,248].

Huang et al. wide described the involvement of VEGFR2 not 
only in the tumor angiogenesis but also in the myeloid differ-
entiation to MDSCs [249]. The altiratinib, a VEGFR2 inhibitor, 
combined with BVZ was tested in preclinical trials on mouse 
models demonstrating immune-suppressive functions [250]. IL-8 
acts as a chemotactic agent for the MDSCs in the tumor micro-
environment operating on the C-X-C motif chemokine receptors 
[251]. Huang and his group also proved that ABX-IL8, a mAbs vs 
IL-8, inhibits vasculogenesis and MDSC recruitment [252].

The galectin-1 (Gal-1) links the β-galactosides and regulates 
T cell activity and VEGF-A functions [253,254]. In 2016, Van 
Woensel and colleagues tested the intranasal administration 
of nanoparticles engineered with siRNA directed against Gal-1 
in GL261 glioma mouse samples. They reported a considerable 
reduction of MDSCs in the tumor microenvironment [255].

TAMs regulate the immune response and take up 
a fundamental function in glioma development [256,257]. 
Therapeutic approaches directed against TAMs were designed 
with a double purpose: to inhibit TAMs recruitment and 
reverse the M1/M2 ratio.

TAMs recruitment can be avoided by hindering the secre-
tion of inflammatory chemokines from glioma cells. The CCL2- 
CCR2 and CXCL12-CXCR4 axes stimulate the infiltration of 
monocytes and macrophages, establishing an immunosup-
pressive tumor microenvironment [258].

Anti-CCL2 inhibitors were tested in phase I/II clinical trials. 
Although demonstrating a good safety profile, clinical imple-
mentation is still far [259–261]. A CXCR4 antagonist was analyzed 
in combination with Bevacizumab for HGGs patients showing no 
therapeutic effects [134], but concurrently with TMZ the survival 
increased by 10 months [261]. Plerixafor, a CXCR4 antagonist is 
under evaluation in a recruiting phase II clinical trial, combined 
with the standard protocol (#NCT03746080).

Strategies of reprogramming polarization to the pro- 
inflammatory M1phenotype employ the anti-CD47 molecules. 
CD47 binds the signal-regulatory protein-α (SIRPα) leading to 
the inhibition of tumor cell phagocytosis macrophages- 
mediated. Blockage of CD47 results in an increase in antitumor 
M1 activity and improves prognosis in animal glioma models 
[262–264].

Toll-like receptors (TLRs) are surface molecules expressed 
on macrophages [265]. TLR agonists, competent to activate 
the M1 shifting, are being tested as adjuvants in glioma 
patients (#NCT03392545, #NCT01204684).

On the other hand, further strategies focused on reducing 
pro-tumorigenic M2 TAMs. The macrophage colony- 
stimulating factor (M-CSF) is potentially able to shift the 
macrophages to the M2 subtype, influencing tumor prolifera-
tion and immune resistance [266,267]. On this rationale, the 

BLZ945 and PLX3397, CSF blockades, were administered to 
glioma patients. Results reported inhibition of TAMs-M2 phe-
notype but disproved the therapeutic effect also in combina-
tion with standard of care or anti-PD-1 antibody 
(#NCT01349036, #NCT01790503, #NCT02829723) [268,269].

Surface receptors of M2, such as CD163 and CD204, may be 
potential therapeutic targets and markers of malignancy and 
poor prognosis but are not yet explored in clinical trials for 
HGGs [270–272].

Although the preliminary and preclinical contrasting out-
comes, the experimented immunomodulatory strategies 
demonstrated encouraging and favorable results. The genome 
reprogramming in the glioma cells strives to yield apoptosis 
through the transcription of antitumoral mediators. 
Engineered genes are delivered to target cells via vehicles, 
viral or not, which directly attach glioma cells. Future studies 
are focusing on the search for new transport systems aimed at 
optimizing the bioavailability, the biodistribution through BBB, 
and limiting the toxicity.

2.2. Adoptive immunotherapies

2.2.1. Engineered T cells
The T cell-based approaches employed autologous T-cells, 
levied with leukapheresis, engineered by viral transduction of 
specific tumoral genes, ex vivo expanded, and then systemi-
cally administered. The transinfected genes were the chimeric 
antigen receptor (CAR) and the transgenic T cell receptor (TCR) 
genes [273–275]. CARs, expressed on T cells, are designed to 
directly bind ligands present on the surface of the tumor, 
whereas TCRs directly target the MHC. Both boost the activation 
of antitumor immunity [276–282] (Figure 5).

CARs selected in the HGGs treatment were as follows: 
EGFRvIII, IL-13 receptor a2 (IL-13Ra2), human epidermal 
growth factor receptor 2 (HER2), and erythropoietin- 
producing hepatocellular carcinoma A2 (EphA2) [282–291].

Despite preclinical studies on CART-EGFRvIII cells demon-
strated to limit the tumor growth [292,293], clinical trials have 
not yielded satisfactory results. The not negligible side effects 
were a further weakness [294].

The IL-13Ra2 link to the IL-13 triggers the proinflammatory 
intracellular signaling through the JAK/STAT pathway [295]. In 
a clinical study conducted by Brown et al., the 
IL13Rα2-targeted CAR T cells were locally injected through 
a caterer after the removal of a supratentorial GBM. There 
was no local relapse, but the tumor metastasized into the 
leptomeningeal spinal space. Recurrence was treated again 
with IL13Rα2-targeted CAR T cells via an intraventricular 
catheter. The patient survived for a further eight months [282].

HER2 was expressed on 80% of HGGs and involved in glioma 
progression mechanisms [296]. HER2-specific CAR T cells showed 
high anticancer efficacy in GBM immunodeficient mice [289]. In 
2010, Ahmed and colleagues conducted a phase I trial on HER2- 
CAR T cells for human HGGs. The HER2-CAR T cells were identi-
fied in the peripheral blood for one year after infusion, but no 
significant survival improvements were described [297]. Despite 
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the reported good safety profile, the greatest risk lies in the 
possibility of targeting healthy tissues expressing the HER2 [298].

In 2022, Majzner and his group published the preliminary 
results of phase I clinical trial on the disialoganglioside (GD2)- 
CAR T therapy for children and young adults with H3K27M- 
mutant diffuse intrinsic pontine or spinal glioma 
(#NCT04196413). The GD2-CAR T cells, administered via retro-
viral vectors, demonstrated promising efficacy and low side 
effects. Inflammatory mediators were found increased in the 
plasma and cerebrospinal fluid. Patients experienced also neu-
rological and radiological advancements [299].

TCR genes programming involved the isolation of the α 
and β chains and the development of specific receptors which 
selectively interact with tumor MHC on glioma cells resulting 
in T cell activation and oncolytic effect [300–303].

The tremendous advances in somatic cell biotechnologies 
are reflected in the realization of T cell engineering. As for 
other oncological fields, the CAR T-based clinical trials, espe-
cially those directed toward the EGFRvIII, yielded promising 
results also for HGGs treatment. The overall level of evidence 
of the effectiveness of efficacy of the CAR and TCR engineered 
T cells therapies is extremely encouraging but still inadequate 

to be assessed as usable in daily clinical practice [279,283– 
289,291,294,297,304–307].

2.2.2. NK cells and mixed strategies
NK cells were used in the adoptive immunotherapies in differ-
ent ways [308].

Allogenic NK cells may be transplanted to avoid MHC- 
mediated surveillance expressed on glioma cells and control the 
immune antitumoral effect [309–312]. Heterologous NK cells can 
also be transferred by carrier exosomes to facilitate drug 
penetration.

In 2017, allogenic cord blood NK cells were retrovirally 
transduced to incorporate genes for the TGF-β-dominant- 
negative receptor II (DNRII). DNRII makes NK cells exempt 
from the anti-immune-mediated effect of TGF-β within the 
tumor microenvironment [313].

Furthermore, the engineering of NK cells by means of CAR 
genes, especially directed against EGFRvIII, was studied [314–316].

The antibody-dependent cell-mediated cytotoxicity (ADCC) 
approach utilizes specific Abs able to bind glioma antigens 
and activate NK cells. The Ab fragment crystallizable (Fc) 
ligates the NK receptors and the Fab portion binds antigens 

Figure 5. The figure illustrates the engineered T-cells’ mechanisms of action. Via leukapheresis, the autologous T-cells are levied and in vitro engineered with viral 
vectors which include the chimeric antigen receptor (CAR) genes, prepared to bind tumor-specific antigens, and the transgenic T cell receptor (TCR) genes directed 
to the Major Histocompatibility Complex (MHC). Engineered T-cells are ex-vivo expanded and injected. They cross the blood-brain barrier and as a result of cell- 
binding boost the antitumor immunity.
TNF: Tumor Necrosis Factor. 
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on the glioma cell surface. The explored glioma antigens were 
as follows: EGFR, CD16 (FcγIIIA), and NK Group 2D 
(NKG2D) [317].

Another indirect strategy provides for the use of Abs direc-
ted against the NK Immunoglobulin-Like Receptor (KIR) which 
naturally inhibits the activity of NK cells. The antibody- 
mediated KIR censure increases the NK cell function and 
glioma death [308].

NKT cells express the properties of both NK and T cells. 
Particularly, CD1d-restricted NKT cells regulate the immune 
escape mechanisms within the glioma microenvironment 
[318,319]. The expansion and transplant of these cells, cul-
tured with dendritic cells and the α-galactosylceramide, was 
proved to be a potential strategy [320,321].

Autologous Lymphoid Effector Cells Specific Against Tumor 
cells (ALECSAT) (Cytovac A/S, Hørsholm, Denmark) is a 26-days 
multimodal therapy based on the manipulation of autologous 
monocytes, CD4+, CD8+, and NK cells. These were isolated, 
loaded with 5-aza-2′-deoxycytidine which induces expression 
of cancer antigens, activated, and then injected. Activated 
lymphocytes were directed against the tumor cells, whereas 
cancer cells antigen-missing were targeted by NK cells [322].

The NK cell-based and hybrid strategies are intended to 
replace the immune cells which are pent up within the tumor 
microenvironment.

Despite favorable premises and a good safety profile, no 
study yet confirmed the clinical efficacy of the NK and mixed 
adoptive therapies. The main translational challenges still lie in 
the necessity to overcome the immune escape mechanisms, 
such as the lack of TAAs or the overexpression of MHC, and 
the immunological resilience of HGGs [309–312].

3. Conclusion

The novel immune-based therapies aim to overcome the resi-
lience of malignant brain tumors to conventional treatments.

Besides TMZ, active immunotherapies include a key MAb, 
namely the BVZ, an anti-VEGF monoclonal IgG1approved as 
a second-line treatment.

Peptide and cell-based vaccines failed to show a significant 
increase in survival rate while demonstrating a substantial 
activation of the antitumor immune response.

Amid the gene-based technologies, oncolytic virotherapy 
proved to be the most reliable and safe approach. oHSVs, 
CRAds, PVS-RIPO, MV, NDV, and reoviruses were designed to 
selectively lyse the glioma cells, simultaneously boosting the 
immune system against the released TAAs. The delivery of 
immunomodulatory genes via viral vectors was designed as 
an integrative treatment to modulate and amplify the immune 
response within the tumor microenvironment.

Adoptive immunotherapies based on T, NK, and NKT cells 
had promising results. The detection of specific TAAs, suitable 
as potential targets, led to improving the design of the tai-
lored CAR and TCR T cells, which have been accordingly made 
more effective.

Despite the increasing pieces of evidence of their feasibility 
and safety, immunotherapies were not yet validated as alter-
native strategies for recurrent HGGs.

Further clinical trials are needed to definitively move the 
personalized immune approach from the bench to the bedside.

4. Expert opinion

4.1. Mutational burden and immune landscape in 
glioma microenvironment

In the last decade, numerous studies have focused on the 
development of innovative strategies for HGG treatment, 
intending to elude mechanisms of immune evasion.

The brain immune privilege, the heterogeneity of the 
glioma genetic landscape, the persistence of cancer stem 
cells, and the immunosuppressive microenvironment account 
for the resistance of HGGs to standard treatments [12,15,20].

Despite the central nervous system being described as an 
‘immunologically cold’ sanctuary, the identification of menin-
geal lymphatic drainage, namely the ‘glymphatic system,’ pro-
vided the theoretical basis for immunotherapy [323,324]. The 
glymphatic system regulates the brain immune surveillance 
and the lymphocytes flow but, concurrently to glioma growth, 
gets locked [325,326].

The restoration of intracranial immune function, via active 
or adoptive immune approaches, may result in an advanta-
geous strategy to ‘warm-up’ the tumor niche and turn the cold 
glioma into a hot immunogenic one.

The heterogeneity of the glioma genome, i.e. the GMB, is 
considered a potential biomarker for prognosis and response 
to immunotherapies [110,111]. GMB is described as the set of 
mutations and somatic protein-coding base substitutions. 
Several studies have demonstrated a direct correlation 
between high GMB, glioma malignancy, and worse survival 
[327,328].

Furthermore, the GMB was proven to influence the inflam-
matory response and immune recruitment within the tumor 
microenvironment, affecting the efficacy of immunotherapies 
[111,329,330].

The immunosuppressive microenvironment inhibits the 
host antitumoral response and sustains the adaptation and 
proliferation of glioma cells. The detection of the immune 
niche composition is pivotal to predicting the mechanisms of 
tumor resistance.

Regarding the lymphocytes compartment, glioma cells 
evade the active immune cells’ recruitment, and the CD4 
+ and CD8 + T, and NK infiltrating cells were found to be 
scarce. The seizure of T cells, within the bone marrow, is forced 
by the loss of the sphingosine-1-phosphate receptor, an 
essential receptor for the lymphocyte chemotaxis [331]. On 
the contrary, the Tregs were the most expressed. Tregs con-
tribute to the immune modulation and reduction of the T and 
NK cells, leading to the failure of the immune antitumoral 
response [332].

TAM, recruited in the perivascular microglia, sustain the 
glioma proliferation and invasion. The high expression of 
CD163 and CD204 revealed a strong polarization toward the 
M2 immunosuppressive phenotype within the tumor micro-
environment. M2 macrophages stimulate tumor expansion, 
through the release of growth factors, VEGF, IL6, and IL10, 
and induce T cell apoptosis [114,115,266,333–335].
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Mesenchymal stem cells were found in animal and human 
GBMs, enhancing the mechanisms of invasion and progression 
of glioma. The existence of glioma stem cells in the periphery 
promotes self-renewal and aberrant cell growth.

MDSCs are myeloid cells expressed at the tumor site. 
MDSCs are competent to block T-cell activity, simultaneously 
boost the Treg recruitment, and play a fundamental role in 
tumor angiogenesis through the presentation of VEGFR2. 
MDSCs are also to be intended as biomarkers for tumor sta-
ging and therapeutic response to chemo- and immunotherapy 
[240,243,336].

Accordingly, the lymphodepletion, the prevalence of Tregs, 
M2, and MDSCs negatively affect the prognosis and constitute 
premises for the failure of standard treatments and T-cell- 
based immunotherapies. On this rationale, the acknowledg-
ment of immune infiltrates within the microenvironment may 
be the starting point for planning target treatment, aimed at 
increasing or switching off specific immune pathways, ulti-
mately destroying the immunosuppressive barriers.

4.2. Constraints and future perspectives

Besides the intrinsic malignant nature of GBM, some specific 
pharmacodynamic limitations prevent the success of 
immunotherapies.

The first point is the choice of the most efficient route of 
delivery of the drug, which must be able to cross the BBB. 
Novel biocompatible small carriers, such as nanoparticles and 
liposomes, were designed for this purpose [337].

An alternative option is the prophylactic weakening of BBB 
via mannitol, osmotic compounds, or, more recently, ultra-
sounds. Low frequency focused ultrasounds were delivered 
trans-cranially in precise sites of the brain to reversibly destroy 
the BBB, thus allowing a successful and satisfactory penetra-
tion of the drug [338,339].

A cutting-edge technique proposed by Patel and collea-
gues in 2020 employs the periosteal and temporoparietal 
fascial flaps (TPFFs) to skip the BBB. TPFFs can be easily rotated 
and, because their vascularization comes from the external 
carotid artery, they completely bypass the hindrance of the 
BBB. TPFF transposition to the surgical wall after tumor 
removal allows the drug distribution to the remaining tumor 
cells [340].

Moreover, forthcoming challenges are directed toward 
innovative strategies striving at scanning the efficacy of immu-
notherapies, earlier during treatment. Clinical trials should be 
integrated with valid immune tracking, aimed to detect the 
precocious effects of immune agents and response to therapy.

Immune monitoring is feasible via neuroimaging tools, such 
as radiomics or positron emission tomography to assess the 
inflammatory metabolism, or blood and tissue analyses [341,342].

Measuring the host immune response through blood tests is 
advantageous. Peripheral T cell activation and clonal expansion, 
secretion of proinflammatory chemokines, ILs, and IFN reflect 
the patient’s response to treatment [139,341,343]. This evidence 
teases out information about the prognosis and whether needs 
to change or implement the ongoing treatment.

Monitoring of therapeutic efficacy may be noticed through 
the detection of intra-tumoral markers. Amid these, the glioma 

TCR repertoire was evaluated in many clinical studies which 
reported contrasting survival results [344,345].

The development of novel administration routes, tools for 
monitoring the therapeutic response, and the concurrent evo-
lution in the design of more effective and safe vehicles repre-
sents the pivot for the full integration between the first-line 
protocols and the personalized immunotherapies.
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