
Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 11

On Some Instructions Used In Cyber Security:

Literature Based

Dr SRIDHAR SESHADRI

Ex Vice Chancellor and Professor Computer Science & Engineering

Email : drssridhar@yahoo.com

Abstract: The Hack computer's instruction set architecture (ISA) and derived machine language is sparse

compared to many other architectures. Although the 6 bits used to specify a computation by the ALU

could allow for 64 distinct instructions, only 18 are officially implemented in the Hack computer's ISA.

Since the Hack computer hardware has direct support for neither integer multiplication (and division) or

function calls, there are no corresponding machine language instructions in the ISA for these operations.

These instructions are discussed in this paper.

Keywords:Hack Computer”S Instruction; Derived Machine Language; ALU; ISA; Integer Multiplication;

INTRODUCTION

The Hack computer's instruction set

architecture (ISA) and derived machine language is

sparse compared to many other architectures.

Although the 6 bits used to specify a computation

by the ALU could allow for 64 distinct instructions,

only 18 are officially implemented in the Hack

computer's ISA. Since the Hack computer hardware

has direct support for neither integer multiplication

(and division) or function calls, there are no

corresponding machine language instructions in the

ISA for these operations.

Hack machine language has only two types of

instructions, each encoded in 16 binary digits.

A-instructions

Instructions whose most significant bit is “0” are

called A-instructions or address instructions. The

A-instruction is bit-field encoded as follows:

0b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0

0 – the most significant bit of a A-instruction is “0”

b14 - b0 - these bits provide the binary

representation of a non-negative integer in the

decimal range 0 through 32767

When this instruction is executed, the remaining 15

bits are left-zero extended and loaded into the

CPU's A-register. As a side-effect, the RAM

register having the address represented by that

value is enabled for subsequent read/write action in

the next clock cycle.

C-instructions

The other instruction type, known as C-instructions

(computation instructions), have “1” as the most

significant bit. The remaining 15 bits are bit-field

encoded to define the operands, computation

performed, and storage location for the specified

computation result. This instruction may also

specify a program branch based on the most recent

computation result.

The C-instruction is bit-field encoded as follows:

1x1x0ac5c4c3c2c1c0d2d1d0j2j1j0

1 – the most significant bit of a C-instruction is “1”

x1x0 – these bits are ignored by the CPU and, by

convention, are each always set to “1”

a – this bit specifies the source of the “y” operand

of the ALU when it is used in a computation

c0-c5 – these six control bits specify the operands

and computation to be performed by the ALU

d2-d0 – these three bits specify the destination(s) for

storing the current ALU output

j2-j0 – these three bits specify an arithmetic branch

condition, an unconditional branch (jump), or no

branching

The Hack computer encoding scheme of the C-

instruction is shown in the following tables.

In these tables,

 A represents the value currently contained in

the A-register

 D represents the value currently contained in

the D-register

 M represents the value currently contained in

the data memory register whose address is

contained in the A-register; that is, M ==

RAM[A]

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Machine_language

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 12

Hack machine language computation function codes and assembly language mnemonics

a c5 c4 c3 c2 c1 c0 ALU Output: f(x,y) Mnemonic

0 1 0 1 0 1 0 Outputs 0; ignores all operands 0

0 1 1 1 1 1 1 Outputs 1; ignores all operands 1

0 1 1 1 0 1 0 Outputs -1; ignores all operands -1

0 0 0 1 1 0 0 Outputs D; ignores A and M D

0 1 1 0 0 0 0 Outputs A; ignores D and M A

1 1 1 0 0 0 0 Outputs M; ignores D and A M

0 0 0 1 1 0 1 Outputs bitwise negation of D; ignores A and M !D

0 1 1 0 0 0 1 Outputs bitwise negation of A; ignores D and M !A

1 1 1 0 0 0 1 Outputs bitwise negation of M; ignores D and A !M

0 0 0 1 1 1 1 Outputs 2's complement negative of D; ignores A and M -D

0 1 1 0 0 1 1 Outputs 2's complement negative of A; ignores D and M -A

1 1 1 0 0 1 1 Outputs 2's complement negative of M; ignores D and A -M

0 0 1 1 1 1 1 Outputs D + 1 (increments D); ignores A and M D+1

0 1 1 0 1 1 1 Outputs A + 1 (increments A); ignores D and M A+1

1 1 1 0 1 1 1 Outputs M + 1 (increments M); ignores D and A M+1

0 0 0 1 1 1 0 Outputs D - 1 (decrements D); ignores A and M D-1

0 1 1 0 0 1 0 Outputs A - 1 (decrements A); ignores D and M A-1

1 1 1 0 0 1 0 Returns M-1 (decrements M); ignores D and A M-1

0 0 0 0 0 1 0 Outputs D + A; ignores M D+A

1 0 0 0 0 1 0 Outputs D + M; ignores A D+M

0 0 1 0 0 1 1 Outputs D - A; ignores M D-A

1 0 1 0 0 1 1 Outputs D - M; ignores A D-M

0 0 0 0 1 1 1 Outputs A - D; ignores M A-D

1 0 0 0 1 1 1 Outputs M - D; ignores A M-D

0 0 0 0 0 0 0 Outputs bitwise logical And of D and A; ignores M D&A

1 0 0 0 0 0 0 Outputs bitwise logical And of D and M; ignores A D&M

0 0 1 0 1 0 1 Outputs bitwise logical Or of D and A; ignores M D|A

1 0 1 0 1 0 1 Outputs bitwise logical Or of D and M; ignores A D|M

Hack machine language computation result storage codes and assembly language mnemonics

d2 d1 d0 Store ALU output in Mnemonic

0 0 0 Output not stored none

0 0 1 M M

0 1 0 D D

0 1 1 D and M DM

1 0 0 A A

1 0 1 A and M AM

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 13

1 1 0 A and D AD

1 1 1 A and D and M ADM

Hack machine language branch condition codes and assembly language mnemonics

j2 j1 j0 Branch if Mnemonic

0 0 0 No branch none

0 0 1 Output greater than 0 JGT

0 1 0 Output equals 0 JEQ

0 1 1 Output greater than or equal 0 JGE

1 0 0 Output less than JLT

1 0 1 Output not equal 0 JNE

1 1 0 Output less than or equal 0 JLE

1 1 1 Unconditional branch JMP

Assembly language

The Hack computer has a text-based assembly

language to create programs for the hardware

platform that implements the Hack computer ISA.

Hack assembly language programs may be stored

in text files having the file name extension “.asm”.

Hack assembly language source files are case

sensitive. Each line of text contains one of the

following elements:

 Blank line

 Comment

 Label declaration (with optional end-of-line

comment)

 A-instruction (with optional end-of-line

comment)

 C-instruction (with optional end-of-line

comment)

Each of these line types has a specific syntax and

may contain predefined or user defined symbols or

numeric constants. Blank lines and comments are

ignored by the assembler. Label declarations, A-

instructions, and C-instructions, as defined below,

may not include any internal white-space

characters, although leading or trailing whitespace

is permitted (and ignored).

Comments

Any text beginning with the two-character

sequence “//” is a comment. Comments may

appear on a source code line alone, or may also be

placed at the end of any other program source line.

All text following the comment identifier character

sequence to end of line is completely ignored by

the assembler; consequently, they produce no

machine code.

Symbols and numeric constants

Hack assembly language allows the use of

alphanumeric symbols for number of different

specific purposes. A symbol may be any sequence

of alphabetic (upper and lower case) or numeric

digits. Symbols may also contain any of the

following characters: under bar (“_”), period(“.”),

dollar sign (“$”), and colon (“:”). Symbols may

not begin with a digit character. Symbols are case

sensitive. User defined symbols are used to create

variable names and labels (see below).

The Hack assembly language assembler recognizes

some predefined symbols for use in assembly

language programs. The symbols R0, R1, …, R15

are bound respectively to the integers 0 through 15.

 These symbols are meant to represent general

purpose registers and the symbols values therefore

represent data memory addresses 0 through 15.

Predefined symbols SCREEN and KBD are also

specified to represent the data memory address of

the start of memory-mapped virtual screen output

(16384) and keyboard input (24756). There are a

few other symbols (SP, LCL, ARG, THIS, and

THAT) that are used in building the operating

system software stack.

A sting of decimal (0-9) digits may be used to

represent a non-negative, decimal constant in the

range 0 through 32,767. The use of the minus sign

to indicate a negative number is not allowed.

Binary or octal representation is not supported.

Variables

User defined symbols may be created in an

assembly language program to represent variables;

that is, a named RAM register. The symbol is

bound at assembly to a RAM address chosen by the

assembler. Therefore, variables must be treated as

addresses when appearing in assembly language

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 14

source code. Variables are implicitly defined in

assembly language source code when they are first

referenced in an A-instruction. When the source

code is processed by the assembler, the variable

symbol is bound to a unique positive integer value

in beginning at address 16. Addresses are

sequentially bound to variable symbols in the order

of their first appearance in the source code. By

convention, user-defined symbols that identify

program variables are written in all lower case.

Labels

Labels are symbols delimited by left "(" and right

")" parenthesis. They are defined on a separate

source program line and are bound by the

assembler to the address of the instruction memory

location of the next instruction in the source code.

Labels may be defined only once, but they may be

used multiple times anywhere within the program,

even before the line on which they are defined. By

convention, labels are expressed in all-caps. They

are used to identify the target address of branch C-

instructions.

A-instructions

The A-instruction has the syntax “@xxxx”,

where xxxx is either a numeric decimal constant in

the range 0 through 32767, a label, or a variable

(predefined or user defined). When executed, this

instruction sets the value of the A register and the

M pseudo-register to a 15-bit binary value

represented by “xxxx”. The 15-bit value is left-zero

extended to 16-bits in the A register.

The A-instruction may be used for one of three

purposes. It is the only means to introduce a (non-

negative) numeric value into the computer under

program control; that is, it may be used to create

program constants. Secondly, it is used to specify a

RAM memory location using the M pseudo-register

mechanism for subsequent reference by a C-

instruction. Finally, a C-instruction which specifies

a branch uses the current value of the A register as

the branch target address. The A-instruction is

used to set that target address prior to the branch

instruction, usually by reference to a label.

C-Instructions

C-instructions direct the ALU computation engine

and program flow control capabilities of the Hack

computer. The instruction syntax is defined by

three fields, referred to as “comp”, “dest”, and

“jump”. The comp field is required in every C-

instruction. The C-instruction syntax is

“dest=comp;jump”. The “=” and “;” characters are

used to delimit the fields of the instruction. If the

dest field is not used, the “=” character is omitted.

If the jump field is not used, the “;” character is

omitted. The C-instruction allows no internal

spaces.

The comp field must be one of the 28 documented

mnemonic codes defined in the table above. These

codes are considered distinct units; they must be

expressed in all-caps with no internal spaces. It is

noted that the 6 ALU control bits could potentially

specify 64 computational functions; however, only

the 18 presented in the table are officially

documented for recognition by the assembler.

The dest field may be used to specify one or more

locations to store the result of the specified

computation. If this field is omitted, along with the

“=” delimiter, the computed value is not stored.

The allowed storage location combinations are

specified by the mnemonic codes defined in the

table above.

The jump field may be used to specify the address

in ROM of the next instruction to be executed. If

the field is omitted, along with the “;” delimiter,

execution continues with the instruction

immediately following the current instruction. The

branch address target, in ROM, is provided by the

current value of the A register if the specified

branch condition is satisfied. If the branch

condition fails, execution continues with the next

instruction in ROM. Mnemonic codes are provided

for six different comparisons based on the value of

the current computation. Additionally, an

unconditional branch is provided as a seventh

option. Because the comp field must always be

supplied, even though the value is not required for

the unconditional branch, the syntax of this

instruction is given as “0;JMP”. The branch

conditions supported are specified in the table

above.

Assembler

Freely available software supporting the Hack

computer includes a command line assembler

application. The assembler reads Hack assembly

language source tiles (*.asm) and produces Hack

machine language output files (*.hack). The

machine language file is also a text file. Each line

of this file is a 16-character string of binary digits

that represents the encoding of each corresponding

executable line of the source text file according to

the specification described in the section

"Instruction set architecture (ISA) and machine

language". The file created may be loaded into the

Hack computer emulator by a facility provided by

the emulator user interface.

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 15

Example Assembly Language Program

Following is an annotated example program written

in Hack assembly language. This program sums the

first 100 consecutive integers and places the result

of the calculation in a user-defined variable called

“sum”. It implements a “while” loop construct to

iterate though the integer values 1 through 100 and

adds each integer to a “sum” variable. The user-

defined variable “cnt” maintains the current integer

value through the loop. This program illustrates all

of the features of the “documented” assembly

language capabilities of Hack Computer except

memory-mapped I/O. The contents of the Hack

assembly language source file are shown in the

second column in bold font. Line numbers are

provided for reference in the following discussion

but do not appear in the source code. The Hack

machine code produced by the assembler is shown

in the last column with the assigned ROM address

in the preceding column. Note that full-line

comments, blank lines, and label definition

statements generate no machine language code.

Also, the comments provided at the end of each

line containing an assembly language instruction

are ignored by the assembler.

The assembler output, shown in the last column, is

a text string of 16 binary characters, not 16-bit

binary integer representation.

Line

Nbr

Hack Assembly Language

Program
Operating Notes

Instruction

Type

ROM

Addr

Hack Machine

Code

01
// Add consecutive

integers 1 thru 100

Comment that describes

program action

Full-line

comment
- - - - No code generated

02
// sum = 1 + 2 + 3 + ... + 99

+ 100

Comments are ignored by

assembler

Full-line

comment
- - - - No code generated

03

Blank source lines are

ignored by assembler
Blank line - - - - No code generated

04
@cnt // loop counter

declaration

Variable symbol "cnt"

bound to 16
A-instruction 00 0000000000001000

05
M=1 // initialize loop

counter to 1
RAM[16] ← 1 C-instruction 01 1110111111001000

06
@sum // sum accumulator

declaration

Variable symbol "sum"

bound to 17
A-instruction 02 0000000000010001

07 M=0 // initialize sum to 0 RAM[17] ← 0 C-instruction 03 1110101010001000

08
(LOOP) // start of while

loop

Label symbol bound to

ROM address 04

Label

declaration
- - - - No code generated

09
@cnt // reference addr of

cnt
M ← 16 A-instruction 04 0000000000001000

10
D=M // move current cnt

value to D
D ← RAM[16] C-instruction 05 1111110000010000

11
@100 // load loop limit

into A
A ← 100 A-instruction 06 0000000001100100

12
D=D-A // perform loop

test computation
D ← D – A C-instruction 07 1110010011010000

13
@END // load target

destination for branch
M ← 18 A-instruction 08 0000000000010010

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 16

14 D;JGT //exit loop if D > 0 Conditional branch C-instruction 09 1110001100000001

15
@cnt // reference addr of

cnt
M ← 16 A-instruction 10 0000000000001000

16
D=M // move current cnt

value to D
D ← RAM[16] C-instruction 11 1111110000010000

17
@sum // reference

address of sum
M ← 17 A-instruction 12 0000000000010001

18 M=D+M // add cnt to sum M ← D + RAM[17] C-instruction 13 1111000010001000

19
@cnt // reference addr of

cnt
M ← 16 A-instruction 14 0000000000001000

20
M=M+1 // increment

counter

RAM[16] ← RAM[16] +

1
C-instruction 15 1111110111001000

21
@LOOP // load target

destination for branch
M ← 4 A-instruction 16 0000000000000100

22
0;JMP // jump to LOOP

entry
Unconditional branch C-instruction 17 1110101010000111

23
(END) // start of

terminating loop

Label symbol bound to

ROM address 18

Label

declaration
- - - - No code generated

24
@END // load target

destination for branch
M ← 18 A-instruction 18 0000000000010010

25
0;JMP // jump to END

entry
Unconditional branch C-instruction 19 1110101010000111

Note that the instruction sequence follows the

pattern of A-instruction, C-instruction, A-

instruction, C-instruction, This is typical for

Hack assembly language programs. The A-

instruction specifies a constant or memory address

that is used in the subsequent C-instruction. All

three variations of the A-instruction are illustrated.

In line 11 (@100), the constant value 100 is loaded

into the A register. This value is used in line 12

(D=D-A) to compute the value used to test the loop

branch condition. Since line 4 (@cnt) contains the

first appearance of the user-defined variable "cnt",

this statement binds the symbol to the next unused

RAM address. In this instance, the address is 16,

and that value is loaded into the A register. Also,

the M pseudo-register also now references this

address, and RAM[16] is made the active RAM

memory location.

The third use of the A-instruction is seen in line 21

(@LOOP). Here the instruction loads the bound

label value, representing an address in ROM

memory, into the A register and M pseudo-register.

The subsequent unconditional branch instruction in

line 22 (0;JMP) loads the M register value into the

CPU's program counter register to effect control

transfer to the beginning of the loop. The Hack

computer provides no machine language instruction

to halt program execution. The final two lines of

the program (@END and 0;JMP) create an infinite

loop condition which Hack assembly programs

conventionally use to terminate programs designed

to run in the CPU emulator.

REFERENCES

[1]. Liu, Jinan; Rahman, Sajjadur; Serletis,

Apostolos (2020). "Cryptocurrency

Shocks". SSRN Electronic

Journal. doi:10.2139/ssrn.3744260. ISSN 15

56-5068. S2CID 233751995.

[2]. Malvino, Albert P., & Brown, Jerald A.

(1993). Digital Computer Electronics, 3rd

Edition. New York, New York: Glencoe

McGraw-Hill

https://www.ssrn.com/abstract=3744260
https://www.ssrn.com/abstract=3744260
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2139%2Fssrn.3744260
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/1556-5068
https://www.worldcat.org/issn/1556-5068
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:233751995

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 17

[3]. Matteo D'Agnolo. "All you need to know

about Bitcoin". timesofindia-

economictimes. Archived from the original

on 26 October 2015.

[4]. Michael G. Noblett; Mark M. Pollitt;

Lawrence A. Presley (October

2000). "Recovering and examining

computer forensic evidence". Retrieved 26

July 2010.

[5]. Millman, Renee (15 December 2017). "New

polymorphic malware evades three-quarters

of AV scanners". SC Magazine UK.

[6]. Milutinović, Monia

(2018). "Cryptocurrency". Ekonomika. 64 (1

): 105–

122. doi:10.5937/ekonomika1801105M. ISS

N 0350-137X.

[7]. Moore, R. (2005) "Cyber crime:

Investigating High-Technology Computer

Crime," Cleveland, Mississippi: Anderson

Publishing.

[8]. Nakashima, Ellen (26 January 2008). "Bush

Order Expands Network Monitoring:

Intelligence Agencies to Track

Intrusions". The Washington Post.

Retrieved 8 February 2021.

[9]. Null, Linda, & Lobur, Julia. (2019). The

Essentials of Computer Organization and

Architecture. 5th Edition. Burlington,

Massachusetts: Jones and Bartlett Learning.

[10]. Pagliery, Jose (2014). Bitcoin: And the

Future of Money. Triumph

Books. ISBN 978-

1629370361. Archived from the original on

21 January 2018. Retrieved 20

January 2018.

[11]. Parker D (1983) Fighting Computer

Crime, U.S.: Charles Scribner's Sons.

[12]. Patt, Yale N., & Patel, Sanjay J.

(2020). Introduction to Computing Systems:

From Bits and Gates to C and Beyond, 3rd

Edition. New York, New York: McGraw

Hill Education.

[13]. Pernice, Ingolf G. A.; Scott, Brett (20 May

2021). "Cryptocurrency". Internet Policy

Review. 10 (2). doi:10.14763/2021.2.1561. I

SSN 2197-6775.

[14]. Perrin, Chad (30 June 2008). "The CIA

Triad". techrepublic.com. Retrieved 31

May 2012.

[15]. Petzold, Charles. (2009). Code: The Hidden

Language of Computer Hardware and

Software. Redmond, Washington: Microsoft

Press.

[16]. Pitta, Julie. "Requiem for a Bright

Idea". Forbes. Archived from the original on

30 August 2017. Retrieved 11 January 2018.

[17]. Polansek, Tom (2 May 2016). "CME, ICE

prepare pricing data that could boost

bitcoin". Reuters. Retrieved 3 May 2016.

[18]. Ruddenklau, Ian Pollari,Anton (August 9,

2021). "Pulse of Fintech H1 2021 – Global -

KPMG Global". KPMG. Retrieved January

3, 2022.

[19]. Sanicola, Lenny (February 13,

2017). "What is FinTech?". Huffington Post.

Retrieved August 20, 2017.

[20]. Schatz, Daniel; Bashroush, Rabih; Wall,

Julie (2017). "Towards a More

Representative Definition of Cyber

Security". Journal of Digital Forensics,

Security and Law. 12 (2). ISSN 1558-7215.

[21]. Schueffel, Patrick (March 9, 2017).

"Taming the Beast: A Scientific Definition

of Fintech". Journal of Innovation

Management. 4 (4): 32–

54. doi:10.24840/2183-0606_004.004_0004.

[22]. Scott, John Clark. (2009). But How Do It

Know? The Basic Principles of Computers

for Everyone. Oldsmar, Florida: John C.

Scott.

[23]. Stevens, Tim (11 June 2018). "Global

Cybersecurity: New Directions in Theory

and Methods" (PDF). Politics and

Governance. 6 (2): 1–

4. doi:10.17645/pag.v6i2.1569.

[24]. Stoneburner, G.; Hayden, C.; Feringa, A.

(2004). "Engineering Principles for

Information Technology Security" (PDF).

csrc.nist.gov. doi:10.6028/NIST.SP.800-

27rA.

[25]. Van Loo, Rory (February 1,

2018). "Making Innovation More

Competitive: The Case of Fintech". UCLA

Law Review. 65 (1): 232.

[26]. Warren G. Kruse, Jay G. Heiser

(2002). Computer forensics: incident

response essentials. Addison-Wesley.

p. 392. ISBN 978-0-201-70719-9.

http://economictimes.indiatimes.com/news/international/business/all-you-need-to-know-about-bitcoin/articleshow/48910867.cms
http://economictimes.indiatimes.com/news/international/business/all-you-need-to-know-about-bitcoin/articleshow/48910867.cms
https://web.archive.org/web/20151026140555/http:/economictimes.indiatimes.com/news/international/business/all-you-need-to-know-about-bitcoin/articleshow/48910867.cms
https://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/oct2000/computer.htm
https://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/oct2000/computer.htm
https://www.scmagazineuk.com/new-polymorphic-malware-evades-three-quarters-of-av-scanners/article/718757/
https://www.scmagazineuk.com/new-polymorphic-malware-evades-three-quarters-of-av-scanners/article/718757/
https://www.scmagazineuk.com/new-polymorphic-malware-evades-three-quarters-of-av-scanners/article/718757/
http://scindeks.ceon.rs/Article.aspx?artid=0350-137X1801105M
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.5937%2Fekonomika1801105M
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0350-137X
https://www.washingtonpost.com/wp-dyn/content/article/2008/01/25/AR2008012503261_pf.html
https://www.washingtonpost.com/wp-dyn/content/article/2008/01/25/AR2008012503261_pf.html
https://www.washingtonpost.com/wp-dyn/content/article/2008/01/25/AR2008012503261_pf.html
https://www.washingtonpost.com/wp-dyn/content/article/2008/01/25/AR2008012503261_pf.html
https://books.google.com/books?id=_-wuBAAAQBAJ
https://books.google.com/books?id=_-wuBAAAQBAJ
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1629370361
https://en.wikipedia.org/wiki/Special:BookSources/978-1629370361
https://web.archive.org/web/20180121071329/https:/books.google.com.au/books?id=_-wuBAAAQBAJ
https://en.wikipedia.org/wiki/Charles_Scribner%27s_Sons
https://policyreview.info/glossary/cryptocurrency
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.14763%2F2021.2.1561
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/2197-6775
https://www.techrepublic.com/blog/security/the-cia-triad/488
https://www.techrepublic.com/blog/security/the-cia-triad/488
https://www.forbes.com/forbes/1999/1101/6411390a.html
https://www.forbes.com/forbes/1999/1101/6411390a.html
https://en.wikipedia.org/wiki/Forbes
https://web.archive.org/web/20170830214226/https:/www.forbes.com/forbes/1999/1101/6411390a.html
https://www.reuters.com/article/us-cme-group-bitcoin-idUSKCN0XT1G1
https://www.reuters.com/article/us-cme-group-bitcoin-idUSKCN0XT1G1
https://www.reuters.com/article/us-cme-group-bitcoin-idUSKCN0XT1G1
https://en.wikipedia.org/wiki/Reuters
https://home.kpmg/xx/en/home/insights/2021/08/pulse-of-fintech-h1-2021-global.html
https://home.kpmg/xx/en/home/insights/2021/08/pulse-of-fintech-h1-2021-global.html
http://www.huffingtonpost.com/entry/what-is-fintech_us_58a20d80e4b0cd37efcfebaa
https://commons.erau.edu/jdfsl/vol12/iss2/8/
https://commons.erau.edu/jdfsl/vol12/iss2/8/
https://commons.erau.edu/jdfsl/vol12/iss2/8/
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/1558-7215
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.24840%2F2183-0606_004.004_0004
https://kclpure.kcl.ac.uk/portal/files/97261726/PaG_6_2_Global_Cybersecurity_New_Directions_in_Theory_and_Methods.pdf
https://kclpure.kcl.ac.uk/portal/files/97261726/PaG_6_2_Global_Cybersecurity_New_Directions_in_Theory_and_Methods.pdf
https://kclpure.kcl.ac.uk/portal/files/97261726/PaG_6_2_Global_Cybersecurity_New_Directions_in_Theory_and_Methods.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17645%2Fpag.v6i2.1569
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.6028%2FNIST.SP.800-27rA
https://doi.org/10.6028%2FNIST.SP.800-27rA
https://scholarship.law.bu.edu/faculty_scholarship/50
https://scholarship.law.bu.edu/faculty_scholarship/50
https://archive.org/details/computerforensic0000krus
https://archive.org/details/computerforensic0000krus
https://archive.org/details/computerforensic0000krus/page/392
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-70719-9

Proceedings of International Web Conference “Cyber Security”

30
th

 November 2022, Organized by Sbyte Technologies

Sponsored by INFISUM, USA.

All Copyrights Reserved by sbyte.tripod.com Page | 18

[27]. Warren G. Kruse; Jay G. Heiser

(2002). Computer forensics: incident

response essentials. Addison-Wesley.

p. 392. ISBN 978-0-201-70719-9.

Retrieved 6 December 2010.

[28]. Webroot (24 July 2018). "Multi-Vector

Attacks Demand Multi-Vector

Protection". MSSP Alert. Retrieved 11

May 2022.

[29]. Yaffe-Bellany, David (15 September

2022). "Crypto's Long-Awaited 'Merge'

Reaches the Finish Line". The New York

Times. Retrieved 16 September 2022.

[30]. Yasinsac, A.; Erbacher, R.F.; Marks, D.G.;

Pollitt, M.M.; Sommer, P.M. (July 2003).

"Computer forensics education". IEEE

Security & Privacy. 1 (4): 15–

23. doi:10.1109/MSECP.2003.1219052.

https://archive.org/details/computerforensic0000krus
https://archive.org/details/computerforensic0000krus
https://archive.org/details/computerforensic0000krus/page/392
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-70719-9
https://www.msspalert.com/cybersecurity-guests/multi-vector-attacks-demand-multi-vector-protection/
https://www.msspalert.com/cybersecurity-guests/multi-vector-attacks-demand-multi-vector-protection/
https://www.msspalert.com/cybersecurity-guests/multi-vector-attacks-demand-multi-vector-protection/
https://www.nytimes.com/2022/09/15/technology/ethereum-merge-crypto.html
https://www.nytimes.com/2022/09/15/technology/ethereum-merge-crypto.html
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FMSECP.2003.1219052

