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Abstract: The increasing prevalence of marine pollution during the past few decades motivated
recent research to help ease the situation. Typical water quality assessment requires continuous
monitoring of water and sediments at remote locations with labour-intensive laboratory tests to
determine the degree of pollution. We propose an automated water quality assessment framework
where we formalise a predictive model using machine learning to infer the water quality and level
of pollution using collected water and sediments samples. Firstly, due to the sparsity of sample
collection locations, the amount of sediment samples of water is limited, and the dataset is incomplete.
Therefore, after an extensive investigation on various data imputation methods’ performance in
water and sediment datasets with different missing data rates, we chose the best imputation method
to process the missing data. Afterwards, the water sediment sample will be tagged as one of four
levels of pollution based on some guidelines and then the machine learning model will use a specific
technique named classification to find the relationship between the data and the final result. After
that, the result of prediction can be compared to the real result so that it can be checked whether
the model is good and whether the prediction is accurate. Finally, the research gave improvement
advice based on the result obtained from the model building part. Empirically, we show that our
best model archives an accuracy of 75% after accounting for 57% of missing data. Experimentally,
we show that our model would assist in automatically assessing water quality screening based on
possibly incomplete real-world data.

Keywords: water pollution; artificial intelligence; marine pollution; machine learning model;
deep learning model; data imputation

1. Introduction

Sediments are natural particles that develop as earth materials are broken down
through weathering and erosion. Metal concentration is the standard indicator in marine
water and sediments that denotes the level of pollution. Due to the rapid development
of industry and global urbanisation, the pollution problem has garnered mass attention
worldwide. The impact of metal on the water and sediment quality is remarkably negative.
Metals in water and sediments, particularly heavy metals, are persistent sources of pollution
that may cause various adverse outcomes to creatures on the earth. Containing heavy
metals in marine water sediments may result in transcriptional effects on stress-responsive
genes [1]. There have been many studies about the water flow and sediment from various
aspects, for example, continuously monitoring heavy metal variability in highly polluted
rivers [2].

Accumulation and prediction of metals in water and sediments is a complicated issue.
We propose to perform an empirical investigation on a real-world dataset by utilizing
predictive machine learning (ML) models. All follow-up actions of environmental policy
and related restrictions can only be formulated after a clear assessment of water and sedi-
ment quality. Therefore, it is essential to evaluate the predictive capability of our model
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on water and sediment quality. This research is an extension of [3] which evaluated the
water and sediment dataset collected in Australian ports located in six different areas. That
research tested the water sediment samples and indicated the main pollutants. Several
pollution indexes were calculated and pollution indexes helped to identify the water sedi-
ment quality and degree of pollution. While facing a large number of possible pollutants, it
is almost impossible to monitor all metals and make regulations [4]. Those indicate that
distinguishing the main pollutants will assist in pollution regulation.

In this paper, we tried to find the method to make an improvement for the previous
model. Using an Artificial Intelligence learning-based approach helps to identify the es-
sential pollutant in a data-driven approach, which helps to assist the pollution regulation.
We tested the water and sediment samples and identified the primary pollutants. Several
pollution indexes were used to determine the water and sediment quality and degree of
pollution. We empirically combined different water and sediment sources to learn the
correlation between various sediment content levels and their contribution to water pollu-
tion. Experimentally, we show that our model can achieve the state-of-the-art predictive
capability to identify highly polluted ports based purely on collected data.

2. Related Works

Heavy metal pollution has brought an unpredictable threat to aquatic ecosystems
as an increasing population and industrialization expanded. With the rapid change in
urbanization, the concentration of heavy metals is serious in sewage wastewater, industrial
wastewater discharges, and atmospheric deposition [1,5]. Heavy metal concentrations
in soil, water, and sediments are becoming severe due to intensive human activities [6].
According to Sather Noor Us’, research on the comparison between heavy metal elements,
excessive levels of heavy metals (such as Fe, Cu, Zn, Co, Mn, Se, and Ni) tend to be
harmful to marine or marine life; other metals (such as Ag, Hg, and Pb) are fatal to marine
organisms [7]. Therefore, it is particularly important to have an automatic framework that
can quickly detect water quality. However, most of the current studies on water pollution
assessment still use traditional methods. Traditional approaches, such as geochemical
methods like inductively coupled plasma mass spectrometry (ICP-MS), require a labour-
intensive process where it is time-consuming and high in cost [5,8]. Moreover, these
methods are not suitable when the test scale is substantially significant [9]. In search of
the ability to detect contamination in different areas, one possible approach is to combine
multiple sources of contamination datasets in a meaningful way. Utilizing multiple sources
of information can enhance machine learning models’ predictive capability and tackle
the typical data scarcity issue with water sediment datasets. machine learning models
can explore correlations between various variables more effectively and, thus, make more
accurate predictions. For example, an artificial neural network (ANN) can classify images
or recognize speech when conducting biological research [10,11]. When there exists a
mismatch of data features between datasets, data imputation can tackle the problem of
missing data [11]. Some research works have already employed machine learning models
to predict marine water quality. For example, Bhagat et al. [12] have implemented a water
quality prediction model using the XGBoost algorithm. BPNN, SVR, and LSTM models are
applied in [13] to predict water quality which showed significant improvements. Ref. [14]
proposed a water quality prediction model combining improved grey regression analysis
and LSTM. Interested readers can view more on water quality prediction using machine
learning in the detailed review completed by [15]. Nevertheless, these studies on water
quality prediction using machine learning hardly consider how to solve the problem of
typical data scarcity of water and sediment datasets.

In addition, many water quality assessment study used environmental indexes which
are some of the established standards to deduce the degree of water contamination [3].
However, multiple standards exist, such as geo-accumulation index (Igeo), and enrichment
factor (EF). However, none are considered the "golden standard". Therefore, the com-
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bination of dataset and environmental indexes is a possible approach to combine the
well-established environmental index with the predictive capability of machine learning.

3. Motivation

In this research, we focus on two significant challenges. The first is determining the
extent of water pollution using pollution indices derived from metal sediments. Current
studies centred around explaining and calculating pollution indices but do not focus on
the relationship between pollution indices and water and sediment quality. Our proposed
model would tackle this issue by extracting the correlation between these indices to de-
termine water and sediment quality. The second lies in identifying a robust set of data
imputation methods that can consistently perform across multiple marine water datasets.
Sediment contents tend to require specific types of equipment for detection, which means
studies conducted by different groups might not be complete. This difficulty can be miti-
gated by utilising missing data imputation methods.

The scope of this research involves assessing heavy metal pollution in the sediments
of marine water. In a broad sense, this topic covers many fields, such as environmental
science, biological science, oceanic science, and data science. We focus on the scope of
data science. We utilise publicly available datasets to train a predictive model and then
perform an extensive feasibility study on the predictive performance of an unseen private
dataset. The expected outcome is to develop a machine learning model that uses heavy
metals indices as input attributes and automatically outputs the condition of water and
sediment quality.

4. Methodologies

Data collection: the collected dataset consists of 46 features and 271 entries. There is a
high percentage (around 70%) of missing data within the dataset. There are several reasons
associated with this issue. Firstly, some non-heavy elements, such as transition metal,
silver, mercury, and beryllium, are usually below detection. For example, the elements
in Australian ports do not typically attempt to detect such a metal. Secondly, the data
collected from different resources typically do not contain the same features because there
are no established standards. The set of detected materials across studies might vary due to
the scope differences. Thirdly, some studies might even contain organic elements detection,
while other datasets might not. Therefore, we conducted a feature selection process focusing
on necessary and meaningful features. There are 25 features with 271 entries remaining in
the refined dataset, and the missing rate drops to around 53%.

4.1. Data Labelling

Since we could not find the existing label suitable for this study, we first conducted an
extensive investigation on various environmental indicators based on Australia’s official
water quality guidelines and other research related to water pollution assessment, and pre-
liminarily selected four most commonly used indicators whose assessment standards are
different to enable a more comprehensive assessment of water quality. Then, as described
in the Discussion section below, the pollution degree label generated according to the water
quality assessment guidelines developed in this research is consistent with the actual situa-
tion. Therefore, we synthesized the target variable by utilising four pollution indicators:
Igeo, EF, pollution load index (PLI) and potential ecological risk index (PER). The indica-
tors are used to assess water quality based on various types of water sediment. Figure 1
illustrates the overall process of data labelling. Firstly, we compute the four indicators in
accordance with their specifications. Among these results, Igeo and EF are calculated for
each element in the water in the area, while PLI and PER are a comprehensive evaluation
of all elements in the area. Because the number of levels among each indicator is not the
same, it is necessary to systematically merge the label intervals among indicators.

According to standard text descriptions of Igeo, EF, PLI, and PER, we use the following
formulas to transform each indicator into a 25-point scale.
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For geoaccumulation indices (Igeo), the merger criteria are as follows:

fscore(xIgeo) =


0 if xIgeo < 0,
5x if 0 ≤ xIgeo ≤ 5,
25 if xIgeo > 5.

(1)

For the enrichment factors (EF), the merger criteria are as follows:

fscore(xef) =


0 if xef < 2,
25(x−2)

38 if 2 ≤ xef ≤ 40,
25 if xef > 40.

(2)

For the pollution load index (PLI), the merger criteria are as follows:

fscore(xpli) =


0 if xpli < 1,
25(x−1)

4 if 1 ≤ xpli ≤ 5,
25 if xpli > 5.

(3)

For the potential ecological risk index (PER), the merger criteria are as follows:

fscore(xper) =


0 if xper < 40,
25(x−40)

280 if 40 ≤ xper ≤ 320,
25 if xper > 320.

(4)

We add the pollution degree label to the dataset based on the total score of the above
four indicators, as: score = 0 = A level (unpolluted), 0–16.8 = B level (light pollution),
16.8–54.48 = C level (moderate pollution) and >54.48 = D level (heavy pollution). The
scoring ranges of the above four types of pollution degree labels are obtained based on
the results of combining the original pollution assessment standards of the above four
environmental indicators into four grades artificially.

In fact, after the items in the dataset are calculated, the result does not contain D level
(heavy pollution) data, and there is no data source for training the model, so the C level
and D level are merged. When the score is greater than 16.8, all are C level.

Figure 1. The overall data labelling process.



Future Internet 2022, 14, 324 5 of 14

4.2. Data Imputation

The data we collected has a large percentage of missing data, around 53%, which is
problematic for the data-driven machine learning model. Therefore, a well-performing data
imputation method is necessary to standardise and clean them to enhance the performance
of machine learning models. We design an experiment to examine the efficiency of different
imputation models, which includes: (i) simple imputation, (ii) k-nearest neighbour (KNN)
imputation, (iii) singular value decomposition (SVD) imputation, and (iv) iterative imputation.

In our experiment, we select a dataset as the target domain. Then, experimentally, we
evaluated the performance of various imputation methods. We performed the imputation
methods under different missing rates and repeated the experiment ten times to obtain a
statistically significant result. We randomly drop values with a missing rate ranging from
0.35 to 0.65, with an increment step of 0.05. Then we compared the mean of the symmetric
mean absolute value (SMAPE) between the imputed and the actual values. The highest
performing imputation method is selected in this research.

Tables 2 and 3 illustrate the performance differences in-between several data imputa-
tions methods. Simple imputation refers to using the mean across each feature column to
fill missing values. Data standardisation refers to rescaling the value of each feature to the
same scale to let all features contribute equally to the developed model. Several ways to
standardise include min and max normalisation, z-score standardisation, and centralisa-
tion. Standardisation rescales the value into zero means and one unit standard deviation.
Normalisation is to rescale the value into 0 and 1. Centralisation is to rescale the value to
be centred at 0.

In classification and clustering algorithms, z-score standardisation performs when the
distance is calculated to measure the similarity, or dimensionality reduction technologies,
such as principal component analysis (PCA), are applied. In our dataset, the models we
propose to develop, such as support vector machines (SVM) and KNN, highly rely on
distance calculation, so we adopt the z-score standardisation technique.

4.3. Machine Learning Model Developing

The choice of the machine learning algorithm enables this study to obtain the water
quality and pollution situation of a certain place in a timely and accurate manner, and the
rapid and accurate prediction of water quality is helpful to water quality regulation to a
large extent. In addition, this study uses the data imputation method in combination with
the machine learning algorithm to tack the typical data scarcity issue with water sediment
datasets, so that our model would assist in precisely assessing water quality based on
potentially incomplete real-world data.

The machine learning models we adopted in this research are Logistic Regression,
Naive Bayes, Decision Tree, KNN, SVC, and MLPClassifier. Logistic regression is a linear
regression plus a sigmoid function that can convert numeric prediction into categorical
outcomes. The Naive Bayes classifier is a classification technique that uses Bayes’ Theorem
as its underlying theory. It assumes that all the predictors are independent; that is to
say, all features are unrelated and do not have any correlation. KNN is the k-nearest
neighbour classifier. It calculates the distances between the data entry to be predicted and
other data entries, then votes for the most frequent label among k closest number of data
entries to predict the label of the target entry (k is a hyperparameter that needs to be tuned
during model training). SVC stands for support vector classifier. There is no required
assumption on the shape of features, and no parameters need to be tuned. It generates the
’best fit’ hyperplane that divides or categorizes the samples. MLPClassifier is a multi-layer
perceptron (MLP) that trains a neural network using a backpropagation algorithm.

In addition to MLPClassifier, we build a fully connected deep neural network (DNN)
and tune the hyperparameters to find a DNN model with the highest predicting accuracy.
DNN is an artificial neural network with many hidden layers between its input and output
layers. The number of neurons in the input and output layer is the same as the number of
data entries and different labels in the dataset. A weighted sum plus a bias is applied to
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all the neurons in the previous layer. A non-linear function is used to change its linearity.
Then the calculated value works as the input value of neurons in the next layer. The weight
of each neuron will not be updated through the backpropagation algorithm until the
loss function is minimized. Then the latest weight, together with other parameters, form
the architecture of the DNN model. Table 1 provides a brief summary of each machine
learning models.

Parameter tuning is the most crucial task during DNN model development. In this
project, we use predicting accuracy to examine the efficiency of different parameters.
Typical parameters include the number of hidden layers, the number of neurons in each
layer, the activation function, the dropout rate, the batch normalization, the epoch, and the
gradient descent method. We first tune the number of hidden layers and then use the best
number of hidden layers to tune the number of neurons in each layer. Then, we tune the
dropout rate and evaluate batch normalization’s effectiveness.

Table 1. Brief description of each machine learning model.

Model Description

Logistic
Regression

A traditional statistical method to predict the classes via fitting regression
curves

Naive Bayes A model that applies Bayes’ theorem for prediction with a strong
assumption of conditional independence

Decision Tree Uses a tree-like model to divide the input into various classes via splitting
the input into a series of related choices

KNN A straightforward non-parametric approach to use distance metric for
making classification based on nearby data

SVC A support vector machine that perform classification by creating a
hyperplane that separate the datapoints

MLP A simple feed forward neural network that can be trained by back
propagation

Logistic regression is one of the straightforward and easy-to-interpret algorithms in
machine learning, so it is used as the benchmark model in our comparison. Prediction
accuracy and F1-score will be compared between those models. Details of machine learning
model accuracy evaluation methods will be discussed in the subsequent section.

4.4. Data Collection

The dataset used in this research was collected from some authoritative websites and
combined by the following six datasets from various sources.

1. Dataset I was collected by Jahan and Strezov (2018). Using Ekman grab sampler, they
collected sediment samples from three different locations at each of the six ports of
Sydney, Jackson port, Botany port, Kembla port, Newcastle port, Yamba port, and
Eden port, and obtained the content data of 42 different substances in sediments at
different sampling points [3].

2. Our Dataset II comes from Perumal et al. (2019), which includes surface sediments
from 24 different locations in the areas affected by different anthropogenic activities
in the coastal area of Thondi using Van Veen grab surface sampler, and measured
the grain size, organic substance, and heavy metal concentration of surface sediment
samples [15].

3. Dataset III was collected by Fan et al. in 2019. Using the Bottom Sediment Grab
Sampler, they collected 70 surface sediment samples in Luoyuan Bay, northeast coast
of Fujian Province, China, and measured the concentrations of eight heavy metals, V,
Cr, Co, Ni, Cu, Zn, Cd, and Pb, in the sediment samples [16].

4. Dataset IV was collected by Constantino et al. (2019) at nine different sampling points
in the Central Amazon basin. During the dry season, they collected sediment samples
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with a 30 by 30 cm Ekman–Birge dredger and measured the concentration of different
metals in sediment samples [17].

5. Dataset V was collected in a polygon along the Brazilian continental slope of the
Santos Basin, known as the São Paulo Bight, in an arc area on the southern edge of
Brazil, to obtain Dataset V [18].

4.5. Data Augmentation

Our labelled dataset is highly imbalanced, with label ‘A’ accounting for 43%, label ‘B’
accounting for 51%, and label ‘C’ accounting for 6%. In an imbalanced dataset, the predict-
ing accuracy (the number of correctly predicted samples/the total number of samples) will
become ineffective. This is because the positive samples in an imbalanced dataset occupy
a large percentage, and the accuracy score will become high even if none of the negative
samples is successfully predicted. When the ratio of two groups of samples exceeds 4:1,
the imbalance problem will be severe.

There are three standard methods for dealing with an imbalanced dataset: (i) resam-
pling, (ii) over-sampling, and (iii) under-sample. Our original data entries are small, so we
choose over-sampling, synthesising data entries for the minority label classes. This process
is also known as data augmentation. The most straightforward augmentation technique is
picking a small number of samples at random, then making a copy and adding it to the
whole sample. However, if the feature dimension of the data is small, simple extraction
and replication will lead to over-fitting easily. We adopted a new augmentation method
called Synthetic Minority Over-sampling Technique (SMOT). SMOT is to find K numbers of
neighbours in P dimensions and then multiply each index of the K neighbours by a random
number between 0 and 1 to form a new minority class sample. SMOT can introduce some
noise to the synthesised samples to avoid the problem of overfitting.

4.6. Evaluation

Data imputation: evaluating the appropriate data imputation approach is an essential
process to address the issue with missing data which is common among sediment data.
We have selected four state-of-the-art approaches as the candidate methods. The designed
experiment calculated the average accuracy of different imputation methods under different
missing rates. SMAPE is used to evaluate the models’ performance. Using SMAPE instead
of MAE or RMSE helps to account for the magnitude differences between features. In
addition, accuracy and F1-score are used to examine the performance of the models.

5. Results
5.1. Data Imputation Results

The SMAPE value of different missing data imputation methods is shown in Table 2,
illustrated by its mean and standard deviation. Table 3 shows the iterative imputation
using different tree algorithms with a different number of trees. Figure 2 gives a clear
comparison of different imputation methods with simple imputation as the benchmark.
The green line indicates that the SMAPE of simple imputation is 111.58. Any column
above the green line means that the method performs better than simple imputation and
vice versa. Table 4 illustrates the mean and standard deviation of SMAPE in ExtraTree with
different tree numbers.

Table 2. The SMAPE score (mean and standard deviation) by using mean imputation and
SVD imputation.

Imputation Method
Data Missing Rate

0.35 0.4 0.45 0.5 0.55 0.6 0.65

Mean Imputation 115.42 ± 3.45 111.44 ± 3.11 112.06 ± 4.81 111.58 ± 6.87 108.61 ± 7.24 110.51 ± 5.47 109.02 ± 6.24
SVD Imputation 112.63 ± 4.80 114.08 ± 4.08 112.91 ± 5.99 111.97 ± 4.06 114.57 ± 7.96 106.98 ± 6.61 106.30 ± 6.68
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Table 3. The SMAPE score (mean and standard deviation) by using kNN imputation and
iterative imputation.

Imputation Method
Data Missing Rate

0.35 0.4 0.45 0.5 0.55 0.6 0.65

k = 5 90.77 ± 7.31 98.49 ± 10.10 97.63 ± 4.98 96.74 ± 6.74 98.85 ± 4.60 102.70 ± 5.32 104.09 ± 4.83
k = 7 93.49 ± 5.92 96.89 ± 5.93 101.57 ± 4.79 103.57 ± 9.84 112.02 ± 6.40 109.42 ± 7.54 107.64 ± 7.20
k = 9 100.12 ± 8.11 100.09 ± 8.82 109.13 ± 9.04 111.02 ± 4.35 109.28 ± 3.34 108.88 ± 8.14 105.98 ± 8.01

Iterative Imp.
Bayesian Ridge 114.92 ± 7.78 116.46 ± 6.56 122.05 ± 5.15 119.76 ± 6.09 123.83 ± 5.28 123.91 ± 6.43 123.25 ± 7.18
Decision Tree 60.11 ± 5.19 62.22 ± 3.31 64.27 ± 3.68 66.78 ± 6.40 68.75 ± 5.10 70.34 ± 9.64 80.04 ± 9.06

n = 5 60.25 ± 4.00 61.84 ± 2.37 58.40 ± 33.35 65.05 ± 5.44 63.36 ± 3.36 66.88 ± 3.27 70.91 ± 7.69
n = 20 62.46 ± 2.72 64.33 ± 5.98 64.98 ± 5.55 66.38 ± 4.25 67.52 ± 4.89 70.20 ± 3.13 77.58 ± 5.22
n = 50 62.13 ± 5.94 65.99 ± 6.18 65.94 ± 4.49 68.34 ± 4.50 71.76 ± 3.32 71.00 ± 5.41 76.57 ± 6.59

Table 4. The mean and standard deviation of SMAPE in ExtraTree with different tree numbers.

Missing Rate (%) 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Iterative Imputation with Extra Tree Estimator

n = 5 60.25 ± 4.00 61.84 ± 2.37 58.40 ± 33.35 65.05 ± 5.44 63.36 ± 3.36 66.88 ± 3.27 70.91 ± 7.69
n = 20 62.46 ± 2.72 64.33 ± 5.98 64.98 ± 5.55 66.38 ± 4.25 67.52 ± 4.89 70.20 ± 3.13 77.58 ± 5.22
n = 50 62.13 ± 5.94 65.99 ± 6.18 65.94 ± 4.49 68.34 ± 4.50 71.76 ± 3.32 71.00 ± 5.41 76.57 ± 6.59

Figure 2. Comparison of the SMAPE value of different imputation methods with simple imputation
as the benchmark.

5.2. Deep Learning Model Tuning Results
5.2.1. Tuning the Number of Hidden Layers

Figure 3 illustrates the prediction accuracy of the train and test dataset under different
numbers of hidden layers ranging from 2 to 6, increased by 1. The test accuracy with two
hidden layers equals 0.65, increases to 0.75 when hidden layers are 4 and 5, then drops to
0.70 with six hidden layers. The training accuracy for 4 and 5 hidden layers is 0.87 and 0.85,
separately. Hence, the five hidden layers prevail over four hidden layers due to less overfitting.
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Figure 3. The accuracy of the train and test dataset under different hidden layers numbers (epoch = 60).

5.2.2. Tuning the Dropout Rate

From the previous tuning process, we find an overfitting problem during model
development. We tune the dropout rate ranging from 0.1 to 0.4, which is increased by
0.1 to lessen the accuracy gap between train and test datasets. Figure 4 shows that the
performance difference between different dropout rates is similar, but the 0.2 dropout rate
has a slight advantage around 30 epochs, where the training accuracy is 80, and the testing
accuracy is 0.75.

Figure 4. The accuracy of train and test dataset under different dropout rate (hidden layers = 5,
Neurons in each layer = (25, 200, 400, 300, 100, 50, 3)).
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5.2.3. Tuning the Batch Normalization

Batch normalization is another technique used to solve the overfitting problem. The cri-
terion is whether to adopt batch normalization after each hidden layer or not. The left-hand
side graph in Figure 5 indicates not using batch normalization, and the right-hand side
graph indicates using batch normalization. Using batch normalization performs worse
than not to use.

Figure 5. The accuracy of train and test dataset under different batch normalization (hidden layers = 5,
Neurons in each layers = (25, 200, 400, 300, 100, 50, 3)).

Architecture of the final DNN model: from above model tuning, we finally choose
the DNN model with one input layer, five hidden layers, and one output layer. The number
of neurons in each layer is (25, 200, 400, 300, 100, 50, 3). There is no dropout or batch
normalization in this model. The architecture is shown in Figure 6.

Figure 6. Architecture of DNN model.

5.3. Model Development Results

The values of the accuracy score and F1-score corresponding to different trained mod-
els are shown in Figure 7. It can be seen that SVC, NuSVC, and DNN models have the
highest performance on the metric of accuracy, and their corresponding accuracy classifica-
tion score is 0.75. In contrast, it is noted that the NuSVC model has the highest performance
on the metric of F1-score, and its corresponding F1-score is 0.76. As mentioned earlier,
the above metrics were used to evaluate the prediction accuracy of a model. The larger the
value of the above metrics, the higher the accuracy of a model.
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Figure 7. Accuracy and macro average F1-score for different models.

6. Discussion

Labelling the data with the pollution level is essential in this research. The labelling
standard was made for research, so it is essential to consider its reliability. This is because
our research result will be meaningless if the label is unreliable. No specific performance
metrics can be chosen to evaluate that process about labelling the level of pollution, but the
distribution of the level of pollution is consistent with our background research. According
to Figure 8, the distribution of different pollution levels mainly focuses on polluted and
light pollution, which accords to real-life situations. There is no severe pollution which
is reasonable since the government will control that situation. In addition, the algorithm
we chose to calculate the level of pollution reflects the pollution degree values of metal
concentration of sediments more.

Figure 8. The distribution of labelling pollution levels.

From our research, there are a few detailed applications to various areas. Firstly,
a practical system to evaluate the level of pollution is achieved. As mentioned before, it is
believed that the system to estimate the level of pollution using indexes is entirely usable
for a simple estimation. Although the guideline of labelling different data into four levels
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of pollution was created in this research, its reasonability is solid. The comprehensive
evaluation of water quality is complicated, and it will consider many factors, including
some compounds that were not included in this research [17]. The guideline established
in this research followed the process of water quality guidelines. In many situations,
the measurement of all various compounds cannot be performed due to the complexity.
Our guideline, which can generate pollution labels for sediment samples by the mental
concentration in water sediments, is a good choice for simple and preliminary evaluation.

6.1. Missing Data Imputation

In addition, we experimented to find the best methods for missing data imputation.
The experiment result of which method will be better for imputation can be referenced
by experiments with a small dataset having a large percentage of missing data. Similar
situations can reference the result. In the case of this research, the rate of missing data is
about 53% which is too high to take standard methods of missing data imputation, such as
filling the missing data with mean, especially when the dataset is relatively small.

As the missing rate in our dataset is around 53%, we focus on the SMAPE values of
different missing data imputation methods under the 0.50 missing data rate. A lower score
in SMAPE value implies a better imputation performance. All the imputation methods
perform better than simple imputation except iterative imputation with BayesianRidge and
SVD. SVD performs slightly worse than simple imputation. Iterative imputation with extra
trees has the best performance. Notably, the number of trees (n) in extra tree regression
can be tuned as well, so we tried n equals 1, 5, 10, 20, and 50, and the outcome in Section
VI-A clearly shows that the SMAPE of iterative imputation with extra trees is the lowest
when n equals 10. In conclusion, the selected imputation method in this project is iterative
imputation with the extra tree algorithm (n = 10) as the estimator.

6.2. Model Developing

From our result, it can be deduced from the algorithm calculating the pollution level
and variable importance plot that Fe, Cu, Zn, Co, Mn, Se, and Ni are the metals that
most affect the quality of sediments. The practical significance of this result is that the
government will know the concentration of what kind of metals in sediment should be
strictly controlled.

According to Section VI-C, the accuracy scores of NuSVC and DNN models are about
0.75. In other words, the percentages of correct prediction classification of NuSVC and DNN
models are similar. However, the F1-score of DNN model is unavailable, as is mentioned
in Section IV-D, it is difficult to compare the performance of NuSVC and DNN through
that. Since the available dataset collected in this research is too tiny, the difference in
training speed between NuSVC and DNN models is not apparent. In addition, there is no
complex hyperparameter adjustment process in training the NuSVC model compared with
DNN model.

7. Conclusions

Water sediment is an essential part of the ecological environment, and its physical and
chemical properties will affect biological integrity. Therefore, investigating and studying
water sediments is one of the ways to detect the quality of the water environment. This
research uses machine learning technology to evaluate the quality of the water-sediment
samples taken to evaluate the quality of seawater samples at different locations and depths
and provide adequate information to evaluate the quality of the nearby water environment.

We propose a unified framework for introducing the predictive capability of modern
machine learning techniques into water and sediment analysis. Our framework provides
a systemic approach to evaluate the most appropriate data imputation methods to tackle
data scarcity and missing data issues, which are typical in existing studies. Our final model
archives state-of-the-art performance across other models to classify water pollution level.
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Future Work

Based on the above limitations, two improvement works can be done in the future.
On the one hand, regarding the accuracy of the output results and the overfitting

problem encountered in model training, the ultimate reason for the limitations is related to
the dataset. Therefore, future work will focus on expanding the capacity of the dataset and
improving its quality. Specific conceivable ways include:

(1) Getting the authorisation of the data set or purchasing the relevant dataset by getting
in touch with the official agency or authority.

(2) If necessary, try to cooperate with relevant experts or research groups, hoping that
they can assist us in testing more water quality data.

(3) For the existing data, improve the quality of data pre-processing as much as possible
and reduce redundant and invalid data.

On the other hand, the effectiveness of the label will be the focus of consideration since
the artificially generated label may lack authority. Therefore, in future work, it is necessary
to consult more relevant authoritative organisations and environmental science scholars to
obtain a more mature label method.
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