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Abstract: Prediabetes and diabetes are becoming alarmingly prevalent among adolescents over
the past decade. However, an effective screening tool that can assess diabetes risks smoothly is
still in its infancy. In order to contribute to such significant gaps, this research proposes a machine
learning-based predictive model to detect adolescent diabetes. The model applies supervised machine
learning and a novel feature selection method to the National Health and Nutritional Examination
Survey datasets after an exhaustive search to select reliable and accurate data. The best model
achieved an area under the curve (AUC) score of 71%. This research proves that a screening tool
based on supervised machine learning models can assist in the automated detection of youth diabetes.
It also identifies some critical predictors to such detection using Lasso Regression, Random Forest
Importance and Gradient Boosted Tree Importance feature selection methods. The most contributing
features to Youth diabetes detection are physical characteristics (e.g., waist, leg length, gender),
dietary information (e.g., water, protein, sodium) and demographics. These predictors can be further
utilised in other areas of medical research, such as electronic medical history.

Keywords: diabetes detection; medical machine learning; adolescent diabetes prediction

1. Introduction

Diabetes Mellitus (DM) is a chronic condition in which the amount of sugar in the blood
is elevated [1]. The extra blood sugar could damage a wide range of the body’s organs, lead-
ing to heart attack, stroke, and problems with the kidneys, eyes, gums, feet, and nerves [1].
The most common type of DM is type 2 diabetes, accounting for approximately 90% to
95% of all diagnosed cases of DM [2]. On the other hand, the Centers for Disease Control
and Prevention [3] has confirmed that Prediabetes Mellitus (PreDM) is a high-risk state for
type 2 diabetes development where 5 to 10% of people with PreDM will progress to DM
annually [4]. Alarmingly, both conditions are becoming prevalent among those younger
than 20 years old due to the increase in childhood obesity [5]. For example, it is estimated
by Imperatore et al. [6] that the prevalence of type 2 diabetes in young people in America
is more than likely to quadruple between 2010 and 2050. In addition, it has been proven
that DM in adolescent patients is far more difficult to treat when compared with adult
patients [7]. Fortunately, numerous research and trials have proven that lifestyle and drug-
based interventions could significantly lower the risk of diabetes development for those
individuals with PreDM [8–10]. Therefore, it is critical for adolescents to have an accurate
and intelligible detection tool to identify the PreDM/DM risks, such as the self-assessment
screen tools published by the American Diabetes Association and the Centers for Disease
Control and Prevention. Unfortunately, most of the screening tools are designed specifically
for adults. For example, research by Vangeepuram et al. [11] has proved that those existing
diabetes detection tools and guidelines did not adequately identify PreDM/DM status for
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adolescents. Therefore, this study aims to use the National Health and Nutrition Examina-
tion Survey (NHANES) datasets [12] together with machine learning models to accurately
predict the risk of PreDM/DM and identify the critical information within the NHANES
datasets that contribute to the PreDM/DM detection. The contributed model could be
further developed into a simple screening tool. The following section explores the related
research and studies to identify the problem and provide solutions to solve the problem.
Section 3 explains the detailed process of utilising machine learning models to construct
the screening tool, while the last two sections discuss the results and provide conclusions
on the findings.

2. Background Study

This study focuses on peer-reviewed articles from January 2001 to August 2021. There
are three main areas of interest: (i) the gap between the need for adolescent screening tools
and the current approaches; (ii) studies that involve the application of machine learning
models to diabetes detection; (iii) the development of interpretable machine learning
models to identify the crucial predictors of diabetes detection.

On the one hand, various research and studies have established that a specially-designed
and simple-to-use screening tool for adolescents to identify their risks of PreDM/DM is lack-
ing. For example, Lobstein and Leach [13] have discussed the under-diagnosis of PreDM/DM
among adolescents in the UK due to the lack of an effective screening tool. The current tools
have mainly used the guidelines for adults to predict the PreDM/DM risks for adolescents.
On the other hand, various research and studies have proved that machine learning models
perform well in detecting PreDM/DM risk.

Vangeepuram et al. [11] used NHANES dataset to examine the performance of a pub-
lished pediatric clinical screening guideline. The study is one of the first examinations of
the recommended clinical procedure by health officials, which reveals a crucial shortcoming
in the low accuracy of the existing screener for youth diabetes risk. In particular, the per-
formance of the clinical procedure is compared against several machine learning-based
classifiers derived from the NHANES dataset. The study [11] demonstrated that machine
learning models performed better than screening guidelines in detecting youth diabetes
and revealed the potential of using ML methods in clinical and behavioural health data.

Moreover, Yu et al. [14] achieved good performance in diabetes detection for adults
with the Support Vector Machine (SVM) model and successfully identified the significant
predictors for successful PreDM/DM detection among an extensive collection of indepen-
dent variables. Similarly, Dinh et al. [15] applied the same process as the research of Yu et al.
with more sophisticated machine learning models to boost the detection performance for
adult subjects while discovering the critical predictors for PreDM/DM within the dataset.
Therefore, this study applies the machine learning models of those prior research as a base-
line to improve the performance and identify the predictors.

Unfortunately, most of the established research focused solely on adult subjects when
collecting data for machine learning models, which partially explains why most screen-
ing tools obtain abysmal results when applied to detecting PreDM/DM in adolescents.
For instance, in the research of Dinh et al. [15], which utilised machine learning mod-
els on the NHANES datasets for diabetes detection, all data collected from participants
younger than 20 years old are discarded. Moreover, although some research applied ma-
chine learning models to PreDM/DM detection for adolescents, the results were not ideal.
Although a similar approach from Dinh et al.’s research was taken by applying supervised
machine learning models on the NHANES datasets, it did not conduct any feature selection
method. Instead, they used five features from the screening tool published by the Amer-
ican Diabetes Association (ADA) and endorsed by the American Academy of Pediatrics
(AAP) [16], namely BMI, family history of diabetes, race, hypertension, and cholesterol
level. Unsurprisingly, the research results showed an unsatisfactory performance, with the
best performing model yielding an F-score of 0.41, compared with the F-score of 0.68 from
Dinh et al.’s research.
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Therefore, this study aims to extract the established methods from adult diabetes
research and apply them to adolescent diabetes detection to generate a model with ade-
quate prediction capacity. However, a natural challenge exists after the prediction model,
which is interpreting the predictors contributing to the detection. Johansson et al. [17]
have suggested that although more sophisticated machine learning models usually achieve
better performance, they cannot be easily understood by humans when compared with
more straightforward machine learning such as simple linear models and tree-based mod-
els. Nevertheless, some research focuses on interpreting those more sophisticated models,
and a method is highly related to this study. It is the feature importance method [18], which
permutes the values of a variable, monitors the corresponding prediction accuracy to deter-
mine which variables have significant impacts on the prediction accuracy, and generates
a list of essential features.

3. Screening Tool Design Details

Our research addresses the lack of a screening tool for youth diabetes but makes three
adjustments to improve the detection performance of the models. Firstly, this research
applies an exhaustive search to collect as many features as possible instead of only collecting
features given by existing screening tools or guidelines. Secondly, feature selection methods
select the features deemed essential for diabetes detection. Thirdly, instead of using
the machine learning models from Vangeepuram et al.’s research [11], this study examined
existing research in diabetes detection and included five fundamentally different machine
learning models that are widely used, namely, Logistic Regression, Support Vector Machine,
Random Forest, Extreme Gradient Boosted Tree and Weighted Voting Classifier. Figure 1
illustrates the workflow from original raw datasets through 3 different stages to the final
detection of youth diabetes. The three stages are data mining, model development and
model evaluation.

Figure 1. Workflow of the research.

The scope of the study is limited to individuals between 12 and 20 years old with
reliable and sufficient laboratory test results together with easy-to-obtain personal informa-
tion, which does not require excessive examination or special medical devices or testing.
The easy-to-obtain personal information not only sets fewer restrictions on data but, more
importantly, makes the machine learning models less dependent on the data that is not
easy to obtain. The laboratory test results include measurements of three biomarkers that
are used to identify PreDM/DM status clinically [19–21]. They are plasma glucose level
after an overnight fast (FPG), plasma glucose level two hours after an oral glucose load
(2hrPG), and haemoglobin A1c (HbA1c), respectively. Therefore, any measurements requir-
ing sophisticated testing or examination, such as the cholesterol level, are not included as
they would not be suitable for building up the screening tool. The NHANES datasets are
used for this study based on the aforementioned requirements. It is a program designed to
systematically gather the health and nutritional conditions of the USA population. It is con-
ducted and regulated by the National Center for Health Statistics (NCHS). The NHANES
datasets combine various measurements and information of the participants from a wide
range of data collection processes such as surveys, interviews, physical examinations and
laboratory tests.
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3.1. Data Preprocessing

We first begin by extracting the raw data from the NHANES database into a data
frame, with as many features as possible. Firstly, the class label is assigned to each subject
based on the three biomarkers mentioned above: (i) FPG, (ii) 2hrPG and (iii) HbA1c. The
subjects are labelled as diabetic (label = 1) if either one of the three biomarkers is over
the threshold. The three biomarkers are available from the NHANES laboratory test result
dataset from 2005 to 2016. The remaining years in the collection lack the HbA1c test results
and are excluded from this study. Otherwise, they are labelled as non-diabetic (label = 0).
The labelling process is summarised in Table 1.

Table 1. The Clinical guideline used to define Diabetes/Non-diabetes (preDM/DM) status.

Criteria Classification

plasma glucose level after an overnight fast (FPG) ≥ 100 mg/dL Diabetes/1

plasma glucose level two hours after an oral glucose load (2hrPG) ≥ 140 mg/dL Diabetes/1

hemoglobin A1c (HbA1C) ≥ 5.7% Diabetes/1

None above Non-diabetes/0

Secondly, all available information about the subjects is extracted to define the pre-
liminary features of the dataset, with each feature representing a unique piece of infor-
mation. Previous research to predict PreDM/DM using machine learning models and
the NHANES datasets had provided an insight into the preprocessing and selection of
the raw data [14,15,22], where all available information was extracted from the raw datasets
to make sure there is no loss of data. Moreover, the study also examines the availability
and continuity of all the features extracted to keep the ones that satisfy continuity and
consistency conditions. NHANES contains survey data collected from different years.
There are some inconsistent naming conventions, where some of the same variables used
different feature names across different years. Moreover, some features were only collected
in specific years, making a large number of missing values in many features. This might be
due to the survey data from 1999 to 2022 having deviations in the data collection process.

We perform data cleaning by first recording features that contain the same semantic
meaning into the same category. Then, features with over 50% of missing values are
removed from the dataset. Normalisation was then applied to the numerical features.
At the same time, the categorical features were transformed with one-hot encoding, where
a new column is cleared for each categorical value with binary (0, 1) values to indicate
whether the subject fits into each category. After performing the procedures mentioned
above, the sample size of the final result is as follows. The consolidated dataset has been
reduced to 2569, with 88 features between 2005 and 2016. It is also worth noting that
the dataset is not balanced, as 1819 subjects are labelled as non-diabetic while the remaining
750 are labelled as diabetic.

3.2. Feature Selection

As this study aims to create a reliable model with a limited set of easy-to-obtain
features, the feature dependence of the models is examined with various feature selection
techniques to select the most essential and useful features out of the available 88 features.
More importantly, feature selection can reduce the number of features without losing
essential information and improve the efficiency and accuracy of the machine learning
models. Firstly, highly correlated features are detected and displayed in pairs. When
used in conjunction with other feature selection methods, this method could help identify
the vital feature between the correlated pair, helping reduce the feature size by removing
the other less critical feature.

Secondly, three different feature selection methods, namely Lasso Regression, Random
Forest Importance and Gradient Boosted Tree Importance, are used to rank the importance
of the features. They are the embedded feature selection methods that take advantage of
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the machine learning models used in the model development stage. Because this stage utilises
the machine learning models that will be used for prediction, it guarantees to find features
deemed necessary by the relevant models, improving the models’ detection performance.

Subsets of the Random Forest Importance model and Gradient Boosted Tree Impor-
tance model are displayed in Figure 2. Each model’s top 20 essential features are compared
and cross-referenced to identify the frequently mentioned ones. The comparison highlights
essential features that both models frequently choose, such as waist and height. We select
those repeatedly appearing features suggested by different feature selection methods for
the final pre-processed dataset, for example, age, gender, race, waist and height. Secondly,
we examine the features that appear in at least one feature selection method by comparing
them with existing research to determine their usability. For example, only the Gradient
Boosted Tree Importance method marks oral health essential. However, current research has
discovered a strong correlation between DM and deteriorated oral health [23,24], making
oral health an eligible feature to be included in the final dataset.

Figure 2. Top 10 important features of the (left) Random Forest Feature Importance Method and the
(right) Gradient Boosted Tree Feature Importance Method.

After careful review, we select 18 features out of 88 for the model. These are age, gender,
race, family history, body mass index (BMI), waist, height, weight, daily carbohydrate
intake, daily sodium intake, daily protein intake, daily fat intake, daily sugar intake, daily
dietary fibre intake, daily water intake, household income level, Vitamin B6 intake and oral
health, respectively. Vangeepuram et al.’s research [11] used only five features from the APA
screening tool: BMI, family history of diabetes, race, hypertension, and cholesterol level.
On the other hand, the feature selection methods in our research have focused on a vastly
different set of features, which partially explained the improved prediction performance
of our model as compared to Vangeepuram et al.’s models. Our novel feature selection
method contributes as follows:

• It ensures a more comprehensive examination of the data.
• It also assists in identifying the primary predictors of youth diabetes detection by

removing some insignificant features. This constitutes an essential part of developing
the screening tool.

3.3. Machine Learning Models

In this study, various supervised machine learning models are used to detect the risk
of PreDM/DM for adolescents. Supervised machine learning means the algorithm relies
on data consisting of observed features and corresponding labels to build a model. Af-
ter the model is built, it can predict a label when given a new set of features. In this case,
the selected records from the NHANES datasets are the features, and whether the subjects
have PreDM/DM inferred by the three biomarkers mentioned above is the label. All the
machine learning models used in this study are briefly introduced below:

• Logistic Regression is a supervised machine learning model that is based on the prob-
abilistic concept. Generally, it is used for classification problems. It generates proba-
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bilistic values between 0 and 1. In order to achieve this, the logistic function is applied
to the simple linear regression as follows:

p =
1

1 + e−(β0+β1X1+β2X2+···+βnXn)
, (1)

where X denotes the features, p denotes the probability of the detection, and β denotes
the coefficients for each optimising features.

• The Support Vector Machine (SVM) is a supervised machine learning model applied
to solve classification and regression problems. As illustrated by Figure 3, it pro-
vides prediction by proposing a boundary to separate the labels. It aims to achieve
the complete boundary separation between different labels. To be specific, each subject
in the dataset is plotted in an n-dimensional space, where n is the number of features
of the dataset. The next step is to find the boundary known as the hyperplane to
separate the data points in the space. However, it is not guaranteed that there is
a boundary within the n-dimensional space. Kernel trick is used to transform the data
into a higher dimension, where a boundary exists. SVM often yields better results than
logistic regression but takes longer to develop due to the computational complexity
in finding the boundaries.

• The Random Forest is a type of ensemble model that synthesises a collection of
decision trees to achieve better performances in decision-making problems. As shown
in Figure 4, it consists of three components: the root node, decision node and leaf
node. The root node acts as a starting point. It includes all the features of the dataset.
These are decision nodes representing a specific feature that divides the dataset into
different sub-groups and leaf nodes that depict the label. Each decision tree keeps
dividing the dataset into subgroups, which are further divided into other subgroups.
This process continues until all the subjects within the subgroup share the same label.
Each decision tree can be viewed as an analysis diagram with different outcomes.
Finally, the predictions of all the trees within the collection are averaged to yield a final
result, which can be summarised in Figure 5.

• The Extreme Gradient Boosted Tree (XGB Tree) is another ensemble model based on
decision trees. Instead of utilising a collection of different decision trees, this model
sequentially improves the decision trees based on the mistakes of the previous tree;
the process is illustrated in Figure 6. The final result is weighted across the majority
vote of all the trees.

• The Weighted Voting Classifier (WVC) combines the models above to generate results.
The principle of this method is to use a weighted ensemble method to take advantage
of the strengths of all the models. Specifically, it takes multiple predictions of separate
models and averages them with weights based on model performances.

Figure 3. Support Vector Machine.
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Figure 4. Decision Tree.

Figure 5. Random Forest.

Figure 6. Extreme Gradient Boosted Tree.
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Logistic Regression and SVM are comparatively simple models compared with all
the other models. They have been extensively used and applied in the disease detec-
tion area. They are used as baseline models in many research studies. Yu et al.’s [14],
Dinh et al’s [15], and Vangeepuram et al.’s research [11] have included Logistic Regression
and SVM models. In addition, Random Forest and Extreme Gradient Boosted Tree are
applied to explore the non-linear relationships that the Logistic Regression and SVM cannot
discover. Moreover, Random Forest and Extreme Gradient Boosted Tree are tree-based
models, making it easier to interpret the important features for successful detection. Finally,
as mentioned earlier, the WVC is included to explore the potential benefit from the strengths
of all the models.

3.4. Model Development

After the data preprocessing stage, we split the consolidated dataset into training
and testing sets for developing and evaluating machine learning models. The training set
is used in the training phase, where models are constructed. During the training phase,
a grid-search method with 10-fold stratified cross-validation is applied to generate the best
model parameters, which are then utilised to compose the best model. On the other hand,
the testing set generates a set of quantitative metrics measuring the model performance.
It successfully compares and evaluates all the models.

3.5. Evaluation Metrics

In this section, the quantitative metrics for the model performance are introduced.
The building blocks for the metrics can be summarised into four different concepts, True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). For this
study, a TP is when the model correctly predicts a diabetic label for a subject that has a dia-
betic label. Similarly, a TN is the model’s correct prediction of a non-diabetic label. On the
other hand, an FP is when the model predicts the diabetic label, but the actual label is
non-diabetic. An FN can be defined using the same principle. The confusion matrix to
illustrate the four concepts is listed in Table 2.

Table 2. Confusion Matrix.

True Label
Model Prediction

Non-Diabetic Diabetic

Non-Diabetic True Negative False Positive

Diabetic False Negative True Positive

We consider four metrics to measure the model performance based on the above
concepts. Firstly, precision ( TP

TP+FP ) is used to measure the proportion of correctly identified
diabetic subjects out of all the subjects being detected as diabetic by the models. The second
metric is Recall ( TP

TP+FN ), which measures the proportion of all the diabetic subjects that are
identified correctly by the models out of all the true diabetic subjects of the test set. Thirdly,
the F1 score (2 × precision×recall

precision+recall ) is used as a harmonic average of precision and recall to
assess the prediction of the models for true diabetic subjects in conjunction with the false
positives. Finally, the area under the curve (AUC) and receive operating characteristic (ROC)
are used to explore further the relationship between precision and recall of each model.
ROC is a probability curve that plots recall against a false positive rate ( FP

TN+FP ) while AUC
summarises the ROC curves and measures the ability of the model to distinguish between
labels. All four metrics have values ranging from 0 to 1, with a higher score indicating
better performance.

3.6. Statistical Testing

Apart from the evaluation metrics mentioned above, it is also essential to consider
whether the model performs better than the other by chance. Therefore, the 5x2cv paired
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t-test proposed by Dietterich [25] has been utilised to determine if the differences between
different models are significant. The test procedure is to split the data evenly into a training
set and a testing set five times. For each split, two target models are trained with the training
set and evaluated with the test set. In addition, the training set and testing set are rotated
and are used to generate the second evaluation performance, which could generate two
performance difference measures:

p(1) = p(1)A − p(1)B (2)

p(2) = p(2)A − p(2)B (3)

The mean and variance of the differences can be estimated as:

p̄ =
p(1) − p(2)

2
(4)

s2 = (p(1) − p̄)2 + (p(2) − p̄)2 (5)

The variance is calculated for the five splits and then used to calculate the t statistic
as follows:

t =
p(1)1√

(1/5)∑5
i=1s2

i

(6)

3.7. Model Interpretation

As previously introduced in Section 2, we use the feature importance method to interpret
the models. This method’s principle is to permute a feature’s value to monitor the change
of prediction error. An important feature will significantly increase the model error after
permutation and vice versa for unimportant features. In this study, after the best model is
constructed for each machine learning model, the testing set is fed into the best model with
the feature importance process. It generates a list of important features for the models.

4. Results

Figure 7 shows the evaluation metrics of five models in classifying PreDM/DM
risks with the selected features and class labels inferred from three biomarker criteria.
Evidently, all the models have more accurate predictions for the non-diabetic label. There
could be several possible factors that induce performance differences across labels. Firstly,
the predictability of diabetes within the population has always been challenging across
the population, even with recommended screening tools [26]. Moreover, the dataset is
imbalanced where 70% of the subjects have non-diabetic labels. For example, in an extreme
case where a model predicts all subjects to be non-diabetic, the evaluation metrics of
the non-diabetic label could still appear satisfactory due to the domination of the non-
diabetic label. Therefore, the evaluation metrics of the diabetic label are also essential.
Based on Figure 7 and Table 3, the performance of the models in detecting diabetic labels
shows significant improvement when compared with previous research conducted by
Vangeepuram et al. [11] using the same NHANES datasets. According to Table 3, it is
comparatively easy to observe that even the worst performing model, SVM, generates
a dominating performance over the best model in Vangeepuram et al.’s research. This
could be caused by the fact that the previous research had only included five features,
which could lead to a significant loss of information compared to the exhaustive feature
search in this study. The choice of features matters [27], and in general, more features
allow the ML model to model a more flexible predictive model [28]. Table 4 is constructed
to illustrate the results. For readability reasons, the numeric value of the t-test results
is replaced with a check-mark when model A’s performance is better than model B’s.
In addition, another characteristic of the table is that the performance of model A is always
better than that of model B. The t-tests are performed using a p-value of 0.05. Based on
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Tables 3 and 4, it is clear that the difference in performance between more sophisticated
(MVC, XGB Tree and Random Forest) models and simpler models (Logistic Regression and
SVM) were not always significant. One possible explanation is that the model may perform
better than the other by chance. For example, XGB Tree showed mixed results, with only
a difference in performance against SVM being statistically significant. On the other hand,
Random Forest showed a more stable result with a significant performance difference
against Logistic Regression and SVM. In the case of MVC, the difference in performance
against SVM and Random Forest was statistically significant.

Figure 7. Performance of machine learning models in Diabete detection with Non-diabetic and
Diabetic class labels, in terms of precision, recall and F1 score.

Table 3. Evaluation metrics of the models from previous research and this research.

AUC Precision Recall F1 Score Accuracy

Best model from previous research N/A 0.35 0.36 0.35 N/A

Logistic Regression 0.70 0.42 0.68 0.52 0.64

Support Vector Machine 0.66 0.37 0.69 0.48 0.57

Random Forest 0.69 0.40 0.71 0.51 0.61

Extreme Gradient Boosted Tree 0.70 0.41 0.76 0.53 0.61

Weighted Voting Classifier 0.71 0.43 0.70 0.53 0.64

Table 4. 5x2cv paired t-test.

Classifier A Classifier B Result

Weighted Voting Classifier Logistic Regression
SVM X

Random Forest X
Extreme Gradient Boosted Tree

Extreme Gradient Boosted Tree Logistic Regression
SVM X

Random Forest
Random Forest Logistic Regression X

SVM X
SVM Logistic Regress

Figure 8 displays the models’ ROC curves. When compared in conjunction with
Tables 3 and 4, it is immediate that more complicated models will yield a more performant
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result. For example, the Random Forest model and XGB Tree evaluation metrics are
comparatively higher than those of Logistic Regression and SVM. More importantly, it is
evident that the WVC achieved the best overall performance, with the AUC score being
the highest at 0.71.

Figure 8. ROC curves of different models.

Figure 9 shows the importance of 20 features contributing to the PreDM/DM detection
in the WVC. Figure 4 shows that features such as waist, gender, BMI and leg length
are essential factors for detecting DM/PreDM. Moreover, waist size and gender (male)
are significant in determining the PreDM/DM risks, with their importance scores being
drastically higher than others.

Figure 9. Most Important Features for Weighted Voting Classifier.

5. Discussion

This study conducts an exhaustive search on the NHANES datasets to develop five
different machine learning models for comparative analysis based on the model perfor-
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mances in detecting PreDM/DM. Compared to the approach by Vangeepuram et al. [11],
all the models in this study display better performance. An essential contribution of this
study is to identify the critical features that substantially contribute to the detection of
PreDM/DM. For example, the best model, WVC, can discover features with physical char-
acteristics (waist, leg length, gender), dietary information (water, protein, sodium) and
demographics (race). The research showcased a significant way of achieving promising
interpretable results in detecting PreDM/PDM, which paves the way to understanding
the essential features for such successful detection. Further adoption of the models into
a real-world application can be a combination of a paper and web-based screening tool,
where a questionnaire can be used to collect information regarding those identified features
and assess participants’ PreDM/DM risk. This screening tool can close the gap between
the urgent need and the lack of such a tool.

6. Conclusions and Future Work

This research developed an explainable machine learning-based model for predict-
ing youth diabetes. A series of Supervised machine learning methods such as Logistic
Regression, SVM, Random Forest, XGB Tree and WVC are applied. The best model, WVC,
determines a significant number of features that can efficiently detect PreDM/DM in ado-
lescents. It also achieves a promising result with an AUC score of 71%.

However, despite the improvement and promising findings, this study still has a few
limitations. Firstly, the sample size is relatively small with 2569 subjects, especially when
compared to similar research conducted with adult subjects, for example, the research of
Dinh et al. [15] using the same NHANES datasets on PreDM/DM detection for adults
has over 15,000 subjects. Although this would not substantially affect the results, a larger
sample size is always favourable. Secondly, there is no differentiation between type 1
and type 2 diabetes in the NHANES dataset, and this study takes the same approach
to detect the whole diabetes group. Furthermore, some information, such as physical
activity data from monitor devices, in the NHANES dataset, is not released to the public
due to confidentiality and censorship. Including the extra information could potentially
disclose more critical factors that contribute to preventing PreDM/DM. Future work of this
study includes collecting more subjects and features from the NHANES datasets to explore
the findings using existing models, which could mitigate the limitations mentioned above.
Including more completed feature sets in ML models will allow the health officials to focus
on collecting the most critical features for diabetic detection. Moreover, more advanced
machine learning models, such as neural networks, could boost performance, requiring
more sophisticated model interpretation methods to find the critical factors.
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