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 Soybean plants have limited growth with a planting period of 12 weeks, which 
causes the observed sample to be very small. A small sample of soybean plant 
growth observations can be bias causes in the conclusion of prediction results on 
soybean plant growth. The purpose this study is to apply  the bootstrap 
resampling technique in Gompertz growth model which overcomes residual 
distribution with small samples, the research data was taken from soybean plant 
growth in four varieties with four spacing treatments, five replications and twelve 
weeks (long planting period). Gompertz growth model uses nonlinear least 
squares method in estimating parameters with Levenberg–Marquardt iteration. 
The value of the Gompertz model after resampling bootstrap has no significant 
difference. The adjusted R2 value of 0.96 is close to 1. This means that the total 
diversity of plant heights can be explained by the Gompertz model of 96 percent. 
Judging from the graph of predictions of soybean plant growth before resampling 
and after resampling coincide with each other it can also be seen in the initial 
growth values before resampling 14, 05 and 14.18, the maximum growth values 
are 55.13 and 55.60. Bootsrap resampling technique can overcome residual 
normality in the Gompertz growth model, but does not change the information in 
the initial data.   
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A. INTRODUCTION  

Resampling bootstrap is used to estimate a population distribution with a small sample 

size or replace the assumption of an unknown distribution with an empirical distribution 

obtained from resampling (Efron & Tibshirani, 1993). The use of resampling technique allows 

obtaining distributions without being based on certain distribution assumptions (solimun, 

2017). The bootstrap approach uses a sampling method with returns. Generally, research that 

uses bootstrap resampling technique is to overcome deviations from the normality 

assumption in modeling, because normality assumptions are needed to draw conclusions on 

the results of statistical tests (Arnastauskaitė et al., 2021). Erroneous assumptions can lead to 

wrong conclusions (Achcar & Lopes, 2016). The boostrap resampling technique can be used 

to overcome normality in nonlinear regression (Larasati, 2020). Study (Pradani et al., 2021) 

used the bootstrap resampling technique in nonlinear regression to analyze the progress of 

Covid cases in Indonesia. Study (Bagus et al., 2013) apply bootstrap on nonlinear regression 

neuro network for forecasting crude oil production in Indonesia. 

The growth model is a one of nonlinear regression model (Huang et al., 2010). which is 

widely applied to agriculture. The growth model is used to determine the relationship 

between product growth and time (Wardhani & Kusumastuti, 2013). The plant growth model 
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that forms the S curve is called the Sigmoid growth model. The Gompertz model is one of the 

most frequently used curves in growth mathematics (Chakraborty et al., 2014). The Gompertz 

model has a sigmoid (Nguimkeu, 2014).  The Gompertz curve has been widely used to model 

and describe behavioral patterns in agriculture, because it has a relatively smaller asymptote 

value and an asymmetrical (Tjørve & Tjørve, 2017). The Gompertz growth model is 

appropriate for the phenomenon of growth with two characteristics: restricted growth and 

sigmoidal behavior (Román-Román et al., 2012). The Gompert model has three parameters 

(Akin et al., 2020). That can be used to predict the maximum growth time (Panik, 2014). 

Levenberg-Marquardt iteration is used to estimate the parameters of the Gompertz model. 

Levenberg-Marquardt algorithm is a combination of Gauss-Newton iteration and the Steepest 

Descent method (Wang et al., 2022) which can produce faster convergence. The algorithm 

reduces the number of squares of errors between the model functions and data points 

through a well-chosen update sequence for the model parameter values (Gavin, 2019). The 

Levenberg-Marquardt method acts more like the gradient descent method when the 

parameters are far from their optimal values, and acts more like the Gauss-Newton method 

when the parameters approach their optimal values (Hecke, 2017). 

The growth of soybean plants has a limited growing period, so the experimental sample 

data is small (Bello et al., 2015). Used bootstrap resampling technique for small sample size 

data design. The application of bootstrap resampling on the growth model is still very rare, so 

this study applies the bootstrap resampling technique on the Gompertz growth model to get 

good soybean plant prediction results. The main idea behind the bootstrap is that in some 

situations, it is better to make inferences about a population parameter using only the data at 

hand, without making assumptions about underlying distributions (Rousselet et al., 2021). 

This research was taken from soybean growth data, soybean crop Soybean is the third 

most important food commodity after rice and corn which has a strategic position in national 

food policy. Soybean consumption projections show that total demand continues to increase 

from year to year. This research was taken from soybean growth data, the study used a 

randomized block design with four varieties, four treatments, five replications, and a plant age 

of 12 weeks. There were 80 individual plants, then samples were taken from the average 

repetition of each individual. Bootstrap on the growth model resampling between individual 

plants (Ghosh et al., 2011). It is hoped that this research can describe accurate predictions of 

soybean plant growth. 

 

B. METHODS 

1. Data Sources 

This study uses secondary data taken from research data from Agricultural Technology 

Research Center (BPTP), Indonesia. The object of research on the growth of soybean plants. 

Soybean plant observation data were collected every week. There are 80 data collected from 

observations on soybean plants. This research was taken from soybean growth data, the study 

used a randomized block design with four varieties, four treatments, five replications. The 

data analysis process is done using of R Studio and microsoft excel software. 
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2. Analysis Method of Gompertz Model 

a. Create a scatter plot between plant height and plant age MST (Week After Planting). 

b. Estimating the initial parameters in each growth model (Dreper and Smit, 1998) 

1) Determine 𝛼 (maximum height) of the plant. 

2) Determine the value of 𝑘 based on two arbitrary observations i and j and then enter 

it into the equation. 

𝑘 =
(𝑌2 − 𝑌1)/(𝑡2 − 𝑡1)

𝛼
 

(1) 

Where 𝑘 is growth scale, 𝑌 is plant height, 𝑡 plant age, 𝛼 is maximum height (so that 

the iteration process takes faster, in general i and j should be far apart) 

3) Calculate  𝛽 , which is the initial growth value using equation 2. 

𝑌0 = 𝛼𝑒−𝛽 (2) 

Where 𝑒 is exponensial, 𝛽 is the initial growth value 

c. Estimating parameters using the nonlinear least squares method with 

Levenberg‐Marquardt iteration (Patmanidis et al., 2017) using equation 3 

𝜽(𝒏+𝟏) = 𝜽(𝒏) −  [𝒁(𝜽(𝒏))
′

∙ 𝒁(𝜽(𝒏)) + 𝝀𝑰𝒌]
−𝟏

𝒁(𝜽(𝑛))
′

(
𝜕𝐽𝐾𝐺

𝜕𝜽
) |𝜽(𝑛) 

(3) 

Where 𝜽(𝒏+𝟏) is estimating parameters for each iteration, 𝜽(𝒏)  is initial estimator of 

parameters, 𝑍(𝜽(𝒏)) is Matrices derived from parameters functions, 𝝀  is eigent value, 𝑰 

is Identity matrix. 

d. Checking the residual assumptions consisting of the normality assumption of the 

remainder using the Shapiro-Wilk test (Mohd Razali & Bee Wah, 2011). using equation 

4: 

𝑊 =
(∑ 𝑎𝑖𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(4) 

 

𝑌𝑖  is plant height,  𝑦̅  mean sampel,  𝑎𝑖 is the expected value of the order statistic and 

the assumption of homogeneity using the J. Szroeter test”(Kalina & Peštová, 2017). 

𝑄 = [
6𝑛

𝑛2 − 1
]

1/2

[
∑ 𝑖𝜀𝑖

2𝑛
𝑖=1

∑ 𝜀𝑖
2𝑛

𝑖=1

−
𝑛 + 1

2
] 

(5) 

𝑛 is many observations, 𝜀𝑖  is residual 

 

3. Analisis Bootstrap in Growt Model 

Bootstrap resampling on the growth model was carried out between individual plants. 

The steps of the analysis are as follows: 

a. Create a Performing   bootstrap resampling on soybean plants, each plant item has an 

observation time of 12 weeks. 

b. Estimating the Re-sampling in the form of individual plants. 

c. Look for the average sample in each sub sample. 

d. Estimating parameters for each sub-sample resulting from bootstrap resampling using 

nonlinear least squares, with Levenberg‐Marquardt iteration 

e. Calculate the average parameter of all sub samples (Bose & Chatterjee, 2018). using the 

formula equation 6.  
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𝜽̂∗(∙) = ∑ 𝜽̂∗(𝑏)

𝐵

𝑏=1

𝐵⁄  

   (6) 

𝜽̂∗(∙) is mean of parameter sample, 𝐵 is total of Bootstrap Resampling 

f. Estimating the standard error using the standard deviation for the replicated bootstrap 

B using equation 7 

𝑠𝑒(𝜽̂𝑏𝑠) = [∑(𝜽̂∗(𝑏) − 𝜽̂∗(∙))
2

𝐵

𝑏=1

(𝐵 − 1)⁄ ]

1/2

 

     (7) 

𝑆𝑒(𝜽̂𝑏𝑠) is standar eror of Bootstrap Resampling 

g. Testing the significance of the bootstrap model with the t-test of equation (Ibrahim et 

al., 2009). Using equation 8 

𝑡 =
𝛽̂∗(∙)

𝑠̂𝑒(𝛽̂∗)
 

(8) 

𝑡 is t-tes of Bootstrap Resampling 

h. Comparing the estimation results before resampling and after resampling 

i. “Model Goodness Test”(Lenart & Missov, 2016).  

 

C. RESULT AND DISCUSSION 

1. Scatter Plot  

The scatter diagram of soybean plant height against age is described as shown in Figure 1. 

 

 
Figure 1.  Figure 1 Scatter plot of soybean growth 

 

Based on (Figure 1) the growth of soybean plant height formed a sigmoid pattern so it 

was hoped that the Gompertz growth model could describe the growth pattern of soybean 

plants well. The growth of soybean plant height before resampling was done at the age of 3-4 

WAP and 8-12 WAP tended to be slow but at the age of 0-3 and 4-7 WAP the growth was 

relatively fast. Based on Figure 1 the data pattern of soybean plant growth is not linear so the 

growth model is the right suggestion to find the effect between variables (Hipkins & Cowie, 

2016). 
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2. Initial parameters of the growth model 

Estimating the nonlinear regression parameters using nonlinear least square (NLS) with 

Levenberg Marquardt iteration. The initial estimated value of the parameter must be 

determined before carrying out the iteration process. As shown in Table 1. 

 

Table 1. Initial Estimation Value of the Parameter 

Initial Estimation of Parameter 
𝛼 𝛽 𝑘 

53,97 1,20 0,06 

 

Based on Table 1 are the initial parameters obtained using equation 1 and equation 2, 

where is the maximum growth height, is the initial growth height, and k is the growth scale. 

The initial parameter values in Table 1 will be used to estimate the actual parameters with the 

Levenberg-Marquardt iteration. Parameter values 𝛼, 𝛽, 𝑘 in table 1 which will determine 

Levenberg-Marquardt iteration runs fast or slow. 

 

3. Parameter Estimator with Levenberg-Marquardt iteration 

The Levenberg-Marquardt iteration is used to find the true parameter estimator which 

converges. As shown in Table 2. 

 

Table 2. Values of Levenberg-Marquardt Iteration Results 

Levenberg-Marquardt Iteration 
𝜶 𝜷 𝒌 

62,06 
(p = 0,00000)* 

1,87 
(p = 0,00000)* 

0,23 
(p = 0,00072)* 

 

Based on Table 2, the parameter estimation of the Levenberg-Marquardt iteration results 

is used to form the Gompertz growth model. The Levenberg-Marquardt iteration reaches 

convergence in a short time and gets a significant parameter estimate value. The p-value of 

the parameters ,β,k is smaller than the 0.05 level of significance. This means that the 

parameters can explain the growth of soybean plants. 𝛼 Parameter that describes the 

maximum height,  𝛽  is the initial growth height, 𝑘 is the soybean growth scale. The values of 

𝛼, 𝛽, 𝑘 are the parameters of the Gompertz model used to determine the prediction of soybean 

plant growth (Conde-Gutiérrez et al., 2021). 

 

4. Gompertz Growth Model 

The Gompertz Model Equation is formed from the convergent Levenberg-Marquardt 

iteration results, as shown in Table 3. 

 

Table 3. Gompertz Growth Model 

Gompertz Growth Model 

𝑌𝑡 = 62,06exp−1,87exp−0,23t
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Based on Table 3, the Gompertz Growth Model with Levenberg-Marquardt iteration. The 

estimation of the parameters of the Gompertz model is a unit that cannot be interpreted 

individually as in multiple linear regression. This value must be processed first in order to get 

a forecast of soybean plant height at age t. Processing by substituting the t-value in the model. 

 

5. Residual Normality Test  

Normality test the residual normality test was carried out using the Shapiro-Wilk test 

based on the following hypothesis: 

𝐻0: the remainder is normally distributed 

𝐻1: the remainder is not normally distributed 

 

Accepted if 𝑛𝑖𝑙𝑎𝑖 𝑝 > 𝛼 (0,05), it means the residual is normally distributed if 𝑛𝑖𝑙𝑎𝑖 𝑝 <

𝛼 (0,05) it means the residual is not normally distributed, as shown in Table 4. 

 

Table 4. Value of Normality Test Results. 

P-value Decision Conclution 
0,99 Terima  𝐻0 Normal 

 

From the results of the residual normality test in Table 4, it was obtained that the p-value 

was greater than the soybean plant growth data before resampling was carried out. This 

means that the residuals are normally distributed. 

 

6. Homogeneity Test 

The test of homogeneity residual variance in the model can be determined by performing 

the Szroeter test based on the following hypothesis. 

𝐻0: residual is homogen 

𝐻1: residual is not homogeny 

 

At a significant level of if |Q| < |Zα/2|, then 𝐻0 it is accepted which means the variance is 

homogeneous, as shown in Table 5. 

 

Table 5. Value of Homogeneity Test Results 

|𝑸| 𝒁𝜶/𝟐 Decision Conclution 

0,41 1,96 𝐻0 accepted homogeneous. 

 

From the results of the homogeneity test of residual variance in Table 5, the value of 

|𝑄|  0,41 < 𝑍𝛼/2 = 1,960  . is obtained   smaller than then accept  which means the residual is 

homogeneous. 

 

7. Bootstrap resampling  

Bootstrap resampling is used to overcome residual distribution in small sample size data. 

Bootstrap resampling was carried out one hundred times on 16 sample data with 12 planting 

periods on soybean growth. With the hope that the estimated value of the parameter will be 

better. 
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8. Parameter Estimation after resampling with bootstrap  

The average value of parameter estimation after resampling bootstrap with B=100, as 

shown in Table 6. 

 

Table 6. Values of Levenberg-Marquardt Iteration Results after Bootstrap resampling 

Bootstrap Parameter 
𝛼 𝛽 𝑘 

62,36 
(p=0,00000)* 

1,86 
(p=0,00000)* 

0,23 
(p= 0,00000)* 

 

Table 6 describes the estimated parameter values after resampling. The average value of 

the Levenberg-Marquardt iteration parameter estimates in Table 6 will be used to form the 

Gompertz growth model. The p-value of the parameters , β, k is smaller than the 0.05 level of 

significance. This means that the parameters can explain the growth of soybean plants. 

 

9. Gompertz Growth Model after Bootstrap resampling 

Table 7 shows the Gompertz growth model with Levenberg-Marquardt iteration. The 

estimation of the parameters of the Gompertz model is a unit that cannot be interpreted 

individually. This value must be processed first in order to get the height of soybean plants at 

age t. Processing by substituting the t-value in the model. 

 

Table 7. Gompertz Growth Model after Bootstrap Resampling 

Model After Bootstrap Resampling 

𝑌𝑡 = 62,36exp−1,87exp−0,23t
 

 

10. Plant Height Comparison Graph  

The Graph below illustrates the predictions of soybean plant height before sampling and 

after sampling using bootstrap, as shown in Figure 2. 

 

 
Figure 2. Soybean plant height against plant age, and predictions of growth  

before sampling and after sampling using bootstrap. 

 

Based on Figure 2 the pattern of soybean plant height growth before resampling and after 

resampling was close to the actual soybean plant height growth. This shows that the 

Gompertz model can explain the growth of soybean plant height well. The growth graph of 



Fandi Rezian Pratama Gultom, Bootstrap Resampling in...    817 

 

soybean plant height before resampling and after resampling coincided, meaning that 

resampling did not change the information, and was only an attempt to fulfill the assumption 

of normality. 

 

11. Comparison of Gompertz Parameters 

 

Table 8. P-value Bootstrap Resampling 

Parameter Before Resampling 
After Resampling 

Bootstrap 
𝑺𝑬 Bootstrap P-value Bootstrap 

𝛼 62,06 62,36 1,61 0,000 
𝛽 1,87 1,86 0,05 0,000 
𝑘 0,23 0,23 0,00 0,000 

 

Based on Table 8, the P-value of the Gompertz parameter after bootstrap resampling < 

than =0.05, which means the Gompertz growth model after bootstrap resampling can explain 

soybean plant growth well. Residual-based bootstrapping in regression is able to explain the 

parameters in the model estimation without worrying about the assumption error (Li & 

Dimitris, 2016). 

 

12. Gompertz Model Comparison 

Gompertz model before resampling and after resampling using bootstrap, Comparison of 

the Gompertz model was measured using the goodness test of the adjusted R2 model. The 

measurement results, as shown in Table 9. 

 

Table 9.  Comparison of  𝑅2adjusted value 

𝑹𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 Before Bootstrap Resampling 𝑹𝟐 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝 After Bootstrap Resampling 

0,96 0,96 

 

Based on Table 9, the Gompertz model before resampling and after resampling has an 

adjusted R2 value of 0.96, which means that the total plant height diversity can be explained 

by the Gompertz model of 96 percent, meaning that the Gompertz model with three 

parameters can describe the effect of planting time on plant growth Soya Bean. There is no 

significant difference in the Gompertz model after resampling with B=100. As shown in Table 

10. 

Tabel 10. Soybean Plant Height Prediction 

Age (week) 
Soybean Plant Height Prediction 

Before Resampling (cm) 
Soybean Plant Height Prediction 

After Resampling (cm) 

1 14,05 14,18 
2 19,06 19,28 
3 24,29 24,60 
4 29,46 29,83 
5 34,33 34,77 
6 38,77 39,25 
7 42,70 43,20 
8 46,11 46,62 
9 49,02 49,52 

10 51,45 51,95 
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Age (week) 
Soybean Plant Height Prediction 

Before Resampling (cm) 
Soybean Plant Height Prediction 

After Resampling (cm) 

11 53,47 53,95 
12 55,13 55,60 

 

Soybean crop prediction in Table 10 was determined from the substitution of the t-value 

in the Gompertz model. The predicted results of the Gompertz model plant height in the first 

week after planting on the data before resampling were 14.05 cm, in the data after resampling 

it was 14.18 cm. and the maximum limit for the prediction of plant height growth in the 

Gompertz model before resampling was 55.13 cm, the data after resampling was 55.60 cm. in 

table 10 the difference in soybean plant growth between before resampling and after 

resampling is not much different. Bootstrap resampling is used to overcome assumption 

errors in small data regardless of assumptions (Rahman et al., 2013). In this study, the 

Gompertz growth model with Levenberg-Marquardt iteration can predict plant growth 

without resampling. The Levenberg-Marquardt iteration which can considerably speed up the 

convergence rate by reducing the iteration process and then produce more accurate data the 

LM algorithm have been shown to achieve excellent results, especially when applied to 

evaluation and prediction (Zhou et al., 2018)  The Levenberg-Marquardt algorithm on the 

gompertz model can achieve convergence with a short and efficient number of iterations 

(Conde-Gutiérrez et al., 2021). 

 

D. CONCLUSION AND SUGGESTIONS 

The Gompertz model equation before resampling and after resampling using bootstrap 

has a value of 0.96 close to 1 , which means the model can predict well and the total plant 

height diversity can be explained by the Gompertz model of 96 percent. It can be seen from 

the graph that predictions of soybean growth before resampling and after resampling 

coincide with each other it can also be seen in the initial growth values before resampling 14, 

05 and 14.18, the maximum growth values are 55.13 and 55.60. This means that the 

prediction results of soybean plant height before resampling and after resampling have close 

values. The resampling process in the growth model does not change the information, and 

only attempts to fulfill the assumption of residual normality. 
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