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Abbreviations 

AIC Akaike Information Criterion 

BIC Bayesian Information Criterion 

DC Deterministic Case 

DT Damped Trend 

EU European Union 

IDD Independent and Identically Distributed 

IRR Internal Rate of Return 

LLT Local Linear Trend 

LLTC Local Linear Trend with cycle 

NPV Net Present Value 

PSA  Pressure Swing Adsorption 

RW Random Walk 

SS State Space 

UC Unobserved Components 

VaR Value at Risk 

75op25P 75 wt.% of olive pomace and 25 wt.% of petcoke 

 

Abstract 

The development of circular economies due to the limitation of natural resources is 

becoming a common strategy of paramount importance among different countries.  In 

Spain, given the strategic nature of its olive industry, trying to value one of its main 

residuals (olive pomace) alone or together with other residues through its chemical 

transformation in methanol is a promising research line. One of the key variables that 

would make the investment advisable or not is the future value of the methanol price. 

However, most of the literature do not consider its future price volatility on the economic 
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evaluation of the chemical processes. This work bridges that gap by proposing  three 

econometric models based on Unobserved Components to forecast the methanol price 

over the life cycle plant. Those probabilistic forecasts feed a Monte Carlo simulation that 

provides an exhaustive investment risk assessment in terms of Net Present Value, Internal 

Rate of Return and Value at Risk metrics. The results showed the relationship between 

forecasting models and the investment profitability with an average Internal Rate of 

Return ranging from 23% to 31%. Additionally, the previous analysis was completed by 

adding other variables subject to uncertainty (olive pomace feed, capital investment, 

feedstock price, labor costs and discount rate). In this case, assuming a potential 

underestimation error up to 100% of the capital cost the probability of obtaining a 

profitable investment was significantly reduced ranging the Value at Risk from 48% to 

98%. 

  

Keywords: co-gasification; methanol; olive pomace/petcoke; forecasting; Monte Carlo 

simulation; Value at Risk. 

 

1. Introduction 

Methanol is rated among the top chemical commodities produced worldwide, which can 

be used directly as a clean and cost-alternative fuel or can be mixed with other 

conventional fuels. Furthermore, methanol plays an important role in the global economy 

as the main raw material for many chemical industries like formaldehyde, methyl tertiary 

butyl ether, acetic acid and gasoline. From a thermodynamic point of view, using 

methanol in internal combustion engines could have different benefits such as an increase 
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in  both, power (due to the engine’s compression rate increase) and energy efficiency [1]. 

In addition, their use reduces the pollutants release.   

On an industrial scale, the methanol is principally produced from natural gas by reforming 

it with steam. However, other feedstocks can be used, being the coal widely used as a 

feedstock for methanol production in China [2]. The main problem associated with the 

methanol production from fossil resources are the emissions of large amounts of 

greenhouse gases, concretely about 0.6-1.5 tons of CO2 per ton of methanol can be 

emitted into atmosphere [3].   

Worldwide, there are currently around 90 industrial plants which have a production 

capacity of about 110 million ton [4], of which 10% come from Europe. Concretely, Spain 

produces approximately 6% of European production [5]. On the demand behalf, European 

methanol demand is becoming increasingly dependent on imports to feed its market [5] 

and Spain´s methanol demand is expected to grow significantly in the next years due to 

its widespread use in the chemical and process industries [6]. Spain's methanol demand 

is principally focused on the formaldehyde sector. Acetic acid and fuels are the other two 

main methanol end-use markets. For this reason and due to the Spanish dependence on 

imports from outside the EU of both methanol and natural gas, which causes a situation 

of vulnerability in case of supply shortages or price increases, the interest for academics 

and specialists alike has increased to research new sustainable alternatives. For that 

reason, numerous studies have focused on the green methanol production. In this sense, 

Simon et al. (2020) studied different renewable ways, in particular they focused on fuel 

cells to obtain green methanol [7]. Bazaluk et al. (2020) analysed the methanol production 

using biomass waste and wind power [8] and Samimi et al. (2019) evaluated the methanol 

production from indirect  CO2 conversion [9]. Nonetheless, among the non-fossil 

production alternatives, methanol obtained through biomass gasification is considered as 
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an appropriate candidate to substitute conventional methanol from natural gas [10], 

favoring the circular economy of Spain, helping to reduce climate change and decreasing 

such a dependence.  

The co-gasification of biomass and petcoke is a good alternative since synergies can be 

found in the co-gasification process [11], reducing the biomass inconvenience due to its 

uncertain supply. The selected biomass is olive pomace, since the olive industry is one of 

the most important for the Spanish economy, and in recent years it is presenting a 

significant price depression, thus revaluing their products may strength that sector and 

enhance Spanish circular economy. In the case of petcoke, it is an abundant by-product 

which is often used for energy production. However, its valorization through gasification 

is more environmentally friendly and versatile, since the gas product of gasification can 

be used in several applications. In this sense, it can be burnt directly, used either as fuel 

for gas turbine or to produce added value chemicals [12]. Therefore, the use of these 

Spanish wastes contributes to meet the three main objectives of sustainability: social 

cohesion, economic development and environmental protection.  

Undertaking a green project with new technologies on an industrial scale requires a 

substantial investment. To minimize the risk of the investment, previous tecno-economic 

analyses are required to estimate the potential profits of such an investment. These 

economic studies are typically calculated using investment selection techniques such as 

net present value (NPV) and internal rate of return (IRR), among others. Note that NPV 

and IRR are different metrics of the discounted cash flow method. In this context, there 

are two methods to calculate these relevant investment criteria: deterministic and 

stochastic. The first is the most common in literature [2, 13-19] and it considers that all 

the variables deemed are constant and known during the life of the project. However, such 

a restrictive assumption can result in important estimation errors when the unknown 
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variables are highly volatile, making the results of the economic viability not reliable. On 

the other hand, a stochastic perspective consists of replacing the constant variables with 

random variables that follows a certain statistical distribution. This approach evaluates 

the investment risk and can be carried out by means of Monte Carlo simulations [20]. In 

this sense,  references [21-29]  employed Monte Carlo simulations, where the  variables 

considered as a source of uncertainty were introduced by assuming statistical probability 

distributions.  

Nonetheless, if the key variables under study are not IID (independent and identically 

distributed), i.e., they present a trend, seasonal or cycle component, we must go one step 

further and using forecasting models to estimate the future probabilistic value of such key 

variables that will feed Monte Carlo simulations. In this regard, in a previous work, an 

economic assessment of methanol production from syngas obtained through biomass was 

carried out from both a determinist and stochastic perspective [30]. Following a 

deterministic approach, it was observed that the methanol price was the variable that most 

influenced in the economic viability as it was also acknowledged in [13]. For that reason, 

a preliminary stochastic study was carried out to investigate the uncertainty associated 

with the methanol price. In that case a Damped Trend forecasting model was used to 

forecast the methanol price.   

In this work, our aim is twofold: i) to propose improved methanol price forecasting 

models than those used by Puig-Gamero et al. [26]. Essentially, methanol price time 

series presents components as a trend and a cycle that were not explored, and its inclusion 

might result in more accurate forecasts. Here, Unobserved Components forecasting 

models able to cope with the presence of trend/cycle patterns are developed in a State 

Space framework to provide methanol price probabilistic forecasts. To the best of authors’ 

knowledge, this is the first time these models are used to forecast methanol price; ii) to 
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extend the risk assessment done in [26] by including other sources of uncertainty such us 

raw material cost, raw materials feed, capital investment, labor cost, the discount rate, 

among others. Such uncertainty variables are incorporated in the Monte Carlo simulations 

by assuming them random variables that follows a certain statistical distribution.  

Therefore, this article has been organised as follows: Section 2 explains the 

potential components of the methanol price time series and the proposed forecasting 

models. Section 3 describes the case study and the economic metrics. Section 4 is devoted 

to the uncertainty analysis. Finally, the main conclusions are drawn in Section 5. 

 

2. Forecasting models of the methanol price 

Forecasting is a vital task in energy applications, particularly, in a renewable energy 

context due to the lack of solutions for energy storage in power plants. See, for instance, 

some works related to wind energy [31] and solar energy [32-34]. Regarding price 

forecasting, literature is mainly focused on electricity time series [35, 36] and crude oil 

[37], whereas, price forecasting of other crucial energy variables as Natural gas is less 

common [38]. In fact, to the best of authors’ knowledge, forecasting of the methanol price 

is totally overlooked on the scientific literature, even though the price of methanol has 

been identified as the most influential variable affecting the economic viability in some 

processes as [13]. We have only found some consultancy companies that provide those 

forecasts, which are not freely available. One of the main contributions of this work is to 

provide different methanol price forecasting models depending on the Unobserved 

Components (trend and/or cycle) identified in the data. 

In this work, methanol past prices from 2000 to 2018 are utilized to compute forecasts. 

The original data is monthly sampled, and it has been aggregated to a yearly basis, since 
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we need yearly forecasts. Figure 1 shows the methanol prices in a dashed line with blue 

circle markers. In that plot, we can appreciate the potential presence of a trend and cycle 

component. That cycle component could be originated due to business cycles [13]. 

2.1 Unobserved Components models 

The forecasting technique employed must be one capable of accommodating those 

components seen in the data. An appropriate approach to that end is the family of 

Unobserved Components (UC) models that, in the case of annual data with a cycle, takes 

the general form shown in equation (1) [39-41]. 

 𝑦𝑦𝑡𝑡 =  𝑇𝑇𝑡𝑡  +  𝐶𝐶𝑡𝑡  +  𝐼𝐼𝑡𝑡 (1) 

where 𝑦𝑦𝑡𝑡, 𝑇𝑇𝑡𝑡, 𝐶𝐶𝑡𝑡 and 𝐼𝐼𝑡𝑡 stand for the data, trend, cyclical and irregular components, 

respectively. 

The model is completed by selecting the particular dynamic behaviour of each of the 

components. There have been different alternatives to deal with this sort of 

decomposition, though the inclusion of the cycle is not common. From all of them, the 

structural approach set up in a State Space (SS) framework is the most widespread [40]. 

The trend deals with the long term dynamic behaviour of the time series. The first model 

considered in this work is a Damped Trend (DT) model shown in equation (2). 

 �
𝑇𝑇𝑡𝑡+1
𝑇𝑇𝑡𝑡+1∗ � =  �1 1

0 𝛼𝛼� �
𝑇𝑇𝑡𝑡
𝑇𝑇𝑡𝑡∗
� + �

𝜂𝜂1,𝑡𝑡
𝜂𝜂1,𝑡𝑡
∗ � (2) 

where 𝑇𝑇𝑡𝑡∗ is referred to as the trend `slope', 𝛼𝛼 is the damping parameter (0 < 𝛼𝛼 ≤ 1), and 

𝜂𝜂1,𝑡𝑡 and 𝜂𝜂1,𝑡𝑡
∗  are independent white noise sequences with variances 𝜎𝜎12 and 𝜎𝜎12∗, 

respectively. 
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This model actually subsumes the following particular cases, often found in the literature: 

i) Random Walk (RW), with 𝛼𝛼 = 0, 𝜎𝜎12∗ = 0 and 𝑇𝑇1∗ = 0; ii) Random Walk with drift (=

0, 𝜎𝜎12∗ = 0 and 𝑇𝑇1∗ ≠ 0); iii) Integrated Random Walk (IRW, 𝛼𝛼 = 1, 𝜎𝜎12 = 0); and iv) 

Local Linear Trend (LLT, 𝛼𝛼 = 1). All these trends are stochastic and have at least one 

unit root ensuring they are not stationary. 

The cycle component is responsible of the oscillations of period longer than one year. 

The model is shown in equation (3), where 𝐶𝐶𝑡𝑡∗ is an auxiliary measure necessary to define 

the stochastic behavior of the component 𝐶𝐶𝑡𝑡. In the same equation, the parameter 𝜌𝜌 

controls the persistency of the cycle (0 < 𝜌𝜌 ≤ 1), 𝜔𝜔 is the frequency associated to the 

cycle (𝜔𝜔 = 2𝜋𝜋/𝑃𝑃, where 𝑃𝑃 is the period in number of observations per cycle), and 𝜂𝜂2,𝑡𝑡 

and 𝜂𝜂2,𝑡𝑡
∗  are independent white noise sequences with common variance 𝜎𝜎22. 

 �
𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡+1∗ � = 𝜌𝜌 � cos 𝜔𝜔 sin 𝜔𝜔

−sin 𝜔𝜔 cos 𝜔𝜔� �
𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡∗
� + �

𝜂𝜂2,𝑡𝑡
𝜂𝜂2,𝑡𝑡
∗ � (3) 

Finally, the irregular component is simply white noise with mean zero and constant 

variance 𝜎𝜎2. 

The structural UC approach proceeds by block concatenating all the components models 

involved in a single linear Gaussian SS system, with equation (1) playing the role of the 

observation equation. The full SS system is shown in equation (4). 

 

�

𝑇𝑇𝑡𝑡+1
𝑇𝑇𝑡𝑡+1∗

𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡+1∗

� = �

1 1 0 0
0 𝛼𝛼 0 0
0
0

0
0

𝜌𝜌cos 𝜔𝜔
−𝜌𝜌sin 𝜔𝜔

𝜌𝜌sin 𝜔𝜔
𝜌𝜌cos 𝜔𝜔

� �

𝑇𝑇𝑡𝑡
𝑇𝑇𝑡𝑡∗
𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡∗
� + �

𝜂𝜂1,𝑡𝑡
𝜂𝜂1,𝑡𝑡
∗

𝜂𝜂2,𝑡𝑡
𝜂𝜂2,𝑡𝑡
∗

�

𝑦𝑦𝑡𝑡 = [1 0 1 0] �

𝑇𝑇𝑡𝑡
𝑇𝑇𝑡𝑡∗
𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡∗
� + 𝐼𝐼𝑡𝑡

 (4) 
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Optimal values of the states and their covariance matrices may be estimated by well-

known recursive algorithms, namely the Kalman Filter and Fixed Interval Smoothers. 

Application of such algorithms require knowledge of all the matrices involved, that 

depend on a number of unknown parameters, namely 𝛼𝛼, 𝜌𝜌, 𝜔𝜔, 𝜎𝜎12, 𝜎𝜎12∗, 𝜎𝜎22 and 𝜎𝜎2. 

Estimation is usually carried out by Maximum Likelihood by repeated runs of the 

recursive algorithms on different sets of parameters and aided by a searching algorithm, 

see details in [39-41]. 

2.2. Methanol price forecasts. 

Figure 1 (a) shows forecasts for the next 15 years (2020-2034) computed by the DT 

model. Forecasts of Figure 1 (a) are shown via a fan chart [42], where  the dashed line 

with blue circle markers shows the past data and the solid black line is the point (mean) 

forecast of the methanol price. That plot also gives a measure of the range of uncertainty 

through the shaded area around the central projection. That uncertainty was calculated by 

using the forecast errors from the previous years (2000-2018). It is also assumed that 

forecast errors follow a gaussian distribution. The fan chart of Figure 1 shows the 

alternative scenarios of the future methanol price that will be used as inputs for the Monte 

Carlo simulations with 10000 repetitions. Given that the simulations are normally 

sampled, there will be more scenarios around the mean (black line) than in the extremes. 

In other words, it is more likely to have more scenarios where the shaded area gets darker. 

Note that, as a consequence of the high uncertainty some extreme scenarios could 

consider negative methanol prices, which is unrealistic and, therefore, those cases have 

been truncated to zero. 

Analyzing methanol prices between 2000 and 2018 one could identify the presence of a 

trend and, even a cycle. Therefore, Local Linear Trend (LLT) and Local Linear Trend 
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with cycle (LLTC) are forecasting models capable of incorporating such components, 

respectively. Figure 1 (b) and (c) depict the forecasts produced by LLT and LLTC. Figure 

1 (b) shows a positive trend, note that authors in [13] also considered a positive trend in 

their deterministic forecasts, see Figure 3 in reference [13]. Figure 1 (c) considers the 

trend component and the cycle, whose period of 6.78 years was also identified via 

Maximum Likelihood, [36]. All these models are implemented in a MATLAB toolbox 

called SSPACE [43]. 
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Figure 1. Yearly methanol price forecasts calculated by: a) DT model; b) LLT and c) 

LLTC. 

Forecasts in Figure 1 shows two important aspects that previous works [2, 14, 17, 21-29] 

have not addressed. First, regardless of the forecasting model, since it is more difficult to 

predict the methanol price in 10 years ahead than next year, the prediction intervals widen 

c)
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as the forecasting horizon increases. Second, each time the forecasting model includes a 

component (trend or cycle) the intervals width is reduced. In other words, the damped 

trend model assume that the potential cycle is noise and, thus, the forecast intervals should 

cover those fluctuations and because of that, the forecasting intervals are wider. On the 

other hand, if those fluctuations are not noise but they can be considered as a structural 

component that will remain in the future, the LLT with cycle forecasting model produces 

a forecast with a cycle of the same frequency and with tighter prediction intervals.  

In order to verify the adequacy of the forecasting models, Table 1 shows the Akaike 

Information Criterion (AIC) [44] and Bayesian Information Criterion (BIC) [45], which 

are typically used to balance the trade-off between the goodness of fit and simplicity of a 

particular model, where the lower the criterion value, the better. The idea behind these 

criteria is to minimize the risk of over and underfitting. Table 1 shows the AIC/BIC values 

for the three considered models in the hold-in sample. Considering both criteria, the 

lowest value is obtained by the LLTC, closely followed by the DT. Nonetheless, given 

the long forecasting horizon considered in this forecasting exercise and the close values 

of the criterion, it is extremely difficult to assure that the best performance obtained by 

the LLTC model will remain in the future and, thus, it is recommended to consider the 

three models for a correct evaluation of the future scenarios and let the managers decide 

which is more appropriate. In case we do not provide this information, the manager will 

decide with a myopic vision of the potential future scenarios. Therefore, hereafter, all the 

calculations will be assessed utilizing the three forecasting models.  
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Table 1. Information Criteria values for the considered forecasting models. 

  DT LLT LLTC 

AIC 

BIC 

11.45 

11.91 

11.85 

12.78 

11.43 

11.87 

 

3. Case study 

3.1 Process description 

The raw materials selected were olive pomace (op) from “Aceites García de la Cruz” 

olive oil mill, Madridejos (Toledo, Spain) and petcoke from a refinery of Puertollano 

(Ciudad Real, Spain) due to their abundance, their availability and their importance for 

Spanish society and economy. Aspen Plus® v9.0 was used to simulate the process of 

methanol shynthesis from biomass which has been evaluated economically herein. The 

design specifications for modelling the process and the validation have been published in 

previous studies [46]. Figure 2 shows the schematic diagram of the methanol production 

from syngas obtained through biomass gasification and Table 2 lists a brief explanation 

of the equipments used.  The three main processes involved in the production of 

methanol from biomass are: gasification process, syngas cleaning and methanol 

synthesis. Firstly, the biomass is gasified at 900 ºC in a double chamber gasifier using 

steam as gasifying agent and a steam/biomass mass ratio of 0.9. This type of gasifier 

consists of a gasification and a combustion chamber. Thus, the main advantage of them, 

it is the possibility of generating all the energy needed for the gasification process in the 

combustion chamber through the char burning. Moreover, dolomite was used as the 

catalyst in order to decompose the tar produced. Then, the syngas produced was fed to 

the pressure swing adsorption (PSA) system to clean the syngas and capture the 

greenhouse gases. Finally, the purified was introduced to the methanol synthesis. The 
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operating conditions for methanol synthesis were 220 ºC and 55 atm. In addition, due to 

the low conversions obtained in this process, Cu/ZnO was used as catalyst. Finally, in 

order to improve the system performance, the waste stream of methanol synthesis was 

recycled to the combustion chamber. 

 

Table 2. Description of main equipment considered. 

Equipment Description 

CT-01 Conveyor band 

M-01 Ball mill 

R-01 Gasifier 

R-6 Methanol synthesis reactor 

E-01 Heat exchanger 

C-01 Two stage compressor 

C-02 Two stage compressor 

C-03 Single stage compressor 

PSA-01 Separator to adsorb H2 

PSA-02 Separator to adsorb CO 

PSA-03 Separator to adsorb CO2 

PSA-04 Separator to adsorb CH4 

E-02 Heat exchanger 

METSEP Separator of crude methanol 
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Figure 2. Schematic diagram of methanol production from biomass.
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3.2 Economic aspects and metrics 

The limiting factor for producing methanol from co-gasification of olive pomace and 

petcoke is the olive pomace amount due to it is a seasonal biomass which depends directly 

on the harvest.  Thus, the production capacity of the plant was based on the amount of 

olive pomace fed.  The 2015/16 harvest (due to it was one of the worst harvests in the last 

decade) and the hectares of Castilla-La Mancha and Andalucía regions were selected as 

the basis of calculation [30]. Using these data, the consumption of raw materials was 

168,000 kg/h. At this point, two scenarios, whose main difference was the raw material 

used, were performed.  Scenario 1 considered olive pomace as only raw material, and 

Scenario 2 considered a 75 wt. % of olive pomace and 25 wt. % of petcoke. The methanol 

yields obtained were 0.435 and 0.432 kg of methanol per kg of raw material for scenario 

1 and 2, respectively. Table 3 summarizes the relevant economic parameters and 

assumptions considered in this study, such as the time period, the investment curve, the 

amortization and the discount rate which have been explained in detail in [30]. Note that 

the inflation was not included in the discount rate, it was considered separately. Finally, 

Net Present Value (NPV), Internal Rate of Return (IRR) and Value at Risk (VaR) were 

the investment criteria used for analysing the economic viability of the project.  

  Table 3. Relevant economic parameters and assumptions. 

Main equipment cost Aspen Process Economic Analyser® v9.0 

Fixed capital investment1  Percentage of delivered equipment cost method 

Working capital 20% of fixed capital investment 

Operating time 8000 h 

Time life 15 years 

Investment curve 100 % Start-up 

Amortization Linear 

Inflation rate2  2% 

Discount rate3 10% 
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1 [47, 48], 2 (es.inflation.eu) 3[23, 28, 49] 
 

4. Uncertainty analysis 

4.1 Deterministic case 

First of all, a deterministic model for the financial evaluation of methanol production 

from biomass was carried out and tested, where its inputs were assumed to remain 

constant during the lifecycle of the plant. Table 4 depicts a summary of the fixed and 

working capital and annual operating costs for two evaluated scenarios. Besides, it can be 

observed that the cost of dolomite, catalyst and labor were considered the same for both 

scenarios, due to the fact that these costs depended solely on the plant capacity. For the 

same reason, the consumption of raw materials was the same for the two scenarios under 

study (168,000 kg/h). In this preliminary study, the static methanol price was considered 

of 0.36 €/kg [4]. 

Table 4. Operating annual costs for two scenarios and total capital cost for the 
deterministic model. 

 Scenario 1  
(Olive pomace) 

Scenario 2  
(75op25P) 

 Price (€/kg) Cost (€/year) 

Raw material   

Olive pomace 0.0077(1) 10·106 7.8·106 
Petcoke 0.0709(2) - 24·106 

Dolomite 0.2400(3) 36·103 

Catalyst (Cu/Zn) 17.8(4) 637·103 

Utilities 86·106 79·106 

Labor cost 945·103 945·103 
Other annual costs (indirect labor, 
maintenance, tax, laboratory…) 22·106 22·106 

 Cost (M€) 

Fixed capital cost 175 
Working capital cost 35 
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Total capital cost 210 
(1)“Aceites Garcia de la Cruz” olive oil mill; (2) Refinery of Puertollano; (3) [50]; (4) [51], it is assumed 
that the lifetime of the catalysts are one year. 

Considering all these costs (Table 4), the relevant economic parameters and assumptions 

(Table 3), and the constant price of methanol, the techno-economic parameters for 

analysing the economic viability of the present project was calculated.   

In this sense, Table 5 shows the main economic parameters (NPV and IRR) for both 

scenarios.  

Table 5. Relevant economic parameters for both scenarios. 

Scenario NPV (M€) IRR (%) 

Olive pomace 339 30.51 

75op25P 278 27.21 

 

It can be observed that the NVP resulted positive for both scenarios, which confirms the 

economic viability. The IRR resulted to be 30.51 and 27.21 % for olive pomace and blend 

75op25P, respectively, which also indicated the project profitability. Note that, these 

values of TIR were in the range of those reported by Andersson et al. [52], who carried 

out an economic analysis of methanol production via pressurized entrained flow biomass 

gasification. Finally, it can be concluded that the higher the olive pomace amount, the 

higher the profitability was. This is due the fact that the petcoke price is 9 times higher 

than the olive pomace. 

Although this kind of determinist approach is appropriate as an initial estimation, if the  

main system variables are subject to uncertainty, as it occurs in  this case study, neglecting 

them can  significantly affect at the financial results and, thus, this simplistic estimation 

can lead to an incomplete evaluation. To overcome such issues, it is crucial to incorporate 
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a risk analysis via Monte Carlo simulations, providing a stochastic perspective of the 

problem.  

4.2 Partial uncertainty analysis. Methanol Price forecasting. 

4.2.1 Monte Carlo simulations 

This work proposes different econometric Unobserved Components models to enrich the 

Monte Carlo simulations with probabilistic forecasts of the methanol price. In this sense, 

probabilistic forecasts refer to the forecast of the whole predictive distribution of the 

methanol price, since it is more informative than a typical mean extrapolation. Those 

probabilistic forecasts will be fed into the Monte Carlo simulations with 10000 repetitions 

to project different economic scenarios.  

4.2.2 NPV distribution 

Figure 3 shows the probability distribution of the NPVs obtained as a result of Monte 

Carlo simulations for each scenario (Olive pomace and 75op25P) and forecasting model 

(DT, LLT and LLTC). Table 6 summarizes the main results using some well-known 

statistics.  Taking into account the assumed scenarios, the NPV mode and mean obtained 

from olive pomace was higher than the sample 75op25P in all models used. Besides, this 

difference between them was similar for the three model forecasts. In addition, mean NPV 

was positive for all cases considered, but NPV value was influenced by the different 

model forecasts, being the most optimistic model the Local Linear Trend, and the most 

pessimistic model the damped trend. That figure also shows as a vertical dotted line (DC) 

the results obtained by the determinist case.  It can be observed how the deterministic 

case overestimates the NPV mean and it does not provide any information about the 

investment risk, in contrast to the histograms obtained from the Monte Carlo simulations.    



   
 

21 
 

Note that, since the NPV distributions were practically symmetric, the mode and mean 

were similar. Table 6 also shows the maximum and minimum value of NPV for each 

scenario and model. In general, the dipersion of the NPV results can be measured by the 

rank (the difference between maximum and minimum) and the standard deviation. 

Essentially, the LLT model presents the lowest dispersion since it incorporates the 

positive trend and, thus, it reduces the variability unexplained by the model. The 

dispersion of the LLTC model is higher due to the variability introduced by the cycle.   

In order to evaluate the investment risk, the Value at Risk (Var), which is the probability 

that the NPV was less than zero, was calculated using the histograms in Figure 3. Table 

6 shows the VaR for each combination of Scenario and model.  It can be observed that 

the probability of obtaining a positive NPV result for olive pomace was higher than for 

the 75op25P sample given that the VaR was lower. Interestingly, the VaR was much 

lower considering the Local Linear trend, which was practically zero. These results were 

in accordance with the different NPV values aforementioned. Moreover, it can be seen 

that the difference between VaR of olive pomace and 75op25P also decreased 

considerably using this model.  

These results indicate that there is a high probability for the plant to be profitable despite 

the volatility of methanol prices.
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Figure 3. NPV and IRR histograms. Upper panels: 75op25P. Lower panels: Olive pomace. Left panel: NPV. Right panel: IRR. DT, LLT and 
LLTC are the considered forecasting models. DC corresponds to the deterministic case results. 
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4.2.3 IRR distribution 

Right panel in Figure 3 shows the probability distribution of the IRRs obtained as a result 

of Monte Carlo simulations for each scenario and model as well as the deterministc case. 

Table 7 summarizes the main results. The results obtained presented a similar trend to 

NPV distributions. Thus, IRR mode and mean obtained from olive pomace was higher 

than the sample 75op25P regardless of the forecasting model. In addition, mean IRR was 

higher than the discount rate for all experiments considered showing evidence of the 

profitability of the investment. Regarding the deterministic case, it lies between the IRR 

mean obtained by the LLT and LLTC forecasting models. 

As occurred when assessing the NPV, IRR was influenced by the different forecasting 

models. Concerning maximum value of IRR it can be observed that the highest value was 

for DT model. Note that, those repetitions where the IRR could not be calculated, because 

of numerial issues due to negative NPV, were not considered in the histograms. Regarding 

standard deviation, it was similar for the samples 75op25P and olive pomace for all the 

forecasting models considered, as it occurred with the NPV distributions. Similarly, LLT 

model presented the lowest standard deviation.  
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 Table 6. Summary of NPV results for each scenario and forecasting model. 

 
Damped Trend Local Linear Trend Local Linear Trend 

with cycle 

 
Olive pomace 75op25P Olive 

pomace 75op25P Olive 
pomace 75op25P 

Mode NPV (M€) 172 111 260 198 290 228 
Mean NPV (M€) 158 97 298 236 252 190 
Maximum (M€) 891 816 732 667 758 693 
Minimum (M€) -617 -673 -165 -224 -356 -413 
Deviation 197 195 112 112 152 151 
VaR (%) 18 30 0 1 7 14 

 

Table 7. Summary of IRR results for each scenario and forecasting model. 

 

 

 

 
Damped Trend Local Linear Trend Local Linear Trend 

with cycle 

 
Olive pomace 75op25P Olive 

pomace 75op25P Olive 
pomace 75op25P 

Mode IRR (%) 27 24 29 28 30 25 
Mean IRR (%) 25 23 31 27 27 24 
Maximum (M€) 56 53 51 48 51 48 
Minimum (M€) 0 0 0 0 0 0 
Deviation (%) 9 9 6 7 8 8 
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4.3 Complete uncertainty analysis 

4.3.1 Monte Carlo simulations 

Besides the methanol price, other sources of uncertainty to be included in the Monte Carlo 

simulations are the olive pomace feed, capital investment, feedstock price, labor costs and 

discount rate. For these variables, the extent of uncertainty are modeled simulating a 

triangular distribution [23].  Table 8 shows the value and their ranges considered. Note 

that a triangular distribution is a continuous probability distribution that is defined by 

three values: the minimum value, the maximum value, and the peak value [23]. This is 

commonly used in a real-life situation given that it is possible to estimate the maximum, 

minimum, and the most likely outcome [53]. Note that, for those variables a forecasting 

exercise cannot be implemented, as it happened with the methanol price, due to the 

limited past information available.   

Table 8. Summary of variables with uncertainty distributions. 

Variable Minimum 
Value 

Expected 
Value 

Maximum 
Value Distribution 

Olive pomace feed 
(kg/h) -50 % 168 000 0 % Triangular 

Olive pomace price 
(€) 0.0062 0.0077 0.0154 Triangular 

Petcoke price (€) 0.0355 0.0709 0.1064 Triangular 

Total Capital 
Investment (M€) −30% 210 +100% Triangular 

Labor costs (€) −20% 945 000 +20% Triangular 

Discount rate (%) 4 10 16 Triangular 
 

Concerning the uncertain variables, olive pomace feed was considered due to the fact that 

is a seasonal biomass that depends directly on the harvest. Therefore, the production 

capacity of the plant was based on the amount of olive pomace fed.  The 2015/16 harvest 
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and the hectares of Castilla-La Mancha and Andalucía regions were selected as the basis 

of calculation.  The consumption of raw materials was 168, 000 kg/h. Moreover, methanol 

production was directly affected by its variation. The minimum value was obtained taking 

in account the worst harvest registered in the recent years [data from Aceites García de la 

Cruz Olive Oil mill] and the expected and maximum value was equal to the plant capacity. 

In the case of Scenario 2, the petcoke feed was also altered.  

The raw material cost can vary widely depending on geographic and environmental 

factors or costs associated with harvesting and transportation. In reference to olive 

pomace price, the expected value was obtained from Aceites García de la Cruz olive oil 

mill, and the maximum and minimum value was acquired from different databases of 

olive oil sector [54]. For petcoke price, it can be observed  that is one order of magnitude 

higher than the olive pomace price. Table 4 also shows the total annual cost of raw 

materials for the deterministic model. Note the importance of the Petcoke in cost terms, 

for the Scenario 2 (75op25P), where the Petcoke implied, approximately, the 75% of the 

total raw material cost. The expected value was obtained from the refinery of Puertollano. 

As aforementioned, the petcoke cost can vary depending on geography and quality 

factors. Therefore, the minimum and maximum value considered an uncertain distribution 

ranging from ± 50% in order to reflect different petcoke qualities.  

Total capital investment was difficult to estimate for the percentage of delivered 

equipment cost method applied. Besides, this method is based on the main equipment 

prices which were obtained from Aspen Plus v.9 and they can be overestimated or 

underestimated. For that reason, distribution ranging from - 30% +100% was considered 

since estimations are more likely to be understimated compared to actual project costs 

[55]. 
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For its part, the labor cost distribution can vary depending on the regions and can be 

increased or decreased from one year to the next due to the social and global political 

changes, so the range of labor cost was estimated ± 20% [23]. Finally, the discount rate 

was varied between 4 and 16% [23].  This variable includes a risk premium due to the 

risk inherent with novel technologies, which can vary with the riskiness of the investment.  

 

4.3.2 NPV distribution 

Figure 4 displays the probability distribution of the NPVs obtained as a result of Monte 

Carlo simulations for each scenario and model taking into account all uncertain variables. 

Table 9 lists the main statistics results. It can be observed that NPV mode and mean were 

negative for both raw materials, being the results worse in the case of 75op25P. It can be 

attributed to the larger number of variables involved in the case of 75op25P. In this 

sample, there were two more variables involved besides the olive pomace, particularly, 

the price of petcoke (which was not considered for olive pomace) and the petcoke feed. 

In addition, it is important to note that the higher the petcoke flow, the lower the methanol 

production. Therefore, this last variable also indirectly affected the results obtained, being 

the risk assumed for 75op25P much higher. As was observed in the previous section, NPV 

value was influenced by the different model forecasts, being LLT the most optimistic 

model. Moreover, NPV values obtained including all sources of uncertainty were lower 

than the deterministic method and the methanol price forecasts as the single source of 

uncertainty case, due to the increased risk considered.   

Regarding NPV distributions, the mode and the mean were similar as a consequency of 

symmetric distribution. On the other hand, the maximum value of NPV presented higher 

differences between the olive pomace and 75op25P than the case of partial uncertainty 
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analysis. However, the variance of minimum value was not as high as the maximum 

value. Comparing the three models, in general terms, similar conclusions can be drawn 

with respect to the preceding section.  Concerning standard deviation, it was different for 

the scenarios and model forecasts considered. Nonetheless, LLT model presented the 

lowest standard deviation. Regarding the VaR, it can be observed that the probability of 

obtaining a positive NPV result for 75op25P was quite low, given that the VaR is high, 

while the olive pomace presented a probability close to 50 % for LLT and LLTC models. 

Therefore, these results show that for both scenarios, apart from reducing the profitability 

in general terms, the investment risk measured by VaR was dramatically increased.  

Note that, the NPV values in Figure 4 are frequently negative, particularly for the 

75op25P case. Therefore, the IRR empirical probability plots are not shown because in 

many cases the numerical solutions of IRR do not converge and, thus, its interpretation 

can be misleading.  
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 Figure 4. NPV histograms. Upper panels: 75op25P. Lower panels: Olive 

pomace. DT, LLT and LLTC are the considered forecasting models. DC corresponds to 

the deterministic case results. 
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Table 9. Summary of NPV results each scenario and forecasting model. 

 
Damped Trend Local Linear Trend Local Linear Trend 

with cycle 

 
Olive pomace 75op25P Olive 

pomace 75op25P Olive 
pomace 75op25P 

Mode NPV (M€) -115 -400 -68 -292 -151 -353 
Mean NPV (M€) -136 -368 -13 -275 -51 -302 
Maximum (M€) 780 325 730 249 740 356 
Minimum (M€) -921 -1053 -649 -895 -800 -992 
Deviation 219 172 184 142 199 153 
VaR (%) 77 98 48 95 57 95 
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5. Conclusions 

The financial viability of methanol production from biomass gasification was carried out 

by means of deterministic and stochastic methods. In order to assure a stable production 

of methanol regardless the size of the olive harvest,  two scenarios were considered: olive 

pomace and blend 75op25P (75 wt. % of olive pomace and 25wt.% of petcoke). A 

deterministic model was developed as a benchmark, observing that NPV was positive for 

both scenarios. The IRR was 30.51 and 27.21 % for olive pomace and blend 75op25P, 

respectively.  

To complete the deterministic study, a stochastic perspective was incorporated by 

analysing the investment risk. The first approximation of the stochastic analysis 

investigated the influence of the methanol price volatility. In this sense, three Unobserved 

Components forecasting models set in a State Space framework were analysed. Such 

models were designed to include trend (Damped Trend and Local Linear Trend) and cycle 

(Local Linear Trend with Cycle) components identifiable in the methanol price time 

series.  All investment criteria indicated that using olive pomace as a single feedstock was 

more profitable than the sample 75op25P independently of the forecasting model used. 

Additionally, the risk of the investment was supported by the low values of the Value at 

Risk metric. The IRR values ranged from 23% for the 75op25P scenario and DT 

forecasting model  to 31% for the Olive pomace scenario and LLT model. In general 

terms, the Local Linear Trend model presented the most optimistic results in economic 

terms, since that model assumes that the methanol price, which is the main variable 

driving revenues, has a positive trend and, thus, provides higher methanols prices.   

Finally, the stochastic exercise was completed by including the rest of variables subject 

to uncertainty (olive pomace feed, capital investment, feedstock price, labor costs and 

discount rate). In this case, the probability of obtaining a positive NPV result for 75op25P 
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was between 2% and 5%, while olive pomace presented a probability around 48% and 

77% depending on the forecasting model, being the Local Linear Trend again,  the model 

that yielded the most optimistic NPV values.  

Among the results of this work, an important conclusion achieved is the need to carry out 

a stochastic analysis of the economic assessment when certain variables of the study are 

subject to uncertainty, in contrast to the simple deterministic approach, which 

unrealistically assumes that the future value of all variables are known with certainty. 
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