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Abstract—Vibrations are present in many mechanical struc-
tures and machines, and are often associated with their elastic
parts. Characterizing these vibrations, i.e., obtaining their fre-
quencies, amplitudes and phases, is of most interest in many
applications ranging from the maintenance of civil structures to
motion control.

This article presents a method for the on-line and reliable iden-
tification of the defining parameters of two unknown sinusoidal
signals through the use of their measured sum in the presence
of noise and an offset. It is based on the algebraic derivative
approach, defined in the frequency domain, which yields exact
calculation formulae for the unknown parameters of the signal,
i.e., the amplitudes, phases and frequencies of the two sinusoids
and the value of the constant term. The on-line estimation is
performed in a time interval which is only a fraction of the first
full cycle of the slower component of the measured signal. This
feature allows the algorithm to be used to monitor time varying
parameters in these vibration signals.

This algorithm has been used in experiments with a flexible
beam, which is a representative platform of a vibrating mecha-
tronic system. It estimated all the vibration signal parameters
quickly and accurately, proved to be insensitive to high frequency
noises, and accurately tracked the time variations of the signal
parameters.

Index Terms—Algebraic Estimator, Vibration, Flexible.

I. INTRODUCTION

V IBRATIONS are present in many mechanical structures
and machines, and are often associated with their elastic

parts. Characterizing these vibrations, i.e., obtaining their
frequencies, amplitudes and phases, is of the utmost interest
in many applications ranging from the maintenance of civil
structures to motion control.

One of the main applications of the monitoring of mechani-
cal vibrations over the last 20 years has been that of assessing
the integrity of mechanical structures by detecting changes
in the dynamic parameters from vibration measurement and
processing. Several techniques for structural health monitoring
based on vibrations measurements have demonstrated their
capacity to detect failures in civil structures [1]. These methods
estimate the vibration characteristics offline by first measuring
the vibrations and later processing the signals recorded.
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The structural vibration suppression of flexible mechanisms
is another topic of increasing concern in engineering. Since
these flexible structures are often lightweight, they are used
extensively in both the aerospace industry, [2], [3] and other
mechatronic advanced applications such as micropositioning,
e.g.[4], [5]. As these structures have very little damping, it
is necessary to use active vibration control to achieve precise
motions and positionings. In this context, knowledge of the
vibration modes may significantly improve the performance
of these control systems [6]. As the dynamics, and hence
the vibration modes, of these mechanisms are often time
varying as a consequence of their changing configurations
(e.g. deployable space structures [7], large robot manipulators
[8]) or changing payloads (robotics [9], micropositioners [10],
[11]), algorithms able to estimate these vibrations in real-time
are of the utmost interest.

The new field of energy harvesting research has also re-
cently demonstrated the need for frequency estimation. As
shown in [12], the performance of the device used to pro-
duce energy is higher when its natural vibration frequency
is properly tuned. In order to maintain the rate of harvested
energy in its optimal value it would therefore be very useful to
estimate the frequencies of the source of vibration in real-time
and implement an autotuning mechanism that would allow the
device to track frequency changes.

Research into algorithms for the real-time estimation of
vibration modes in mechanical systems has therefore taken
place over the last few years. The faster the estimation is, the
better the control system will act on the mechanism, or the
energy harvesting system will track the optimal functioning
point. Moreover, in the case of the maintenance of civil
structures, implementing real-time vibration estimators will
also increase monitoring possibilities.

Estimating the frequency, amplitude and phase of sinusoidal
signals has become an interesting issue in itself since Fourier
developed a transformation method in 1822, and it has been
applied in many areas of engineering. In fact, one of the two
main approaches for sinusoid parameter estimation, the non-
parametric methods, is based on the (fast) Fourier transform
[13], [14]. Although these methods are usually considered
to be more accurate than those of parametrics, their heavy
computational burden and leakage make them fairly useless
for on-line computations.

The other main approach used for sinusoid estimation, the
parametric methods, has proved to have a higher processing
speed and a sufficiently high resolution, despite a short data
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record [15] in many applications, which makes them suitable
for on-line estimations and fast system identification. These
methods use predetermined functional structures, and are
focused on estimating only the parameters of these functions.

Since on-line estimation requires computational efficiency
and fast convergence, the parametric method that is most often
preferred is that of adaptive notch filtering [16]. Despite the
fact that adaptive notch filters are developed in continuous-
time, it should be noted that discrete-time identifiers have also
been proposed (see Li and Kedem [17], Rife and Boorstyn
[18], and references therein).

Several approaches have also been proposed for the general
estimation case of n sinusoidal frequencies based on adaptive
observers. Marino and Tomei [19], used an adaptive observer
with a dimension of 5n-1. Obregon-Pulido et al. [20] later
presented a nice simultaneous frequency and state estimation
method, whose resulting globally convergent estimator is 3n
dimensional. A different estimator, also with a dimension of
3n, was also proposed as an adaptive identifier by Xia [21].

These n sinusoidal frequency estimators share certain fea-
tures with adaptive notch filters: all of these algorithms require
a set of initial parameter values to be chosen - which strongly
influences the efficiency of the method -, they require several
cycles to converge on the right frequency estimates, and
they do not provide information about the remaining sinusoid
parameters (amplitudes and phases). A long standing require-
ment is, therefore, that of an on-line, robust, identification
method, which computes the desired frequencies, amplitudes
and phases in less time than a vibration period, and without
the need to tune any initialization parameters in the algorithm.

Signals provided by the sensors used to monitor mechanical
structure vibrations are often noisy and biased. DC offset
should not be underestimated in the analogic voltage signals
provided by electronic acquisition systems. The aforemen-
tioned methods are not well suited to dealing with these prob-
lems. It would therefore be desirable for the vibration mode
estimation method to be additionally able to accurately identify
sinusoid parameters in measurements with these drawbacks.

A completely different approach with which to estimate
vibrations in real-time is based on the algebraic framework
originally proposed by Fliess and Sira-Ramirez [22]. This
methodology has been used to design algorithms for the real-
time estimation of the parameters of sinusoids from noisy
signals in the cases of: one sinusoid with a bias [23], one
sinusoid with a small damping [24], two sinusoids [25], two
sinusoids with offset [26], the two main vibration modes of
an elastic beam from measurements without offset [27], and
the general case of n frequencies [28]. This last algorithm
approached the case of identifying sinusoids with an offset
by assuming that the first mode to be estimated had a zero
frequency value, thus mimicking the offset.

In this article we propose a new method for the real-
time estimation of the frequencies, amplitudes and phases
of the two main vibration modes (the two with the lowest
frequencies) of a flexible structure from noisy signals which
exhibit offset and may have parametric variations over the
time. The algorithm developed herein is based on the afore-
mentioned algebraic identification framework, and it provides

very fast (it converges in a time which is a fraction of the
period of the first vibration mode) and sufficiently accurate
estimations. It improves on the method developed in [28] as
regards four aspects: 1) it provides frequencies, amplitudes and
vibrations phases in real-time (unlike [28] which only provides
frequencies); 2) it yields reliable estimations in the presence
of an offset, converging faster in this case to the real values
than the algorithm in [28]; 3) it provides a real-time estimate
of the DC offset; and 4) we have experimentally tested the
method using a real-time application created in LabView (only
simulations were presented in [28]).

The algorithm developed herein also improves on the
method developed in [26] as regards four aspects: 1) it pro-
vides a real-time estimate of the DC offset; 2) it yields reliable
estimations in the presence of noise in the signal through the
use of integral filters; 3) it employs all the available data to
estimate the values of the amplitudes, phases and offset, thus
yielding more accurate results than the algorithm in [26]; and
4) we have experimentally tested the method (only simulations
were presented in [26]).

This article also develops and experiments with an appli-
cation of the above: the estimation of the two main vibration
modes of a flexible cantilever beam. Experiments are carried
out in which the vibrations are characterized using two differ-
ent signals: a) position and velocity measurements provided
by a laser doppler vibrometer (LDV) and b) momentum
measurements provided by strain gauges.

A flexible cantilever beam that supports several loads on
its structure can be used as a basic representative model for
a number of advanced lightweight engineering structures [29]
such as robot arms, aircraft wings, and civil structures such
as buildings and bridges. The identification of its dominant
vibrations is a key issue in health monitoring and the vibration
control of these structures. This flexible beam has an infinite
number of vibration modes. Our algorithm will estimate the
two main modes, and higher modes will be treated as noise.
The interest in designing an estimator that is robust to noises
of relatively low frequencies - although always higher than the
second mode frequency - is therefore justified.

There are several applications related to the high accuracy
positioning of flexible structures in which LDVs are used
as sensors in order to control their vibrations [30], [31].
The use of these devices is often justified because laser
measurements avoid the mechanical changes frequently caused
by accelerometers or other sensors that must be placed on the
structure. Since the displacement measurements provided by
the LDVs are simply the integration of the velocity measures,
this integrated signal may have a DC offset depending on
where the zero displacement was set (note that if the target has
a small amount of movement, the zero cannot be set exactly),
i.e., the initial position from which the velocity integration
process is carried out cannot be exactly determined to yield
such an offset.

The most common sensors with which to characterize and
remove link vibrations that are used in flexible robotics are,
meanwhile, strain gauges[32], [6]. These sensors are used
because: a) their placement at the base of the links makes
it easier to control the robot; b) strain gauges are usually a
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cheaper alternative to LDVs; and c) the angular displacements
performed by the robot cause great displacements of the tip,
which are out of the range of the LDVs. However, strain
measures are often plagued by a DC offset, owing to non-
idealities in the mechanical or electrical arrangement.

In the proposed application, the use of velocity measure-
ments to characterize vibrations may be troublesome because
frequencies of modes higher than two (mainly the third mode)
may have an amplitude similar to the amplitudes of the first
two modes. These higher than second order modes may then
strongly distort the measured signal and impair the estimation
of the two main modes (the level of the ”noise” ”seen” by
the estimator becomes too high). Displacement measurements
do not, however, suffer from this problem as third and higher
modes exhibit amplitudes that are significantly smaller than
those of the first two modes. These measurements are therefore
preferred to those of velocity. Furthermore, as displacement
measures and strain measures are affected by offset, it would
be desirable if, in addition to estimating the vibration parame-
ters, the algorithm could also estimate the offset value - which
may change with time. The proposed application is of utmost
interest in this case.

We wish to point out the interest in characterizing the two
lowest vibration modes in several applications. For example,
in the motion control of flexible robots, at least three vibration
modes need to be characterized in order to efficiently damp
structural vibrations. Analytical models of beams are available
that allow the vibration frequencies of a beam to be calcu-
lated if all its mechanical parameters are known. However,
an interesting application of the method developed here is
the determination of the two lowest vibration frequencies of
the beam in the case of tip mass and tip rotational inertia
being unknown because they change throughout the robot’s
operation. In this case, the estimation of these two frequencies
allows estimation to take place after the tip mass and rotational
inertia by substituting these frequencies in the characteristic
equation of the beam (either in the clamped-free of articulated-
free cases), and the two equation system yielded to be solved.
Once all the beam parameters are known, the analytical model
of the beam can yield all the vibration modes of the beam. We
again note the interest in obtaining these payload parameters
and beam vibration modes as fast as possible for control
purposes.

This article is organized as follows. Section II formulates
the problem of estimating sinusoid parameters in the ideal case
of a sum of two sinusoids plus a constant term without noise.
Section III extends the results of the previous section to the
case of a noisy signal, and describes some implementation
issues. Section IV describes the experimental setup, and Sec-
tion V presents an actual case of application. Finally, some
conclusions are drawn in Section VI.

II. PROBLEM FORMULATION IN THE NOISE-FREE CASE

Given a signal of the form:

x(t) = A1 sin (ω1t+ φ1) +A2 sin (ω2t+ φ2) +K (1)

where K is an unknown constant bias perturbation term,
it is desired to compute, on-line and as fast as possible,
the unknown amplitudes A1, A2, the unknown frequencies
ω1, ω2), the constant phase angles φ1, φ2 and the unknown
bias perturbation term K from the available signal.

The Laplace transform of (1) is given by:

x(s) =
A1 cos(φ1)

s2 + ω2
1

+
sA1 sin(φ1)

s2 + ω2
1

+
A2 cos(φ2)

s2 + ω2
2

+
sA2 sin(φ2)

s2 + ω2
2

+
K

s
(2)

For the sake of simplicity, we assume that φ1 and φ2 are
bounded by the interval [−π/2, π/2], and the amplitudes can
be both positive or negative. The objective of the algebraic
manipulations described in the following section is to elim-
inate the constant term K and obtain expressions for the
unknown parameters, involving only integrations or integral
convolutions of the signal x(t). The vector components are
defined as follows:

P̂1 = A1ω1 cos (φ1) , Q1 = A1 sin (φ1) , R1 = ω2
1 ,

P̂2 = A2ω2 cos (φ2) , Q2 = A2 sin (φ2) , R2 = ω2
2

(3)
Note that parameters A1, A2, ω1, ω2, φ1, φ2 can be easily

obtained from P̂1, P̂2, Q1, Q2, R1, R2:

ω1 =
√
R1, A1 =

√
Q2

1 + P̂1
2

R1
, φ1 = arctan

(
Q1

√
R1

P̂1

)
,

ω2 =
√
R2, A2 =

√
Q2

2 + P̂2
2

R2
, φ2 = arctan

(
Q2

√
R2

P̂2

)
(4)

Expression (2) may then be rewritten as:

x(s) =
P̂1

s2 +R1
+

sQ1

s2 +R1
+

P̂2

s2 +R2
+

sQ2

s2 +R2
+
K

s
(5)

A. On-line computation of the frequency

Upon multiplying out the expression (5) by the polynomial
s(s2 +R1)(s2 +R2) and rearranging, we obtain:

s5x(s) + s3(R1 +R2)x(s) + sR1R2x(s) =

s4(Q1 +Q2 +K) + s3(P̂1 + P̂2)

+ s2((Q1 +K)R2 + (Q2 +K)R1)

+ s(P̂1R2 + P̂2R1) +KR1R2 (6)

If expression (6) were differentiated five times with regard
to variable s, unknown constants K, P̂1, P̂2, Q1, Q2 would
be removed, yielding the expression:
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(
s5 + (R1 +R2) s3 +R1R2s

) d5x(s)

ds5

+
(
25s4 + 15 (R1 +R2) s2 + 5R1R2

) d4x(s)

ds4

+
(
200s3 + 60 (R1 +R2) s

) d3x(s)

ds3

+
(
600s2 + 60 (R1 +R2)

) d2x(s)

ds2

+ 600s
dx(s)

ds
+ 120x(s) = 0 (7)

Upon denoting X = R1 + R2 and Z = R1R2, and
rearranging terms we obtain:

[
s3
d5x(s)

ds5
+ 15s2

d4x(s)

ds4
+ 60s

d3x(s)

ds3
+ 60

d2x(s)

ds2
)

]
X

+

[
s
d5x/s)

ds5
+ 5

d4x(s)

ds4

]
Z =

− s5 d
5x(s)

ds5
− 25s4

d4x(s)

ds4
− 200s3

d3x(s)

ds3

− 600s2
d2x(s)

ds2
− 600s

dx(s)

ds
− 120x(s) (8)

If expression (8) is multiplied out by the factor s−5 (which
represents five iterated integrations in the time domain), then
an expression free of terms containing positive powers of
the complex variable s is obtained (positive powers of s
must be avoided because they represent undesired repeated
time differentiations of the signals involved). An expression
involving only time convolutions of the signal x(t) is therefore
yielded:

[
s−2

d5x(s)

ds5
+ 15s−3

d4x(s)

ds4
+ 60s−4

d3x(s)

ds3

+60s−5
d2x(s)

ds2

]
X +

[
s−4

d5x(s)

ds5
+ 5s−5

d4x(s)

ds4

]
Z =

−d
5x(s)

ds5
− 25s−1

d4x(s)

ds4
− 200s−2

d3x(s)

ds3

− 600s−3
d2x(s)

ds2
− 600s−4

dx(s)

ds
− 120x(s) (9)

Let L denote the usual operational calculus transform acting
on exponentially bounded signals with bounded left support.
Recall that L−1s(·) = d/dt(·), L−11/s(·) =

∫ t

0
(·)(σ)dσ,

and L−1dv/dsv(·) = (−1)vtv(·). Expression (9) can thus be
written in the time domain as follows:

[
−
∫ (2)

t5x(t) + 15

∫ (3)

t4x(t) − 60

∫ (4)

t3x(t)

+60

∫ (5)

t2x(t)

]
X +

[
−
∫ (4)

t5x(t) + 5

∫ (5)

t4x(t)

]
Z =

t5x(t)− 25

∫
t4x(t) + 200

∫ (2)

t3x(t)

− 600

∫ (3)

t2x(t) + 600

∫ (4)

tx(t)− 120

∫ (5)

x(t) (10)

Expression (10) can be written in a compact form as:

η(t)X + ξ(t)Z = q(t) (11)

where η(t), ξ(t), and q(t) can be calculated in real time
because they are the outputs of the following time-varying
linear unstable filters:

q(t) = t5x(t)− z1 ξ = z6 η = z11

ż1 = z2 + 25t4x(t) ż6 = z7 ˙z11 = z12

ż2 = z3 − 200t3x(t)ż7 = z8 ˙z12 = z13 − t5x(t)

ż3 = z4 + 600t2x(t)ż8 = z9 ˙z13 = z14 + 15t4x(t)

ż4 = z5 − 600tx(t) ż9 = z10 − t5x(t) ˙z14 = z15 − 60t3x(t)

ż5 = 120x(t) ˙z10 = 5t4x(t) ˙z15 = 60t2x(t) (12)

whose initial states are set to zero.
The linear equation (11) has two unknowns, X and Z,

which can be obtained from a least squares error fitting in
a time interval [ti, tf ] (where the interval [ti, tf ] is equal to
the interval of time between the first and the last available
sample). Upon defining a cost:

ε =

∫ tf

ti

{[
η(τ) ξ(τ)

]
·
[
X
Z

]
− q(τ)

}2

dτ, (13)

its minimization leads to:

[
X
Z

]
=

[∫ tf

ti

[
η(τ)
ξ(τ)

]
·
[
η(τ) ξ(τ)

]
dτ

]−1
·
∫ tf

ti

[
η(τ)
ξ(τ)

]
q(τ)dτ (14)

The batch formula has been expressed in (14) for the sake
of clarity, and it was first used in connection with algebraic
parameter estimation techniques in [33]. However, in order
to increase the computational efficiency of the algorithm, we
have used the standard recursive formula for the least squares
algorithm [34]. We should mention that a recursive formula
of the least squares algorithm was used in [35] to estimate the
parameters of a DC motor using an algebraic estimator.

The parameters ω1 and ω2 are only weakly linearly identi-
fiable. This signifies that once X and Z have been identified,
parameters R1 and R2 can be obtained, and ω1 and ω2 can be
easily determined from them by using the non-linear relations:

ω1 =

√
1

2

[
X ±

√
X2 − 4Z

]
,ω2 =

√
2Z

X ±
√
X2 − 4Z

(15)

Note that only positive solutions for ω1 and ω2 have physical
sense. The square root term:

√
X2 − 4Z must have the same

sign in both expressions, since otherwise Z = ω2
1ω

2
2 is not

verified. Finally note that the solutions found for ω1 and ω2

can be interchanged.
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B. Exact calculation of the amplitudes, phases and offset

When the frequencies ω1 and ω2 have been computed after
n samples, the set of data available is the n samples used
for the computation and the two estimated frequencies. All of
these data will be used to compute the remaining unknowns.

The equality:

x(t)= A1 sin (ω1t+ φ1) +A2 sin (ω2t+ φ2) +K

= A1 cos (φ1) sin (ω1t) +A1 sin (φ1) cos (ω1t)

+A2 cos (φ2) sin (ω2t) +A2 sin (φ2) cos (ω2t) +K (16)

can be used in a compact form:

x(t) = Φ(t)T ·Θ (17)

where:

Φ(t) =
[

sin(ω1t) cos(ω1t) sin(ω2t) cos(ω2t) 1
]T

and

Θ =
[
A1 cos(φ1),A1 sin(φ1),A2 cos(φ2),A2 sin(φ2),K

]T
,

to estimate the values of amplitudes, phases, and offset that
minimize the error determined by:

ε =

∫ tf

ti

[
ΦT (τ) ·Θ− x(τ)

]2
dτ, (18)

The minimization of this cost function leads to:

Θ =

[∫ tf

ti

Φ(τ)Φ(τ)
T
dτ

]−1
·
∫ tf

ti

Φ(τ)x(τ)dτ. (19)

Since it is necessary to know the estimates of the frequen-
cies prior to computing (19), and we wish to obtain estimates
for the amplitudes, phases and bias as soon as the estimates
of the frequencies are available, the batch formula has been
used. The batch formula (19) uses the estimated frequencies
together with the data recorded until the frequencies have
been estimated, in order to compute the estimates of the
remaining parameters immediately after the frequencies have
been obtained. Note also that recording the samples from
ti to tf , i.e., from the first sample to the sample at which
the estimation of the frequencies is available, only requires a
limited amount of memory because the proposed algorithm has
been endowed with a reinitiation step which is triggered by
the completion of the estimation process (as will be seen in
the following section). This prevents any possible overflow.
By knowing Θ, i.e., the values of P1, Q1, P2 and Q2,
(where P1 = A1 cos (θ1) and P2 = A2 cos (θ2)) it is quite
straightforward to obtain the values of the amplitudes and
phases with the following expressions:

φ1 = arctan

(
Q1

P1

)
, A1 = P1

√
Q2

1

P 2
1

+ 1,

φ2 = arctan

(
Q2

P2

)
, A2 = P2

√
Q2

2

P 2
2

+ 1 (20)

where, for the sake of simplicity, it is assumed that φ1 and φ2
are bounded by the interval [−π/2, π/2], and the amplitudes
can be both positive or negative.

III. PARAMETER ESTIMATION OF THE NOISY CASE

In this case, the measured signal is of the form:

y(t) = A1 sin(ω1t+ φ1)+A2 sin(ω2t+ φ2)+K+ξ(t) (21)

A. On-line computation of the frequency in the noisy case

Given an uncertain noisy signal of the form: y(t) = x(t) +
ξ(t) where ξ(t) is a zero mean stochastic process (otherwise,
the process could be considered as a noise of zero mean whose
mean value is included in the offset to be identified), but is
otherwise of completely unknown statistics, noisy signal y(t)
is therefore the only available signal with direct information
about x(t).

Since x(t) cannot be exactly measured, the formulae de-
veloped for the exact computation of X and Z will be used,
but it must be stressed that y(t) represents the noisy measured
signal, and x(t) must therefore be substituted for the measured
signal y(t).

In order to filter the noise present in y(t), it is necessary
to apply an integral filter in (14), and the numerators and the
denominators of the quotients resulting from operating that
expression will thus be filtered independently with the same
integral filter.

This invariant filtering operation finds its full justification
when the expressions for the numerator and the denominator
are considered in the frequency domain. It is clear that using
identical integral filter transfer functions for the numerator and
the denominator does not affect the quotient in the noise free
case, and it certainly enhances the signal to noise ratio of both
the numerator and denominator in the high frequency noise-
perturbed case. In order to implement this filter, expression
(14) is modified to:

[
X̂

Ẑ

]
=

[∫ tf

ti

[∫ tf

ti

[
η(τ)
ξ(τ)

]
·
[
η(τ) ξ(τ)

]
dτ

]
dτ

]−1
·
∫ tf

ti

[∫ tf

ti

[
η(τ)
ξ(τ)

]
q(τ)dτ

]
dτ. (22)

Once X̂ and Ẑ have been calculated, frequencies ω1 and
ω2 can be computed from (15).

B. Exact calculation of the amplitudes, phases and offset

In the case of dealing with a noisy signal it is necessary
to use the estimation of the frequencies ω1 and ω2 computed
from the noisy signal. The whole calculation process is similar
to the noisy-free case. The only difference is that y(t) is used
instead of x(t) in (19), because noisy signal y(t) is the only
one available.

The simplistic treatment of signals with noise proposed here
-which is based on modeling noise by using a high frequency
component of the signal instead of using its statistical prop-
erties, which is removed with a low pass filter- has proved to
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be quite effective in practice: it produces accurate estimations
without increasing the complexity of the algorithm, as has been
shown in previous experiments with a carbon fiber flexible link
[24] and an electric wave generator [25] (both of which had
perceptible noise), and will be shown in the more complex
experiments carried out in Section V. We refer to the study
of the properties of our algebraic estimators in the presence
of noise carried out in [23], in which the robustness of
these algorithms was checked with parameters such as the
sampling time, signal-to-noise ratio (SNR) and high frequency
sinusoidal noise.

C. Reinitiation algorithm
In order to carry out the on-line estimation of the signal

parameters, it is necessary to reset and reinitiate the frequency
estimation process described in Section II because: 1) Linear
time varying filters are unstable, and the values of the variables
involved in the estimation may therefore become very high as
time increases; 2) the computer storage capacity of the data
needed to calculate (19) is limited; and 3) signal parameters
are often time varying. Signal parameters may change for
several reasons: the damping of structure vibrations produces
variations in the amplitude of the signal (and therefore in the
amplitude of the vibration modes), and variations in the mass
or the rotational inertia of the beam (for example, in the load
to be supported at its tip) produce changes in the frequencies
of the vibration modes.

The estimation algorithm must therefore be reset and reiniti-
ated from time to time. We reinitiate the algorithm at the time
when the estimations of the two frequencies have converged
to steady state values. This condition is expressed by using
the following algorithm.

The method used to determine the time of reinitiation was
originally proposed in [27] and is based on the moving average
and the moving standard deviation of the estimated frequen-
cies. The frequency estimator of subsection II-A requires a
discrete implementation. Its output is therefore two sequences,
{ω1(n)} and {ω2(n)}, where n is the ordinal that refers to
the estimation provided by the algorithm at time n · Ts, Ts
being the sampling time. Let us define a window of length
Mi, i = 1, 2 for each frequency estimation, which includes
samples n−Mi + 1 ≤ k ≤ n. The moving average:

ω̄i(n) =
1

Mi

Mi−1∑
k=0

ωi(n− k) (23)

and the moving standard deviation:

σi(n) =

√∑Mi−1
k=0 (ωi(n− k)− ω̄i(n))2

Mi
(24)

are then associated with these windows, and the proposed
criterium is: the algorithm is reinitiated when the condition:

σi(n)

|ω̄i(n)|
≤ δi (25)

is simultaneously verified for i = 1, 2, where δi is the tolerance
parameter that determines the accuracy of the estimate of each
frequency.

The sample at which condition (25) is simultaneously
verified by the estimation of the two frequencies is denoted as
n̂. The frequency estimations provided by the algorithm are
therefore ωe

1 = ω̄1(n̂) and ωe
2 = ω̄2(n̂). The time n̂ · Ts is

the operation time interval, and it corresponds to the interval
of time from the beginning of the estimation process (it is
assumed that n = 0 when the estimation starts) until the
frequency estimates have converged and the algorithm yields
its result. If condition (25) has not been verified after a time
Tr, the algorithm is also reinitiated, but the estimates yielded
are not considered valid. The tuning of the value of Tr is based
on experience: a good compromise is often that of choosing
a value of the order of the period of the lower frequency that
has to be estimated.

In summary, the proposed real-time estimation algorithm
consists of of the following steps:

1) In each sampling period, the input of the algorithm is
the sample y(n) of the signal, and new estimates of
the frequencies ω1(n) and ω2(n) are calculated from
expressions (22) and (15).

2) Estimations ωi(n−M+1) . . . ωi(n) are used to compute
(23), (24).

3) Check the reinitiation criterion (25). If this criterion is
verified, the last value of each moving average will be
considered to be the correct estimation of the frequencies
ωe
1 and ωe

2. If Tr is reached and (25) is not fulfilled,
return to step 1) without considering ωe

1 and ωe
2 as valid.

4) These estimations of frequencies are used to compute
amplitudes, phases and offset from (19) and (20)

5) Finally, the algorithm is reinitiated.

IV. EXPERIMENTAL SETUP

The platform used in the experiments is shown in Fig. 1.
It is a flexible aluminium cantilevered beam which is 1.26 m
long, with a transversal area of 50×3 mm. The flexible beam
has one end free (the tip), while other end is clamped.

The sensors used are: on the one hand, a Polytec LDV
(model OFV-5000) with a sensor head model OFV-505 in
order to take displacement and velocity measurements, and
on the other, strain gauges placed at the base of the link
(at the clamped end). LDVs have several advantages: they
have high resolution, bandwidth and accuracy, and since they
do not require any physical contact with the object being
measured, they do not perturb its dynamic behaviour. Strain
gauges are useful to measure the vibrations of the link when
the angular movement of the base of the link causes very
high displacements of the tip of the beam, which cannot be
measured with the LDV.

The data obtained from the experimental platform were
computed in real time using a PC equipped with LabView
and a PCI-6221 for data acquisition. The sampling time was
1 ms.

In order to characterize the dynamics of the beam, a blow
was applied at 42 cm from the tip. The displacement and
velocity of the tip were then simultaneously measured using
the LDV (see Fig. 2). The fast Fourier transforms of these
two signals are shown in Fig. 3, which illustrates four peaks
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Fig. 1. Experimental Platform

corresponding to the resonant frequencies f1 = 1.068 Hz,
f2 = 6.61 Hz, f3 = 18.43 Hz, and f4 = 36.32 Hz,.
This figure shows that the magnitudes of the peaks diminish
in both spectra as the values of the resonant frequencies
increase. It also shows that the magnitudes of these peaks
are relatively larger in the velocity than in the displacement
spectrum and, more significantly, the amplitudes of the first
three modes are similar in the velocity spectrum, while the
amplitudes of the third mode is smaller than the amplitude
of modes one and two in the displacement spectrum. In fact,
this figure shows that the magnitude of the peak of the third
vibration mode is comparable to the amplitude of the first and
second harmonic when the velocity signal is considered. The
significant amplitude exhibited by the third resonant frequency
in the velocity spectrum may therefore preclude the accurate
functioning of any estimator of two frequencies applied to
velocity data.

The aforementioned flexible cantilever beam with no pay-
load at its free end has been modelled and simulated. Its
dynamic behaviour has been modelled as an Euler-Bernouilli
beam with the following parameters: linear mass density
ρ = 0.268 Kg/m, uniform bending stiffness EI = 2.4 N ·m,
length L = 1.26 m, beam mass MB = 0.338 Kg, and
rotational inertia JB = 0.179 Kg · m2. The frequencies
of the vibration modes and the complete dynamic model
were obtained by using the method described in [36]. The
equations provided by this method are not reproduced here
because they are well known and have been extensively used
in scientific literature. Table I shows the lower four resonant
frequencies obtained from the spectra of the signals recorded
in the experiment, in addition to those obtained from the
theoretical model based on the Euler-Bernouilli beam. The
results obtained from these two approaches are quite similar:
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Fig. 3. FFT of the experimental displacement (a) and velocity (b) measures

TABLE I
COMPARISON OF NATURAL FREQUENCIES OBTAINED EXPERIMENTALLY

AND FREQUENCIES OBTAINED BY SIMULATION

Experimental Simulated
Harmonic frequencies (Hz) frequencies (Hz) Error (%)

First harmonic 1.068 1.055 1.22
Second harmonic 6.61 6.61 0.02
Third harmonic 18.43 18.5 0.38
Fourth harmonic 36.32 36.27 0.14

the table shows differences of under 2%.
Finally, we should mention that in the case of an articulated-

free beam - which corresponds to the case of a robot with
flexible links which has to follow a desired trajectory - an
alternative to the proposed algorithm is that of obtaining the
vibration modes by identifying an input-output model, i.e., a
transfer function. The proposed algebraic estimator framework
could also be used in this case. Some examples of this are [37],
[38], [39], in which these estimators have been applied and
experimented on flexible robots in order to carry out adaptive
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control.

V. REAL TIME ESTIMATION FOR SIGNALS WITH
TIME-VARYING PARAMETERS

This section studies the capability of the proposed estimator
to identify time varying parameters of harmonic signals in real
time. This algorithm is therefore used to estimate not only time
varying frequencies of the measured signal, but also the time-
varying amplitudes of the different harmonics and the time
varying amplitude of the bias term of the signal.

In the tests carried out in this section, the estimation process
must be reinitiated each time the convergence criterion (25)
is achieved, or each time the elapsed time of the algorithm
reaches Tr without having achieved (25), in order to provide
the time varying estimates of each parameter, and thus be able
to track their changing values. The period of time between two
consecutive reinitiations is called the operation time interval
of the estimator, and signifies the time that the estimator takes
to yield the estimates in a step. The time chosen for Tr was
1 s throughout the experiments.

The experimental results are presented in this section, and
four cases are studied: the tracking of time-varying mode
amplitudes, the tracking of time-varying mode frequencies, the
tracking of time-varying offset, and the identification of the
modes of vibration under an external forced vibration. Some
of the issues related to the data from the following experiments
are:

1) The values used as references to compute the precision
attained in the estimation of the mode frequencies are
those obtained by applying the FFT to the experimental
data recorded from the vibrating beam. The errors shown
in the subsequent tables therefore concern these values.

2) The data obtained in the experiment on time-varying am-
plitudes was processed using both the algebraic method
proposed in this article and the the modified Prony’s
method. The difference in the amplitudes produced by
both estimators is shown in Table II.

3) The error data shown in the subsequent tables are the
absolute values of the errors obtained in the estimations.

A. Time-varying amplitudes

The amplitudes of all the vibration signals obtained on
the experimental platform decrease with time owing to the
damping of the flexible beam. The data analyzed in this
subsection was gathered by hitting the tip of the flexible beam
when it was in steady state and not carrying a payload, and
then recording the displacement of the tip when the beam
oscillated.

In order to assess the performance of the proposed estimator
as regards identifying the amplitudes of an harmonic signal
with time-varying amplitudes, its results were compared with
those provided by a well known method: the modified Prony’s
method. Section IV showed that our beam has four perceptible
modes. The Prony’s method was therefore applied by fitting
a model with four damped harmonics plus an offset to the
recorded data, yielding the following result:
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Fig. 4. Estimation of the amplitudes when the amplitudes are time-varying
(simulated case)

y(t)=0.0242e−0.0411tsin(1.068 · 2πt)
+ 0.0057e−0.1197tsin(6.61 · 2πt)
+ 0.0007e−0.296tsin(18.43 · 2πt)
+ 0.00006e−1.5096tsin(36.32 · 2πt)− 0.001. (26)

The amplitude estimates yielded by the proposed estimator
for the first two harmonics when considering the instantaneous
amplitudes of (26) as a reference are shown in Fig. 4. This
figure shows that the amplitude estimates are accurate and
that the estimator can track the changes of the amplitude over
time, since the estimates are produced in a short period of
time (in less than one cycle of the lower frequency harmonic).
Note that continuously varying parameters - as in this case - is
the worst scenario for our estimator. The best scenario would
be stepwise variations in the parameters (they remain constant
during most of the operation time intervals of the identification
process).

Table II shows the errors in the frequency estimates of
the proposed estimator in comparison to the real values
obtained by applying the FFT. It also shows the difference
in the amplitude estimates between the proposed estimator
and the modified Prony’s method. The operation time interval
of the estimator alters slightly from one estimation step to
another. The last row in Table II shows the most representative
characteristics of this time: its mean value and its standard
deviation.

It should be noted that Prony’s method is not suited to
yielding fast real-time parameter estimates, while our method
is.

B. Time-varying frequency

In order to produce a time-varying frequency signal, the
flexible beam was hit at 42 cm from its end with no load
mounted at the tip. After 2.7 s, a load of 0.065 Kg was
added to the tip. This load change produced a stepwise vari-
ation in the vibration frequencies of the beam. The vibration
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TABLE II
CHARACTERISTICS OF THE ERRORS PRODUCED IN THE ESTIMATIONS AND
OPERATION TIME INTERVAL, WHEN A SIGNAL WITH TIME-VARYING MODE

AMPLITUDES ARE USED

Min. value Mean value Max. value Standard
deviation

1st harmonic 0.7475 (%) 2.1169 (%) 2.7308(%) 0.76919 (%)
frequency error

2nd harmonic 0.0714 (%) 0.2944 (%) 0.5815 (%) 0.1876 (%)
frequency error

1st harmonic 0.2362 (%) 1.0505 (%) 1.9535 (%) 0.5840 (%)
amplitude diff.

2nd harmonic 2.5399 (%) 5.9327 (%) 3.8210 (%) 1.5054 (%)
amplitude diff.

Bias term 1.036 · 10−3 1.526 · 10−3 1.906 · 10−3 3.085 · 10−4

error

Operation time 0.4930 0.5820 0.6950 0.0773
interval (s)

TABLE III
CHARACTERISTICS OF THE ERRORS PRODUCED IN THE ESTIMATIONS AND
OPERATION TIME INTERVAL, WHEN A SIGNAL WITH TIME-VARYING MODE

FREQUENCIES ARE USED

Min. value Mean value Max. value Standard
deviation

1st harmonic 0.0583 (%) 2.6224 (%) 6.3715 (%) 2.0470(%)
frequency error

2nd harmonic 0.0321 (%) 0.1930 (%) 0.5515 (%) 0.1626 (%)
frequency error

Bias term 5.975 · 10−4 2.952 · 10−3 5.438 · 10−3 1.707 · 10−3

error deviation

Operation time 0.5490 0.6577 1.0000 0.1319
interval (s)

frequencies of the experimental platform were, in this case,
estimated using measurements obtained from strain gauges
placed at the base of the link. The use of strain gauges allows
us to show that our algorithm could be applied to signals
provided by sensors of different technologies, and that it could
be used for the motion control of flexible robots, which often
use these sensors. The frequencies estimated from this data,
again have the problems of the existence of third and fourth
vibration modes, high frequency noise, non negligible offset,
and damping in the amplitudes of the harmonics.

The results obtained for the estimation of the frequencies are
shown in Fig. 5. This figure shows that the frequency estimates
are accurate and that they track the frequency changes over
time (note that the real values of the first and second harmonic
are those obtained using the FFT with the data before and after
the load addition).

The characteristics of the errors produced in the estimations
and operation time intervals are shown in Table III. The
statistical characteristics of the estimation of each parameter
have been obtained from the set of all the values yielded by
the estimator.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Time (sec)

Es
tim

at
ed

 F
re

qu
en

ci
es

 (H
z)

Estimated frequencies

 

 Estimation for the 1    harmonicst

Actual values
 ± 5% of the actual values

Estimation for the 2    harmonicnd

Fig. 5. Estimation of the frequencies when the frequencies are time-varying
(experimental case)

C. Time-varying offset

The experiment carried out in this study consisted of hitting
the beam, without a load at its tip, at 42 cm from its end. The
tip displacement was measured with the LDV. 3 s after the
blow, the LDV was displaced a small distance backwards to
produce a change in the bias term from a value of 0.0085 to
a value of 0.1085.

The results obtained in the estimation of the offset are shown
in Fig. 6. This figure shows that the estimates are again very
accurate and track the changes over time. It also shows that
the algorithm may yield a wrong estimate in the operation
time interval at which the abrupt change in the offset value is
produced, but it yields an accurate estimate in the following
operating time interval.

The parameters of the errors produced in the estimation
of the offset and the operation time intervals are shown
in Table IV. Since the signal was obtained by measuring
the experimental platform, the only parameters known with
sufficient accuracy to be able to study the performance of the
estimator are the frequencies of the signal harmonics and the
bias term. The performance of the algorithm when estimating
these frequencies is also shown in this table. The statistical
characteristics of the estimation of each parameter have been
obtained from the set of all the values yielded by the estimator,
but not that provided in the step at which the sudden change
in the offset occurred. This value has been excluded because
it is not representative of the estimator’s performance, since it
did not work correctly in this step.

D. Forced vibration between the 1st and the 2nd harmonics

This subsection studies the performance of the proposed
estimator when it processes measurements of the vibrations
originated by a forced oscillation applied to the flexible beam.
In this case, the vibration was produced by varying the angular
position of the base of the flexible link in such a way that it
followed a sinusoidal signal with a frequency of 3 Hz (between
the first and the second modes) and an amplitude of 0.02 rad.
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Fig. 6. Estimation of the offset when the offset is time-varying (experimental
case)

TABLE IV
CHARACTERISTICS OF THE ERRORS PRODUCED IN THE ESTIMATIONS AND

OPERATION TIME INTERVAL, WHEN A SIGNAL WITH TIME-VARYING
OFFSET IS USED

Min. value Mean value Max. value Standard
deviation

1st harmonic 0.013805 (%) 1.0707 (%) 2.5807 (%) 0.99934(%)
frequency error

2nd harmonic 0.31386 (%) 2.0211 (%) 6.4055 (%) 2.0882 (%)
frequency error

Bias term 0.00036183 0.0015622 0.0033455 0.00092295
error

Operation time 0.446 0.53067 0.715 0.089425
interval (s)

The experimental data recorded in this case was the velocity
of the tip measured with the LDV.

The results obtained during the estimation of the harmonics
are shown in Fig. 7 and in Fig. 8. These figures show that,
when the proposed method (shown in Fig. 7) is used, only
the first harmonic can be estimated. Since the frequency of
the excitation signal is situated between the first two natural
modes of vibration, the proposed estimator only ”sees” the
first natural mode of vibration and the excitation signal. Note
that, even considering this limitation, the results obtained are
quite accurate (see Table V).

The velocity measures do not have any offset. The algebraic
framework allows estimators to be developed for signals
with more than two modes without any offset (e.g. [28]).
The estimator of three modes without any offset shown in
the Appendix has been applied to the data recorded in this
experiment. This estimator identifies the first two modes of
vibration and the excitation signal very accurately, as Fig. 8
shows.

We should mention that, in this experiment, the last esti-
mator performed well, since the amplitudes of the third and
fourth vibration modes of the beam were significantly smaller
than the amplitudes of the two lowest vibration modes and the
forced oscillation. Note that the algorithm proposed throughout
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Fig. 7. Estimation of the frequencies under forced vibration. Proposed method
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Fig. 8. Estimation of the frequencies under forced vibration. Three harmonics
estimator

the article is designed for biased signals, but it can also be
applied to unbiased signals, as Fig. 7 shows.

The parameters of the errors produced in the estimation of
the offset and the operation time intervals are shown in Table
V.

VI. CONCLUSIONS

A flexible beam has been considered as a representative
model for a wide number of lightweight engineering structures,
and a mechatronic system composed of a flexible beam
instrumented with an LDV and strain gauges has been used
as an experimental platform. The measures gathered using the
LDV at the tip of the beam or the measures from strain gauges
at the base of the beam have been used as analysis signals. The
time-varying parameters of these signals (composed of two
harmonics and a bias term) have been quickly and accurately
estimated by means of an algebraic approach.

Although the proposed algorithm has been designed to work
with signals with constant parameters (frequencies, ampli-
tudes, initial phases and offset), the feature of the fast con-
vergence of the estimator that has been achieved - estimation
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TABLE V
CHARACTERISTICS OF THE ERRORS PRODUCED IN THE ESTIMATIONS AND
OPERATION TIME INTERVAL. WHEN THE PROPOSSED ALGORITHM IS USED
(UPPER TABLE), AND WHEN THE THREE HARMONICS EXTRAPOLATION IS

USED (LOWER TABLE)

Min. value Mean value Max. value Standard
deviation

1st harmonic 0.4016 (%) 6.0794 (%) 15.4199 (%) 4.3955(%)
frequency error

Excitation 0.2205 (%) 3.6256 (%) 9.8176 (%) 3.1030(%)
signal error

Operation time 1.000 1.000 1.000 0.000
interval (s)

Min. value Mean value Max. value Standard
deviation

1st harmonic 0.9344 (%) 2.5379 (%) 5.6893 (%) 1.3154(%)
frequency error

2nd harmonic 0.1905 (%) 0.9718 (%) 2.1289 (%) 0.6666 (%)
frequency error

Excitation 0.0038 (%) 0.2088 (%) 0.6418 (%) 0.2004 (%)
signal error

Operation time 0.9060 0.9958 1.000 0.0253
interval (s)

takes less than one period of the first harmonic of the signal
- allows this algorithm to be used in several applications that
involve time-varying parameters. These applications involved
the real time implementation of our estimator, and were
studied in Section V. It should be noted that these applications
cannot be dealt with by the other algorithms presented in
the Introduction, which were also developed for the real time
estimation of harmonics, since only yield frequency estimates
and are very slow as regards tracking the varying parameters,
and are not therefore practical. This claim was developed and
justified in a previous article [24]. These estimators have not
therefore been considered in the study presented herein.

The first real time application consisted of estimating con-
stant frequencies and offset, and time-varying amplitudes of
the first and second modes. Comparison between our real time
estimator and the modified Prony’s method, which is a batch
method, showed a good tracking of these amplitudes despite
the fact that the algorithm had to estimate harmonic parameters
from a signal whose mode amplitudes continuously varied
throughout each operation time interval.

The estimator was then applied to signals that undergo
sudden changes in their frequencies and in their offset. Ex-
perimental results also showed a good tracking of the varying
parameters in both cases, but the estimation provided in the
operation time interval in which the sudden change occurred
was erroneous. However, the algorithm yielded an accurate
estimation in the following step.

In all the tests, the operation time interval of the algorithm
proved to be quite stable: with a mean value close to but of
less than 0.7 s and a standard deviation lower than 0.14 (from
Tables II, III and IV).

The proposed algorithm can consequently be used to esti-
mate the amplitudes and frequencies of the first and second

vibration modes of a flexible beam, in addition to the offset
value, and is robust to: 1) unmodelled higher vibration modes,
2) high frequency noise, 3) offset, and 4) time-varying pa-
rameters. This estimator is therefore particularly suitable for
the real time tracking of time-varying parameters from data
obtained by sensors based on different technologies.

APPENDIX
ALGEBRAIC ESTIMATOR FOR A THREE FREQUENCY SIGNAL

The methodology proposed in this article can be easily
generalized to signals composed of three frequencies without
offset:

x(t) = A1sin(ω1t+φ1)+A2sin(ω2t+φ2)+A3sin(ω3t+φ3)
(27)

The equation used to estimate the unknown frequencies is
therefore:

 X
Y
Z

 =

∫ tf

ti

 η(τ)
β(τ)
ξ(τ)

 · [ η(τ) β(τ) ξ(τ)
]
dτ

−1

·
∫ tf

ti

 η(τ)
β(τ)
ξ(τ)

 q(τ)dτ (28)

where X, Y, and Z are:

X = ω2
1 + ω2

2 + ω2
3 ,

Y = ω2
1ω

2
2 + ω2

1ω
2
3 + ω2

2ω
2
3 ,

Z = ω2
1ω

2
2ω

2
3

(29)

and where η(t), β(t), ξ(t), and q(t) can be calculated using
the following time-varying linear unstable filters:

q(t) = −t6x(t)− z1 β = z13

ż1 = z2 − 36t5x(t) ż13 = z14

ż2 = z3 + 450t4x(t) ż14 = z15

ż3 = z4 − 2400t3x(t) ż15 = z16

ż4 = z5 + 5400t2x(t) ż16 = z17 + t6x(t)

ż5 = z6 − 4320tx(t) ż17 = z18 − 12t5x(t)

ż6 = 720x(t) ż18 = 30t4x(t)

η = z7 ξ = z19

ż7 = z8 ż19 = z20

ż8 = z9 ż20 = z21 + t6x(t)

ż9 = z10 ż21 = z22 − 24t5x(t)

ż10 = z11 ż22 = z23 + 180t4x(t)

ż11 = z12 ż23 = z24 − 480t3x(t)

ż12 = t6x(t) ż24 = 360t2x(t) (30)
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