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Resumen

Mathematical models of tumor growth, response to stereotactic radiosurgery and
CAR T cell immunotherapy

Esta tesis exploró el uso de modelos matemáticos como herramientas para facili-
tar la comprensión de algunos de los procesos dinámicos del cáncer, desde la evolu-
ción de la enfermedad hasta su respuesta a terapias. El estudio se centró en tres
temas clínicamente importantes: el crecimiento tumoral macroscópico, la respuesta
tumoral a la radiocirugía estereotáctica y la respuesta del cáncer a la inmunoterapia
con células CAR T.

El crecimiento tumoral es el resultado de la interacción de procesos biológicos
complejos entre una gran cantidad de células individuales en un entorno tumoral
cambiante. Utilizando un conjunto de datos recopilados de tumores no tratados
de diferentes histologías, exploramos la dinámica que rige el crecimiento tumoral a
nivel macroscópico y su relación con las leyes de escala universales en los cánceres
humanos.

Después de estudiar el crecimiento de las metástasis cerebrales (BM) no tratadas,
centramos nuestro estudio en las metástasis cerebrales tratadas. El tratamiento de
los pacientes con BM que tienen una enfermedad extracraneal bien controlada y
una pequeña cantidad de lesiones consiste en dosis localizadas de radiación (radio-
cirugía estereotáctica). Estudiamos el efecto de esta terapia sobre la dinámica volu-
métrica de la enfermedad y sus particularidades en presencia del tipo de respuestas
inflamatorias comúnmente asociada a este tratamiento.

Finalmente, estudiamos terapias basadas en células CAR T. Estas terapias han
logrado un éxito sustancial contra diferentes neoplasias hematológicas y se está in-
vestigando su uso en tumores sólidos. En esta tesis, se desarrollaron y estudiaron
teórica y numéricamente una variedad de modelos matemáticos de ecuaciones difer-
enciales ordinarias para comprender esta terapia y proponer nuevos enfoques para
su aplicación.

HTTPS://WWW.UCLM.ES
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Abstract

Mathematical models of tumor growth, response to stereotactic radiosurgery and
CAR T cell immunotherapy

This thesis explored the use of mathematical models as tools to facilitate un-
derstanding of some of the dynamic processes in cancer, from the evolution of the
disease to its response to therapies. The study focused on three clinically important
subjects: macroscopic tumor growth, tumor response to stereotactic radiosurgery
and cancer response to CAR T cell immunotherapy.

Tumor growth is the result of the interplay of complex biological processes be-
tween an enormous amount of individual cells in a changing tumor environment.
Using a valuable dataset collected from untreated tumors of different histologies,
we explored the dynamics that govern tumor growth at the macroscopic level and
its relationship with universal scaling laws in human cancers.

After describing the growth of untreated brain metastases (BM), we focused
our study on treated brain metastases. Treatment of BM patients who have well-
controlled extracranial disease and a small number of lesions consists of localized
doses of radiation (stereotactic radiosurgery). We studied the effect of this therapy
on the volumetric dynamics of the disease and its particularities in the presence of
the inflammatory responses type commonly associated with this treatment.

Finally, we studied CAR-T cell-based therapies. These therapies have achieved
substantial success against different hematological malignancies and their use in
solid tumors is being investigated. In this thesis, a variety of mathematical mod-
els of ordinary differential equations were developed and studied theoretically and
numerically to understand this novel therapy and propose new approaches for its
use.
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Chapter 1

Introduction

1.1 Cancer

Cancer ranks as a leading cause of death and an important barrier to increasing life
expectancy in every country of the world (Bray et al., 2021). According to estimates
from the World Health Organization (WHO) in 2019 (WHO, 2020) cancer is the first
or second leading cause of death before the age of 70 years in 112 of 183 countries
and ranks third or fourth in a further 23 countries. Worldwide, an estimated 19.3
million new cancer cases and almost 10.0 million cancer deaths occurred in 2020
(Sung et al., 2021). Overall, the burden of cancer incidence and mortality is rapidly
growing worldwide; this reflects both aging and growth of the population as well as
changes in the prevalence and distribution of the main risk factors for cancer, several
of which are associated with socioeconomic development.

Cancer is a large group of diseases that can start in almost any organ or tissue
of the body. It is caused by genetic alterations—that is, changes to genes that con-
trol the way our cells function, especially how they grow and divide. The genetic
changes that contribute to cancer tend to affect three main types of genes—proto-
oncogenes, tumor suppressor genes, and DNA repair genes. These changes are
sometimes called “drivers” of cancer.

Proto-oncogenes are involved in normal cell growth and division. When these
genes are altered they may become cancer-causing genes (or oncogenes), allowing
cells to grow and survive when they should not (Ewald and Ewald, 2012). Tumor
suppressor genes are also involved in controlling cell growth and division. Cells
with certain alterations in tumor suppressor genes may divide in an uncontrolled
manner. Finally, DNA repair genes are involved in fixing damaged DNA. Cells with
mutations in these genes tend to develop additional mutations in other genes and
changes in their chromosomes, such as duplications and deletions of chromosome
parts (Chakravarthi, Nepal, and Varambally, 2016). Together, these mutations may
cause the cells to become cancerous.

In addition, cancer cells are capable of infiltrating or penetrating normal tissues
and invade them. A cancer that has spread from the place where it first formed
to another place in the body is called metastatic cancer (Liu et al., 2017). Metastatic
cancer has the same name and the same type of cancer cells as the original or primary
cancer. Under a microscope, metastatic cancer cells generally look the same as cells
of the original cancer. Moreover, metastatic cancer cells and cells of the original
cancer usually have some molecular features in common, such as the presence of
specific chromosome changes.
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Hallmarks of cancer

Despite each cancer can be considered as a different disease, at the same time they
share some common traits that collectively dictate their behavior. The hallmarks
of cancer comprise biological capabilities acquired during the multi-step develop-
ment of human tumors. They include sustaining of proliferation signaling, evad-
ing growth suppressors, avoiding immune destruction, enabling replicative immor-
tality, tumor-promoting inflammation, activating invasion and metastasis, inducing
angiogenesis, genome instability and mutations, resisting cell death and deregulat-
ing cellular energy (Hanahan and Weinberg, 2011). Figure 1.1 shows a summary of
these characteristics.

FIGURE 1.1: The hallmarks of cancer. Figure adapted from Hanahan
and Weinberg, 2011. Created with BioRender.com.

A better understanding of these processes will lead to the development of more
effective and long-lasting therapies for human cancer.

1.2 Types of Cancer

Types of cancer are usually named for the organs or tissues where the cancers form.
Moreover, cancers also may be described by the type of cell that formed them. Here
are some categories of cancers that begin in specific types of cells:

• Carcinoma: This is the most common type of cancer. They are formed by
epithelial cells, which are the cells that cover the inside and outside surfaces of
the body.
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• Sarcoma: These are cancers that form in bone and soft tissues, including mus-
cle, fat, blood vessels, lymph vessels, and fibrous tissue (such as tendons and
ligaments).

• Leukemia: This is a cancer that arises in the bone marrow, which produces
blood cells.

• Lymphoma: This is a cancer originated in the glands or nodes of the lymphatic
system.

• Myeloma: This is a cancer originated in the plasma cells of bone marrow.

• Brain and spinal cord cancers: Cancer can start in the cells of the brain or
spinal cord. The majority of tumors arise in neuroepithelial tissue, the largest
category, that includes astrocytomas and ependymomas.

• Mixed types: Mixed cancers develop in two different types of cell from one
category or multiple categories.

Due to its importance for the understanding of the studies developed in this
thesis, we will deepen into two specific types: brain cancers and leukemias. Their
main characteristics will be described in detail below.

1.2.1 Brain cancers

A brain tumor is an abnormal growth of tissue in the brain or central spine that can
disrupt proper brain function. There are two general groups of tumors based on
where the tumor cells originated:

• Primary: Tumors that start in cells of the brain are called primary brain tumors.
Primary brain tumors may spread to other parts of the brain or to the spine,
but rarely to other organs.

• Metastatic: Metastatic or secondary brain tumors begin in another part of the
body and then spread to the brain. These tumors are more common than pri-
mary brain tumors and are named by the location in which they begin.

Benign brain tumors originate from cells within or surrounding the brain, do not
contain cancer cells, grow slowly, and typically have clear borders that do not spread
into other tissue. Malignant brain tumors originate from cancer cells. They are con-
sidered to be life threatening because they grow rapidly and invade surrounding
brain tissue.

All types of brain tumors may produce symptoms that vary depending on the
size of the tumor and the part of the brain that is involved. Where symptoms exist,
they may include headaches, seizures, problems with vision, vomiting and mental
changes. Other symptoms may include difficulty walking, speaking, with sensa-
tions, or unconsciousness.

Primary brain tumors

Primary brain tumors are a group of heterogeneous tumors that arise from cells
within the Central Nervous System (CNS). Malignant primary brain tumors are one
of the leading causes of cancer mortality in children and young adults, with few
therapeutic options (Ostrom et al., 2020). In adults, glioblastomas, the most common
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primary brain tumors, remain uniformly fatal, with a median survival of less than 21
months, despite surgical resection, targeted radiation therapy, high-dose chemother-
apy, and novel approaches such as tumor treatment fields.

Glioblastoma (GBM) has a fast growth and a diffusive profile. Consequently,
one of the characteristics of this tumor is the presence of an inner necrotic area. This
is one of the most aggressive tumors, which also embodies intratumor heterogene-
ity and improved phenotypic adaptability (Celiku, Gilbert, and Lavi, 2019). The
current standard therapy, defined by Stupp et al., 2005, includes neurosurgery and
subsequent doses of radiotherapy in combination with the chemotherapeutic agent
temozolomide, to kill the remaining cells. However, a cure for glioblastoma is un-
likely, and the tumor usually reappears over a period of months. New therapies,
such as antiangiogenic drugs, have failed to improve survival and, although there
are many ongoing clinical trials testing new immune drugs, the future is yet not
bright for this cancer.

Brain metastases

Brain metastases (BMs) are cancer cells that have spread to the brain from tumors in
other organs in the body. A substantial number, between 10% - 35% of adult cancer
patients, develop BMs (Fox et al., 2011). BMs are a major cancer-related complica-
tion and are ten times more common than malignant primary brain tumors. The
incidence of BMs is rising because improved systemic therapies control systemic
disease and prolong survival but cross the blood–brain barrier (the highly selective
membrane barrier that separates the circulating blood from the brain) too poorly to
be able to control BMs. The most common primary tumors that metastasize to the
brain, in order of incidence, are non-small cell lung cancer (NSCLC), small cell lung
cancer (SCLC), melanoma, breast cancer, and kidney cancer.

Figure 1.2 shows a schematic representation of the main stages of brain coloniza-
tion by cancer cells in the case of metastases from lung cancer, but the characteriza-
tion can be extended for any other primary tumor.

The treatment of BM patients who have well-controlled extracranial disease and
three or fewer measurable lesions consists typically of high localized doses of radi-
ation (Stereotactic Radio Surgery- SRS) on the visible lesions, and sometimes whole
brain radiotherapy (WBRT) to target potentially occult BMs. This therapeutic ap-
proach allows metastatic lesions to be controlled in many, but not all BM patients.
The median survival for patients with brain metastases has improved over the years,
but varies by subset: lung cancer, 12 months; breast cancer, 16 months; melanoma,
10 months; gastrointestinal cancer, 8 months; and renal cancer, 12 months (Sperduto
et al., 2020).

Blood Brain Barrier (BBB) structure

The blood–brain barrier (BBB) is a diffusion barrier, which impedes influx of most
compounds from blood to brain. Three cellular elements of the brain microvascu-
lature compose the BBB—endothelial cells, astrocyte end-feet, and pericytes (PCs)
(Ballabh, Braun, and Nedergaard, 2004). Tight junctions (TJs), present between the
cerebral endothelial cells, form a diffusion barrier, which selectively excludes most
blood-borne substances from entering the brain. Figure 1.2 shows some of the ele-
ments within the composition of the BBB. The separation of the blood and brain is
further enhanced by the absence of the lymphatic system from the central nervous
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FIGURE 1.2: A schematic representation of the main stages of metas-
tasis to the brain Cancer cells from primary lesions invade into sur-
rounding tissues, intravasate into the circulatory system and survive
during hematogenous transit. Metastatic cells extravasate through
vascular walls into the brain parenchyma. At the metastatic niche
cancer cells proliferate, form colonies, and the subsequent prolifera-
tion of cells leads to clinically detectable metastatic lesions. Created

with BioRender.com.

system preventing macromolecules from entering the brain by passive transport,
thereby creating an immunologically distinct space.

However, these same features also hinder the delivery of systemic therapies into
brain tumors. The BBB is disrupted during tumor progression and is then referred
to as the blood–tumor barrier (BTB). Although the BTB is more permeable than the
BBB, its heterogeneous permeability to small and large molecules as well as het-
erogeneous perfusion contributes to suboptimal drug accumulation in brain tumors
(Arvanitis, Ferraro, and Jain, 2019). As such, the BBB is one of the rate-limiting fac-
tors in clinically effective therapy.

The BBB/BTB harbors considerable structural and functional heterogeneity within
the microenvironment of the same lesion and across different cancer subtypes. These
findings highlight the need to optimize and define tumor- specific therapeutic win-
dows to disrupt CNS barriers and increase drug efficacy in the CNS with minimal
side effects.

1.2.2 Leukemias

Leukemia is a group of blood cancers caused by an increase in abnormal cells and
begins in the tissues that make up blood, such as the bone marrow. The incidence
of leukemia varies by pathological types and among different populations. Glob-
ally, the number of newly diagnosed leukemia cases increased from 354.5 thousand
in 1990 to 518.5 thousand in 2017 and this last number has been the trend in recent
years, where almost half a million new cases have been diagnosed of leukemia per



6 Chapter 1. Introduction

year (Dong et al., 2020). The 5-year survival is about 65%. They are the most com-
mon cancer types in children from birth to 14 years of age and account for around 3%
of all cancers diagnosed in developed countries. Survival in children is higher and
improving, yet blood cancer remains the leading cause of cancer death in pediatric
patients.

In blood cancers, the normal development process, starting from stem cells and
leading to a hierarchy of more differentiated cells, is interrupted by the uncontrolled
abnormal growth of specific types of blood cell. Figure 1.3 A shows the process of
differentiation of blood cells from stem cells in the case of cells derived from lym-
phoids. At the top of the hierarchy governing normal hematopoietic there are the
hematopoietic stem cells (HSCs). Hematopoietic stem cells can give rise to lym-
phoid (or myeloid). Lymphoid progenitors can generate either lymphoblasts, which
will become B or T lymphocytes, or natural killer cells. Similarly, myeloid progeni-
tors can also lead to a wide variety of cells, including erythrocytes, thrombocytes, or
other cells of the non-specific immune system (Wang and Dick, 2005).

FIGURE 1.3: A) Differentiation tree for blood cell. B) Represen-
tation of the appearance of blood in the presence or absence of

leukemic cells. Created with BioRender.com.

In this framework, the type of cell that becomes cancerous determines the spe-
cific type of blood cancer. For instance, leukemia can be either myeloid (or myeloge-
nous), or lymphoid (or lymphoblastic, or lymphocytic). This divides leukemias into
lymphoblastic or lymphocytic leukemias and myeloid or myelogenous leukemias.
Furthermore, they are also divided into its acute and chronic forms. Thus, there are
four different classes of leukemia: acute lymphoblastic leukemia (ALL), chronic lym-
phocytic leukemia (CLL), acute myelogenous leukemia (AML) and chronic myeloge-
nous leukemia (CML).
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Leukemia is generally diagnosed by repeated complete blood counts. The results
of molecular or biochemical analysis and so-called flow cytometry techniques will
determine the specific the type of leukemia. Figure 1.3 B shows a representation of
how the blood looks in the presence or not of leukemic cells.

1.3 Medical imaging

Medical imaging refers to several different technologies that are used to view the hu-
man body in order to diagnose, monitor, or treat medical conditions. Imaging may
also be used to guide biopsies and other surgical procedures. They have become a
major tool since it enables rapid diagnosis with visualization and quantitative as-
sessment. There are many different types of images, some of the most used in cancer
are computed tomography (CT), magnetic resonance imaging (MRI) and positron
emission tomography (PET). These techniques produce very large amounts of data.
The Digital Imaging and Communication in Medicine (DICOM) Standard is used
globally to store, exchange, and transmit medical images such as CT, MRI and oth-
ers.

1.3.1 Computed Tomography Imaging

In a CT scan, an X-ray beam circulates around specific part of the body and a series of
images captured from various angles. The computer uses this information to create
a series of two-dimensional (2D) cross-sectional image of the organ and combines
them to make a three-dimensional (3D) image, which provides a better view of the
organs. Positron emission tomography (PET) is a variant of CT where a contrast
agents is injected into the body in order to highlight abnormal regions. CT scans are
recommended in many conditions such as hemorrhages, blood clots or cancer.

A CT scan can find cancer and show things like a tumor’s shape and size. CT
scans are most often an outpatient procedure. The scan is painless and takes about 10
to 30 minutes. CT scans show a slice, or cross-section, of the body. The image shows
bones, organs, and soft tissues more clearly than standard x-rays. An example of a
lung CT scan for a stage I carcinoma tumor is shown in the Figure 1.4 A.

FIGURE 1.4: Medical imaging example. A) Lung CT scan show-
ing a carcinoma stage I tumor. B) T1-weighted MRI scan showing

a metastatic lesion.
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1.3.2 Magnetic Resonance Imaging

MRI is a radiation free and therefore a safer imaging technique than CT and pro-
vides finer details of the brain, spinal cord and vascular anatomy due to its good
contrast. Axial, sagittal, and coronal are the basic planes of MRI to visualize the
brain’s anatomy. The most commonly used MRI sequences for brain analysis are Tl-
weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR). Tl-weighted
scan provides gray and white matter contrast. T2-weighted is sensitive to water con-
tent and therefore well suited to diseases where the water accumulates inside brain
tissues. The third sequence is fluid attenuated inversion recovery (FLAIR) which
is similar to T2-weighted image except for its acquisition protocol. FLAIR is used
in pathology to distinguish between cerebrospinal fluid (CSF) and brain abnormal-
ities. FLAIR can locate an edema region from CSF by suppressing free water sig-
nals, and hence periventricular hyperintense lesions are clearly visible in the images
(Ellingson et al., 2014). Figure 1.4 shows an example of Tl-weighted MRI for a brain
metastasis.

1.4 Cancer treatments

The main goal of cancer treatment is to achieve a cure for cancer, although this is
sometimes not possible. If a cure is not possible, treatments may be used to shrink
cancer or slow its growth to allow to live without symptoms for as long as possible.
There are many types of cancer treatments, using one treatment or another depends
on the type of cancer and the progression of the disease. Some people with cancer
get only one treatment, but in most cases they receive a combination of treatments.
Some of the most common treatments are:

• Surgery: It is a procedure in which a surgeon removes cancer either completely
or partially.

• Chemotherapy: It is the use of any drug to kill cancer cells.

• Radiotherapy: It uses high doses of radiation to kill cancer cells and shrink
tumors.

• Immunotherapy: It is a type of cancer treatment that helps immune system
fight cancer.

• Targeted therapy: It is a type of cancer treatment that targets the changes in
cancer cells that help them grow, divide, and spread.

Other possible treatments are hormone therapy, stem cell transplant and preci-
sion medicine. The following will go into detail in the description of two specific
treatments. These are stereotactic radiosurgery (SRS) treatment and chimeric anti-
gen receptor (CAR) T cell therapy, which have been part of the object of study in this
thesis.

1.4.1 Stereotactic radiosurgery

Stereotactic radiosurgery, commonly called radiosurgery, is the medical procedure of
radiotherapy in which fine beams of radiation are administered, generated in mega-
voltage units (cyclotron, the Gamma Knife and the linear accelerator), with which
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it is possible to irradiate high and precisely localized doses, in a specific anatomi-
cal area or structure, avoiding the administration of toxic doses to adjacent tissues
(Shepard et al., 2008). The closer the prescription dose is matched to the treated
target and the steeper the dose gradient around the target, the less normal tissue
is irradiated. For the case of brain tumors, SRS was introduced as an alternative
treatment option to conventional whole-brain radiotherapy (WBRT).

Similar to conventional radiotherapy, this therapy works by radiation-induced
DNA damage by ions and free radicals. Figure 1.5 shows a summery of the death
mechanisms caused by radiation. The vascular endothelium is the primary target
with contribution from endothelial-cell apoptosis, microvascular dysfunction, and
T-cell response. Histologically, a brisk inflammatory response and severe vascu-
lopathy occur in lesions that respond well to radiation (Joiner and Kogel, 2018).

FIGURE 1.5: Schematic of cell death following irradiation. Figure
adapted from Joiner and Kogel, 2018.

There are different devices in operation for stereotactic radiosurgery, which differ
in both the type of radiation delivered and the method of focusing the beams to the
target. SRS uses multiple, convergent beams of high energy x-rays, gamma rays, or
protons, delivered to a discrete, radiographically-defined, treatment volume (Shep-
ard et al., 2008). The steep radiation fall-off into surrounding tissues limits toxicity
and side effects and maintains safety.

Radiation dose is measured in gray (Gy), which is the absorption of one joule of
radiation energy per kilogram of matter. The SRS dose is adjusted to be biologically
equivalent to five to six weeks of daily conventional radiation therapy. The dose is
delivered in either a single session or two to five sessions of fractionated therapy
over days.

Stereotactic radiosurgery is appropriate for patients with brain metastasis and
some primary tumors, including meningiomas, vestibular schwannomas, pituitary
tumors, and others, that are resistant to conventional WBRT. It is the treatment of
choice for patients with a small number of cerebral metastases that are not amenable
to resection (Niranjan et al., 2019).

1.4.2 CAR T cell therapy

Cancer immunotherapy approaches use components of a patient’s own immune
system to selectively target cancer cells. Immunotherapies are already an effective
treatment option for several cancers due to their selectivity, long-lasting effects, and
benefits for overall survival (Koury et al., 2018).
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CAR T cell therapy represents a major step in personalized cancer treatment, and
is the most successful type of immunotherapy. This therapy is predicated on the use
of gene-transfer technology to instruct T lymphocytes to recognize and kill cancer
cells. CARs are synthetic receptors that mediate antigen recognition, T cell activa-
tion, and co-stimulation to increase T cell functionality and persistence. For the clin-
ical application, the patient’s T cells are obtained, genetically engineered ex vivo to
express the synthetic receptor, expanded and infused back into the patient (Sadelain,
2015). Figure 1.6 shows an overview of CAR T cell therapy.

FIGURE 1.6: CAR T cell therapy: an overview. Created with BioRen-
der.com.

CARs are recombinant receptors that typically target surface molecules (Feins
et al., 2019). CARs are typically composed of an extracellular antigen-recognition
moiety that is linked, via spacer/hinge and transmembrane domains, to an intracel-
lular signaling domain that can include costimulatory domains and T-cell activation
moieties. CARs recognize unprocessed antigens independently of their expression
of major histocompatibility antigens, which is unlike the physiologic T-cell recep-
tors (TCRs). Hence, CAR T-cells can circumvent some of the major mechanisms by
which tumors avoid major histocompatibility class.

Clinical trials have shown promising results in end-stage patients with B-cell
malignancies due to their expression of the CD19 protein (Sadelain, 2017). CAR T
cells engineered to recognize this antigen have led to an early clinical response of
up to 92% in B-ALL patients (Miliotou and Papadopoulou, 2018). Good results have
been reported for large B-cell lymphomas and multiple myelomas. These successes
have led to the approval of CAR T therapies for use against CD19 for treatment of
B-ALL and diffuse large B-cell lymphomas (Sadelain, 2017).

CAR T-related toxicities are cytokine release syndrome (CRS), due to the release
of cytokines during CAR T cell action, and immune effector-cell-associated neu-
rotoxicity syndrome (ICANS). CRS symptoms including hypotension, pulmonary
oedema, multiorgan failure, and even death, are now better controlled using IL-6
inhibitor tocilizumab (Neelapu et al., 2018).
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1.5 Mathematical modeling in cancer

Mathematics plays an increasingly prominent role in cancer research, with applica-
tions ranging from theoretical studies to clinical trials designed using mathematical
models. As such, mathematical oncology – defined as the use of mathematics in can-
cer research – has gained momentum in recent years with the rapid accumulation of
clinical data and applications of mathematical methodologies.

Through mathematics, modeling and simulation, primarily through the use of
patient-specific clinical data, the personalization of medicine is achieved.

Mathematical models—whose role is to describe, quantify, and predict multi-
faceted behaviors—have the potential to help in finding optimal administration pro-
tocols, provide a deeper understanding of the dynamics, help in the design of clinical
trials and more (Altrock, Liu, and Michor, 2015; Pérez-García et al., 2016). Mathe-
matical models (also called in silico models) have proved useful for deriving a de-
tailed understanding of mechanisms and processes in cancer. Data sets and biologi-
cal results can be perfectly complemented with analysis coming from mathematical
models. When there are doubts about the processes that are behind of the obtained
results, mathematical models might be useful to clarify the situation.

Another characteristic that makes mathematical models powerful, is to establish
the relative importance of different processes in the final result. The relevance of
each process can be estimated performing computational simulations with different
parameters values and comparing the results. Performing laboratory experiments
to study the relevance of the different process is normally much more difficult to do.
In addition, mathematical simulations are less time-consuming and cheaper than
laboratory experiments. Once a reasonable model is available, computer simulations
can be quickly carried out to analyze the outcome of the system under different
initial conditions.

There are countless mathematical models designed to describe biological pro-
cesses related to cancer, which can be grouped according to similar characteristics.
Systems that are deterministic (exactly or approximately) can be described by or-
dinary differential equations (ODEs), partial differential equations or logical deter-
ministic cellular automata. The main characteristic of ODEs is that they have one
independent variable. For dynamical systems, the independent variable is time. De-
pendent variables can be the volume of a tumor, the fraction of a genetic alteration
in a population or the chance of finding a receptor in a certain state at a certain time.
ODEs can describe systems of few and many dimensions, and allow chaotic and
complex behavior. For dynamic systems in which the quantities of interest depend
on more than one independent variable (for example, time and space), partial differ-
ential equations (PDEs) are used. This is beneficial especially when descriptions in
higher dimensions are needed.

Stochastic models can describe the evolution of interacting cell populations, in
which the relevant events for each individual (e.g. birth and death) occur randomly.
In the limit of large cell-populations, these models are approximated by determinis-
tic kinetic rate models, which are widely used in the modeling of cell populations.
Each state of the system is considered a random variable with a certain probabil-
ity distribution. From a given initial condition, many different outputs can be ob-
tained. Non-Markovian processes, jump Markovian processes or continuous Marko-
vian processes belongs to this group, which are mathematically modeled with a gen-
eralized master equation, a master equation and stochastic-differential equation re-
spectively (Fedotov, Iomin, and Ryashko, 2011; Gupta et al., 2011; Durrett, 2015).
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Hybrid models combine spatial reaction–diffusion (such as growth–consumption
dynamics on a continuous scale) with discrete cellular dynamics (for example, on a
lattice), which describe cell growth and motility. Hybrid models are among the most
sophisticated approaches in mathematical cancer modeling (Rejniak and Anderson,
2011; Macklin et al., 2009).

Although important advances have been made in the quantitative description
of cancer progression and treatment dynamics, several important issues remain to
be resolved. For example, quantitative approaches are needed to help explain the
response of treatment to immunotherapies and to help identify patients who may
respond to such agents or who will experience life-threatening side effects. In addi-
tion, the best way to combine a specific immunotherapy agent with chemotherapies,
targeted therapies or radiation could be explored.

Quantitative approaches to metastases are still relatively descriptive, mainly due
to the lack of detailed data from multiple sites in many patients. Indeed, as the abil-
ity of a model to predict the dynamics of the system depends on its parameterization,
it is essential to obtain accurate estimates of the parameters from clinical trials or in
vitro and/or in vivo model systems. Due to the paucity of such data, closer collab-
oration between mathematical modelers and experimental and clinical researchers
would be necessary.

In this thesis, we address some of the problems mentioned above, as recently
important issues in basic and clinical cancer research. Each problem was approached
with the most appropriate mathematical tools according to their particularities, in
our opinion. Deterministic mathematical models were developed in the form of
ordinary differential equations in the simplest possible way. A discrete stochastic
model was also developed for a better description of cell interactions and better
understanding of the spatial aspects present in solid tumors. Some of the research
presented were supported by real data, both human and mouse, thus achieving the
ideal nexus between mathematical modeling and cancer. In other cases this was
not possible, although the results of clinical studies and biological experiments were
taken into account both for the modeling itself and for the evaluation of the veracity
of the results obtained.
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Part I

Solid Tumor Growth and Response
to Stereotactic Radiosurgery
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Chapter 2

Macroscopic tumor growth

2.1 Introduction

Tumor growth is a highly dynamic process that depends on many biological pro-
cesses, such as the driving molecular alterations with the associated heterogeneity,
angiogenesis, the action of the immune system, the role of tumor microenvironment
and surrounding healthy structures, the effect of treatments on the different tumor
subpopulations, etc. The complexity of tumor growth dynamics represents an ob-
stacle in attempts to study and model tumor response to available therapeutics, and
ultimately hinders our efforts towards personalized cancer therapy.

The study of effective mathematical laws to describe the dynamics of tumor
growth has been a topic of interest in mathematical oncology. Numerous mathe-
matical models of cancerous tissue growth at different levels, from gene expression
to the phenomenological description of macroscopic tumor development, have been
formulated. The data that support these models come from patient-derived cell lines
cultured in vitro or else from either allotransplantation of murine cells into syngeneic
immunocompetent inbred mice or from xenotransplantation of patient-derived cells
into immunocompromised mice (Kuang, Nagy, and S.E.Eikenberry, 2016; Benzekry
et al., 2014; Jarrett et al., 2018; Gerlee, 2013; West and Newton, 2013). In these cases
many data are available but these experimental models do not have all of the bio-
logical complexities of human tumors described above.

Describing cancer growth in humans is a more complex problem that presents
several challenges. In first place, the growth of real cancers is an emergent phe-
nomenon resulting of the combination of different biological mechanisms having
different weights in different tumor stages. It is often not clear a prior which el-
ements of that complexity are to be retained to account for the growth dynamics.
Furthermore, modeling human tumor growth is a clinic challenging due to there is
an intrinsic difficulty related to the lack of data. It may seem surprising that data
availability might be a problem for such a widespread disease. Macroscopic tumor
growth data are typically obtained from medical imaging, that is performed rou-
tinely for most cancer patients in order to monitor the disease dynamics.

The problem is that after detection and diagnosis therapeutic actions are promptly
performed when appropriate, what affects the tumor natural history. Untreated pa-
tient data are scarce since typically this corresponds either to benign tumors having
a very favorable prognosis or to terminal patients that are not followed by imaging.
These facts have limited the studies of tumor growth laws in humans to using only
two time points, what allows to obtain information on the rates of tumor growth but
not on the functional form (Stensjøen et al., 2015; Talkington and Durrett, 2015).

In this work we wanted to study the macroscopic dynamics of tumor growth. For
that, we collected data of different cancer types imaged at diagnosis before receiving
any treatment directed at the tumor in question. An extensive search allowed us to
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obtain several datasets of patients bearing tumors being either malignant initially of
becoming malignant during the time course of the disease. For a better description
of macroscopic tumor growth, more than two image points of follow-up data were
used. Despite the limitations using animal models to measure and predict tumor
growth dynamics, we also included data provided by two animal models because
their close relationship to their human counterparts. These data sets were used to
complement the results obtained in humans, providing robustness to the study.

2.2 Methods

2.2.1 Patients and image acquisition

Several patient datasets were used for our study. The first was a set of brain metas-
tases in which one of the lesions was either below target definition or left without
therapy for medical reasons. The second set included low-grade gliomas that un-
derwent surgery and received no other treatment for long times but whose evolution
was monitored by MRI until their transformation into high-grade gliomas. The third
was from patients enrolled in a lung cancer screening program. After detection of
lung nodules with no signs of malignancy, they were followed up by low-dose CT
scans. Many of these tumors had growth that accelerated up to a point at which
further therapeutic actions were taken. Finally, we included a subset of petroclival
meningiomas that showed signs of atypical behavior (cases 5, 6, 9, 11 in Figure 7 and
cases 14, 18 in Figure 8 of Havenbergh et al., 2003).

The main characteristics and inclusion criteria of the patients analyzed are de-
scribed below.

Brain metastasis patients

Patients were participants in the METMATH (Metastasis and mathematics) study, a
retrospective multicentre and non-randomized study that was approved by the IRB
of the participating institutions. Five of the 200 patients analyzed were included in
the data set (one man, four women, age range 38–67 years, median 52 years). These
corresponded to patients diagnosed with a brain metastasis of a primary lung can-
cer with an untreated lesion based on three or more consecutive MRI studies before
treatment. Primary cancers included four NSCLC and one breast luminal b cancer.
A total of 16 imaging studies were included, with 3–4 studies per patient. The post-
contrast T1-weighted sequence was a gradient echo sequence using a 3D spoiled-
gradient recalled echo or a 3D fast-field echo after the intravenous administration
of a single dose of gadobenate dimeglumine (0.10 mmol kg−1), with a delay time of
6–8 min.

MRI studies were performed in the axial plane with a 1.5 T Siemens scanner, a 3
T Philips scanner or a 1 T Philips scanner. The imaging parameters were no gap, a
slice thickness of 1–1.6 mm, 0.438–0.575 mm xy resolutions and 0.8–1.3 mm spacing
between slices.

Low-grade glioma (LGG) patients

A total of 82 patients who were diagnosed with grade II gliomas (for whom astrocy-
toma, oligoastrocytoma or oligodendroglioma, according to the WHO 2007 classifi-
cation, was confirmed with biopsy or surgery) and followed at the Bern University
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Hospital between 1990 and 2013 were initially included in the study. The study was
approved by Kantonale Ethikkommission Bern.

From this patient population, we selected patients receiving either no treatment
or only surgery, for whom at least five post-surgery consecutive images showing
tumor growth were available. Six patients who were initially diagnosed with grade
II gliomas (4 astrocytomas and 2 oligodendrogliomas, age range 29–50 years, mean
37 years) were included. A total of 34 imaging studies were used, with 4–7 studies
(mean 6) per patient.

Lung cancer patients

The patients included were participants in the SCALAMATH (scaling laws and math-
ematical models in cancer) study. Five patients (three men, two women, age range
60–72 years, median 68 years) were included. Three of these patients were diag-
nosed with adenocarcinoma and two with squamous cell carcinomas. All of the
cancers were initially stage I tumors and progressed without treatment.

We drew scans from the database of follow-up screenings in the International
Early Lung Cancer Action Program between 2008 and 2019, which were performed
according to a common protocol (Henschke, 2019) using low-dose CT. Enrollment in
the study was limited to those aged 50 years or older, with a smoking history of at
least 10 pack-years, no previous cancer and general good health. Participants who
harbored a parenchymal solid or part-solid non-calcified nodule with at least three
or more follow-up CTs were identified according to criteria specified in the protocol.
A total of 22 imaging studies were used, with 3–6 studies per patient.

Thoracic CT scans used a 16-acquisition-channel multidetector CT scanner (Siem-
ens Emotion 16) with a maximum section collimation of 1 mm, 0.7 mm of spacing
between slices, a slice thickness of 1 mm and a 0.584–0.783 mm range in xy resolu-
tions. The CT scans were performed with 120 kVp and 30 mAs, with less than 1 s
tube rotation time. Contiguous images were reconstructed in the trans-axial plane
using a 1 mm thickness. Lung image sets were reconstructed with a high-frequency
algorithm, and mediastinal image sets were reconstructed with an intermediate fre-
quency algorithm.

The diagnosis of lung cancer was made by the histopathological examination of
needle core biopsy or resection specimens, or by the cytopathological examination
of bronchoscopic or needle aspiration biopsy samples. Resected tumors were clas-
sified based on the WHO classification of lung neoplasms. Adenocarcinomas were
classified according to the classification of lung adenocarcinoma sponsored by the
International Association for the Study of Lung Cancer, the American Thoracic So-
ciety and the European Respiratory Society. All of the lung cancer diagnoses were
reviewed centrally. The tumors were staged using the International Association for
the Study of Lung Cancer staging guidelines (Henschke, 2019).

Hamartoma patients

Included in our study were six patients (five men, one woman, age range 51–63
years, median 58 years) who were diagnosed with lung hamartomas with longitu-
dinal follow-up. These patients were participants in a retrospective study approved
by the Valencia Oncology Institute Foundation (IVO) specifically for the study of
the scaling laws. The imaging methods were the same as those for the previous
subgroup. A total of 46 imaging studies were used, with 5–12 studies (mean 8) per
patient.
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Atypical meningiomas

Finally, we included a subset of petroclival meningiomas that showed signs of atyp-
ical behavior (cases 5, 6, 9, 11 in Figure 7 and cases 14, 18 in Figure 8 of Havenbergh
et al., 2003). Patients were treated conservatively during a minimal period of 4 years
with regular clinical and radiological control examinations.

2.2.2 Image analysis

MRI image analysis

Brain metastasis T1-weighted images were collected in Digital Imaging and Com-
munication in Medicine (DICOM) format and analyzed. An experienced radiologist
revised and validated the tumor delineation.

T1-weighted images in DICOM files were imported into the scientific software
package Matlab (R2018b, The MathWorks). The tumor T1-weighted images were
placed manually in a 3D box and then semi-automatically delineated using a grey-
level threshold that was chosen to identify the metabolic tumor volume (MTV). Seg-
mentations were corrected manually slice by slice as in Pérez-Beteta et al., 2018.

For low-grade gliomas, T2/FLAIR MRI studies were used to define the tumor
volume. Radiological glioma growth was quantified by manual measurements of tu-
mor diameters on successive MRI studies (T2/FLAIR sequences). For older imaging
data that were available only as jpeg images, we used the ellipsoidal approximation
Pallud et al., 2006 to compute the tumor volume.

CT image analysis

The patients included were participants in the SCALAMATH study. CT images of
lung cancer nodules were obtained in DICOM format. An experienced radiologist
localized the lesion and then an image expert performed the segmentations follow-
ing the same methodology as for T1-weighted images.

2.2.3 Animal studies

The animal experiments were carried out in the National Cancer Research Center
(CNIO) and in the Carlos III-UFIEC Health Institute in Madrid, Spain. The experi-
ments were not carried out by the author of this thesis. Here, we explain in detail
the animal models and how the experimental data was obtained.

Animal studies with H2030-BrM3 cells

The human lung adenocarcinoma brain tropic model H2030-BrM (Nguyen et al.,
2009) was injected into the heart of nude mice in order to induce the formation of
brain metastasis from systemically disseminated cancer cells. Brain colonization and
growth of metastases were followed using non-invasive bioluminescence imaging
since BrM cells express luciferase. Upon administration of the substrate D-luciferin,
bioluminescence generated by cancer cells was measured over the course of the dis-
ease. The increase in photon flux values is a well established correlate of tumor
growth in vivo (Nguyen et al., 2009; Valiente et al., 2014).The experiments were per-
formed in accordance with a protocol approved by the CNIO, Instituto de Salud
Carlos III and Comunidad de Madrid Institutional Animal Care and Use Commit-
tee. Athymic nu/nu (Harlan) mice of 4-6 weeks of age were used. Brain coloniza-
tion assays were performed by injecting 100 µl PBS into the left ventricle containing



2.3. Mathematical model 19

100,000 cancer cells. Anesthetized mice (isofluorane) were injected retro-orbitally
with d-luciferin (150 mg/kg) and imaged with an IVIS Xenogen machine (Caliper
Life Sciences). Bioluminescence analysis was performed using Living Image soft-
ware, version 3. The absolute unit of radiance is photons/sec/cm2/steradian, and
refers to the photons per second of light that radiate from the mouse in a unit area
(1 cm2) and unit angle (1 steradian) (Zinn et al., 2008).

Mouse glioma xenografts

Primary glioma cells expressing the luciferase reporter gene into the brain of nude
mice were injected . One month after the injection, weekly monitoring animals is
started using IVIS Spectrum In vivo Imaging System. The Total Flux (in photons
per second) was measured to assess tumor growth. Animal care and experimen-
tal procedures were performed in accordance to the European Union and National
guidelines for the use of animals in research and were reviewed and approved by the
Research Ethics and Animal Welfare Committee at our institution (Instituto de Salud
Carlos III, Madrid) (PROEX 244/14). Stereotactically guided intracranial injections
in athymic nude Foxn1nu mice were performed by administering 1×105 L0627 cells
resuspended in 2 µl of culture media. The injections were made into the striatum
(coordinates: A-P, –0.5 mm; M-L, +2 mm; D-V, -3 mm; related to Bregma) using a
Hamilton syringe. One month after injection, monitoring of reporter expression in
tumors begins. For that, animals received and intraperitoneal injection of Luciferin
(Fisher) (150mg/Kg) and the Luciferase activity was visualized in an IVIS Spectrum
in vivo imaging system (Perkin Elmer).

2.3 Mathematical model

The proposed mathematical model is focused on the relationship between tumor
size and metabolism. We begin by considering the metabolic rate of a tumor to be
B ∝ Vβ, where V is the total volume occupied by viable cells and β > 0 is the scaling
exponent. Due to energy conservation, the temporal dynamics of tumor growth
is given by B = aV + b dV

dt , where the first and second right-hand terms represent
cell maintenance and proliferation, respectively. This model was first proposed by
Bertalanffy, 1957 and also later studied in West, Brown, and Enquist, 2001. The
resulting first-order differential equation describing the time variation of V = V(t)
can be written as

dV
dt

= −γV + αVβ, (2.1)

with an initial condition for the tumor volume at time t = t0, V(t0) = V0. Assuming
that most of the energy is used for cell biosynthesis, we may neglect the linear term
in Eq. (2.1) as far as there is net tumor growth and thus approximately write

dV
dt

= αVβ. (2.2)

When the value of β = 1 we are in the presence of an exponential volumetric
growth. Otherwise, the resulting ordinary differential equation can be solved in
closed form as

V(t) =
[
V1−β

0 + α(β− 1)(t− t0)
]1/(1−β)

, (2.3)
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where V0 is the volume at time t0. If β > 1 there is a finite time at which the
tumor ’blows up’, given by

tcrit = t0 + V1−β
0 / [α(β− 1)] . (2.4)

Note that in this case the Eq. 2.2 describes a super exponential (or super-linear)
growth, understanding this as a faster growth than the exponential (than a linear
function), i.e. limV→∞

αVβ

αV −→ ∞ for β > 1.
Whereas if β < 1 the Eq. 2.2 describes a volumetric growth slower than the expo-

nential one (sublinear growth). In particular, Kleiber observed the exponent β = 3/4
for the power law scale of metabolic rate and animal mass (B ∝ V3/4, assuming vol-
ume is proportional to body mass) (Niklas and Kutschera, 2015). Kleiber’s law is
considered one of the few quantitative laws in biology. West, Brown, and Enquist,
1997 proposed that the exponent found by Kleiber could be the result of principles
of minimal energy.

2.4 Results

2.4.1 Longitudinal tumor growth dynamics in humans

We fitted the longitudinal volumetric growth data for each patient using different
power-law models given by Eq. (2.2). First, we fitted the datasets with choice of
exponents β = 5/4 , 1 (exponential growth law) and 3/4 (size-limited Kleiber law,
West, Brown, and Enquist, 1997). Subsequently, we searched for the exponent that
minimized the mean square error (MSE) for all patients within each tumor type.

In all the examined cases, the existence of an explosive growth dynamics was
confirmed (see Figure 2.1 b,c,d,f). A comparison of the MSEs for the different expo-
nents and tumor types is shown in Figure 2.1 g. We also performed a least-squares
fitting to find α, β parameters for each patient and computed the mean and standard
deviation for patients of each histology. The results obtained were 1.493±0.0197
(BMs), 1.360±0.2922 (NSCLC), 1.466±0.269 (LGGs) and 1.690±0.452 (AMs) respec-
tively. Thus, exponents obtained using the two methodologies were compatible be-
tween them and above one.

We also collected longitudinal volumetric growth data from a group of patients
with lung hamartomas, the most frequent benign lung tumor type, and found a best
fit to Eq. (2.2) with β = 0.5± 0.2 (see Figure 2.1 e). Hence, not all human tumors man-
ifest an explosive growth. The last result corresponds to those obtained in previous
studies of the growth dynamics of untreated WHO (World Health Organization)
grade II gliomas (Mandonnet et al., 2003), petroclival meningiomas (Havenbergh et
al., 2003), and head and neck paragangliomas (Heesterman et al., 2003), in which
growth dynamics consistent with sublinear scaling were observed for slowly grow-
ing non-malignant tumors.

2.4.2 Longitudinal tumor growth dynamics in animal models

To determine whether animal models could also provide evidence of super expo-
nential tumor growth dynamics, our biomedical collaborators performed two ani-
mal models chosen because of their close relationship to their human counterparts.
First, the group of Manuel Valiente at CNIO (Madrid, Spain) injected the human
lung adenocarcinoma brain tropic model H2030-BrM (Nguyen et al., 2009) into the
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FIGURE 2.1: Explosive longitudinal volumetric dynamics of un-
treated malignant human tumors. a–f, Longitudinal volumetric data
for patients with untreated brain metastases (BMs, a,b), low-grade
gliomas (LGGs, c), NSCLCs (d), atypical meningiomas (AMs, f) and
lung hamartomas (LHs, e). Solid curves show the fits with the opti-
mal exponents (β values provided in each part) that give the small-
est MSEs. The longitudinal three-dimensional (3D) reconstruction of
a BM and representative axial slices highlighting tumor location at
three time points are displayed in a, together with the fitting curves
obtained for different exponents. MSE values for the five datasets and
exponents 0.75, 1 and 1.25 (taken as a reference), in comparison with
the optimal exponent, are shown in g. In b-f, the colors correspond to

different patients.

heart of nude mice in order to induce the formation of brain metastasis from sys-
temically disseminated cancer cells. The exponent best fitting the dynamics of the
brain metastasis measured using bioluminiscence, assuming a dynamics ruled by



22 Chapter 2. Macroscopic tumor growth

FIGURE 2.2: Two human cancer animal models display superlin-
ear growth dynamics. Group 1 (G1) data correspond to untreated
nude mice injected with the human lung adenocarcinoma brain tropic
model H2030-BrM (see methods). Group data (G2) correspond to pri-
mary glioma cells (L0627) expressing the luciferase reporter gene in-
jected into the brain of nude mice (see methods). Bioluminiscence
images for G1 for some mice are shown in panel A. Total tumor mass
growth curves for G1 showed superlinear dynamics with best fitting
exponent β = 1.25 (for G2 it was β = 1.3). (B, upper panel). Errors rela-
tive to best fit were found to be substantially smaller with the optimal
superlinear fits than for both the linear and sublinear fits (exponents

1 and 0.75 respectively) (B, lower panel).

Eq. (2.2), and data from all the mice was β = 1.3. In addition, the total tumor load in
the animals showed similar behavior, with β = 1.25 (see Figure 2.2). In this group,
some temporal instances were excluded from the fitting because tumor sizes greater
than the tumor capacity compatible with the animal’s life were reported (approxi-
mately 108 photons/sec/cm2/steradian).

In a second set of experiments, researchers at Instituto de Salud Carlos III (Madrid)
led by Pilar Sánchez Gómez injected primary glioma cells closely resembling the
dynamics observed in patients (Gargini et al., 2020) and expressing the luciferase re-
porter gene into the brains of nude mice. One month after the injection, weekly mon-
itoring of the animals was started, measuring the total flow to assess tumor growth.
The optimal exponents obtained was β = 1.25. Furthermore, Figure 2.2 B shows that
errors relative to best fit were substantially smaller with the optimal superlinear fits
than for both the linear and sublinear fits (exponents 1 and 0.75 respectively).
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2.5 Discussion and conclusion

In this chapter we have analyzed the dynamic behavior of tumor growth on a macro-
scopic scale for five different histologies of solid tumors over long periods of time.
The database that supports this study was the result of a substantial collection effort
and has an unmatched richness as it contains more than two data points for tumors
without direct treatments during the study time. Therefore, the fact of being able to
have volumetric images and more than two time points available allowed for a bet-
ter understanding of the real growth dynamics and compatibility with the proposed
model, thus avoiding an over-fitting.

Using a simple mathematical model, we studied the volumetric dynamics growth
for our data sets. Our results show that untreated human malignant cancers display
a superlinear explosive dynamics in the form of an exponent β > 1 in Eq. (2.2).
This superlinear dynamics is also obtained after fitting the data from animal models,
which were designed to recreate tumors with great similarity to tumors in humans.
On the other hand, in the specific case of hammartomas, which are benign tumors, a
slow growth dynamic was obtained, given by a value of β < 1.

This observation of the explosive behavior of malignant tumors was comple-
mented by other results reported in Pérez-García et al., 2020 on the laws of super-
linear metabolic scaling in cancer. Additionally, a data subset of those reported in
Heesterman et al., 2003 showed signs of atypical behavior which are in correspon-
dence with an accelerated volumetric growth. These results suggest that human can-
cers, as they progress, decrease the efficiency of their local vascular network, which
would tend to increase their scaling exponents and cause them to significantly devi-
ate from Kleiber’s law (β = 3/4).

The existence of a superlinear scaling law between metabolism (or proliferation)
and volume implies increasingly accelerated volumetric growth, which results in the
formation of a finite-time singularity. In real cancers that type of dynamics cannot
be continued up to the blow-up point since they are subject to physical and nutrient-
supply constraints, and the patient would die well before reaching that limit. How-
ever, it matches very well the terminal stages in which fast cancer progression leads
to cachexia and substantial damage to the patient leading to death.

The value of β > 1 indicates a continuous increase of the tumor growth rate.
The mechanism behind superlinear growth could be attributed to the evolutionary
dynamics of competition between cell types. Once a new cell type emerges with a
higher duplication rate, it begins to dominate the tumor. The continued emergence
of new cell types with greater fitness advantages leads to increased tumor growth
rate.

Our results emphasize the need to obtain a better understanding of the evolu-
tionary steps in different tumor histologies and to target these transformations to
avoid growth acceleration. They also raise the question of whether working with
experimental tumor models that show slower than super exponential growth could
miss essential features of cancer dynamics. Finally, it would be advisable to plan the
treatments in a period of time in which the evolutionary dynamics have not gener-
ated a great richness of genotypes/phenotypes and the tumor volume is not close to
the blow-up point.

In summary, we have described the dynamics of tumor growth using a simple
model based on the relationship between tumor size and metabolism. Longitudinal
volumetric data from malignant tumors shown explosive growth beyond classical
growth-limited or exponential laws. This result suggests superlinear scaling laws in
human cancers. These laws differ substantially from Kleiber’s law, which governs
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the growth of many life forms, and point to accelerated growth due to underlying
evolutionary dynamics that select more aggressive subpopulations.
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Chapter 3

Stereotactic radiosurgery response:
Analysis with a continuous
mathematical model

3.1 Introduction

As explained in the introduction, stereotactic radiosurgery nowadays is an effective
tool for the treatment of brain metastases. Brain metastasis is a condition ten times
more frequent than primary brain tumors. It is thus striking that so many mathemat-
ical papers have studied primary brain tumors and their time dynamics while BMs
have received scarce attention. In the following study, we focused on describing the
response of BMs to this successfully treatment.

Applied mathematicians have studied different aspects of metastatic processes:
the growth and distribution of untreated metastatic tumors (Iwata, Kawasaki, and
N.Shigesada, 2000; Barbolosi et al., 2009; Barbolosi et al., 2017; Mollard et al., 2017;
Bilous et al., 2019), the extravasation process (Brodland and Veldhuis, 2012), cancer
metastasis networks (L.LChen et al., 2009; Newton et al., 2013; Scott et al., 2013;
Newton et al., 2012), the interaction between the primary and metastatic tumors
(Diego, Calvo, and Pérez-García, 2013) and therapeutic strategies minimizing the
metastatic burden (Haeno et al., 2012), to cite a few examples.

To our knowledge, few studies have considered the mathematical modeling of
BM growth and response to radiation therapy (Watanabe et al., 2016; Dehghan and
Narimani, 2020). This is a situation of interest since the tumor’s response to radi-
ation therapy, either alone or in combination with other treatments, has been thor-
oughly studied in other brain tumors such as glioblastoma (see e.g. Leder et al.,
2014; Rockne et al., 2009; Rockne et al., 2010; Yu et al., 2015; Chakwizira et al., 2018;
Hawkins-Daarud et al., 2015) or low-grade glioma (e.g. Ribba et al., 2012; Badoual
et al., 2014; Pérez-García et al., 2015; Galochkina, Bratus, and Pérez-García, 2015;
Henares-Molina et al., 2017).

As a first step we developed a minimal mathematical model able to describe the
longitudinal dynamics of BMs. This was done using BM patient imaging data to
feed ordinary differential equations, in biologically-grounded tumor growth mod-
els. First, the extent to which these models could describe the dynamics of untreated
BMs was analyzed. Next, the dynamics of response to radiosurgery over time was
studied when death mechanisms and damaged cell compartments were included.

In the context of our simplifying assumptions, we assumed the proliferation rate
of the BMs to be the same after treatment than before it. The phenomenon of growth
acceleration of residual tumors of certain histologies after fractionated radiother-
apy courses, the so-called accelerated repopulation, has been known for a long-time
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(Joiner and Kogel, 2018). However, repopulation rate has been found to be lower
in tumors with increased cell loss, as it happens in radiation surgery (Hessel et al.,
2003). In fact, there are no reports of observations of accelerated repopulation after
radiation surgery treatments. This is also consistent with the observation in exper-
imental tumors that the triggering of accelerated repopulation requires minimum
total treatment duration times longer than than 3–4 weeks in human tumors (Joiner
and Kogel, 2018).

Other biological processes could also lead to differences in proliferation rate with
time. It has been hypothesized on the basis of different sources of biomedical data
and studied mathematically, that actions on the primary tumor could influence the
dissemination and growth dynamics of metastasis (Diego, Calvo, and Pérez-García,
2013; Hanin and Rose, 2018; Franssen et al., 2019). However, in the case of brain
metastases the BBB may provide a chemical firewall for the communication between
the primary tumor and metastatic colonies and the fact is that no solid evidences of
such chemical links have been provided. Moreover in the case studied here of stage
IV lung cancer, surgical treatment of the primary tumor is not typically a therapeu-
tic option. This is why we did not account for any "communication" between the
primary tumor and the BMs in our modeling approach.

In our mathematical model we used a single population of proliferating metastatic
cells accounting effectively for the tumor dynamics. Brain metastases, and specifi-
cally lung cancer ones, are heterogeneous and composed of genetically and phe-
notypically different subpopulations (Liu et al., 2020; Shih et al., 2020; Perus and
Walsh, 2019). This heterogeneity leads to a differential response to radiation therapy
depending on many molecular factors such as EGFR overexpression (Akimoto et al.,
1999), TopBP1 and Claspin (Choi et al., 2014), MET (Stella et al., 2019), CAVEOLIN-1
(Duregon et al., 2019), and many others (Soffietti et al., 2020; Ahmed et al., 2017).
Indeed, radiation resistance is associated not only to specific individual features of
the cancer cells. It is being increasingly recognized that the tumor microenviron-
ment, cell-cell communications and other factors play a role in this complex emer-
gent property (Smart et al., 2015; Voglstaetter et al., 2019). Here we intended to
develop a minimal model able to describe observed volumetric dynamics, that is the
only follow-up information available through standard MRI-imaging.

3.2 Methods

3.2.1 Patients

Patients included were participants in the study METMATH (Metastasis and math-
ematics), a retrospective multicenter and non-randomized study approved by the
institutional review boards of the three participating institutions. We reviewed the
METMATH records to look for patients satisfying the following inclusion criteria:
patients diagnosed with brain metastasis of a primary lung cancer that had under-
gone at least a T1-weighted MRI examination with contrast before SRS, and at least
two T1-weighted MRIs after SRS. The time interval between the diagnostic MRI and
SRS had to be at most two weeks. Patients who received whole brain radiation ther-
apy within four months before SRS, or during the followup period, were excluded.
Patients who received surgery were also excluded. 45 patients satisfied the inclusion
criteria. Patients with more than one treated brain metastasis were analyzed; 32 pa-
tients had only one BM, 11 patients had 2 BMs and 2 patients had 3 BMs. Finally, 60
brain metastases were included. Median patient age was 60 years (range 43-80) and
sex was 59% male, 41% female.
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The dose and fractionation schedule was chosen at the discretion of the treating
radiation oncologists and performed using γ rays. A total of 46 lesions were treated
with a single dose (range 17–24 Gy), six lesions with three dose fractions (range
5.5–8.8 Gy) and eight lesions received between 4 and 6 dose fractions (range 4–9.5
Gy). The mean follow-up period of the patients studied was 11 months (range 3–30
months).

Contrast-enhanced T1-weighted sequence was gradient echo using 3D spoiled-
gradient recalled echo or 3D fast-field echo after intravenous administration of a
single dose of gadobenate dimeglumine (0.10 mmol/kg) with a (6-8)-min delay.

MRI studies were performed in the axial or coronal plane with either a 1.5 T
Siemens scanner (259), a 3 T Philips scanner (45) or a 1 T Philips scanner (13). Imag-
ing parameters were no gap, slice thickness of 0.5 - 2.0 mm (mean 1.1 mm), 0.4-1.1
mm (mean 0.6 mm) resolutions in the x and y planes, and 0.6 - 2.0 mm spacing be-
tween slices (mean 1.5 mm).

3.2.2 Tumor Segmentation

Brain metastasis T1-weighted images were collected in DICOM format and ana-
lyzed. Also, they were reviewed by the either a senior radiologist or an image ex-
pert with 5 years’ expertise in tumor segmentation. The tumor volume for each
brain metastasis was defined on gadolinium-enhanced magnetic resonance imaging
(T1Gd-MRI) as the contrast-enhancing (CE) compartment of the tumor combined
with the central non-enhancing (non-CE) compartment enclosed by the contrast (the
latter usually represented necrosis).

Segmentation was performed by importing image files into the scientific soft-
ware package Matlab (R2019b, The MathWorks, Inc., Natick, MA, USA). Images
were manually placed in a 3D box and then semi-automatically delineated using
a gray-level threshold chosen to identify the contrast-enhancing volume. Segmenta-
tion was corrected manually slice by slice as described in Pérez-Beteta et al., 2018.

3.2.3 Mathematical model of response to radiosurgery

Our mathematical model to describe growth and response to therapy of brain metas-
tases is based on a set of ordinary differential equations for the different cellular
compartments involved in a simplified description of the tumor growth dynamics.
The first was the proliferating tumor cells P(t). Since BMs are often small tumors
that are detected at an early phase of growth, far from the brain’s carrying capacity,
the number of proliferating cancer cells can be described by an exponential model
of the form

dP
dt

= ρP. (3.1a)

In Eq. (3.1a), P(t) represents the number of proliferating cancer cells at time t
and ρ the rate of proliferation. In the previous section, we explored different tumor
growth dynamics and concluded that the growth dynamics of brain metastasis could
be better described by a superlinear growth law. For the sake of simplicity, in this
work we kept the simpler and more classical growth law given by Eq. (3.1a).

Stereotactic radiosurgery is a highly precise form of radiation therapy that lethally
damages a fraction 1− S f of the irradiated proliferating cancer cells. Lethal damage,
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caused by high doses of radiation, cannot be repaired and occurs via different path-
ways. Here we accounted for the two most important, in the response to SRS. The
first process is fast and leads to a fraction ε of lethally damaged cells being incorpo-
rated directly into the necrotic cell (N(t)) compartment. The second process leads to
a population D(t) of lethally damaged cells that may undergo one or more divisions
before dying by mitotic catastrophe (Joiner and Kogel, 2018). The evolution of this
cellular compartment was given by the equation

dD
dt

= −ρ

k
D, (3.1b)

where k is the average of mitosis cycles completed before death. In practice k/ρ
provides a, typically long, time scale for the death of this population of damaged
cells. This type of model have been found to provide a good description for the re-
sponse of low-grade glioma (Pérez-García et al., 2015) and prostate cancer (Lorenzo
et al., 2019) to radiation therapy.

There is evidence in the literature that SRS destroys tumor vascular beds, thereby
deteriorating the tumor microenvironment and leading to indirect tumor cell death
(Kim et al., 2015). These phenomena can produce regions of hypoxia, tumor necro-
sis and massive release of tumor antigens, elevating antitumor immune response in
a short period of time. Furthermore, tumor hypoxia may persist after vascular in-
jury caused by SRS and both oxygenated and hypoxic cells are ablated by high-dose
radiation (Brown, Carlson, and D.J.Brenner, 2014). This fact, together with the im-
possibility of accounting for the number of hypoxic cells in brain metastases through
MRI, motivated the non-inclusion of this population within the mathematical model.
Thus, we also accounted for a population of immune cells I(t) present in the tumor,
whose dynamics were governed by the equation

dI
dt

= αN − λI I, (3.1c)

In Eq. (3.1c), α is a stimulation parameter that accounts for the immune system
activation by the presence of necrosis and λI is the decay rate of the immune activa-
tion.

Finally, the dynamics of the necrotic cell (or necrosis) compartment was gov-
erned by the equations

dN
dt

=
ρ

k
D− λN NI. (3.1d)

Thus, we described necrosis dynamics by the contribution of damaged cells through
mitotic death and the interaction with the immune system, which in turn is activated
by the release of a variety of pro-oxidant and pro-inflammatory cytokines such as tu-
mor necrosis factors (Rock and Kono, 2008). The first term in Eq. (3.1d) corresponds
to the contribution of damaged cells, and the second describes the elimination of
necrotic cells by the action of immune cells. This process is modulated by the con-
stant λN .

As to the initial data, before treatment the tumor was assumed to be composed
mostly of proliferating cells. SRS was performed at a given time t0 on a tumor cell
population T(t0). As stated above, a fraction of tumor cells S f suffered either no
damage or only sublethal damage and remained viable. A further fraction (1− S f )T0
received lethal damage of which a fraction ε died on a short time scale (i.e. days) and
the remainder moved into the compartment of lethally damaged cells. This means
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FIGURE 3.1: Schematic description of the compartments included
in Eq. (3.1) and the effect of radiosurgery. Different cellular com-
partments appear after SRS on metastatic cells. Proliferating cells P(t)
continue to grow at a rate ρ. Damaged cells D(t) become necrotic
N(t) at a rate of ρ/k because of the mitotic catastrophe. Necrosis
stimulates the immune cell I(t) activation with a stimulation param-
eter α, and is removed by its interaction with them. Immune cells are

inactivated with a decay rate λI . Created with BioRender.com.

that,

P(t0) = S f T(t0), (3.2a)
D(t0) = (1− S f )(1− ε)T(t0), (3.2b)
N(t0) = (1− S f )εT(t0), (3.2c)
I(t0) = 0, (3.2d)

where S f and ε ∈ (0, 1). Figure 3.1 summarizes the different compartments included
in the model and the effect of radiosurgery. In this study we assumed the pretreat-
ment number of immune cells to be very small. Intratumoral areas in lung cancer
brain metastases have been reported to contain low numbers of inflammatory cells
(Berghoff et al., 2008), high levels of immunosupressive molecules (Jiang et al., 2020)
and a suppressed immune microenvironment (Kudo et al., 2019).

In addition to damaging cancer cells, SRS damages healthy tissue cells located in
the field of the ionizing radiation. In spite of the increasing spatial precision of cur-
rent radiosurgery techniques, radiation necrosis (RN) of normal cells is a frequent
complication. Since brain tissue renewal occurs on very long time scales of many
months, this damage appears typically more than a year after SRS (Vellayappan et
al., 2018). This effect has nothing to do with tumor recurrence but can be confused
with it on imaging because of the increase in the inflammatory compartment. To
account for that, we included an explicit additional source term in the necrotic com-
partment h(t) in Eq. (3.1d)

dN
dt

=
ρ

k
D− λN NI + h(t). (3.3)

Note that T(t) = P(t) + D(t) + N(t) + I(t) is a measure of the number of cel-
lular elements in the tumor and its environment. We assumed it to be related to
the observed tumor volume, that appears in MRIs as a combination of active areas
(P + D + I) plus a necrotic component (N).



30
Chapter 3. Stereotactic radiosurgery response: Analysis with a continuous

mathematical model

The model was solved and fitted to the available longitudinal volumetric data
using ode45 and fmincom functions included in the scientific software package Mat-
lab (R2019b, The MathWorks, Inc., Natick, MA, USA). All parameters were fitted
for each metastasis individually, even in the case of lesions belonging to the same
patient.

3.3 Results

3.3.1 Model equations (3.1) describe the response to radiosurgery

Figure 3.2 shows examples of the time evolution of the volume of brain metastases
treated with SRS in three patients. The cases chosen provide instances of three dif-
ferent typical behaviors. In the first case (Figure 3.2 a), the patient had a sustained
response lasting for at least 17 months. In a second patient (Figure 3.2 b), the tu-
mor reduced its volume for approximately 184 days and relapsed after the initial re-
sponse. Finally, in Figure 3.2 c) the tumor continued to grow after radiosurgery treat-
ment. Henceforth, we denoted the lesion behaviors described in the cases shown as
monotonically decreasing lesions (MDL), lesions that at first are decreasing and later
increasing (DIL), and monotonically increasing lesions (MIL), respectively.

Our mathematical model was able to describe the different scenarios shown in
Figure 3.2. Figure 3.3 shows additional examples for 9 of the 60 metastases. The
model was able to describe different dynamics of response to treatment in all cases. It
also provided good fits for the longitudinal volumetric data of 36 metastases, which
showed evolution framed within one of the three behaviors mentioned above: six
metastases showed a MDL behavior, 19 showed a DIL behavior and 11 showed a
MIL behavior.

This study included only 13 patients with more than one metastasis treated and
thus a statistical analysis to assess similarities in the behavior of the lesions could
not be performed . Four of the 11 patients were observed to have the same post-
treatment dynamics in all of their metastases but the other seven patients had lesions
with different longitudinal dynamics after treatment therapy.

3.3.2 The mathematical model describes the early inflammatory dynam-
ics observed in the post-SRS response

Following SRS, six brain metastases in our dataset contained MRI imaging in the fol-
lowing three months. These BMs increased their size initially, suggesting treatment
failure. However, they decreased their size after a few weeks, which was shown by
the second examination post-SRS. This is due to an early inflammatory response to
the treatment that is assumed to occur in most cases. In fact, this is the reason why
the first control post-treatment MRI is typically performed three months after SRS
once the effect of early inflammation has vanished. Figure 3.4 a,b show the longitu-
dinal volumetric dynamics of BMs and the best fits using the mathematical model
for two of those patients.

It is interesting that when breaking the total tumor volume into the different com-
ponents (color lines in Figure 3.4), it was obvious that the initial volumetric growth
was actually associated with an increase in immune activation. In both cases, radia-
tion generated a large initial number of necrotic cells which stimulated immune cells.
The sum of all the cellular compartments resulted in an increase in the total volume,
but in fact, the number of proliferating cells was smaller after SRS treatment.
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FIGURE 3.2: Evolution of tumor response for three BM patients.
Left subplots show characteristic two-dimensional slices of the
contrast-enhanced T1-weighted MRI scans showing the metastasis re-
sponse to SRS for different times (in days) starting from a baseline
pretreatment scan (taken to be t = 0 days). Subplots in (a), (c) show
axial slices and (b) coronal slices. Green boxes containing the tumors
are shown to help locate them. Panels in the rightmost column show
the volumetric longitudinal data obtained from the 3D segmentations
(red dots) and the best fits (blue lines) obtained using the mathemat-
ical model of Eqs. (3.1). The model parameters obtained for the best
fits are (a) S f = 0.02× 10−2, ε = 0.90, ρ = 0.01, λN = 0.06, λI = 0.07,
α = 0.10, (b) S f = 0.12 × 10−1, ε = 0.60, ρ = 0.02, λN = 0.20,
λI = 0.01, α = 0.04 and (c) S f = 0.40, ε = 0.10, ρ = 0.01, λN = 0.01,

λI = 0.10, α = 0.01.

We calculated T(Imax), representing the time when the immune cell population
reaches its peak for the model fits. Figure 3.4 c shows the histogram of the calculated
times for the 42 metastases classified within the above response groups.

The computed times were adjusted to a Gamma distribution with shape param-
eter a = 1.4 and scale parameter b = 36, and had a mean value equal to 51 days
and a variance equal to 43 days. This means that the peak of inflammation occurs
more frequently between months one and two post-SRS. Thus our model confirms
that when MRI scans are performed before three months post-treatment, the results
may be affected by early inflammation events and do not provide a reliable measure
of the proliferating tumor component.

It is important to emphasize that all four classes of response dynamics studied so
far (monotonically decreasing lesions, lesions that are first decreasing and later in-
creasing, monotonically increasing lesions, and early inflammation) were accurately
described by the mathematical model given by Eqs. (3.1). Figure 3.5 shows the mean
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FIGURE 3.3: Examples of longitudinal volumetric tumor data (red
circles) and best fits obtained with the model (3.1) (blue lines) for
patients showing (a-c) MDL, (d-f) DIL and (g-i) MIL . The vertical
dashed red lines mark the radiosurgery date. All times are measured

in months from the baseline pretreatment scan.

square errors (MSE) of the best fits obtained using the mathematical model for this
subset of brain metastases.

3.3.3 Damage to healthy tissue could lead to late inflammatory response
and radiation necrosis

Late radiation necrosis is a frequent event after SRS treatment (Kohutek et al., 2015;
Donovan, Parpia, and Greenspoon, 2019). This is typically observed in MRIs as volu-
metric growth of the lesion, typically between one and two years post-SRS, followed
by spontaneous (partial or complete) remission. Radiation necrosis (also denoted to
as "pseudoprogression") poses a challenge to radiologists since it is very difficult to
differentiate from true tumor progression. In the former case, there is no need for
anti-tumoral treatment, while the latter requires a different therapy.

In our dataset, seven BMs were diagnosed with radiation necrosis and an addi-
tional 11 BMs presented late episodes of volume increase followed by volume de-
crease compatible with that condition. Figure 3.6 shows two examples of the dy-
namics and the best fits obtained, using different mathematical models. First, we
tried to fit the dynamics using Eqs. (3.1). However the model did not accurately de-
scribe the dynamics (see dashed blue lines in Figure 3.6 a,b with large MSEs (Figure
3.6 e).

To explain the inflammatory response in this group of patients, we included the
late damage to the surrounding healthy tissue as described by Eq. (3.3). To do so,
the parameters in Eqs. (3.1a), (3.1b), (3.1c) and (3.3) were fitted for each metastasis
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FIGURE 3.4: Early inflammation occurs in the early response post-
surgery. The subplots (a) and (b) show the dynamics of the prolif-
erating cells (green line), damaged cells (magenta line), necrotic cells
(black line), immune cells (yellow line) and total tumor cells (blue
line) governed by Eq. (3.1) of two patients. Red circles represent the
tumor volume measurement, and dashed red lines mark the radio-
surgery date. (c) Histogram and distribution function of T(Imax) for

the model fits of 42 BMs.

using a Gaussian form for the damage function h(t) = kNormal(µ, σ). A substantial
reduction of the MSE was obtained (Figure 3.6 f) in line with the model dynamics,
closely resembling the data (see solid blue lines in Figure 3.6 a,b).

3.3.4 Time to tumor progression can be obtained from the mathematical
model

Finally, our mathematical model allowed for a theoretical estimation of the time of
tumor progression from the initial response data.
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FIGURE 3.5: Mean square errors of the best fits of the model (3.1)
to the metastasis volumetric data for the 42 metastases showing a
monotonous decrease (MDL), decrease first and later increase (DIL),
monotonous increase (MIL), and early inflammation in response to
SRS. The formula used is given by the expression MSE= 1

n ∑n
i=1(V̂i −

Vi)
2, where n is the total number of follow-up MRIs performed for

each metastases, Vi the segmented volume of scan i and V̂i the vol-
ume estimated with the model at the time of scan i.

FIGURE 3.6: Late inflammatory response and result of model fit.
(a), (b) Tumor volumetric longitudinal dynamics (solid red circles)
for two patients receiving radiosurgery and best fits obtained using
either Eqs (3.1) (dashed blue lines) or Eq. (3.1a), (3.1b), (3.1c) and (3.3)
(solid blue line). Vertical dashed red lines represent the SRS date. Best
fits for the healthy tissue damage were obtained in the first case by (c)
h(t) = 130× N(20, 2.3) and (d) h(t) = 6.5× N(12, 2.3), respectively.
MSE obtained when fitting the model to the group of 18 BMs using

(e) Eq. (3.1) and (f) Eqs. (3.1a), (3.1b), (3.1c) and (3.3).

After therapy, proliferating cells have exponential growth given by the explicit
solution P(t) = P0eρt. Similarly, damaged cells have exponential decay given by
D(t) = D0e−ρt/k. When dT/dt > 0 tumor volume grow back. In ideal condi-
tions, the immune system is able to efficiently counteract necrotic cells and both



3.4. Discussion and Conclusions 35

populations would eventually disappear. Under this assumption, tumor progres-
sion is determined by the populations of proliferating and damaged cells, i. e.
P0eρt − 1

k D0e−ρt/k > 0. Taking the most reasonable value, k = 2, i.e. damaged
cells dying after two cell cycles on average, and substituting the values of P0 and D0
using Eq. (3.2), the previous inequality is satisfied if

tp >
2
3

1
ρ

ln
(1− S f )(1− ε)

2S f
, (3.4)

where (1 − S f )(1 − ε) > 2S f > 0, when D0 > 2P0. If D0 < 2P0, the inequality
is satisfied for all values of t > t0. Eq. (3.4) can provide an estimate of the time
to progression under the assumptions that there is no damage to the healthy tissue
(h = 0), and that the survival fraction is positive (S f > 0). The value provided by
this equation can be compared with the progression time observed for each patient.

Figure 3.7 shows three examples of the longitudinal dynamics of BMs after treat-
ment using the mathematical model. Panels on the left display the dynamics for the
three patients. The rightmost panels show the dynamics of the different populations
according to the mathematical model (3.1).

In the first example (see Figure 3.7 a,d), in a tumor without inflammation, the
progression time clearly indicates the moment in which the proliferating cells out-
grow half of the damaged cell compartment, thus dominating tumor growth. For
this patient, there is an increase in tumor volume right after the progression time tp
computed from our mathematical model (Eq. (3.4)).

The second and third examples correspond to patients diagnosed with radiation
necrosis. The progression time could be used in these cases to distinguish between
an increase in the tumor volume caused only by the radiation necrosis (false progres-
sion) and an increase caused by real growth. Specifically, the second example (Figure
3.7 b,e) corresponds to a patient with radiation necrosis without progression. In this
case, the tumor volume increase can be associated with the radiation necrosis, as it
occurs 10 months before progression was expected. In the third example, radiation
necrosis occurs after the progression time. In the graph it is possible to see how even
if the tumor volume increases due to the radiation necrosis, it continues growing
after the inflammation decreases, suggesting the co-existence of radiation necrosis
and tumor progression.

3.4 Discussion and Conclusions

In this study, we put forward a mathematical model that describes the effect of SRS
on brain metastases. The mathematical model included only four cellular compart-
ments (proliferating, necrotic, damaged and immune) to account for the different
dynamics observed after SRS. Interestingly, the simple model was able to describe
the volumetric evolution of the lesions observed in the clinic and the different sce-
narios related to inflammation.

It is interesting that the model was able to describe qualitatively the observed
dynamics without accounting for other relevant biological details of response to ra-
diation therapy such as the differential response of well-oxygenated and hypoxic
cells to radiation therapy (Joiner and Kogel, 2018) that has been included in other,
more detailed models of radiation therapy of brain tumors by different authors (see
e.g. (Toma-Dasu and Dasu, 2013; Rockne et al., 2015; Lewin et al., 2018; Kuznetsov
and Kolobov, 2020)). Another effect not accounted for in this study was the fact that
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FIGURE 3.7: Real longitudinal dynamics of three BMs and of the
different compartments after SRS according to the model (3.1). Red
dots in panels (a–c) represent the longitudinal tumor volumetric data
for the three BMs chosen. Solid blue lines show the best fits obtained
using the model equations (3.1). The second column (d–f) shows ra-
diosurgery response for proliferating cells (green line), damaged cells
(magenta line), necrotic cells (black line) and immune cells (yellow
line) obtained from the model. Dashes red lines mark the date of SRS
and vertical black lines mark the time of tumor progression as calcu-

lated by Eq. (3.4).

irradiated cells may undergo cell cycle arrest or become quiescent for long times af-
ter sublethal radiation doses (Ribba et al., 2012). As imaging techniques progress
and provide biological data on metastasis status able to feed more complex mathe-
matical models, it may be relevant to develop models including all those biological
processes.

Early post-treatment inflammation was very easily accounted for in the model
by incorporating early cell death (necrosis) and associated inflammatory response.
Radiation necrosis events, assumed to be the result of damage to healthy tissue, were
incorporated in a simple and rather ad-hoc way by the function h(t). The effect of
radiation on healthy tissue as additional source of necrosis could be analyzed under
different forms of this function, but we have chosen the Gaussian form as a first
approximation. Incorporating more details of the SRS-induced damage to healthy
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tissue could allow us to write mechanistic equations for the normal tissue behavior
in response to treatment. As a first approach, we wanted to keep the model simple
and with a minimal number of parameters but more complex mathematical models
could account for this effect in a more elegant way.

In this work we chose S f to be an adjustable parameter instead of a fixed pre-
determined value. In the context of elementary "static" mathematical approaches to
radiation therapy such as the linear-quadratic equation, it is customary to assume
a given S f value to solve problems in therapy replanning, etc. That given S f value
would be characteristic of the tumor histology. However, that approach is of lim-
ited use in the context of radiation surgery of brain metastasis since there is a broad
variety of potential outcomes to SRS treatment ranging from no response to com-
plete response even for the same primary types. This is probably due to the intra
and inter-patient heterogeneity as well as the role of many other elements in the
response such as the tumor or immune environments, as discussed previously.

According to the results of the model fits, it seems that this simple model has
some limitations in describing the tumor dynamics in some patients undergoing ra-
diation necrosis. The model fitting in these cases showed mean square errors larger
than those obtained in the more common scenarios of early response to SRS. This
suggests that radiation necrosis is a more complex phenomenon where different bi-
ological factors may play a role.

One of the current problems in clinical practice is to differentiate between tumor
progression and radiation necrosis, as both display a similar course as observed in
the MRI, requiring advanced diagnostic techniques for identification (Essig et al.,
2012; Barajas et al., 2009). In this study, we obtained an analytical estimate for the
progression time due to the growth of remnant proliferating cells after SRS. This
estimated time may be the basis for biomarkers helping clinicians to distinguish
between progression and radiation necrosis. If the tumor increases in size at a time
close to the predicted tumor recurrence, this could be an indication of tumor progres-
sion. On the other hand, tumor outgrowths at times much earlier than the estimated
by the model could be an indication of the presence of an inflammatory process.

The key point in moving from Eq. (3.4) to a clinically relevant biomarker would
be to define the requirements for a reliable estimate of the outgrowth time, since this
must be done from MRI data. In principle, only a small number of data points are
necessary to obtain the value of this parameter (ρ, ε, S f ). If there are two MR imaging
exams before SRS, they would allow the tumor proliferation rate ρ to be estimated.
Interestingly, performing a second MRI immediately before SRS also has advantages
from the clinical point of view, since it would allow for a more precise definition of
the target volume. It has been reported recently that (Salkeld et al., 2018; Garcia et
al., 2018) measurable changes occur in brain metastasis over a short period of time,
on the order of a week, so a final planning right before SRS would help in achieving
greater therapeutic efficacy and provide a second MRI to obtain a baseline growth
rate estimate.

The parameters ε and S f can be obtained using the first few (2-3) MRIs of the
standard follow-up after radiosurgery. So patients with two pretreatment MRIs and
one year follow-up after SRS could have precise progression time estimates that
could be used for comparison with the observed dynamics after the first year. Un-
fortunately, our database did not have patients fulfilling these requirements, i.e. all
patients who presented radiation necrosis or progression had only one pretreatment
MRI so that we could not explore the idea in more detail. As future work, we will
address this by planning either a retrospective search for such patients, or a prospec-
tive study.
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In conclusion, we have developed a mathematical model based on a set of or-
dinary differential equations which describe the observed longitudinal dynamics of
brain metastases after SRS. The model allowed the varying early longitudinal dy-
namics observed in patients to be accurately described, and with very few param-
eters. Radiation necrosis events were described in a simplified way, and in most
cases they were also fitted accurately using the model. We obtained an equation for
the expected tumor progression time based on a few parameters that could be the
basis for biomarkers to help in discriminating between radiation necrosis and true
progressions, which currently represents a major challenge in the clinical setting.
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Chapter 4

Tumor growth after stereotactic
radiosurgery response: Analysis
with a stochastic model

4.1 Introduction

Motivated by the results obtained with the previous continuous model, in this chap-
ter we wanted to delve into the study of tumor growth dynamics after treatment
with SRS. To do this, we developed a multiscale hybrid stochastic model based on
the discrete model recently described in Jiménez-Sánchez et al., 2021. The goal of this
study was to shed light on a clinical problem: the differentiation of tumor relapses
from radiation necrosis. Radiation necrosis is the most common side effect of SRS
and has characteristics similar to tumor progressions on standard anatomic MRI. As
mentioned in Section 3, the latter constitutes a relevant problem since it is difficult
to differentiate radiation necrosis from tumor progression using conventional MRI,
making it a major diagnostic dilemma for radiologists (Furuse et al., 2019; Chuang
et al., 2016; Vellayappan et al., 2018; Lee et al., 2020).

The mathematical model takes into account the main biological processes at the
cellular level: mitosis, migration and cell death. In this model, cell populations are
followed instead of individual cells. Brain metastases growth was described on a
mesoscopic scale in the simplest possible way, taking into account only one clonal
population. Although it is known that these tumors present cellular heterogeneity
in their composition, it is not fully characterized as in the case of glioblastomas.
For this reason, our results are not focused on describing the best growth dynamics
of BMs, as in Section 2, where real data were available. On the other hand, it has
been known that tumor treatments induce a reduction of the clonal complexity in
the point of maximal response due to the action of selective pressures of the drugs
(Dagogo-Jack and Shaw, 2018), which supports our simplification of a single clonal
population to describe the response to SRS.

The spatial domain was set as a 3D grid discretized in cubic compartments (vox-
els) of side length4x, fixed at 1 mm. Each voxel has a specific dynamic that depends
on its occupation and surroundings, and can contain several cells belonging to each
cells population with an upper limit indicated as local carrying capacity K. The dif-
ferent populations of cells will attempt to perform all available basic processes at
each time step. Theses processes can be described by a binomial distribution with
a probability associated with the process. That is, the number of cells successfully
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FIGURE 4.1: Basic algorithm for implementation purposes. Figure
adapted from Jiménez-Sánchez et al., 2021.

undergoing division, death, migration or transition to another population are cal-
culated voxel-wise and state-wise at each time step, randomly sampling the corre-
sponding binomial distribution, whose N will be the number of cells in the popula-
tion corresponding given within a voxel, and whose probability will be the rate of
the process modulated by the time step length4x. All processes, their probabilities
and associated binomial distributions are thoroughly described below. A summary
of basic idea of the algorithm is shows in Figure 4.1.

The simulator was implemented in Julia (version 1.5.3). Simulation file process-
ing and graphics were done in MATLAB (R2020b, MathWorks). Simulations were
performed on 2.7 GHz, Intel Core i7, 16 GB memory MacBook Pro machine.

4.2 Stochastic model

4.2.1 Stochastic mesoscopic model of tumor growth

To simulate tumor growth three cellular population were accounted: healthy cells,
tumor cells and necrotic cells. Biological processes, namely cell division, death and
migration were implemented similarly to model in Jiménez-Sánchez et al., 2021, al-
though a small modification was incorporated in the tumor death process to repro-
duce specific characteristics observed in brain metastases.

The probabilistic events for this process reads as follows

PTrep =
4x
τTrep

(
1− nt + nn + nh

K

)
, (4.1)

PTmig =
4x

τTmig

(
nt + nn + nh

K

)
, (4.2)

PTdeath =
4x

τTdeath

(
tanh

(
10(nt + nn + nh − Kact)

K

))
, (4.3)

PHmig =
4x

τHmig

(
tanh

(
10(nt + nn + nh − 0.45K)

K

))
, (4.4)
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FIGURE 4.2: Bottom image is a slice of an actual simulation of tumor
without treatment, with colors indicating occupation. Cells color in-
dicates the different cell populations, with blue representing healthy
cells, red representing tumor cells and black representing necrotic

cells.

where nt, nn and nh denotes the number of total tumor cells, necrotic cells and
healthy cells inside a given voxel, respectively. Parameters τ represent the charac-
teristic times of each process and Kact is the local threshold of voxel capacity from
which tumor cells begin to die due to lack of resources.

Then, the total numbers of proliferating and dying cells from tumor population
are drawn from binomial distributions B(nt, PTrep) and B(nt, PTdeath), respectively.
Due to the acquired capacity of tumor cells to evade apoptosis (Hanahan and Wein-
berg, 2000), we assumed that apoptosis signaling is activated once 75% of the voxel
limit carrying capacity (Kact) is exceeded, simulating a significant lack of resources
for the tumor cells. This is incorporated in the probability of death PTdeath by the term
of the hyperbolic tangent as a function of the voxel capacity. The number of migrat-
ing cells was drawn from the respective binomial distribution B(nt, PTmig) and then
they are distributed around a neighborhood of 26 voxels (Moore neighborhood) ac-
cording to a multinomial distribution (Jiménez-Sánchez et al., 2021). For simplicity
we have assumed all tumor cells comes from the same clonal population without
including mutation events.

For healthy cells we assumed that the levels of cell division and death remain
in balance due to the ability of these cells to self-regulate, and that the biological
process of migration is the only one that is affected by the evolution of tumor cells.
Therefore, the numbers of migrating healthy cells were drawn from the binomial
distribution B(nh, PHmig) being displaced by the pressure performed by the tumor
cells colonization when the total number of cells in the voxel exceeds 45% of its
maximum capacity. Figure 4.2 shows a slice of an actual simulation, where the colors
indicate the voxel occupation. Note that each voxel can contain a different number
of cells.
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4.2.2 Stochastic mesoscopic model of response to SRS

When tumors are treated with radiosurgery, tumor cells are lethally damaged or
killed due to high doses of radiation. In addition, a fraction of the surrounding
healthy tissue can also be damaged. As a consequence, the immune system is acti-
vated and immune cells move to the irradiated region to repair the damage caused.
To describe the response to this treatment we have included three new cell popula-
tions: damaged tumor cells, activated immune cells and damaged healthy cells.

The dynamics of these populations is given by the following probabilistic events:

PDdie =
4x

k · τTrep
, (4.5)

PIact =
4x
τact
· nn

ni

(
1− nt + nn + nh + nd + nhd + q · ni

K

)
, (4.6)

PIkill =
4x
τkill
· ni

nn

(
1− nt + nn + nh + nd + nhd

K

)
, (4.7)

PIdeath =
4x

τIdeath
, (4.8)

PImig =
4x

τImig

(
nt + nn + nh + nd + nhd + q · ni

K

)
, (4.9)

PHdie = tanh
(

t− 2τHrep

σHrep

)
/2 + 1/2, (4.10)

where nd, ni and nhd denote the number of total damaged tumor cells, activated
immune cells and damaged healthy cells inside a given voxel, respectively. Simi-
larly, parameters τ represent the characteristic times of each process and new cell
populations are incorporated into the saturation process. Note that q is a scalar that
normalizes the size of immune cells with respect to the size of healthy and tumor
cells, assuming that the latter have similar sizes.

The number of necrotic cells, that comes from damaged tumor cells, are drawn
from the binomial distribution B(nd, PDdie). The damaged tumor cells population
dies after the k cycle of mitosis while trying to repair the damage caused and passes
into the necrotic cell compartment. The number of necrotic cells, that comes from
damaged healthy cells, are drawn from the binomial distribution B(nhd, PDdie). The
basal time of cell division of healthy cells is slower than that of tumor cells. Be-
cause of this, we have simulated the probability of death by mitotic catastrophe of
healthy cells damaged by radiation using a translation of a hyperbolic tangent func-
tion, where 2τHrep represents the basal reproduction time after the second cycle of
cell division and σHrep is a correction of the measure. Note that PHdie depends on t,
which is the discretized time after radiosurgery. Therefore, there is a small probabil-
ity that healthy damaged cells die, which will increase with sigmoid kinetics until
approaching maximum (PHdie = 1, where all cells die). The transition occurs when
cells fail trying to repair the damage, which is described by the term t−2τHrep

σHrep
.

The number of necrotic cells that are eliminated by interaction with immune cells
and the number of immune cells activated are drawn form the binomial distribu-
tion B(nn, PIkill) and B(ni, PIact), respectively. Further, the activated immune cells
are removed naturally and this process is simulated form the binomial distribution
B(ni, PIdeath). Analogous to tumor cells migration, the number of migrating immune
cells is drawn from the binomial distribution B(ni, PImig) using the same algorithm.
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FIGURE 4.3: A) A single-shot treatment plan for a virtual simulation
of SRS treatment.The target is outlined in yellow, and it is the area
most affected by SRS. The green line encloses another area affected
with less intensity. B) A real example of Gamma Knife isodose plot
with the target outlined in red, the 50% isodose line in yellow, and
the 30% isodose line in green. Figure adapted from Shepard et al.,
2008. C) Spatial distribution of cell populations before and after SRS.
The voxels can be occupied by more than one cell population but the
colors per voxel of the representative samples of each population are

shown.

Therapy was implemented to resemble the actual radiosurgery in the experimen-
tal part of this study. To simulate the spatial distribution of radiation, we relied on
the typical isodose plot for a Gamma Knife patient, as shown in Figure 6.3 A,B. In
this example, the isodose surface that encloses the target (which is often taken as the
prescription dose) is typically 50% of the maximum dose in the target. In addition,
radiation doses (30% of the maximum dose) are also administered in a larger volume
around the lesion, with an additional 1 to 2 mm diameter. This percentage may vary
depending on the technique and machines used (Shepard et al., 2008).

A single dose of SRS was simulated in silico as follows: i) a fraction of tumor
cells S f will suffer either no damage and will remain viable, an additional fraction
(1− S f ) will receive lethal damage of which a fraction ε will die on a short time scale
(i.e. days), and the remainder will move into the compartment of lethally damaged
cells; ii) a fraction of immune cells I f will be activated and iii) a fraction of healthy
cells surrounding the tumor 1− Sn will suffer lethal damage and a fraction Sn will
suffer either no damage and will remain viable. Figure 6.3 C shows an example of
the spacial distribution of cell population before and after SRS as described above.

4.2.3 Estimation of parameters

To fix the initial data we used the sizes typically found in the clinical setting for the
tumor sizes pre-SRS treatment, which are around 0.5-2 cm3 and the tumor maximum
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sizes until 10 cm3. Hence, we selected L = 60 voxels per spatial length to make these
sizes attainable. The time step was fixed to 4 hours. From typical cell sizes (Milo
et al., 2009) we estimated the carrying capacity of a single voxel Nmax to be 2 × 105

cells and we have assumed same size for all type of cells. The choice of division,
death, and migration basal rates used the doubling times estimations (Kobets et al.,
2020) and imaging data from real BMs in the previous Section 3.

Several studies indicated increased microglial activation, proliferation, and phago-
cytosis may contribute to onset of neuroinflammation-induced brain injury. To esti-
mate the parameters related with the immune system we have based on this cell pop-
ulation (He et al., 2020; Wagner et al., 2020). Microglia are the resident macrophages
of the brain, comprising 0.5%—16.6% of the total number of cells in the human brain
(Askew et al., 2017). For this reason, we set the initial number of immune cells as
10% of the healthy cells surrounding the tumor (I f = 0.1). Microglial activation
is characterized by morphological changes, including an increase in size. There is
great heterogeneity in the cell morphology of the microglia. Based on previous mor-
phological studies (Davis et al., 2017) we assume that in the normal state microglia
cells have the same size and in the activation state they present an increase of 50%
in their size, hence the parameter q = 3/2 in the saturation process. Recent studies
have reported the microglial landscape changes radically within a few weeks, with
cells dying and other taking their place (Askew et al., 2017). Thus, we take the mean
lifetime of immune cells in a voxel to be around 2 months and activation to be in the
range of 12-20 hours.

All the proposed parameters are associated with cellular processes, which com-
bined result in whole-tumor rates. Cellular traits were randomly sampled from the
range of allowed basal rates for each simulation. This provided variability between
individual simulations and allowed us to assess the robustness of the model’s be-
havior.

TABLE 4.1: Relevant parameter values for model.

Parameter Meaning (average times per voxel) Value
τTrep Tumor cells reproduction 450− 550h
τTmig Tumor cells death 7000− 1500h

τTdeath Tumor cells migration 1000− 2000h
τImig Immune cells migration 150− 250h
τImig Immune cells death 1440− 1560h
τact Immune cells activation 12− 20h
τkill Necrotic cells elimination 72− 96h

τHrep Healthy cells reproduction 4680h (6.5 mos.)
σHrep Standard deviation of the 480h

reproduction time of healthy cells

4.2.4 Dynamics of longitudinal tumor growth post-treatment

Motivated by the analysis of the longitudinal volumetric growth dynamics for solid
tumors shown in Section 2, we tried to study post-treatment volumetric growth for
the simulated tumors. Therefore, the equation to fit is

dV
dt

= αVβ,
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which corresponds to the Von Bertalanffy model (Eq. (2.2) ) described in Section 2.3.
Solving Eq. (2.2), leads to

V(t)−β+1

−β + 1
−

V−β+1
0
−β + 1

= α(t− t0). (4.11)

Since we have information of the dynamics at three time points (t0, V0), (t1, V1)
and (t2, V2), the two parameters α and β can be completely determined by evaluating
(4.11) at the times t1, t2, leading to

1− (V1/V0)−β+1

1− (V2/V0)−β+1 =
t1 − t0

t2 − t0
. (4.12)

Eq. (4.12) is an algebraic equation for β that was solved by using the MATLAB
function fzero (which returns the root of a nonlinear function) for each set of known
values V0, V1, V2, t0, t1, t2.

4.2.5 Virtual BMs simulations

To simulate the tumor growth dynamics after SRS, we ran a set of 400 simulations of
BMs starting from 103 tumor cells, allowing them to grow until reaching diagnostic
volumes in the range of 0.5− 2 cm3. Then, the radiosurgery event was simulated
and post-treatment tumor evolution continued as described in Section 4.2.2. Each
simulation had a different set of basal rates, sampled randomly from the ranges
specified in Table 4.1. Because the large number of parameters in the model is suf-
ficient to guarantee variability between the different tumor responses to treatment,
the ranges of tumor proliferation and migration rates were reduced to 500h (±10)
and 1000h (±10) respectively.

Furthermore, we assumed that radiosurgery achieves an initial reduction in the
volume of the lesion. To do this, we used the following voxel survival fraction

S f = S f̂ · tanh
(

10(nn − 0.45K)
K

)
, (4.13)

where S f̂ is the maximum survival fraction. This expression is supported by the
fact that well oxygenated cells are less resistant to radiation (more radio sensitive).
Thus, the cells that are farthest away and that do not get enough oxygen and nu-
trients to survive are those that are found in the voxels with the highest number of
necrotic cells. For the simulations, S f̂ values in the range of (0, 1) and ε values in the
range (0.1, 0.7) were used.

The simulations were divided into two groups. First, a control group of 200 BM
simulations was performed under the condition of not damage to the healthy tissue
surrounding the tumor (Sn = 1). A second group of 200 BM simulations accounted
for the damage induced by SRS to healthy tissue next to the lession (0.1 ≤ Sn ≤ 0.7).
The latter would be the situation that was expected to occur in the clinics.

Tumor volume measurement

Let ν be the set of voxels that have reached more than 45% of their carrying capacity,
considering all cell types including necrotic cells. Let us define the number of ele-
ments in ν by Nν = |ν|. Then, if individual voxel volume is Vvox we define the tumor
volume as V = NνVvox. This quantity can be obtained from in silico simulations
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of our mathematical model. Our simulations was performed in voxels of 1 mm3.
Therefore, the tumor volume is equal to the number of occupied voxels counted Nν

in mm3.

Calculation of β exponent for a virtual BM

In this study, we focused our attention on the dynamic behavior of tumors after the
second follow-up (six months after radiosurgery). Taking into account that the av-
erage time between follow-ups in the clinic is 3 months, for each case we calculated
the following three volume measurements from six months post-SRS, that is, t = 6,
9 and 12 months.After that, we fitted the volumes to the growth law as explained in
Section 4.2.4 and solved Eq. (4.12) to calculate the value of the exponent β.

To avoid possible conditioning of the estimate in the choice of time points, the
three time instances were taken within the following ranges: t0 ∈ (180, 180 + 15)
days, t1 ∈ (t0 + 80, t0 + 100) days and t2 ∈ (t1 + 80, t1 + 100) days. Then, we es-
timated β for each combination of t0, t1 and t2, repeating this procedure 20 times.
Finally, we obtained the estimated β̂ value for the corresponding simulated tumor
as the median value of all the previously calculated values.

4.3 Results

4.3.1 Volumetric dynamics of BM after SRS

With the virtual BMs generated, we studied their volumetric growth dynamics after
therapy. Figure 4.4 shows three examples of these in silico simulations. First column
(A, C, E) shows the dynamics of the different cell populations present: proliferating
tumor cells, damaged cells, necrotic cells, immune cells and total tumor cells for
the three cases. The second column (B, D, F) shows the longitudinal volumetric
dynamics of the simulation displayed in the first column. In each case, 20 β growth
exponents were calculated as explained in Section 4.2.5. Additionally, β̂ median was
obtained for each simulation. In two of the cases, sublinear growths (β̂ < 1) were
obtained for relapses. These simulations were generated with small or no damage
to healthy tissue, i.e, Sn = 1 (Figure 4.4 A,B) and Sn = 0.7 (Figure 4.4 E,F). On the
other hand, when there was a substantial damage to healthy tissue Sn = 0.1, the
volumetric evolution displayed a superlinear growth (β̂ > 1), as shown in Figure 4.4
C,D.

Thus, in order to characterize the volumetric growth post-SRS of the BMs using
the scaling exponent, the values of β were calculated for the set of 400 virtual BMs.
The results obtained for the first group (Sn = 1) are shown in Figure 4.5 A. The val-
ues of β were grouped according to the value of S f̂ used in the simulation. Medians
and the quartiles of the box plots were mostly below 1, although for small values of
S f̂ there were a set of outliers with high estimates of β. These exponents described
the dynamics of relapsing lesions.

For the second group, which included damage to healthy tissue, there were two
behaviors observed in silico. Figure 4.5 C shows the scatter plot of the β̂ median
calculated for the virtual BMs according to the different values of (S f̂ , Sn) simulated.

Values of β̂ > 1 were obtained for cases where SRS eliminates most of the tumor
cells (values of S f̂ ≤ 0.1). Here, the volume re-growth was due to the inflammatory
component. Otherwise, for larger tumor remnants re-growth simulations (values of
0.1 < S f̂ < 1) the calculated β̂ exponents were less than 1. This behavior corresponds
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FIGURE 4.4: Longitudinal tumor growth dynamics after SRS. The
first column shows the dynamics of the proliferating cells (red line),
damaged cells (orange line), necrotic cells (violet line), immune cells
(green line) and total tumor cells (blue line). The second column
shows the longitudinal tumor volumetric dynamics. Subplots (A-B)
correspond with a tumor simulation with no damage to healthy tis-
sue ( Sn = 1), subplots (E-F) correspond with small damage to healthy
tissue (Sn = 0.7 ) and subplots (C-D) correspond with high damage

to healthy tissue Sn = 0.1.

to a tumor relapse. In addition, we can see in Figure 4.5 B the β values calculated
for the cases simulated with 0.1 ≤ Sn ≤ 0.7 and S f̂ ≤ 0.1. Despite the presented
variability, β values obtained were typically greater than 1.

In the next section, to have a single measure of β per simulation, we will work
with β̂i that corresponds to the median of the values obtained in simulation i.

4.3.2 Inflammatory events displayed the fastest growth dynamics allow-
ing to discriminate them from relapses

One of the main challenges in clinical practice is the identification of radiation necro-
sis, due to its similarity in MRI with tumor progression. Inflammatory events after
SRS do not usually require therapeutic actions because inflammation may decrease
spontaneously, while tumor relapses commonly need treatments to control them.
The computational results suggest that β value could be used to distinguish inflam-
matory response from tumor progression.

We studied the differences between the fitting exponents of the groups of in-
flammatory response and relapses BMs. Inflammatory group is made up of in silico
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FIGURE 4.5: (A-B) Comparison of box plots for the growth exponents
β calculated for virtual BMs. A) Cases was simulated with Sn = 1
and 0 < S f̂ < 1. B) Cases was simulated with 0.1 ≤ Sn ≤ 0.7 and
0 < S f̂ < 0.1. C) Scatter plot that shows the β median calculated for
the virtual BMs which were simulated with different values of (S f̂ ,

Sn). Parameters for this simulation are as in Table 4.1.

simulations where SRS eliminates most of the tumor cells but damages the consid-
erable part of the healthy tissue surrounding the lesion, i.e, values of 0.1 < Sn < 0.7
and S f̂ < 0.1. While the relapse groups are made up of the simulations performed
for a higher number of remaining tumor cells, i.e, values of S f̂ > 0.1. The ANOVA
test for the comparison with the BMs virtual lead to significant differences between
inflammatory response group and relapses groups (p=1.85× 10−12). Box plots for
the different subgroups are shown in Figure 4.6 A.

The area under the ROC curve (AUC) in Figure 4.6 B illustrates the ability of
the exponent β̂ to discriminate between responses groups. We obtained AUC=0.97
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and the optimal threshold calculated to maximize the sensitivity and specificity val-
ues was βthreshold = 1.05. This means that inflammatory events show faster growth
dynamics than relapses.

FIGURE 4.6: A) Box plots showing the comparison of the growth ex-
ponents β̂ between the different simulated BMs: relapse group (R),
whose response is characterized by tumor progression (0 < S f̂ < 1,
Sn = 1 ), relapse and inflammation group (R & I), whose response is
characterized by tumor progression and inflammation (0.1 < S f̂ < 1,
0.1 ≤ Sn ≤ 0.7 ) and inflammation group (I), whose response is char-
acterized by inflammation (0 < S f̂ ≤ 0.1, 0.1 ≤ Sn ≤ 0.7 ). B) ROC
curve for the discrimination between tumor progression (R and R&I
groups) and inflammatory response (I group) according to the growth

exponent β̂.

4.4 Discussion and conclusions

In this work, a mesoscale stochastic simulator has been presented that describes the
dynamic growth of the tumor and its response to SRS. The model included the main
cell populations and the biologically meaningful assumptions necessary to address
the problem of late inflammation vs progression.

Continuous models can potentially neglect spatial correlations between the loca-
tions of individuals, specially when different species or subpopulations are take into
account. On the contrary, the model developed took into account these relationships
by combining discrete, spatial and stochastic dynamics. This made it possible to an-
alyze the dynamic behavior of the tumor in terms of volume in a more complete and
precise approach. With a better description of the biological aspects present after
radiation, the model was used to simulate the different possible scenarios according
to the damage caused to the healthy tissue surrounding the tumor and the survival
fraction of the tumor cells after therapy.

The incorporation of the healthy cell population allowed a better description of
the damage caused to the healthy tissue surrounding the tumor caused by therapy.
Healthy cells that were damaged by radiation, after the DNA repair attempt, turned
on the mechanisms of cell death (apoptosis, mitotic catastrophe or necrosis). The
triggering of cell death activated and stimulated the immune cell population. As a
consequence, there was an increase in cell density in the irradiated area, causing an



50
Chapter 4. Tumor growth after stereotactic radiosurgery response: Analysis with a

stochastic model

apparent increase in tumor volume that could be confused with tumor recurrence.
This situation constitutes one of the common clinical responses in patients treated
with SRS.

In the study of the behavior of the tumor volumetric dynamics of relapses, a
slower growth dynamics was obtained than that found in Section 2 for untreated
BMs. The in silico result of β < 1 for relapses was in line with recently obtained
results for the post-SRS longitudinal dynamics of real patient BMs (Ocaña-Tienda
et al., 2021). Ocaña-Tienda et al., 2021 also addressed the hypothesis that a ”first
strike” with radiosurgery could reduce the heterogeneity of the population, where
the substantial reduction of the growth exponent may imply a direct effect on the
complexity of the tumor. We have based on this starting hypothesis for the assump-
tion to include a single tumor cell clonal population in the discrete model for dy-
namic post-SRS analysis. However, the volumetric behavior caused by the post-SRS
inflammatory response displayed a faster growth dynamic than that of BM relapses.
The growth exponent β values for inflammatory events were typically greater than
1.

Radiation necrosis or inflammation must be distinguished from recurrent tumor
to determine appropriate medical action. Initial treatment of RN often involves man-
agement of edema using corticosteroids, antiangiogenic therapies, and hyperbaric
oxygen therapy. Sometimes even it resolve spontaneously and require no further
actions. However, relapses tumor usually requires therapeutical actions like surgery
when the primary tumor and possibly other metastases are under control. Discrim-
inating RNs from relapses radiologically is often a difficult task (Furuse et al., 2019;
Chuang et al., 2016; Lee et al., 2020). Since the diagnosis of radiation necrosis can be
complex, new techniques are necessary for the detection and discrimination between
both conditions.

Our results suggest that the value of β exponent could be have a direct clinical
application. The model supports that when three MRI studies are available satisfy-
ing our inclusion criteria, computing β for a particular patient could allow to diag-
nose the growth as inflammation or tumor progression. Additionally, this result is
consistent with the study carried out in Ocaña-Tienda et al., 2021 on a group of real
patients with and without radiation necrosis, where the evolutionary dynamics was
observed at a macroscopic level in the form of an exponent β > 1 in patients with a
diagnosis of RN.
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CAR T Cell Immunotherapy
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Chapter 5

CAR T cell therapy in B-cell acute
lymphoblastic leukemia

5.1 Introduction

Chimeric antigen receptor (CAR)-T cells are modified autologous or allogeneic T
cells. Their extracellular domain is engineered to recognize a tumor-associated anti-
gen, and the intracellular domain contains a T-cell activation signal. Upon CAR
engagement with the associated antigen, primary T-cell activation occurs and leads
to cytokine release, cytolytic degranulation, resulting in target cell death, and T-cell
proliferation (Feins et al., 2019).

Cancer immunotherapy with CAR T cells is a promising therapeutic option al-
ready available for B cell hematological cancers. Despite the success of CAR T cell
therapy, a variable fraction, between 30% and 60%, of patients relapse after treat-
ment. There are two different types of post-CAR relapse. In the first type, post-CAR
leukemic cells show expression of the CD19+ antigen and other immunophenotypic
characteristics that are the same as those of the original clone. This is consistent with
the recurrence of the initial leukemic clone. In this case, pre-CAR and post-CAR
blasts typically show the same CD19 expression levels.

This type of recurrence shows a down-regulation of the CD19 antigen (Xu et al.,
2019). In this situation, CAR T cells cannot recognize their targets and the tumor re-
grows. In contrast to CD19+ recurrence, CD19− recurrence occurs despite functional
persistence of CAR T cells and ongoing B-cell aplasia (Xu et al., 2019; Ghorashian et
al., 2019).

There are many previous studies devoted to the mathematical modeling of tumor-
immune cell interactions, see for instance (Eftimie, Bramson, and Earn, 2011; Starkov
and Krishchenko, 2014; Eftimie, Gillard, and Cantrell, 2016; López, Seoane, and San-
juán, 2017; Konstorum et al., 2017; Mahlbachera, Reihmera, and Frieboes, 2019) and
references therein. CAR T cell treatments have attracted the interest of mathemati-
cians in the context of gliomas (Sahoo et al., 2020), melanomas (Baar et al., 2016)
and B-cell malignancies (Kimmel, Locke, and Altrock, 2019; Rodrigues, Barros, and
Almeida, 2019; Carvalho-Barros, Rodrigues, and Almeida, 2020; Mostolizadeh, Af-
sharnezhad, and Marciniak-Czochra, 2018; Stein et al., 2019).

In this study, we described mathematically the longitudinal dynamics of B cells,
leukemic clones and CAR T cells. The mathematical models were shown to provide
both a mechanistic explanation for the results of different clinical trials and formulas
quantifying some of the observed phenomena. We discussed some implications for
CD19+ relapses and how it might be possible to control them by re-challenging the
cancer early with CAR T cells.
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5.2 Mathematical models and parameter estimation

5.2.1 Basic mathematical model

Our mathematical model accounts for the evolution over time of several interacting
cellular populations distributed into five compartments. Let C(t), L(t), B(t), P(t),
and I(t) denote the non-negative time-varying functions representing the number of
CAR T cells, leukemic cells, mature healthy B cells, CD19− hematopoietic stem cells
(HSCs), and CD19+ B cell progenitors (i.e. Pre-B, Pro-B and immature bone marrow
B cells), respectively. Our initial autonomous system of differential equations is as
follows:

dC
dt

= ρC (L + B)C + ρβ IC− 1
τC

C, (5.1a)

dL
dt

= ρLL− αLC, (5.1b)

dB
dt

=
1
τI

I − αBC− 1
τB

B, (5.1c)

dP
dt

= ρP (2aPs(t)− 1) P− 1
τP

P, (5.1d)

dI
dt

= ρI (2aIs(t)− 1) I − 1
τI

I +
1
τP

P− αβIC. (5.1e)

Equation (5.1a) involves two proliferation terms of CAR T cells due to stimulation
by encounters with their target cells: either L(t), B(t) or I(t). The parameter ρC > 0
measures the stimulation to mitosis after encounters with CD19+ cells disseminated
throughout the whole body (mostly in the circulatory system). The parameter ρβ =
βρC, where 0 < β < 1, accounts for the fact that immature B cells are located mostly
in the bone marrow and encounters with CAR T cells are less frequent. The last term
describes the decay of CAR T cells with a mean lifetime τC.

In contrast to previous modeling approaches (Kimmel, Locke, and Altrock, 2019;
Rodrigues, Barros, and Almeida, 2019; Mostolizadeh, Afsharnezhad, and Marciniak-
Czochra, 2018), we excluded a death term in the CAR T cell compartment due to
interaction with target cells. This is because the CAR T cells do not undergo apopto-
sis after killing the target cell (Davenport et al., 2015; Davenport et al., 2018). Also,
unlike in those models, there is no standard proliferation term proportional to the
population of CAR T cells, since these cells do not divide spontaneously (Tough and
Sprent, 2018), instead their clonal expansion is directly dependent on stimulation
with the CD19 antigen.

Leukemic cells (see Eq. (5.1b)) have a net proliferation rate ρL > 0 and die due
to encounters with CAR T cells. The parameter α measures the probability (per
unit time and cell) of an encounter between CAR T and CD19+ cells. α and ρC
are, in general, different due to possible asymmetric cell interactions. Namely, if
α > ρC, this implies that CAR T cells kill CD19+ target cells relatively faster than
their own proliferation rate per target cell encountered. In contrast, if α < ρC then,
on average, the killing process is slower than the proliferation rate per target cell
encountered by CAR T cells. For completeness, we considered both cases via the
dimensionless parameter k = ρC/α. Other processes, encompassed by the term
−αLC, include target cell recognition, killing and detachment, which are relatively
much faster than the complete rendezvous kinetics (Benmebarek et al., 2019). Our
model implicitly assumed that all T lymphocytes in the CAR product have a similar
cell killing capacity. This could be the case if both CD4+ T helper cells and CD8+
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FIGURE 5.1: Processes included in the mathematical model (5.1).
Mature B lymphocytes are generated from the CD19− hematopoietic
stem cells (HSCs) and through differentiation of immature CD19+

progenitors with characteristic lifetimes τP and τI , respectively. CAR
T cells are stimulated when meeting CD19+ B cells (normal, leukemic
or immature) with stimulation parameters ρC and ρβ, and undergo
apoptosis with a lifetime τC. leukemic cells proliferate with a rate
ρL. Both mature B and leukemic cells are destroyed via encounters
with the CAR T cells with a killing efficiency α. Created with BioRen-

der.com.

T cells had a similar cell killing capacity, or if most of the CAR product contains
CD8+ cells. A more complex mathematical framework should incorporate potential
differences in killing capacity of these two T lymphocytes (Benmebarek et al., 2019;
Liadi et al., 2015).

Equations (5.1c)-(5.1e), which involve B cells, consist of a compartment for CD19−

HSCs (i.e. P(t)) with an asymmetric division rate aP and a differentiation rate 1/τP
into a new compartment accounting for all of the other CD19+ differentiated states
of bone marrow progenitor B cells (Pro-B, Pre-B, and immature cells) (embodied in
I(t)). These cells are the source of mature B cells. Since all cells in the I(t) compart-
ment already express the CD19+ antigen, they are targets for the fraction of CAR T
cells in the bone marrow, namely βC(t). Finally, mature B cells B(t), which cannot
subsequently proliferate, are the terminal differentiation stage of these cells. They
have a mean lifetime τB, which is present in the last term of Eq. (5.1c). The struc-
ture of the two hematopoietic compartments is similar to that proposed in previous
studies with hematopoiesis models (Marciniak-Czochra et al., 2009). In line with
those models, the signaling function s(t) can be assumed to be of the saturable form
s(t) = 1/ [1 + ks (P + I)], with ks > 0.

To describe CRS, let us define a variable Y(t) for the cytokines released upon
stimulation of CAR T cells by the antigens with rate ρY and cleared with rate 1/τY.
ICANS is related to the number of CAR T cells infiltrating the central nervous sys-
tem, and is expected to be proportional to the total number of CAR T cells, with a
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proportionality coefficient ρN , and removed at a rate 1/τN . Thus, toxicity can be
described by the following equations:

dY
dt

= ρYC (L + B)− 1
τY

Y, (5.1f)

dN
dt

= ρNC− 1
τN

N. (5.1g)

Notice that Eqs. (5.1a)-(5.1e) are uncoupled from Eqs. (5.1f)-(5.1g). A schematic
summary of the biological processes encompassed by our basic mathematical model
(5.1a-5.1g) is shown in Figure 5.1.

Section 5.3.1 shows some mathematical results on the existence, uniqueness and
positiveness of the solutions of system (5.1a)-(5.1e).

5.2.2 Reduced mathematical models

Equations (5.1a)-(5.1e) exclude different biological facts such as heterogeneity in the
CAR T-lymphocyte subpopulations, the differential expression of the CD19 antigen
over leukemic and healthy B cells subclones, the role of regulatory T-cells, etc. How-
ever, there are still many parameters to be determined. The contribution of the bone
marrow Eqs. (5.1d)-(5.1e) is to account for the generation of new B-cells. Hence, to
capture their role while simplifying the full system, we can compute the equilibrium
for Eqs. (5.1d)-(5.1e)

I =
1

τPkS

(
2aPτPρP
1+τPρP

− 1
)

1
τI
+ 1

τP
+ ρI

[
1− aI

aP

(
1 + 1

τPρP

)]
+ αβC

≡ I0

1 + C/C50
, (5.2)

and assume (7.12) to hold for all time. This provides a suitable representation of the
contribution of immature B cells in the bone marrow to global disease dynamics.
Then, Eqs. (5.1a)-(5.1e) reduce to the set

dC
dt

= ρC (L + B)C +
ρCβI0

1 + C/C50
C− 1

τC
C, (5.3a)

dL
dt

= ρLL− αLC, (5.3b)

dB
dt

=
I0/τI

1 + C/C50
− αBC− 1

τB
B. (5.3c)

In the first weeks after CAR T injection, the main contribution to the dynamics
is the expansion of these cells and their effect on the healthy B and leukemic cells.
Thus, we may neglect the contribution of the hematopoietic compartments in Eqs.
(5.3a) and (5.3c) to get

dC
dt

= ρC (L + B)C− 1
τC

C, (5.4a)

dL
dt

= ρLL− αLC, (5.4b)

dB
dt

= −αBC− 1
τB

B. (5.4c)

The study of existence and uniqueness of solutions, together with the stability of
the critical points for both systems, are presented in 5.3.2.
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5.2.3 Parameter estimation

B-cell lymphocyte lifetime τB is known to be about 5-6 weeks (Fulcher and Bas-
ten, 1997). These cells account for a variable fraction between 5% and 20% (Stol-
lar, 1998) of the total lymphocyte number (Alberts et al., 2015) leading to > 1011

B-lymphocytes in humans. Since CAR T cells are injected after lymphodepleting
treatment, in most simulations we set the initial number of B-lymphocytes to be 2.5
×1010 to account for the effect of this treatment.

ALLs are fast-growing cancers with proliferation rates ρL of the order of several
weeks (Marciniak-Czochra et al., 2009; Skipper and Perr, 1970). Naïve CD8+ T cells
are quiescent, their mean lifetime ranges from months to years, and they enter the
cell cycle following interaction with their antigen (Nayar, Dasgupta, and Galustian,
2015; Kasakovski, Xu, and Li, 2018). These activated CD8+ T cells induce cytolysis of
the target cells and secrete cytokines such as TNF-α and IFNγ. Following activation,
most effector cells undergo apoptosis after two weeks, with a small proportion of
cells surviving to become CD8+ memory T cells capable of longer survival (Nayar,
Dasgupta, and Galustian, 2015). Recent studies have reported longer survival values
of about one month (Ghorashian et al., 2019). Thus, we take the mean lifetime τC of
CAR T cells to be in the range of 2-4 weeks.

To estimate the interaction parameter α we use the fact that when measured by
flow cytometry or qPCR, CAR T cells in children treated for ALL reached a maxi-
mum in vivo expansion at around 14 days (Lee et al., 2015), which is a typical value
observed in other clinical studies. Finally, the mitotic rate ρC, related to the stimu-
lating effect of each encounter between T cells and the CD19+ cells, is taken to be
proportional to α (ρC = kα), with k ∈ (0.05, 2). The exact value would depend on
the properties of the CAR T product, but taking B + L initially to be around 1011

and using Eqs. (5.4a) we obtain an initial exponential growth rate for CAR T cells
of around k day−1 , in line with values reported in other models (e.g in Stein et al.,
2019, the authors obtained 0.89 day−1 from data).

The parameter values used in this paper are summarized in Table 5.1.

Parameter Meaning Value Units Source
τB B-lymphocyte 30− 60 day Fulcher and Basten, 1997

lifetime
ρL Leukemic 1/60− 1/30 day-1

growth rate
τC Activated CAR T 14− 30 day Nayar, Dasgupta, and Galustian, 2015

cell lifetime Ghorashian et al., 2019
ρC Mitotic stimulation (0.05− 2) day-1

of CAR T cells by ×α × cell-1

CD19+ cells
α Killing efficiency ∼ 10−11 day-1 Estimated

of CAR T cells × cell-1 from Lee et al., 2015
k ρC and α ratio 0.05− 2 – Estimated and

compatible with
Stein et al., 2019

τI Immature B cell 2− 6 day Rolink, Andersson, and Melchers, 1998
lifetime Shahaf et al., 2016

β Fraction of 0.01− 0.5 – Yasuyuki et al., 2018
CAR T cells in
the bone marrow

TABLE 5.1: Relevant parameter values for model Eqs. (5.4)
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5.3 Basic properties of mathematical models

In this section we show some basic properties of the previous mathematical models.
First, we studied the existence and uniqueness of the positive solutions and then we
analyzed the equilibrium points and the local stability of the reduced models.

5.3.1 Existence and uniqueness of positive solutions

Proposition 1. For any non-negative initial data (C(0), L(0), B(0), P(0), I(0)) and all
parameters of the initial value problem given by Eqs. (5.1a)-(5.1e) being positive, the solu-
tions for C(t), L(t), B(t), P(t), and I(t) exist for all t > 0, are unique and non-negative.

Proof. We first prove the non-negativity of the solutions. Let F = F(x) denote
the vector field representing the right-hand-side of Eqs. (5.1a)-(5.1e), with function
x ≡ (C, L, B, P, I). Also, let nj denote the outward normal unit vector to plane xj = 0,
with j = 1, 2, . . . , 5. That is, n1 = (−1, 0, 0, 0, 0) and analogously for other nj. Con-
sider the scalar products of the ODE system dx

dt = F(x) with each nj and assume that
the initial data (C(0), L(0), B(0), P(0), I(0)) are positive. Then, dx

dt ·n1 = F · n1 = 0,
dx
dt ·n2 = F · n2 = 0 and dx

dt ·n4 = F · n4 = 0 at hyper-surfaces C = 0, L = 0 and P = 0,
respectively. Then, the hyper-surfaces C = 0, L = 0 and P = 0 are invariant.

Next, dx
dt ·n5 = F · n5 = − 1

τP
P ≤ 0 at plane I = 0. Finally, dx

dt ·n3 = F · n3 = − 1
τI

I ≤
0 at plane B = 0. Hence, pieces of hyper-surfaces {I = 0} ∩R5

+,0 and {B = 0} ∩R5
+,0

are semipermeable inward R5
+,0.

As a result, R5
+,0 is a positively invariant domain for Eqs. (5.1a)-(5.1e). Therefore,

non-negativity of solutions (C, L, B, P, I) follows.
Since all parameters in Eqs. (5.1a)-(5.1e) are finite and the right-hand-side of

the system is a continuous function in (C, L, B, P, I) in the domain R5
+,0, existence of

solutions of Eqs. (5.1a)-(5.1e) follows from the Cauchy-Peano theorem. Moreover,
as the partial derivatives of the right-hand side of the system are also continuous
and bounded in R5

+,0, uniqueness follows from the Picard-Lindelöf theorem. This
completes the proof.

Analogous, we have the following propositions for system (5.3) and (5.4), which
are similar to the previous proposition for system (5.1) and therefore details of the
proof are omitted:

Proposition 2. For any non-negative initial data (C(0), L(0), B(0)) and all parameters
of the initial value problem given by Eqs. (5.3a)-(5.3c) being positive, the solutions for
C(t), L(t) and B(t) exist for all t > 0, are unique and non-negative.

Proposition 3. For any non-negative initial data (C0, L0, B0) and all the parameters of the
model being positive, the solutions to Eqs. (5.4) exist for t > 0, are non-negative and unique.

5.3.2 Equilibrium points and local stability analysis

Reduced mathematical model: system (5.4)

Before delving into the analysis of system (5.3), it is convenient to first understand
the dynamics of a simplified version of (5.3) given by Eqs. (5.4). We begin by cal-
culating the fixed points and determining their stability. These are the points P1 =
(0, 0, 0) and P2 = ( ρL

α , 1
ρCτC

, 0).
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To analyze the stability of these points, we calculate the Jacobian matrix of Eqs. (5.4):

J(C, L, B) =

ρC(L + B)− 1
τC

ρCC ρCC
−αL ρL − αC 0
−αB 0 −αC− 1

τB

 .

• Equilibrium point P1 = (0, 0, 0). The Jacobian matrix is

J(P1) =

 − 1
τC

0 0
0 ρL 0
0 0 − 1

τB

 ,

and the eigenvalues are λ1 = 1/τC, λ2 = ρL and λ3 = −1/τB. Thus, P1 is a
saddle point and therefore, an unstable equilibrium point.

• Equilibrium point P2 = ( ρL
α , 1

ρCτC
, 0).

If we make the following linear change of coordinates x = C − ρL/α, y =
L− 1/ρCτC and z = B we move the point P2 to the origin and the system (5.4)
becomes

dx
dt

=
ρCρL

α
(y + z) + ρC(y + z)x, (5.5)

dy
dt

= − α

ρCτC
x− αxy, (5.6)

dz
dt

= −(ρt +
1
τB

)z− αxz. (5.7)

The Jacobian matrix for this point is:

J(P2) =

 0 ρCρL
α

ρCρL
α

− α
ρCτC

0 0
0 0 −ρL − 1

τB

 .

The eigenvalues of the matrix are λ1,2 = ±
√

ρL
τC

i and λ3 = −ρL − 1
τB

.

Since λ1,2 are imaginary eigenvalues, this point is a non-hyperbolic point. This
means that for the linearized system, P2 is a center, but it is not possible to
conclude its stability for the nonlinear system.

On the other hand, since λ3 < 0, P2 possesses a local stable manifold cor-
responding to that eigenvalue. Thus, P2 has a local center manifold (corre-
sponding to the eigenvalues λ1,2) of dimension 2 and a local stable manifold
(corresponding to the eigenvalue λ3).

Since λ3 is negative, all the orbits starting near the equilibrium point approach
the center manifold. It is straightforward (although somewhat tedious) to ver-
ify that the center manifold is given by z = h(x, y) = 0. So, the qualitative



60 Chapter 5. CAR T cell therapy in B-cell acute lymphoblastic leukemia

behavior of the local flow can then be determined from the flow of the follow-
ing system on the center manifold z = 0:

dx
dt

=
ρCρL

α
y + ρCxy, (5.8)

dy
dt

= − α

ρCτC
x− αxy. (5.9)

Making the following change of variables

t→ α

ρCτC

√
at, y→

√
ay,

where a = ρ2
CρLτC/α2, b = ρ2

CτC/α and m = ρCτC, we obtain

dx
dt

= y +
b
a

xy,

dy
dt

= −x− m√
a

xy.
(5.10)

If we introduce polar coordinates, defined by

x = r cos θ, y = −r sin θ,

system (5.10) becomes

ṙ = R(r, θ),

θ̇ = 1 + Θ(r, θ),
(5.11)

where

R(r, θ) = −b
a

r2 cos2 θ sin θ − m√
a

r2 sin2 θ cos θ,

Θ(r, θ) =
b
a

r cos θ sin2 θ − m√
a

r sin θ cos2 θ.
(5.12)

Thus, we can derive an equation for r as a function of θ through the differential
equation

dr
dθ

= −
b
a r2 cos2 θ sin θ + m√

a r2 sin2 θ cos θ

1 + b
a r cos θ sin2 θ − m√

a r sin θ cos2 θ
. (5.13)

In a neighborhood of r = 0,(
1 +

b
a

r cos θ sin2 θ − m√
a

r sin θ cos2 θ

)−1

= 1 +
m√

a
r sin θ cos2 θ

−b
a

r cos θ sin2 θ + O(r2).
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FIGURE 5.2: (a) An orbit of the phase portrait of system (5.4). (b) An
orbit of the phase portrait of system (5.3). The parameters used to

calculate such orbits are given in Table 5.1.

As a result, for small r we obtain the following expression as the Taylor series
of Eq. (5.13):

dr
dθ

= −
[

b
a

cos2 sin θ +
m√

a
sin2 θ cos θ

]
r2

+

[
b2

a2 cos3 θ sin3 θ − m2

a
sin3 θ cos3 θ +

bm
a
√

a
sin4 θ cos2 θ

]
r3

−
[

bm
a
√

a
cos4 θ sin2 θ

]
r3 + O(r4).

Now, we use the method of averaging to carry out a change of variable with the
effect of reducing the non-autonomous differential equation to an autonomous
one. Let the transformation be

r = ρ + g1(θ)ρ
2 + g2(θ)ρ

3, (5.14)

with

g′1(θ) = −b
a

cos2 θ − m√
a

sin2 θ cos θ,

g′2(θ) =

(
b2

a2 −
m2

a

)
cos3 θ sin3 θ +

bm
a
√

a
sin4 θ cos2 θ − bm

a
√

a
cos4 θ sin2 θ,

and formally arrive at the equation

dρ

dθ
= 0. (5.15)

At this point, we are in a position to apply the Center Theorem of Lyapunov
(see for instance Hale and Kocak, 1991) which ensures that when dr/dθ can
formally be transformed to zero, the equilibrium point is a center. Thus, the
origin is a center and so the equilibrium point P2 is also a center.

It is also possible to find a Lyapunov function of the system (5.10) as

V(x, y) =
a
b

x +

√
a

m
y− a2

b2 log
(

1 +
b
a

x
)
− a

m2 log
(

1 +
m√
ay

)
, (5.16)
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and V̇ = 0, ∀(x, y) ∈ R2. As R2
+ is a positively invariant manifold, all the orbits go

periodically around P2. An orbit of the phase portrait for a solution of system (5.4)
is shown in Figure 5.2 a.

Finally, let (C(t), L(t)) be an arbitrary solution of (5.4) for B = 0, and denote its
period by L > 0. It is possible to calculate the time average of variables C and L
(that is, the number of CAR T and leukemic cells, respectively). Dividing the first
equation of (5.4) by C, the second by L and integrating from 0 to L and using the fact
that the solutions are periodic, we get

0 = log C(t)
∣∣L
0 = ρC

∫ L
0

L(t)dt− 1
τc
L, (5.17)

and

0 = log L(t)
∣∣L
0 = ρLP− α

∫ L
0

C(t)dt. (5.18)

Hence

1
L

∫ L
0

C(t)dt =
ρL

α
, (5.19)

1
L

∫ L
0

L(t)dt =
1

ρCτC
, (5.20)

whose values are equal to the equilibrium point P2 for the two first coordinates.

Reduced mathematical model: system (5.3)

On the other hand, the non-negative equilibrium points of system (5.3) are:

• Equilibrium point P1 = (C∗1 , L∗1 , B∗1) =
(

0, 0, τB
τI

I0

)
.

• Equilibrium point P2 is given by

P2 = (C∗2 , L∗2 , B∗2)

=

ρL

α
,

1
ρCτC

− I0(τB + β (1 + ρLτB)τI)

(1 + ρLτB)
(

1 + ρL
αC50

)
τI

,
I0τB

(1 + ρLτB)
(

1 + ρL
αC50

)
τI


where we assume that

1
ρCτC

>
I0(τB + β (1 + ρLτB)τI)

(1 + ρLτB)
(

1 + ρL
αC50

)
τI

. (5.21)

• P3 = (C∗3 , L∗3 , B∗3) =
(

C∗3 , 0, 1
ρCτC
− βI0

1+C∗3 /C50

)
where C∗3 is given by

C∗3 = −C50

2

(
1 +

1
ατBC50

− ρCβI0τC

)

+
C50

2

√(
1 +

1
ατBC50

− ρCβI0τC

)2

+
4ρC I0τC

αC50

(
β

τB
+

1
τI
− 1

ρC I0τCτB

)
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with the following conditions holding

β

τB
+

1
τI

>
1

ρC I0τCτB
,

1
ρCτC

>
βI0

1 + C∗3 /C50
. (5.22)

• P4 = (C∗4 , L∗4 , B∗4) =
(

C∗4 , 0, 1
ρCτC
− βI0

1+C∗4 /C50

)
where C∗4 is given by

C∗4 = −C50

2

(
1 +

1
ατBC50

− ρCβI0τC

)

− C50

2

√(
1 +

1
ατBC50

− ρCβI0τC

)2

+
4ρC I0τC

αC50

(
β

τB
+

1
τI
− 1

ρC I0τCτB

)
with the following conditions being satisfied

1 +
1

ατBC50
< ρCβI0τC,

β

τB
+

1
τI

<
1

ρC I0τCτB
,

1
ρCτC

>
βI0

1 + C∗4 /C50
. (5.23)

Regarding the study of the stability of the equilibrium points, we obtain the fol-
lowing conclusions:

• The eigenvalues of P1 are

λ1 = ρL, λ2 = − 1
τB

, λ3 =
I0ρCτBτC − τI + I0βρCτCτI

τCτI

and therefore P1 is an unstable point (saddle point).

• Using the Routh-Hurwitz criterion, it follows that P2 is asymptotically stable
for any positive I0 value, assuming that condition (5.21) is satisfied. Since for
I0 = 0 we obtain the system (5.4), it means that a small perturbation of I0 = 0,
i.e. I0 = ε, with ε sufficiently small, transform the centers obtained in the
system (5.4) into asymptotically stable foci. Therefore, I0 = 0 is a bifurcation
point since for this value the type of stability changes, and we obtain a Hopf
bifurcation. An orbit of the phase portrait for a solution of system (5.3), for this
case, is shown in Figure 5.2 b.

• Carrying out a stability study, in a general way, for both P3 and P4 is very
complex, so we have performed a study within the confines of the parameter
range collected in Table 5.1, which are biologically relevant.

We have observed that for all parameters in Table 5.1, P4 has at least one neg-
ative component, and thus we do not consider such biologically unfeasible
scenarios.

There exist parameters for P3 for which the components C∗3 , L∗3 , and B∗3 are all
positive and correspond to a point that is an asymptotically stable focus. Figure 5.3
shows the region where the real eigenvalue, say λ1, is negative or positive, as a func-
tion of I0 and k and for different values of α. Figure 5.4 depicts all the eigenvalues
of P3 for different values of I0, k and α. As can be seen, the real part of the complex
eigenvalues λ2 and λ3, is always negative. On the other hand, the real eigenvalue λ1
changes its sign for different values of I0, k and α. Then, the stability and instability
of P3 is given by the sign of λ1.
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FIGURE 5.3: Values of the sign of eigenvalue λ1 for different values
of I0 and k for (a) α = 4.5 · 10−11 (b) α = 10−10 (c) α = 3 · 10−11. The

orange shaded region corresponds to eigenvalue λ1 positive.

FIGURE 5.4: Pseudocolour plots of the real and imaginary parts of P3
for different values of I0 and k for (a) α = 4.5 · 10−11 and (b) α = 10−10

5.3.3 Analytical formulation of maximum expansion of CAR T cells for
system (5.4)

The positive solutions to Eqs. (5.4b) and (5.4c) are given, respectively, by

L(t) = L0 exp
(

ρLt− α
∫ t

0
C(s)ds

)
, (5.24a)

B(t) = B0 exp
(
− t

τB
− α

∫ t

0
C(s)ds

)
. (5.24b)

Then, calculating its quotient, it is easy to obtain the following expression for all
t > 0.

L(t)
B(t)

=
L0

B0
exp

[(
ρL +

1
τB

)
t
]

. (5.25)

Proposition 4. Let tmax denote the time at which a local positive maximum of the CAR T
cell solution C = C(t) to Eq. (5.4a) occurs. Then, the positive solutions to Eqs. (5.4b) and



5.3. Basic properties of mathematical models 65

(5.4c) at t = tmax satisfy

L(tmax) =
L0 e

(
ρL+

1
τB

)
tmax

ρCτC

(
B0 + L0 e

(
ρL+

1
τB

)
tmax

) , (5.26a)

B(tmax) =
B0

ρCτC

(
B0 + L0 e

(
ρL+

1
τB

)
tmax

) , (5.26b)

where L0 and B0 are the initial conditions for the leukemic and B cells, assumed to be positive
numbers.

Proof. If C = C(t) has a local positive maximum at t = tmax, then dC
dt = 0 at t = tmax.

Using Eq. (5.4a), we get ρC (L(tmax) + B(tmax))− 1
τC

= 0. Thus, L(tmax) + B(tmax) =
1

ρCτC
. Combining this expression with the above formula (5.25) evaluated at t = tmax,

Eqs. (5.26) follow.

Proposition 5. Let tmax denote the time at which a local positive maximum of the CAR T
cell solution C = C(t) to Eq. (5.4a) occurs. Then tmax can be calculated from the implicit
relation

log
[
ρCτC

(
L0 eρLtmax + B0 e−

tmax
τB

)]
− α

∫ tmax

0
C(t)dt = 0 (5.27)

Proof. Combining (5.24a) and (5.24b), and setting t = tmax, we get

L(tmax) + B(tmax) =
(

L0 eρLtmax + B0 e−
tmax

τB

)
e−α

∫ tmax
0 C(s)ds. (5.28)

Using the fact that L(tmax) + B(tmax) = 1
ρCτC

, Eq. (5.28) can be finally written as
(5.27).

Proposition 6. Let Cmax be the value of the local positive maximum of the CAR T cell
solution C = C(t) to Eq. (5.4a), occurring at time tmax. Then,

Cmax = C0 +
ρC

α

(
L0 + B0 −

1
ρCτC

)
− 1

τC

∫ tmax

0
C(s)ds

+
ρLρC

α

∫ tmax

0
L(s)ds− ρC

ατB

∫ tmax

0
B(s)ds . (5.29)

Proof. We first combine Eqs. (5.4) in the form

1
ρC

dC
dt

+
1
α

(
dL
dt

+
dB
dt

)
= − 1

ρCτC
C +

ρL

α
L− 1

ατB
B. (5.30)

Upon integration, we get

C(t) = C0 −
ρC

α
(L(t) + B(t)− L0 − B0)

− 1
τC

∫ t

0
C(s)ds +

ρLρC

α

∫ t

0
L(s)ds− ρC

ατB

∫ t

0
B(s)ds . (5.31)

Setting t = tmax and using L(tmax) + B(tmax) =
1

ρCτC
in (5.31), the result follows.
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Numerical evaluation of the three integrals on the right-hand side of (5.31) re-
veals that, for the parameters shown in Table 5.1, each is smaller (by at least one
order of magnitude) than the second term (note that there is also partial cancellation
among the three integrals). Hence, we may approximate (5.31) by

Cmax ' C0 +
ρC

α

(
L0 + B0 −

1
ρCτC

)
, (5.32)

Thus, the maximum number of CAR T cells that can be reached during the first
expansion phase is related to the initial populations L0 and B0 multiplied by the
amplification factor ρC

α . Note also that, in practice, the contribution of C0 is much
smaller than the second term in Eq. (5.32) and can be ignored, suggesting that the
initial number of injected CAR T cells does not affect the peak, although it does
contribute in (5.27) when computing tmax.

5.4 Results

In this section, we present the results obtained from systems (5.3) and (5.4). Since
model (5.4) is a particular case of the model (5.3), we first show the results for the
model (5.4). This allows us to go from a simpler analysis to a more general one.

5.4.1 Mathematical model (5.4) describes post CAR T cell injection dy-
namics

We first studied the dynamics of the system post-CAR T cell injection numerically,
as described by Eqs. (5.4). Figure 5.5 shows a typical example. During the first
two months of the simulation, CAR T cells expanded, showing a peak at about two
weeks post-injection, before their numbers stabilized and began to decrease. Both
the leukemic and B-cell compartments experienced a continuous decrease towards
undetectable values representing the dynamics of a patient without residual disease.
The expansion of the CAR T population was exponential, increasing by several or-
ders of magnitude (see Figure 5.5 b), in line with reported clinical experience and
patient datasets (Ghorashian et al., 2019).

5.4.2 The number of injected CAR T cells does not affect treatment out-
come, but the stimulation rate does

We next studied the dynamics of Eqs. (5.4) under different numbers of injected CAR
T cells. A typical example is displayed in Figure 5.6 a. The change of one order of
magnitude in the initial CAR T cell load resulted in minor changes in the maximum
expansion achieved (of around 6%). A reduction in the time to peak expansion in
silico of about 3 days was observed. However, the persistence of CAR T cells was
not affected by their initial load.

It has already been observed that when the number of CAR T cells seeded is
small, the therapy can fail (Hartmann et al., 2017). We simulated in silico, and saw
that the effect of a reduction in the growth efficiency of the cells (the stimulation rate
ρC) and the dynamics were substantially affected (see Figure 5.6). A reduction in the
efficiency of stimulation in the CAR T cells led to a slower growth of this population
in silico, resulting in leukemic cells reaching higher numbers for almost two months
without any clinical response.
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FIGURE 5.5: Typical dynamics of leukemic cell (red curve), B-cell
(blue curve) and CAR T cell (green curve) compartments accord-
ing to Eqs. (5.4). (a) Simulations for parameters α = 4.5× 10−11

day−1cell−1, τC = 14 days, ρL = 1/30 day−1, ρC = 0.25α, τB = 60
days and injected cells C0 = 107 corresponding, to 5×105 cells per kg
for a 20 kg child. Also, L0 = 5× 1010 and B0 = 2.5× 1010, which cor-
respond to typical values after lymphodepleting chemotherapy. (b)

Logarithmic plot of the CAR T cell population.

5.4.3 Maximum expansion of CAR T cells in vivo and CRS

System (5.4) is amenable to finding useful analytical and semi-analytical expressions,
which are all derived in Section 5.3.3. At time tmax, which typically occurs within 2-4
weeks after injection of the CAR T cells, a first maximum in their number, denoted
by Cmax ≡ C(tmax), is achieved during the expansion phase. The value of tmax can be
calculated from the implicit relation given by Eq. (5.27). Furthermore, it is possible
to estimate the maximum number of CAR T cells Cmax, which is approximately given
by Eq. (5.32). Also, explicit formulas for computing the leukemic and B cell loads in
patients at time tmax are given by Eqs. (5.26).

Since toxicity, accounted for by Eqs. (5.1f) and (5.1g), depends on the maximum
CAR T cell number, one would expect a smaller ratio ρC

α to lead to lower toxicities.
Figure 5.7 shows the linear dependence of the maximum number of CAR T cells on
ρC as obtained from simulations of Eqs. (5.4), which is well approximated by Eq.
(5.32). The above result points to a proportional relation between the total leukemic
load and the severity of the CRS syndrome. In fact, a strong correlation between the
severity of CRS and disease load at the time of CAR T cell infusion has been noted
in multiple clinical trials of CAR T cell therapy of hematological malignancies (Lee
et al., 2015; Maude et al., 2014; Davila et al., 2014; Turtle et al., 2017).

5.4.4 CAR T cell persistence depends on the T cell mean lifetime

The recent clinical study Ghorashian et al., 2019 showed much longer persistence
of the CAR T cells when their mean lifetime was increased to τC = 30 days, larger
than the more common value τC = 14 days. We simulated the dynamics of Eqs.
(5.4) for both values of τC. An example is shown in Figure 5.8. While the B-cells
and leukemic cells exhibited similar behavior, CAR T cells showed a much longer
persistence in line with the clinical observations.
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FIGURE 5.6: The number of injected CAR T cells does not affect
treatment outcome, but the stimulation rate does. (a) Dynamics of
leukemic cells (red line), B-cells (blue line) and CAR T cells (green
line) according to Eqs. (5.4) for the virtual patient of Figure 5.5 sub-
ject to injections of 5 × 105 cells/kg (solid lines), 15 × 105 cells/kg
(dashed lines) and 45 × 105 cells/kg (dotted lines). (b,c) Dynamics
for stimulation rates ρC = 0.25α (solid line) and ρC = 0.05α (dotted

lines). (c) CAR T cell expansion in log scale.

5.4.5 CD19+ relapses could be a dynamical phenomenon

We performed simulations of Eq. (5.4) for longer timescales (with parameters as in
Figure 5.5) and observed a long-time relapse (see Figure 5.9) at about one year af-
ter infusion, in what would be a CD19+ relapse. Leukemic growth continued for
several months but finally there was an outgrowth of CAR T cells after the relapse
that was able to control the disease. This is an important nonlinear dynamical phe-
nomenon that could help explain some CD19+ relapses.

When B ∼ 0, as after CAR T cell expansion, Eqs. (5.4) become the well-known
Lotka-Volterra predator-prey mathematical model. That model gives rise to peri-
odic oscillations corresponding to ecological cycles that have been observed both in
ecosystems (Brauer and Castillo-Chavez, 2000) and in experimental models (Blasius
et al., 2020). In our present case, the period of the cycles would be related to the
cancer relapse time. This period has been previously described as showing a com-
plex dependence on a conserved quantity, K (Shih, 1997) (having in our case units
of s−1), and given by
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FIGURE 5.7: Dependence on ρC of the maximum number of CAR T
cells and the time tmax taken to achieve the maximum. Common pa-
rameters for all plots are as in Figure 5.5: α = 4.5× 10−11 cell−1 day−1,
τC = 14 days, ρL = 1/30 day−1, τB = 60 days and initial cell numbers
C0 = 107 cells, B0= 2.5 × 1010 cells. (a) Maximum value number of
CAR T cells obtained for initial leukemic loads of 5 × 1010 cells (red)
and 2.5 × 1010 cells as a function of ρC. Solid line indicates the results
obtained from Eqs. 5.4 and the dashed line the upper bound given by
Eq. (5.32). (b) Time to maximum value of CAR T cells for different

initial leukemic loads computed from Eq. (5.27).

K = αC − ρL log
(

αC
ρL

)
+ ρCL − 1

τC
log (ρCτCL) ∼ ρC (L0 + B0) . (5.33)

The conserved quantityK � 1, can be approximated by the asymptotic formula (Os-
hime, 2003), which in our case yields the period L of oscillations

L(K) =
ρCτC(L0 + B0)

ρL
+

1
ρL

log [ρCτC (L0 + B0)]

+ τC log
[

ρC (L0 + B0)

ρL

]
+ O

(
log E

E

)
∼ ρCτC (L0 + B0)

ρL
. (5.34)

Because of the approximations involved, Eq. (5.34) should only be taken as an order-
of-magnitude estimate for the cancer relapse time. However, it is interesting that
longer lifetimes of the CAR T cells resulted in longer relapse times according to
Eq. (5.34). This could be the reason why so few CD19+ relapses were observed in the
recent trial (Ghorashian et al., 2019), with τC = 30 days, much longer than the more
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FIGURE 5.8: CAR T cell persistence when varying its lifetime τC.
Dynamics of the leukemic cell (red), B-cell (blue) and CAR T cell
(green) according to model Eqs.(5.4). Solid and dashed curves corre-
spond to τC = 14 days and τC = 30 days, respectively, with the rest

of parameters and initial data as in Figure 5.5.

FIGURE 5.9: CD19+ relapses could be a dynamical phenomenon.
Long-time dynamics of Eqs. (5.4) for leukemic (red), B (blue) and
CAR T (green) cells in the time interval [0,600] days, displaying a
CD19+ relapse as the result of predator-prey type dynamics in silico.
Parameters are as in Figure 5.5. The shaded area indicates the time
interval in which the disease would be progressing without further
interventions. Notice the subsequent emergence of CAR T cells after

the CD19+ cell relapse.

common value τC ∼ 14 days.
A very intriguing question is whether those relapses could resolve spontaneously

due to the predator-prey type competition between the CAR T and leukemic cells.
Owing to the long progression time, this could pass unnoticed, since after progres-
sion, other therapeutic actions would be taken, such as hematopoietic transplants,
before allowing the CAR T to appear again.

Although our simulations point to a potentially interesting scenario, the model
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FIGURE 5.10: Long-time dynamics of virtual patients predicted by
Eqs. (5.3). Parameters are α = 4.5 × 10−11 cell−1 day−1, β = 0.1,
τC = 14 days, τB = 60 days, ρL = 1/30 day−1, ρC = 0.25α, C50 = 109

cells, τI = 6 days. The subplots show the dynamics of the leukemic
cell (red), B-cell (blue) and CAR T cell (green) compartments. (a) Case
I0 = 107 cell day−1. (b) Case I0 = 3× 108 cell day−1, (c) Case I0 =

5× 108 cell day−1.

given by Eqs. (5.4) is not good for studying long-term phenomena. One of the miss-
ing biological processes in Eqs. (5.4) is the potential contribution of B-cell production
in the bone marrow from CD19− hematopoietic stem cells to the maintenance of a
pool of CAR T cells. Thus, to get a more realistic insight into the dynamics, we simu-
lated Eqs. (5.3) for the same virtual patients and biologically reasonable parameters
β = 0.1, τI = 6 days (see Table 5.1) and different values for the production of B cells
in the bone marrow embodied by I0.

One set of examples is shown in Figure 5.10. The more realistic model given by
Eqs. (5.3) still presents first relapse at a time independent of the choice of the flux
I0. However this parameter influenced the post-relapse dynamics. For values of
I0 smaller than approximately 107 cells/day, which is the typical number of injected
CAR T cells (Hartmann et al., 2017), there were no substantial changes in the dynam-
ics with subsequent relapses following a periodic pattern. Larger values of I0 led to
relapses of B cells before the relapse of leukemic cells and later of CAR T cells. Also,
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the relapse dynamics were in line with damped oscillations, with both leukemic
and CAR T cell relapses having smaller amplitudes. Interestingly, our model Eqs.
(5.3) predict that a significant increase of B cells could be used as a potential clinical
biomarker indicative of subsequent cancer relapse.

5.4.6 CAR T cell reinjection may allow the severity of relapse to be con-
trolled

In the framework of our modeling approach leukemia relapses would be transient.
However, the long potential duration of such relapses would require further inter-
vention to prevent patients from suffering undesirable harm during such periods.
An interesting question is whether it would be possible to control these recurrences
by acting on the leukemia by reinjecting CAR T cells , and what the appropriate
timings and doses for that intervention would be.

Using the mathematical model (5.3), we simulated the reinjection of C = 107

CAR T cells at different times: before relapse (t = 300 days), at relapse (t = 360
days), and after relapse (t = 415 days) and compared the outcome with the case
without reinjection. An example is shown in Figure 5.11 a,b.

Significant reductions of both the peak leukemic cell number and relapse du-
ration were obtained, the best results being when reinjection was performed on
relapse. Thus, our in silico results suggest that the early reinjection of CAR T cells in
a CD19+ B-leukemia relapse could reduce disease load and help in early control of
the disease. This has interesting implications since, after relapse is detected, CAR T
preparation requires blood extraction, apheresis, T cell modification and expansion
{ex vivo, and finally patient infusion. In clinical practice this process takes from
three to six weeks. From the practical point of view, a possibility for increasing the
speed of action after leukemic cell identification would be to freeze and keep some
of the CAR T cells initially obtained so that they could be reinjected and aid in early
control of the disease.

We also studied the effect of the number of CAR T cells injected at the optimal
time. An example is shown in Figure 5.11 c,d. The effects of a very small infusion
of C = 105 cells are compared with those of a more standard dose of C = 107

cells. The number of T cells injected affected the outcome. This was different from
our previous observation that the number of CAR T cells injected initially did not
affect the treatment outcome. The reason is that, initially, there are many targets,
both leukemic and B cells, allowing for a huge expansion of the CAR T population.
However, on relapse, the target population is smaller and a larger initial number of
CAR T cells helps in making the expansion process faster.

5.4.7 Model (5.3) predicts a scenario leading to zero leukemic cells

The analysis of the non-negative equilibrium points of system (5.3), set out in 5.3.2,
shows the possibility of reaching L = 0 after starting with a non-zero leukemic
cell population. Using the parameters given in Table 5.1, we observe that there ex-
ist ranges for the ratio k and the bone marrow B cell production I0 where one of
the equilibrium points, P3 (a focus), is asymptotically stable for different values of α.
Hence, one of its associated eigenvalues will be real (see Figure 5.3 in 5.3.2) while the
other two eigenvalues will be complex conjugate (see Figure 5.4 in 5.3.2). Figure 5.12
illustrates an example with different initial conditions and the same set of parame-
ters for them. It should be pointed out that in all cases shown in Figure 5.12, both



5.4. Results 73

FIGURE 5.11: CAR T cell reinjection may allow severity of relapse
to be controlled. Simulations of Eqs.(5.4) for parameter values α =
4.5× 10−11 cell−1 day−1, β = 0.1, τC = 14 days, τB = 60 day, ρL =
1/30 day−1, ρC = 0.25α, C50 = 109 cells, τI = 6 days, and I0 =
2× 105 cell day−1. All subplots show the dynamics of leukemic (red)
and CAR T (green) cells upon reinjection of CAR T cells. Cases (a)
and (b) display the dynamics of (a) leukemic and (b) CAR T cells,
respectively, for doses of C = 107 cells administered at times: t = 300
days (dash-dot line), t = 360 days (dotted line) and t = 415 days
(dashed line) in comparison with the dynamics without reinjection
(solid line). Subplots (c) and (d) illustrate the combined dynamics of
leukemic and CAR T cells after reinjection of: (c) C = 105 cells and

(d) C = 107 cells at t = 360 days.

the CAR T and the B cells remain at non-zero levels (of the order of 5× 108 and 109,
respectively) when the leukemic cell population effectively becomes extinct (L < 1.)

These results are interesting as they suggest that there is a range of biologically
relevant parameters where the cancer may eventually disappear. Our simulations
indicate that the larger I0, k and α, the more likely it is that L = 0 can be reached. In
particular, if I0 is increased, this would imply higher production of both B and CAR
T cells, due to the contribution of immature B cells from the bone marrow, resulting
in a greater chance of eradicating the leukemic cells. This scenario provides another
proof of the concept that the mathematical model put forward here can be useful in
the clinical setting and may trigger new exploratory pathways.

5.4.8 Sensitivity analysis

A sensitivity analysis was carried out to identify the model parameters with the
greatest influence on the equilibrium for CAR T, leukemic and B cells are I0, α
and k. To do so, we calculated the first-order sensitivity coefficient using Sobol’s
method (Saltelli et al., 2010) to measure the fractional contribution of a single pa-
rameter to the output variance. Using a priori information on the parameters, we
defined the distribution functions in the table shown in Figure 5.13. We generated a
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FIGURE 5.12: Routes to leukemic cell extinction. Phase portrait of
system (5.3) showing three orbits with different initial conditions (
coloured dots) that lead to leukemic extinction. Parameters for all
orbits are α = 5× 10−11 cell−1 day−1, β = 0.1, τC = 20 days, τB = 40
day, ρL = 1/45 day−1, ρC = 0.7α, C50 = 109 cells, τI = 2.4 days, and

I0 = 2× 108 cell day−1.

FIGURE 5.13: Sensitivity analysis of system (5.3) to identify the in-
fluence of the model parameters on the solutions for (a) CAR T, (b)
leukemic and (c) B cells. The parameter ranges studied and distribu-

tions used are displayed in the lower-right table.

set of parameters of size 1000 to calculate the sensitivity indices. The results of the
sensitivity analysis of Eqs. (5.3) are shown in Figure 5.13.

The results show that the parameters with the greatest influence on the solutions
for CAR T, leukemic and B cells are k, α, τC and I0. However, their impact varies
depending on the specific cell compartment and time. For CAR T cells, k and τC are
the most significant during the first four months after injection. For longer times, I0
becomes the most important. For leukemic cells, k and α are the most influential
parameters, both during the first weeks of the CAR T cell treatment and later during
relapse. For healthy B cells, k and α are the most relevant parameters during the
first weeks, but later on, on relapse, I0 also becomes important. Such parameter
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dependencies are also suggestive in order to target specific mechanisms that would
allow partial control over them.

5.5 Discussion and conclusion

In this chapter, we put forward a mathematical model incorporating the main cell
populations involved in the growth of ALL. The model included not only leukemic
clones and CAR T cells, but also the hematopoietic compartment that would be re-
sponsible for the persistence of CAR T cells by the continuous generation of CD19+

progenitors from CD19− stem cells.
One simplified version of the full model already allowed us to describe the clin-

ical evolution of B-ALL in the first months after CAR T injection yielding explicit
formulas of clinical added value such as the maximum number of CAR T cells that
can be reached. Also, it provided a rational support to several clinical observations.
Interestingly, the model predicted the possibility of CD19+ relapses being dynamical
phenomena resembling predator-prey oscillations. The more complex mathematical
models were used to confirm this dynamic and to further give support for therapeu-
tically rechallenging the leukemia with CAR T cells in CD19+ relapses.

It is interesting to point out that in homeostasis there is a population of T cells,
the T regulators (Tregs), that control the total number of T cells and have a role in
limiting autoimmune processes. We did not incorporate Tregs in our mathematical
description. This could be a good approximation for the first weeks of the CAR T
cell expansion because the initial lymphodepletion also affects Tregs. However, after
the first 3-4 weeks, this population will be able to expand again and has an effect on
a faster reduction of the total CAR T cell load. There is not much data available on
the dynamics of Treg cells and their reconstitution after the CAR T cell peak. We
plan on accounting for this population in future works.

The results obtained using the reduced mathematical model show that the num-
ber of CAR T cells initially injected does not affect the subsequent dynamics. Since
at the outset CAR T cells do have a huge in vivo target pool, including leukemic and
healthy B cells allowing them to expand, even small doses of properly functioning
immune cells would lead to a response. Thus, according to our modeling approach,
it may be better to store (freeze) part of the cells generated so that they could be ready
for later leukemia rechallenging in case of a CD19+ relapse. There, the combination
of a fast action after the detection of the disease and the injection of a substantial
number of CAR T cells would be clinically relevant according to our mathematical
model-based predictions. The reason is that a prompt action would allow both for a
reduced growth of the disease and for a smaller toxicity of the disease, thus reducing
risks for the patient such as CRS and ICANS. The rationale behind the injection of
larger CAR T loads on relapse is that the target population would be smaller in gen-
eral than at the start of the treatment. Moreover, our model implies that a periodic
treatment with CAR T cells to avoid relapse would be quite ineffective, since they
would not be expected to expand well unless there is a substantial target population.

Our mathematical model allowed us to obtain an estimate for the very relevant
parameter of the relapse time, that would be the optimal time to perform the re-
injection of CAR T cells. The estimation obtained by Eq. (5.34) shows that the relapse
time depends on the parameters related to CAR T cells (ρC and τC), the growth rate
ρL of leukemic cells and their density at the beginning of treatment. In the frame-
work of our continuous model all leukemia experience a relapse, however longer
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relapse times may correspond in some simulation runs to leukemia having interme-
diate densities that are unrealistically low for very long times. Thus, we may expect
that leukemia with quite long relapse times, according to our modeling approach,
would never relapse. We may act therapeutically on ρC and τC by designing CAR T
cells with higher stimulation ratios and longer persistence.

One of the most interesting findings in this research was the very relevant role of
the flux of generation of CD19+ progenitors from CD19− hematopoietic stem cells,
I0. Although these stem cells are known to be a very small population (typically
around 1% of all cells in the bone marrow), what matters most is the flow into the
compartment of B-cells.

Our mathematical model also allows us to pose another interesting hypothesis.
B-ALL is a field where substantial progress has been made by designing initial in-
tensive treatment regimes combining different types of cytotoxic chemotherapies.
On the basis of our mathematical model, and leaving aside the important economic
costs, one would expect that substantially less aggressive chemotherapy regimes
could be quite effective after CAR T cell injection to eliminate the residual disease
(mainly by greatly reducing the ρC parameter). This strategy would also be benefi-
cial to control CD19− relapses. In this case one should balance the side effects of cur-
rent protocols versus a combination of CAR T cells with a reduced chemo infusion.
The main limitation of this approach would be the sustained B-lymphodepletion
provoked by the immunotherapy treatment, but one can envision autologous B stem
cell transplants after in vitro treatment with CAR T cells to select for CD19− HSCs.

In conclusion we have put forward a mathematical model describing the re-
sponse of acute lymphoblastic leukaemias to the injection of CAR T cells. Our theo-
retical framework provided a mechanistic explanation of the observations reported
in different clinical trials. Moreover, it also predicted that CD19+ leukaemia relapses
could be the result of the competition between leukemic and CAR T cells in an anal-
ogous fashion to predator-prey dynamics. As a result, the severity of relapses could
be controlled by early rechallenging of the leukaemia with previously stored CAR
T cells.
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Chapter 6

CAR T cell therapy in T-cell acute
lymphoblastic leukemia

6.1 Introduction

Through the impressive outcomes seen in CD19 antigen bearing B-cell malignancies,
CAR T cell therapy is being explored to address new targets. Specifically, there has
been a lot of interest on the possibility of using CAR T cells for the treatment of T-
cell malignancies (Alcantara et al., 2019; Breman et al., 2018; Fleischer, Spencer, and
Raikar, 2019; Sánchez-Martínez et al., 2019).

However, the extension of this therapy to T-cell malignancies presents several
challenges because of the shared expression of target antigens between CARTs, T-
lineage cancer cells and normal T cells. The first one is fratricide, that refers to the
mutual killing of CAR T cells. This phenomenon may prevent the generation, expan-
sion and persistence of CAR T cells. The second one is the prolonged and profound
T-cell aplasia induced by the destruction of normal T cells, that exposes patients
to severe opportunistic infections. The third one is the potential contamination of
CAR T cell products with malignant T cells. In the specific case of T-ALL, circulat-
ing leukemic T cells are often found in the peripheral blood of patients, this being
less frequent in other types of T-cell malignancies. Furthermore, leukemic T cells
may have similar properties as normal T cells, being possible to collect, transduce,
expand and infuse them together with T cells as concomitant in the production of
CAR T. Thus, developing CAR T cells for T-cell malignancies requires avoiding con-
tamination of the CAR T cell product with malignant transduced T cells (Alcantara
et al., 2019). A summary of the challenges associated with CART therapies for T-ALL
is shown in Figure 6.1.

Recent preclinical studies showed that T cells transduced with either CD7, CD3,
CD5, or T-cell receptor CARs (the most expressed T-cell antigens) efficiently elim-
inate T-ALL blasts in vitro and are able to control the disease in vivo, although
innovative techniques are necessary for the disruption of the target antigen in T
cells prior to CAR transduction to avoid extensive autoantigen-driven fratricide
(Sánchez-Martínez et al., 2019).

To the best of our knowledge, no mathematical model has considered yet CAR
T cell treatments of T-cell malignancies. In this chapter we presented a first mini-
mal mathematical model describing the dynamics of cancer cells in T-cell leukemia
and normal T cells plus a population of injected CAR T cells. Our intention was to
describe mathematically the effect of the fratricide and to obtain conclusions of prac-
tical interest. This interesting phenomenon, that involves a nonlinear self-interaction
within the CAR T cell compartment was shown to pose a limit for the production
of these cells in vitro. Using the mathematical model, we also studied some ques-
tions similar to those addressed in the previous Chapter 5, such as those related to



78 Chapter 6. CAR T cell therapy in T-cell acute lymphoblastic leukemia

FIGURE 6.1: Challenges associated with the development of CAR
T-cell therapy for the treatment of T ALL. Created with BioRen-

der.com.

the administered dose, the possibility of CAR T re-injection, and the dynamics of
relapses.

Theoretical and simulation results support that CAR T cells could be able to con-
trol cancer in vivo to a certain extent. We have shown that it may not be possible to
get rid of all cancer cells, but that the treatment could be useful either as a bridge
treatment or as a way to make the disease chronic. In this study we focus on carry-
ing out a preliminary exploration of the biological problem and obtain conclusions
of practical applicability, using as a test bed numerical simulations of the mathemat-
ical model.

6.2 Mathematical model

Our mathematical model accounts for the dynamics of several cellular populations:
CAR T cells C(t), leukemic T cells L(t), and normal T cells. The equations describing
the dynamics of these populations are

dC
dt

= ρC (T + L + C)C− 1
τC

C− αC2 + ρIC, (6.1a)

dL
dt

= ρLL− αLC, (6.1b)

dT
dt

= g(T, L, C)− αTC. (6.1c)

CAR T cells, described by Eq. (6.1a), have a finite lifespan τC and proliferate
due to stimulation by target cells (either L(t) or T(t) or the CAR T cell themselves
C(t)). The parameter ρC measures the mitosis stimulation after encounters with tar-
get cells. The parameter α in Eq. (6.1a) is a cell kill term accounting for the fratricide.
It measures the probability that CAR T cell encounters lead to the death of one of the
cells. Once the CAR T cell identifies the target cell, killing and detachment are very
fast processes (Benmebarek et al., 2019). We consider here only serial killing exclud-
ing multiplexed killing that would be a less relevant process and have a different
kinetics.

In line with models for CAR T cell dynamics in B-cell leukemia described in
Section 5.2, we did not include a CAR T cell death term due to encounters with target
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FIGURE 6.2: Cellular populations and biological processes included
in the mathematical model (6.1). Normal T(t) and leukemic L(t) T
cells are killed by CAR T cells C(t) at a rate α and stimulate CAR T cell
proliferation at a rate ρC, both per cell. Leukemic T cells proliferate at
a rate ρL. As a result of fratricide and self-stimulation, CAR T cells are
eliminated at a rate α− ρC per CAR T cell. CAR T cell finite lifetime

τC also results in cell loss. Created with BioRender.com.

cells. The reason is that CAR T cells do not die after killing target cells (Davenport
et al., 2015; Davenport et al., 2018). Also, T cells do not divide in vivo spontaneously
(Tough and Sprent, 2018), their clonal expansion being dependent on the stimulation
with the target antigen, thus in vivo ρI = 0. When CAR T cells are expanded in vitro
cytokines are added externally forcing the cells to divide thus in that context we will
assume ρI 6= 0.

Leukemic cells (Eq. (6.1b)) proliferate with a rate ρL and die to the encounters
with the CAR T cells with the rate α.

For the normal T-cell compartment we have only considered a simplified effec-
tive description accounting for the different lineages expressing the same target anti-
gen in an aggregate form. It was assumed that these cells are killed a rate α per cell
assumed to be similar to that of the other subpopulations and are produced at a rate
g(T, L, C). This function is expected to depend on the total number of T cells via cy-
tokines signaling, on the effect of CAR T cell on T-cell progenitors, etc. In this work
we assume g(T, L, C) to be very small and contribute only to a minimal residual level
of normal T cells that would not be relevant for the system nonlinear dynamics. In
what follows we have taken g(T, L, C) = 0.

Figure 6.2 summarizes the relationships between the different cell subpopula-
tions and the assumptions behind our model.

6.2.1 In vitro equilibrium

The expansion in vitro during the CAR T cell production can be described by setting
L = T = 0 in Eqs. (6.1), and taking ρI 6= 0, thus

dC
dt

= ρ̂C− α̂C2. (6.2)
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The parameter ρ̂ = ρI − 1/τC > 0 always in vitro and the effective cell kill rate
α̂ = α− ρC ≥ 0, since the killing rate is expected to be larger than the stimulation
rate due to the different speeds of the killing and replication processes.

Eq. (6.2) is a logistic equation, that for positive initial values satisfies that

C[t→∞]−→C∗ = ρ̂/α̂. (6.3)

This result is in line with the observation that CAR T cells targeting T-cell antigens
cannot be expanded beyond a certain value (Breman et al., 2018). Here we show that
this value will depend on the cytokines stimulation provided and the fratricide cell
killing rate.

6.2.2 Parameter estimation

Some parameters in model Eq. (6.1) were estimated in the Section 5.2.3, such as the
typical lifetime of activated CAR T cells τc. Furthermore, T-cell leukemia, like B-cell
leukemia, are typically rather aggressive cancers with small doubling times that can
be estimated to be around ρL ∈ (1/60, 1/30). Finally, α and ρC can also be expected
to be in the range of B-cell leukemia, where they have been found to be around
10−11 day−1cell−1. One would expect ρC to be of the order or smaller than α since it
corresponds to the number of new cells generated by each encounter of CAR T cells
with target cells.

As to the initial data, the total number of T-lymphocytes in the human body is
around 1011 and typical disease load in T-ALL can be in a similar range (Bains et al.,
2009). As explained in the introduction, most CAR T administration regimes are
preceded by a lymphodepleting treatment that creates a favorable cytokines profile,
favoring the growth of injected cells. Thus, the previous numbers are substantially
reduced when the treatment is started. We take our initial data to be around ∼ 1010

for leukemic and normal T cells.
Finally, the number of CAR T cells injected would depend on the maximal ex-

pansion obtained in vitro what could range from as low as 104 when fratricide is
present to larger numbers around 107 depending on the strategies used to overcome
it.

6.3 Basic properties of the model

6.3.1 Large initial data display unbounded dynamics

Proposition 7. For any non negative initial data (C0, L0, T0) and all the parameters of the
model being positive, the solutions to Eqs. (6.1) exist for t > 0, are non negative and unique.

Proof. The ODE system (6.1) has bounded coefficients and the right hand side of
the system is a continuous function of (C, L, T), thus the local existence of solutions
follows from classical ODE theory. Since the partial derivatives of the velocity field
are continuous and bounded, uniqueness follows from the Picard-Lindelof theorem.

Let us rewrite Eqs. (6.1) when g = 0 as

Ċ = [ρC (T + L + C)− 1/τC − αC]C, (6.4a)
L̇ = (ρL − αC) L, (6.4b)
Ṫ = − (αC) T, (6.4c)
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then we may write

C(t) = C0 exp
(∫ t

t0

[
ρCT(t′) + ρCL(t′) + (ρC − α)C(t′)− 1

τC

]
dt′
)

, (6.5a)

L(t) = L(t0) exp
(∫ t

t0

(
ρL − αC(t′)

)
dt′
)

, (6.5b)

T(t) = T(t0) exp
(
−
∫ t

t0

αC(t′)dt′
)

, (6.5c)

what leads to the positivity of solutions.

Definition. The sum of all cellular populations studied will be denoted to as S(t),
i.e.

S(t) = C(t) + T(t) + L(t).

Proposition 8. Let C(t), L(t), T(t) be solutions of Eqs. (6.1) with initial data C(t0) =
C0 > 0, L(t0) = L0 > 0, T(t0) = T0 > 0, S(t0) = S0 > 0. If

H1 ρC > α

H2 (ρC − α)τCS0 > 1,

then S(t) increases monotonically with time and limt→∞ S(t) = ∞.

Proof. Let us first sum the three equations Eq. (6.1) to obtain

dS
dt

= (ρC − α) SC− 1
τ

C + ρLL.

Then, the positivity of L(t) implies that, S defined as the solution of

dS
dt

= (ρC − α) SC− 1
τ

C, (6.6)

satisfying S(t0) = S0 is a subsolution of S(t), i.e. satisfying S(t) < S(t), ∀t > t0.
Obviously, under our hypothesis

dS
dt

∣∣∣∣
t=t0

=

[
(ρC − α) S0 −

1
τ

]
C0 > 0,

but then, using Eqs. (6.6), this leads to dS/dt > 0 for all t > t0. Moreover, from Eq.
(6.1a) and using that S(t) > C(t), for all t > t0 we get

dC
dt

= ρCSC− 1
τC

C− αC2 >

[
(ρC − α) S− 1

τC

]
C, (6.7)

where we have used that ρCSC− 1
τC

C− αC2 > ρCSC− 1
τC

C− αC (C + L + T).
This means that C(t) > C0 for any nonzero initial data, then

dS
dt

> (ρC − α) S0 −
1
τ

C0 ≡ Q0 > 0, (6.8)

then S(t) > S(t) > Q0t+ S0, what proves the unboundedness of the total population
S(t), i.e. the fact that limt→∞ S(t) = ∞.

Proposition 9. (Global existence) Let us consider Eq. (6.4) under the following hypotheses
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H1 Positive initial data, (C0, L0, T0) > 0.

H2 All the parameters are positive.

H3 (ρC − α) < 0

Then, under these hypotheses the solutions to Eq. (6.4) are global in time (i.e. exist for every
t > 0).

Proof. Hypotheses H1, H2 and Theorem 7 imply that the solutions of Eq. (6.4) are
non-negative. Since (ρC − α) < 0, from Eqs. (6.4) we get

Ċ = [ρC (T + L + C)− 1/τC − αC]C ≤ ρC (T + L)C
L̇ = (ρL − αC) L ≤ ρLL
Ṫ = − (αC) T ≤ 0

Hence, for every fixed t̄ > 0 we have T(t) ≤ T0 := T̄ and L(t) ≤ L0eρL t̄ := L̄. There-
fore, Ċ ≤ ρC(T̄ + L̄)C and this implies C(t) ≤ C0eρC(T̄+L̄)t̄ := C̄. This means that
both the variables C(t), T(t), L(t) and their derivatives are bounded for every fixed
t > 0. This automatically guarantees that the solutions can be extended forward this
point and thus the existence of solutions for every t > 0.

6.3.2 Equilibrium of the model Eqs. (6.1) and local stability analysis

The equilibrium of Eqs. (6.1) in the case of interest g = 0, are given by the equations

0 = ρC (T + L + C)C− 1
τC

C− αC2, (6.10a)

0 = ρLL− αLC, (6.10b)
0 = −αTC. (6.10c)

Eq. (6.10c) leads to either T = 0 or C = 0. The later leads to L = 0 using Eq. (7.9b)
and the former to either L = 0 or C = ρL/α. Then using Eq. (7.9a) allows us to
obtain the expressions for the three equilibrium points of Eqs. (6.1)

E1 = (0, 0, T∗), (6.11a)

E2 =

(
ρL

α
,

1
ρCτC

+
ρL

ρC
− ρL

α
, 0
)

. (6.11b)

E3 =

(
1

τc (ρC − α)
, 0, 0

)
. (6.11c)

for any T∗. The Jacobian of the differential equations (6.1) is

J =

 2 (ρC − α)C− 1/τC + ρC (T + L) ρCC ρCC
−αL ρL − αC 0
−αT 0 −αC

 . (6.12)

Let us now use Eq. (7.13) to study the local stability of the different equilibrium
given by Eqs. (7.12). First, for E1 we get

J (E1) =

 ρCT∗ − 1/τC 0 0
0 ρL 0
−αT 0 0

 . (6.13)
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The eigenvalues of J (E1) are

λ1 = 0, λ2 = ρL, λ3 = ρCT∗ − 1/τC, (6.14)

thus the equilibrium point E1 is unstable. For the second equilibrium point we get

J (E2) =

 ρL
( ρC

α − 1
)

ρCρL/α ρCρL/α
−α (ρL + 1/τC) /ρC + ρL 0 0

0 0 −ρL

 . (6.15)

Thus λ3 = −ρL < 0 and λ1,2 satisfy the equation

λ2 + λ
(

1− ρC

α

)
ρL + ρ2

L

(
1− ρC

α

)
+

ρL

τ
= 0, (6.16)

what leads to the eigenvalues

λ± =
1
2

ρL

(ρC

α
− 1
)
± 1

2
D1/2, (6.17)

with the discriminant D being given by

D
ρ2

L
=
(

1− ρC

α

)2
− 4

(
1− ρC

α

)
− 4

ρLτC
. (6.18)

Let us study the case ρC/α < 1 since the system will be unstable otherwise (Section
6.3.1). Then,

0 < 1− ρC

α
< 1.

Since (1− ρC
α )2 < 1− ρC

α , we get

D
ρ2

L
< −3

(
1− ρC

α

)
− 4

ρLτC
< 0.

Thus, the equilibrium is a stable node-focus.
Finally, for E3 we get

J(E3) =
1
τC

 1 ρC
ρC−α

ρC
ρC−α

0 ρLτc +
α

α−ρC
0

0 0 α
α−ρC

 . (6.19)

The eigenvalues of J(E3) are

λ1 = 1/τC > 0, (6.20)
λ2 = ρLτc + α/(α− ρC) > 0, (6.21)
λ3 = α/(α− ρC) > 0, (6.22)

thus E3 is an unstable node.
In conclusion, there is only one stable equilibrium point E2 given by Eqs. (7.12)

of node-focus type, which can be an attractor for the dynamics of the system (6.1).



84 Chapter 6. CAR T cell therapy in T-cell acute lymphoblastic leukemia

6.4 Results

6.4.1 CAR T cells allow for control of T-cell leukemia in the presence of
fratricide

To obtain further insight into the global dynamics of solutions of Eq. (6.1) we simu-
lated different initial data in a set of biologically feasible parameter and initial data
regions. In all cases studied, we found an oscillatory behavior of the solutions to-
wards the stable node-focus point E2 after a fast reduction of the initial normal T cell
number.

Figure 6.3 provides a typical example of the dynamics. There we see how the
number of cancer cells increase for a short time, typically 10-15 days, while CAR
T cells expand. The CAR T cell expansion persists for more than four orders of
magnitude in cell number (Figure 6.3 c), with a peak at about 15 days after injection
(Figure 6.3 b). This leads to a substantial decrease in leukemic cell load and T-cell
aplasia (Figure 6.3 a,b). For this parameter set, cancer was not controlled for long
times and relapse was noticeable a few months after the injection date of CAR T
cells. After relapse oscillations of leukemic and CAR T cells are observed in their
course towards the equilibrium, in this case corresponding to 3× 108 CAR T cells
and 2.7× 109 leukemic cells. Interestingly, the number of leukemic cells in this case
is one order of magnitude smaller than the initial leukemic load (2× 1010 cells), what
supports the possibility of CAR T cells effectively controlling cancer to clinically
acceptable levels.

The numerical results used to construct Figure 6.3 c, show that in less than two
months after injection, treatment was able to reduce leukemic load from the initial
level of 2× 1010 cells down to a minimum level of 2.59× 108 cells, i.e. a decrease of
about two orders of magnitude.

6.4.2 Higher mitotic stimulation rates improve control of the disease

The asymptotic equilibrium values of leukemic cells and CAR T cells are given by
E2, i.e.

L2 =
1

ρC

(
ρL +

1
τC

)
− ρLρC

α
, (6.23a)

C2 =
ρL

α
. (6.23b)

Interestingly, the equilibrium level of CAR T cells does not depend on the mitotic
stimulation rate ρC, but only on the growth and death rates of leukemic cells. How-
ever, what matter the most due to their clinical implications are the leukemia equilib-
rium levels L2, and the maximum leukemic load maxt L(t). Maxima would typically
be attained in time during the CAR T cell expansion stage.

Let us note that

dL2(ρC)

dρC
= − 1

ρ2
C

(
ρL +

1
τC

)
− ρL

α
< 0, (6.24)

this means that L2(ρC) is a monotonically decreasing function. Since ρCα > 0, the
minimum of L2(ρC) over the range ρC ∈ [0, α] would be obtained when ρC = α.
Figure 6.4 confirms that the asymptotic values of L2 decrease with the mitotic stim-
ulation rate ρC and thus larger values of the mitotic stimulation rate lead to better
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FIGURE 6.3: Typical dynamics of cell populations ruled by Eq. (6.1).
Results of a simulation are shown for parameter values τC = 14 days,
ρL = 1/60 day−1, α = 5.84 × 10−11 day−1 cell−1, ρC = α/2, and
initial data T0 = 109, L0 = 2× 109, C0 = 105 cells. (a-c) Dynamics of
the populations of CAR T (green), leukemic (red) and normal T cells
(blue). Dynamics are depicted on the intervals of times t ∈ [0, 1200]
(a,c) and t ∈ [0, 50] (b) , and in linear (a,b) and logarithmic (c) scales.
(d) Trajectory of the solution in the phase space. (e) Projection of the

selected part of the trajectory on the (T(t), C(t)) plane.
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FIGURE 6.4: Dynamics of leukemic cells considering variations in
mitotic rate. Simulations are ruled by Eq. (6.1) and are shown for
initial data T0 = 109, L0 = 2 × 109, C0 = 105 cells, and parameter
values τC = 14 days, ρL = 1/60 day−1, α = 5.84 × 10−11 day−1

cell−1. The different curves correspond to stimulation rates ρC = 0.2α
(blue solid line), ρC = 0.4α (green red dashed line), ρ = 0.6α (green,

dash-dotted line), ρ = 0.8α (black, dotted line).

disease control. However, going beyond ρC = α destabilizes the system, as dis-
cussed in Section 6.3.1. Thus it may be necessary to control in detail the CAR T
manufacturing process to get both high mitotic stimulation rates while at the same
time not getting too close to the instability regime.

6.4.3 Initial number of CAR T cells injected does not affect the therapy
outcome

Next, we studied the effect of the number of CAR T cells initially injected on the sys-
tem’s dynamics. To do so, we performed an extensive number of simulations over
the biologically feasible range and found a very weak dependence of the dynamics
on the number of injected CAR T cells. An example is shown in Figure 6.5 for a
broad range of cells initially injected ranging from 104 to 106. Although there was a
difference of two orders of magnitude in C0, it lead to a small variation in the time
to peak expansion of a few days, a negligible increase of the maximum CAR T and
leukemic cell number and a minor differences in the times to T leukemia relapse.

6.4.4 Contribution of the leukemic growth rate on leukemic cells dynamic

A study of model dynamics under modifications of the leukemic growth rate in
whole the feasible range for fast-growing leukemia ρC ∈ [1/60, 1/20] has been per-
formed. The result of typical simulations are shown in Figure 6.6.

The short term dynamics in response to the CAR T injection was found to be
qualitatively similar independently of leukemic growth rate, with a peak of leukemic
cell number obtained around day 10 post-injection (Figure 6.6 b). Small differences
were observed in the peak number of leukemic cells obtained, essentially due to the
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FIGURE 6.5: Therapy outcome for different initial doses of CAR
T cells injected. Dynamics of the number of CAR T cells (a,b) and
leukemic cells (c,d) ruled by Eq. (6.1) over the time range [0,300] days
(a,c). We show also the details of the initial response of the treatment
over the time interval [0,30] (b,d). Initial data used in the simulations
were T0 = 109, L0 = 2 × 109 cells, and parameter values τC = 14
days, ρL = 1/60 day−1, α = 5.84× 10−11 day−1 cell−1. The curves
correspond to different values of C0 = 104 (blue solid line), C0 = 105

(red dashed line), C0 = 106 (green dash-dotted line).
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fact that faster growing leukemic cells could grow further during the initial CAR T
expansion phase. After CAR T cell expansion, there was a response phase for the
different leukemic growth speeds and then a relapse was observed (Figure 6.6 a).
The relapse time was found to depend on the proliferation rate. This is in line with
what one would expect for the amplitude and frequency of oscillations towards the
equilibrium point E2 that are both proportional to ρL according to Eq. (6.17).

As expected from the expression for E2, and the values of the parameters, there
was a weak dependence of the number of leukemic cells in the equilibrium on ρL
in the range of relevance (Figure 6.6 c), given analytically by L2 = 1.5289× 109 +
4.2808× 109ρL, with ρL ∈ [1/60, 1/20]. Thus the major contribution to the asymp-
totic leukemic cell count was L2 ∼ 1/(ρCτC).

Although the therapy had a substantial effect, logarithmic scale plots (Figure 6.6
d) show the persistence of measurable disease for all times.

Let us define the maximum leukemic cell load reduction achieved by the treat-
ment as

R = max
t

(T(t)) / min
t

(T(t)) . (6.25)

In the simulations shown in Figure 6.6, this quantity was found to be R(ρL = 1/20) =
65, R(ρL = 1/30) = 72, R(ρL = 1/40) = 78, R(ρL = 1/50) = 82, R(ρL = 1/60) =
88, thus always smaller than 100 (two orders of magnitude). It is easy to see that
CAR T cells decreased in number with time as it did the leukemic load but they
were always above the numbers of cells initially injected. In fact, for most leukemic
growth rates the number of CAR T cells was more than one order of magnitude
above the level injected.

6.4.5 CAR T cell reinjection does not improve the therapy outcome.

Analogous to B-ALL, an interesting question is whether relapses could be controlled
by acting on leukemic cells by reinjection of CAR T cells. We simulated the reinjec-
tion of C = 105 CAR T cells at different times and quantify the variations of max-
imum leukemic load respect to the case without reinjection after the first relapse.
Figure 6.7 shows the results in percentages for different leukemic growth rates in
the range ρC ∈ [1/60, 1/20]. We have scanned the reinjection time, starting 10 days
after the first injection until 300 days later. Small improvements were obtained for
slow-growing leukemia, resulted in a negligible reduction (of around 2%). It is even
observed that early reinjections may increase the maximum leukemic load at the first
relapse (negative percentages).

6.5 Discussion and conclusion

As stated in the introduction, one of the challenges faced by these treatments is the
fratricide, i.e. the fact that CAR T cells, belonging to the T cell lineage and expressing
common antigens with the leukemic cells would become targets themselves of the
therapy. This poses the very interesting question of what would be the outcome of
such a therapy, provided that it poses challenges even for CAR T cell production in
vitro.

In this study, we have developed a simple mathematical model that captures the
difficulties for CAR T cell expansion in vitro, with a limit in cell production given by
Eq. (6.3). Thus, the maximum number of CAR T cells that can be produced in vitro
depends on the stimulation provided by the cytokines and the excess CAR T killing
efficiency over the mitotic stimulation.
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FIGURE 6.6: Leukemic growth rate effects on initial response,
asymptotic values, and time to relapse. Dynamics of the leukemic
population ruled by Eq. (6.1) for initial data T0 = 109, L0 = 2 ×
109, C0 = 105 cells, and parameter values τC = 14 days, α =
5.84× 10−11 day−1 cell−1, ρC = 0.5α, for different values of ρL. The
different curves correspond to different values of ρL = 1/60 (blue
line), ρL = 1/50 (red line), ρL = 1/40 (green line), ρL = 1/30 (ma-
genta line), ρL = 1/20 (cyan line) (a) Dynamics over the time range
[0,800] days. (b) Details of the dynamics for the time interval [0,25].
(c) Dependence of the asymptotic leukemic values obtained from Eq.
(6.23a). (d) Leukemic cell number evolution in logarithmic scale. The
rate between the maximum and minimum leukemic load is indicated
with an arrow for the case ρL = 1/20. (e) Evolution of the number of

CAR T cells.
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FIGURE 6.7: CAR T cell reinjection. The variations of the maximum
leukemic load in the first relapse when reinjecting C = 105 for differ-
ent reinjection times using initial data T0 = 109, L0 = 2× 109, C0 =
105 cells, and parameter values τC = 14 days, α = 5.84× 10−11 day−1

cell−1, ρC = 0.5α, for different values of ρL. The different curves cor-
respond to different values of ρL = 1/60 (blue line), ρL = 1/50 (red
line), ρL = 1/40 (green line), ρL = 1/30 (magenta line), ρL = 1/20

(cyan line).

Numerical simulations of the model showed that when they are injected, even in
the small numbers that can be obtained in vitro, the CAR T cells find many targets
initially on the healthy and leukemic T cells. During this initial stage, the CAR T
population is amplified even in the presence of fratricide. We also found in silico that
the outcome of the therapy did not depend on the number of CAR T cells injected.

A relapse was always observed in the framework of our model simulations and
the number of leukemic T cells was initially reduced by a factor smaller than 100,
with the persistence of measurable disease for all times, so that the treatment did not
eradicate the disease in our numerical simulations. However, CAR T cells were able
to control leukemic growth after two weeks and then, even in spite of the oscillations,
the high initial leukemic loads were never found to appear again. Relapse time after
the CAR T cell treatment was found to depend strongly on the proliferation rate.

Regarding the question related to CAR T cells re-injection could be beneficial at a
given time point, our computational results answer that additional injections do not
have any substantial effect on the leukemic cells dynamics. The reason is that CAR
T cells decreased in number transiently in time after reaching the peak expansion
but their levels were always above the numbers of cells initially injected, typically
by more than one order of magnitude. This means that injecting small numbers of
CAR T cells in relation to those already present would not contribute to reducing the
number of leukemic cells.

The fact that the equilibrium L2 ∼ 1/(ρCτC) implies that there are two ways
to improve the long-term efficacy of CAR T cell therapy for T-cell leukemia. The
first one would be to improve the persistence of the CAR T cells, something that has
been done for B-cell leukemia by a using CD19 CAR with lower affinity than FMC63,
the high-affinity binder used in many clinical studies (Ghorashian et al., 2019). The
second one would be to improve the mitotic stimulation rate, but keeping in mind
the restriction α > ρC.

In conclusion, we have developed a mathematical model of the dynamics of
leukemic cells, healthy T cells and CAR T cells, after the therapeutic injection of
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the later population. The mathematical model showed the potential of the treatment
to control, but nor eradicate, the disease. This would result in a chronification of the
disease what could last for long times or buy some time to try alternative therapeutic
strategies. Our work is a first simple mathematical attempt to provide light on the
potential outcomes of these treatments. There are different types of T-cell malignan-
cies and specifically T-cell leukemia and the particular features of each type could
be incorporated in more detailed models incorporating additional biological details.
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Chapter 7

Dual-Target CAR Ts in Solid
Cancers

7.1 Introduction

Advances in CAR T cell engineering have increased scientific, clinical and com-
mercial interest in adapting this exciting technology for the treatment of solid can-
cers (Martínez and Moon, 2019). These successes have led to ongoing clinical tri-
als for a variety of cancers, including glioblastomas, gastrointestinal cancers, geni-
tourinary cancers, breast cancers, lung cancers, and others (Bagley and O’Rourke,
2020). However, CAR T cell treatments of solid tumors face significant challenges.
The first is the identification of suitable tumor antigens expressed only in cancer-
ous, rather than in healthy cells, i.e., limiting the on-target off-tumor activity of the
product (Castellarin et al., 2018). It is also necessary that the antigens selected for
the therapy be humanized, to avoid the generation of antibodies that block the CAR
T (Hege et al., 2017). Other major issues include T-cell persistence and expansion,
T-cell trafficking into tumors, and immune resistance mechanisms that may define
the ultimate fate of CAR T cells (Ma et al., 2017).

For these reasons, it is essential to develop strategies to improve the effective-
ness of therapy (Hong, Clubb, and Chen, 2020). Combined CAR targeting has been
explored as a way to improve antigen recognition and limit the possibility of tu-
mor escape (Han et al., 2019; Rafiq, Hackett, and Brentjens, 2020). Several pre-
clinical studies have evaluated the simultaneous targeting of two tumor-restricted
antigens (Hegde et al., 2013; Roybal et al., 2016) and sequential treatments such as
CAR T cocktails (Feng et al., 2017). One of the main multi-antigen-targeted CAR T
cell therapies under study here is that of dual CAR T cells, where individual T cells
are engineered to co-express two separate CARs specific to cognate antigens.

In this chapter we study, in silico, using a mathematical model, the response of
a solid tumor to a dual CAR T product targeting both CD19 and a tumor-associated
antigen. Our idea, to be explored computationally, is to use B cells expressing the
CD19 antigen to amplify the CAR T population in a patient, which may allow for
substantially higher levels of CAR T cells to attack the tumor, thus helping to over-
come the tumor’s immunosuppressive capabilities.

In order to undertake this research, we describe and study two minimal mathe-
matical models describing the response of a solid tumor (GBM) to two different CAR
T cell-based treatment strategies. The first describes the effect of a CAR T targeting
a tumor antigen in the presence of immune suppression. The second describes the
response to dual CAR T cells with one of the CAR groups targeting the tumor anti-
gens and the other targeting CD19, in order to achieve an off-tumor amplification of
the product within the patient.
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In this work, we take glioblastoma (GBM) as a specific example, but the concept
explored here could be applied to different cancer types without substantial mod-
ification. Different tumor antigens that have been targeted in CAR T clinical trials
in GBM include IL13Rα2, EGFRvIII, and Her2 (Brown, Ebert, and Gargett, 2019).
The main obstacles for CAR T therapies in GBM are antigen escape due to tumor
immune suppression, heterogeneous expression of identified tumor antigens, and
toxicity problems (Bagley et al., 2019; Mostolizadeh, Afsharnezhad, and Marciniak-
Czochra, 2018).

The results of trial studies with IL13Rα2 on GBM are encouraging with regard
to safety and penetration of CAR T cells (Brown et al., 2015; Brown et al., 2016).
Persistence of CAR T cells was observed in that study, as was the fast increase in
endogenous immune cells and inflammatory cytokines after each infusion. Also, a
study with CAR T cells targeting EGFRvIII showed transient expansion of CAR T
cells, and trafficking to the brain and regions of active GBM (O’Rourke et al., 2017).
All these results have been used as support to ensure a realistic view in the results.

7.2 Mathematical models

7.2.1 Model of solid tumor response to a CAR T cell treatment in the pres-
ence of immune suppression

The first mathematical model to be used in this study describes the competition be-
tween a tumor population T(t) and CAR T cells C(t), neglecting spatial aspects and
other components of the immune system. In this model we assume that CAR T cells
would be amplified only at the tumor site, provided the tumor antigen is specific
enough, and thus C(t) would describe the CAR T cell population in the tumor areas.
The equations of our model read

dC
dt

=
ρCCT
gT + T

− α1CT
gC + C

− 1
τC

C, (7.1)

dT
dt

= ρTT − α2CT. (7.2)

The first term in Equation (7.1) accounts for the stimulation of CAR T cell pro-
liferation after encounters with tumor cells with a rate constant ρC and a typical
saturation population on the order of gT (Mahlbacher, Reihmer, and Frieboes, 2019).
The second term describes the inactivation of CAR T cells by tumor cells, with a
maximal inactivation rate α1 per tumor cell, and a typical cellular saturation level
around gC CAR T cells. The last term in Equation (7.1) describes the natural death
(or inactivation) of activated CAR T cells. Equation (7.2) describes the dynamics of
tumor cells, with the first term accounting for the net growth rate (with coefficient
ρT) and the second accounting for tumor cell killing by the CAR T cells with a rate
α2. In this approach ρT measures the difference between the tumor proliferation rate
and any natural tumor cell death.

The parameter α1 describes the strength of CAR T cell inactivation by the tumors.
There are many mechanisms leading to T-cell dysfunction in solid tumors. Altered
signaling pathways in tumor cells help produce a suppressive tumor microenviron-
ment enriched by inhibitory cells. Metabolic constraints to cell function and survival
shape tumor progression and immune cell function. In the face of persistent antigen,
chronic T-cell receptor signaling drives T lymphocytes to a functionally exhausted
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state (Anderson, Stromnes, and Greenberg, 2018). However, in spite of these dif-
ficulties, immune checkpoint blockade (e.g., anti-PD-1, anti-PD-L1, or anti-CTLA-
4), designed to amplify endogenous anti-tumor T-cell responses, has revolutionized
cancer treatment (Sharma and Allison, 2015; Robert, 2020). In 2011, ipilimumab,
the first antibody blocking an immune checkpoint (CTLA-4) was authorized. This
was rapidly followed by the development of monoclonal antibodies targeting PD-1
(pembrolizumab and nivolumab) and PDL1 (atezolizumab and durvalumab). The
success of this approach was notable in melanoma and non-small-cell lung cancers
that often contain numerous genetic mutations (Lawrence et al., 2013). Today, anti-
PD-1/PD-L1 antibodies are among the most widely prescribed anticancer therapies
and are used as single agents or in combination with chemotherapies as first or sec-
ond lines of treatment for about 50 cancer types. In line with their mechanisms
of action in this paper we assume that immune checkpoint blockade therapies will
have a direct effect on α1 by reducing its value, although the exact reduction is very
difficult to quantify. These drugs are not expected to have a major effect on survival
as monotherapies in glioblastoma (Reardon et al., 2020); however they could have
synergistic effects with the CAR T cells as will be discussed later.

In Equation (7.2) we choose an exponential model to describe glioblastoma growth.
This is a standard model, found to be valid for describing this type of tumor growth
kinetics (Stensjøen et al., 2015) and has the advantage of having only one adjustable
parameter. In addition, it can properly describe tumor relapse from an infiltrative
disseminated tumor. More complex growth models can also describe the limited
experimental data available (Stensjøen et al., 2015), and the proposed in Section 2.
However, for the analysis described in this paper, we keep the simplest form given
by Equation (7.2).

Figure 7.1 shows a schematic summary of the biological processes encompassed
by our basic mathematical model (7.1-7.2) for the specific case of glioblastoma.

7.2.2 Modeling CAR T cells targeting on-tumor and off-tumor antigens

The second model presented accounts for CAR T cells with dual CAR groups target-
ing two different antigens. As an example, for the case of GBM the tumor-associated
antigen could be IL13Rα2, which is associated with poor prognosis and is over-
expressed in >60% of those tumors, but not on normal brain tissue (Stein et al., 2018).
This antigen is assumed to be present homogeneously in the population of tumor
cells. The second antigen will be expressed by a normal tissue, whose elimination
would be assumed to be compatible with life. In this work we think of this second
antigen as being CD19, expressed by B cells. However, the same ideas should be
applicable to other antigens from a normal cell population whose eradication does
not compromise patient survival.

When the therapy is delivered intravenously, CAR T cells are initially amplified
upon their encounters with CD19+ cells in peripheral blood and in the bone marrow,
and will also trafficking to the tumor sites.

Let C̄(t), C(t), B(t) and T(t) be non-negative time-varying functions consider-
ing the number of CAR T cells away from the tumor site, CAR T cells at the tumor
site, normal cells expressing the second antigen (in our case, B cells) and tumor cells,
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FIGURE 7.1: Biological processes included in the mathematical
model (6.1) for the specific case of glioblastoma. CAR T cells are
stimulated when meeting tumor cells with stimulation parameter ρC
and undergo apoptosis with a lifetime τC. As a result of tumor mi-
croenvironment, CAR T cells are inactivated at rate α2. Tumor cells
proliferate with a rate ρT and are destroyed via encounters with the
CAR T cells with a killing efficiency α2. Created with BioRender.com.

respectively. A simplified set of equations describing the dynamics of these popula-
tions is

dC̄
dt

=
ρC̄C̄B
gB + B

− 1
τC

C̄− kC̄, (7.3)

dB
dt

= −αBBC̄− 1
τB

B, (7.4)

dC
dt

= kC̄ +
ρCCT
gT + T

− α1CT
gC + C

− 1
τC

C, (7.5)

dT
dt

= ρTT − α2CT. (7.6)

Equations (7.3) and (7.4) describe the off-tumor interaction between CAR T and
B cells as in Section 5.2.2. The first term in Equation (7.3) represents B cell induced
CAR T proliferation. The second term represents natural cell death, where τC is the
activated CAR T lifespan. Finally, the term −kC̄ represents the trafficking of CAR T
cells to brain areas having active GBM cells, where 0 < k < 1 is the average fraction
of CAR T cells crossing the blood-brain barrier (BBB) and infiltrating the tumor site.

The CAR T effect on B-cell growth is included in this model through the term
−αBBC̄ in Equation (7.4), which represents the rate of CAR T cell induced B cell
death. The mean lifetime of B cells is described by τB in the last term of Equation
(7.4). In the framework of our simplified approach and in line with other modeling
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studies we did not include a source term for newborn B cells in the bone marrow.
This is a very good approximation when dealing with the short term dynamics af-
ter the injection of the CAR T cells, since new cell production would be orders of
magnitude smaller than B cell death. It has been hypothesized in Section 5, that the
continuous production of B-cells from CD19− progenitors could lead to the mainte-
nance of a reservoir of CAR T cells in the bone marrow. This could have an addi-
tional positive effect in preventing relapse in B-cell malignancies, but would have no
substantial effect in the context studied, since it is highly unlikely that these small
populations could migrate to the brain and have any effect on relapse in malignancy.

Equation (7.5) and (7.6) are inspired in the Kuznetsov model (Kuznetsov et al.,
1994) and describe the response of effector cells to the growth of tumor cells. The
CAR T cells that reach the tumor region, described by Equation (7.5), are stimu-
lated by target cells T(t). The stimulation rate ρCCT/(gT + T) takes into account
the increase in CAR T proliferation due to encounters with tumor cells, and has a
maximum value of ρC as T gets large. CAR T cells are killed or inactivated by tumor
cells T(t) with a rate α1 and are assumed to have a finite lifespan τC. Tumor cells
(Equation (7.6)) proliferate with a rate ρT and die from encounters with CAR T cells
with a rate α2.

Thus, the biological effects governing the dynamics of CAR T cells in this math-
ematical model are: migration to the tumor site, stimulation by the antigens, natural
cell death, and inactivation by the tumor cells. The sum of C̄(t) and C(t) represents
the total number of CAR T cells at time t.

7.2.3 Parameter Estimation

The models described have several parameters to be estimated. The maximum mi-
totic rate ρC and ρC̄, related to the stimulation effect of the T cells by the interaction
with the targets (CD19 or tumor antigen), will depend on the properties of the CAR
T product. These parameters are taken in the range 0.2–0.9 day−1 according to the
values reported in other models (Stein et al., 2019) and in agreement with the fact
that stimulated CAR T cells can undergo a few mitotic divisions per day. For current
CAR T products the mean lifetime τC of activated CAR T cells is in the range of 1–4
weeks (Ghorashian et al., 2019). To estimate the tumor inactivation rate, we relied
on the inhibitory role of PD-1 in immune responses (Carter et al., 2002). A biologi-
cally broad range of values has been explored for the maximum tumor inactivation
rate α1 in the range 0.01–0.99 day−1. This number has been estimated from tumor
growth data in previous studies. For instance, the c parameter in Radunskaya, Kim,
and Woods, 2018 gives roughly c = 10−11 day−1 cell−1 ∼ α1/gC, which leads to a
maximum value of α1 ∼ 0.05, taking, for gC, the typical levels of T cells in blood. The
value of α1 would be substantially smaller, by a factor between 10 and 103, under the
action of anti-PD-1 treatments (Halkola et al., 2020; Benchaib et al., 2019). The bio-
chemical process of T-cell inactivation by tumor cells could be much faster. Larger
values could also be possible biologically, however, we assume that for tumors with
very high immunosuppressive capabilities, PD-1 inhibitors could be used as adju-
vant treatment to take α1 into the range of values studied (Khasraw et al., 2020).

Glioblastomas are fast-growing malignant primary brain tumors with prolifera-
tion rate ρT on the order of several weeks, but have considerable variation in growth
rates between individual patients (Stensjøen et al., 2015). Thus, we are take ρT to be
in the range 0.001–0.2 day−1.

We assume that CAR T cells have similar killing efficiency against both the tumor
(α2) and CD19+ cells (αB), with values around 10−11 day−1 (Lee et al., 2015). B-cell
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TABLE 7.1: Parameter values for the Equations (7.1)-(7.6).

Parameter Meaning Value Units Source
ρC Mitotic stimulation

of CAR T cells by 0.2–0.9 day−1 Stein et al., 2019
tumor cells

gT T cell concentration Estimated from
for half-maximal 1010 cell Stein et al., 2019
CAR T cell proliferation

α1 Tumor inactivation rate 0.01–0.99 day−1 Radunskaya, Kim, and Woods, 2018
gC CAR T concentration Estimated from

for half-maximal 5× 108 cell Radunskaya, Kim, and Woods, 2018
tumor inactivation −5× 109

τC Activated CAR T 7–30 day Ghorashian et al., 2019
cell lifetime

ρT Tumor growth rate (0.001–0.2) day−1 Stensjøen et al., 2015
α2 Killing efficiency ∼ 10−11 day−1 Estimated from

of CAR T cells × cell−1 Chapter 5
against tumor

ρC̄ Mitotic stimulation
of CAR T cells by (0.2–0.9) day−1 Stein et al., 2019
CD19

gB B-cell concentration Estimated from
for half-maximal 1010 cell Stein et al., 2019
CAR T cell proliferation

τB B-lymphocyte 30–60 day Fulcher and Basten, 1997
lifetime

αB Killing efficiency ∼ 10−11 day−1 Estimated
of CAR T cells × cell−1 from Lee et al., 2015
against CD19+ cells

lymphocyte lifetime τB is known to be about 5–6 weeks (Fulcher and Basten, 1997).
We assume that in dual therapy, CAR T cells are injected after lymphoid depletion
treatment to promote expansion of CAR T by stimulation with B cells, as usual. We
set the initial number of B lymphocytes to be 2.5 ×1010 to account for the effect of
this treatment as in Sections 5.2.3 and 6.2.2.

Finally, the values of gT and gB indicate the inflection points from which the rate
of stimulation of CAR T cells increases, and are related to the antigen levels. These
values have been estimated in previous studies by adjusting the data in experiments
with mice (Kuznetsov et al., 1994). In our case, because of the lack of experimental
results on the dual CAR Ts proposed here, they were estimated using the Equations
(7.1) and (7.2) and the results obtained in Stein et al., 2019 (stimulation rate, the
maximum of transgenic copies of tisagenlecleucel, and the time of peak expansion
of CAR T cells). To do so, we neglected the immune suppression term, which is not
present in leukemia, and the parameters related to the type of cancer were chosen as
in Chapter 5. Values of gT and gB around 1–2 ×1010 cell were obtained.

A summary of the model parameters and their numerical values is given in Table
7.1.
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7.3 Basic properties of the mathematical models

7.3.1 Mathematical model Eqs. (7.1–7.2)

Existence and uniqueness of positive solutions

Theorem 1. For any non-negative initial data (C0, T0) and with all the parameters
of the model being positive, the solutions to Eqs. (7.1–7.2) exist for t > 0, are non-
negative and unique.

Proof. The ODE system (7.1–7.2) has bounded coefficients and the right hand side
of the system is a continuous function of (C, T) in the domain R2

+,0, thus the local
existence of solutions follows from classical ODE theory. Since the partial deriva-
tives of the velocity field are continuous and bounded, uniqueness follows from the
Picard-Lindelof theorem.

Rewrite Eqs. (7.1–7.2) as

Ċ =

[
ρCT

gT + T
− α1T

gC + C
− 1/τC

]
C, (7.7a)

Ṫ = (ρT − α2C) T, (7.7b)

then we may write

C(t) = C0 exp
(∫ t

t0

[
ρCT(t′)

gT + T(t′)
− α1T(t′)

gC + C(t′)
− 1

τC

]
dt′
)

, (7.8a)

T(t) = T0 exp
(∫ t

t0

(
ρT − α2C(t′)

)
dt′
)

, (7.8b)

which leads to the positivity of solutions.

Equilibria and local stability analysis

The equilibria of Eqs. (7.1–7.2) are given by the equations

0 =

[
ρCT

gT + T
− α1T

gC + C
− 1/τC

]
C, (7.9a)

0 = [ρT − α2C] T, (7.9b)

Eq. (7.9b) leads to either T = 0 or C = ρT/α2. Using T = 0 and Eq. (7.9a) we
obtain C = 0. Then using C = ρT/α2 and Eq. (7.9a) allows the quadratic expressions
for T to be obtained,

αT2 + T(αgT − ρC + 1/τC) + gT/τC = 0, (7.10)

where α = α1
gC+ρT/α2

. The solutions of Eq. (7.10) are

T∗1,2 =
−(αgT − ρC + 1/τC)±

√
(αgT − ρC + 1/τC)2 − 4αgT/τC

2α
, (7.11)

where the discriminant is non-negative and the solutions are real and positive in the
case: i) ρC ≥ (

√
αgT +

√
1/τC)

2.
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The equilibrium points of the system under these conditions are

E1 = (0, 0), (7.12a)

E2,3 = (
ρT

α2
, T∗1,2). (7.12b)

In the particular case ρC = (
√

αgT +
√

1/τC)
2, there are only two equilibria since

E2 = E3 = ( ρT
α2

, 1√
αgTτC

).
The Jacobian of the differential equations (7.1–7.2) is

J =

(
ρCT

gT+T − 1/τC − α1TC
(gC+C)2

ρC gTC
(gT+T)2 − α1C

gC+C
−α2T ρT − α2C

)
. (7.13)

Let us now use Eq. (7.13) to study the local stability of the different equilibria given
by Eqs. (7.12). First, for E1 we get

J (E1) =

(
−1/τC 0

0 ρT

)
. (7.14)

The eigenvalues of J (E1) are

λ1 = −1/τC, λ2 = ρT. (7.15)

thus the equilibrium point E1 is unstable. For the other equilibrium points the Jaco-
bian matrices are cumbersome and do not allow simple information on the stability
of the equilibria to be obtained. This is why we studied the phase space of the sys-
tem in the two-dimensional phase space of cancer cells and CAR T cells. Figure 7.2
shows the trajectories for different initial conditions and a typical parameter choice.
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FIGURE 7.2: Phase space of model equations (7.1–7.2). Some dy-
namics are represented as trajectories in the two-dimensional space
(C(t),T(t)) (CAR T cells, tumor cells) for default parameter values
τC = 7 days, ρC = 0.9 day−1, ρT = 1/50 day−1, α1 = 0.04 day−1

cell−1, α2 = 2.5× 10−10 day−1 cell−1, gT = 1010 and gC = 2× 109.

In the particular case depicted in Figure 7.2, we computed numerically the eigen-
values of the Jacobian matrix on the three fixed points and found that E1 = (0, 0) was
unstable (as expected). We obtained that E2 = (ρT/α2, T∗1 ) had real eigenvalues, one
of them positive, and thus was also an unstable point and E3 = (ρT/α2, T∗2 ) was
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found to be an unstable spiral with two complex eigenvalues with a positive real
part.

7.3.2 Mathematical model Eqs. (7.3–7.6)

Existence and uniqueness of positive solutions

Theorem 2. For any non-negative initial data (C̄0, B0, C0, T0) and with all the param-
eters of the model being positive, the solutions to Eqs. (7.3–7.6) exist for t > 0, are
non-negative and unique.

Proof. We analyze the behavior of the vector field to prove the non-negativity of
the solutions. Let F = F(x) = dx

dt be the vector field of the system (7.3–7.6) with
solutions x = (C̄(t), B(t), C(t), T(t)). Starting from the positive initial condition
(C̄0, B0, C0, T0), we study the direction of the vector field F at hyper-surfaces C̄ = 0,
B = 0, C = 0 and T = 0. Let ni be the normal unit vector in the negative direction
to plane xi = 0, for i = 1, 2, 3, 4 ( i.e, n1 = (−1, 0, 0, 0), n2 = (0,−1, 0, 0), ..., n4 =
(0, 0, 0,−1)) and consider the scalar products F · ni. Then, F · n1 = 0, F · n2 = 0
and F · n4 = 0 at hyper-surfaces C̄ = 0, B = 0 and T = 0, respectively. Then,
the hyper-surfaces C̄ = 0, B = 0 and T = 0 are invariant. In the case of hyper-
surface C = 0 it is found that F · n3 = −kC̄ < 0. Hence, R4

+,0 is a positive invariant
domain for Eqs. (7.3–7.6). Therefore, we have proved the non-negativity of solutions
(C̄(t), B(t), C(t), T(t)).

Since the ODE system (7.3–7.6) has non-negative solutions and the right-hand
side of the system is a continuous function of (C̄, B, C, T) in the domain R4

+,0, the
existence of solutions follows form the Cauchy-Peano theorem. Moreover, the par-
tial derivatives of the velocity field are also continuous and bounded in R4

+,0. Then,
using the Picard-Lindelof theorem we have proved the uniqueness of solutions.

Equilibrium and local stability analysis

We begin by calculating the fixed points and determining their stability. These are
the points E1 = (0, 0, 0, 0) and E2 = (0, 0, ρT

α2
, T∗1,2), where T∗1,2 corresponds to the

point previously calculated in Eq. 7.11. To analyze the stability of these points, we
calculate the Jacobian matrix of Eqs.(7.3–7.6)

J =


ρC̄ B

gB+B − 1/τC − k ρC̄C̄gB
(gB+B)2 0 0

−αBB −αBC̄− 1/τB 0 0
k 0 ρCT

gT+T − 1/τC − α1TC
(gC+C)2

ρC gTC
(gT+T)2 − α1C

gC+C
0 0 −α2T ρT − α2C

 .

For the equilibrium point E1 = (0, 0, 0, 0), the Jacobian matrix is

J =


−1/τC − k 0 0 0

0 −1/τB 0 0
k 0 −1/τC 0
0 0 0 ρT

 .

and the eigenvalues are λ1 = −(k + 1/τC) , λ2 = −1/τB , λ3 = −1/τC and λ4 = ρT.
Thus, E1 is an unstable equilibrium point. The study of the stability of E2 is similar
to its analogue in the case of Eqs.(7.1–7.1), where a simple analytical expression for
the eigenvalues cannot be obtained.
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7.4 Results (I): Therapy outcomes under immune suppres-
sion using CAR T cells with a single CAR group targeting
a tumor antigen.

7.4.1 A high level of immune suppression prevents in-patient expansion
of CAR T cells

Firstly, we studied the effect of the immunosuppressive strength of tumor cells as
measured by α1, on the dynamics of model Equations (7.1) and (7.2). Note that in
Equation (7.1), the term proportional to α1 represents CAR T cell growth inhibition.
When immune suppression is neglected, i.e., α1 = 0, an initial condition C0 can
always be found such that the treatment leads to an initial reduction of the total
number of tumor cells, i.e., T(t) would initially decrease, allowing for tumor control
over long times. Using Equation (7.2) and the condition dT/dt < 0 it is easy to find
that the condition for the therapy to be initially effective is C(t) > ρT/α2.

Figure 7.3 a,c provides an example of an effective therapy in the absence of
tumor-mediated immune suppression. An initial dose of C0 = 8× 107 CAR T cells
sufficed to reduce the tumor load below observable limits in a few weeks.

Next, we studied the tumor response to CAR T cell infusion in the presence of
tumor immune suppression, i.e., for values of α1 > 0. Tumor control was also ob-
tained for small α1 values (see Figure 7.3 a,c), where the CAR T population overcame
the immune suppression and grew, promoting the death of a large number of tumor
cells. The expansion of the CAR T cell population was slower than for α1 = 0 and
the reduction of the tumor load also occurred on longer time scales, but tumor con-
trol was also achieved in this situation, with low α1 values corresponding to tumors
with low immunosuppressive capability.

We can also see in Figure 7.3 b,d that when the value of the immune suppression
parameter was increased beyond the threshold α1 > 0.03, the tumor and CAR T cell
dynamics changed substantially. In that situation, CAR T cells could not expand in
vivo and no longer controlled the disease, and the tumor continued growing after
treatment infusion.

The threshold of α1, below which the tumor dynamics were controlled by the
treatment, was also found to be dependent on the value of the saturation parameter
gC, as shown in Figure 7.4.

Our choice of seven days to study the response was motivated by the observa-
tions of Brown et al., 2016 where CAR T cells were detected in the CSF after each
intraventricular administration for a maximum of seven days. Similar thresholds
are obtained in our analysis for values between four and seven days.

7.4.2 Initial number of CAR T cells injected affects the outcome of the
therapy

Next, we studied the effect of the number of CAR T cells initially injected on the
system’s dynamics for the case of CAR T cells targeting only the on-tumor antigen.
To do so, we performed an extensive number of simulations of Equations (7.1) and
(7.2) over the biologically feasible range of parameters. We found a dependence of
the dynamics on the number of injected CAR T cells. Results shown in Figure 7.5
present some examples for numbers of cells initially injected ranging from 5× 107 to
7× 108 cells.

There were two different types of dynamics in the tumor response depending on
the initial choice of C0. For the parameters listed in Figure 7.5, there was a qualitative



7.4. Results (I): Therapy outcomes under immune suppression using CAR T cells
with a single CAR group targeting a tumor antigen.

103

FIGURE 7.3: Tumor immune suppression governs the expansion
of CAR T cells in silico. Dynamics of the number of CAR T (blue
curves) and tumor cells (red curves) governed by Equations (7.1) and
(7.2) in different immune suppression scenarios. Subplots (a) and (c)
show the results for α1 = 0 (solid lines), α1 = 0.02 day−1 (dashed
lines) and α1 = 0.03 day−1 (dash-dotted lines) and subplots (b) and
(d) for α1 = 0.035 day−1 (dashed lines), α1 = 0.04 day−1 (dash-dotted
lines) and α1 = 0.1 day−1 (dotted lines). Initial data used in the simu-
lations C0 = 8× 107 cells, T0 = 3.35× 1010 cells and parameter values
τC = 7 days, ρC = 0.9 day−1, ρT = 1/50 day−1, α2 = 2.5× 10−10

day−1 cell−1, gT = 1010 and gC = 2× 109.

change in the dynamics around C0 = 2× 108 cells. Thus, small doses of CAR T cells
led only to a small reduction in the tumor load (Figure 7.5 a), while for doses larger
than this threshold, the therapy was able to control tumor growth in silico (see Figure
7.5 b). The threshold was found to be related to the particular choice of parameter
values and would change under different conditions.

This dynamic differs from what happens in leukemia in which the outcome does
not depend on the number of cells injected. This is mainly due to the immune sup-
pression capabilities of solid tumors included in our model equations.

7.4.3 Injection of a large number of CAR T cells could allow for cure or
prolonged tumor control in the presence of immune suppression

Next, we used the mathematical model as a tool to tackle the problem of tumor
immune suppression against CAR T and explored different CAR T cell treatment
strategies in silico. As a first test, we increased the dose of the CAR T product with
respect to that used in Figure 7.5 to 4× 108 cells injected. Figure 7.6 a shows that in
that situation and with a tumor immune suppression rate of α1 = 0.04 day−1 it was
possible to obtain a significant reduction in the number of tumor cells, of more than
four orders of magnitude, lasting for six months, which could either be compatible
with cure or could provide a window of opportunity for the application of other
therapies.
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FIGURE 7.4: Parameter regions of control of the tumor growth dy-
namics seven days after infusion as a function of α1 and gC. Yellow
areas show the parameter areas in which dT/dt < 0, dC/dt > 0, i.e.,
tumor was reducing its size and CAR T cell population increasing af-
ter seven days. Green areas are those in which dT/dt < 0, dC/dt < 0
after seven days, thus the tumor mass was reducing its size but the
CAR T cell was being destroyed by the cancer cells’ immune suppres-
sion corresponding to transient effect of the therapy. Purple regions
are those in which dT/dt > 0, dC/dt < 0. Thus, the tumor was in-
creasing its size and the CAR T cell population decreasing after seven
days, leading to therapy failure. Initial data used in the simulations
were C0 = 8× 107, T0 = 3.35× 1010 and parameter values τC = 7
days, ρC = 0.9 day−1, ρT = 1/50 day−1, α2 = 2.5 × 10−10 day−1

cell−1, gT = 1010.

However, the same figure shows that higher levels of immune suppression (α1 =
0.07 day−1 and α1 = 0.1 day−1) led to the failure of the therapy and a continuous
increase in the population of cancerous cells. Higher doses of CAR T would have to
be injected at these rates of immune suppression to achieve control of the disease.
Figure 7.8 c shows that for α1 = 0.1 day−1 increasing the dose above 1.5× 109 cells,
led again to disease control.

This means that, even with immune suppression active, achieving very high lev-
els of CAR T cells could allow the tumor defenses to be overcome, and the tumor
to be defeated. However, achieving such an initial high doses is practically unfeasi-
ble. Section 7.4.5 will discuss how to achieve those large CAR T cell doses without
having to infuse them externally.

7.4.4 A high initial tumor load favors CAR T cell expansion

Surgical resection is performed regularly as an up-front therapy in different cancer
types. For glioblastoma, it is part of the standard treatment as it helps to rapidly
reduce mass effect and neurological symptoms. The initial tumor load plays a dual
role. On the one hand, a high tumor load would favor the initial expansion of the
CAR T cells, but on the other, it may enhance tumor immune suppression. Thus the
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FIGURE 7.5: Injection of large numbers of CAR T cells allows im-
mune suppression effects of solid tumors to be overcome in silico.
Longitudinal dynamics of the total number of CAR T (blue) and tu-
mor cells (red) ruled by Equations (7.1) and (7.2). The curves cor-
respond to different values of CAR T cells injected into a patient
bearing a number of T0 = 3.35 × 1010 tumor cells. (a) CAR T cell
dynamics for C0 = 5 × 107 (solid line), C0 = 8 × 107 (dotted line),
C0 = 1.5× 108 (dashed line). (b) Longitudinal dynamics of the CAR
T cells for C0 = 2× 108 (solid line), C0 = 4× 108 (dotted line) and
C0 = 7× 108 (dashed line). The parameter values used in the sim-
ulations were τC = 7 days, ρC = 0.9 day−1, ρT = 1/50 day−1,
α1 = 0.04 day−1 cell−1, α2 = 2.5 × 10−10 day−1 cell−1, gT = 1010

and gC = 2× 109.

question arises of what would be the optimal approach to use CAR T cell treatments
in combination with surgical resections.

To shed some light on the question, we computationally explored the idea of
using CAR T cells after performing a partial surgical resection of the tumor, a fre-
quent situation in the context of brain tumors. In that scenario one would start
treatment with a hypothetical first-line therapy with CAR T cells, with a substan-
tially smaller initial number of cancer cells. Assuming that the tumor load has been
reduced to 20% of the initial one shown in Figure 7.6 a, Figure 7.6 b shows the dy-
namics of CAR T and tumor cells for T0 = 6.7× 109 maintaining a low dose of CAR
T, C0 = 8× 107. The decrease in the initial tumor load led to lower stimulation of
the CAR T cells and therapy failure even for tumors with low immune suppression
capabilities (α1 = 0.04 day−1). However, tumor relapse could be controlled by the
CAR T cells in those tumors. Some additional tumor decrease was possible in the
cases of greater immune suppression (α1 = 0.07 day−1 and α1 = 0.1 day−1) by in-
creasing the initial CAR T cell dose, as Figure 7.6 c shows. In that case, transient
tumor stabilization was achieved lasting for several weeks, although the final out-
come was the same as in Figure 7.6 a.
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FIGURE 7.6: Simulated tumor and CAR T dynamics under different
initial conditions for the number of injected cells and initial tumor
load. Dynamics of the number of CAR T cells (blue curves) and tumor
cells (red curves) governed by Equations (7.1) and (7.2) in three differ-
ent scenarios of immune suppression: α1 = 0.04 day−1 (solid lines),
α1 = 0.07 day−1 (dotted lines) and α1 = 0.1 day−1 (dashed lines). Pa-
rameter values used in the simulations τC = 7 days, ρC = 0.9 day−1,
ρT = 1/50 day−1, α2 = 2.5 × 10−10 day−1 cell−1, gT = 1010 and

gC = 2× 109.

7.4.5 Results (II): Therapy outcomes under tumor immune suppression
using CAR T cells with dual CAR groups with on- and off-tumor
activity

7.4.6 CAR T cells with two targets provided long-time tumor control ad-
vantages in silico

We performed long-term simulations of Equations (7.1) and (7.2) with parameters as
in Figure 7.6 a and α1 = 0.04 day−1, corresponding to weak immune suppression.
In this case, we observed the relapse of the disease in silico (see Figure 7.7 a) around
eight months after infusion. Tumor growth continued for several months leading
to disease progression, while CAR T cells were exhausted approximately 4 months
before relapse.

However, when repeating the same simulation using model Equations (7.3)–
(7.6), i.e., when using the CAR T cells with two targets, substantially improved dis-
ease control was observed in silico. Results are summarized in Figure 7.7 b. The
interaction between the CAR T cells in peripheral blood and the B cells stimulated
the proliferation of the CAR T cells and lead to an increased flow of these cells to-
wards the tumor. In this case, we observe an improved expansion of the initial CAR
T cells delivered and persistence of the CAR T product in the tumor tissue for longer
times. Thus, by overcoming the tumor immunosuppressive environment, the pro-
posed use of dual CAR Ts could lead to improved tumor control. Figure 7.7 b also
shows the results when applying dual CAR T therapy in more immunosuppressive
tumors, where single-target therapy would have failed. Thus, the use of dual target
CAR T with on- and off-tumor activity showed substantially improved anti-tumor
activity in comparison with the single-target CARs.
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FIGURE 7.7: Long-term dynamics of virtual patients. (a) Dynamics
of the number of CAR T (blue curve) and tumor cells (red curve) gov-
erned by Equations (7.1) and (7.2). Initial conditions and tumor inacti-
vation rate used in the simulation were C0 = 4× 108, T0 = 3.35× 1010

and α1 = 0.01 day−1. (b) Dynamics of the number of CAR T cells
(blue curves), B cells (green curve) and tumor cells (red curve) ruled
by Equations (7.3)–(7.6) in three different scenarios of immune sup-
pression: α1 = 0.04 day−1 (solid lines), α1 = 0.07 day−1 (dotted
lines) and α1 = 0.2 day−1 (dashed lines). Initial conditions used
in the simulation were C̄0 = 2 × 108, C0 = 0, B0 = 2.5 × 1010

and T0 = 3.35 × 1010 cells. Parameter values used in the simula-
tions were τC = 7 days, ρC̄ = ρC = 0.9 day−1 , ρT = 1/50 day−1,
α2 = 2.5× 10−10 day−1 cell−1, gT = 1010 cells, gC = 2× 109 cells,
gB = 1010 cells, k = 0.2, αB = 4.5× 10−11 day−1 cell−1 and τB = 60

day−1.

7.4.7 Dual CAR T improves the possibility of therapy success

Finally, we performed a systematic study of the possibility of controlling tumor
growth using single and double CAR T therapies. Figure 7.8 shows the results for
different values of the tumor immune suppression strength as a function of the initial
number of CAR T and tumor cells. Tumor was considered to be controlled if, after
six months, the number of tumor cells was below 10% of its peak value. A thresh-
old effect was clearly observed, with tumor control at six months being a function
of α1, C0, and T0. The best results were obtained for double CAR T cell therapy,
which was capable of controlling a substantially larger number of tumors according
to their size and immunosuppressive capacity, with lower doses of the CAR T prod-
uct (see Figure 7.8 d–f). For the same value of α1 (compare Figure 7.8 c,d), dual-CAR
was substantially more effective in achieving tumor control. Moreover, in situations
with small initial tumor cell loads, the dual-CAR treatment was effective even for
large values of the tumor immune suppression parameter, which points to a poten-
tial success of the therapy when using the treatment soon after surgery.
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FIGURE 7.8: Colormap plots of the percentage of change in tumor
load at six months compared to the initial load measured by the frac-
tion T(180)/T0, as a function of the initial number of CAR T and tu-
mor cells, over three immune suppression scenarios: (a) α1 = 0.04
day−1 , (b) α1 = 0.07 day−1, (c,d) α1 = 0.1 day−1, (e) α1 = 0.2 day−1

and (f) α1 = 0.8 day−1. Dark blue areas, delimited by the white lines,
show the initial configurations of injected CAR T cells (C0) and tu-
mor loads (T0) leading to tumor control after six months. Subplots
(a–c) show the results obtained using a single CAR as governed by
Equations (7.1) and (7.2). Subplots (d–f) shows results of computer
simulations with the dual CARs obtained using Equations (7.3)–
(7.6). Parameter values used in the simulations were τC = 7 days,
ρC̄ = ρC = 0.9 day−1 , ρT = 1/50 day−1, α2 = 2.5× 10−10 day−1

cell−1, gT = 1010, gC = 2× 109, gB = 1010, k = 0.2, αB = 4.5× 10−11

day−1 cell−1 and τB = 60 day−1.

7.5 Discussion and conclusion

In this chapter we constructed a mathematical model based on ordinary differential
equations for the total numbers of CAR T cells and tumor cells. This is probably the
strongest assumption of our study, since tumors are complex entities having spatial
structure with heterogeneous accessibility for the immune system, different types of
niches and probably varying levels of immune suppression. Thus, a direct extension
of this work would be to consider tumor spatial structure. The scenario of complete
tumor macroscopic resection would be the one in which the mathematical model
could most closely reflect the real in-patient dynamics, since spatial effects would be
expected to be less relevant.

The simulations of our mathematical model suggest that the injection of a mas-
sive number of CAR T cells could overcome the immune suppression capabilities
of the tumor. The idea is simple: throw in many more T cells than the tumor can
deactivate. However, this is not currently possible technically with current CAR T
products, since the number of T cells that can be obtained is orders of magnitude
below the threshold for such an attack on the tumor to succeed. Moreover, only a
fraction of the cells injected in the blood stream will travel to the tumor site. Al-
though this can be partially overcome by the direct delivery of the CAR T cells to
the tumor sites these ideas have not lead to sustained therapeutical success when
treating glioblastomas.
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Thus, one alternative option is to generate an army of CAR T cells within the
body. For that purpose, any target allowing for the expansion of the T cells without
a significant toxicity could be used. This lead us to the idea that dual-target CAR T
cells, one with on-tumor activity and other with off-tumor activity on a large pop-
ulation of non-essential healthy cells whose elimination does not threaten patient
survival. One example of such target could be CD19 because of the large number
of B cells present in the organism, the fact that CD19 is not expressed in other tis-
sues, and that the toxicity of current CAR T products targeting CD19 is now well
controlled.

Interestingly, our mathematical model captured the difficulties for CAR T cell
expansion when tumor immune suppression was accounted for. As in different clin-
ical studies, the model showed that CAR T cells targeting solid tumors have poor
persistence properties, even with high doses of CAR T. Simulations reaffirmed the
relevance of the dose injected for the early outcome of the therapy. The exact thresh-
old value that could be effective for tumor control would depend on its character-
istics, and would be patient- and tumor- dependent. Immunosuppressive tumors
such as glioblastoma may require higher doses of injected CAR T cells to achieve
a significant reduction in the tumor load. However, even in poorly immunosup-
pressive environments, the escape of the tumor due to the limiting effect of immune
suppression was found to be enough to allow for relapse in the medium term.

We also explored in silico the idea of treating resected tumors with the single-
CAR T cells, i.e., in scenarios of a reduction of the initial tumor load. In that case,
a modest expansion of CAR T cells was observed due to the lower levels of tumor
targets. In principle, the reduction in tumor size could help in limiting the effect
of tumor immune suppression. We found in silico that both processes overlapped,
leading to an initial reduction in tumor size, but eventually the tumor grew back.
Better results were obtained in silico for long-term tumor control when a high dose
of CAR T cells was administered to a large initial tumor. The problem is that, taking
into account the reduction of cells from those injected to those traveling to the tumor
region, the amount of CAR T cells required would be too high, and thus technically
unfeasible.

CAR T with dual CAR groups targeting CD19 and the tumor antigen, would pro-
mote further stimulation of CAR T cells through their interaction with B cells, pro-
viding a powerful source of tumor-targeting CAR T cells. In fact, interaction with B
cells is likely to occur early as they are found in blood and lymphoid organs (Chen).
Normal B cells would then provide a non-tumor dependent, self-renewing antigen
source to support CAR T. This double targeting, on and off the tumor, would pro-
vide a simple and pragmatic solution to improving the problem of trafficking and
CAR T cell deactivation due to immune suppression by tumor cells.

Our simple simulation model of this scenario provided substantial tumor control
advantages in silico over the case of single-CAR. Substantial improvements in effec-
tiveness were observed in cases in which CAR T cells with a single on-tumor target
had difficulty in controlling the tumor. The first situation was with highly immuno-
suppressive tumors, where therapy success was significantly improved by the initial
boost in anti-tumor cells generated by the substantially larger initial expansion. The
second situation was the one of small initial tumor loads, in which single-target CAR
T expansion would be less likely to be substantial, e.g., in cases in which an initial
surgery had left only a remnant of infiltrative tumor cells. In that case, the major
contribution to CAR T cell expansion came from the CD19-bearing cells and led to
the success of dual CAR therapy in silico.
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The proposed strategy has the only limitation of the toxicity of the treatment on
CD19+ cells. Acute toxicity is mostly related to cytokine release syndrome and neu-
rotoxicity. These side effects of the treatment can be life-threatening in a subset of
patients. However, tocilizumab and corticosteroids have been used to manage these
toxicities, enabling CD19 CAR T cells to be administered without obvious compro-
mise in efficacy (Hirayama and Turtle, 2019; Siegler and Kenderian, 2020).

Thus, our study suggests an optimal protocol for the use of these dual-target
CAR Ts with on- and off-tumor activity. Patient blood and bone marrow samples
should be taken before surgery in order to start with the preparation and in vitro
expansion of the CAR T product, and the patient should meanwhile receive surgery,
and a recovery time be allowed for. Subsequently, the dual CAR Ts should be in-
fused, possibly in combination with anti-PD-1 treatment, and finally cytotoxic ther-
apies (radiation therapy and chemotherapy) could be applied to kill potentially re-
sistant cells not bearing the CAR T tumor target. Finally, B-cell aplasia would be
expected, as happens in the treatment of hematological malignancies with CD19
antigens. However, since the bone marrow is very unlikely to contain tumor cells,
the sample taken initially could be used to provide an autologous bone marrow
transplant after the CAR T cells are exhausted.

In summary, we have constructed a mathematical model of a solid tumor re-
sponse to CAR T cells with dual targets: one of them recognizing a tumor anti-
gen and the other recognizing an off-tumor antigen present in normal cells such as
CD19+ B cells. When only the tumor antigen was present, the therapy could over-
come tumor immune suppression only when unrealistically large numbers of CAR T
cells were injected. The use of dual CARs allowed the expansion of the CAR T pop-
ulation to happen even in the presence of immune suppression by tumor cells on
the T cells and allowing appropriate therapeutic levels of the T-cell population to be
attained. In our simulations, this resulted in long-term tumor control, which would
provide an additional tool in the fight against aggressive cancers with few therapeu-
tic options, such as glioblastoma. We also found in silico that an optimal use of the
dual-CAR T cell therapy for glioblastoma would be to inject them immediately after
extensive surgical resection and before the use of cytotoxic treatments.

In this study we intend only to provide a theoretical proof of concept of the phe-
nomenon. There is much work to do to explore mathematically the dynamical in-
terplay of the different biological processes, and to find the parameter ranges best
describing these phenomena. We hope that this work will stimulate the develop-
ment of experimental studies, testing the potential effectiveness of the concepts de-
scribed here. If successful, CAR T with dual targets could become a novel ingredient
in combination therapies against aggressive solid tumors such as glioblastoma.
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Chapter 8

Conclusions

This chapter presents the conclusions of the research described in the thesis.

Conclusions of mathematical models of solid tumor growth
and response to stereotactic radiosurgery

Longitudinal follow-up of untreated malignant tumors showed explosive growth
dynamics.

• Among several growth laws analyzed (classical exponential, size-limited Keiber
and super-linear growth), the model that best described the longitudinal volu-
metric data from malignant tumors was super-linear growth law.

• In contrast, the longitudinal volumetric data corresponding to the benign tu-
mor analyzed showed slower growth (similar to Kleiber’s law of limited size).

A mathematical approach reproduces the response of brain metastases to stereo-
tactic radiosurgery.

• A mathematical model based on ordinary differential equations that includes
four cell compartments was able to describe the volumetric dynamics of brain
metastases after stereotactic radiosurgery.

• Good model fits were obtained to the volumetric data of the treated lesions,
describing the different dynamics observed in clinical practice including early
and late post-treatment inflammation.

• We obtained an analytical estimate for the progression time due to the growth
of remnant proliferating cells after SRS, which could be used to help distin-
guish between progression and radiation necrosis.

In silico inflammatory events after SRS displayed the fastest growth dynamics
allowing to discriminate them from relapses.

• A mesoscale stochastic model that addresses new biological and spatial aspects
describes volumetric dynamics of BMs to SRS.

• The volumetric behavior of the post-SRS inflammatory response showed faster
growth dynamics than that of BM relapses in computational simulations. The
growth exponent β values for inflammatory events were typically greater than
1 and less than 1 for tumor recurrences.

• The value of the exponent β could have a direct clinical application to distin-
guish volumetric regrowth after SRS as inflammation or tumor progression.
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Conclusions of mathematical models of response of CAR T
cell therapy

CD19+ relapses in B-ALL could be the result of competition between leukemic
and CAR T cells, analogous to predator-prey dynamics.

• A mathematical model incorporating the major cell populations involved in
the growth of B-ALL described the short- and long-term dynamic response of
leukemia to injection of CAR T cells. The model showed that the number of
CAR T cells injected does not critically affect the treatment outcome.

• The model predicted that CD19+ cancer relapses could be the result of com-
petition between leukemic and CAR T cells, analogous to predator-prey dy-
namics. Time relapse depended on the growth rate of the leukemic cells, the
stimulation rate and the lifespans of the CAR T cells.

• The possibility of controlling relapses by early re-challenging of the leukemia
cells with stored CAR T cells was studied. The best results were obtained when
reinjection was performed on relapse.

CAR T cells therapy could control cancer growth but not eradicate the T-ALL.

• The simple mathematical model developed captured the difficulties for CAR
T cell expansion in vitro, with a limit in cell production. Maximum number
of CAR T cells that can be produced in vitro depends on the stimulation pro-
vided by the cytokines and the excess CAR T killing efficiency over the mitotic
stimulation.

• Numerical simulations of the model showed that CAR T population is ampli-
fied even in the presence of fratricide during initial stage after the administra-
tion of therapy. CAR T cells were able to control leukemic growth after two
weeks, with peak leukemic loads lower than the initial ones.

• Relapse time after the CAR T treatment was found to depend strongly on the
proliferation rate of the leukemia cells.

Dual-target CAR Ts with on- and off-tumor activity may override immune sup-
pression in solid cancers.

• The proposed mathematical model described the competence of CAR T and
tumor cells, taking into account their immunosuppressive capacity. In silico
simulations showed that the use of large numbers of CAR T cells targeting
solid tumor antigens is necessary to overcome the immunosuppressive poten-
tial of cancer and reduce tumor burden during the first few weeks.

• Manufacture and injection of CAR T cells targeting two antigens: CD19 and
a tumor-associated antigen was proposed to achieve higher levels of CAR T
cells.

• Dual-target CAR T cell therapy was able to control a substantially larger num-
ber of tumors according to their size and immunosuppressive capacity.
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Chapter 9

Conclusiones Generales

Este capítulo presenta las conclusiones de la investigación descrita en la tesis.

Conclusiones de los modelos matemáticos de crecimiento de
tumores sólidos y respuesta a la radiocirugía estereotáctica

El seguimiento longitudinal de tumores malignos no tratados mostró una dinámica
de crecimiento explosiva.

• Entre varias leyes de crecimiento analizadas (exponencial, Keiber de tamaño
limitado y crecimiento súper lineal), el modelo que mejor describió los datos
volumétricos longitudinales de los tumores malignos fue la ley de crecimiento
súper lineal.

• Por el contrario, los datos volumétricos longitudinales correspondientes al tu-
mor benigno analizado mostraron un crecimiento más lento (similar a la ley de
Kleiber de tamaño limitado).

Un enfoque matemático reproduce la respuesta de las metástasis cerebrales
tratadas con radiocirugía estereotáctica.

• Un modelo matemático basado en ecuaciones diferenciales ordinarias que in-
cluye cuatro compartimentos celulares fue capaz de describir la dinámica volu-
métrica de las metástasis cerebrales después de la radiocirugía estereotáctica
(SRS por su siglas en inglés).

• Se obtuvieron buenos ajustes del modelo a los datos volumétricos de las le-
siones tratadas, describiendo las diferentes dinámicas observadas en la prác-
tica clínica incluida la inflamación postratamiento temprana y tardía.

• Obtuvimos una estimación analítica del tiempo de progresión causado por el
crecimiento de células proliferativas remanentes después de la SRS, el cual po-
dría usarse para ayudar a distinguir entre progresión y radionecrosis.

Los eventos inflamatorios in silico posteriores al SRS mostraron una dinámica
de crecimiento más rápida, lo que permitió discriminarlos de las recaídas.

• Un modelo estocástico de mesoescala que aborda nuevos aspectos biológicos y
espaciales describe la dinámica volumétrica de metástasis cerebrales tratadas
con SRS.
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• El comportamiento volumétrico de la respuesta inflamatoria post-SRS mostró
una dinámica de crecimiento más rápida que el de las recaídas de las metásta-
sis cerebrales en simulaciones computacionales. Los valores del exponente de
crecimiento β para los eventos inflamatorios fueron típicamente mayores que
1 y menores que 1 para las recurrencias tumorales.

• El valor del exponente β podría tener una aplicación clínica directa para dis-
tinguir el recrecimiento volumétrico después del SRS como inflamación o pro-
gresión tumoral.

9.1 Conclusiones de los modelos matemáticos de respuesta
de la terapia con células CAR T

Las recaídas de CD19 + en leucemia linfoblástica aguda de células B podrían ser
el resultado de la competencia entre las células leucémicas y las células CAR T,
análoga a la dinámica de depredador-presa.

• Un modelo matemático, que incorpora las principales poblaciones de células
implicadas en el crecimiento de la leucemia linfoblástica aguda de células B,
describió la respuesta dinámica a corto y largo plazo de la enfermedad frente
la inyección de células CAR T. El modelo mostró que la cantidad de células
CAR T inyectadas no afecta sustancialmente al resultado del tratamiento.

• El modelo predijo que las recaídas del cáncer CD19 + podrían ser el resultado
de la competencia entre las células leucémicas y las células CAR T, similar a
la dinámica de depredador-presa. El tiempo de recaída dependió de la tasa de
crecimiento de las células leucémicas, la tasa de estimulación y la esperanza de
vida de las células CAR T.

• Se estudió la posibilidad de controlar las recaídas mediante la reinyección tem-
prana de las células leucémicas con células CAR T almacenadas. Los mejores
resultados se obtuvieron cuando se realizó la reinyección en el momento de la
recaída.

La terapia con células CAR T podría controlar el crecimiento del cáncer pero
no erradicar la linfoblástica aguda de células T.

• El modelo matemático simple desarrollado capturó las dificultades para la ex-
pansión de células CAR T in vitro, con un límite en la producción celular. El
número máximo de células CAR T que se pueden producir in vitro depende
de la estimulación proporcionada por las citoquinas y del exceso de eficiencia
de destrucción de CAR T sobre la estimulación mitótica.

• Las simulaciones numéricas del modelo mostraron que la población CAR T se
amplifica incluso en presencia de fratricidio durante la etapa inicial después de
la administración de la terapia. Las células CAR T pudieron controlar el crec-
imiento leucémico después de dos semanas, con cargas leucémicas máximas
más bajas que las iniciales.

• Se obtuvo que el tiempo de recaída después del tratamiento con CAR T de-
pende en gran medida de la tasa de proliferación de las células leucémicas.
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Los CAR Ts de doble objetivo con actividad dentro y fuera del tumor pueden
anular la inmunosupresión en cánceres sólidos

• El modelo matemático propuesto describió la competencia de las células CAR
T y las células tumorales, teniendo en cuenta la capacidad inmunosupresora
del tumor. Las simulaciones in silico mostraron que es necesario el uso de un
gran número de células CAR T dirigidas a antígenos tumorales sólidos para
superar el potencial inmunosupresor del cáncer y reducir la carga tumoral du-
rante las primeras semanas.

• Para lograr niveles más altos de células CAR T se propuso la fabricación y ad-
ministración de células CAR T dirigidas a dos antígenos: CD19 y un antígeno
asociado a tumores.

• La terapia con células CAR T de doble diana fue capaz de controlar un número
sustancialmente mayor de tumores según su tamaño y capacidad inmuno-
supresora.
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Chapter 10

Future work

The research that has been undertaken for this thesis has highlighted a number of
topics on which further research would be beneficial. Below are some of the natural
extensions to this work that would help expand the results.

10.1 The growth laws of solid tumors validation

Understanding the evolutionary dynamics of cancer is one of the most important
goals for the development of future treatment approaches and the extinction of the
disease. It is a remarkable fact that the growth laws of untreated human malignant
cancers display a signature of the evolutionary processes taking place behind the
scenes in the form of an exponent β > 1 in Pérez-García et al., 2020. It would be
interesting to expand the database to include new tumor histologies as well as a
greater number of cases. This would allow to validate the obtained result and to
develop further in the clinical implications.

The next step would be to explore the role that growth laws play in human can-
cers under different therapies and the eventual development of tumor cell resistance.
In this line, the study developed by Ocaña-Tienda et al., 2021 addresses this question
for patients with brain metastases who were treated with chemotherapy, radiother-
apy and both. However, when comparing the growth dynamics in the form of the
exponent β between the different groups treated and untreated, no statistically sig-
nificant differences were found. Despite this, the results emerged that the treated
BMs presented slower growth dynamics. Along these lines, it would be interesting
to have a larger number of data, which would allow to increase the sample size and
to possible obtain statistically significant results.

Finally, in relation to the results obtained in Section 4, the use of the exponent β
could be validated as a tool to distinguish radiation necrosis or inflammatory events
from tumor progression.

10.2 Extensions and enhancements to CAR-T cell therapy mod-
eling

The mathematical models presented to model CAR T cell treatments have provided
an understanding of the response to therapies and studied in silico the dynam-
ics of the interaction between the tumor, CAR T cells and other relevant biologi-
cal elements. The approach developed in this thesis has been of cellular kinetic-
pharmacodynamic type, considering cancers as made of spatially uniform compart-
ments. Although this could be a good initial assumption in the description of leukemias,
solid tumors or lymphomas share spatial and heterogeneous aspects that make it
necessary to incorporate these characteristics in the modeling. Once deterministic
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mathematical models describing the patient’s response to the CAR T product are
available, they can be used as test beds for alternative ideas.

CAR T cell therapies are considered one of the most promising therapeutic ad-
vances in the fight against cancer. The successes of this therapy have motivated the
study of the possible applicability against solid tumors, and have led to numerous
ongoing clinical trials for a wide variety of cancers. In this area we propose two spe-
cific extensions for future work, although in reality there would be many interesting
aspects that could be addressed with mathematical modeling.

10.2.1 A discrete simulator of single-target and dual-target CAR T ther-
apy for brain tumors

Brain tumors have showed discrete responses to different immunotherapies that
have been successful in other cancers. However, there is a potential for CAR T cell
therapy to be used to treat brain tumors. In this thesis, a strategy was proposed to
fight back one of the main problems faced by these therapies in solid tumors: tumor
immunosuppression. It would be necessary to complement the results obtained in
this line, developing a discrete model allowing to study the response of brain tu-
mors to CART therapy with single and dual target. In addition to incorporating
the spatial aspects, the discrete model allowed a better description of the tumor mi-
croenvironment, incorporating new cell populations such as immune cells. Tumor
heterogeneity could also be taken into account by incorporating mutations and dis-
tinguishing between cells that express the target and those that do not.

The use of dual CARs could be more realistically tested for low initial tumor
loads such as patients with macroscopically complete resection. The PD-1/PD-L1
interaction of T cells and tumor cells leads to the inhibition of the effector func-
tion of T cells, so blocking this interaction has the potential to significantly enhance
the antitumor activity of the cells. T and reduce T- cellular depletion. Combining
CAR-T with PD-1 blocking is a promising strategy to improve the efficacy of CAR-T
cell therapies (McGowan et al., 2019). These questions are open lines that could
be addressed by conducting in silico clinical trials to determine the best combined
treatment strategies with CAR T and other therapies..

10.2.2 A discrete simulator to predict qualitatively the spatio-temporal
dynamics of the response of B cell r/r lymphomas to CAR-T cell
therapy

Lymphoma is a hematologic cancer with some similarities to solid tumors. CAR T
treatment is indicated for adults with relapsed or refractory (r/r) large B-cell lym-
phoma who have received two or more lines of systemic therapy including diffuse
large B-cell lymphoma (LDCBG), cell lymphoma High-grade B and LDCBG derived
from follicular lymphoma. The overall response rate achieved with CAR T products
is 52%, including 40% complete responses (Schuster et al., 2019).

A very relevant problem in this context is the identification of non-responders to
CAR T cell therapy in patients with aggressive r/r B cell lymphomas. This question
has been approached from classical statistical methods based on clinical, biochemical
or standard imaging variables, but success has been limited by the small number of
data.

The retrospective, observational and non-interventional clinical study has re-
cently been approved. This study aims to include more than 100 patients diagnosed
with r/r DLBCL from eight different institutions and treated with CAR T, including
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tisagenlecleucel (CAR T product marketed by NOVARTIS currently in use in Spain
for diffuse r/r large cell B lymphomas in adults). Data collection will be carried out
through a GETH-MATCART-2021 project funded by NOVARTIS Global.

A large amount of data on disease and treatment will be collected (treatment start
and end date, response type and relapse dates, doses administered, etc). Addition-
ally, lymphoma evaluations will be collected at different time points when available,
including clinical and biochemical variables and all follow-up images.

In this context it is proposed to develop and validate a discrete simulator to pre-
dict qualitatively the spatio-temporal dynamics of the response of B cell r/r lym-
phomas to CAR T therapy from data available at the time of decision to treat. We
will draw on the experience acquired in the development of the discrete model of
BMs treated with SRS and the continuous models of response to CAR T therapy.
This conjunction will be the starting point for the in silico study of optimal ther-
apeutic programs. of tisagenlecleucel in r/r DLBCL, personalizing therapies that
might be tested later in proof-of-concept experiments.

Basic cell events considered in the model will be based on key features associated
to CAR T treatment and r/r DLBCL characteristics. An adequate voxel size will be
selected in order to allow comparison of simulation results with clinical imaging
data. In silico twins will be built for all patients whenever possible, by reconstruct-
ing the 3D tumor structure from pre-infusion PET images, and also by accurately
parameterizing the model with tumor data and PET images after treatment. Dif-
ferent therapy schemes will be tested over in silico twins in order to find optimal
schedules.
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Publications and conference
contributions

11.1 Full Publication List

Publications in ISI-indexed journals

1. Ocaña-Tienda B. , Pérez-Beteta J., Molina-García D., Jiménez-Sánchez J., León-
Triana O., Ortiz de Mendivil A., Asenjo B., Albillo D., Pérez-Romasanta L.,
González-Del Portillo E., Llorente M., Carballo N., Arana E., Pérez-García V.M.
The growth laws of brain metastases. PNAS (Submitted).

Journal impact factor (2020): 11.205, rank 8/72 in Multidisciplinary Sciences
(Source: Web of Science).

2. León-Triana O., Pérez-Beteta J., Albillo D., Ortiz de Mendivil A., Pérez-Romasanta
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V.M. (2021) Brain metastasis response to stereotactic radio surgery: A mathe-
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of Science).

3. León-Triana O., Sabir S., Fernández-Calvo F., Belmonte-Beitia J., Chulián S.,
Martínez-Rubio A., Rosa M., Pérez-Martínez A., Ramirez-Orellana M., Pérez-
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(2021) Dual-Target CAR-Ts with On- and Off-Tumour Activity May Override
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Journal impact factor (2020): 6.639, rank 51/242 in Oncology (Source: Web of
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6. Pérez-García V.M., Calvo G.F., Bosque J.J., León-Triana O., Jiménez J., Perez-
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Oral presentations

1. Title: Mathematical model of CAR T cell therapies for B-acute lymphoblastic
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Congreso de Matemática Aplicada
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2. Title: Mathematical Model of Brain Metastasis Growth Based on MR
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models
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(presented by Beatriz Ocaña-Tienda)

2. Title: Evidence of superlinear scaling laws in human cancers
Congress: Heterogeneity and Evolution in Cancer
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(presented by Juan Jiménez)

3. Title: Mathematical model of brain metastases growth based on MRI
Congress: Statistical Physics Approaches to Systems Biology
Location: Havana, Cuba
Year: 2019

4. Title: Brain metastases: growth laws and stereotactic Radiosurgery response
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Congress: Mathematical persepectives in the biology and therapeutics of can-
cer in CIRM



11.2. Congress contributions 123

Location: Marseille, France
Year: 2018





125

Bibliography

Ahmed, K.A. et al. (2017). “The radiosensitivity of brain metastases based upon pri-
mary histology utilizing a multigene index of tumor radiosensitivity”. In: Neuro
Oncol 19.8, pp. 1145–1146. DOI: 10.1093/neuonc/nox043.

Akimoto, T. et al. (1999). “Inverse relationship between epidermal growth factor re-
ceptor expression and radiocurability of murine carcinomas”. In: Clin Cancer Res
5.10, pp. 2884–90.

Alberts, B. et al. (2015). Molecular biology of the cell. 6th edition. New York: Garland
Science.

Alcantara, M. et al. (2019). “CAR T-cells for T-cell malignancies: challenges in distin-
guishing between therapeutic, normal, and neoplastic T-cells”. In: Leukemia 11,
pp. 2307–2315. DOI: 10.1038/s41375-018-0285-8.

Altrock, P.M., L.L. Liu, and F. Michor (2015). “The mathematics of cancer: integrat-
ing quantitative models”. In: Nat Rev Cancer 15.12, pp. 730–45. DOI: 10.1038/
nrc4029.

Anderson, K.G., I.M. Stromnes, and P.D. Greenberg (2018). “Obstacles Posed by the
Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies.”
In: Cancer Cell. 31.3, pp. 311–325. DOI: 10.1016/j.ccell.2017.02.008.

Arvanitis, C.D., G.B. Ferraro, and R.K. Jain (2019). “The blood-brain barrier and
blood-tumour barrier in brain tumours and metastases”. In: Nat Rev Cancer 20.1,
pp. 26–41. DOI: 10.1038/s41568-019-0205-x.

Askew, K. et al. (2017). “Coupled Proliferation and Apoptosis Maintain the Rapid
Turnover of Microglia in the Adult Brain”. In: Cell Rep 18.2, pp. 391–405. DOI:
10.1016/j.celrep.2016.12.041.

Baar, M. et al. (2016). “A stochastic model for immunotherapy of cancer”. In: Sci Rep
6, p. 24169. DOI: 10.1038/srep24169.

Badoual, M. et al. (2014). “Oedema-based model for diffuse low-grade gliomas: ap-
plication to clinical cases under radiotherapy”. In: Cell Prolif 47, pp. 369–380. DOI:
10.1111/cpr.12114.

Bagley, S.J. and D.M. O’Rourke (2020). “Clinical investigation of CAR T cells for solid
tumors: Lessons learned and future directions”. In: Pharmacology & Therapeutics
205, p. 107419. DOI: 10.1016/j.pharmthera.2019.107419.

Bagley, S.J. et al. (2019). “CAR T-cell therapy for glioblastoma: recent clinical ad-
vances and future challenges.” In: Neuro Oncology 20.11, pp. 429–1438. DOI: 10.
1093/neuonc/noy032.

Bains, I. et al. (2009). “Quantifying the development of the peripheral naive CD4+
T-cell pool in humans”. In: Blood 113.22, pp. 5480–5487. DOI: 10.1182/blood-
2008-10-184184.

Ballabh, P., A. Braun, and M. Nedergaard (2004). “The blood-brain barrier: an overview:
structure, regulation, and clinical implications”. In: Neurobiol Dis 16.1, pp. 1–13.
DOI: 10.1016/j.nbd.2003.12.016.

https://doi.org/10.1093/neuonc/nox043
https://doi.org/10.1038/s41375-018-0285-8
https://doi.org/10.1038/nrc4029
https://doi.org/10.1038/nrc4029
https://doi.org/10.1016/j.ccell.2017.02.008
https://doi.org/10.1038/s41568-019-0205-x
https://doi.org/10.1016/j.celrep.2016.12.041
https://doi.org/10.1038/srep24169
https://doi.org/10.1111/cpr.12114
https://doi.org/10.1016/j.pharmthera.2019.107419
https://doi.org/10.1093/neuonc/noy032
https://doi.org/10.1093/neuonc/noy032
https://doi.org/10.1182/blood-2008-10-184184
https://doi.org/10.1182/blood-2008-10-184184
https://doi.org/10.1016/j.nbd.2003.12.016


126 Bibliography

Barajas, R.F. et al. (2009). “Distinguishing recurrent intra-axial metastatic tumor from
radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-
weighted contrast-enhanced perfusion MR imaging”. In: AJNR Am J Neuroradiol
30, pp. 367–372. DOI: 10.3174/ajnr.A1362.

Barbolosi, D. et al. (2009). “Mathematical and numerical analysis for a model of
growing metastatic tumors”. In: Mathematical Biosciences 218.1, pp. 1–14. DOI:
10.1016/j.mbs.2008.11.00.

Barbolosi, D. et al. (2017). “Modeling therapeutic response to radioiodine in metastatic
thyroid cancer: a proof-of-concept study for individualized medicine.” In: Onco-
target 8.24, pp. 39167–39176. DOI: 10.1016/j.mbs.2008.11.00.

Benchaib, M.A. et al. (2019). “Mathematical Modeling Reveals That the Adminis-
tration of EGF Can Promote the Elimination of Lymph Node Metastases by PD-
1/PD-L1 Blockade.” In: Front Bioeng Biotechnol. 7, p. 104. DOI: 10.3389/fbioe.
2019.00104..

Benmebarek, M. et al. (2019). “Killing Mechanisms of Chimeric Antigen Receptor
(CAR) T Cells”. In: International Journal of Molecular Sciences 20.6, p. 1283. DOI:
10.3390/ijms20061283.

Benzekry, S. et al. (2014). “Classical mathematical models for description and pre-
diction of experimental tumor growth”. In: PLoS Comput Biol 10.8, e1003800. DOI:
10.1371/journal.pcbi.100380.

Berghoff, A.S. et al. (2008). “Characterization of the inflammatory response to solid
cancer metastases in the human brain”. In: Clin Exp Metastasis 30.1, pp. 69–81.
DOI: 10.1007/s10585-012-9510-4.

Bertalanffy, L. Von (1957). “Quantitative laws in metabolism and growth”. In: Q Rev
Biol 32.3, pp. 217–231. DOI: 10.1086/401873.

Bilous, M. et al. (2019). “Quantitative mathematical modeling of clinical brain metas-
tasis dynamics in non-small cell lung cancer”. In: Scientific reports 9.1, p. 13018.
DOI: 10.1038/s41598-019-49407-3.

Blasius, B. et al. (2020). “Long-term cyclic persistence in an experimental predator-
prey system”. In: Nature 577, pp. 226–30. DOI: 10.1038/s41586-019-1857-0.

Brauer, F. and C. Castillo-Chavez (2000). Mathematical Models in Population Biology
and Epidemiology. Springer-Verlag.

Bray, F. et al. (2021). “The ever-increasing importance of cancer as a leading cause
of premature death worldwide”. In: Cancer 127.16, pp. 3029–3030. DOI: 10.1002/
cncr.33587.

Breman, E. et al. (2018). “Overcoming Target Driven Fratricide for T Cell Therapy”.
In: Frontiers in Immunology 9, p. 2940. DOI: 10.3389/fimmu.2018.02940.

Brodland, G.W. and J.H. Veldhuis (2012). “The mechanics of metastasis: insights
from a computational model”. In: PLoS ONE 7.9, e44281. DOI: 10.1371/journal.
pone.0044281.

Brown, C.E. et al. (2015). “Bioactivity and safety of IL13Rα2- redirected chimeric
antigen receptor CD8+ T cells in patients with recurrent glioblastoma.” In: Clin
Cancer Res. 21.18, pp. 4062–4072. DOI: 10.1158/1078-0432.CCR-15-0428.

Brown, C.E. et al. (2016). “Regression of glioblastoma after chimeric antigen receptor
T-cell therapy.” In: N Engl J Med. 375.26, pp. 2561–2569. DOI: 10.1056/NEJMoa1610497.

Brown, J.M., D.J. Carlson, and D.J.Brenner (2014). “The tumor radiobiology of SRS
and SBRT: are more than the 5 Rs involved?” In: Int J Radiat Oncol Biol Phys 88.2,
pp. 254–62. DOI: 10.1016/j.ijrobp.

Brown, M. P., L. M. Ebert, and T. Gargett (2019). “Clinical chimeric antigen receptor-
T cell therapy: a new and promising treatment modality for glioblastoma.” In:
Clinical & Translational Immunology 8.5, e1050. DOI: 10.1002/cti2.1050.

https://doi.org/10.3174/ajnr.A1362
https://doi.org/10.1016/j.mbs.2008.11.00
https://doi.org/10.1016/j.mbs.2008.11.00
https://doi.org/10.3389/fbioe.2019.00104.
https://doi.org/10.3389/fbioe.2019.00104.
https://doi.org/10.3390/ijms20061283
https://doi.org/10.1371/journal.pcbi.100380
https://doi.org/10.1007/s10585-012-9510-4
https://doi.org/10.1086/401873
https://doi.org/10.1038/s41598-019-49407-3
https://doi.org/10.1038/s41586-019-1857-0
https://doi.org/10.1002/cncr.33587
https://doi.org/10.1002/cncr.33587
https://doi.org/10.3389/fimmu.2018.02940
https://doi.org/10.1371/journal.pone.0044281
https://doi.org/10.1371/journal.pone.0044281
https://doi.org/10.1158/1078-0432.CCR-15-0428
https://doi.org/10.1056/NEJMoa1610497
https://doi.org/10.1016/j.ijrobp
https://doi.org/10.1002/cti2.1050


Bibliography 127

Carter, L.L. et al. (2002). “PD-1:PD-L inhibitory pathway affects both CD4+ and
CD8+ T cells and is overcome by IL-2.” In: Eur. J. Immunol. 32.2, pp. 634–643.
DOI: 10.4049/jimmunol.1401572.

Carvalho-Barros, L.R., B.J. Rodrigues, and R.C. Almeida (2020). “CAR-T cell goes
on a mathematical model”. In: Journal of Cellular Immunology 2.1, pp. 31–37. DOI:
10.33696/immunology.2.016.

Castellarin, M. et al. (2018). “Driving CARs to the clinic for solid tumors”. In: Gene
Therapy 25.3, pp. 165–175. DOI: 10.1038/s41434-018-0007-x.

Celiku, O., M.R. Gilbert, and O. Lavi (2019). “Computational modeling demonstrates
that glioblastoma cells can survive spatial environmental challenges through ex-
ploratory adaptation”. In: Nat Commun 10.1, p. 5704. DOI: 10.1038/s41467-019-
13726-w.

Chakravarthi, B.V., S. Nepal, and S. Varambally (2016). “Genomic and Epigenomic
Alterations in Cancer”. In: Am J Pathol 186.7, pp. 1724–1735. DOI: 10.1016/j.
ajpath.2016.02.023.

Chakwizira, A. et al. (2018). “Mathematical modelling of the synergistic combination
of radiotherapy and indoleamine-2,3-dioxygenase (IDO) inhibitory immunother-
apy against glioblastoma”. In: British Journal of Radiology 91, p. 1087. DOI: 10.
1259/bjr.20170857.

Choi, S.H. et al. (2014). “TopBP1 and Claspin contribute to the radioresistance of lung
cancer brain metastases”. In: Mol Cancer 5.10, pp. 2884–90. DOI: 10.1186/1476-
4598-13-211.

Chuang, M.T. et al. (2016). “Differentiating Radiation-Induced Necrosis from Recur-
rent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis.” In:
PLoS One 11.1, e0141438. DOI: 10.1371/journal.pone.0141438.

Dagogo-Jack, I. and A. Shaw (2018). “Tumour heterogeneity and resistance to cancer
therapies”. In: Nat Rev Clin Oncol 15, 81–94. DOI: 10.1038/nrclinonc.2017.166.

Davenport, A.J. et al. (2015). “CAR-T cells are serial killers”. In: Oncoimmunology
4.12, e1053684. DOI: 10.1080/2162402X.2015.1053684.

Davenport, A.J. et al. (2018). “Chimeric antigen receptor T cells form nonclassical
and potent immune synapses driving rapid cytotoxicity.” In: Proceedings of the
National Academy of Sciences U S A 115.9, E2068–E2076. DOI: 10 . 1073 / pnas .
1716266115.

Davila, M.L. et al. (2014). “Efficacy and toxicity management of 19-28z CAR T cell
therapy in B cell acute lymphoblastic leukemia”. In: Sci Transl Med 6, 224ra225.
DOI: 10.1126/scitranslmed.3008226.

Davis, B.M. et al. (2017). “Characterizing microglia activation: a spatial statistics ap-
proach to maximize information extraction”. In: Sci Rep 7, p. 1576. DOI: 10.1038/
s41598-017-01747-8.

Dehghan, M. and N. Narimani (2020). “Radial basis function-generated finite differ-
ence scheme for simulating the brain cancer growth model under radiotherapy
in various types of computational domains”. In: Computer Methods and Programs
in Biomedicine 195.6, p. 105641. DOI: 10.1016/j.cmpb.2020.105641.

Diego, D., G.F. Calvo, and V.M. Pérez-García (2013). “Modeling the connection be-
tween primary and metastatic tumors”. In: Journal of Mathematical Biology 67,
pp. 657–69. DOI: 10.1007/x00285-012-0565-2.

Dong, Y. et al. (2020). “Leukemia incidence trends at the global, regional, and na-
tional level between 1990 and 2017”. In: Exp Hematol Oncol 9.14. DOI: 10.1186/
s40164-020-00170-6.

Donovan, E.K., S. Parpia, and J.N. Greenspoon (2019). “Incidence of radionecrosis
in single-fraction radiosurgery compared with fractionated radiotherapy in the

https://doi.org/10.4049/jimmunol.1401572
https://doi.org/10.33696/immunology.2.016
https://doi.org/10.1038/s41434-018-0007-x
https://doi.org/10.1038/s41467-019-13726-w
https://doi.org/10.1038/s41467-019-13726-w
https://doi.org/10.1016/j.ajpath.2016.02.023
https://doi.org/10.1016/j.ajpath.2016.02.023
https://doi.org/10.1259/bjr.20170857
https://doi.org/10.1259/bjr.20170857
https://doi.org/10.1186/1476-4598-13-211
https://doi.org/10.1186/1476-4598-13-211
https://doi.org/10.1371/journal.pone.0141438
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1080/2162402X.2015.1053684
https://doi.org/10.1073/pnas.1716266115
https://doi.org/10.1073/pnas.1716266115
https://doi.org/10.1126/scitranslmed.3008226
https://doi.org/10.1038/s41598-017-01747-8
https://doi.org/10.1038/s41598-017-01747-8
https://doi.org/10.1016/j.cmpb.2020.105641
https://doi.org/10.1007/x00285-012-0565-2
https://doi.org/10.1186/s40164-020-00170-6
https://doi.org/10.1186/s40164-020-00170-6


128 Bibliography

treatment of brain metastasis”. In: Current Oncology 26.3, e328–e333. DOI: 10.
3747/co.26.4749.

Duregon, E. et al. (2019). “CAVEOLIN-1 expression in brain metastasis from lung
cancer predicts worse outcome and radioresistance, irrespective of tumor histo-
type”. In: Oncotarget 6.30, pp. 29626–36. DOI: 10.18632/oncotarget.4988.

Durrett, R. (2015). Branching Process Models of Cancer. Springer. DOI: 10.1007/978-
3-319-16065-8_1.

Eftimie, R., J.L. Bramson, and D.J.D. Earn (2011). “Interactions between the immune
system and cancer: a brief review of non-spatial mathematical models”. In: Bull
Math Biol 73.1, pp. 2–32. DOI: 10.1007/s11538-010-9526-3.

Eftimie, R, J.J. Gillard, and D.A. Cantrell (2016). “Mathematical models for immunol-
ogy: current state of the art and future research directions”. In: Bull Math Biol 78,
pp. 2091–2134. DOI: 10.1007/s11538-016-0214-9.

Ellingson, B.M. et al. (2014). “Emerging techniques and technologies in brain tumor
imaging”. In: Neuro Oncol 16.7, pp. vii12–23. DOI: 10.1093/neuonc/nou221.

Essig, M. et al. (2012). “Assessment of brain metastases with dynamic susceptibility-
weighted contrast-enhanced MR imaging: initial results”. In: Radiology 228, pp. 193–
199. DOI: 10.1148/radiol.2281020298.

Ewald, P.W. and H.A. Swain Ewald (2012). “Toward a general evolutionary theory
of oncogenesis”. In: Evolutionary Applications 6.1, pp. 70–81. DOI: 10.1111/eva.
12023.

Fedotov, S., A. Iomin, and L. Ryashko (2011). “Non-Markovian models for migration-
proliferation dichotomy of cancer cells: anomalous switching and spreading rate”.
In: Nonlin Soft Matter Phys 84.6, p. 061131. DOI: 10.1103/PhysRevE.84.061131.

Feins, S. et al. (2019). “An introduction to chimeric antigen receptor (CAR) T-cell
immunotherapy for human cancer”. In: Am J Hematol 94.S1, S3–S9. DOI: 10.1002/
ajh.25418.

Feng, K.C. et al. (2017). “Cocktail treatment with EGFR-specific and CD133-specific
chimeric antigen receptor-modified T cells in a patient with advanced cholan-
giocarcinoma”. In: Journal of Hematology & Oncology 10.1. DOI: 10.1186/s13045-
016-0378-7.

Fleischer, L.C., H.T. Spencer, and S.S. Raikar (2019). “Targeting T cell malignancies
using CAR- based immunotherapy: challenges and potential solutions”. In: J
Hematol Oncol 12.1, p. 141. DOI: 10.1186/s13045-019-0801-y.

Fox, B.D. et al. (2011). “Epidemiology of metastatic brain tumors”. In: Neurosurg Clin
N Am 22.1, pp. 1–6. DOI: 10.1016/j.nec.2010.08.007.

Franssen, L.C. et al. (2019). “A mathematical framework for modelling the metastatic
spread of cancer”. In: Bulletin of Mathematical Biology 81, pp. 1965–2010. DOI: 10.
1007/s11538-019-00597-x.

Fulcher, D.A. and A. Basten (1997). “B cell life span: a review.” In: Immunol. Cell. Biol.
75.5, pp. 446–555. DOI: 10.1038/icb.1997.69.

Furuse, M. et al. (2019). “Radiological diagnosis of brain radiation necrosis after cra-
nial irradiation for brain tumor: a systematic review”. In: Radiat Oncol 14.28. DOI:
10.1186/s13014-019-1228-x.

Galochkina, T., A. Bratus, and V.M. Pérez-García (2015). “Optimal radiotherapy pro-
tocol for low-grade gliomas: Insights from a mathematical model”. In: Mathemat-
ical Biosciences 267, pp. 1–9. DOI: 10.1016/j.mbs.2015.05.006.

Garcia, M.A. et al. (2018). “Brain metastasis growth on preradiosurgical magnetic
resonance imaging”. In: Pract Radiat Oncols 8.6, e369–e376. DOI: 10 . 1016 / j .
prro.2018.06.004.

https://doi.org/10.3747/co.26.4749
https://doi.org/10.3747/co.26.4749
https://doi.org/10.18632/oncotarget.4988
https://doi.org/10.1007/978-3-319-16065-8_1
https://doi.org/10.1007/978-3-319-16065-8_1
https://doi.org/10.1007/s11538-010-9526-3
https://doi.org/10.1007/s11538-016-0214-9
https://doi.org/10.1093/neuonc/nou221
https://doi.org/10.1148/radiol.2281020298
https://doi.org/10.1111/eva.12023
https://doi.org/10.1111/eva.12023
https://doi.org/10.1103/PhysRevE.84.061131
https://doi.org/10.1002/ajh.25418
https://doi.org/10.1002/ajh.25418
https://doi.org/10.1186/s13045-016-0378-7
https://doi.org/10.1186/s13045-016-0378-7
https://doi.org/10.1186/s13045-019-0801-y
https://doi.org/10.1016/j.nec.2010.08.007
https://doi.org/10.1007/s11538-019-00597-x
https://doi.org/10.1007/s11538-019-00597-x
https://doi.org/10.1038/icb.1997.69
https://doi.org/10.1186/s13014-019-1228-x
https://doi.org/10.1016/j.mbs.2015.05.006
https://doi.org/10.1016/j.prro.2018.06.004
https://doi.org/10.1016/j.prro.2018.06.004


Bibliography 129

Gargini, R. et al. (2020). “The IDH-TAU-EGFR triad defines the neovascular land-
scape of diffuse gliomas”. In: Sci Transl Med 12.527, eaax1501. DOI: 10.1126/
scitranslmed.aax1501.

Gerlee, P. (2013). “The model muddle: in search of tumor growth laws”. In: Cancer
Res 73.8, pp. 2407–11. DOI: 10.1158/0008-5472.CAN-12-4355.

Ghorashian, S. et al. (2019). “Enhanced CAR T cell expansion and prolonged persis-
tence in pediatric patients with ALL treated with a low-affinity CD19 CAR”. In:
Nature Medicine 25.9, pp. 1408–1414. DOI: 10.1038/s41591-019-0549-5.

Gupta, Pi.B. et al. (2011). “Stochastic State Transitions Give Rise to Phenotypic Equi-
librium in Populations of Cancer Cells”. In: Cell 146.4, pp. 633–644. DOI: 0.1016/
j.cell.2011.07.026.

Haeno, H. et al. (2012). “Computational modeling of pancreatic cancer reveals ki-
netics of metastasis suggesting optimum treatment strategies”. In: Cell 148.1-2,
pp. 362–375. DOI: 10.1016/j.cell.2011.11.060.

Hale, J. and H. Kocak (1991). Dynamics and bifurcation. Springer-Verlags.
Halkola, A.S. et al. (2020). “Modelling of killer T-cell and cancer cell subpopulation

dynamics under immuno- and chemotherapies”. In: Journal of Theoretical Biology
488, p. 110136. DOI: 10.1016/j.jtbi.2019.110136..

Han, X. et al. (2019). “Multi-antigen-targeted chimeric antigen receptor T cells for
cancer therapy”. In: Journal of Hematology & Oncology 12.1, p. 128. DOI: 10.1186/
s13045-019-0813-7.

Hanahan, D. and RA. Weinberg (2000). “The Hallmarks of Cancer”. In: Cell 100.1,
pp. 57–70. DOI: 10.1016/s0092-8674(00)81683-9.

Hanahan, D. and R.A. Weinberg (2011). “Hallmarks of Cancer: The Next Genera-
tion”. In: Cell 144.5, pp. 646–674. DOI: 10.1016/j.cell.2011.02.013.

Hanin, L. and J. Rose (2018). “Suppression of metastasis by primary tumor and ac-
celeration of metastasis following primary tumor resection: A natural law?” In:
Bulletin of Mathematical Biology 80.3, pp. 519–539. DOI: 10.1007/s11538- 017-
0388-9.

Hartmann, J. et al. (2017). “Clinical development of CAR T cells-challenges and op-
portunities in translating innovative treatment concepts”. In: EMBO Mol Medl 9,
pp. 1183–1197. DOI: 10.15252/emmm.201607485.

Havenbergh, T. Van et al. (2003). “Natural history of petroclival meningiomas”. In:
Neurosurgery 52.1, pp. 55–64. DOI: 10.1097/00006123-200301000-00006.

Hawkins-Daarud, A. et al. (2015). “In silico analysis suggests differential response to
bevacizumab and radiation combination therapy in newly diagnosed glioblas-
toma”. In: J. R. Soc. Interface 12, p. 20150388. DOI: 10.1098/rsif.2015.0388.

He, B. et al. (2020). “Gamma ray-induced glial activation and neuronal loss occur
before the delayed onset of brain necrosis”. In: FASEB J 34.10, pp. 13361–13375.
DOI: 10.1096/fj.202000365RR.

Heesterman, B.L. et al. (2003). “Mathematical Models for Tumor Growth and the
Reduction of Overtreatment”. In: J Neurol Surg B Skull Base 80.1, pp. 72–78. DOI:
10.1055/s-0038-1667148.

Hegde, M. et al. (2013). “Combinational Targeting Offsets Antigen Escape and En-
hances Effector Functions of Adoptively Transferred T Cells in Glioblastoma”.
In: Molecular Therapy 21.11, pp. 2087–2101. DOI: 10.1038/mt.2013.185.

Hege, K.M. et al. (2017). “Safety, tumor trafficking and immunogenicity of chimeric
antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer”. In: J Im-
munother Cancer 5, p. 22. DOI: 10.1186/s40425-017-0222-9.

https://doi.org/10.1126/scitranslmed.aax1501
https://doi.org/10.1126/scitranslmed.aax1501
https://doi.org/10.1158/0008-5472.CAN-12-4355
https://doi.org/10.1038/s41591-019-0549-5
https://doi.org/0.1016/j.cell.2011.07.026
https://doi.org/0.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.11.060
https://doi.org/10.1016/j.jtbi.2019.110136.
https://doi.org/10.1186/s13045-019-0813-7
https://doi.org/10.1186/s13045-019-0813-7
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1007/s11538-017-0388-9
https://doi.org/10.1007/s11538-017-0388-9
https://doi.org/10.15252/emmm.201607485
https://doi.org/10.1097/00006123-200301000-00006
https://doi.org/10.1098/rsif.2015.0388
https://doi.org/10.1096/fj.202000365RR
https://doi.org/10.1055/s-0038-1667148
https://doi.org/10.1038/mt.2013.185
https://doi.org/10.1186/s40425-017-0222-9


130 Bibliography

Henares-Molina, A. et al. (2017). “Non-standard radiotherapy fractionations delay
the time to malignant transformation of low-grade gliomas”. In: PLoS One 12.6,
e0178552. DOI: 10.1371/journal.pone.0178552.

Henschke, C.I. (2019). “International Early Lung Cancer Action Program: Enrollment
and Screening Protocol”. In: International Early Lung and Cardiac Action Program.
URL: http://www.ielcap.org/sites/default/files/I-ELCAP-protocol.pdf.

Hessel, F. et al. (2003). “Impact of increased cell loss on the repopulation rate during
fractionated irradiation in human FaDu squamous cell carcinoma growing in
nude mice.” In: Int J Radiat Biol 79.6, pp. 479–486. DOI: 10.1371/journal.pone.
0178552.

Hirayama, A.V. and C.J. Turtle (2019). “Toxicities of CD19 CAR-T cell immunother-
apy.” In: Am. J. Hematol. 94.S1, S42–S49. DOI: 10.1002/ajh.25445..

Hong, M., J.D. Clubb, and Y.Y. Chen (2020). “Engineering CAR-T Cells for Next-
Generation Cancer Therapy”. In: Cancer Cell. 38.4, pp. 473–488. DOI: 10.1016/j.
ccell.2020.07.005.

Iwata, K., K. Kawasaki, and N.Shigesada (2000). “A dynamical model for the growth
and size distribution of multiple metastatic tumors”. In: J Theor Biol 203.1, pp. 177–
186. DOI: 10.1006/jtbi.2000.1075.

Jarrett, A.M. et al. (2018). “Classical mathematical models for description and predic-
tion of experimental tumor growth”. In: Expert Rev Anticancer Ther 18.12, pp. 1271–
1286. DOI: 10.1080/14737140.2018.1527689.

Jiang, J. et al. (2020). “Characterization of the immune microenvironment in brain
metastases from different solid tumors”. In: Cancer Med 9.7, pp. 2299–2308. DOI:
10.1002/cam4.2905.

Jiménez-Sánchez, J. et al. (2021). “A mesoscopic simulator to uncover heterogeneity
and evolutionary dynamics in tumors”. In: PLoS Comput Biol 17.2, e1008266. DOI:
0.1371/journal.pcbi.1008266.

Joiner, M.C. and A.J.C Van der Kogel (2018). Basic Clinical Radiobiology. CRC Press.
Kasakovski, D., L. Xu, and Y. Li (2018). “T cell senescence and CAR-T cell exhaustion

in hematological malignancies”. In: J Hematol Oncol 11.1, p. 91. DOI: 10.1186/
s13045-018-0629-x.

Khasraw, M. et al. (2020). “PD-1 Inhibitors: Do they have a Future in the Treatment
of Glioblastoma?” In: Clin Cancer Res 26.20, pp. 5287–5296. DOI: 10.1158/1078-
0432.CCR-20-1135..

Kim, M.S. et al. (2015). “Radiobiological mechanisms of stereotactic body radiation
therapy and stereotactic radiation surgery”. In: Radiation Oncology Journal 33.4,
pp. 265–275. DOI: 10.3857/roj.2015.33.4.265.

Kimmel, G.J., F.L. Locke, and P.M. Altrock (2019). “Evolutionary Dynamics of CAR
T Cell Therapy”. In: bioRxiv 717074. DOI: 10.1101/717074.

Kobets, A.J. et al. (2020). “Evaluating the natural growth rate of metastatic cancer to
the brain”. In: Surg Neurol Int 11, p. 254. DOI: 10.25259/SNI_291_2020.

Kohutek, Z.A. et al. (2015). “Long-term risk of radionecrosis and imaging changes af-
ter stereotactic radiosurgery for brain metastases”. In: J Neurooncol 125.1, pp. 149–
156. DOI: 10.1007/s11060-015-1881-3.

Konstorum, A. et al. (2017). “Addressing current challenges in cancer immunother-
apy with mathematical and computational modelling”. In: J R Soc Interface 14,
p. 20170150. DOI: 10.1098/rsif.2017.0150.

Koury, J. et al. (2018). “Immunotherapies: Exploiting the Immune System for Cancer
Treatment”. In: J Immunol Res 2018, p. 9585614. DOI: 10.1155/2018/9585614.

Kuang, Y., J.D. Nagy, and S.E.Eikenberry (2016). Introduction to Mathematical Oncol-
ogy. Chapman and Hall/CRC. DOI: 10.1201/9781315365404.

https://doi.org/10.1371/journal.pone.0178552
http://www.ielcap.org/sites/default/files/I-ELCAP-protocol.pdf
https://doi.org/10.1371/journal.pone.0178552
https://doi.org/10.1371/journal.pone.0178552
https://doi.org/10.1002/ajh.25445.
https://doi.org/10.1016/j.ccell.2020.07.005
https://doi.org/10.1016/j.ccell.2020.07.005
https://doi.org/10.1006/jtbi.2000.1075
https://doi.org/10.1080/14737140.2018.1527689
https://doi.org/10.1002/cam4.2905
https://doi.org/0.1371/journal.pcbi.1008266
https://doi.org/10.1186/s13045-018-0629-x
https://doi.org/10.1186/s13045-018-0629-x
https://doi.org/10.1158/1078-0432.CCR-20-1135.
https://doi.org/10.1158/1078-0432.CCR-20-1135.
https://doi.org/10.3857/roj.2015.33.4.265
https://doi.org/10.1101/717074
https://doi.org/10.25259/SNI_291_2020
https://doi.org/10.1007/s11060-015-1881-3
https://doi.org/10.1098/rsif.2017.0150
https://doi.org/10.1155/2018/9585614
https://doi.org/10.1201/9781315365404


Bibliography 131

Kudo, Y. et al. (2019). “Suppressed immune microenvironment and repertoire in
brain metastases from patients with resected non-small-cell lung cancer”. In: Ann
Oncol 30.9, pp. 1521–1530. DOI: 10.1093/annonc/mdz207.

Kuznetsov, M. and A. Kolobov (2020). “Optimization of Dose Fractionation for Ra-
diotherapy of a Solid Tumor with Account of Oxygen Effect and Proliferative
Heterogeneity”. In: Mathematic 8.8, p. 1204. DOI: 10.3390/math8081204.

Kuznetsov, V.A. et al. (1994). “Nonlinear dynamics of immunogenic tumors: Parame-
ter estimation and global bifurcation analysis.” In: Bulletin of Mathematical Biology
56.2, pp. 295–321. DOI: 10.1007/BF02460644..

Lawrence, M.S. et al. (2013). “Mutational heterogeneity in cancer and the search for
new cancer-associated genes.” In: Nature 499.7457, pp. 214–218. DOI: 10.1038/
nature12213.

Leder, K. et al. (2014). “Mathematical modeling of PDGF-driven glioblastoma reveals
optimized radiation dosing schedules”. In: Cell 156, pp. 603–616. DOI: 10.1016/
j.cell.2013.12.029.

Lee, D. et al. (2020). “Brain Metastasis Recurrence Versus Radiation Necrosis: Evalu-
ation and Treatment”. In: Neurosurg Clin N Am 31.4, pp. 575–587. DOI: 10.1016/
j.nec.2020.06.007.

Lee, D.W. et al. (2015). “T cells expressing CD19 chimeric antigen receptors for acute
lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation
trial”. In: Lancet 385.9967, pp. 517–528. DOI: 10.1016/S0140-6736(14)61403-3.

Lewin, T.D. et al. (2018). “The Evolution of Tumour Composition During Fraction-
ated Radiotherapy: Implications for Outcome”. In: Bull Math Biol 80.103, pp. 1207–
123. DOI: 10.1007/s11538-018-0391-9.

Liadi, I. et al. (2015). “Individual motile CD4+ T cells can participate in efficient
multikilling through conjugation to multiple tumor cells”. In: Cancer Immunol
Res 3.5, pp. 473–482. DOI: 10.1158/2326-6066.CIR-14-0195.

Liu, Q. et al. (2017). “Factors involved in cancer metastasis: a better understanding
to “seed and soil” hypothesis”. In: Molecular Cancer 16.1. DOI: 10.1186/s12943-
017-0742-4.

Liu, Y. et al. (2020). “Single-cell transcriptome analysis demonstrates inter-patient
and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma”.
In: Aging 12.21, pp. 21559–21581. DOI: 10.18632/aging.103945.

L.LChen et al. (2009). “Cancer metastasis networks and the prediction of progression
patterns.” In: Br J Cancer 101.5, pp. 749–758. DOI: 10.1038/sj.bjc.6605214.

López, A.G., J.M. Seoane, and M.A.F. Sanjuán (2017). “Destruction of solid tumors
by immune cells”. In: Commun Nonlinear Sci Numer Simulatl 44, pp. 390–403. DOI:
10.1016/j.cnsns.2016.08.020.

Lorenzo, G. et al. (2019). “Mechanistic modelling of prostate- specific antigen dy-
namics shows potential for personalized prediction of radiation therapy out-
come”. In: J. R. Soc. Interface. 16, p. 201901957. DOI: 10.1098/rsif.2019.0195.

Ma, S. et al. (2017). “Current Progress in CAR-T Cell Therapy for Solid Tumors”. In:
Int. J. Biol. Sci. 15.12, pp. 2548–2560. DOI: 10.7150/ijbs.34213.

Macklin, P. et al. (2009). “Multiscale modelling and nonlinear simulation of vascular
tumour growth”. In: J Math Biol 58.4-5, pp. 765–98. DOI: 10.1007/s00285-008-
0216-9.

Mahlbacher, G.E., K.C. Reihmer, and H.B. Frieboes (2019). “Mathematical modeling
of tumor-immune cell interactions.” In: Journal of Theoretical Biology 469, pp. 47–
604. DOI: 10.1016/j.jtbi.2019.03.002.

https://doi.org/10.1093/annonc/mdz207
https://doi.org/10.3390/math8081204
https://doi.org/10.1007/BF02460644.
https://doi.org/10.1038/nature12213
https://doi.org/10.1038/nature12213
https://doi.org/10.1016/j.cell.2013.12.029
https://doi.org/10.1016/j.cell.2013.12.029
https://doi.org/10.1016/j.nec.2020.06.007
https://doi.org/10.1016/j.nec.2020.06.007
https://doi.org/10.1016/S0140-6736(14)61403-3
https://doi.org/10.1007/s11538-018-0391-9
https://doi.org/10.1158/2326-6066.CIR-14-0195
https://doi.org/10.1186/s12943-017-0742-4
https://doi.org/10.1186/s12943-017-0742-4
https://doi.org/10.18632/aging.103945
https://doi.org/10.1038/sj.bjc.6605214
https://doi.org/10.1016/j.cnsns.2016.08.020
https://doi.org/10.1098/rsif.2019.0195
https://doi.org/10.7150/ijbs.34213
https://doi.org/10.1007/s00285-008-0216-9
https://doi.org/10.1007/s00285-008-0216-9
https://doi.org/10.1016/j.jtbi.2019.03.002


132 Bibliography

Mahlbachera, G.E., K.C. Reihmera, and H.B. Frieboes (2019). “Mathematical mod-
eling of tumor-immune cell interactions”. In: J Theor Biol 469, pp. 47–60. DOI:
10.1016/j.jtbi.2019.03.002.

Mandonnet, E. et al. (2003). “Continuous growth of mean tumor diameter in a subset
of grade II gliomas”. In: Ann Neurol 53.4, pp. 524–528. DOI: 10.1002/ana.10528.

Marciniak-Czochra, A. et al. (2009). “Modeling of asymmetric cell division in hematopoi-
etic stem cells: regulation of self-renewal is essential for efficient repopulation”.
In: Stem Cells Dev 18, pp. 377–385. DOI: 10.1089/scd.2008.0143.

Martínez, M. and E.K. Moon (2019). “CAR T Cells for Solid Tumors: New Strate-
gies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment”.
In: Front. Immunol. 10, p. 128. DOI: 10.3389/fimmu.2019.00128.

Maude, S.L. et al. (2014). “Chimeric antigen receptor T cells for sustained remissions
in leukemia”. In: N Engl J Med 371, pp. 1507–1517. DOI: 10.1056/NEJMoa1407222.

McGowan, E. et al. (2019). “PD-1 disrupted CAR-T cells in the treatment of solid
tumors: Promises and challenges”. In: Biomed. Pharmacother 121.109625, pp. 45–
56. DOI: 10.1016/j.biopha.2019.109625..

Miliotou, A.N. and L.C. Papadopoulou (2018). “CAR T-cell Therapy: A New Era in
Cancer Immunotherapy”. In: Curr Pharm Biotechnol 19.1, pp. 5–18. DOI: 10.2174/
1389201019666180418095526.

Milo, R. et al. (2009). “BioNumbers—the database of key numbers in molecular and
cell biology”. In: Nucleic Acids Research 38.Database Issue, D750–D753. DOI: 10.
1093/nar/gkp889.

Mollard, S. et al. (2017). “Model driven optimization of antiangiogenics + cytotox-
ics combination: application to breast cancer mice treated with bevacizumab +
paclitaxel doublet leads to reduced tumor growth and fewer metastasis.” In: On-
cotarget 8.14, pp. 23087–23098. DOI: 10.18632/oncotarget.15484.

Mostolizadeh, R., Z. Afsharnezhad, and A. Marciniak-Czochra (2018). “Mathemat-
ical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence
of cytokine”. In: Numerical Algebra, Control & Optimization 8.1, pp. 63–80. DOI:
10.3934/naco.2018004.

Nayar, S., P. Dasgupta, and C. Galustian (2015). “Extending the lifespan and effica-
cies of immune cells used in adoptive transfer for cancer immunotherapies. A re-
view”. In: Oncoimmunology 4, e1002720. DOI: 10.1080/2162402X.2014.1002720.

Neelapu, S.S. et al. (2018). “Chimeric antigen receptor T-cell therapy - assessment
and management of toxicities”. In: Nat Rev Clin Oncol 15.1, pp. 47–62. DOI: 10.
1038/nrclinonc.2017.148.

Newton, P.K. et al. (2012). “A stochastic Markov chain model to describe lung cancer
growth and metastasis”. In: PLoS ONE 7.4, e34637. DOI: 10.1371/journal.pone.
0034637.

Newton, P.K. et al. (2013). “Spreaders and sponges define metastasis in lung cancer: a
Markov chain Monte Carlo mathematical model”. In: Cancer Res 173.9, pp. 2760–
2769. DOI: 10.1158/0008-5472.CAN-12-4488.

Nguyen, D.X. et al. (2009). “WNT/TCF signaling through LEF1 and HOXB9 medi-
ates lung adenocarcinoma metastasis”. In: Cell 138.1, pp. 51–62. DOI: 10.1016/j.
cell.2009.04.030.

Niklas, K.J. and U. Kutschera (2015). “Kleiber’s Law: How the Fire of Life ignited
debate, fueled theory, and neglected plants as model organisms”. In: Plant Signal
Behav 10.7, e1036216. DOI: 10.1080/15592324.2015.1036216.

Niranjan, A. et al. (2019). “Guidelines for Multiple Brain Metastases Radiosurgery”.
In: Prog Neurol Surg 34, pp. 100–109. DOI: 10.1159/000493055.

https://doi.org/10.1016/j.jtbi.2019.03.002
https://doi.org/10.1002/ana.10528
https://doi.org/10.1089/scd.2008.0143
https://doi.org/10.3389/fimmu.2019.00128
https://doi.org/10.1056/NEJMoa1407222
https://doi.org/10.1016/j.biopha.2019.109625.
https://doi.org/10.2174/1389201019666180418095526
https://doi.org/10.2174/1389201019666180418095526
https://doi.org/10.1093/nar/gkp889
https://doi.org/10.1093/nar/gkp889
https://doi.org/10.18632/oncotarget.15484
https://doi.org/10.3934/naco.2018004
https://doi.org/10.1080/2162402X.2014.1002720
https://doi.org/10.1038/nrclinonc.2017.148
https://doi.org/10.1038/nrclinonc.2017.148
https://doi.org/10.1371/journal.pone.0034637
https://doi.org/10.1371/journal.pone.0034637
https://doi.org/10.1158/0008-5472.CAN-12-4488
https://doi.org/10.1016/j.cell.2009.04.030
https://doi.org/10.1016/j.cell.2009.04.030
https://doi.org/10.1080/15592324.2015.1036216
https://doi.org/10.1159/000493055


Bibliography 133

Ocaña-Tienda, B. et al. (2021). “The Growth Laws of Brain Metastases”. In: PNAS
(Submitted).

O’Rourke, D.M. et al. (2017). “A single dose of peripherally infused EGFRvIII-directed
CAR T cells mediates antigen loss and induces adaptive resistance in patients
with recurrent glioblastoma.” In: Sci. Transl. Med. 9.399, eaaa0984. DOI: 10.1126/
scitranslmed.aaa0984.

Oshime, Y. (2003). “Asymptotic expression of the period of the Lotka-Volterra sys-
tem”. In: Japan J Indust App Math 20, pp. 353–78.

Ostrom, Q.T. et al. (2020). “CBTRUS Statistical Report: Primary Brain and Other Cen-
tral Nervous System Tumors Diagnosed in the United States in 2013-2017”. In:
Neuro Oncol 22.12, pp. iv1–iv96. DOI: 10.1093/neuonc/noaa200.

Pallud, J. et al. (2006). “Prognostic value of initial magnetic resonance imaging growth
rates for World Health Organization grade II gliomas”. In: Ann Neurol 60.3, pp. 380–
383. DOI: 10.1002/ana.20946.

Pérez-García, V.M et al. (2016). “Applied mathematics and nonlinear sciences in the
war on cancer”. In: App Math Nonlin Sci 1.2, pp. 423–436. DOI: 10.21042/AMNS.
2016.2.00036.

Perus, L.J.M. and L.A Walsh (2019). “Microenvironmental heterogeneity in brain ma-
lignancies”. In: Front Immunol 10, p. 2294. DOI: 10.3389/fimmu.2019.02294.

Pérez-Beteta, J. et al. (2018). “Tumor Surface Regularity at MR Imaging Predicts
Survival and Response to Surgery in Patients with Glioblastoma”. In: Radiology
288.1, pp. 218–225. DOI: 10.1148/radiol.2018171051.

Pérez-García, V.M. et al. (2015). “Delay effects in the response of low-grade gliomas
to radiotherapy: A mathematical model and its therapeutical implications”. In:
Mathematical Biology and Medicine 32, pp. 307–329. DOI: 110.1093/imammb/dqu009.

Pérez-García, V.M. et al. (2020). “Universal scaling laws rule explosive growth in
human cancers”. In: Nature Physics 16, pp. 1232–1237. DOI: 10.1038/s41567-
020-0978-6.

Radunskaya, A., R. Kim, and T. Woods (2018). “Mathematical Modeling of Tumor
Immune Interactions: A Closer Look at the Role of a PD-L1 Inhibitor in Cancer
Immunotherapy”. In: Spora: a Journal of Biomathematics 4.1, pp. 25–41. DOI: 10.
30707/SPORA4.1Radunskaya.

Rafiq, S., C.S. Hackett, and R.J. Brentjens (2020). “Engineering strategies to overcome
the current roadblocks in CAR T cell therapy”. In: Nature Reviews Clinical Oncol-
ogy 17.3, pp. 147–167. DOI: 10.1038/s41571-019-0297-y.

Reardon, D.A. et al. (2020). “Effect of Nivolumab vs Bevacizumab in Patients With
Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial”.
In: JAMA Oncol. 6.7, pp. 1003–1010. DOI: 0.1001/jamaoncol.2020.1024.

Rejniak, K.A. and A.R.A. Anderson (2011). “Hybrid models of tumor growth”. In:
Systems biology and medicine 3.1, pp. 115–125. DOI: 10.1002/wsbm.102.

Ribba, B. et al. (2012). “A tumor growth inhibition model for low-grade glioma
treated with chemotherapy or radiotherapy”. In: Clin Cancer Res 15, pp. 5071–
5080. DOI: 10.1158/1078-0432.CCR-12-0084.

Robert, C. (2020). “A decade of immune-checkpoint inhibitors in cancer therapy.” In:
Nat Commun 11.1, p. 3801. DOI: 10.1038/s41467-020-17670-y.

Rock, K.L. and H. Kono (2008). “The inflammatory response to cell death”. In: Annu
Rev Pathol 3, pp. 99–126. DOI: 10.1146/annurev.pathmechdis.3.121806.151456.

Rockne, R. et al. (2009). “A mathematical model for brain tumor response to radia-
tion therapy. Journal of Mathematical Biology”. In: Journal of Mathematical Biology
59, p. 561. DOI: 10.1007/s00285-008-0219-6.

https://doi.org/10.1126/scitranslmed.aaa0984
https://doi.org/10.1126/scitranslmed.aaa0984
https://doi.org/10.1093/neuonc/noaa200
https://doi.org/10.1002/ana.20946
https://doi.org/10.21042/AMNS.2016.2.00036
https://doi.org/10.21042/AMNS.2016.2.00036
https://doi.org/10.3389/fimmu.2019.02294
https://doi.org/10.1148/radiol.2018171051
https://doi.org/110.1093/imammb/dqu009
https://doi.org/10.1038/s41567-020-0978-6
https://doi.org/10.1038/s41567-020-0978-6
https://doi.org/10.30707/SPORA4.1Radunskaya
https://doi.org/10.30707/SPORA4.1Radunskaya
https://doi.org/10.1038/s41571-019-0297-y
https://doi.org/0.1001/jamaoncol.2020.1024
https://doi.org/10.1002/wsbm.102
https://doi.org/10.1158/1078-0432.CCR-12-0084
https://doi.org/10.1038/s41467-020-17670-y
https://doi.org/10.1146/annurev.pathmechdis.3.121806.151456
https://doi.org/10.1007/s00285-008-0219-6


134 Bibliography

Rockne, R. et al. (2010). “Predicting the efficacy of radiotherapy in individual glioblas-
toma patients in vivo: A mathematical modeling approach”. In: Phys Med Biol 55,
pp. 3271–3285. DOI: 10.1088/0031-9155/55/12/001.

Rockne, R.C. et al. (2015). “A patient-specific computational model of hypoxia-modulated
radiation resistance in glioblastoma using 18F-FMISO-PET”. In: J. R. Soc. Interface
12.103, p. 20141174. DOI: 10.1098/rsif.2014.1174.

Rodrigues, B.J., Luciana R. Carvalho Barros, and Regina C. Almeida (2019). “Three-
Compartment Model of CAR T-cell Immunotherapy”. In: bioRxiv. DOI: 10.1101/
779793.

Rolink, A.G., J. Andersson, and F. Melchers (1998). “Characterization of immature B
cells by a novel monoclonal antibody, by turnover and by mitogen reactivityt”.
In: Eur J Immunol 28.11, pp. 3738–3748. DOI: 10.1002/(SICI)1521-4141(199811)
28:11<3738::AID-IMMU3738>3.0.CO;2-Q.

Roybal, K.T. et al. (2016). “Precision Tumor Recognition by T Cells With Combinato-
rial Antigen-Sensing Circuits”. In: Cell 164.4, pp. 770–779. DOI: 10.1016/j.cell.
2016.01.011.

Sadelain, M. (2015). “CAR therapy: the CD19 paradigm”. In: J Clin Invest 125.9,
pp. 3392–3400. DOI: 10.1172/JCI80010.

— (2017). “CD19 CAR T Cells”. In: Cell 171.7, p. 1471. DOI: 10.1016/j.cell.2017.
12.002.

Sahoo, P. et al. (2020). “Mathematical deconvolution of CAR T-cell proliferation and
exhaustion from real-time killing assay data”. In: J. R. Soc. Interface 17.162, p. 20190734.
DOI: 10.1098/rsif.2019.0734.

Salkeld, A.L. et al. (2018). “Changes in Brain Metastasis During Radiosurgical Plan-
ning”. In: Int J Radiat Oncol Biol Phys 102.4, pp. 727–733. DOI: 10.1016/j.ijrobp.
2018.06.021.

Saltelli, A. et al. (2010). “Variance based sensitivity analysis of model output. Design
and estimator for the total sensitivity index”. In: Computer Physics Communica-
tions 181, pp. 259–270. DOI: 10.1016/j.cpc.2009.09.018.

Schuster, S.J. et al. (2019). “Tisagenlecleucel in Adult Relapsed or Refractory Diffuse
Large B-Cell Lymphoma”. In: N Engl J Med 380.1, pp. 45–56. DOI: 110.1182/
bloodadvances.2019000151.

Scott, J.G. et al. (2013). “A mathematical model of tumour self-seeding reveals sec-
ondary metastatic deposits as drivers of primary tumour growth”. In: J R Soc
Interface 10.82, p. 20130011. DOI: 10.1098/rsif.2013.0011.

Shahaf, G. et al. (2016). “B Cell development in the bone marrow is regulated by
homeostatic feedback exerted by mature B cells”. In: Front Immunol 7, p. 77. DOI:
10.3389/fimmu.2016.00077.

Sharma, P. and J.P. Allison (2015). “The future of immune checkpoint therapy”. In:
Science 348.6230, pp. 56–61. DOI: 10.1126/science.aaa8172.

Shepard, D.M. et al. (2008). “Treatment Planning for Stereotactic Radiosurgery. In:
Chin L.S. and Regine W.F. (eds)”. In: Principles and Practice of Stereotactic Radio-
surgery. Springer, New York, NY. DOI: 10.1007/978-0-387-71070-9_7.

Shih, D.J.H. et al. (2020). “Genomic characterization of human brain metastases iden-
tifies drivers of metastatic lung adenocarcinoma”. In: Nat Genet 52.21, pp. 371–
377. DOI: 10.1038/s41588-020-0592-7.

Shih, S.D. (1997). “The period of a Lotka-Volterra system”. In: Taiwanese J Math 1,
pp. 451–470.

https://doi.org/10.1088/0031-9155/55/12/001
https://doi.org/10.1098/rsif.2014.1174
https://doi.org/10.1101/779793
https://doi.org/10.1101/779793
https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3738::AID-IMMU3738>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3738::AID-IMMU3738>3.0.CO;2-Q
https://doi.org/10.1016/j.cell.2016.01.011
https://doi.org/10.1016/j.cell.2016.01.011
https://doi.org/10.1172/JCI80010
https://doi.org/10.1016/j.cell.2017.12.002
https://doi.org/10.1016/j.cell.2017.12.002
https://doi.org/10.1098/rsif.2019.0734
https://doi.org/10.1016/j.ijrobp.2018.06.021
https://doi.org/10.1016/j.ijrobp.2018.06.021
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/110.1182/bloodadvances.2019000151
https://doi.org/110.1182/bloodadvances.2019000151
https://doi.org/10.1098/rsif.2013.0011
https://doi.org/10.3389/fimmu.2016.00077
https://doi.org/10.1126/science.aaa8172
https://doi.org/10.1007/978-0-387-71070-9_7
https://doi.org/10.1038/s41588-020-0592-7


Bibliography 135

Siegler, E.L. and S.S. Kenderian (2020). “Neurotoxicity and Cytokine Release Syn-
drome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mecha-
nisms and Novel Therapies.” In: Front. Immunol. 11, p. 19739. DOI: 10.3389/
fimmu.2020.01973.

Skipper, H.E. and S. Perr (1970). “Kinetics of Normal and Leukemic Leukocyte Pop-
ulations and Relevance to Chemotherapy”. In: Cancer Research 30.6, pp. 1883–
1897.

Smart, D. et al. (2015). “Analysis of radiation therapy in a model of triple-negative
breast cancer brain metastasis”. In: Clin Exp Metastasis 32.7, pp. 717–27. DOI: 10.
1093/neuonc/nox043.

Soffietti, R. et al. (2020). “Management of brain metastases according to molecular
subtypes”. In: Nat Rev Neurol 16.10, pp. 557–574. DOI: 10.1038/s41582- 020-
0391-x.

Sperduto, P.W. et al. (2020). “Survival in Patients With Brain Metastases: Summary
Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and
Definition of the Eligibility Quotient”. In: J Clin Oncol 38.32, pp. 3773–3784. DOI:
10.1200/JCO.20.01255.

Starkov, K.E. and A.P. Krishchenko (2014). “On the global dynamics of one cancer
tumour growth model”. In: Commun Nonlinear Sci Numer Simulat 19, pp. 1486–
1495. DOI: 10.1016/j.cnsns.2013.09.023.

Stein, A.M. et al. (2018). “Optimization of IL13Ra2-targeted chimeric antigen recep-
tor T cells for improved anti-tumor efficacy against glioblastoma”. In: Mol. Ther
26.5309, pp. 31–44. DOI: 10.1016/j.ymthe.2017.10.002.

Stein, A.M. et al. (2019). “Tisagenlecleucel Model-Based Cellular Kinetic Analysis of
Chimeric Antigen Receptor-T Cells”. In: CPT Pharmacometrics Syst Pharmacol 8.5,
285-295. DOI: 10.1002/psp4.12388.

Stella, G.M. et al. (2019). “Brain metastases from lung cancer: Is MET an actionable
target?” In: Cancers (Basel) 11.3, p. 271. DOI: 10.3390/cancers11030271.

Stensjøen, A.L. et al. (2015). “Growth dynamics of untreated glioblastomas in vivo.”
In: Neuro Oncology 17.10, pp. 1402–1411. DOI: 10.1093/neuonc/nov029.

Stollar, D. (1998). Encyclopedia of immunology. 2nd edition. Academic Press PJ Delves
Ed.

Stupp, R. et al. (2005). “Radiotherapy plus concomitant and adjuvant temozolo-
mide for glioblastoma”. In: N Engl J Med 352.10, pp. 987–96. DOI: 10 . 1056 /
NEJMoa043330.

Sung, H. et al. (2021). “Global Cancer Statistics 2020: GLOBOCAN Estimates of Inci-
dence and Mortality Worldwide for 36 Cancers in 185 Countries”. In: CA Cancer
J Clin 71.3, pp. 209–249. DOI: 10.3322/caac.21660.

Sánchez-Martínez, D. et al. (2019). “Fratricide-resistant CD1a-specific CAR T cells for
the treatment of cortical T-cell acute lymphoblastic leukemia”. In: Blood 133.21,
pp. 2291–2304. DOI: 10.1182/blood-2018-10-882944.

Talkington, A. and R. Durrett (2015). “Estimating Tumor Growth Rates In Vivo”. In:
Bull Math Biol 77.10, pp. 1934–1954. DOI: 10.1007/s11538-015-0110-8.

Toma-Dasu, I. and A. Dasu (2013). “Modelling Tumour Oxygenation, Reoxygenation
and Implications on Treatment.” In: Computational and Mathematical Methods in
Medicine 26.3, p. 141087. DOI: 10.1155/2013/141087.

Tough, D.F. and J. Sprent (2018). “Life span of naive and memory t cells”. In: Stem
Cells 13.3, pp. 242–249. DOI: 10.1002/stem.5530130305.

https://doi.org/10.3389/fimmu.2020.01973
https://doi.org/10.3389/fimmu.2020.01973
https://doi.org/10.1093/neuonc/nox043
https://doi.org/10.1093/neuonc/nox043
https://doi.org/10.1038/s41582-020-0391-x
https://doi.org/10.1038/s41582-020-0391-x
https://doi.org/10.1200/JCO.20.01255
https://doi.org/10.1016/j.cnsns.2013.09.023
https://doi.org/10.1016/j.ymthe.2017.10.002
https://doi.org/10.1002/psp4.12388
https://doi.org/10.3390/cancers11030271
https://doi.org/10.1093/neuonc/nov029
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.3322/caac.21660
https://doi.org/10.1182/blood-2018-10-882944
https://doi.org/10.1007/s11538-015-0110-8
https://doi.org/10.1155/2013/141087
https://doi.org/10.1002/stem.5530130305


136 Bibliography

Turtle, C.J. et al. (2017). “Durable molecular remissions in chronic lymphocytic leukemia
treated with CD19-specific chimeric antigen receptor-modified T cells after fail-
ure of Ibrutinib”. In: J Clin Oncol 35, pp. 3010–3020. DOI: 10.1200/JCO.2017.72.
8519.

Valiente, M. et al. (2014). “Serpins promote cancer cell survival and vascular co-
option in brain metastasis”. In: Cell 156.5, pp. 1002–1016. DOI: 10.1016/j.cell.
2014.01.040.

Vellayappan, B. et al. (2018). “Diagnosis and Management of Radiation Necrosis in
Patients With Brain Metastases”. In: Front Oncol 8.395, pp. 1521–1530. DOI: 10.
3389/fonc.2018.00395.

Voglstaetter, M. et al. (2019). “Tspan8 is expressed in breast cancer and regulates
E-cadherin/catenin signalling and metastasis accompanied by increased circu-
lating extracellular vesicles”. In: J Pathol 248.4, pp. 421–437. DOI: 10.1002/path.
5281.

Wagner, S. et al. (2020). “Effects of effective stereotactic radiosurgery for brain metas-
tases on the adjacent brain parenchyma”. In: Br J Cancer 123.1, pp. 54–60. DOI:
10.1038/s41416-020-0853-3.

Wang, J.C. and J.E. Dick (2005). “Cancer stem cells: lessons from leukemia”. In: Trends
Cell Biol 15.9, pp. 494–501. DOI: 10.1016/j.tcb.2005.07.004.

Watanabe, Y. et al. (2016). “A mathematical model of tumor growth and its response
to single irradiation”. In: Theor Biol Med Model 13.6, pp. 362–375. DOI: 10.1186/
s12976-016-0032-7.

West, G.B., J.H. Brown, and B.J. Enquist (1997). “A general model for the origin of
allometric scaling laws in biology”. In: Science 276.5309, pp. 122–126. DOI: 10.
1126/science.276.5309.122.

— (2001). “A general model for ontogenetic growth”. In: Nature 413.6856, pp. 628–
631. DOI: 10.1086/401873.

West, J. and P.K. Newton (2013). “Cellular interactions constrain tumor growth”. In:
Proceedings of the National Academy of Sciences 116.6, pp. 1918–1923. DOI: 10.1073/
pnas.1804150116.

WHO, World Health Organization (2020). “Global Health Estimates 2020: Deaths
by Cause, Age, Sex, by Country and by Region, 2000-2019”. In: WHO Accessed
December 11, 2020. URL: who.int/data/gho/data/themes/mortality-and-
global-health-estimates/ghe-leading-causes-of-death.

Xu, X. et al. (2019). “Mechanisms of Relapse After CD19 CAR T-Cell Therapy for
Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies”.
In: Frontiers in Immunology 10, p. 2664. DOI: 10.3389/fimmu.2019.02664.

Yasuyuki, A. et al. (2018). “Myeloid conditioning with c-kit-targeted CAR-T cells
enables donor stem cell engraftment”. In: Molecular Therapy 26.5, pp. 1181–1197.
DOI: 10.1016/j.ymthe.2018.03.003.

Yu, V.Y. et al. (2015). “Incorporating cancer stem cells in radiation therapy treatment
response modeling and the implication in glioblastoma multiforme treatment
resistance”. In: Int J Radiat Oncol Biol Phys 91.4, pp. 866–875. DOI: 10.1016/j.
ijrobp.2014.12.004.

Zinn, K.R. et al. (2008). “Noninvasive bioluminescence imaging in small animals”.
In: ILAR J 49.1, pp. 103–115. DOI: 10.1093/ilar.49.1.103.

https://doi.org/10.1200/JCO.2017.72.8519
https://doi.org/10.1200/JCO.2017.72.8519
https://doi.org/10.1016/j.cell.2014.01.040
https://doi.org/10.1016/j.cell.2014.01.040
https://doi.org/10.3389/fonc.2018.00395
https://doi.org/10.3389/fonc.2018.00395
https://doi.org/10.1002/path.5281
https://doi.org/10.1002/path.5281
https://doi.org/10.1038/s41416-020-0853-3
https://doi.org/10.1016/j.tcb.2005.07.004
https://doi.org/10.1186/s12976-016-0032-7
https://doi.org/10.1186/s12976-016-0032-7
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1086/401873
https://doi.org/10.1073/pnas.1804150116
https://doi.org/10.1073/pnas.1804150116
who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://doi.org/10.3389/fimmu.2019.02664
https://doi.org/10.1016/j.ymthe.2018.03.003
https://doi.org/10.1016/j.ijrobp.2014.12.004
https://doi.org/10.1016/j.ijrobp.2014.12.004
https://doi.org/10.1093/ilar.49.1.103

	Declaration of Authorship
	Resumen
	Abstract
	Agradecimientos
	Acknowledgements
	Introduction
	Cancer
	Types of Cancer
	Brain cancers
	Leukemias

	Medical imaging
	Computed Tomography Imaging
	Magnetic Resonance Imaging

	Cancer treatments
	Stereotactic radiosurgery
	CAR T cell therapy

	Mathematical modeling in cancer 

	I Solid Tumor Growth and Response to Stereotactic Radiosurgery
	Macroscopic tumor growth
	Introduction
	Methods
	Patients and image acquisition
	Image analysis
	Animal studies

	Mathematical model
	Results
	Longitudinal tumor growth dynamics in humans
	Longitudinal tumor growth dynamics in animal models

	Discussion and conclusion

	Stereotactic radiosurgery response: Analysis with a continuous mathematical model
	Introduction
	Methods
	Patients
	Tumor Segmentation
	Mathematical model of response to radiosurgery

	Results
	Model equations (3.1) describe the response to radiosurgery
	The mathematical model describes the early inflammatory dynamics observed in the post-SRS response
	Damage to healthy tissue could lead to late inflammatory response and radiation necrosis
	Time to tumor progression can be obtained from the mathematical model

	Discussion and Conclusions

	Tumor growth after stereotactic radiosurgery response: Analysis with a stochastic model
	Introduction
	Stochastic model
	Stochastic mesoscopic model of tumor growth
	Stochastic mesoscopic model of response to SRS
	Estimation of parameters
	Dynamics of longitudinal tumor growth post-treatment
	Virtual BMs simulations

	Results
	Volumetric dynamics of BM after SRS
	Inflammatory events displayed the fastest growth dynamics allowing to discriminate them from relapses

	Discussion and conclusions


	II CAR T Cell Immunotherapy
	CAR T cell therapy in B-cell acute lymphoblastic leukemia
	Introduction
	Mathematical models and parameter estimation
	Basic mathematical model
	Reduced mathematical models
	Parameter estimation

	Basic properties of mathematical models
	Existence and uniqueness of positive solutions
	Equilibrium points and local stability analysis 
	Analytical formulation of maximum expansion of CAR T cells for system (5.4) 

	Results
	Mathematical model (5.4) describes post CAR T cell injection dynamics
	The number of injected CAR T cells does not affect treatment outcome, but the stimulation rate does
	Maximum expansion of CAR T cells in vivo and CRS
	CAR T cell persistence depends on the T cell mean lifetime
	CD19+ relapses could be a dynamical phenomenon
	 CAR T cell reinjection may allow the severity of relapse to be controlled
	Model (5.3) predicts  a scenario leading to zero leukemic cells
	Sensitivity analysis

	Discussion and conclusion

	CAR T cell therapy in T-cell acute lymphoblastic leukemia
	Introduction
	Mathematical model
	In vitro equilibrium
	Parameter estimation

	Basic properties of the model
	Large initial data display unbounded dynamics
	Equilibrium of the model Eqs. (6.1) and local stability analysis

	Results
	CAR T cells allow for control of T-cell leukemia in the presence of fratricide
	Higher mitotic stimulation rates improve control of the disease
	Initial number of CAR T cells injected does not affect the therapy outcome
	Contribution of the leukemic growth rate on leukemic cells dynamic
	CAR T cell reinjection does not improve the therapy outcome.

	Discussion and conclusion

	Dual-Target CAR Ts in Solid Cancers
	Introduction
	Mathematical models
	Model of solid tumor response to a CAR T cell treatment in the presence of immune suppression
	Modeling CAR T cells targeting on-tumor and off-tumor antigens
	Parameter Estimation

	Basic properties of the mathematical models
	Mathematical model Eqs. (7.1–7.2) 
	Mathematical model Eqs. (7.3–7.6) 

	Results (I): Therapy outcomes under immune suppression using CAR T cells with a single CAR group targeting a tumor antigen.
	A high level of immune suppression prevents in-patient expansion of CAR T cells
	Initial number of CAR T cells injected affects the outcome of the therapy
	Injection of a large number of CAR T cells could allow for cure or prolonged tumor control in the presence of immune suppression
	A high initial tumor load favors CAR T cell expansion
	Results (II): Therapy outcomes under tumor immune suppression using CAR T cells with dual CAR groups with on- and off-tumor activity
	CAR T cells with two targets provided long-time tumor control advantages in silico
	Dual CAR T improves the possibility of therapy success

	Discussion and conclusion

	Conclusions
	Conclusiones Generales
	Conclusiones de los modelos matemáticos de respuesta de la terapia con células CAR T

	Future work
	The growth laws of solid tumors validation
	Extensions and enhancements to CAR-T cell therapy modeling
	A discrete simulator of single-target and dual-target CAR T therapy for brain tumors
	A discrete simulator to predict qualitatively the spatio-temporal dynamics of the response of B cell r/r lymphomas to CAR-T cell therapy 


	Publications and conference contributions
	Full Publication List
	Congress contributions

	Bibliography


