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anode catalysts for wastewater treatment process, and up to 5-fold improvement 

their lifetime. SnO2-Sb, as well as Ti/SnO2-Sb system, are materials of great 

importance as being applied for oxygen evolution reaction (OER) catalysts. 
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following remarks. The English must be proofread and corrected by native 
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a great improvement if related to conventional ones, but is the 5h service life of the 
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hydroxyl radical (M(
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during the oxygen evolution reaction (OER) [2], which hinders further application. 

Therefore, to enhance its stability, much research has been done, exploring different 

strategies. Recent studies indicate that by doping with different metals into the oxide 
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by insertion of an intermediate layer [22], and by the formation of TiO2 nanotubes 
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practical and straightforward approach, at low cost to enhance the lifetime of Ti/SnO2–

Sb anodes. 
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were carried out, focusing on the understanding of the overall electrode response to 

highly aggressive media. The choice to carry out stability tests under these conditions is 
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system proposed but also provide insight on the applicability of these anodes under 

various conditions (different pH, cations and anions interference, etc.), which are 

commonly seen as the result of electro-oxidation of organic compounds. Thus, in order 
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The mixed metal anode is a promising material for the wastewater treatment. 
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stable compounds, in which the unique catalytic activity and stability of the 
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Ti/SnO2Sb anode that is prepared by CO2 laser. The CO2 laser made anodes show, 

in terms of materials characteristics, improved stability and electrochemical 

properties and, in terms of material fabrication, a homogenous distribution of 

metallic oxides and improved surface coverage. The following fabrication study of 
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Answer: The data required was included in Figure 6 in the corrected version of the 
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in the corrected manuscript (please see the last paragraph of page 9).  

 

6.      Some minor errors:  

Page 2 - line 12 : Mixed metal anodes "(MMOs) stand out" as "promising 
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Abstract 

The main drawback impairing the application of highly electrocatalytic SnO2–Sb anodes in 

the removal of recalcitrant pollutants from wastewater is their short service life. Here, we 

report the synthesis of Ti/SnO2–Sb anodes with improved stability through a CO2 laser as the 

primary heating source. The influence of different calcination temperatures (400, 500, 600 

°C), and varied composition of the solvent in the precursor solution, on the stability and 

activity of the anodes, were investigated. Notably, the use of the CO2 laser heating method at 

600 °C improves the service life up to 5-fold as compared to the conventionally prepared 

anodes. The laser-made Ti/SnO2–Sb anode calcined at 600 °C exhibits the best 

electrocatalytic performance with the fastest color removal rates in the oxidation of methylene 

blue dye. Therefore, for the first time, Ti/SnO2–Sb anodes with superior properties were 

produced by a fast method employing CO2 laser, envisaging its future applications in 

wastewater treatment. 

 

 

 

 

 

Keywords: Mixed metal oxides; Ti/SnO2–Sb anodes; CO2 laser; electrolysis. 
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1. Introduction 

Electrochemical oxidation has been commonly referred to as an environmentally friendly 

method for the treatment of wastewater containing complex organic compounds. In this field, 

the development of anodes with high oxygen evolution overpotential, high physical and 

chemical stability and low operational cost, has been the focus of several studies [1–3].  

Mixed metal oxides (MMO) anodes stand out as promising materials to apply in 

wastewater treatment. MMOs consist of a mixture of two or more metal oxides forming new 

stable compounds, some of which exhibit significant improvement in the catalytic activity and 

stability over their respective single-component metal oxide [4–7]. The MMO Ti/SnO2–Sb is 

one of the most attractive alternatives displaying high oxygen evolution overpotential because 

it favors the generation of 
●
OH radicals that act in the indirect oxidation of organic 

compounds. Besides, it simultaneously presents a considerably lower cost of precursors' 

metals compared to other MMOs [3]. Among the MMOs most commonly studied, the 

development of SnO2-based anodes has been receiving considerable attention in the last years 

[4,8–11]. In its pure form, SnO2 is an n-type semiconductor with a wide band-gap (3.87–4.3 

eV), due to the existence of distortions created by the oxygen vacancies, according to Eq. (1), 

where SnSn
x
 and Oo

x
 are elements in their position with no charges, and VO

●●
 is the oxygen 

vacancy with two positive charges. 

 

           
     

   
 

 
         

                                                      (1) 

 

Thus, oxygen vacancies and free electrons are responsible for the increase of SnO2 

conductivity. However, before being applied onto the metallic substrate, tin oxide must be 

doped to improve its conductivity and chemical stability [12]. Among possible SnO2 dopants, 
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antimony (Sb) is often used, maintaining the high oxygen and chlorine evolution 

overpotentials and electrocatalytic activity for the oxidation of organic pollutants [13–16]. 

In this sense, the addition to SnO2 of a trivalent cation such as Sb
3+

 increases the 

number of oxygen vacancies, and, in consequence, it increases the material conductivity 

according to Eq. (2), where SbSn
x
 represents an Sb occupying a Sn position. On the other 

hand, if Sb
5+

 is present, the SnO2 conductivity will be increased due to the presence of free 

electrons (Eq. (3)) [11]. 

 

    
              

                                                                 (2) 

    
                                                                     (3) 

 

In both cases, antimony cations will form a solid solution with tin oxide [11,17]. Many 

authors have shown that SnO2 anodes doped with small amounts of Sb (ranging from 3 to 10 

mol%), possess high overpotential to oxygen evolution (around 1.9 V vs. RHE), and are 

highly effective toward electrochemical oxidation of aqueous pollutants [14,18,19]. Although 

Sb-doped SnO2 presents interesting properties to produce physisorbed hydroxyl radical 

(M(
●
OH)), its significant drawback is still the short service lifetime, which is attributed to the 

formation of a certain degree of non-stoichiometry SnO(2–x) during the oxygen evolution 

reaction (OER) [2], which hinders further application. Therefore, to enhance its stability, 

much research has been done, exploring different strategies. Recent studies indicate that by 

doping with different metals into the oxide coating may have a positive effect on the stability 

of the anode [4,20,21]. Also, efforts by insertion of an intermediate layer [22], and by the 

formation of TiO2 nanotubes (TiO2-NTs) that cover [9,23] and protects the Ti substrate has 

been also reported [24]. These studies point out the relevance of this material and the 
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4 

importance of finding a practical and straightforward approach, at low cost to enhance the 

lifetime of Ti/SnO2–Sb anodes. 

Thus, being widely reported that the performance of SnO2–Sb anodes depends on the 

method and conditions employed in the synthesis procedure [4,8–11], among several 

processes to produce the Ti/SnO2–Sb coating [12,16–18], the most studied is the sol–gel and 

the thermal decomposition of polymeric precursor solutions (also called Pechini method) 

[12,25,26]. Pechini method, have been successfully used to produce SnO2–Sb films with 

controlled stoichiometry [7]. In this method, the metallic cations precursors are dissolved in a 

mixture of a carboxylic acid (citric acid) and a polyhydroxilic alcohol (ethylene glycol). 

When this solution is heated up to a controlled temperature, an esterification reaction takes 

place, and the metallic cations are homogeneously incorporated in the formed polymer, 

preventing then their evaporation during the calcination step [19].  

In recent years, laser technology has been used as an alternative sintering method to 

produce dense and crack-free ceramics with better or improved properties [27,28]. However, 

the most common method of heating employs furnaces, which is still an expensive and time-

consuming process. Many advantages are promoting laser technology as an attractive 

technique to produce MMO anodes, such as fast processing times, rapid heating and cooling 

rates, and ease of laser parameter optimization. To the best of our knowledge, the synthesis of 

Ti/SnO2–Sb anodes produced using the CO2 laser as the primary heating source was not 

reported yet. Therefore, here we report the synthesis of Ti/SnO2–Sb anodes made by a novel 

and fast laser calcination procedure. The influence of the different calcination temperatures 

(400 °C, 500 °C and 600 °C), as well as the modification of the molar ratio between ethylene 

glycol (EG) and citric acid (CA) in the precursor solutions, were investigated. Besides, similar 

anodes were conventionally prepared in an electric furnace, for comparison. The anodes were 

physically characterized by scanning electron microscopy coupled with energy dispersive 
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5 

spectroscopy (SEM-EDS), and X-ray diffraction (XRD) analyses. Cyclic voltammetry (CV), 

linear sweep voltammetry (LSV), morphology factor determination, accelerated service life 

tests, and electrochemical impedance spectroscopy (EIS) were also considered to analyze the 

electrochemical properties of the prepared anodes. Finally, electrochemical oxidation of 

Methylene Blue (MB), used in this work as a model pollutant, was performed to compare the 

electrocatalytic activity of these anodes.   

 

2. Materials and Methods  

2.1 Preparation of the MMO anodes 

The Ti/SnO2–Sb solutions were prepared using ultrapure water (Gehaka MS 2000 system) 

and, as chemical precursors, SnCl2 (99.99%), SbCl3 (99.99%), anhydrous citric acid (99%), 

Methylene Blue (MB) (C16H18ClN3S) (82%), ethylene glycol (99.8%) and sulfuric acid (95–

98% all purchased from Sigma-Aldrich
®
. Hydrochloric acid (38% - Vetec

®
) and oxalic acid 

(99.5% - Neon
®

) were employed for the pre-treatment of the Ti substrate.  

 The titanium (Ti) plates (10 mm × 10 mm × 1 mm), used as the substrates, were first 

pretreated as previously reported [4]. This pre-treatment intended to increase the surface 

roughness and improve the coating adhesion, also removing impurities found on the material 

surface. The precursor solution was prepared by dissolving citric acid (CA) into ethylene 

glycol (EG) at 60 °C, according to the molar ratio EG/CA summarized in Table 1. After that, 

the metallic precursors (SnCl2 and SbCl3) were added and then the solution was heated up to 

90 °C and kept under mechanical stirring until complete dissolution of the metallic salts. The 

precursor solution was then spread by brushing, over both sides of the pretreated Ti plates. 

The production of the anodes was carried out using initially a furnace (denoted hereafter as a 

conventional method – CM) and then a CO2 laser (denoted henceforth as LM) (GEM-100L – 

Coherent).   
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Seeking to improve LM synthesis, adaptations on the methodology previously 

reported by our group were carried out [29]. The adopted strategy was to keep the laser beam 

(diameter of 10 ± 0.5 mm) oriented toward the center of the sample and held at this location 

throughout the process. When heating, the power density was raised at a linear rate of 0.01 

W/mm
2
 s, reaching a power density of 0.22–0.30 W/mm

2
, which was kept constant for 15 

min. At the above-cited conditions, the maximum temperature achieved was between 400 °C 

and 600 °C. A type S thermocouple (cross-section = 0.25 mm) was positioned to measure the 

temperature at the center of the sample surface. Afterward, the cooling process occurs almost 

instantaneously. Four repeated brush-pyrolysis stages were done. It is essential to point out 

that the first film layer was calcined using the furnace as a heating source, and the remaining 

three layers were calcined by laser heating only. The loading amount of coating for both 

electrodes was controlled at ~1.2 mg cm
–2

. For comparison, Ti/SnO2–Sb anodes were 

produced using the furnace exclusively, under the same conditions. 

 

2.2 Physical characterization 

The morphological characteristics of the anodes were evaluated using a JEOL (JSM-6510LV) 

scanning electron microscope, in both secondary electron (SE) and backscatter electron (BSE) 

modes. The local chemical composition was determined by means of energy-dispersive X-ray 

spectroscopy (EDS) measurements, coupled with the SEM equipment. XRD measurements 

were carried out by using a Bruker-D8 Advance X-ray diffractometer with Cu Kα radiation 

over a 2θ range between 20° and 80°, at a scan rate of 0.02° min
–1

. Phase identification was 

performed using the Joint Committee on Powder Diffraction Standards (JCPDS) database. 

 

2.3 Electrochemical measurements 

Electrochemical measurements were carried out using an Autolab PGSTAT302N (Metrohm - 

Pensalab) Potentiostat in a conventional three-electrode glass cell at room temperature. The 
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working electrodes were the Ti/SnO2–Sb anodes (geometric area = 2 cm
2
), the counter 

electrode was a platinum plate of 2 cm
2
, and an Ag/AgCl (KCl 3.0 mol L

–1
) was used as the 

reference electrode. CV measurements were performed with potential limits of 0.2–2.0 V with 

a scan rate of 50 mV s
–1

 in a 0.1 mol L
–1

 Na2SO4 solution. The total voltammetric charges 

(q*) corresponding to electrochemically active surface areas were calculated by integrating 

the area of the cyclic voltammograms [21]. Following the methodology proposed by da Silva 

et al. [30], continuous voltammetric curves were recorded at several scan rates (10–300 mV s
–

1
) in a Na2SO4 solution, to determine the morphology factor of each anode prepared [31]. 

The electrocatalytic activity of the anodes towards the OER was investigated using 

LSV performed from 0.2 to 2.3 V at 10 mV s
–1

 in a 0.5 mol L
–1

 H2SO4 solution. EIS 

measurements were also carried out in a 0.5 mol L
–1

 H2SO4 solution, applying a potential 

determined by LSV analysis corresponding to the OER onset potential for each studied anode. 

The OER onset potential was established as the intercept potential between the linear 

extrapolation of the fast rise in current due to OER and the linear extrapolation of the baseline 

in linear voltammetry experiments. The measurements were obtained covering the frequency 

range 0.1–1000 Hz using an amplitude signal of 5 mV, and the results were fitted using Zview 

software 2.3. In this program, an equivalent circuit is created, which generates a theoretical 

curve to be fitted to the experimental data in order to obtain the values of the elements of the 

circuit.  

Accelerated service life tests were carried out using chronopotentiometry applying a 

current density of 200 mA cm
–2

 in 0.5 mol L
–1

 H2SO4 solutions. The anodes were considered 

deactivated when the measured potential reached 10.0 V.  

 

2.4 Electrolysis 
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To evaluate the electrocatalytic activity of the developed anodes, the electrochemical 

oxidation of 20 mg L
–1

 of MB dye (model pollutant without further purification) in aqueous 

solution, was carried out in 80 mL solution in 0.1 mol L
–1

 Na2SO4 supporting electrolyte and 

with the addition of NaCl to produce a 0.02 mol L
–1

 solution. In order to monitor the 

absorbance of MB dye solution, spectra from 200 nm to 800 nm were monitored at certain 

time intervals using a UV-vis spectrophotometer (UV-Vis Hach DR 5000). The MB 

concentration was monitored by using a calibration curve of MB concentrations versus 

absorbance at 664 nm.  

The color removal efficiency was expressed as η, according to Eq. (4) [32], where A0 

and At are the absorbance at an initial time and time t, respectively. 

 

        
       

  
                                                           (4) 

 

The specific electrical energy consumption (EC) per treated volume was calculated according 

to Eq (5), where Ecell is the average cell potential (V), I is the applied current (A), t is the 

electrolysis time (h), and V is the solution volume (dm
3
). 

 

                
           

  
                                               (5) 

 

3. Results and discussion 

3.1 Physical characterization 

Fig. 1 (left side) displays the representative SEM images (SE mode) from the surface of the 

Ti/SnO2–Sb anodes. The CM anodes (Fig. 1a and b) presented the typical mud cracked aspect 

with morphological inhomogeneity. This aspect is commonly related to the mechanical stress 
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caused by the coating plasticity and the difference of the thermal expansion coefficient 

between the substrate and the film [33,34]. 

On the other hand, LM anodes (Fig. 1c and d) presented a rough and more compact 

surface for all conditions, i.e., a reduction of the deep cracks and pores concentration. 

Amongst the temperatures studied, the samples treated at 600 °C showed more compact 

surfaces than those prepared at 400 °C and 500 °C (Fig. S1). This behavior can be attributed 

to the grain growth (coalescence effect) and agglomeration of the particles at higher 

temperatures, which is commonly reported in the literature for coatings deposited by using 

thermal decomposition at different temperatures [31,35]. Additionally, the reduction in the 

molar ratio EG/CA from 10:3 (Figure 1a and b) to 6:3 (Fig. 1c and d) seem to affect the 

morphology positively, improving the anode homogeneity. This improvement may be 

attributed to the higher amount of electroactive material dispersed into a smaller volume 

(EG/CA = 6:3), which favors the fixation of the layer as compared to the proportion often 

employed for Pechini method (EG/CA = 10:3). At this point, it is worth to remember that 

Aguilar et al. 2018 [36] changed the proportion between the organic chemicals (EG/CA = 

16:0.12 and EG/CA=3.2/0.024) for Ti/Ir–Sn–Sb anodes, prepared by Pechini method, 

obtaining that the lower amounts of organic compounds enhanced the homogeneity of the 

coating and favored the Sn deposition.   

In general, contrary to the CM anodes prepared by the Pechini method in a furnace 

that present typical cracked-mud morphology, the LM anodes present a more compact 

structure and poorly defined cracks, as pointed out previously for Ti/RuO2–IrO2 obtained by 

laser [29]. 

According to the literature, the metallic composition of the oxide layer may be 

different from the composition of the precursor solutions [12,37]. The right side in Fig. 1 

shows the EDS spectra and elemental mapping (BSE mode) of the four main studied samples, 
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calcined at 600 °C by both methods. In these images, brightness differences are associated 

with different element proportions; i.e, darker regions indicate a lower concentration of the 

observed element. Note that in CM samples (Fig. 1a and 1b) there are some darker regions in 

Sn and Sb elemental mapping while for LM samples these darker regions are less evidenced. 

This result indicates a better ion homogeneity in LM anodes. 

Additionally, the real composition of the oxide layers was semi-qualitatively analyzed 

by EDS, as summarized in Table 2. The percentage of the metallic components (Sb:Sn 

proportion) for the Ti/SnO2–Sb anodes is uniformly distributed over the surface. Moreover, 

the Sb:Sn proportion, for different Sb contents, shows a good correlation between real and 

nominal values. Nevertheless, slight discrepancies in Sb:Sn proportion, observed for some 

LM and CM anodes, have been reported to occur at low doping levels. This behavior can 

result from the small separation energy between the Sn and Sb spectral lines [4,37,38]. 

According to Rodrigues and Olivi, SnO2–Sb anodes could be prepared at controlled 

stoichiometry, showing excellent correlation between the real and the nominal compositions, 

using the Pechini method [39]. 

From XRD patterns taken for the different anodes prepared (Fig. 2), where diffraction 

peaks were compared with patterns from the JCPDS, it could be confirmed that all the anodes 

presented the tetragonal rutile-type structure of SnO2 with peaks corresponding to (110), 

(111), (101), (210), (211), (220), (310) and (321) (JCPDS 41-1445). It should be pointed out 

that the dopant introduction in SnO2 coating is commonly reported and does not cause 

noticeable changes in the XRD patterns [40,41]. Similarly, here, no diffraction peaks of Sb 

were detected, indicating that there was a low doping level, and the incorporation of the 

doping ions into SnO2 lattice occurred. In that sense, Sb is expected to enter the SnO2 lattice 

in the form of interstitial, replacement, or being dispersed in the middle of the SnO2 particles 
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[42]. In such cases, the presence of dopants with small doping levels must be verified by other 

methods, such as EDX spectroscopy. 

Additionally, Ti related peaks were also detected, associated with the titanium support, 

often reported for thin films [4,43]. As can be noted, Ti peaks related to the substrate can 

decrease after different temperatures of calcination. The most marked decrease of these peaks 

indicated a more uniform coverage of the Ti substrate and was observed for the anodes 

obtained at the solvent proportion of 6:3 of EG:AC. 

 

3.2 Electrochemical measurements 

3.2.1 Cyclic voltammetry  

The electrochemical behavior of the MMO anodes was analyzed firstly by cyclic voltammetry 

(CV) measurements in a potential interval of 0.2–2.0 V versus Ag/AgCl (Fig. 3). All anodes 

display a sharp current rise, corresponding to the OER, at potentials above 1.6 V versus 

Ag/AgCl, which is a behavior commonly seen at this potential range for non-active 

electrodes. These materials are known for the production of 
●
OH on the surface and low 

capability of superficial chemical reactions, differing from active electrodes (e.g., Ti–Ru) 

which are capable of degrading chemical compounds using physisorption and chemisorption 

on the anode surface [4,44,45].  

The voltammetric charge values, q*, obtained by the integration of the CV curves 

between oxygen and hydrogen evolution, are shown in Table 3. The voltammetric charge 

increases up to 7-fold as the calcination temperature increases from 400 °C to 500 °C. At high 

temperatures, CM-600 and LM-600, the voltammetric charge decreases, which may be 

attributed to the grain expansion, better crystallization, and gradual disappearance of porous 

morphology of oxide layer [31,46]. Besides, the reduction in the voltammetric charge for laser 
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anodes can be explained in terms of the more compact surfaces previously observed in SEM 

images (Figure 1). 

To further investigate the coatings, the morphology factor of oxide layers was 

estimated. Data of the total (Cd), external (Cd,e) and internal (Cd,i) differential capacitances 

(Table 3) provides information about both the degree of roughness of the film and its surface 

accessibility to the anode (internal and external surface), allowing to calculate the 

"electrochemical porosity" [47,48] described here by the morphology factor (φ) [30,32].  

It is worth mentioning that to ensure the measure of only the capacitive contribution, a 

small potential interval of 200 mV was chosen to record the capacitive current density 

according to the methodology described by Da Silva et al., [30]. After that, the angular 

coefficients of the linear segments of the profile versus ν, observed in the regions of the low 

and high values, respectively, provide the respective values of the Cd and Cd,e. Thus, the 

internal differential capacitance, Cd,i, can be obtained according to Eq. (6). After that, φ values 

can be determined as the ratio shown in Eq. 7. 

Cd,i = Cd – Cd,e                                                        (6) 

 

φm  = Cd,i/Cd                                                                                        (7) 

The value of φ can vary between 0 and 1, where values approaching 0, indicates that 

the internal sites of the small electrode influence on the total surface area, whereas values 

close to 1 indicates a large internal area of the coating [30,49]. 

Fig. 4 shows the capacitive current density, jc, versus ν graphs of the Ti/SnO2–Sb 

anodes obtained in this study. The graph shows two linear segments, located, respectively, in 

the low and high scan rate domains. These two segments result from the two distinct surface 

regions typically exhibited in highly rough films [31,48]. 
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As a result, for LM and CM anodes prepared at a higher temperature, the morphology 

factor changes insignificantly, indicating a similar ratio between internal accessible sites and 

total capacitance (φ m = 0.08–0.18). On the other hand, for lower synthesis temperatures, LM 

and CM anodes display higher morphology factors, which may be easily correlated to SEM 

images (Fig. 1), where increased temperature favors the sintering of the surface and, as a 

consequence, reduces the porosity. 

 

3.2.2 Linear sweep voltammetry and electrochemical impedance spectroscopy 

 LSV experiments from 0.2 to 2.0 V at 10 mV s
–1

 in 0.5 mol L
–1

 H2SO4 electrolyte for 

each Ti/SnO2–Sb anode, were performed to determinate the OER onset potential. Thus, 

Nyquist plots were recorded at each OER onset potential for each anode. For all anodes, a 

well-defined semi-circle is observed (Fig. 6). As previously reported in the literature [50], one 

capacitive loop for all frequencies on Nyquist complex plane indicates that only the OER 

takes place with negligible substrate/film interface contribution [51–53]. Here, data fit with a 

typical equivalent circuit to an electron transfer reaction represented by one capacitive loop, 

described as RΩ (Rct Cdl), where RΩ represents the cell resistance (including the connections, 

the electrolyte, and oxide deposit resistance); Rct the charge transfer resistance for the OER 

and Cdl the double-layer capacitance. A constant phase element (CPE), was used to replace Cdl 

in order to take into account electrode roughness and heterogeneity [49,54]. 

Table 2 shows the equivalent circuit used (inset in Figure 6), as well as the RΩ, Rct, 

CPE, and n, obtained values. When n = 1, the CPE corresponds to a pure capacitance, which 

means that n values close to 0.9 for all potentials, confirms the pseudocapacitive behavior of 

the anodes. All impedance data fitted well with the proposed equivalent circuit with a fitting 

quality factor 
2
 < 5 × 10

–4
, indicating the high quality of the fitting procedure. 
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For all samples, the RΩ (cell resistance, including the connections, the electrolyte, and 

the resistance of the deposited oxides) varies between 1.16 Ω and 3.36 Ω. Moreover, the 

charge transfer resistance reduced for the LM anodes, suggesting facilitated electron transfer 

(Table 4). These results indicate that laser calcination substantially improves the 

electrochemical properties of the electrodes, which correlates well with SEM images data that 

shows a more homogenous coating.  

 

3.2 Accelerated service life tests  

The physical stability of the Ti/SnO2–Sb anodes was evaluated employing accelerated service 

life tests, performed applying a current density of 200 mA cm
–2

 (Fig. 7). The anodes were 

considered to be deactivated when the anode potential response reaches a drastic potential of 

10 V versus Ag/AgCl, being this time assumed as the accelerated service life of each 

Ti/SnO2–Sb anode. The anodes with best outcomes were LM-600EG06 and CM-600EG06 

anodes, exhibiting higher stability of 5.5 and 1.1 h, respectively. The low service life can be a 

result of a large number of cracks on the anode surface, which favors electrolyte penetration 

and, consequently, a faster deactivation [55].  

Furthermore, the higher the temperature, the higher is the stability. Likewise, when the 

proportion between EG/AC becomes higher, from 6:3 to 10:3, the anode stability decreases. 

As pointed out before, the metallic precursors dissolved in a smaller volume produce better-

coated surfaces (higher amount of electroactive material dispersed on the film surface). 

Zhuo et al. investigated the stability of Ti/SnO2–Sb and Ti/SnO2–Sb–Bi anodes prepared by 

Pechini method (molar ratio of 10:3:1 for EG:CA:metals) calcined at 600 °C for 1 h applying 

100 mA cm
–2

 in 0.5 mol L
–1

 H2SO4 electrolyte [18].  As a result, the accelerated life for the 

Ti/SnO2–Sb was only 0.4 h, whereas Ti/SnO2–Sb–Bi showed a more extended durability of 

0.8 h under the same conditions. Moreover, a recent study from Lim et al. [56] has 
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demonstrated the effect of dopant amount on SnO2 lattice on the accelerated service life 

carried out with a current density of 100 mA cm
–2

 in a 0.5 mol L
–1

 KOH solution. Thus, 

anodes prepared by traditional thermal decomposition of chlorides, calcined at 500 °C for 1 h, 

showed accelerated lifetimes of 0.14 s, 0.15 and 0.22 at a current density of 100 mA cm
–2

, for 

the SnO2–Sb anodes doped with 5, 10 and 15 % of Sb, respectively [56]. Compared to the 

above-cited studies, this work presents a considerable improvement in the service life of these 

anodes. Also, it is essential to point out that the accelerated lifetime tests were carried out that 

severe conditions (i.e., acid solution and high current density), under normal milder operating 

conditions the real service life of the anode will be expected to be much longer than the 5.5 h 

measured in the drastic conditions used here. 

 

3.3 Electrolysis  

Methylene Blue (MB) dye solution was galvanostatically treated for 60 min at 40 mA cm
–2

 to 

evaluate the electrocatalytic activity of the Ti/SnO2–Sb anodes obtained at 600 °C, prepared 

by conventional and laser calcination, namely respectively - CM-600EG6 and LM-600EG6. 

Hence, the study of two different electrolytes (0.1 mol L
–1

 Na2SO4 containing, or not, 0.02 

mol L
–1

 NaCl) was carried out, in order to favor the effectiveness of the electrochemical 

oxidation by mediated oxidation processes. Among many factors, the presence of species able 

to act as mediators is known to seriously affect the process efficiency in the electrolysis of 

wastewater and the role of chlorine, sulfates, and many other types of salt anions have been 

reported in several studies on the electrochemical process due to generated in situ oxidative 

species depending on the electrolyte [2,3].  

Fig. 8a shows the color removal efficiency (η) calculated according to Eq (4) with the 

variation of time during 60 min electrolysis using LM-600EG6 and CM-600EG6 in 0.1 mol 

L
–1

 Na2SO4 electrolyte without and with the addition of NaCl (0.02 mol L
–1

). The results 
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show that the efficiency of MB color removal increases from 37 % (LM-600EG6) in 60 min 

to 100% in 15 min when 0.02 mol L
–1

 NaCl was added to 0.1 mol L
–1

 Na2SO4, while for CM-

600EG6, which reached 16 % in 60 min, attained total color removal in 20 min.   

It is worth to point out that the initial pH of 5.6 slightly changes during the treatment. 

According to Montonaro and Petrucci [57], pH values between 3.3 e 7.5 favor the formation 

of HClO species, which are also known for their high oxidative capacity. The faster color 

removal is in good agreement with the enhanced HClO formation when Cl
–
 ions are present in 

the electrolyte. A small amount of NaCl (0.02 mol L
–1

) allows mediated oxidation in the bulk 

solution, as previously stated in the literature for color removal [58]. Del Río [59] studied 

electrochemical treatment of Reactive Black 5 solutions on a Ti/SnO2–Sb–Pt anode 

employing a filter press reactor with two different configurations. In both cases, the kinetics 

of color removal was of pseudo-first-order kinetics, and the addition of chloride (Na2SO4 0.1 

mol L
–1

 with the addition of NaCl 0.1 mol L
–1

) enhanced the efficiency of the process.   

The exponential profile of the MB dye absorbance curves as a function of the time 

points out to a pseudo-first-order kinetic for the reactions involved in the electrochemical 

oxidation of this dye. The apparent kinetic constants (kapp) can be related to the dye 

concentration by Eq. (8) [60], where [C0] is the initial concentration of the dye, [Ct] is the 

concentration at a time t. 

 

    
    

    
                                                           (8) 

 

The apparent kinetic rate constants for MB color removal on LM-600EG6 (0.0078 

min
–1

 in Na2SO4 media and 0.2642 min
–1

 with the addition of chloride) is much higher than 

those on CM-600EG6 (0.0029 min
–1

 in Na2SO4 media and 0.2044 min
–1

 with the addition of 

chloride). These results reveal that laser use may increase the kinetic rate constant to a 2.7- 
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and 1.3-fold, in Na2SO4 and with NaCl in media, respectively. Table 5 displays the kapp 

observed for the anodes studied. The results obtained by estimating the energy consumptions 

were compared to evaluate the efficiency of the process. Table 5 shows the energy 

consumption required to reach the maximum of the color of MB dye in 60 min (100 % when 

NaCl was added in the electrolyte), and to maximal removal achieved when only Na2SO4 as 

an electrolyte was employed. 

As can be observed, energy consumption seems to depend on the electrocatalytic 

material used. The values found for MB dye removal, respectively, in Na2SO4 medium only 

and with the addition of a small amount of NaCl were 2.3 and 0.76 times lower for LM anode.  

The much lower energy consumption observed for medium containing NaCl compared to 

only Na2SO4 can be attributed to the improved conductivity of the medium as well as the 

indirect oxidation occurring in bulk, which in turn, as mentioned before, is related to the 

electrogenerated chlorine species.  However, as illustrated in Figure 9, the energy spent in the 

medium with NaCl does not present a significant difference considering the anode employed. 

Therefore, the laser could be an alternative to prepare Ti/SnO2–Sb anodes with enhanced 

properties, to be applied in dye discoloration in chloride media more efficiently than that 

conventional. Also, the effort on the electrode stability enhancement is meaningful, 

considering we are working with a cost-effective environmental anode (Ti/SnO2–Sb). 

Moreover, the reduced cost of synthesis and time for the production of these anodes makes 

this technology even more attractive. 

 

4. Conclusions 

In this study, optimization of Ti/SnO2–Sb synthesis by CO2 laser heating as main heat source 

allowed improved stability of this anode. From physical characterization, the formation of 

SnO2 and Sb incorporated in the coating at similar proportions of the precursor solutions 
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indicates that both heating methods ensure the desired proportion of the coating layer. 

Furthermore, electrochemical characterization showed that the laser method promotes a shift 

in the oxygen evolution overpotential onset to more positive values. Otherwise, when the 

molar ratio of EG was changed from 6 to 10, the negative effect was noted, which means that 

for SnO2–Sb anodes, the more concentrated is the chloride precursor in the solution, the better 

are the coating properties and stability. From the study the calcination temperature, laser 

prepared Ti/SnO2–Sb produced at 600 °C stands out as the most promising anode with better 

electrochemical properties and longer service life. Finally, the highest efficiencies towards 

electrochemical oxidation of methylene blue at lower energy consumption for this anode 

(LM-600EG6) open up the opportunity to its future applications in the electrochemical 

treatment of wastewaters polluted with complex organic compounds. Besides the advantages 

of fast processing time and ease of parameter optimization, the CO2 laser can enhance the 

electrocatalytic properties. 
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Figures 
 

 
 

 
 

 
 

 
 

Fig. 1 – SEM image of the Ti/SnO2–Sb anodes surface calcined at 600 °C. Left – Images 

obtained with BS mode; Right – EDS spectra and elemental mapping obtained in BSE mode. 

(a) CM anode (EG/CA = 6:3); (b) CM anode (EG/CA = 10:3); LM anode (EG/CA = 6:3); LM 

anode (EG/CA = 10:3);  
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Fig. 2. XRD patterns of Ti/SnO2–Sb anodes obtained after laser (a) a conventional (b) 

calcination.  
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Fig. 3. Cyclic voltammograms recorded at 50 mV s
–1

 of Ti/SnO2–Sb anodes prepared using 

conventional and laser heating at 600 (EG/CA = 10:3) (a), 600 (EG/CA = 6:3) (b) 500 (c) and 

400 °C (d) in 0.1 mol L
–1

 Na2SO4 electrolyte. 
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Fig. 4. Dependence of the capacitive voltammetric current density, jc, on ν of Ti/SnO2–Sb 

anodes prepared at 600 °C and EG/AC = 10:3 (a) 600 °C and EG/AC = 6:3 (b), 500 °C (c) 

and 400 °C after conventional and laser calcination. Electrolyte: 0.1 mol L
–1

 Na2SO4. 
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Fig. 5. Linear sweep voltammetry profiles of the Ti/SnO2–Sb anodes prepared measured at a 

scan rate of 10 mV s
–1

. Electrolyte: 0.5 mol L
–1

 H2SO4. 
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Fig. 6. Nyquist plots of Ti/SnO2–Sb anodes prepared using the laser (a) and conventional (b) 

at different calcination temperatures at the OER onset potential (inset is the expanded view of 

the high-frequency region). Data obtained at 0.1–10
4
 Hz in 0.5 mol L

–1
 H2SO4. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

34 

0

1

2

3

4

5

600400600 500 600

EG6

 

 

CONVENTIONAL

t 
/ 

h

EG10
EG6

EG6
EG6

EG10

Temperature /°C

600

EG6
EG6

LASER

500 400

 

Fig. 7. Service life as a function of the Ti/SnO2–Sb anodes after conventional and laser 

calcination (Conditions: 0.5 mol L
–1

 H2SO4 at 200 mA cm
–2

). Molar ratio ethylene 

glycol/citric acid: 10:3 (EG10) and 6:3 (EG6). 
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Fig. 8. Color removal of MB during electrolysis using LM-600EG6 (●, ○) and CM-600EG6 

(▲ in 0.1 mol L
–1

 Na2SO4 electrolyte (solid symbols) and with addition of 0.02 mol L
–1

 NaCl 

(empty symbols) applying a fixed current of 40 mA cm
−2

, for 60 min (a) and corresponding 

kinetic analysis related to the pseudo-first-order reaction kinetics (b). 
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Tab. 1. 

Molar content of organic chemicals in the polymeric precursor solution employed for the 

preparation of different anodes. LM - laser method, CM - conventional method, EG - ethylene 

glycol and CA - citric acid.  

Anode Method Temperature / °C EG / mol CA / mol 

LM-600EG10 Laser 600 10 3 

LM-600EG6 Laser 600 6 3 

LM-500 Laser 500 6 3 

LM-400 Laser 400 6 3 

CM-600EG10 Conventional 600 10 3 

CM-600EG6 Conventional 600 6 3 

CM-500 Conventional 500 6 3 

CM-400 Conventional 400 6 3 
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Tab. 2. 

Molar metallic percentages determined for all the developed Ti/SnO2–Sb anodes. 

Anode EDX 

Sn/MT
α
 Sb/MT

α
 

Precursor 

solution (%) 

Oxide layer (%) Precursor 

solution (%) 

Oxide layer 

(%) 

LM-600EG10 94.0 96.13 6.0 3.87 

LM-600EG6 94.0 96.0 6.0 4.0 

LM-500 94.0 93.0 6.0 7.0 

LM-400 94.0 96.0 6.0 4.0 

CM-600EG10 94.0 97.0 6.0 3.0 

CM-600EG6 94.0 96.0 6.0 4.0 

CM-500 94.0 96.0 6.0 4.0 

CM-400 94.0 94.4 6.0 5.6 

α
Total metal content, MT = Sn + Sb 
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Tab. 3.  

Dependence of voltammetric charge (q*) and the total capacitance (Cd), external capacitance 

(Cd,e), and morphology factor (φ m) with the thermal treatment used to prepare Ti/RuxIrx–1O2 

anodes. 

Anode q* (mC cm
–2

) Cd Cd,e Cd,i φm 

LM-600EG10 5.0 0.67 0.64 0.04 0.08 

LM-600EG6 5.6 0.99 0.89 0.1 0.10 

LM-500 6.8 1.11 0.76 0.35 0.31 

LM-400 1.0 1.11 0.35 0.76 0.68 

CM-600EG10 9.50 1.33 1.19 0.14 0.11 

CM-600EG6 12.98 1.26 1.03 0.23 0.18 

CM-500 17.40 8.85 5.58 3.27 0.37 

CM-400 8.51 2.93 0.31 2.62 0.89 
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Tab. 4.  

Summary of fitted EIS data for Ti/SnO2–Sb anodes prepared after conventional and laser 

calcination, recorded at OER potential for each anode. 

 

Anode 

E V vs Ag/AgCl 

/ V 

RΩ / Ω Rct / Ω Qdl / F ndl 

LM-600EG10 1.70 1.18 105.0 0.0016 0.96 

LM-600EG6 1.90 1.16 13.17 0.0011 0.93 

LM-500 1.80 1.36 23.74 0.0013 0.94 

LM-400 2.80 3.36 84.25 0.015 0.80 

CM-600EG10 1.68 2.14 210.6 0.004 0.95 

CM-600EG6 1.70 1.20 120.5 0.006 0.94 

CM-500 1.72 1.19 153.2 0.005 0.93 

CM-400 2.80 1.60 235.3 0.002 0.66 
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Tab. 5.  

The kinetic and energy consumption of color removal of methylene blue during electrolysis 

using Ti/SnO2–Sb anodes obtained at 600 °C after conventional and laser calcination in 

different media. 

 

Anode 

 

Medium 

 

kapp (min 
–1

) 

 

R
2
 

Energy consumption 

(Kw h / m
3
) 

LM-600EG6 

0.1 mol L
–1

 Na2SO4 

0.0078 0.99 8.04 

CM-600EG6 0.0029 0.98 18.86 

LM-600EG6 0.1 mol L
–1

 Na2SO4 + 

20 mmol L
–1

 NaCl 

0.2642 0.96 0.63 

CM-600EG6 0.2044 0.98 0.83 
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