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A B S T R A C T

The segmentation of multivariate temporal series has been studied in a wide range of applications. This study
investigates a challenging segmentation problem on traffic engineering, namely, identification of time-of-day
breakpoints for pre-fixed traffic signal timing plans. A large number of urban centres have traffic control
strategies based on time-of-day intervals. We propose a bilevel optimization model to address simultaneously
the segmentation problems and the traffic control problems over these time intervals.

Efficient memetic algorithms have been developed for the bilevel model based on the hybridization of
the particle swarm optimization, genetic algorithms or simulated annealing with the Nelder–Mead method.
Numerically the effectiveness of the algorithms using real and synthetic data sets is demonstrated.

We address the problem of automatically estimating the number of time-of-day segments that can be
reliably discovered. We adapt the Bayesian Information Criterion, the PETE algorithm and a novel oriented-
problem approach. The experiments show that this last method gives interpretable results about the number
of reliably necessary segments from the traffic-engineering perspective.

The experimental results show that the proposed methodology provides an automatic method to determine
the time-of-day segments and timing plans simultaneously.

1. Introduction

The study of the dynamic aspects of traffic is essential for a proper
modelling of traffic and its related phenomena, like traffic congestion
among others. Intelligent Transportation Systems (ITS) address this
level of uncertainty through advanced monitoring systems of the traffic
network in real time, which makes possible to determine the system
state and to respond to unexpected situations. The implementation of
these systems (traffic responsive) requires significant economic invest-
ment and complex maintenance processes, which means that at the
present moment, the number of urban areas equipped with these sys-
tems remains small. Many studies and methods for traffic planning and
control in urban networks are based on the assumption of time-of-day
(TOD) intervals which determine dynamic congestion patterns. A TOD
is a period of time where traffic dynamics can be considered stationary,
so it is possible to assume that traffic in this interval follows a specific
behaviour, which is defined through a pattern. Once TODs have been
determined, timing plans are developed and optimized for each TOD
using heuristic and metaheuristic algorithms. Typically, between three
and five plans are run in a given day.
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Traditionally, TOD determination and optimization plans are tasks
that has been performed visually by traffic engineers making it chal-
lenging and subjective. Currently, there are two possibilities to address
the problem of defining control strategies for traffic networks based on
TOD intervals.

- The sequential methodology assumes a two-phase approach, in
the first phase the determination of the TOD intervals is carried
out while in the second phase an adequate control strategy is
determined for each TOD.

- The simultaneous methodology addresses the above two phases
simultaneously throw bilevel optimization.

Determining TOD intervals has been widely addressed in the litera-
ture using mainly cluster analysis techniques, among others. Neverthe-
less, the applied methods do not consider the so-called time-domain-
constraints (see López García et al. (2014)). The omission of these
constraints leads to a noisy and infeasible detection of TOD intervals as
well as transitions between different TODs with a high cost, in terms
of quality of modelling. These noisy TODs are clusters which do not
follow an intuitive TOD scheme as the majority of clusters. For that
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reason, these clusters have to be re-assigned to other TODs, since if it is
not done, the transition between these unfeasible clusters and the other
ones will be highly expensive and the obtaining of a larger number of
clusters will produce worst results. The re-assigning process of unclean
clusters was made again by traffic engineers.

The time-domain-constrained data clustering problem tackles a clus-
tering problem in which data are labelled with the time where they
were gathered. Furthermore, the time-domain constraints impose that
the obtained clusters need to be contiguous in time. That is, if two
data are grouped in the same cluster then all data with a time label
between both data must be assigned to the same cluster. Thus, time
series segmentation is solved through the partition of a time series
into homogeneous clusters which are close in terms of time, solving
the problem of noisy clusters and minimizing the costs of transitions
between clusters.

A second challenge for TOD determination and traffic light opti-
mization is the development of a bilevel optimization model which
addresses simultaneously the definition of control strategies. However,
it implies a high computational cost, derived from the two hard op-
timization tasks of determining TODs and optimizing timing plans. In
order to solve successfully the model, memetic algorithms which com-
bine the advantages of metaheuristics and local search strategies must
be developed, in order to build more accuracy and faster algorithms
which achieve an optimum trade-off between exploration and exploita-
tion. Hybridizations of metaheuristics and local search algorithms have
been proven that outperform the results of them individually (see Shi
and Eberhart (1998), Espinosa-Aranda et al. (2013), Li and Schonfeld
(2015), and Sabar et al. (2017)).

Moreover, there is not in the literature an automated methodology
for determining TOD breakpoints and optimizing traffic signal times in
each segment. For this reason, in this paper the problem is formalized
following a simultaneous methodology through an approach given
in López García et al. (2014). The model is formed to simultaneously
determine the TODs and the traffic control strategy. In the upper
level the TODs breakpoints are determined by optimization and the
lower level problem is represented by a traffic control problem. The
integration of both levels avoids local optima in the TOD breakpoints
pursued. This paper focuses on a control strategy based on timing plans
for intersections but can be easily extended to methods using the whole
traffic network.

The main contributions of the paper are:

- The determination of TODs breakpoints and the development of
the optimal traffic control for each TOD following a simultaneous
approach which considers time-domain constraint in a clustering
problem has been dealt with. The versatility of the proposed
bilevel model to be adopted in different traffic problems has
been proved. Specifically, in this paper we have addressed the
optimal traffic signal timing for each TOD. The results of the
computational experiments show that, in the case of an iso-
lated intersection, our bilevel proposal based on a simultaneous
methodology reduces the waiting time for users about 3% in
comparison with a sequential methodology.

- Memetic algorithms have been applied to the bilevel model.
The hybridization of Particle Swarm Optimization (PSO) and
the Nelder–Mead (NM) method, the hybridization of Simulated
Annealing (SA) with NM, and of Genetic Algorithms (GA) with
NM have been analysed. In the literature only proposals based on
GA and SA have been tackled. The results of the computational
experiments show the effectiveness of the memetic algorithms
respect to the metaheuristics for the problems addressed.

- Despite the fact that the determination of number of cluster has
been widely studied in the literature, automatic determination
of the number of TODs has not been previously studied. This
aspect has been considered in this paper through the Bayesian
Information Criterion (BIC), the PETE algorithm and finally, an
oriented-problem approach has been developed with promising
results.

The article is organized as follows. Section 2 reviews traffic signal
control and optimization based on TODs. In Section 3 the bilevel model
is formulated. In Section 4 the memetic computing for its resolution
is described. The automatic determination of the number of TODs is
carried out in Section 5. In Section 6 the numerical experiments over
real and synthetic data are carried out and finally the conclusions
obtained are analysed.

2. Related work

During the last few decades traffic signalization has experienced
a great evolution, from the first pre-fixed signals with fixed times to
the real-time traffic signalization. A roughly taxonomy of traffic signal
systems can be stated as follows (see van Katwijk et al. (2006), Gordon
et al. (1985)).

1. Fixed Time Systems. These systems fix a predetermined control
strategy on a set of time intervals given.

(a) Fixed Time Systems (Pre-timed). In fixed time systems, the
timing plan is determined from historical data, fixing pre-
determined rates. The main disadvantage of this approach
is the inability to adapt to demand fluctuations over the
time.

(b) Plan Selection Systems. They select the most appropriate
timing plan from a repository of plans according to the
received inputs from sensors which detect the current
state of the traffic network.

2. Traffic Responsive Systems. They usually operate in real-time
and make decisions according to current traffic conditions which
are collected through a detection system.

(a) Actuated. They operate in real-time applying a control
strategy according to the current state of the traffic net-
work. In this case, these systems are capable of adjusting
the length of the current phase in response to flow and
demand variation.

(b) Adaptive. These systems represent the most complex and
sophisticated traffic signal control systems. They operate
in real-time through an optimization algorithm to choose
the optimum timing plan. With regard to actuated sys-
tems, adaptive traffic signal control evaluates a set of
possible control strategies in real-time incorporating a
decision making in order to choose the best control mech-
anism. Moreover, these systems are classified according
to the type of communication system on centralized or
distributed.

Despite the fact that traffic adaptive systems with distributed pro-
cessing are the most promising systems, the infrastructure in the most
populated and important cities in the world are not ready for imple-
menting this kind of system now, since an expensive technological
infrastructure is required. Relevant studies of this type methodology
are Abdoos et al. (2013), McKenney and White (2013) and Khamis
and Gomaa (2014) that propose traffic responsive systems based on
multi-agent systems for traffic signal optimization.

The above discussion motivates the study of determining TOD in-
tervals and it is the why it is still a very current research topic.
Moreover, Koonce et al. (2008) showed that non-adaptive systems, for
example pre-fixed time systems, with adequate design and with regular
updates obtain acceptable results in comparison with traffic responsive
systems. For this reason it is crucial to have specialized tools capable of
automating the planning process and making planning changes when
new mobility patterns are detected. In addition, robust optimization
techniques allow robust pre-timed systems which are less sensitive to
traffic flow fluctuations (see Yin (2008), Lee et al. (2011)).
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2.1. Reviewing the time-of-day identification problem

Traditionally, traffic engineers determined TOD breakpoints, devel-
oped and optimized traffic timing plans based on their expert knowl-
edge and with the only historical data of traffic volumes in critical
intersections. With the appearance of data mining and machine learn-
ing techniques, different approaches have been widely used in this
process. The TOD determining problem can be addressed through
cluster analysis or by means of segmentation of multivariate time
series. The first approach deals with solving the so called cluster-
ing with time-domain constraints and the second with the change-point
detection problem. The standard solution of change-point detection prob-
lem involves: (i) the number of change-points, (ii) their locations,
and (iii) functions for determining curve fitting between successive
change-points. In TOD determination problem the issue (i) is fixed and
the fitted function related with issue (iii) is considered constant. Fu
(2011) reviews the change-point detection problem but it does not
report applications in traffic domain. Both approaches are considered
to be equivalent. However, as far as we know, only cluster analysis
techniques have been applied in current literature to solve it.

Hauser and Scherer (2001) provided a solution based on hierar-
chical clustering taking into account the volumes and occupancies of
different intersections, determining different TOD intervals and opti-
mizing plans for each of them.

Smith et al. (2002) proposed a new method based on hierarchical
clustering, with the novelty of making a high-resolution definition
of the state of the system, taking into account not only the flow or
occupancy as traffic parameter but also the density. With these data,
different plans were developed for each TOD. In order to address the
unfeasible clusters problem, Park et al. (2003) proposed an approach
based on clustering using a Genetic Algorithm (GA). To do that, the
fitness function in the codification of genetic algorithm introduces a
penalty with the purpose of avoiding unclean clusters.

Furthermore, Wong and Woon (2008) proposed a method based on
𝑘−means algorithm and silhouette index. This method uses the traffic
parameters flow, speed and occupancy and it determines the TODs
following an iterative scheme between a TOD determination stage and
a traffic control stage. In each iteration the TODs are refined using the
new information of the traffic control problem and the empty clusters
are deleted. This method can be viewed as heuristic to solve the bilevel
model which appear in the simultaneous methodology.

However, these works did not consider the time-domain-constraint
into the clustering process, which produced the so-called unclean clus-
ters. Although the approach of removing unclean clusters provide the
minimization of transition costs, they did not consider the transition
costs in the optimization tasks. To achieve it, Lee et al. (2011) proposed
an approach based on a GA to explicitly consider the transition costs
during the optimization tasks in a coordinated-actuated traffic signal
system.

Moreover, local search strategies have also been applied to deter-
mine TOD intervals. One example is Park and Lee (2008), where the
problem is solved using the optimal cycle length per time interval
through a greedy search algorithm. The authors proposed this method-
ology due to the quickness of local search strategies. This work takes
into account the transition cost but it does not consider explicitly the
time-domain constraints.

Lee and Kim (2011) proposed a methodology based on the 𝑘−means
algorithm and the VPLUSKO index – which is defined on the volume
and occupancy – to determine TOD breakpoints. The VPLUSKO index
helped to calibrate the model and adjust the breakpoints. However,
this work do not address the problem of automatically determining the
optimum number of TODs under any traffic conditions like the rest of
reviewed studies.

Soft-computing techniques such as fuzzy logic and metaheuristics
have also been applied to determine TOD breakpoints. In Angulo et al.
(2011), authors presented a plan selection system based on two setups:

off-line and on-line. In the off-line step, different mobility patterns were
determined using historical data which were synthesized. In the on-
line phase, the current traffic conditions are matched with one of the
determined patterns in the off-line phase, where a pattern corresponds
to a fuzzy prototype.

Ratrout (2011) proposed a process to determine optimal TODs based
on 𝑘−means method. This work is a first approximation to address
the inclusion of time-domain constraints in the TOD determination
problem. Instead of the traffic volumes, this work proposes the use
of 𝑧− score and the time as features in the clustering process. The
approach falls on a sequential methodology.

In last years, new technologies and sensors, like GPS, APC etc.,
have allowed to collect data in real-time in order to address different
transport problems. The problem of determining TOD breakpoints has
been applied to other transportation domains. Bie et al. (2015) applied
GPS data for bus scheduling, determining TODs for bus lines. In this
work, the authors used the dwell times at stops and inter-stop travel
times like clustering indexes to partition data, using a hierarchical
approach.

Various criteria for automatic model selection have been widely
used to determine the number of clusters (in our problem the number of
TODs) in the data. The Bayesian information criterion (BIC), Akaike’s
Information Criterion (AIC) and Minimum Description Length (MDL)
are some notable examples of these criteria. However, despite of the
profuse literature about this topic (Chiu et al., 2001; Xia and Chen,
2007) there is not an index which outperforms the rest in all application
domains.

The TOD determination problem viewed as a segmentation problem
also contributes with its own methods to determine the number of TODs
such as the PETE method (Vasko and Toivonen, 2002) or the BIC’s
adaptation method (𝛥BIC) for the segmentation of time series (Chen
and Gopalakrishnan, 1998; Wang et al., 2008).

Briefly, Table 1 shows a summary of the works analysed in this
section grouped by the approach used to solve determining TODs
breakpoints, sequential or simultaneous.

2.2. Memetic-related works to traffic control systems

The traffic signal control methods are deployed on the basis of op-
timization procedures. Genetic algorithms (GA) have been widely and
successfully applied (see Araghi et al. (2015), Chin et al. (2011), Teklu
et al. (2007), Ceylan and Bell (2004) among others). The growing
complexity of the traffic signal systems has motivated the use of new
metaheuristics like in García-Nieto et al. (2012) where particle swarm
optimization (PSO) is applied for determining cycle programmes of
traffic lights in two large networks.

Nowadays, there are several enhancements of metaheuristics that
improve its performance in different ways. One of these strategies
are memetic algorithms (MA). The concept of MA was first coined
by Moscato and Norman (1992). In that work, the authors developed
an algorithm for the travelling salesman problem using local search
heuristics with the purpose of improving the exploitation capability of
population-based algorithms. Since then, this concept has been formal-
ized, theoretically studied and applied to many complex optimization
problems (see the reviews Chen et al. (2011) and Neri and Cotta
(2012)).

Currently, MAs have shown their ability to achieve high perfor-
mance and superior robustness across a wide range of problem do-
mains. To mention a few examples, MA has been applied to power
systems like in Hu et al. (2015), where a MA is used for feature selection
in order to forecast mid-term interval loads, or aerodynamic, as in Qu
et al. (2017), where it has been used to optimize aerodynamic shape or
aircrafts and determine the optimal settings of shape parameters.

Recently, Sabar et al. (2017) applied MAs to an adaptive signal
timing settings system. In this work, MA determine good quality signal
timing settings within an acceptable amount of time. This task is crucial
in real time systems and this motivation has been followed along this
work.
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Table 1
A review of traffic signal optimization based on time-of-day intervals.

Methodology Technique Problem Reference

Sequential approach

Hierarchical clustering Determining and optimizing TOD intervals on a three-intersection
corridor.

Hauser and Scherer (2001)

Developing timing plans for a three coordinated actuated
intersection.

Smith et al. (2002)

Genetic algorithm Determining optimum TODs, removing unfeasible clusters in a
three-intersection actuated and coordinated intersection.

Park et al. (2003)

Quadratic sequential programming Signal timing optimization on an isolated fixed-time four-stage
signalized intersection

Yin (2008)

Clustering 𝑘−means and statistical techniques Determining and optimizing TOD intervals into a ten coordinated
signalized intersection in Seoul.

Lee and Kim (2011)

Clustering 𝑘−means Determining optimum TOD intervals in a three pretimed
coordinated signalized arterial intersection.

Ratrout (2011)

Clustering 𝑘− means and fuzzy logic Determining and optimizing TOD for traffic signal optimization Angulo et al. (2011)

Simultaneous approach

Clustering 𝑘−means Optimizing signal timing plans on extremely congested roads Wong and Woon (2008)
Greedy search Determining optimum TOD intervals into coordinated actuated

traffic signal arterial operations.
Park and Lee (2008)

Genetic algorithm Determining optimum TOD intervals into coordinated actuated
traffic signal arterials.

Lee et al. (2011)

Hierarchical clustering Time series partition for determining TOD intervals to optimize bus
lines

Bie et al. (2015)

3. Models to identify time-of-day breakpoints

The main objective of this section is to state the optimization models
for the determination of TODs based on the time-domain-constrained
data-clustering problem. The goal is to define time intervals in which
traffic demand is approximately stationary and therefore the dynamic
component within each interval can be considered negligible. This is a
resolution strategy for addressing the management and the control of
traffic for non-stationary demand (dynamic demand).

We will start addressing the sequential methodology in which TODs
are determined in a first step and after that, the traffic control problem
is solved in each TOD. Then, this approach will be extended to a
simultaneous methodology in which both problems are solved on a
single optimization model, in this case, the bilevel optimization model
which is formalized in Section 3.2.

3.1. Sequential methodology

Urban traffic networks are mathematically modelled by a directed
graph  = (𝑁,𝐴) in which the set of nodes 𝑁 represents the intersections
and the so called centroids. The centroids are dummy nodes which
model city areas with generation/attraction of trips. The set of links 𝐴
represent urban roads and the so-called connectors, which are dummy
links joining the centroid nodes with the intersection nodes.

Fig. 1 shows a representation of a traffic network. This network
consists of 4 centroids, 4 connectors and 11 links representing the streets
of the urban area modelled. In addition to the network (supply) in
these systems the origin–destination matrix is considered representing
the demand between different centroids. In this example we consider
four origin–destination pairs 𝐴 → 𝐶,𝐴 → 𝐷,𝐵 → 𝐶,𝐵 → 𝐷. The index
𝜔 denotes one of these pairs and 𝑊 the set of all origin–destination
pairs. To model the variation of demand over time the intensity of
demand 𝑞𝜔(𝑡) is introduced. These functions are not directly observable
in the network.

New technologies allow the monitoring of traffic networks in real-
time. These traffic control systems are located in a subset of links of the
network, denoted by 𝐴 ⊂ 𝐴 and we will call this the set of sensors. The
traffic parameters in the link 𝑎 ∈ 𝐴 are the traffic flow 𝑞𝑎 (veh./hour),
the speed 𝑣𝑎 (km./hour) and the density (or alternatively occupancy) 𝑘𝑎
(veh./km.), which is linked to the two above by the equation:

𝑞𝑎 = 𝑣𝑎𝑘𝑎, 𝑎 ∈ 𝐴. (1)

For simplicity, we will focus on the flow observed in each arc of
the traffic network. This methodology can be generalized in order to

Fig. 1. Modelling of a traffic network.

consider the three types of traffic parameters on a simple way. García-
Ródenas et al. (2017) proposes the use of geodesic distance over
euclidean distance, since the first one allow to incorporate the three
types of traffic parameters and take into account the correlations
between the link counts.

Let us a data set 𝐷, where 𝐷 = {(𝑡𝑗 ,𝐪𝑗 )}𝑁𝑗=1. This data set is
composed by tuples which in turn consist of 𝐪𝑗 ∈ R𝑑 which is a vector
of link flows. Indeed, flow data 𝐪𝑗 are labelled with an index which
represent the time instant 𝑡𝑗 for which the data was gathered. Thus,
it is possible to assume the data are time ordered. Henceforth, it is
mathematically expressed as follows, 𝑡𝑗 < 𝑡𝑗+1 where 𝑗 = 1,… , 𝑁 − 1.

∙ Step 1: TOD determination problem
TOD determination problem has been dealt in the literature as a

clustering problem. Cluster analysis tries to find TODs with a certain
level of internal homogeneity and heterogeneity between different clus-
ters. The scheme most widely used addresses the problem of minimizing
the variability into each group or cluster. The most popular criterion
followed to do that consists of minimizing the sum squared error (SSE),
whose mathematical formulation is the following: Supposing that it is
wanted to partition 𝑁 traffic observations in clusters (𝐶1, 𝐶2,… , 𝐶𝐾 ).
Each cluster 𝐶𝑘 is defined by the so-called centroid:

�̄�𝑘 = 1
|𝐶𝑘|

∑

𝑗∈𝐶𝑘

𝐪𝑗 . (2)

where |𝐶𝑘| is the number of objects in cluster 𝐶𝑘 and represents the
mean flow vector in each TOD 𝑘.
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The TOD determination problem used in the literature can be
formulated according to:

Minimize 𝑆𝑆𝐸(𝐰) =
𝑁
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑗𝑘‖𝐪𝑗 − �̄�𝑘‖2

Subject to:
𝐾
∑

𝑘=1
𝑤𝑗𝑘 = 1; 𝑗 = 1,⋯ , 𝑁

𝑁
∑

𝑗=1
𝑤𝑗𝑘 ≥ 1; 𝑘 = 1,⋯ , 𝐾

𝑤𝑗𝑘 ∈ {0, 1}

(3)

where the objective function is the sum squared error within each
cluster and the binary variable 𝑤𝑗𝑘 takes the value 1 if 𝑗 observation is
assigned to cluster 𝑘 and 0 otherwise. The first constraint imposes that
all objects are assigned to some cluster and the second one requires that
there is not empty clusters. The k-means algorithm can be considered
as a greedy algorithm to solve the optimization problem (3).

Fig. 2 illustrates the determining TOD problem. In the figure on the
left, a possible solution for the TOD problem solving (3) is shown. In
this figure, it is shown that the transition between clusters 𝐶1 and 𝐶2
and between clusters 𝐶3 y 𝐶4 is chaotic and produce higher transition
costs between traffic control strategies. This solution does not fulfil the
temporal constraints, formulated by:

If 𝑡𝑗 < 𝑡𝑖 < 𝑡𝑗′ ,
𝑗, 𝑗′ ∈ 𝐶𝑘

}

⇒ 𝑖 ∈ 𝐶𝑘 (4)

We introduce decision variable 𝐬 (instead of 𝐰) in order to incorpo-
rate the temporal constraints (4) into the cluster analysis. Assume that
𝑇 = [𝑎, 𝑏] is the whole time period in which data has been extracted
and henceforth, this is the period that must be partitioned. Suppose
the limit points 𝑎 = 𝑠0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝐾−1 < 𝑠𝐾 = 𝑏 (see Fig. 2) as
decision variables. Thus, it is possible to describe the set

𝐶𝑘(𝐬) =
{

𝑗 ∈ {1,… , 𝑁} ∕𝑠𝑘−1 ≤ 𝑡𝑗 < 𝑠𝑘
}

; 𝑘 = 1,… , 𝐾 (5)

The centroid has been considered as the mean flow in the 𝑘th TOD
and it is shown in Eq. (6):

�̄�𝑘(𝐬) =
1

|𝐶𝑘(𝐬)|
∑

𝑗∈𝐶𝑘(𝐬′)
𝐪𝑗 (6)

where | ⋅ | is the cardinal of a set. According to the previous formaliza-
tion, the optimization model is stated as:

Minimize 𝑆𝑆𝐸(𝐬) =
𝐾
∑

𝑘=1

∑

𝑗∈𝐶𝑘(𝐬′)
‖𝐪𝑗 − �̄�𝑘(𝐬′)‖2

Subject to: 𝑠𝑘−1 < 𝑠𝑘; 𝑘 = 1,… , 𝐾
𝑠0 = 𝑎, 𝑠𝐾 = 𝑏

(7)

∙ Step 2: Traffic control problem Once the set of TODs has been
determined, the mean flow 𝐪𝑘 is computed and it is assumed this is the
traffic pattern which operates in each TOD period. The traffic control
problem find an optimal strategy, which will be defined by a parameter
vector 𝛩𝑘, which will optimize a certain criterion, like waiting time, etc.
In a general way, these kind of problems are formulated by:

Minimize
𝛩𝑘

𝐿(𝐪𝑘;𝛩𝑘); 𝑘 = 1,… , 𝐾 (8)

3.2. Simultaneous methodology

These methodologies try to find the optimum traffic control strategy
in terms of accuracy and efficiency. In order to do that, they determine
the TOD intervals where pre-time (which corresponds with the first
step in the sequential methodology) and traffic signal timing plans (step
two in the sequential methodology) will be applied. The simultaneous
methodology proposes the following bilevel optimization model which

integrates both steps:

𝐓𝐎𝐃 𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐛𝐥𝐞𝐦 Minimize
𝐬

𝐽 (𝐬) ∶=
∑

𝑘
𝐽𝑘(𝐬). (9)

Subject to: 𝑠𝑘−1 < 𝑠𝑘; 𝑘 = 1,… , 𝐾. (10)

𝑠0 = 𝑎, 𝑠𝐾 = 𝑏. (11)

𝐓𝐫𝐚𝐟𝐟 𝐢𝐜 𝐜𝐨𝐧𝐭𝐫𝐨𝐥 𝐩𝐫𝐨𝐛𝐥𝐞𝐦 𝐨𝐧 𝐓𝐎𝐃 𝑘 𝐽𝑘(𝐬) = Minimize
𝛩𝑘

∑

𝑗∈𝐶𝑘 (𝐬)
𝐿(𝐪𝑗 ; 𝑡𝑗 ;𝛩𝑘); . (12)

The decision variables in this case are the control strategies 𝛩𝑘
and the period [𝑠𝑘−1, 𝑠𝑘] where the strategy will be applied. Besides,
the objective function in this problem change the goal of finding time
intervals with minimum variations in flow intensity to finding intervals
where optimal traffic control strategies are obtained. Another impor-
tant feature is that traffic control problem is not posed exclusively on
𝐪𝑘 but also on the set of observations belonged to each TOD. Note that
𝐶𝑘(𝐬) may have a short and insufficient number of observations or even
it can be empty, leading to make the traffic control problem (12) bad
posed. To deal with this problem, we assume that 𝐽 (𝐬) = +∞. As may be
seen from the previous formalization, the problem (12) depends on the
application that is being tackled. Note that the formulation is general
enough in order to tackle the use of simulation models to analyse the
traffic network. If we note 𝛩 = (𝛩1, 𝛩2,… , 𝛩𝐾 ) ∈ R𝑄×𝐾 , it is possible to
consider that flow depends on the traffic control strategies implemented
in the system 𝐪(𝛩) and simulation models allow to compute 𝐪(𝛩) as a
quality index 𝐿(𝐪𝑗 (𝛩); 𝑡𝑗 ;𝛩𝑘) which it is being considered.

In this work we consider a combined approach of TOD determina-
tion and optimal traffic signal timing. Without loss of generality, we
consider an isolated fixed-time signalled intersection. The parameter
𝛩𝑘 represents the optimal timing plan for the TOD 𝑘, and the criterion
𝐿(𝐪𝑗 ; 𝑡𝑗 ;𝛩𝑘) for period 𝑗 is the total delay time in the intersection in
that period 𝑗. In that case the lower level problem cannot be explicitly
solved and the problem have a bilevel nature.

In this problem the control variables are 𝛩𝑘 ∶= (𝙲𝑘, 𝐠𝑘) where 𝙲𝑘 is
the cycle length (seconds) and 𝐠𝑘 = (⋯ , 𝑔𝑘𝑖,…) denotes the vector of
effective green time for each line group 𝑖 at TOD 𝑘.

We use the delay equation in the Highway Capacity Manual (HCM)
(Council et al., 2010) to estimate the delay per vehicle for period 𝑗 ∈ 𝐶𝑘

𝑑(𝐪𝑗 , 𝑡𝑗 ; 𝙲𝑘, 𝐠𝑘)

∶=

∑𝑛
𝑖=1

[

𝙲𝑘(1−𝜆𝑘𝑖 )
2𝑞𝑗𝑖

2(1−𝜆𝑘𝑖 min(1,𝑥𝑘𝑖 ))
+ 900𝑇𝑗𝑞𝑖𝑗

(

𝑥𝑘𝑖 − 1 +
√

(𝑥𝑘𝑖 − 1)2 +
4𝑥𝑘𝑖
𝑐𝑘𝑖 𝑇𝑗

)]

∑𝑛
𝑖=1 𝑞𝑗𝑖

(13)

where

𝑛: is the number of lane groups.
𝜆𝑘𝑖 : is the effective green split per lane group 𝑖 at TOD 𝑘, i.e. 𝜆𝑘𝑖 = 𝑔𝑘𝑖

𝙲𝚝
.

𝑠𝑖: is the saturation flow for lane group 𝑖 (veh/h).
𝑥𝑘𝑖 : represents the degree of saturation in line 𝑖 at TOD 𝑘, i.e. 𝑥𝑘𝑖 =

𝑞𝑖𝑗
𝜆𝑘𝑖 𝑠𝑖

.

𝑇𝑗 : is the duration of the analysis period, i.e 𝑇𝑗 = 𝑡𝑗 − 𝑡𝑗−1 and 𝑡0 the
starting time.

𝑐𝑘𝑖 ∶ is the capacity for lane group 𝑖 (veh/h), i.e 𝑐𝑘𝑖 = 𝜆𝑘𝑖 𝑠𝑖

The total delay time at period 𝑗 can be computed as

𝐿(𝐪𝑗 , 𝑡𝑗 ; 𝙲𝑘, 𝐠𝑘) ∶= 𝑑(𝐪𝑗 , 𝑡𝑗 ; 𝙲𝑘, 𝐠𝑘)𝑇𝑗

[ 𝑛
∑

𝑖=1
𝑞𝑗𝑖

]

(14)

Therefore, the optimization model of signal timing can be written
as:

𝐽𝑘(𝐬) ∶= Minimize
𝙲𝑘 ,𝐠𝑘

∑

𝑗∈𝐶𝑘(𝐬)
𝐿(𝐪𝑗 , 𝑡𝑗 ; 𝙲𝑘, 𝐠𝑘) (15)

subject to linear constraints on 𝙲𝑘 and 𝐠𝑘
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Fig. 2. Clustering problem with and without time-domain constraints.

3.3. Reformulation of simultaneous TOD determination problem using un-
constrained optimization

Briefly, by summarizing all the formalization proposed in this ar-
ticle, the simultaneous TOD determination problem given in Eqs. (9)–
(12) can be written as follows:

minimize 𝐽 (𝐬)
subject to 𝑠𝑘−1 < 𝑠𝑘; 𝑘 = 1,… , 𝐾

(16)

The bilevel optimization problem (16) proposed in this work in-
cludes two optimization tasks or levels. In the first or upper level,
clustering with time-domain constraint is made. The vector 𝐬 = (𝑠1,… ,
𝑠𝐾−1) ∈ R𝐾−1 defines the decision variables which will be used in the
upper level problem, since when this vector is arranged, the evaluation
of 𝐽 (𝐬) leads to 𝐾 independent traffic control problems. We assume
that optimization tools are available to obtain the optimum solution
to traffic control problem 𝛩𝑘 for the 𝐬 variable included in the upper
level.

According to this definition, the previous model can be reformulated
as an unconstrained optimization model. To do that we define

𝐽 (𝐬) ∶=
{

𝐽 (sort(𝐬)) 𝐬 ∈ [𝑎, 𝑏]𝐾−1

+∞ 𝐬 ∉ [𝑎, 𝑏]𝐾−1 (17)

where sort(𝐬) function put in order the elements of 𝐬 ∈ R𝐾−1 from the
bottom to the top and [𝑎, 𝑏]𝐾−1 is [𝑎, 𝑏]×⋯×[𝑎, 𝑏] a hypercube in R−1K.
In this way, (16) can be reoriented as an unconstrained optimization
problem as it is shown in Eq. (18):

minimize 𝐽 (𝐬)
subject to 𝐬 ∈ R𝐾−1 (18)

The main advantage of this reformulation is that it allows the use of
plenty developed algorithms to unconstrained optimization. It must be
underlined that this reformulation can be also applied to step one in the
sequential methodology, since it is enough to identify 𝐽 (𝐬) = 𝑆𝑆𝐸(𝐬).

4. Memetic algorithms for the bilevel TOD determination problem

Then, the problem shown in Eq. (18) will be named as the bilevel
TOD determination problem.

In order to harness the advantages of local search, Espinosa-Aranda
et al. (2013) developed a memetic algorithm to introduce local search
into meta-heuristic algorithms based on population with the purpose of
improving the solution in promising regions.

These memetic algorithms are based on a population of individuals
or candidates. Each one of them constitutes a solution in the solution
space. The population-based algorithms explore successfully the search
space due to the use of a population allows to avoid local optima.

Fig. 3. Illustration of hybridization strategy.

However, these algorithms do not encourage a exploitation phase. For
this, the proposed MA is an instance of this class of algorithms and it
provides a trade-off between accuracy and computational cost. The pro-
posed algorithm is shown in Table 2. The algorithm has two important
parameters which must be fitted 𝑛𝑐 and 𝑛𝑟. The parameter 𝑛𝑐 , is used
in exploration phase and it takes into account the number of successive
improvements achieved by the global optimization algorithm. In this
case, the local exploitation method will start from the best solution
achieved.

Fig. 3 illustrates the basis of this algorithm. When an algorithm
fall into a local minimum environment 𝑉1, the value of the objective
function is difficult to enhance and new improvements are not obtained
until the algorithm scapes successfully from this region in the search
space. The role of 𝑛𝑐 parameter measures the number of successes
(successive improvements) and it is an indirect measurement to check
if the algorithm has get out from the 𝑉1 neighbourhood to other
neighbourhood 𝑉2 which contains better solutions. Once this fact has
been detected (the algorithm has changed its application environment
to other more promising) is appropriate to apply a method with good
capabilities of local search, it means, a good convergence to the local
minimum.

The method used in the exploitation phase is the Nelder–Mead
(NM) simplex algorithm. This computational scheme was introduced
in Nelder and Mead (1965) to unconstrained optimization problems.
Some advantages of this method are that gives notably improvements in
first iterations and it is very useful in nonlinear optimization problems
for which derivates may not be known.

56



R. García-Ródenas, M.L. López-García, M.T. Sánchez-Rico et al. Engineering Applications of Artificial Intelligence 84 (2019) 51–65

Table 2
Memetic algorithm for the bilevel TOD determination problem.
Step 1. (Initialization). Initialize the number of iterations (𝑁), the global optimizer parameters and randomly generate an initial population of solutions. Initialize the

number of iterations 𝑛𝑐 , 𝑛𝑟 associated with the global optimizer and NM respectively. Set the counters 𝑡 = 1 and 𝑛 = 0 and let 𝐽 ∗
𝑎𝑢𝑥 = +∞.

Step 2. (Exploration stage). Apply one iteration of global optimization algorithm to the current population. Let 𝐬𝑡 be the current solution and 𝐽 ∗ its objective value. If
𝐽 ∗
𝑎𝑢𝑥 > 𝐽 ∗ , then let 𝑛 = 𝑛 + 1 and 𝐽 ∗

𝑎𝑢𝑥 = 𝐽 ∗.
Step 3. (Exploitation stage). If 𝑛 = 𝑛𝑐 apply 𝑛𝑟 iterations of NM algorithm by initializing the method from 𝐬𝑡. Let 𝐬𝑡𝑁𝑀 be the solution found, then replace the best

solution of the population by 𝐬𝑡 = 𝐬𝑡𝑁𝑀 and take 𝑛 = 0.
Step 4. (Stopping criterion). If the current iteration is 𝑡 = 𝑁 , Stop; otherwise set 𝑡 = 𝑡 + 1 and go to Step 2.

Output: The best TODs defined by (𝐬𝑁1 , 𝐬𝑁2 ,… , 𝐬𝑁𝐾−1) and its optimal value 𝐽 ∗.

This paper uses a hybridization of a standard PSO (Kennedy and
Eberhart, 1995; Shi and Eberhart, 1998; Clerc and Kennedy, 2002),
GA (Goldberg, 1989) and SA (Kirpatrick et al. (1983) and Černý (1985))
with a NM algorithm. The first algorithm so-called SPSO-NM has been
successfully employed in a timetabling train problem (Espinosa-Aranda
et al., 2015).

4.1. A Simulated Annealing (SA∗) for the bilevel TOD determination prob-
lem

Simulated Annealing (SA) is a popular local search meta-heuristic
based on the metaphor of a technique for heating and controlled
cooling of a material to increase the size of its crystals, reducing their
defects. A key point of this algorithm is that it allows hill-climbing
moves in order to find a global optimum, thus providing a way of not
being trapped in local optima.

The general idea of the algorithm is quite easy. The algorithm
starts with an initial solution 𝐬. This solution will be compared in each
iteration of the algorithm with a new generated solution 𝐬′. It can be
generated randomly or using some specific rule in a neighbourhood
𝑉 (𝐬) of the current solution 𝑠.

A realization of SA is effected by choosing the neighbourhood
function, since its definition has a great impact on the performance of
the algorithm. In this paper, the next specific neighbourhood function
is proposed.

𝑉 (𝐬) ∶=
{

𝐬′ ∈ [𝑎, 𝑏]𝐾−1 /𝑠′𝑘 = 𝑠𝑘; for all 𝑘 ≠ 𝑘′ with 𝑘′ ∈ {1,… , 𝐾 − 1}
}

(19)

Another issue which must be addressed is the choice of the genera-
tion probability function which determines the probability of generat-
ing a new solution. In this case, a uniform distribution has been used
and the probabilities are proportional to the size of the neighbourhood
𝑉 (𝐬). Thus, the generation of a new solution 𝐬′ ∈ 𝑉 (𝐬) will be carried
out in three steps:

𝐬′ = 𝐬
Choose a random number 𝑘′ ∈ {1,… , 𝐾 − 1} (20)
𝑠′𝑘′ = 𝑎 + 𝑅𝑎𝑛𝑑() ⋅ (𝑏 − 𝑎).

Fig. 4 shows the neighbourhoods 𝑉 (𝐬) considered by SA and its
variant SA∗ when 𝐾 = 3. The essential advantage of SA∗ is that allows
wide movements, being able to avoid local minima. For this reason,
it is an excellent candidate as an algorithm to exploration stage in
hybridization.

The probability of accepting the new generated solution 𝐬′ is defined
by the next rule.

P(Accept 𝐬′ as next solution)

=

{

exp[−(𝐽 (𝐬′) − 𝐽 (𝐬))∕𝑛] If 𝐽 (𝐬′) − 𝐽 (𝐬) > 0
1 If 𝐽 (𝐬′) − 𝐽 (𝐬) ≤ 0

Following this scheme, best solutions are always accepted, although
there is a fraction of non-improving solutions which are accepted. It is
made with the purpose of avoiding local optima and can be compared
with the mutation process in a genetic algorithm. The fraction of worst
solutions which are accepted depends on a temperature parameter 𝑛

Fig. 4. Illustration of neighbourhoods for SA and SA∗ and 𝐾 = 3.

which is particular of SA algorithm. The use of the neighbourhood func-
tion (19) and the probability function (20) in the basic SA originates
the so-called SA∗ and its pseudocode is shown in Table 3.

5. Determination of the optimal number of TODs

The bilevel TOD determination problem assumes that the number
of TOD intervals 𝐾 is known. This section looks at four methods for
determining the optimal number of TOD intervals. The first two are
based on the widely used Bayesian Information Criterion and employ all
the registered time series, while the third algorithm is based on Vasko
and Toivonen (2002) and the fourth is proposed in this work and it is
problem-oriented approach. Those last two methods operate with the
average observed values.

5.1. Bayesian Information Criterion (BIC)

The BIC is a likelihood criterion for model comparison that penalizes
models with additional parameters. The BIC is defined mathematically
as:

𝐵𝐼𝐶(𝐾) = −2 log𝐿𝐾 (𝐪1,… ,𝐪𝑛) + 𝜆𝑚𝐾 log(𝑛) (21)

where {𝐪1,… ,𝐪𝑛} is the complete data to be modelled. The first term
represents the maximum log likelihood of the data under the model
with 𝑚𝐾 parameters. The second term 𝜆𝑚𝐾 log(𝑛) is responsible for pe-
nalizing the candidate models according to their number of parameters
𝑚𝐾 and 𝜆 is the penalty weight (𝜆 = 1 according to the BIC theory).
The optimum model corresponds to the one for which the value of BIC,
given by Eq. (21) is minimum. If we assume that the observations in a
TOD are drawn from a full-covariance Gaussians {𝐪𝑗}𝑗∈𝐶𝑘

∼ 𝑁(𝜇𝑘, 𝛴𝑘),
the BIC for the 𝐾−TODs solution is defined

𝐵𝐼𝐶(𝐾) =
𝐾
∑

𝑘=1
𝑛𝑘 log(||𝛴𝑘

|

|

) +𝐾
(

𝑑 +
𝑑(𝑑 + 1)

2

)

log(𝑛) (22)

in which 𝑛𝑘 denotes the number of articles in cluster 𝐶𝑘 and 𝑑 is the
dimension of the flow vector space.

A two-stage process presented by Chiu et al. (2001) for determining
the optimum number of clusters. The procedure is described below,
following the work of Xia and Chen (2007).

The two-stage process first examines the BIC for all potential clus-
tering solutions. The goal is to find the smallest number of clusters
that have the lowest BIC, because the BIC decreases first and then
increases as the number of clusters increases, the BIC for each 𝐾
(clustering solution) is calculated. Beginning from 𝐾 = 1, the first
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Table 3
SA∗ algorithm for the bilevel TOD determination problem.
Step 1. (Initialization). Initialize the algorithm’s parameters: number of iterations (𝑁), initial solution 𝐬, temperature cooling schedule {𝑛}, and initial temperature

 = 0. Select a repetition schedule, {𝑀𝑛}, that defines the number of iterations executed at each temperature. Set the temperature change counter 𝑛 = 0 and
repetition counter 𝑚=0.

Step 2. Generate a new solution 𝑠′ ∈ 𝑉 (𝐬) through Eq. (20)
Step 3. Compute 𝛥 = 𝐽 (𝐬′) − 𝐽 (𝐬). If 𝛥 ≤ 0 then 𝐬 = 𝐬′, 𝐽 ∗ = 𝐽 (𝐬′) and 𝐬∗ = 𝐬′. Otherwise 𝛥 > 0, set 𝐬 = 𝐬′ with probability exp[−𝛥∕𝑛]. Take 𝑚 = 𝑚 + 1.
Step 4. If 𝑚 = 𝑀𝑛 then 𝑛 = 𝑛 + 1 and 𝑚 = 0.
Step 5. (Stopping criterion). If the current number of iterations is 𝑡 = 𝑁 , Stop; otherwise let 𝑡 = 𝑡 + 1 and go to Step 1.

Output: The best TOD intervals of [𝑎, 𝑏] defined by 𝐬∗ and its objective value 𝐽 ∗.

𝐾 = 𝐾 value that satisfies 𝐵𝐼𝐶(𝐾) < 𝐵𝐼𝐶(𝐾 + 1) is chosen as a coarse
estimate of the number of clusters. In the second stage, the ratio of
changes in dispersion measurement is used to determine the optimum
number of clusters based on the coarse estimate obtained in the first
stage. The ratio of changes in dispersion measurement is defined as
𝑅(𝐾) = 𝑠𝐾−1∕𝑠𝐾 for 𝐾 = 2,… , �̂�, in which 𝑠𝐾−1 denotes the change
in dispersion measurement if 𝐾 clusters are merged into 𝐾 −1 clusters.

The parameter 𝑠𝐾 can be computed as 𝑠𝐾 = 𝑙𝐾 − 𝑙𝐾+1, in which
𝑙𝐾 =

∑𝐾
𝑘=1 𝑛𝑘 log(||𝛴𝑘

|

|

). This second stage is based on the understanding
that a significant increase in 𝑅(𝐾) will be observed when two clusters
that should not be merged are merged. The 𝑅(𝐾) value for each 𝐾(𝐾 =
2,… , �̂�) is calculated, and the two largest 𝑅(𝐾) values are identified
as 𝐾 = 𝐾1 (the largest) and 𝐾 = 𝐾2 (the second largest). Xia and Chen
(2007) uses an empirical threshold value of 𝑅(𝐾1)∕𝑅(𝐾2) = 1.15; that is,
if 𝑅(𝐾1)∕𝑅(𝐾2) > 1.15, 𝐾 is set to 𝐾1; otherwise, 𝐾 is set to max(𝐾1, 𝐾2).

5.2. 𝛥BIC

In segmenting an audio stream the BIC has widely used (Chen and
Gopalakrishnan, 1998; Wang et al., 2008). It can be shown
(Chen and Gopalakrishnan, 1998) that if the expression

𝛥𝐵𝐼𝐶(𝐬𝑘(𝐾)) = (𝑛𝑘 + 𝑛𝑘+1) log(|𝛴𝑘 ∪ 𝛴𝑘+1|) − 𝑛𝑘 log(|𝛴𝑘|)

−𝑛𝑘+1 log(|𝛴𝑘+1|)

−
(

𝑑 +
𝑑(𝑑 + 1)

2

)

log(𝑛𝑘 + 𝑛𝑘+1) with 𝑘 = 1,… , 𝐾 − 1. (23)

is positive, the time 𝐬𝑘 is a good candidate for a segment boundary.
Note that 𝛴𝑘 ∪ 𝛴𝑘+1 represents the variance–covariance matrix of the
observations {𝐪𝑗}𝑗∈𝐶𝑘(𝐬)∪𝐶𝑘+1(𝐬). It is possible to apply this criterion to
the 𝐾−solution to determine if its border points 𝐬𝑘 are significant.
The criterion used is to choose the solution with significant points of
maximum cardinality 𝐾.

5.3. A modified PETE algorithm

Vasko and Toivonen (2002) present the so-called PETE algorithm to
determine the number of time segments. This method generates a 𝑝−
value for each increase in the number of segments. In this paper a mod-
ification of this method is adapted in order to reduce its computational
cost. Let 𝑒(𝐬𝐾 ) be the segmentation error of the solution 𝐬𝐾 . By using a
Monte Carlo simulation the random error of adding a new segment in
the partition is calculated as follows: A random segment 𝑘 ∈ {1,… , 𝐾}
is selected, then the observations 𝐶𝑘(𝐬𝐾 ) are randomly ordered and the
segment is randomly partitioned. The new error denoted by 𝑒𝑗 (𝐬𝐾 ) is
calculated. Drawing from the random sample {𝑒𝑗 (𝐬𝐾 )} the 𝑝−quantile
𝑒𝑝 of the random error is calculated, if it satisfies

𝑒(𝐬𝐾+1) < 𝑒𝑝 (24)

then the 𝐾 + 1-solution is selected and the procedure is repeated.

5.4. An approach oriented to the TOD determination problem

The desired objective is a suitable model of the dynamic mecha-
nisms which operate in the traffic network. In this context the selection
of a high number of TODs has as a consequence a greater analytic

Fig. 5. Nguyen–Dupuis network.

cost but gives more satisfactory results. Henceforth a trade-off between
computational cost and accuracy must be achieved. To that end a
natural method is to require a number of clusters 𝐾 in which the mean
relative error 𝑒 in describing the time series as a set of stationary flows
does not exceed a value 𝑒 given by the planner, that is

𝐾∗ = Arg minimize
𝐾

{

𝐾 ∶ 𝑒(𝐬𝐾 ) < 𝑒
}

. (25)

This value 𝑒 has a physical interpretation and thus allows a priori
determination.

6. Computational experiments

The objectives of these computational tests are:

1. To analyse the performance of the proposed MAs applied to
the TOD determination problem. This goal has been analysed in
Experiment 1.

2. To evaluate the proposed methodology in a real case. The pur-
pose is to compare a sequential methodology in which, in a first
stage the number of TODs is determined and later the traffic
signal control for each TOD is optimized, with the simultaneous
methodology. The numerical results are collected in Experiment
2.

3. The objective in Experiment 3 is to analyse the above four
indexes to determine the optimal number of TODs over real data.

Experiment 1: A comparison of the performance of different MAs

The first data set was generated through a simulation experiment,
using the dynamic traffic load model developed in Sánchez-Rico et al.
(2014); the Nguyen–Dupuis network shown in Fig. 5 has been used.

The results are shown in Fig. 6. These results consist of 4 daily traffic
patterns, considering traffic flow or density over a set of three sensors
located in the network. Eight synthetic data sets are considered and
𝐾 = 5 TODs is set.

The combined model given in Section 3.2 has a bilevel structure,
in which the evaluation of the objective function requires solving
𝐾 optimization problems. This has motivated the need for efficient
resolution algorithms. In Experiment 1, the standard PSO, SA, SA∗, GA
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Fig. 6. Synthetic data set based on flows and densities.

Fig. 7. Average performance of the MA in density-based tests.

algorithms and their hybridizations with the NM have been tested on
the problem (7). Note that the works (Park et al., 2004; Lee et al.,
2011) use GA algorithms for solving this problem and the GA can be
considered as the baseline test.

Metaheuristic algorithms depend on a large amount of parameters
and the adjustment of these parameters is one of the main challenges
of their application. The parameters used in GA, SA and SA∗ takes
their values from Matlab functions ga and simulannealbnd. In PSO
algorithm, inertia weight has taken the value 𝑤 = 1∕(2 ∗ 𝑙𝑜𝑔(2)) = 0.721,
and the learning parameters 𝑐1 = 0.5 + 𝑙𝑜𝑔(2) = 1.1913 and 𝑐2 = 𝑐1.
Furthermore, two neighbourhood topologies have been considered, the
gbest swarm in PSO and the lbest swarm in its hybridization, taking
an specific number of particles (neighbour count) 𝑛𝑝 = 3. Finally,
gbest swarm topology has been considered to the crude PSO because it
converges more quickly than lbest topology. Population size in GA and
PSO has been fixed to 40 individuals/particles.

Due to the number of parameters and the endless possibilities to
compare and adjust them, we are focus on the effect of the parameter 𝑛𝑐
in the hybridization proposed in the paper. The selected parameters for
the hybridization are 𝑛𝑐 ∈ {1, 5} and 𝑛𝑟 = 100. The objective of this test
is not to find the best algorithm, since it depends on the kind of traffic
network, the number of link counts, the TODs number and the settings
chosen in the algorithms. In this paper, the main objective is to test if
the proposed MAs improve the performance of baseline algorithms.

As the algorithms have a probabilistic nature each instance was run
10 times over the eight test problems. In order to visualize the results
obtained, the average change in the 10 runs and for all the test problems
is considered, and in addition the value of the objective function has
been standardized as

𝐙∗ =
𝐽 (𝐬) − 𝐽MIN

𝐽MAX
(26)
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Fig. 8. Average performance of the MA in flow-based tests.

Fig. 9. A four-leg intersection.

where 𝐽MAX and 𝐽MIN are respectively the maximum and minimum found
for all the algorithms in a given problem. This standardization means
that the 8 test problems are equally important.

The evolution of the algorithms is shown in Figs. 7 and 8, while
Table 4 shows the results of each algorithm when 500 and 1000
evaluations are computed. It is observed that the hybridization speeds
up the original algorithm. In addition it can be seen that the 𝑆𝐴∗+𝑁𝑀
and 𝐺𝐴+𝑁𝑀 algorithms with 𝑛𝑐 = 1 outperforms the other algorithms.

In the previous experiment, it has been shown that the hybridiza-
tion of metaheuristic algorithms with NM method allow to accelerate
the convergence of the base method. Besides, it is observed that all
methods converge to the same solution in each of the ten executions
completed (if the mean value in 10 tests is 𝐙∗ → 0, henceforth, each
one individually also converges to zero). The acceleration in the base
procedure is due to the NM algorithm. In this article, it is intended to
answer the question about if it would be better to apply exclusively NM
algorithm. In the next test, the previous 8 problems have been solved
100 times, departing from different random points in each execution.
A success in the experiment is considered if the reached value satisfies
𝐙∗ < 0.001. Table 5 shows the mean value obtained 𝐙∗ and the success
percentage. The results indicate that in 800 runs, NM has converged

Table 4
Performance of the MAs in flow-based and density-based tests.

Algorithm Flow-based tests average Density-based tests average

500 eval 1000 eval 500 eval 1000 eval

SPSO 1201E−01 5020E−02 1078E−01 4340E−02
SPSO + NM (nc = 1) 9176E−04 1764E−08 2220E−02 1636E−04
SPSO + NM (nc = 5) 8870E−02 3700E−03 9420E−02 8800E−03

SA 2316E−01 2150E−01 2317E−01 2121E−01
SA + NM (nc = 1) 1978E−01 5310E−02 1321E−01 5600E−03
SA + NM (nc = 5) 6610E−02 2170E−02 4770E−02 2640E−02

SA* 1070E−02 1800E−03 1190E−02 2600E−03
SA* + NM (nc = 1) 2033E−04 2790E−05 3530E−02 4766E−05
SA* + NM (nc = 5) 9064E−04 8471E−04 2300E−03 1200E−03

GA 3900E−02 2000E−03 3720E−02 2300E−03
GA + NM (nc = 1) 7145E−05 3945E−05 1993E−04 1840E−04
GA + NM (nc = 5) 3750E−02 4867E−04 2820E−02 5541E−04

Table 5
Results obtained with the Nelder Mead algorithm.

Problem Flows-based tests Densities-based tests

Average Success Average Success
𝑍∗ rate (%) 𝑍∗ rate (%)

𝑃 1 0.425 7.0 0.694 9.0
𝑃 2 0.574 9.0 0.502 2.0
𝑃 3 0.397 11.0 0.600 2.0
𝑃 4 0.750 7.0 0.507 2.0

into a local minima in 751 times. It demonstrates that MA algorithms
are more robust and allow to alleviate the shortcomings of NM method.

Experiment 2: A real case study

This example is taken from Yin (2008) and consists of a real-world
intersection between 164th Street SW and Alderwood Mall Parkway
in the City of Lynwood, Washington. The flows were recorded in
March–April 2005, 36 observed flow patterns were retrieved for the
PM peaks (4:30–6:30 p.m.) between Tuesday and Thursday. Based
on these data two test problems were designed, in the first the 36
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Fig. 10. Test 2 solution through simultaneous methodology.

Fig. 11. Real data set. Average daily occupancy and speed profiles.

patterns are considered as consecutive over a day (named Test 1). The
second (named Test 2) is obtained by modifying the original data to
introduce a dependence on the current time of day, in particular the
flows of the 𝑗th-period have been multiplied by the weighting factor
𝑓𝑗 = 0.85 + 0.65 exp(−0.15 ∗ (𝑗 − 12)2) + 0.65 exp(−0.15 ∗ (𝑗 − 32)2) with
𝑗 = 1,… , 36.

The intersection is shown in Fig. 9 and the saturation flow rates 𝑠𝑖
for groups 𝑖 = 1,… , 8 are 1900, 3800, 3800, 1900, 1900, 3800, 3800, 1900.
A specific lead–lag phasing sequence is used in the example and the
resulting constraints for the traffic-signal timing problem are:

𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 + 𝐿 = 𝙲 (27)

𝑔1 = 𝑔6, 𝑔2 = 𝑔5, 𝑔3 = 𝑔8, 𝑔4 = 𝑔7 (28)
𝑔1 ≥ 𝑔min, 𝑖 = 1, 2,… , 8 (29)

𝙲min ≤ 𝙲 ≤ 𝙲max (30)

where 𝐿 is the total lost time per cycle, 14 s used in the example; 𝑔min is
the minimum green time, 8 s used, and 𝙲min and 𝙲max are the minimum
and maximum cycle length, specified as 50 s and 140 s, respectively.
When using Eq. (14) to calculate the total delay, the duration of each
time period 𝑗 = 1,… , 36 is set as 𝑇𝑗 = 0.25ℎ.

Over the two test problems a sequential and a simultaneous method-
ology is applied. The sequential methodology is the one followed in
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Fig. 12. Solution of the TOD problem using the BIC rule.

Fig. 13. Solution of the TOD problems using the 𝛥BIC rule.
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Fig. 14. PETE algorithm behaviour.

practice, first the TODs are determined and later the optimal traffic
signal timing is calculated for each TOD. The simultaneous method-
ology is the one described in this paper and it directly minimizes
total time in the intersection. Both methods require an algorithm to
solve the problems (15). He and Hou (2012) use ant colony and a
genetic algorithm to solve this problem. These algorithms present two
disadvantages, the first is its high computational cost due to the large
number of solutions and the second is, because the SA algorithm is used
for the bilevel model, conflicts may appear between the accuracy of res-
olution of the lower level problem and the objective function value as
shown in García and Marín (2002). This numerical experiment employs
an interior-point algorithm (implemented in the MATLAB function
fmincon). In our numerical tests, there is evidence that this option
is faster and more efficient than the GA algorithm implemented in the
MATLAB function ga. The results obtained are shown in Table 6. The
first column shows the number of TODs considered, the second column
the methodology used and the third the time required to obtain the best
solution. The fourth column shows 𝐽Delay =

∑

𝑘 𝐽𝑘(𝐬) where 𝐽𝑘(𝐬) is calcu-
lated by using Eq. (14) and the fifth shows the value 𝐽TOD where 𝐽𝑘(𝐬)
is calculated by Eq. (7). The results obtained agree with expectation.
Each methodology achieves better results for the objective function it is
trying to minimize. The simultaneous methodology minimizes the total
waiting time while the sequential gives TODs with lower variability.
It is seen, however, that the sequential approach is very efficient and
is capable of obtaining similar solutions to the simultaneous method.
Both methodologies allow the systems to be recalibrated automatically.
One conclusion is this, considering that traffic regulation in different
time intervals is advantageous. The reduction in the waiting time by
considering 𝐾 = 4 instead 𝐾 = 2 is about 3.1%. To go into this question
more deeply, Fig. 10 shows the solutions obtained by employing the
simultaneous methodology in Test 2. It depicts the TODs obtained for
several values of 𝐾 and how the optimal traffic signal timing is strongly

Table 6
Comparison between the sequential and simultaneous methodologies.

Test 1

K Approach CPU time (s) 𝐽Delay (𝑠) 𝐽TOD

2 Sequential 0.1 2 051 660.5 6036.3
Simultaneous 212.1 2 021 479.3 6123.2

3 Sequential 1.7 1 992 496.1 5500.9
Simultaneous 170.7 1 989 842.6 5509.4

4 Sequential 1.3 1 979 965.9 5242.8
Simultaneous 169.0 1 977 440.8 5451.0

Test 2

K Approach CPU time (s) 𝐽Delay (𝑠) 𝐽TOD

2 Sequential 0.2 2 750 230.8 10 340.7
Simultaneous 145.9 2 737 846.5 10 759.0

3 Sequential 1.4 2 708 806.7 9540.2
Simultaneous 152.4 2 703 892.0 10 038.9

4 Sequential 1.2 2 655 422.0 7326.6
Simultaneous 192.9 2 653 730.4 7340.1

dependent on the number of TODs. It shows that the cycle amplitude
C is dependent on the level of congestion of the TOD.

Experiment 3: Determination of the optimal number of TODs

In this section the algorithms described in Section 5 to identify
the optimal number of TODs are tested. In order to assess the meth-
ods, real traffic data collected by the California Freeway Performance
Measurement System (PeMS) is used. The PeMS collects the traffic
data in real time from over 25,000 individual detectors across all
major metropolitan areas of the State of California. In order to test
the methodology proposed in this article, observations over 100 days
in 2013 have been collected from two dual loop detector stations in the
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Fig. 15. OP algorithm behaviour.

Bay Area of California. The data have been previously classified into
different traffic patterns on different days using the methodology given
in García-Ródenas et al. (2017). The traffic profiles based on speed
and occupancy are shown in Fig. 11. The data used are available at
http://bit.ly/1hsTEjO.

For each of the 8 traffic patterns the TODs have been identified
for 𝐾 = 1,… , 20, and by using the BIC, 𝛥BIC, modified PETE and
the oriented-problem (OP) methods, the optimal number of TODs have
been selected. The 𝑝 value employed in the modified PETE method
was 𝑝 = 0.05 and the mean relative error 𝑒 = 0.1 for the OP. The
optimal number of TOD intervals resulting from each algorithm is
shown in Table 7. The observed results indicate that the BIC is the most
parsimonious method since it determines a reduced number of TODs,
the 𝛥BIC method is highly sensitive and establishes a higher number
of TODs. On the other hand it seems that the modified PETE algorithm
finds an acceptable number of TODs. The OP method employs the same
threshold for both types of data (occupancy or speed) but the variability
level is different for each, which means that for the occupancy a high
number of TODs is established but this is not the case for the speed.

To gain additional insight into the results the different procedures
are displayed. The clustering results using the BIC and the 𝛥BIC criteria
are shown in Figs. 12 and 13. The first column is associated with the
occupancy and the second is based on the speed; finally the vertical
lines separate the different TODs according to their algorithm. As can
be observed in the figures the 𝛥BIC criterion produces a non-significant
number of TODs which may not be helpful for traffic control. These
methods tackle the existing variability between days.

Unlike the two previous methods, the modified PETE and the OP
algorithms work with a average traffic profile. Fig. 14 illustrates the
way the modified PETE algorithm works. The first graph corresponds
to pattern 1 (occupancy) and the optimal number of time segments for
this particular case is 12. It is possible to observe in the graph that the
stopping criterion of the algorithm is when the 𝑝− value of the mean
error of adding a new random segment is less than the error obtained
by increasing one TOD in the current solution.

Fig. 15 shows the results obtained from the OP method; the first
graph shows the occupancy-based tests and the second the speed-based
tests. In both graphs the red line represents the required threshold
for the mean relative error value that must not be exceeded when
selecting the number of clusters. This method has resulted in practice in

Table 7
Optimal number of TOD intervals by selection criterion and the problem.

Criterion BIC 𝛥BIC PETE OP

Problem (Based on occupancy)

Pattern 1 5 20 12 13
Pattern 2 3 20 12 18
Pattern 3 2 20 10 9

Problem (Based on speed)

Pattern 1 8 17 10 3
Pattern 2 5 15 8 4
Pattern 3 8 20 12 4
Pattern 4 3 9 12 2
Pattern 5 3 16 16 2

more consistent and comprehensive partitions, for example the optimal
number of partitions for the occupancy problem varies between 10
and 18 while for the speed problem it varies between 2 and 4. The
criterion of fixing a maximum mean relative error is easily interpreted
by planners. This makes the method more easy to apply than the
previous one.

7. Conclusions

In this paper a methodology for automatically updating pre-timed
traffic control systems is set out. For this purpose a bilevel model
has been formulated, which simultaneously includes the problem of
determining the time-of-day breakpoints and the traffic control problem
for each time interval. The proposed model has been solved by the use
of a class of MAs. The effectiveness of the algorithms SA∗+NM and
GA+NM has been demonstrated on a collection of synthetic and real
problems and they outperform GA, SA+NM and SPSO+NM methods.
Furthermore, this feature allows us to apply SA∗+NM or GA+NM
algorithms to bilevel TOD determination problems.

The sequential and the simultaneous methodologies have been il-
lustrated over a real problem. As might be expected the simultaneous
method achieves better results than the sequential but the computa-
tional cost is higher. It can be seen that the sequential methodology,
which is used in practice, achieves satisfactory results.

Finally, the automatic determination of the optimal number of TODs
has been studied by employing the most promising methods, based
on BIC, 𝛥BIC, a modified PETE algorithm and a OP approach. It is
observed numerically that the criteria based on the BIC is conservative
and produce a reduced number of TODs in comparison with the other
methods. The index 𝛥BIC produces a large number of TODs. The
oriented-problem method has an interpretation which allows its easy
application and achieves fair values. The modified PETE method also
achieves solutions in accordance with what is expected.
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