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ABSTRACT13

Water demands are themain random factor that conditions flow variability within drinkingwater14

supply systems. The importance of using high-resolution demands in distribution mains is already15

well-known, but there is little knowledge of how the temporal scale (i.e. sampling frequency) affects16

the ability of a metering or monitoring system to explain network performance. The aim of this17

paper is to analyse the variability (i.e. information) that is lost because of not using a more frequent18

sampling rate to characterize water demands. For such purpose, a novel analytical approach based19

on a conceptualization of the microcomponent-based SIMDEUM model (SIMulation of water20

Demand, an End-Use Model) is presented. This methodology provides the statistical properties of21

water demands over different sampling frequencies. It is here applied to Benthuizen case study to22
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further explore the effect of temporal and spatial scaling laws under realistic conditions. Results23

are of major importance for monitoring design, as they highlight the need for properly combining24

measurements with different levels of resolution. Moreover, they enable to assess the impact of25

the sampling selection on the potential characterization level of monitored demands within urban26

water modelling applications.27

INTRODUCTION28

Drinking water supply systems have traditionally been modelled following a deterministic29

approach, based on assumed average values for input data, such as water demands or pipe roughness.30

Water demand has been identified as a major source of uncertainty among these, as its variability31

affects the reliability of the spatial and temporal distribution of the hydraulic variables resulting from32

the model (Magini et al. 2008). Conventional hydraulic models commonly average water demands33

spatially and temporally. Spatial averaging is usually undertaken by aggregating several water34

users into a single demand node, whereas time averaging consists on smoothing the instantaneous35

variations in demands (Buchberger and Wu 1995). From a temporal point of view, pseudo-steady36

models are typically assumed, i.e. demand multiplier patterns are assigned to the average demand37

of each node (Blokker et al. 2011a). Such spatial and temporal approximations may be sufficient38

for the arteries that transport water to District Metered Areas (DMAs), but the stochastic nature39

of demands becomes especially important when modelling distribution mains that deliver water40

to final users. In these last downstream pipelines, there is high spatial and temporal variability of41

demands, with low auto and cross correlation among individual homes (Filion et al. 2008). The42

pursuit of more realistic hydraulic models has motivated the development of stochastic demand43

models that enable to simulate the spatial and temporal complexity of water demands (Vertommen44

et al. 2012).45

Buchberger and Wu (1995) presented the first stochastic model for residential water demands.46

This approach assumes that Poisson Rectangular Pulses (PRP) can be used to simulate the intensity,47

duration and frequency of water consumption at a household. The model conceives the household48

as a whole, so that PRP parameters and probability functions can be adjusted based on flow49
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measurements at monitored homes (Buchberger and Wells 1996). This method established a basis50

for the analysis, over which several other pulse models have been presented (see Creaco et al. 201751

for a literature review). Years later, an alternative to available household-based methods came52

forward: the so-called SIMDEUM model (Blokker et al. 2009; Blokker et al. 2010; Blokker et al.53

2011b). SIMDEUM is a microcomponent-based model that builds the overall water demand at a54

household by aggregating demand pulses for each inhabitant (i.e. end-user) at a fixture level (e.g.55

tap, shower, washing machine) (Creaco et al. 2017). Rather than relying on flowmeasurements like56

the first type of models, the end-use approach is fed with survey-based parameters. This implies57

dealing with a greater number of input parameters, which are easier to obtain (i.e. surveys instead of58

experimental campaigns). The original SIMDEUMmodel relies onMonte Carlo simulations. Each59

simulation provides one high-resolution water demand pattern. Spatial resolution can be adjusted60

by aggregating pulse demands as required, and a small time scale (1 second) is used (Blokker et al.61

2010). PRP-like and SIMDEUMmodels have proven to give similar results for different spatial and62

temporal scales (Blokker et al. 2009; Creaco et al. 2017). However, as Monte Carlo simulations63

may lead to important computational times at large urban areas or biased results if the number64

of simulations is not sufficient (Blokker et al. 2011a), Díaz and González (2020) have recently65

presented an analytical approach to SIMDEUMmodel that provides statistical characterization (i.e.66

mean and variance) of instantaneous demands, avoiding the need forMonte Carlo simulations. Such67

a tool has proven to be useful in order to assess network spatial scale effects under heterogeneous68

uses conditions, but its potential to evaluate the temporal scale effect has not been explored yet.69

As well as in other research fields (like hydrology, e.g. Rodriguez-Iturbe 1986), the relevance70

of temporal scale effects has already been discussed in water supply systems. Tessendorff (1972)71

suggests adopting different time intervals for peak flow estimation: 15 s for customer’s installation72

lines, 2 min for service lines, 15 min for supply lines and 30 min for water mains. This is due73

to the fact that temporal resolution affects the variability of water demands: considering longer74

time intervals implies losing information about consumption signals, resulting in lower variance75

values (Buchberger and Nadimpalli 2004). For this reason, small time intervals (i.e. high temporal76
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resolution) are required in the terminal branches of a water supply system in order to simulate77

their full variability, whereas longer time intervals can be considered as aggregating upstream78

because lower relative variability is expected. Scaling laws have been presented in the literature79

before as an analytical way of estimating realistic values for water consumption moments (mean,80

variance and covariance) under varying spatial and temporal resolutions. Magini et al. (2008) and81

Vertommen et al. (2012) presented simple scaling laws that provided demand moments according82

to the number of aggregated users (i.e. spatial scaling). Vertommen et al. (2015) explicitly83

incorporate the spatial and temporal correlation into the scaling laws when considering two groups84

with different characteristics. In what regards the temporal effect in the statistical distribution of85

water consumption, Kossieris and Makropoulos (2018) analysed the statistical characteristics of86

stochastic residential demands on a 15-60 minutes temporal scale (standard time resolutions in87

many urban water modelling applications) by systematically analysing demand records. Shortly88

afterwards, Kossieris et al. (2019) presented a strategy based on the Nataf’s joint distribution to89

statistically model water demands in the range 1 min - 1h. Despite these efforts, there are still many90

issues to discuss about spatial and temporal behaviour of urban water demand, in particular related91

to the sampling rate of metering devices and its implications on registered (i.e. apparent) and92

unregistered (i.e. missed) information. Nowadays, monitoring systems in water supply networks93

combine different sampling frequencies, depending on the technology used for measuring in each94

case. On many occasions there is no formal knowledge of the sampling effect in the ability of the95

generated records to explain network behaviour and performance.96

The aim of this paper is to analyse the sampling rate (i.e. temporal scale) effect in the capacity97

of a metering and/or monitoring system to detect network performance. In particular, the analysis98

here presented focuses on water demand monitoring, as demands highly condition flow variability.99

Note that demands are the engine that puts water flow in motion along the network, so they100

determine other network variables, like the pressure regime or water quality. The main question101

that is to be answered in this work is: how much information is lost because of not using a more102

frequent sampling period at a particular metering device or demand monitoring system? When a103
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sampling period is set, only the average consumption over the period is recorded, without any further104

information about the specific demand sequence. This paper intends to characterize the variability105

of what may occur during the sampling interval, i.e. the importance of the non-recorded behaviour.106

For this purpose, the analytical approach to SIMDEUM model presented by Díaz and González107

(2020) is adapted, so that it can assess the statistical properties of water demand over different108

time scales (i.e. sampling rates). Note that the methodology presented in Díaz and González109

(2020) analytically provides mean and variance values of instantaneous demands according to the110

same input parameters than SIMDEUM model, but without the need for Monte Carlo simulations.111

This is possible by assuming that no correlation among end-uses and end-users exists (i.e. they112

are independent among each other), and this assumption will be kept in the methodology here113

presented.114

This novel approach enables to analyse different temporal scales (i.e. sampling frequencies)115

and to explore the effect of the spatial scale law under realistic conditions. Conclusions are relevant116

for monitoring design, as they help to decide the most suitable sampling time for metering devices,117

which determines the monitoring potential. Moreover, the presented approach goes one step118

forward on the path towards the systematic consideration of stochastic demand information (rather119

than average demand values) in real systems, narrowing the gap between the traditional super-fine120

scope of stochastic models (1 s - 1 min) and traditional times for water systems analysis (10 min - 1121

hour). This is especially important for monitoring applications which, like state estimation, intend122

to identify the most likely hydraulic state of a system based on all the available data (Kumar et al.123

2008; Díaz et al. 2018). Available data in water distribution systems typically include water demand124

pseudomeasurements (i.e. estimations from historical data) but also readings frommetering devices125

(Díaz et al. 2016b), which can in turn be associated with volumetric measurements every hour (e.g.126

volumetric smart meters at house connections) or high-frequency flow measurements (e.g. flow127

meters at water mains). The present paper contributes to finding a solid scaling law that can be128

relied upon in order to make available sources of information compatible among each other. As129

mentioned before, the analytical approach here presented is inspired on the microcomponent-based130
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SIMDEUM model. This makes it a suitable tool for such an objective, because it is grounded in a131

realistic model but it can be treated analytically, thus minimizing computational time.132

The rest of the paper is organised as follows. First, the methodology to analytically compute133

statistical properties of water demands over different temporal scales is presented. This includes a134

brief explanation of the basics behind the analytical approach for computing mean instantaneous135

demands and instantaneous demand variances presented by Díaz and González (2020), and the136

transition required to assess internal variability over a given period. Then, the method is applied to137

Benthuizen case study (Blokker et al. 2011a) and validatedwith equivalentMonteCarlo simulations.138

Once validated, microcomponent-based analytical results are discussed to assess temporal and139

spatial scale effects. Finally, conclusions are concisely drawn.140

METHODOLOGY141

Analytical approach for instantaneous statistical properties of water demands142

The analytical approach presented by Díaz and González (2020) is based on the original143

SIMDEUM model for residential water demand (Blokker et al. 2010) and it uses the same input144

information in order to assess the same end-uses (bathroom tap, outside tap, water closet -WC-,145

bathtub, shower, dishwasher, washing machine and kitchen tap). Its key assumption is that it146

considers the activation/opening of each end-use, each inhabitant and each household independent147

among each other. This implies the absence of covariance terms all along and guarantees that148

mean and variance values can be progressively added up to consider spatial aggregation on demand149

variability (Buchberger and Wu 1995; Magini et al. 2008). External factors that cause correlation150

among population groups can be considered in the model parametrization, by varying parameters151

in distribution functions and events’ probabilities. This limits the random process to the individual152

behaviour of each end-user, who operates individually under the assumed external factors.153

Mean instantaneous demand154

Considering that water demands are random variables, the mean instantaneous demand at a155

specific time t and level of spatial aggregation x (µt,x) can be computed by adding mean values156

6 Díaz et al., December 15, 2021



of water consumption for all inhabitants j (µhabjt
) and kitchen tap end-uses k (µktapkt ) within a157

household i (µhouit ):158

µt,x =

nhou∑
i=1

µhouit =

nhou∑
i=1

©­«
nhabi∑
j=1

µhabjt
+

4∑
k=1

µktapkt
ª®¬ . (1)159

Note that this equation treats the kitchen tap separately because, as assumed in Blokker et al. (2010),160

this end-use is typically associated with common activities for all household inhabitants (there are161

four k values to account for four activities: consumption, doing dishes, washing hands and others).162

The mean value for each inhabitant (µhabjt
) must consider the individually-activated end-uses u163

(rest of taps, WC, etc.), each of which is associated with a mean demand µut :164

µhabjt
=

nuse∑
u=1

µut . (2)165

It can be derived that µut can be computed as:166

µut = µNu · Pou(t) · µiu, (3)167

where µNu represents the mean frequency of use for that particular end-use (i.e. mean number of168

openings per day), Pou(t) is the unitary probability of one opening of the end-use u being on/open169

at time t and µiu is the mean intensity of the end-use when it is open. Pou(t) can be computed170

according to the typical duration Cumulative Distribution Function (CDF) for each end-use and171

each inhabitant’s CDF along a day (i.e. daily pattern). In this work, each inhabitant is considered to172

behave according to one out of the five different types of users (people who work from home, people173

who do not work, senior people, teenagers and children) identified by Blokker et al. (2010) at The174

Netherlands. The reader may refer to Díaz and González (2020) for details. Note that computing175

the mean instantaneous demand value with Eqs. (1)-(3) implies that the population that uses water176

at a specific location within the network (i.e. level of spatial aggregation x) and at a specific time t177

behaves according to these five daily patterns, which are conditioned by identical external factors.178
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Instantaneous demand variance179

Under independence hypotheses, demand variance at a specific time and level of spatial aggre-180

gation (σ2
t,x) can be computed by adding demand variances for all inhabitants:181

σ2
t,x =

nhou∑
i=1

σ2
houit
=

nhou∑
i=1

©­«
nhabi∑
j=1

σ2
habjt
+

4∑
k=1

σ2
ktapkt

ª®¬ . (4)182

Eq. (4) is analogous to Eq. (1). Similarly to Eq. (2), it can be stated that:183

σ2
habjt
=

nuse∑
u=1

σ2
ut . (5)184

The variance of each end-use (σ2
ut ) can in turn be computed as:185

σ2
ut = µNu · Pou(t) ·

(
σ2

iu + (µiu − µut )2
)
+ (1 − µNu · Pou(t)) · µ2

ut, (6)186

where σ2
iu
is the variance of the intensity of the end-use u when it is open. Note that Eq. (6) presents187

two terms: the left-hand side refers to the possibility of the end-use being on and the right-hand188

side refers to the possibility of the end-use being off. In Eq. (3) the off-term disappeared because189

the intensity of the end-use when it is closed is assumed to be zero (i.e. water-tight closure). In190

Eq. (6) it remains because even though the variance when the end-use is closed is also taken as zero,191

the second moment of a variable with respect to a position displaced from the origin must consider192

the distance between such points (Haan 1977). This explains why µut is involved in Eq. (6).193

From instantaneous variability to internal variability over a time period194

Previous findings refer to instantaneous properties of water consumption. In this paper, a195

methodology for computing the statistical properties of microcomponent-based stochastic water196

demand over a specific time interval is presented. Fig. 1 helps to better understand the concept197

of internal variability and its connection to readings from metering devices and instantaneous198

properties. The first graph within this figure shows the water demand series that may take place one199
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particular day (i.e. realization 1) at time t over a specific time period ∆t and a spatial aggregation200

level x. In that particular scenario, a flow meter with a ∆t sampling rate would register the201

accumulated value of water flow over the time interval, which can be understood as an average202

value m1t,∆t,x . Due to the stochastic nature of water demands, the same reading at a different day203

is very likely to be different (realization 2 with m2t,∆t,x, . . . , n with mnt,∆t,x ), so the mean (µmt,∆t,x )204

and the variance (σ2
mt,∆t,x

) of the recorded readings can be computed. These properties can be205

understood as “apparent” or registered statistical properties, i.e. properties that can be computed206

based on available records. However, the internal variability within the sampling rate at each207

realization is not recorded by the metering device whatsoever. There is an internal oscillation208

over the time period for each realization r , which can be expressed as zrt,∆t,x ;∀r = 1, . . . , n. This209

“missed” variance (σ2
zt,∆t,x ) would help to assess the effect of the sampling rate selection on water210

demand characterization.211

Three statistical properties are computed for water demand at each time t for different ∆t at a212

particular level of spatial aggregation x along this paper:213

• The apparent average, which is the mean of the average water demands over the ∆t time214

period (µmt,∆t,x ). Therefore, it is comparable to the average of registered readings from215

metering devices with the same ∆t sampling rate. It can be computed as:216

µmt,∆t,x =
m1t,∆t,x + m2t,∆t,x + · · · + mnt,∆t,x

n
(7)217

As such mean is considering all possible solutions for water demand over the period, it must218

be equal to the mean instantaneous demand (Eqs. 1-3) if the mean instantaneous demand219

keeps constant along the time interval, i.e. µmt,∆t,x = µt,x .220

• The missed variance, which is the variance of the internal deviations within the time period221

(σ2
zt,∆t,x ). This value cannot be obtained from readings from metering devices, but it could222

theoretically be computed as the mean of the internal variability of water demands within223
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∆t:224

σ2
zt,∆t,x =

s2
1t,∆t,x + s2

2t,∆t,x + · · · + s2
nt,∆t,x

n
, (8)225

where s2
rt,∆t,x can be computed over the interval for each realization r by considering the226

distribution function of the noise over τ ∈ [0,∆t], i.e. f (zrt,∆t,x (τ)):227

s2
rt,∆t,x =

∫
∆t

(
zrt,∆t,x (τ) − E[zrt,∆t,x (τ)]

)2 · f (zrt,∆t,x (τ)) · dτ;∀r = 1, . . . , n (9)228

As zrt,∆t,x (τ) deviations are defined as noise:229

E[zrt,∆t,x (τ)] =
∫
∆t

zrt,∆t,x (τ) · f (zrt,∆t,x (τ)) · dτ = 0;∀r = 1, . . . , n (10)230

As the time interval decreases, the variability during the interval will tend to zero. As ∆t231

increases, missed variance will become closer to the instantaneous demand variance, i.e. it232

will consider a broader time period and therefore it will become closer to the instantaneous233

value. This will be demonstrated and discussed later over results.234

• The apparent variance, which is the variance of the average water demands over the ∆t235

period (σ2
mt,∆t,x

). Therefore, it is comparable to the variance of the readings from a metering236

device with a ∆t sampling frequency. It can be computed based on the instantaneous237

demand variance (Eqs. 4-6) and the missed variance (Eq. 8). Note that any water demand238

record at a time t and spatial level of aggregation x on a r day (i.e. realization r) can be239

computed as:240

Qrt,x = mrt,∆t,x + zrt,∆t,x (11)241

Therefore, its variance should be computed as:242

σ2
Qrt,x
= σ2

mrt,∆t,x
+ σ2

zrt,∆t,x
+ 2 · Cov(mrt,∆t,x, zrt,∆t,x ); (12)243

As internal deviations zrt,∆t,x are by definition associated with an expected value equal to zero244
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(Eq. 10) and mrt,∆t,x is constant for a specific recording period, Eq. (12) can be simplified as:245

σ2
Qrt,x
= σ2

mrt,∆t,x
+ σ2

zrt,∆t,x
; (13)246

By averaging this expression over all possible realizations within an homogeneous time-247

period:248

σ2
t,x = σ

2
mt,∆t,x

+ σ2
zt,∆t,x (14)249

And thus the apparent variance can be computed as the difference between the instantaneous250

demand variance (σ2
t,x) and the missed variance (σ2

zt,∆t,x ):251

σ2
mt,∆t,x

= σ2
t,x − σ2

zt,∆t,x (15)252

Analytical approach for water demands statistical properties over a time interval253

In order to simplify the formulation that is to be derived to statistically characterize water254

demand variability over a time period, steady conditions are here assumed around time t. This is255

valid when small temporal scales are considered, which is reasonable given that sampling rates256

(i.e. temporal scales for metering devices) in water supply systems are traditionally below the257

hour. If this analysis had to be extrapolated to greater time intervals, seasonality would have to be258

considered and non-homogeneous behaviours should be taken into account.259

Apparent average over a time interval260

Eqs. (1)-(2) can be adapted in order to provide the apparent average of water demands (µmt,∆t,x )261

for a particular time t, time interval ∆t and spatial aggregation level x:262

µmt,∆t,x =

nhou∑
i=1

©­«
nhabi∑
j=1

nuse∑
u=1

µmut,∆t
+

4∑
k=1

µmktapkt,∆t

ª®¬ . (16)263

It must be highlighted that µmt,∆t,x is here computed by aggregating individual µmut,∆t
for each264

end-use u, including the bathroom tap, outside tap, WC, bathtub, shower, dishwasher and washing265
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machine. Like before, the kitchen tap (µmktapkt,∆t
) is considered separately in Eq. (16), but it can be266

calculated like any other tap, and hence it can be considered as an additional ordinary use µmut,∆t
.267

Computing the apparent average of water demands for an end-use over a time interval requires268

considering all the possible pulse scenarios that may take place over ∆t. This implies having to269

evaluate the probabilities of having a different number of pulses over the selected time interval.270

The procedure adopted to compute such probabilities is:271

1. Assuming that each pulse arrives according to a PRP process (Buchberger and Wu 1995),272

compute the probability of p pulses taking place for a particular end-use u over one day273

(PRPu):274

PRPup+1 =
µ

p
Nu
· e−µNu

p!
; for p = 0, 1, . . . , pmax (17)275

In this work, pmax = 6 · ceil(µNu ) because this guarantees that
∑pmax

p=0 PRPup+1 is equal to 1276

with a 10−4 tolerance. Note that ceil(µNu ) is the ceiling function, i.e. it rounds up the number277

of openings per day to the nearest integer number. Table 1 shows all input parameters for278

different end-uses in the Netherlands to highlight the variability of their frequency of use.279

2. Evaluate the probability of pulses falling within ∆t. This requires making multiple combi-280

nations that consider that all, some or none of the openings per-day are taking place within281

the interval. The probability of one single pulse of end-use u falling in the interval (PSut,∆t ,282

where S stands for single) can be computed as:283

PSut,∆t = f j(t) · (∆t + µdu ), (18)284

where f j(t) represents the slope of the daily pattern CDF for inhabitant j at time t and µdu285

is the average duration for the particular end-use. As in Blokker et al. (2010), five different286

types of inhabitant (people who work from home, people who do not work, senior people,287

teenagers and children) are here assumed. Eq (18) uses ∆t + µdu in order to consider all288

the pulses that partly fall in the interval (i.e. they have an initial time of up to µdu before ∆t289

starts). This guarantees that when the time interval tends to zero, the probability corresponds290
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to the instantaneous value. Note that taps are typically taken to follow a lognormal CDF for291

duration, and this complicates probability calculations in Díaz and González (2020). The292

reason why PSut,∆t keeps simple even for taps is that f j(t) values are assumed to be constant293

along the day and equal to the slope of the CDF at that time (i.e. steady state assumption).294

Once PSut,∆t is obtained, it is necessary to make the convenient combinations. These295

combinations are organized within a matrix Put,∆t of dimensions (pmax + 1) × (pmax + 1).296

Rows p represent the possible number of openings per day (from 0 to pmax) and columns c297

the number of openings that may fall within the time interval (from 0 to p). Such a lower298

triangular matrix can be built as:299

Put,∆tp+1,c+1
=

p!
c! (p − c)! · PSc

ut,∆t ·
(
1 − PSut,∆t

) p−c ; for p = 0, 1, . . . , pmax; c = 0, 1, . . . , p

(19)300

Therefore, the sum of each row within Put,∆t is equal to 1 according to the previously defined301

tolerance. Fig. 2 shows the matrix construction process for a particular end-use u.302

3. Compute the joint probability of the pulse for that end-use (PPRPut,∆t ) as:303

PPRPut,∆tp+1,c+1
= Put,∆tp+1,c+1

· PRPup+1; for p = 0, 1, . . . , pmax; c = 0, 1, . . . , pmax (20)304

This implies that
∑pmax

p=0
∑pmax

c=0 PPRPut,∆t = 1.305

The sum of the terms in each column of PPRPut,∆t represents the probability of finding c pulses306

for that end-use in the interval, with c = 0, 1, . . . , pmax . Therefore, the apparent average for end-use307

u can be computed as:308

µmut,∆t
=

pmax∑
c=0

©­«
pmax∑
p=0

PPRPut,∆tp+1,c+1

ª®¬ · µut,∆tc

 (21)309

Note that the probability is here multiplied by the mean intensity over the interval considering c310

pulses within the interval (µut,∆tc ). Mean intensity can be computed by multiplying the c number311
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of pulses within the interval by the intensity of the end-use when it is on (µiu ) by the mean duration312

of the pulse (µdu ), over the possible initial times so that the pulse falls in the interval (∆t + µdu ):313

µut,∆tc = c ·
µiu · µdu

∆t + µdu
; for c = 0, 1, . . . , pmax (22)314

Missed variance over a time interval315

As end-uses are considered independent all along this paper, Eqs. (4)-(5) can be converted to316

provide the missed variance when considering a time interval ∆t (σ2
zt,∆t,x ) by aggregating the missed317

variance for each end-use u (σ2
zut,∆t

):318

σ2
zt,∆t,x =

nhou∑
i=1

©­«
nhabi∑
j=1

nuse∑
u=1

σ2
zut,∆t
+

4∑
k=1

σ2
zktapkt,∆t

ª®¬ . (23)319

Analogously to Eq. (21), the missed variance for each end-use u has to be computed considering320

the probabilities of a different number of pulses falling within ∆t and the variance related to such321

pulses:322

σ2
zut,∆t
=

pmax∑
c=0

©­«
pmax∑
p=0

PPRPut,∆tp+1,c+1

ª®¬ · σ2
ut,∆tc

 , (24)323

where σ2
ut,∆tc

is the variance of the intensity within the interval considering c pulses within ∆t.324

This variance can be computed in a simplified way by multiplying the variance of one single pulse325

falling within the interval (σ2
ut,∆t1

) by the number of pulses that actually fall in the interval (c):326

σ2
ut,∆tc
= c · σ2

ut,∆t1
; for c = 0, 1, . . . , pmax (25)327

This implies that the method will not be able to properly take into account pulse overlap when328

computing variability. This simplification will provide an underestimation of missed variance329

within the interval, but the application of the method to a case study will prove that this is330

negligible due to the low probability of overlap taking place.331

In order to simplify the equations for the missed variance of one single pulse falling within the332
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interval (σ2
ut,∆t1

), the formulation is here derived for uses that imply a fixed-intensity discharge of333

water over a fixed duration, and then extended to the rest (random intensity and random duration).334

According to Table 1, fixed intensity and duration end-uses are WCs, bathtubs, dishwashers and335

washing machines, whereas taps and showers are more random uses. Please note that dishwashers336

and washing machines discharge water over several cycles within the full duration of the end-use.337

As f j(t) are considered constant over the day for each inhabitant j, they can be simplified as single338

discharge end-uses with a mean number of openings equal to µNu · ncycles.339

If only uses associated with a fixed duration and intensity are considered, it can be stated that340

E[du] = µdu and E[iu] = µiu . Computation of σ2
ut,∆t1

for these end-uses must cover two scenarios:341

1. The expected value of the pulse duration is equal or lower than the time interval (µdu ≤ ∆t).342

At the same time, two possible situations must be assessed:343

• The pulse falls fully within the time interval. The upper-left part in Fig. 3 shows that344

the probability of the pulse falling fully within the time interval (P1 f ull) can easily be345

computed, and so can the associated average (m1 f ull) and variability (s2
1 f ull) values346

for that particular realization.347

• The pulse falls partly within the time interval, with only a (s) within∆t. The bottom-348

left part in Fig. 3 gathers the probability (P1part), average (m1part) and variability349

(s2
1part) of the pulse falling partly within the time interval. Note that the a duration350

has been averaged over its possible values (a ∈ [0, µdu ]).351

A value for σ2
ut,∆t1−1

for this first scenario can be obtained by computing the weighted average352

of the two scenarios within 1.353

2. The expected value of the pulse duration is greater than the time interval (µdu > ∆t).354

Similarly, two possible situations have to be considered:355

• The pulse falls fully within the time interval. The upper-right part in Fig. 3 shows356

that the probability of the pulse falling fully within the time interval (P2 f ull) can be357
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computed, and so can the associated average (m2 f ull) and variability (s2
2 f ull) values358

for that particular case. Note that as the pulse duration is greater than the time359

interval, the average corresponds to the intensity of the end-use and variability is360

null over the interval.361

• The pulse falls partly within the time interval, with only a (s) within∆t. The bottom-362

right part in Fig. 3 gathers the probability (P2part), average (m2part) and variability363

(s2
2part) of the pulse falling partly within the time interval. Note that the a duration364

has been averaged over its possible values (a ∈ [0, µdu ]).365

The weighted average of the variability provides σ2
ut,∆t1−2

under the second scenario.366

According to Fig. 3, the variance of one pulse falling within ∆t (σ2
ut,∆t1

) can be computed as:367

σ2
ut,∆t1
=


∆t−µdu
∆t+µdu

· µ
2
iu

∆t ·
(
µdu −

µ2
du

∆t

)
+

2·µdu
∆t+µdu

· µ
2
iu

∆t ·
(
µdu
2 −

µ2
du

3·∆t

)
if µdu ≤ ∆t

µ2
iu
·∆t

3·(∆t+µdu ) if µdu > ∆t
(26)368

Eq. (26) can be reorganized in order to group the summands as if it was a polynomial on µdu ,369

µ2
du

and µ3
du
. Actually, this equation can also be written in a more general way by substituting370

µdu = E[µdu ], µ2
du
= E[µ2

du
], µ3

du
= E[µ3

du
] and µ2

iu
= E[i2u]:371

σ2
ut,∆t1
=


E[i2u]
∆t+E[du] · E[du] − E[i2u]

∆t·(∆t+E[du]) · E[d
2
u ] +

E[i2u]
3∆t2·(∆t+E[du]) · E[d

3
u ] if E[du] ≤ ∆t

E[i2u]·∆t
3·(∆t+E[du]) if E[du] > ∆t,

(27)372

Note that not only fixed duration and intensity uses but any end-use is now represented in Eq. (27).373

It is only required to introduce the convenient value for E[i2u], E[du], E[d2
u ] and E[d3

u ] according to374

the assumed intensity and duration distributions in Table 1:375

E[i2u] =

µ2

iu
if intensity is fixed

µ2
iu
+ σ2

iu
if intensity follows a uniform CDF

(28)376
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E[du] =


µdu if duration is fixed

eµdnu+
σ2
dnu
2 = µdu if duration follows a lognormal CDF

(29)377

378

E[d2
u ] =


µ2

du
if duration is fixed

e2·µdnu+2·σ2
dnu = µ2

du
+ σ2

du
if duration follows a lognormal CDF

(30)379

380

E[d3
u ] =


µ3

du
if duration is fixed

e3·µdnu+ 9
2 ·σ2

dnu if duration follows a lognormal CDF,
(31)381

where µdnu and σ2
dnu

are the corresponding mean and variance values of the associated normal382

distribution, which can be computed from lognormal input parameters µdu and σ2
du

in Table 1.383

The missed variance over ∆t can therefore be computed with Eqs. (23)-(25) and (27)-(31).384

Apparent variance over a time interval385

The apparent variance (σ2
mt,∆t,x

) can be computed adapting general Eq. (15) to the reality of the386

end-uses u within the spatial aggregation level x:387

σ2
mt,∆t,x

=

nhou∑
i=1


nhabi∑
j=1

nuse∑
u=1

(
σ2

ut − σ
2
zut,∆t

)
+

4∑
k=1

(
σ2

ktapkt
− σ2

zktapkt,∆t

) . (32)388

Note that the instantaneous demand variance for each end-use (σ2
ut or σ

2
ktapkt

) can be computed389

according to Eq. (6), and calculation of the missed variance over ∆t (σ2
zut,∆t

or σ2
zktapkt,∆t

) has just390

been explained.391

CASE STUDY AND TEMPORAL SCALE EFFECT ANALYSIS392

The analytical approach proposed in this paper to compute the statistical properties of water393

demands over a time interval is here applied to Benthuizen case study, which has been presented in394

the literature before by Blokker et al. (2011a). This case study is a test area of approximately 140395

homes and 300 inhabitants (130 occupied households assumed in this work) located at Benthuizen,396

a village in the Netherlands. This is convenient given that SIMDEUM was originally developed397

at the Dutch country (Blokker and Vreeburg 2005), and water use survey-based parameters are398
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well-characterized there. Table 1 gathers overall neighbourhood input parameters for SIMDEUM399

model, which are here used to run the analytical approach (Blokker et al. 2010). Note that only f j(t)400

values (i.e. slope of the daily pattern CDF for each type of end-user) from Blokker et al. (2010)401

need to be additionally incorporated to start the model, as explained in Díaz and González (2020).402

SIMDEUM is nowadays considered a well-fitted model to reality. SIMDEUMmodel and input403

parameters for Benthuizen were already validated for this case study in Blokker et al. (2011a).404

Furthermore, the analytical approach for computing the instantaneous mean and variance values405

of water demands, taken as starting point in this paper, has already been successfully applied to406

Benthuizen case study (Díaz and González 2020). The analytical approach proposed in this paper407

to compute statistical properties of water demands over a time interval is here run based on the same408

parameters, so it can be considered a good representation of a water supply system reality. The409

proposed methodology will be here validated by comparing analytical results and equivalent Monte410

Carlo simulations. Then, results analysis will focus on exploring temporal scale (i.e. sampling rate)411

effects so that similar rules can be used to assess other networks under different specific conditions.412

The formulation proposed in this paper provides the statistical properties of water demands413

at a time t, considering a specific ∆t for a particular level of spatial aggregation x. All along414

the results section, the spatial aggregation level (x) corresponds to the full Benthuizen test area,415

so no distinction among end-uses is here made. However, it is important to highlight that in416

order for these results to be extrapolated to other neighbourhoods and their subjacent water supply417

systems, the distribution of end-uses must be similar. As highlighted by Díaz and González (2020),418

heterogeneous end-uses coexist in each water supply system, so results are extendable provided419

that the distribution of end-uses and inhabitants is similar or maybe changes proportionally. Time420

t is here varied to assess the temporal scale effect at different times. In order to facilitate the421

interpretation of results, three times are selected along the discussion: 03:30 (at night, minimum422

flow values), 08:30 (in the morning, maximum flow values), 20:30 (in the evening, intermediate423
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flow values). In what regards ∆t, different values are taken from:424

∆t =
∆tmax

2 · n , with n = 0.5, 1, 2, . . . ,
∆tmax

2
. (33)425

Actually, only those associated with integer ∆t values are selected (considering seconds as temporal426

units), because this is a valuable asset for the analytical model validation with Monte Carlo427

simulations. As ∆tmax = 3600 s is considered, 37 ∆t values are dealt with in this work, well428

distributed between ∆t = 3600 s and ∆t = 1 s.429

Analytical model validation430

In order to validate the methodology presented in this paper, analytically computed interval431

properties for the full test area are compared to those from Monte Carlo simulations. Monte Carlo432

simulations are here conceived to simulate real pulses, so that the hypotheses and formulation of433

the analytical approach are tested. 1000 Monte Carlo simulations are considered in this work for434

each end-use at each time t, so 1000 water demand scenarios are simulated for ∆t = ∆tmax . As435

∆t reduces, water demand simulated scenarios are rearranged so that the number of simulations is436

equal to 2000 · n.437

Fig. 4 shows the statistical properties vs the time interval size according to the analytical438

approach here presented andMonte Carlo simulations at three different times for the full Benthuizen439

neighbourhood. The first row of graphs within the figure confirms the correct implementation of440

the analytical approach, as the apparent average of water demands over different ∆t values is441

coincident with Monte Carlo simulation results. As expected, both methodologies provide a value442

that coincides with the mean instantaneous demand, which varies with the time of day: lowest443

values at 03:30, maximum values at 08:30 and intermediate values at 20:30. Graphs in the second444

row show that there is an almost perfect match for the analytical and numerical approach in terms445

of the missed variance within ∆t. This value clearly grows as ∆t increases, attaining values close to446

the instantaneous demand variance for ∆t = ∆tmax . Note that the missed variability would become447

even closer to the instantaneous values if the maximum time interval was increased. The last row448
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of pictures in Fig. 4 shows how the apparent variance changes for different time intervals. As449

demonstrated before, rows 2 and 3 are complementary. They validate that not considering pulse450

overlap when computing demand variability is a fine simplification in the analytical approach.451

In the overall, Fig. 4 shows that the analytical approach works well for Benthuizen case study. It452

is important to highlight that Monte Carlo simulations are associated with a greater computational453

effort. The average computational time for the analytical approach is 177.9 s (time required to454

compute all statistical properties for all ∆t at the full test area for each time) in an Intel Core455

i7-6700 CPU 3.40 GHz 16GB RAM desktop computer (using Matlab R2016a), as opposed to the456

11126 s (approximately 3 hours) required to run the equivalent Monte Carlo simulation in the same457

machine.458

Analytical model results459

The S-shaped curves in the second and third rows of Fig. 4 are interesting from a practical point460

of view. They show that the apparent variance over ∆t, which is comparable to the variance of461

measurement readings provided by a meter at a specific location, reduces as the size of the time462

interval increases. This means that less variability is perceived by the metering and/or monitoring463

system when considering low sampling rates (i.e. high ∆t). The reduction in the apparent464

variance is associated with an increase in the missed variance: the greater the time interval, the465

more information that is lost by assuming such a sampling rate and not a higher frequency. As466

the apparent variance curve can be directly obtained from the missed variance curve and the467

instantaneous demand variance, from now own we will specifically focus on the S-shaped curve468

of the missed variance evolution with ∆t. This is the key element to connect registered variability469

with total variability. Next, the properties of this curve are going to be analysed.470

Anon-dimensional version of themissed variance curves in Fig. 4 (second row) can be computed471

by dividing the missed variance for different time intervals by the instantaneous demand variance,472

which is constant under the steady state assumption:473

Relative missed variance =
σ2

zt,∆t,x

σ2
t,x

(34)474
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Fig. 5 shows the relative missed variance for each individual household (in grey) and the full475

neighbourhood (in black) at 8:30. This figure shows that the shape of the S-curve remains ap-476

proximately the same no matter the spatial aggregation level. Note that the graph has only been477

represented at one time because an homogeneous proportion of end-uses has been assumed in this478

implementation, so its shape remains similar regardless of the time of day. The curve helps to better479

understand and/or extrapolate the missed variability at a specific location, as it will be discussed in480

the “Implications” section.481

Analytical model results can further be discussed in order to better understand temporal scale482

effects. For example, a pseudo coefficient of variation (CV∗t,∆t,x) can be computed in order to assess483

the relative importance of the missed variance (σ2
zt,∆t,x ) over the apparent average (µmt,∆t,x ):484

CV∗t,∆t,x =

√
σ2

zt,∆t,x

µmt,∆t,x

(35)485

Note that σ2
zt,∆t,x and µmt,∆t,x are not strictly comparable, but their ratio can give a good idea of the486

mean variability of water demands as long as the mean of the average over the interval remains487

approximately constant (as it is the case). Fig. 6 shows the evolution of this pseudo coefficient of488

variation with varying ∆t at three different times. These three curves show that as ∆t increases, so489

does the pseudo coefficient of variation. They also illustrate that greater coefficients of variation490

are obtained for minimum flows (night period), and the curve flattens (i.e. CV∗t,∆t,x reduces) as the491

flow increases. These curves can be normalized by dividing the pseudo coefficient of variation by492

the instantaneous coefficient of variation at that time (CVt,x):493

CVt,x =

√
σ2

t,x

µt,x
(36)494

As it happened with the relative missed variance, the shape of the normalized pseudo coefficient495

of variation curves would remain similar for different times because it is representative of the496

proportion of end-uses here assumed.497
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Conversely, spatial scale effects on interval statistical properties could be assessed. However,498

as the pseudo coefficient of variation presented in this paper (Eq. 35) tends to the instantaneous499

coefficient of variation (Eq. 36) for sufficiently long time intervals, results would be very similar to500

those in Díaz and González (2020). Such study showed that fitted lines of cumulative coefficients501

of variation vs number of inhabitants or households in a double logarithmic scale have a slope502

of approximately -0.5 regardless of the time of day being considered. This is due to the fact that503

when analysing an entity that includes N independent elements with the same mean, variance and504

coefficient of variation, it can be assumed that the total coefficient of variation is equal to the505

individual coefficient of variation multiplied by 1√
N
, i.e. a -0.5 slope in a double logarithmic scale.506

This is exact for homogeneous cases (like in Magini et al. 2008), but Díaz and González (2020)507

showed that it is still true even in this heterogeneous case study. These same authors also showed508

that the -0.5 power law can be assumed to compute demand uncertainty from mean instantaneous509

demand values in absence of better data. The same would apply in this work for sufficiently long510

∆t values.511

Just to give an idea of the potential of a combined spatial and temporal scale effect analysis,512

Fig. 7 shows the cumulative pseudo coefficient of variation for different ∆t and levels of spatial513

aggregation at Benthuizen case study. The first row of figures shows that the pseudo coefficient of514

variation is highly affected by the number of households. Note that Fig. 6 is equivalent to the curve515

in Fig. 7 for the total number of households at the corresponding time. Coefficients of variation516

considerably increase as the number of households reduces. The same happens in the second row517

of figures, which assess the spatial scale effect according to the number of inhabitants. These laws518

could be similarly used in order to estimate the variability of water demand for any particular level519

of spatial aggregation x, time interval ∆t and time of day t.520

Implications521

Results obtained in this work have several implications in real practice. On the one hand,522

they can be used to estimate how demand uncertainty would vary for different temporal and spatial523

scales, thus helping to design a suitable metering and/or monitoring system for a particular network.524
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Let us imagine that a flow meter with a ∆t = 3600 s sampling rate is located at a branch of the525

water distribution system at Benthuizen test area that provides water to x = 60 households (i.e.526

spatial aggregation level). Each flow reading will then average the water demand of downstream527

households every hour, so that the apparent average and apparent variance at different times t can528

be computed based on measurement records. For the sake of illustration, it will be here assumed529

that measurement records provide an apparent average at 8:30 of 0.4 l/s (µmt,∆t,x = 0.4 l/s) and530

an apparent variance equal to 0.005 l2/s2 (σ2
mt,∆t,x

= 0.005 l2/s2) at the selected location. If the531

relative missed variance curve is known, the relative missed variance for ∆t = 3600 s can be532

estimated: σ2
zt,∆t,x/σ

2
t,x ≈ 0.93 for ∆t = 3600 s according to Fig. 5. The relative apparent variance533

can be computed as 1 minus the relative missed variance, because apparent and missed terms are534

complementary. Making an analogy with Eq. (34), the combined use of flow records and this535

S-shaped curve could provide the instantaneous demand variance:536

σ2
t,x =

σ2
mt,∆t,x

1 − σ2
zt,∆t,x/σ2

t,x

(
=

from records
from S-shaped curve

)
(37)537

In this particular example σ2
t,x = 0.071 l2/s2. This highlights the interest of the approach, because538

there is no way to measure instantaneous demand variance unless using a high frequency recording539

monitoring system, many times unaffordable for practical issues. Once the instantaneous demand540

variance is obtained, the absolute value of the missed variance can be derived from Eq. (14) in order541

to quantify the non-recorded variability (σ2
zt,∆t,x = 0.066 l2/s2 in this example). Also, the mean542

instantaneous demand (which can be here taken as the apparent average µmt,∆t,x = 0.4 l/s, i.e. the543

average of available flow measurements) can be combined with the instantaneous demand variance544

as in Eq. (36) to compute the instantaneous coefficient of variation (CVt,x = 0.67). Knowing that545

this coefficient of variation relates to the number of independent units under study (i.e. number of546

households and/or inhabitants) with a -0.5 slope in a double logarithmic scale, it would be possible547

to assess the uncertainty when considering a different spatial and/or temporal aggregation level.548

Note that the analytical approach here presented assumes mutually independent behaviours among549
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end-uses and end-users (i.e. demand nodes are not correlated to each other). The reader may550

refer to Díaz and González (2020) for a detailed explanation of these independence hypotheses. In551

reality, cross correlation gains importance when aggregating demand over time and space. This552

may have consequences in some applications, like estimating peak coefficients. This is a subject553

for further research.554

Apart from quantitative results, it is worth qualitatively discussing how current measurement555

strategies may or may not be suitable for some specific types of analysis. It is clear that water556

demand variability in relative terms increases as approximating the terminal branches of any water557

supply system. Therefore, coefficients of variation are higher in the outer fringes, and lower in558

upstream pipes that deliver water to populated areas. This means that higher temporal resolution is559

needed near homes, but it can be relaxed in the water mains (Tessendorff 1972). Fig. 4 shows that as560

∆t grows, the apparent variance reduces. This implies that even though in the outer fringes demand561

coefficients of variation increase considerably, coefficients of variation would be underestimated562

if computed only based on apparent variance. Even though coefficients of variation are known to563

increase in the outskirts of the network, measurement policies are precisely conceived the other564

way around: volumetric remote meters (which measure usually every hour or even less frequently)565

are used at the entrance to each household, and flow meters (which may measure every minute) are566

located in water mains. These sampling rates obey different reasons. They are mainly the result of567

different measurement technologies, but in some other cases they are oriented to some specific uses,568

like detecting undeclared manoeuvres or identifying leakage. However, the traditional sampling569

rate scheme may not be suitable for some specific analyses. For example:570

• If pressures at terminal branches of the network are important in a supply system, it will be571

difficult (or nearly impossible) to accurately characterize their variability with traditional572

sampling strategies.573

• If water quality must be analysed in the outskirts of the network, the existing metering574

scheme may be sufficient to estimate the mean value of water velocity. This would enable575

a first approach to water quality assessment, like computing water age. However, all576

24 Díaz et al., December 15, 2021



the processes that relate non-linearly to water velocity would be limited by a common577

measurement strategy.578

• Any methodology conceived to take into account all measurements’ uncertainty in order to579

monitor the state of the systemmay be limited, as it is the case of state estimation techniques580

(Díaz 2017). With traditional sampling frequencies, estimations will approximate average581

values, but the associated uncertainty is going to remain significantly large if temporal582

resolution is not increased on a distribution level. Moreover, in this type of monitoring583

applications, it is needed to consider the scale difference between average measurements584

(e.g. from flow or volumetric meters) and instantaneous readings (e.g. from pressure585

meters). The approach here presented may help to make compatible the different nature and586

resolution of measurements, at least in terms of their input uncertainty, which propagates587

to the estimates (Díaz et al. 2016a).588

These scenarios are just mentioned here in order to illustrate how the present methodology can589

contribute to improve the monitoring and/or management of water systems, but they are out of the590

scope of this paper. Note that even though demand variability has been widely discussed on a sci-591

entific level, its importance has not yet affected the engineering and/or metrological practice. Only592

by delving into the scaling laws that govern water demands in realistic scenarios, can practitioners593

be motivated to shift towards this new paradigm of high-resolution temporal and spatial scales.594

CONCLUSIONS595

This paper analyses temporal scale effects in water supply system demands, which affect mon-596

itoring performance, thanks to a novel analytical approach to stochastic demand modelling. The597

proposed method keeps improving the conceptualization of the well-known SIMDEUM model.598

Until recently, Monte Carlo simulations implemented in SIMDEUM were the only way of com-599

puting high-resolution stochastic demand patterns based on survey parameters. Díaz and González600

(2020) lately developed an analytical approach that provides instantaneous mean demand and vari-601

ance thanks to independence hypotheses among end-uses and end-users. The methodology here602
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presented goes one step further and provides an analytical formulation for computing statistical603

properties of water demands over a time interval, which is of major importance when designing604

monitoring requirements.605

This work differentiates the “apparent” or registered statistical properties that can be computed606

based on the available records of a meter with a specific sampling rate from the internal oscillations607

that take place over the time interval, which are not recorded by the metering device whatsoever, i.e.608

they are “missed” statistical properties. The proposed approach not only enables fast computation609

of the apparent average and variance (which can be compared to measurement records), but also of610

themissed variance associatedwith a particular sampling rate. Results obtained for Benthuizen case611

study are interesting for different reasons. On the one hand, they make explicit that sampling rates612

(i.e. temporal scales) associated with specific metering or monitoring systems condition the degree613

to which the network behaviour and performance can be assessed. Results obtained for this realistic614

case study may therefore be useful for metering and/or monitoring design in this or other similar615

networks. On the other hand, results show that there is correspondence between instantaneous616

and apparent values, and this relationship may be used to characterize the missed variance. This617

may be useful to rapidly understand or even estimate demand variability thanks to the obtained618

scaling laws when there is absence of better data. Care must be taken when using records collected619

with different sampling rates, because they represent different signals with different behaviours.620

Therefore, the method gives some guidelines for progressive incorporation of high-resolution water621

demand measurements or estimations in engineering practice.622
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TABLE 1. Frequency, duration and intensity parameters for the Netherlands according to Blokker
et al. (2010)

Frequency Duration Intensity
Mean number of openings per day and inhabitant Distribution Mean (s) Variance (s2) Distribution Mean (l/s) Variance (l2/s2)

End-use type End-use subtype µNu µdu σ2
du

µiu σ2
iu

Kitchen tap Consumption 4.73* Lognormal 16 20.8 Uniform 0.083 0.0023
Doing dishes 3.15* Lognormal 48 62.4 Uniform 0.125 0.0052
Washing hands 3.15* Lognormal 15 19.5 Uniform 0.083 0.0023
Others 1.58* Lognormal 37 48.1 Uniform 0.083 0.0023

Bathroom tap Washing and shaving 1.35 Lognormal 40 52 Uniform 0.042 0.0006
Brushing teet 2.75 Lognormal 15 19.5 Uniform 0.042 0.0006

Outside tap Garden 0.33 Lognormal 300 390 Uniform 0.1 0.0033
Other 0.11 Lognormal 15 19.5 Uniform 0.1 0.0033

WC 9L 6 Fixed 216 - Fixed 0.042 -
9L with water saving 6 Fixed 108 - Fixed 0.042 -
6L 6 Fixed 144 - Fixed 0.042 -
6L with water saving 6 Fixed 72 - Fixed 0.042 -

Bathtub - 0.044 Fixed 600 - Fixed 0.2 -
Shower No water saving 0.7 Lognormal 510 255 Fixed 0.142 -

With water saving 0.7 Lognormal 510 255 Fixed 0.123 -
Dishwasher - 0.3 Fixed 21/cycle** - Fixed 0.167 -
Washing machine - 0.3 Fixed 75/cycle** - Fixed 0.167 -

*Frequency for the kitchen tap is per household per day
**4 cycles over 7200s

Source: Data from Blokker et al. (2010).
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Fig. 1. Instantaneous vs interval statistical properties of water demand at a time t and spatial
aggregation level x.
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Fig. 3. Scenarios for computing the missed variance of one pulse over a time interval: 3-left for
µdu ≤ ∆t and 3-right for µdu > ∆t. Simplification for a fixed duration and intensity end-use.
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Fig. 4. Statistical properties of water demands over different time intervals (in rows, 4-top apparent
average, 4-center missed variance and 4-bottom apparent variance) at three different times (in
columns) for the full Benthuizen test area: analytical approach vs Monte Carlo simulation.
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Fig. 5. Relative missed variance with respect to instantaneous demand variance for different time
intervals at 8:30: individual households (grey) vs full Benthuizen neighbourhood (black).
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Fig. 6. Evolution of the pseudo coefficient of variation with∆t at three different times at Benthuizen
case study.
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Fig. 7. Cumulative pseudo coefficient of variation over ∆t vs time-interval for different times (in
columns) and levels of spatial aggregation (in rows, 7-top number of households, 7-bottom number
of inhabitants) at Benhtuizen case study.
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