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Biological systems display complex spatially and temporally 
varying structures that are mainly a consequence of their 
underlying metabolism. Organisms continuously incorporate 

energetic and material resources from the environment, transform-
ing and allocating them into different compartments that allow for 
their growth, reproduction and, hence, survival, both as individuals 
and as species. Metabolism involves random fluctuations and hier-
archical processes that determine the pace at which organisms live 
and evolve. In a seminal work1, it was observed that, for a broad vari-
ety of species, metabolic rates scale to the 3/4 power of the animal’s 
mass (hereafter referred to as Kleiber’s law). This result contradicted 
theories that assumed a direct proportionality between the volume 
of an animal and its metabolic rate, or other scalings, such as a pro-
portionality to the animal’s surface area. Scaling laws are of the form 
Z = αVβ, where Z is an observable quantity, V is a measure of the 
size of the system (which, in living systems, is typically the volume 
or mass), α is a rate constant and β represents the scaling exponent2. 
It was proposed that the exponent β = 3/4 in Kleiber’s law could 
be the result of principles of minimal energy3. Many related studies 
have explored allometric scaling laws in other biological contexts4–6.

A question to ask is whether human cancers obey metabolic  
scaling laws. Some evidence obtained from in vitro experi-
ments or from xenotransplantation of patient-derived cells into  

immunocompromised mice seems to support the idea that cancers 
also obey Kleiber’s law or similar sublinear dynamics7–9. However, 
no works have uncovered scaling laws from large datasets of patients 
with cancer. Here, we address this question under the initial hypoth-
esis that malignant tumours scale between the metabolic require-
ments of coordinated tissues governed by minimal energy principles 
(leading to an exponent β ≃ 3/4) and the metabolic requirements of 
independent uncoordinated units (exponent β ≃ 1).

Tumour cells exhibit high metabolic requirements to sustain 
an upregulated proliferation. Nutrients such as glucose and, to 
a lesser extent, glutamine are mostly used to fuel biomass forma-
tion and macromolecule synthesis10. Deregulated glucose uptake by 
tumour cells, known as the Warburg effect, constitutes the basis of 
positron-emission tomography–computed tomography (PET–CT) 
imaging by means of the radioactive tracer 18F-fluorodeoxyglucose 
(18F-FDG), which is widely used in clinical oncology11. To study 
the relationship between tumour metabolic rates and volume, we 
collected data of different cancer types imaged at diagnosis with 
18F-FDG PET–CT. Tumours were segmented and their total lesion 
activity (TLA) and metabolic tumour volume (MTV) were calcu-
lated. TLA and MTV were computed as the product of each voxel 
volume within the tumour with its measured standardized uptake 
value (SUV) and as the summed volume of the segmented tumour 
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voxels, respectively. Our first goal was to determine whether a 
dependence of the form TLA ~ αMTVβ could be identified. Figure 
1 shows log–log plots of MTV versus TLA for patients with locally 
advanced breast cancer (LABC), head and neck cancer (HNC, 
stages II–IV), non-small-cell lung cancer (NSCLC, stages I–III) 
and rectal cancer (RC, stages III–IV) (see Methods for more patient 
data). The obtained exponents were β = 1.307 ± 0.069 (R2 = 0.874, 
LABC), β = 1.182 ± 0.030 (R2 = 0.954, HNC), β = 1.248 ± 0.032 (R2 
= 0.900, NSCLC) and β = 1.386 ± 0.152 (R2 = 0.798, RC), as shown 
in Fig. 1a,b,d,e. Thus, superlinear scalings cluster around the ratio-
nal number β = 5/4 (Fig. 1g). Moreover, all of the patients who were 
scanned in the same institution under an identical protocol, and 
who therefore provided comparable data, followed a common scal-
ing law with β = 1.309 ± 0.030 (R2 = 0.895) (Fig. 1h). Possible arte-
facts on the scaling exponents due to the partial volume effect in the 
PET images were discarded. Our findings contradict the hypothesis 
that metabolic scaling is sublinear and suggest a fundamentally dif-
ferent dynamic.

This superlinear glucose uptake could be the result of different 
mechanisms. One possibility is an increase of the Warburg pheno-
type, which would lead to a less efficient use of glucose. Another is 
the presence of immune cells and inflammation within the tumour 
region. However, as glucose is used mostly to satisfy the demands of 
cell proliferation10,11, we suspected that an increase in the prolifera-
tion rate with size was probably the main underlying cause.

To explore this, we gathered data from patients with glioma 
(grades II–IV) imaged at diagnosis with 18F-Fluorocholine PET 
(18F-FCHOL), and from patients with breast cancer (stages II–IV) 
imaged at diagnosis with 3′-deoxy-3′-18F-fluorothymidine PET 
(18F-FLT). These two radiotracers reflect choline and thymidine 
metabolism and are related to cell proliferation12,13. The obtained 
scaling exponents were β = 1.211 ± 0.080 for gliomas and β = 1.188  
± 0.035 for breast cancers (Fig. 1c,f), which accords with a  

superlinear activity and provides support to the hypothesis that  
glucose uptake increases to satisfy the proliferation demands.

Superlinear scaling laws have been found in various systems, 
ranging from urban infrastructures and socioeconomic networks to 
primitive life forms2. In contrast with sublinear scaling, which leads 
to stable bounded growth, superlinear scaling results in unbounded 
growth. For biological organisms, whole-body metabolic rates 
increase with size across prokaryotes, protists and metazoans, 
although each group is characterized by a distinctive scaling rela-
tionship that is unique to their body size range14. In heterotrophic 
prokaryotes, the relationship between metabolic rate and body mass 
has an exponent β > 1, whereas for metazoans it is β < 1. Within an 
evolutionary perspective, the transition from simple prokaryotes to 
complex eukaryotes has shown not only a higher level of multicel-
lular organization, but also a trend towards the 3/4 scaling exponent 
of Kleiber’s law. Our results suggest that human cancers, as they 
progress, decrease the efficiency of their local vascular network15, 
which would tend to increase their scaling exponents and cause 
them to significantly deviate from Kleiber’s law.

To quantify further the relationship between tumour size and 
metabolism, let B ∝ Vβ denote the metabolic rate of a tumour, where 
V is the volume occupied by viable cells. A simple mathematical 
model that accounts for energy conservation and describes the tem-
poral dynamics of tumour growth is B ¼ aV þ b dV

dt
I

, where the first 
and second terms correspond to cell maintenance and proliferation, 
respectively16. If most of the energy is used for cell biosynthesis, we 
may write

dV
dt

¼ αVβ: ð1Þ

When β > 1, there is a finite time, tcrit ¼ t0 þ V1�β
0 = αðβ � 1Þ½ 

I
, 

at which the tumour ’blows up’, where V0 is the volume at time t0 
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Fig. 1 | A superlinear scaling law governs glucose uptake and proliferation in human cancers. a–h, Log–log plots of TLA versus MTV for different types 
of cancer. 18F-FDG uptake versus MTV from diagnostic PET for LABC, HNC, NSCLC and RC display superlinear (β > 1) allometric scaling laws (a,b,d,e). 
Diagnostic PET with proliferation radiotracers, either 18F-FLT for breast cancer (f) or 18F-FCHOL for glioma (c), shows the same dependence, indicating that 
glucose is used mostly as a resource for biosynthesis. The fitted exponents cluster around β = 5/4 (g). Records of patients imaged at the same institution 
with an identical protocol (breast-FDG, lung and rectal cancers) show that a common scaling law governs the dynamics (h). Error bars in (g) correspond to 
the standard error (s.d.) in the fitted parameter β obtained using fitlm.
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(for details see Supplementary Information section S1. Therefore, 
the existence of a superlinear scaling law between proliferation and 
volume implies an increasingly accelerated volumetric growth and 
the formation of a singularity in a finite time. In real cancers such 
dynamics cannot be sustained to the blow-up point, as tumours are 
subject to physical and nutrient-supply constraints. In patients, such 
an accelerated growth in the final stages entails metabolic and spa-
tial requirements that are incompatible with life.

There has long been discussion about the best mathematical 
model to describe tumour growth, and most models assume dif-
ferent types of bounded dynamics7,17–20. The data that support these 
models come from patient-derived cell lines cultured in vitro, or 
else from either allotransplantation of murine cells into syngeneic 
immunocompetent inbred mice or from xenotransplantation of 
patient-derived cells into immunocompromised mice. These mod-
els have a number of shortcomings compared with their human 
counterparts. They display a loss of genetic heterogeneity and irre-
versible changes in gene expression owing to long-term in vitro 
propagation21, and they exhibit a rapid non-autochthonous growth 
that results in a perturbed tissue architecture with alterations in the 
vascular, lymphatic and immune compartments.

To investigate whether explosive tumour growth can observed 
in patients with cancer, we looked for longitudinal imaging datasets 
of untreated tumours. Data of this type are scarce because grow-
ing tumours are typically either treated or (as in the case of pal-
liative care patients) not followed up with imaging. Most available 
datasets had either incomplete information, no volumetric imag-
ing or very few time points. In studies of the growth dynamics of 
untreated WHO (World Health Organization) grade II gliomas22, 
petroclival meningiomas23, and head and neck paragangliomas24, 
growth dynamics consistent with sublinear scalings were observed 
for slowly growing tumours. To further confirm this idea, we col-
lected longitudinal volumetric growth data from a group of patients 
with lung hamartomas, the most frequent benign lung tumour type, 
and found a best fit to equation (1) with β = 0.5 ± 0.2 (Fig. 2d). 
Hence, not all human tumours manifest an explosive growth.

We also collected imaging datasets of patients bearing tumours 
either that were malignant initially or that became malignant over 
the course of the disease (see Methods for a description of the patient 
datasets). The first was a set of brain metastases in which one of the 
lesions was either below target definition or left without therapy for 
medical reasons. A second set comprised initially WHO grade II 
gliomas that were treated with surgery and then received no other 
treatment for long periods. The third was from patients enrolled in 
a lung cancer screening programme. After detection of lung nodules 
with no signs of malignancy, they were followed up by low-dose CT 
scans. Many of these tumours had growth that accelerated up to a 
point at which further therapeutical actions were taken. Finally, we 
included a subset of petroclival meningiomas that showed signs of 
atypical behaviour (cases 5, 6, 9, 11 in Fig. 7 and cases 14, 18 in Fig. 8  
of ref. 23). For each patient we fitted the longitudinal volumetric 
growth data using different power-law models expressed by equa-
tion (1). We tested the exponents β = 3/4 (the size-limited Kleiber’s 
law), β = 1 (an exponential growth law) and then the superlinear  
β = 5/4. Subsequently, we searched for the exponent that minimized 
the mean squared error (MSE) for all patients with each tumour 
type. In all of these examined cases, the existence of explosive 
growth dynamics was confirmed (Fig. 2b,c,e,f). A comparison of 
the MSEs for the different exponents and tumour types is shown in  
Fig. 2g. We also performed least-squares fitting of the α and β 
parameters for each patient and computed the mean and standard 
deviation for each pathology. The results obtained were 1.493 ± 
0.0197 (brain metatastes), 1.360 ± 0.2922 (NSCLC), 1.466 ± 0.269 
(LGG) and 1.690 ± 0.452 (atypical meningiomas), respectively. 
Thus, exponents obtained using the two methodologies are com-
patible with each other and are superlinear.

To determine whether animal models can also provide evi-
dence of superexponential tumour growth dynamics, we performed 
experiments on two animal models chosen because of their simi-
larity to tumours in humans. First, we injected the human lung 
adenocarcinoma brain tropic model H2030-BrM (ref. 25) into the 
heart of nude mice to induce the formation of brain metastasis from  
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systemically disseminated cancer cells. The exponent that best fit 
the dynamics of the brain metastasis was measured using biolumi-
niscence, assuming dynamics ruled by equation (1), and data from 
all of the mice resulted in β = 1.3. The total tumour load in the 
animals showed a similar behaviour, with β = 1.25 (Extended Data 
Fig. 1). In a second set of experiments, we injected L0627 glioma 
cells expressing the luciferase reporter gene into the brains of nude 
mice. These cells have been shown previously to recapitulate many 
aspects of human gliomas when injected in those animal models26. 
One month after the injection, weekly monitoring of the animals 
was started to measure the total flow and hence assess tumour 
growth. The optimal exponent obtained in this set of experiments 
was also β = 1.25.

Therefore, a sustained increase in proliferation is supported by 
both the allometric scaling laws and the morphological longitudi-
nal growth data during the tumour’s natural history. We suspected 
that evolutionary dynamics could be the underlying process. By 
genomic instability, driver gene mutations can confer to subpop-
ulations of clonal cells somatic fitness advantages over other cells 
within the same tumour, and can contribute to higher prolifera-
tion rates. Mutational events are expected to occur locally in space 
and time. However, they require time to consolidate over the whole 
population27, and thus lead to an effective continuous change in the 
tumour’s global proliferation rate. Phenotypic variability, which 
manifests as trait fluctuations within identical genotypes, also leads 
to the further selection of cells that are by nature more proliferative28.

The phenomenological model given by equation (1) lacks 
key hallmarks of real cancers. We explored in silico increasingly 
sophisticated spatiotemporal models that incorporate cell migra-
tion and competition among different cell subpopulations. The 
first mathematical model that we put forward was a non-local 
Fisher–Kolmogorov equation (NLFK), which encompasses random  

diffusive tumour cell motion and proliferation with saturation when 
the local carrying capacity is reached. The NLFK reads as

∂u
∂t

¼ D∇2uþ ρ0 þ ρ1NðtÞð Þ 1� u
K

� �
u ; ð2Þ

where u = u(x, t) denotes the tumour cell density and is a function 
of space x and time t. The model parameters are the cell diffusion 
constant D > 0, the size-independent ρ0 > 0 and size-dependent 
ρ1 ≥ 0 proliferation rates and K, the local carrying capacity of the 
medium. The proliferation term in equation (2) includes a depen-
dence on the total number of tumour cells N(t) = ∫u(x, t) d3x on 
the grounds that, as the total tumour size increases, there will be 
a higher probability of accumulated mutational events that will 
lead to more aggressive clones (for a derivation of the NLFK, see 
Supplementary Information section S2). The proliferation activity 
of the tumour, in the context of this model, is given by M(t) = dN/dt 
and yields the scaling laws.

To quantify the effect of spatial dimensionality d on the tumour  
growth scaling laws, we performed a mathematical analysis of 
equation (2) (see Supplementary Information section S2). If  
ρ1 = 0, the local Fisher–Kolmogorov equation is recovered, and the 
scaling exponent of M(t) is β = (d − 1)/d < 1, which results in a 
sublinear growth. When ρ1 > 0, the proliferation activity exhibits a 
superlinear scaling β = 2 − 2/d, which leads to an explosive tumour 
growth only if d = 3. The tumour radial velocity, which is the rate 
of radial growth and a variable with prognostic value in the clinic, 
can also be obtained in closed form as vd(t) = M(t)/CdN(d−1)/d(t), 
where C1 = 2 (one dimension), C2 ¼ 4πð Þ1=2

I
 (two dimensions), and 

C3 ¼ 36πð Þ1=3
I

 (three dimensions). Hence, dimensionality plays an 
essential role in the emergence of superlinear allometric laws within 
the NLFK model (equation (2)).

To further elucidate the contribution of different interacting 
cell subpopulations to the global tumour dynamics, we developed 
a stochastic mesoscale tumour growth simulator that enables cells 
to undergo replication, apoptosis, migration to neighbouring vox-
els and genotypic or phenotypic transitions (see Supplementary 
Information section S3). By mesoscale, we refer to a coarse-grained 
approach that can reach computationally clinically relevant tumour 
sizes (~102 cm3) by working at the population level rather than that 
of individual cells. Extensive in silico simulations showed superlin-
ear scaling in broad regions of the parameter space, matching both 
the volume range and time kinetics observed in patients (Fig. 3). 
Superlinear behaviour was present in so far as there was a persis-
tent overtaking of cell subpopulations by more aggressive ones. The 
dynamics of uniform populations, without in silico evolutionary 
dynamics, displayed sublinear scalings (Fig. 3). Other mathemati-
cal models that incorporate short-range dispersal and cell turnover 
have reported changes in spatial growth due to the underlying evo-
lutionary dynamics29,30.

Scaling laws are very intriguing properties of physical and bio-
logical systems that shed light on their dynamics. They have a fun-
damental value but are often of limited applicability. We reasoned 
that, once a scaling law of the form Z = αVβ is set as a reference for 
a specific cancer type, tumours with radiotracer uptake higher than 
the reference level, as defined by the scaling law, would be more 
aggressive than those with lower levels of activity. Therefore, we 
computed the distance with respect to a reference scaling law (DSL) 
for each tumour j and dataset for which survival information was 
available, DSLj ¼ TLAj � αMTVβ

j

I
, and compared two sets with dif-

ferent DSL values for the whole range of values of the prefactor α, as 
described in Methods. Figure 4 summarizes our results for a fixed 
exponent β = 5/4 in four patient cohorts with distinct cancer types. 
We found ranges of threshold values that classify patient subpopula-
tions into DSL groups with survival differences as measured by the 
Harrell’s C-index.

TL
A

18 36 48

Tumour volume (cm3)

a

b

c
Months since tumorigenesis

β = 0.801

100 101 102
100

101

102

103

104

β = 1.143

Tu
m

ou
r s

ub
po

pu
la

tio
ns

8 cm

In
vi

si
bi

lit
y 

re
gi

on

Fig. 3 | Stochastic mesoscale models with evolutionary dynamics lead 
to superlinear scaling laws in silico. a, Schematic representation of 
the evolutionary dynamics included in the mesoscale tumour growth 
simulator model. Random time-local discrete events that account for 
either mutations or phenotypic changes provide a competitive advantage 
to newly arising subpopulations. b, When a single tumour population is 
present, it grows continuously and displays a sublinear scaling law (blue 
line). By contrast, the evolutionary dynamics of a heterogeneous tumour 
(here, consisting of four subpopulations, see Supplementary Information 
section S3) yielded superlinear growth dynamics (red line). The ‘invisibility 
region’ marks the range of tumour sizes that do not give symptoms and 
cannot be detected by standard imaging methods. c, Isosurfaces of four 
interacting cell subpopulations at different points in time showing the 
dynamics of dominance by the most aggressive cells (higher indices 
correspond to more aggressive clones, as described by the model 
parameters).
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The classical metabolic variables MTV and TLA classified 
gliomas (C-index = 1.0, P = 0.013 for both MTV and TLA) and 
breast cancer (C-index = 0.824, P = 0.098 for MTV; C-index 
= 0.87, P = 0.01 for TLA), but not lung cancer or head and neck 
cancer. Therefore, the superlinear metabolic scaling laws provided 
prognostic metrics that were more robust than did other classical 
PET-based indices.

The observation of superlinear metabolic scaling laws and 
explosive behaviour of malignant tumours opens up many avenues 
of research. Our stochastic mesoscopic framework showed how 
evolutionary dynamics leads to superlinearity through the com-
petition and consolidation of different tumour subpopulations. 
However, evolutionary steps could be based on mutations or phe-
notypic variability. When an initial driver mutation appears locally 
in space, even when it is more advantageous, it requires some time 
to consolidate. During this time window, our simulations showed a 
continuous acceleration owing to the fact that an increasing num-
ber of cells bear this new genotype. However, once this mutation is 
consolidated, a plateau could develop (changing from accelerating 
growth to growth at a constant rate), provided no new driver muta-
tions have appeared in the meantime. For our choice of parameters, 
the effective dynamics that result from our discrete simulations was 

in general superlinear, in agreement with our observations based on 
experimental data from patients and animals.

The specific mechanisms that lead to an increase in the prolif-
eration with the tumour physical size could differ between types 
of cancers. Some of these mechanisms could be of evolutionary 
nature, related to genotype or phenotype changes (as discussed 
above). Alternatively, they could involve the random selection of 
higher fitness values31, or they could be a consequence of acquiring 
driver mutations before deleterious passenger mutations32. Other 
potentially relevant processes arise in the interplay of glycolysis 
and tumour vascularization and oxygenation, such as the onset of 
the Warburg effect induced by hypoxic episodes. Others could be 
related to changes in the interaction between the tumour and the 
surrounding tissue, the action of the immune system, or alterations 
in the tumour microenvironment such as acidosis33. Some of these 
effects, although possibly driven by mutational alterations, in fact 
may be ecological in nature. Interestingly, small tumours below the 
spatial scale studied here may show superlinear behaviour for differ-
ent reasons. Allee effect models, which originated in ecology, have 
shown decreased tumour growth rates at smaller tumour sizes, and 
these models produce growth curves that are potentially indistin-
guishable from superlinear growth laws when only a few data points 
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Fig. 4 | Scaling laws allow for classification of patients with cancer into prognostic groups. a–d, Patient tumours were classified as hyperactive (TLA > αV5/4; 
DSL > 0) or hypoactive (TLA < αV5/4; DSL < 0) using the metabolic scaling law as a reference. Survival differences between groups were compared using 
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are fitted. Other size-related effects for small tumours may involve 
the interaction with the immune system: small tumours may strug-
gle to outgrow the immune system at first, but once they reach a 
large enough size, the number cancer cells killed by the immune 
response would become negligible.

Our results emphasize the need to gain a better understanding  
of the evolutionary steps in different tumour histologies and to  
target these transformations to avoid growth acceleration. They  
also raise the question of whether working with experimental 
tumour models that show slower than superexponential growth 
could miss essential features of cancer dynamics. Finally, the role 
played by allometric scaling laws in human cancers under different 
therapies and the ultimate development of resistances of the tumour 
cells has not yet been explored.

In summary, we have found superlinear metabolic scaling laws 
in human cancers. These laws differ substantially from Kleiber’s 
law, which governs the growth of many life forms, and point to 
accelerated growth due to underlying evolutionary dynamics that 
select more aggressive subpopulations. Longitudinal volumetric 
data from malignant tumours show explosive growth beyond clas-
sical growth-limited or exponential laws. Our mathematical mod-
els, which assume intrinsic evolutionary dynamics, put forward a 
mechanistic explanation for the observed phenomenology and pre-
dict that the emergence of superlinear scaling laws is an inherently 
three-dimensional phenomenon.
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Methods
Patients and image acquisition. Several patient datasets were included in our 
study. Data from patient subgroups 1–6 were used for the construction of the 
scaling laws (data from patient subgroups 1,2,4 and 5 were also used for the 
survival studies). Data from patient subgroups 7–10 were used for the study of the 
longitudinal tumour volumetric dynamics. Overall survival was determined as the 
time from pretreatment imaging to death or last follow-up.

Patients with breast cancer (subgroup 1). Patients were participants of a 
multicentre prospective study approved by the institutional review board (IRB) of 
Hospital General Universitario de Ciudad Real, Spain. Written informed consent 
was obtained from all of the patients. The inclusion criteria were (1) newly 
diagnosed, locally advanced breast cancer with clinical indication of neo-adjuvant 
chemotherapy, (2) lesion radiotracer uptake higher than background, (3) absence 
of distant metastases confirmed by other methods previous to the request of the 
PET–CT for staging, and (4) breast lesion size of at least 2 cm. In total, 54 patients 
were included in this dataset (18% lobular carcinoma, 82% ductal carcinoma, 
100% women, age range 25–80 years, median 50 years). According to the TNM 
classification of malignant tumours, 54% of tumours in our dataset were T2, 18% 
T3, 28% T4, 28% N0, 55% N1, 6% N2, 11% N3 and 100% M0.

PET–CT examinations were performed on the same dedicated whole-body 
PET–CT scanner (Discovery DSTE-16s, GE Medical Systems) in three-dimensional 
(3D) mode. The acquisition began 60 min after intravenous administration of 
approximately 370 MBq (10 mCi) of 18F-FDG. The image voxel size was 5.47 mm × 
5.47 mm × 3.27 mm, with a slice thickness of 3.27 mm and no gaps between slices.P

Patients with head and neck cancer (subgroup 2). Data from patients with 
head and neck cancer were obtained from The Cancer Imaging Archive (TCIA)34 
Head-Neck-PET-CT collection (H&N1 dataset)35. This cohort was composed of 
patients with primary squamous cell carcinoma of the head and neck (stages I–IV). 
A total of 76 consecutive patients from this subset that satisfied the inclusion 
criteria (the availability of pretreatment PET studies, a well-defined primary 
tumour and a lesion size larger than 2 cm) were included in our study. In total, 76 
patients were included in this dataset (13 cancers of the larynx, 3 hypopharynx, 11 
nasopharynx, 49 oropharynx, 63 male, 13 female, age range 18–84 years, median 
62 years). In terms of staging data, of the tumours, 3 were stage II, 1 stage IIB, 26 
stage III, 44 stage IVA and 2 stage IVB. According to the TNM classification of 
malignant tumours, 14% were T1, 25% T2, 45% T3, 16% T4, 14% N0, 21% N1, 9% 
N2a, 36% N2b, 17% N2c, 3% N3, 95% M0 and 5% Mx.

Eligible patients had FDG-PET scans on a hybrid PET–CT scanner (Discovery 
ST, GE Healthcare) within 37 d before treatment (median 14 d). A median of 584 
MBq (range 368–715 MBq) was injected intravenously. Imaging of the head and neck 
was performed using multiple bed positions with a median of 300 s (range 180–420 s)  
per bed position. The slice thickness resolution was 3.27 mm for all of the patients 
and the median in-plane resolution was 3.52 mm × 3.52 mm (range 3.52–4.69 mm2).

Patients with rectal cancer (subgroup 3). A retrospective observational study 
(Scaling laws, shape factors and fractal measures in human cancers (SCALAWS)) 
was designed and approved by the IRB of the participating institutions. Inclusion 
criteria were the histological confirmation of advanced rectal cancer diagnosis, the 
availability of pretreatment PET–CT and a lesion size larger than 2 cm. A total of 
23 patients with rectal cancer (16 male, 7 female, age range 54–80 years, median 
age 72 years) from the period October 2007 to October 2009 were included in the 
study. The PET protocol and machine were those used for subgroup 1.

Patients with lung cancer (subgroup 4). A total of 175 patients (153 men, 22 
women, age range 41–84 years, median 65 years) were included in the SCALAWS 
study from a dataset of patients with lung cancer who underwent surgery in the 
period June 2007 to December 2016. Histologies were 63 squamous cell carcinomas 
and 112 adenocarcinomas. In terms of staging data, of the tumours, 69 were stage 
I, 70 stage II, 33 stage III and 3 stage IV. In terms of N staging, 107 patients had 
tumours classified as N0, 46 N1 and 22 N2. All of the patients had M0. The PET 
protocol and machine were those used for subgroup 1. We set a minimal lesion size 
of 2 cm as the inclusion criterion.

Patients with gliomas (subgroup 5). A prospective multicentre and 
non-randomized study, Functional and metabolic glioma analysis (FuMeGA), 
was designed and approved by the IRB of the participating institutions. Informed 
consent was obtained from all of the patients. Patients were included consecutively. 
A basal 18F-FCHOL PET–CT was performed in patients suspected of having glioma 
after magnetic resonance imaging (MRI) with an operable brain lesion and a good 
Eastern Cooperative Oncology Group (ECOG) performance status (ECOG ≤ 2).  
Patients with a pathologically confirmed brain glioma and unifocal lesions of 
size larger than 2.0 cm were included. The study group included 44 patients (29 
men, 15 women, age range 23–79 years, median 60 years). Histologies were 32 
glioblastoma IDH1wt, 3 glioblastoma IDH1mut, 2 oligodendroglioma, 4 diffuse 
astrocytoma and 3 anaplastic astrocytoma.

The PET machine that was used was the same as for subgroup 1. PET 
acquisition was initiated 40 min after the intravenous administration of 185 

MBq of 18F-FCHOL. A brain scan was performed starting with a low-dose CT 
transmission study (modulated 120 kV and 80 mA) without intravenous contrast, 
followed by a 3D emission study with an acquisition time of 20 min (one single 
bed), voxel size of 2.3 mm × 2.3 mm × 3.3 mm in a matrix of 128 voxels × 
128 voxels. The scan was then reconstructed by the application of an iterative 
reconstruction algorithm, using the CT images for attenuation correction.

Patients with breast cancer (subgroup 6). Pretreatment 18F-FLT PET–CT 
scans of patients in the ACRIN 6688 observational study, available in the TCIA 
(ACRIN-FLT-Breast), were included in the study36. The dataset included a total 
of 75 patients (100% female, age range 22–83 years, median 50 years) with 
histologically confirmed breast cancer, of whom 46.8% were premenopausal and 
52.2% were postmenopausal. According to the TNM classification of malignant 
tumours, 3% were TX, 1% T1, 47% T2, 34% T3, 14% T4, 3% NX, 29% N0, 51% N1, 
11% N2, 6% N3 and 100% N0.

The inclusion criteria were (1) a primary breast cancer measuring 2 cm or 
more, (2) eligibility for neo-adjuvant chemotherapy and for surgical resection of 
the residual primary tumour after chemotherapy, and (3) no evidence of stage IV 
disease. Patients received a baseline pretreatment 18F-FLT PET–CT study within 
4 weeks before neo-adjuvant chemotherapy initiation. After the injection of 2.6 
MBq kg−1 (mean 167 MBq; range 110–204 MBq), a whole-body image (5–7 bed 
positions) was obtained at 70 min (mean; range, 50–101 min).

Patients with brain metastases (subgroup 7). Patients were participants in the 
METMATH (Metastasis and mathematics) study, a retrospective multicentre 
and non-randomized study that was approved by the IRB of the participating 
institutions. Included in the dataset were five patients (one man, four women, 
age range 38–67 years, median 52 years) diagnosed with a brain metastasis of a 
primary lung cancer with an untreated lesion based on three or more consecutive 
MRI studies before treatment. Primary cancers included four NSCLC and one 
breast luminal b cancer. A total of 16 imaging studies were included, with 3–4 
studies per patient.

The postcontrast T1-weighted sequence was a gradient echo sequence using 
a 3D spoiled-gradient recalled echo or a 3D fast-field echo after the intravenous 
administration of a single dose of gadobenate dimeglumine (0.10 mmol kg−1), with 
a delay time of 6–8 min.

All of the MRI studies were performed in the axial plane with a 1.5 T Siemens 
scanner, a 3 T Philips scanner or a 1 T Philips scanner. The imaging parameters 
were no gap, a slice thickness of 1–1.6 mm, 0.438–0.575 mm xy resolutions and 
0.8–1.3 mm spacing between slices.

Patients with lung cancer (subgroup 8). The patients included were participants 
in the SCALAMATH (scaling laws and mathematical models in cancer) study. Five 
patients (three men, two women, age range 60–72 years, median 68 years) were 
included. Three of these patients were diagnosed with adenocarcinoma and two 
with squamous cell carcinomas. All of the cancers were initially stage I tumours 
and progressed without treatment.

We drew scans from the database of follow-up screenings in the International 
Early Lung Cancer Action Program between 2008 and 2019, which were performed 
according to a common protocol37 using low-dose CT (LDCT). Enrolment in the 
study was limited to those aged 50 years or older, with a smoking history of at 
least 10 pack-years, no previous cancer and general good health. Participants who 
harboured a parenchymal solid or part-solid non-calcified nodule with at least 
three or more follow-up CTs were identified according to criteria specified in the 
protocol. A total of 22 imaging studies were used, with 3–6 studies per patient.

Thoracic CT scans used a 16-acquisition-channel multidetector CT scanner 
(Siemens Emotion 16) with a maximum section collimation of 1 mm, 0.7 mm of 
spacing between slices, a slice thickness of 1 mm and a 0.584–0.783 mm range 
in xy resolutions. The CT scans were performed with 120 kVp and 30 mAs, with 
less than 1 s tube rotation time. Contiguous images were reconstructed in the 
trans-axial plane using a 1 mm thickness. Lung image sets were reconstructed with 
a high-frequency algorithm, and mediastinal image sets were reconstructed with 
an intermediate frequency algorithm.

The diagnosis of lung cancer was made by the histopathological examination of 
needle core biopsy or resection specimens, or by the cytopathological examination 
of bronchoscopic or needle aspiration biopsy samples. Resected tumours were 
classified based on the WHO classification of lung neoplasms. Adenocarcinomas 
were classified according to the classification of lung adenocarcinoma sponsored by 
the International Association for the Study of Lung Cancer, the American Thoracic 
Society and the European Respiratory Society. All of the lung cancer diagnoses 
were reviewed centrally. The tumours were staged using the International 
Association for the Study of Lung Cancer staging guidelines37.

Patients with low-grade gliomas (subgroup 9). A total of 82 patients who were 
diagnosed with grade II gliomas (for whom astrocytoma, oligoastrocytoma or 
oligodendroglioma, according to the WHO 2007 classification, was confirmed with 
biopsy or surgery) and followed at the Bern University Hospital between 1990 and 
2013 were initially included in the study. The study was approved by Kantonale 
Ethikkommission Bern.
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From this patient population, we selected patients receiving either no treatment 
or only surgery, for whom at least five post-surgery consecutive images showing 
tumour growth were available. Six patients who were initially diagnosed with grade 
II gliomas (4 astrocytomas and 2 oligodendrogliomas, age range 29–50 years, mean 
37 years) were included. A total of 34 imaging studies were used, with 4–7 studies 
(mean 6) per patient.

Patients with lung hamartomas (subgroup 10). Included in our study were six 
patients (five men, one woman, age range 51–63 years, median 58 years) who were 
diagnosed with lung hamartomas and who were participants of the SCALAMATH 
protocol with longitudinal follow-up. The imaging methods were the same as those 
for subgroup 8. A total of 46 imaging studies were used, with 5–12 studies (mean 8) 
per patient.

PET image analysis (patient subgroups 1–6). The PET scans were assessed in 
an Advantage Windows station (v.4) independently by an experienced nuclear 
medicine physician and an imaging engineer. In cases of disagreement, a third 
evaluator assessed the images. In the visual evaluation, a PET scan was considered 
to be positive if any radiotracer uptake higher than the normal tissue background 
was detected. Only positive PET scans were considered for tumour segmentation; 
that is, those that had a maximum SUV larger than twice the level of the 
background activity readings.

PET images in Digital Imaging and Communication in Medicine (DICOM) 
files were imported into the scientific software package Matlab (R2018b, The 
MathWorks). The tumour PET images were placed manually in a 3D box and 
then semi-automatically delineated using a grey-level threshold that was chosen to 
identify the MTV. Segmentations were corrected manually slice by slice as in ref. 38.

All of the segmentations were performed by a nuclear medicine physician 
and an imaging engineer, both of whom had more than 5 years of experience in 
tumour segmentation. In many cases, one or two additional segmentations were 
performed by other imaging engineers to verify the robustness of the methodology 
and to obtain consensus segmentations. Areas of physiological activity that were 
contiguous with tumour areas as defined by radiotracer uptake, such as the choroid 
plexus or the skull, were excluded manually from the tumour segmentations. 
To avoid observer-dependent biases, we developed an automatic segmentation 
algorithm for those tumour histologies with areas of physiological radiotracer 
uptake that were well separated from surrounding structures (see Supplementary 
Information section S5).

The radiotracer SUVs were computed for each voxel using the formula

SUV ¼ Sv ´RS ´W
RTD ´DF ´ elnð2ÞEt=HF

: ð3Þ

Here, Sv is the stored value, RS is the rescaled slope, W is the patient weight, RTD is 
the radiopharmaceutical injected dose and HF its half-life, DF is the decay factor, 
and Et is the elapsed time for each processed slice.

We also obtained global metabolic parameters, specifically the MTV (the 
volume of interest after segmentation) and the TLA (the sum of all of the local 
SUV measures over the volume of interest). Relevant local metrics, such as the 
maximum value of the SUV over the segmented lesion, also were stored. Because 
radiotracer uptake is very low in necrotic areas, they typically do not contribute to 
TLA and MTV measures.

MRI image analysis (patient subgroups 7 and 9). Brain metastasis T1-weighted 
images were collected in DICOM format and analysed by the same image expert 
(O.L.-T., with 2 years of expertise in tumour segmentation) as described for patient 
subgroups 1–6. An experienced radiologist (E.A.) revised and validated the tumour 
delineation.

For subgroup 9, T2/FLAIR MRI studies were used to define the tumour 
volume. Radiological glioma growth was quantified by manual measurements of 
tumour diameters on successive MRI studies (T2/FLAIR sequences). For older 
imaging data that were available only as jpeg images, we used the ellipsoidal 
approximation39 to compute the tumour volume.

CT image analysis (patient subgroups 8 and 10). The patients included were 
participants in the SCALAMATH study. CT images of lung cancer nodules were 
obtained in DICOM format. An experienced radiologist (E.A.) localized the lesion 
and then an image expert (O.L.-T.) performed the segmentations following the 
same methodology as for subgroups 1–7.

Glioma cells. Primary glioma cells (L0627) were kindly provided by R. Galli (San 
Raffaele Scientific Institute, Milan, Italy) and were grown in complete medium: a 
Neurobasal medium (Fisher) supplemented with B27 (1:50) (Fisher), a Glutamax 
medium (Fisher) (1:100), a Penicillin-streptomycin medium (Lonza) (1:100), 
a medium with 0.4% heparin (Sigma-Aldrich) and a medium with 40 ng ml−1 
epidermal growth factor (EGF) and 20 ng ml−1 rat basic fibroblast growth factor 
(bFGF2; Peprotech). Cells were passaged after enzymatic disaggregation using 
Accumax (Milipore). To monitor tumour growth, cells were infected with lentiviral 
particles that expressed Fluc (pLV-Hygro-EF1A-Luciferase) (Vector-Builder) and 
were selected in the presence of hygromycin.

Mouse glioma xenografts. Animal care and experimental procedures were 
performed in accordance with the European and National guidelines for the use 
of animals in research and were approved by the Research Ethics and Animal 
Welfare Committee at the Instituto de Salud Carlos III, Madrid (PROEX 244/14). 
Stereotactically guided intracranial injections in athymic nude Foxn1nu mice 
were performed by the administration of 1 × 105 L0627 cells (that expressed the 
luciferase reporter gene) resuspended in 2 μl of culture media. The injections were 
made into the striatum (coordinates anteroposterior from bregma, ± 0.5 mm,  
mediolateral from bregma, +2 mm and dorsalventral from bregma, −3 mm) using 
a Hamilton syringe. One month after the injection, we started to monitor the 
reporter expression in the tumours. In the monitoring process, animals received an 
intraperitoneal injection of luciferin (150 mg kg−1) and the luciferase activity was 
visualized in an IVIS Spectrum in vivo imaging system (Perkin Elmer). The total 
flux (in photons per second) was measured to assess tumour growth.

Animal studies with H2030-BrM3 cells. The human lung adenocarcinoma brain 
tropic model H2030-BrM3 (abbreviated as H2030-BrM)25 was injected into the 
hearts of nude mice to induce the formation of brain metastasis from systemically 
disseminated cancer cells. Brain colonization and growth of metastases were 
followed using non-invasive bioluminescence imaging, as BrM cells express 
luciferase. Upon administration of the substrate D-luciferin, bioluminescence 
generated by cancer cells was measured over the course of the disease. The increase 
in photon flux values is a well-established correlate of tumour growth in vivo25,40.
The experiments were performed in accordance with a protocol approved by 
the Centro Nacional de Investigaciones Oncológicas (CNIO), the Instituto de 
Salud Carlos III and the Comunidad de Madrid Institutional Animal Care and 
Use Committee. Athymic nu/nu mice (Harlan) aged 4–6 weeks were used. Brain 
colonization assays were performed by the injection into the left ventricle of 100 μl  
of PBS containing 100,000 cancer cells. Mice anaesthetized with isofluorane 
were injected retro-orbitally with D-luciferin (150 mg kg−1) and imaged with an 
IVIS Xenogen machine (Caliper Life Sciences). A bioluminescence analysis was 
performed using Living Image software (v.3).

Cell culture. H2030-BrM was cultured in an RPMI1640 medium supplemented 
with 10% FBS, 2 mM l-glutamine, 100 IU ml−1 penicillin-streptomycin and  
1 mg ml−1 amphotericin B.

Statistical analysis. We performed linear regressions of the log MTVð Þ
I

 versus 
log TLAð Þ
I

 distributions with the Matlab (R2019a) Statistics and Machine Learning 
toolbox command fitlm to construct the scaling laws. In Fig. 2, the non-linear 
fittings were carried out by fixing the optimum β for all patients of the same cancer 
type and allowing only for the personalization of the growth parameter α. Thus, 
for every set of N patients with the same cancer type and with a total of M (>3N) 
data points, we fitted the N values of α. For each cancer type, the value for β that 
was used was the one that provided the smallest MSE. To fit the longitudinal 
tumour volumetric dynamics to the model (equation (1)) with different values for 
β (β = 3/4, 1 and 5/4) and the optimum value for β, we used the Matlab function 
fmincon.

The Harrell’s C-index41 was computed to evaluate the capacity of the 
model to discriminate patient subgroups with different survival time. We 
computed the C-index for each possible threshold α in the scaling law 
log TLA ¼ log ðαÞ þ 5

4 logMTV
I

 for the metabolic variables (TLA, MTV) and split 
the patient population into two groups (values above and below the line). Then we 
searched for the non-isolated significant values (p < 0.1) and obtained the highest 
value of the C-index. Kaplan–Meier curves were constructed to compare both 
populations and the log-rank two-tailed test was used to compute the C-index. 
For instances in which either no curve with p < 0.1 was found or the best C-index 
obtained was below the value 0.7, we considered the variable under study to be 
unable to classify patient survival outcomes accurately.

Ethical approval. We have complied with all relevant ethical regulations. Human 
data were obtained either from public repositories (TCIA) or as part of several 
retrospective or prospective observational clinical studies that were approved 
by the corresponding institutional review boards (for details, see Methods). 
Animal care and experimental procedures were performed in accordance with 
the European Union and national guidelines for the use of animals in research, 
and were reviewed and approved by the Research Ethics and Animal Welfare 
Committee at the Instituto de Salud Carlos III de Madrid (PROEX 244/14) (glioma 
cells) and in accordance with a protocol approved by the CNIO, the Instituto de 
Salud Carlos III and the Comunidad de Madrid Institutional Animal Care and Use 
Committee (H2030-BrM3 cells).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 1,2,4 are available for this paper. All other data that support 
the plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.
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Code availability
The mesoscopic simulator code is available for download from http://matematicas.
uclm.es/molab/DiscrSimulator1.zip. Source data are provided with this paper.
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Extended Data Fig. 1 | Two human cancer animal models display superlinear growth dynamics. Two human cancer animal models display superlinear 
growth dynamics. Group 1 (G1) data correspond to untreated nude mice injected with the human lung adenocarcinoma brain tropic model H2030-BrM 
(see methods). Group data (G2) correspond to primary glioma cells (L0627) expressing the luciferase reporter gene injected into the brain of nude mice 
(see methods). Bioluminiscence images for G1 for some mice are shown in panel A. Total tumour mass growth curves for G1 showed superlinear dynamics 
with best fitting exponent β = 1.25 (for G2 it was β = 1.3). (B, upper panel). Errors relative to best fit were found to be substantially smaller with the 
optimal superlinear fits than for both the linear and sublinear fits (exponents 1 and 0.75 respectively) (B, lower panel).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Several patient datasets were included in our study: Breast cancer (n=129), Head and Neck cancer (n=92),  Rectal cancer (n=23),  High-grade 
gliomas (n=44), Brain metastasis (n=5), Lung (n=186), Low-grade gliomas (n=82) and Hamartomas (n=5). 

Data exclusions Patients not fulfilling the inclusion criteria were excluded. The inclusion criteria were: In Breast Cancer with FDG studies, newly diagnosed 
locally advanced breast cancer with clinical indication of neoadjuvant chemotherapy, lesion uptake higher than background, absence of 
distant metastases confirmed by other methods previous to the request of the PET/CT for staging and breast lesion size of at least 2 cm and ; 
in Head & Neck cancer, availability of pretreatment PETstudies, presence of a well-defined primary tumour; in Rectal cancer, histological 
confirmation of advanced rectal cancer diagnosis and availability of pretreatment PET/CT; in High-grade gliomas, pathologically confirmed 
brain glioma and unifocal lesions; Breast cancer with FLT studies, primary breast cancer measuring 2.0 cm or more, being a candidate for neo-
adjuvant chemotherapy and surgical resection of residual primary tumour after chemotherapy, and no evidence of stage IV disease; in Lung 
cancer with FDG studies, patients that received surgery were included; in Lung cancer with CT scans and temporal follow-up, enrollment was 
limited to those aged 50 years or older, with a smoking history of at least 10 pack-years, no previous cancer and general good health. 
Participants harboring parenchymal solid or part-solid non calcified nodule with at least three or more follow-up CTs were identified according 
to specified criteria in the protocol; in Low-grade gliomas receiving either no treatment or only surgery for which at least five post-surgery 
consecutive images showing tumour growth were available; in Hamartomas, longitudinal follow-up was mandatory.

Replication Not applicable.

Randomization Not applicable.

Blinding Not applicable.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Two animal models were used: 1) 17 female (2-3 months old) Foxn1nu mice for glioma xenographs and 2) 37 Athymic nu/nu 
(Harlan) mice of 4-8 weeks of age for brain metastasis

Wild animals Not applicable.

Field-collected samples Not applicable

Ethics oversight Animal care and experimental procedures were performed in accordance to the European Union and National guidelines for the 
use of animals in research and were reviewed and approved by the Research Ethics and Animal Welfare Committee: for animal 
model 1) at our institution (Instituto de Salud Carlos III, Madrid) (PROEX 244/14); for animal model 2) approved at CNIO (PROEX 
211/17)

Note that full information on the approval of the study protocol must also be provided in the manuscript.



3

nature research  |  reporting sum
m

ary
O

ctober 2018

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The study used data from several retrospective observational studies (not registered in any international database)

Study protocol SCALAWS, FuMeGa, ACRIN6688 (TCIA), METMATH and SCALAMATH

Data collection Data for SCALAWS, FuMeGa, ACRIN, METMATH and SCALAMATH studies were collected between 2007 and 2019. 

Outcomes Not applicable. 

Magnetic resonance imaging
Experimental design

Design type Retrospective.

Design specifications Not applicable.

Behavioral performance measures Not applicable.

Acquisition

Imaging type(s) T1+Gd sequences.

Field strength 1, 1.5 and 3 T. 

Sequence & imaging parameters Postcontrast T1-weighted sequence was gradient echo using 3D spoiled-gradient recalled echo or 3D fast-field echo 
after intravenous administration of a single-dose of gadobenate dimeglumine (0.10 mmol/kg) with a (6-8)-min delay. All 
MRI studies were performed in the axial plane with either a 1.5 T Siemens scanner, a 3 T Philips scanner and a 1 T 
Philips scanner. Imaging parameters were no gap, slice thickness of 1 - 1.6 mm, 0.438-0.575 mm xy resolutions, and 0.8 
- 1.3 mm spacing between slices.

Area of acquisition Whole brain scan.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Not applicable.

Normalization Not applicable.

Normalization template Not applicable.

Noise and artifact removal Not applicable.

Volume censoring Not applicable.

Statistical modeling & inference

Model type and settings Not applicable.

Effect(s) tested Not applicable.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Brain.

Statistic type for inference
(See Eklund et al. 2016)

Not applicable.

Correction Not applicable.
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Nonlinear regression analysis using Mean Square Errors (MSE) to fit model equations.
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