
1.  Introduction
Peak demand has an important role in water distribution system design because it is associated with one of the 
most burdensome operating scenarios in a network. For this reason, peak demand has been widely discussed over 
the last century. Traditionally, peak demand assessment has focused on determining the peak demand coefficient 
or peak factor, which is defined as the ratio between the maximum and the mean daily flow. Authors like Har-
mon (1918), Babbitt (1928), Metcalf and Eddy (1935), or Johnson (1942) (among others) proposed expressions 
that provide the peak factor at sewer systems based on the size of the population. These empirical equations set 
up the basis for peak demand analysis at water supply systems, although they address the problem from a deter-
ministic point of view.

Water demand is nowadays recognized as one of the main random factors that condition flow variability (Magini 
et al., 2008). The development of stochastic demand models that simulate the complex pulsed nature of water 
demands has motivated the shift toward probabilistic (rather than deterministic) demand analysis (Vertommen 
et al., 2015), also for peak demand assessment. According to the literature review presented by Creaco, Blokker, 
and Buchberger  (2017), stochastic demand models can be broadly classified as: (a) household-based models, 
which adjust statistical models based on flow measurements at monitored households, like the Poisson Rectan-
gular Pulse (PRP) model originally presented by Buchberger and Wu (1995), and (b) end-use models, which 
compute household consumption by aggregating the contribution of each end-use or microcomponent (e.g., taps, 
showers, washing machines) according to survey-based data. Zhang et al. (2005) and Creaco et al. (2018) have 
already applied PRP-like models to assess peak demands. Zhang et al. (2005) proposed a theoretical explanation 
for peaking factors by combining a PRP model with extreme value theory. Balacco et al.  (2017) adapted this 
approach to a case study in Italy, comparing it with traditional formulas and real measurements. On the other 
hand, SIMDEUM (SIMulation of water Demands, an End-Use Model) is the reference microcomponent model at 
present (Creaco, Blokker, & Buchberger, 2017), and it has also been used to compute accurate estimates of peak 
demands (Blokker et al., 2012).

Addressing peak demand assessment probabilistically is not the only current challenge. The temporal and spatial 
resolution effect on peak factors is being discussed as well. As pointed out by Tricarico et al. (2007), assuming 
a time interval of one hour (traditional temporal framework for peak assessment) may result in an underestima-
tion of peak demand, because major peaks could take place within the hour. On the contrary, using very fine 
time scales (e.g., 1 s) is excessive considering that per second variations are not expected to be decisive in order 
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to guarantee the supply service. Moreover, using fine temporal scales would require adopting unsteady flow 
models rather than the conventional extended period simulation approach (Creaco, Pezzinga, & Savic, 2017). 
De Marinis et al.  (2003), Tricarico et al.  (2007), and Gato-Trinidad and Gan  (2012) analyzed peak values in 
real networks and demonstrated that 1 to 5 min interval data can be a good compromise solution. Furthermore, 
Gargano et al. (2017) assumed different probabilistic distributions (Lognormal, Gumbel, and Log-logistic) for 
the peak factor and proposed empirical formulas to estimate the mean and coefficient of variation of the peak 
factor for different spatial (239–1,220 users) and temporal (60–3,600 s time step) resolution levels. Del Giudice 
et al. (2020) go one step further and propose a methodological framework to estimate the expected value of hourly 
peak demand factors considering its dependence on the spatial aggregation level. Creaco et al. (2021) have also 
recently worked in developing a two-step methodology for the generation of snapshot peak demand scenarios, 
each of which is based on a single combination of demand values at nodes.

Deriving empirical formulas to assess the effect of spatial and temporal resolution on peak demands has a lim-
itation: it is usually site-specific. This work intends to provide a conceptual framework to analyze the effect of 
short-term variability (i.e., variability below the hour, as it will be explained in Section 2) on probabilistic peak 
demand analysis. The aim of this paper is two fold: (a) to present a novel analytical approach that enables to assess 
the effect of short-term variability on probabilistic peak demands for different spatial and temporal resolutions, 
and (b) to ease the understanding of peak demand factors thanks to a physically based (rather than an empirical) 
approach. This is possible by combining peak demand analysis with a stochastic demand model that accounts 
for short-term variability. As mentioned before, other authors have already applied stochastic demand models to 
assess peak demands (e.g., Blokker et al., 2010; Creaco et al., 2018; Zhang et al., 2005), but their focus (to the 
best of the authors' knowledge) was not on specifically assessing scale effects. The novelty of this work lies in 
combining peak analysis with a microcomponent-based (i.e., end-use oriented) demand model to assess the effect 
of short-term variability on peak demands. Instead of using the original SIMDEUM model, which runs Monte 
Carlo simulations to provide high-resolution demand patterns based on survey-data, the analytical approach to 
SIMDEUM model presented by Díaz and González (2021) is adopted to characterize water demands. As it will 
be discussed later, this offers some advantages for the statistical characterization of water demand and enables to 
focus on short-term variability effects.

The rest of this work is organized as follows. First, the concept of variability and the implications of assessing 
short-term variability are presented in order to clearly define the scope of this paper. This explanation will help to 
clarify the interest of adopting an analytical microcomponent based demand model to analyze peak demands. The 
analytical methodology to assess the effect of short-term variability on peak demand values and peak demand co-
efficients is later presented. Then, the methodology is applied to two case studies. The first application is intended 
to validate the analytical approach and the second case study is proposed in order to enhance the understanding of 
peak values at a particular example. Finally, practical implications and conclusions are duly drawn.

2.  Short-Term Variability Conceptualization: Using a Microcomponent Stochastic 
Demand Model to Assess Peak Demands
Water demand variability conditions the peak values expected within a water system. “Variability” is understood 
all along this work as the variation of water demands when all possible realizations are considered, that is, vari-
ance is a measure of variability. In order to explain the effect of demand variability on peak demands, it is impor-
tant to first understand the different types of water demand temporal variability that may exist for a particular spa-
tial scale. They can be inferred by analyzing human interaction with supplied drinking water in a populated area.

Every day, each inhabitant (here called end-user) carries out his/her daily activities (e.g., waking up, going to 
work, working). Along the day, each person uses the water provided by the supply system whenever he/she needs. 
Therefore, end-users behave randomly and independently, although they are all subjected to behavior temporal 
patterns according to frequency of use distribution functions. These functions come determined by the culture of 
the populated area (e.g., village, town, city), timetables (e.g., business, study, and leisure hours), weather condi-
tions (e.g., temperature, rainfall), particular events (e.g., multitudinary sports events, television programming), 
festivities, etc. These external factors apply similarly to a significant amount of the population, conditioning the 
aggregated water consumption. This leads to apparent correlation of aggregated water use between different pop-
ulation groups (Díaz & González, 2021).
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In other words, there is a short-term variability that refers to the random processes carried out by independent 
users, each one involved in different activities that make more or less probable their use of water. Users can 
be classified based on their consumption pattern, which is at the same time linked to the influence of external 
factors. For example, it can be assumed that five different types of end-user exist (children, teenagers, working 
adults, nonworking adults and seniors). These types correspond to groups of people that are influenced by similar 
external factors (Díaz & González, 2021). Within a short temporal framework (e.g., Δt ≤ 1 hr), it can be assumed 
that the same conditions apply to all users of the same type, but their behavior is inherently random, that is, they 
respond independently to similar water use probability distributions associated with their consumer type. Note 
that one hour is the typical temporal unit adopted to define demand patterns (i.e., demand multipliers, which 
correspond to water use probability distributions under a microcomponent approach), so it is reasonable to be-
lieve that within that period consumption probability distributions are set and water use is a random independent 
process. Also, a medium-term variability that accounts for daily and weekly routines (derived from timetables, 
festivities, social events, weather conditions, etc.) can be identified. Because users of the same type may be sub-
jected to higher or lower probabilities of water use during specific periods of time, apparent correlation occurs 
within this temporal scale. Long-term variability should accommodate changes over the year (holidays, climatic 
season, second residence use etc.), and even a very long-term variability could be distinguished to consider 
changing consumption patterns, electricity tariff updates or population trends. Interannual changes of the popu-
lation itself (change in the number and type of inhabitants) could be considered as very long-term variability as 
well. As discussed by Ruiz et al. (2022), the thresholds between short, medium and long-term variability are not 
clearly stablished, but 1 hr, 1 week, and 1 year will be considered in this work as a reference. Table 1 summarizes 
the different levels of temporal variability adopted in this work and their practical implications.

Note that very long, long, and mid-term variability are naturally periodic or semi-periodic: they are partially 
predictable. They are associated with high correlation among inhabitants, so they can be simulated by consid-
ering external factors that condition the behavior of the population. In other words, long and mid-term variance 
can be characterized or even forecasted (e.g., Zhou et al., 2002; Xenochristou & Kapelan, 2020) based on time 
series analysis because they are subjected to inertia. By contrast, the here called short-term variability is random 
and unpredictable: it is associated with low correlation among inhabitants. Short-term variability is not typically 
completely known, unless captured by telemetry devices. Ruiz et al. (2022) have recently proposed that short-
term variability can alternatively be characterized with stochastic demand models, because pulse demand models 
represent the complexity of water demands on a low spatial aggregation level (Buchberger & Wu, 1995). As 
mentioned in the Introduction, there are different types of stochastic demand models, and the end-use approach 
seems especially suitable to account for short-term variability. The original SIMDEUM model uses frequency, 
duration and intensity information from surveys in order to simulate water demand with Monte Carlo simulations 
(Díaz et al., 2021). This requires multiple simulation runs in order to assess variability (Blokker et al., 2011). 
Rather than working with the conventional SIMDEUM model, the analytical approach presented by Díaz and 

Temporal framework Sources of variability Spatial implications Predictability

Short-term variability Δt ≤ 1 hr Random processes None (independent users) Unpredictable

Medium-term variability 1 hr < Δt ≤ 1 week Business, study, and leisure hours Correlation among users (external factor influence) Partially 
predictableWorking and nonworking days

Social events and weekend 
activities

Weather

Long-term variability 1 week < Δt ≤ 1 year Holiday periods Correlation among users (external factor influence) Partially 
predictableClimatic season

Second residence use

Very long-term variability Δt > 1 year Consumption pattern changes Correlation among users (external factor influence) Partially 
predictableElectric tariff changes Demographic changes (number and/or type of 

end-user)Cultural changes

Table 1 
Water Demand Temporal Variability for a Particular Spatial Scale



Water Resources Research

DÍAZ AND GONZÁLEZ

10.1029/2021WR030532

4 of 15

González (2021) is here adopted. This approach analytically provides the temporally averaged statistical prop-
erties (mean and variance) of water demands over a time interval Δt thanks to the assumption of independent 
behavior among inhabitants, which is reasonable for short-term variability estimations. Note that as long as per-
hour daily patterns are assumed for different types of end-user (Díaz & González, 2020), short-term variability 
can be quantified. The short-term variability threshold, which is referred to in this work as Δtshort = 1 h = 3,600 s, 
could be further reduced below the hour if more detailed patterns were available. The model presented by Díaz 
and González (2021) assumes steady conditions for the time interval under analysis, so in order to simulate the 
effect of medium, long or very-long term variability, it should be combined with convenient models that update 
the daily distribution of frequency of use over time.

It is reasonable to believe that when analyzing peak demands, these types of variability (very long, long, medium, 
and short-term) must be considered. However, long and very long-term variability are very difficult to distinguish 
in practice, as population is in continuous change. When peak demands are to be assessed, it is usual to assume 
a fixed population size (N number of inhabitants). This implies that very-long term variability is not usually con-
sidered, that is, variability is bounded for a fixed value of N. Long and medium-term variability characterization 
is site-specific, and thus it is not straightforward to develop a general model for its quantification. However, short-
term variability has already been deeply analyzed under the microconsumption conceptual framework. Díaz and 
González (2021) highlight the importance of the sampling rate (i.e., temporal framework) and the spatial scale to 
characterize water demand variability. This offers an opportunity to extend the assessment of short-term varia-
bility to peak demand assessment under different temporal and spatial scales. For this reason, this paper focuses 
on assessing the effect of short-term variability on peak demand analysis. This implies that addressing peak as-
sessment with this stochastic demand model will enable to understand and compute the changes of peak demands 
over the temporal scale below the hour (Δt ≤ Δtshort). This is reasonable given that peak demand assessment 
based on measurement series analysis is the procedure that has been traditionally adopted to characterize peak 
demand or peak demand coefficient values between the minute and the hour (Gargano et al., 2017; Gato-Trinidad 
& Gan, 2012; Tricarico et al., 2007). The added value of the approach presented in this paper is that it provides a 
conceptual framework to analyze results rather than being measurement series specific.

Note that in the temporal domain, as long as Δt ≤ Δtshort, it can be guaranteed that peak demand differences are 
only due to short-term variability. On the other hand, too low Δt values cannot be used for snapshot simulation, 
as Δt must be large enough to dampen transients (Creaco, Pezzinga, & Savic, 2017). Therefore, this conceptual 
framework assumes that peak demand differences for any Δt below the hour would be related to short-term var-
iability, considering average conditions during a sufficiently long Δt to avoid network transient effects. In the 
spatial domain, this cannot be generally guaranteed. But if changes in the population (from N1 to N2) are small 
and the pattern distribution across end-users is homogeneous over the populated area (i.e., similar distribution of 
end-users and frequency patterns), changes will foreseeably be mainly associated with short-term variability. In 
this scenario, the methodology presented in this work is sufficient to assess peak demands over different spatial 
scales. If there are significant changes across the population, they must be accounted for with a convenient long/
medium-term variability model. This is out of the scope of this paper. The method that will now be presented is 
suitable to assess short-term variability effect on peak demands at different temporal and spatial scales.

3.  Peak Demand Assessment
3.1.  Peak Demand Values

Water demands present a random behavior, which must be statistically characterized. Individual water consump-
tion is not expected to behave according to a normal distribution. However, when a sufficient amount of popula-
tion is assessed, the aggregated water consumption can be assumed to follow a normal distribution with mean μQ 
and standard deviation σQ. Other authors have proved that skewness is non negligible for low aggregation levels 
based on measurement series (Creaco et al., 2021), but the normal assumption is here adopted as a conceptual 
simplification and will be validated in the Results section. The mean and standard deviation statistical properties 
are not constant: they vary with the spatial aggregation level being considered (N number of inhabitants) and 
they depend on the temporal framework adopted for demand analysis. In this work, only the effect of short-term 
variability is assessed. Its theoretical threshold has been previously defined as Δtshort = 3,600 s (see Table 1), so 
one hour is here adopted as the time step for frequency of use definition in the microcomponent demand model 
and as the longest time-interval possible for peak demand assessment.
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As explained before, the subjacent stochastic model assumes steady conditions around each time, which is rea-
sonable below the hour. This hypothesis enables to assume that water demand mean value μQ(N) remains constant 
regardless of Δt for a N number of inhabitants, always considering Δt ≤ Δtshort. On the contrary, water demand 
variance also depends on the temporal framework adopted for the analysis: we must talk about σQ(N, Δt) rather 
than σQ(N). The variance registered by a metering device depends on its sampling rate: considering longer Δt 
implies losing information about consumption behavior, leading to lower variance values (Buchberger & Nadim-
palli, 2004). Apparent variance is defined as the variance associated with the recorded behavior. This is a rele-
vant concept for peak demand characterization under different temporal scales. The smaller the temporal scale, 
the larger the apparent variability, and thus the larger the peak demand over the interval. Note that in this work 
apparent variance (the variance associated with the recorded behavior) is discussed all along. Previous studies 
have focused in explaining the difference between apparent and missed variance (i.e., variance of the unrecorded 
behavior), but missed variance is out of the scope of this paper. The reader may refer to Díaz and González (2021) 
or Ruiz et al. (2022) for a more detailed explanation about their differences.

Considering that water demands follow a normal distribution with μQ(N) and σQ (N, Δt), the probability P of not 
exceeding a specific Qp(N, Δt) value over a short time period where temporal homogeneity can be assumed is 
given by:

𝑃𝑃 = Pr[𝑄𝑄 ≤ 𝑄𝑄𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡)] = Φ[𝑄𝑄𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇𝑄𝑄(𝑁𝑁), 𝜎𝜎𝑄𝑄(𝑁𝑁𝑁Δ𝑡𝑡)],� (1)

where Φ represents the cumulative distribution function of the normal distribution. In order to analyze peak 
demand values over a temporal framework, it is not enough to assess if demand values will remain below the 
threshold value at one Δt time interval. All demand values at each interval within the Δtshort temporal framework 
must keep below Qp(N, Δt). Assuming that water demands behave independently, the probability of not exceeding 
Qp(N, Δt) at any point within Δt can generally be written as:

𝑃𝑃 = Φ[𝑄𝑄𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇𝑄𝑄(𝑁𝑁), 𝜎𝜎𝑄𝑄(𝑁𝑁𝑁Δ𝑡𝑡)]
𝑛𝑛
; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (2)

where n refers to the number of Δt intervals within the temporal framework 𝐴𝐴 𝐴𝐴 =
Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Δ𝑡𝑡
 . According to extreme val-

ue theory, it can be proved that the maxima of a n-sequence of independent normally distributed samples follows 
a Gumbel distribution (David & Nagaraja, 2003). This holds when considering a large number of n intervals (very 
fine Δt to maximize the number of intervals within the hour), which are of low interest for modeling purposes 
(Creaco, Pezzinga, & Savic, 2017), but this idea will be useful for discussion of results in Section 4.1.

It is important to highlight that μQ(N) and σQ(N, Δt) refer to the mean and standard deviation of the original nor-
mal distribution assumed for water demands at peak hour. These values could be computed from the measurement 
series of a metering device with a Δt sampling rate located at a position that supplies water to N inhabitants. 
Alternatively, they can be obtained with the microcomponent stochastic demand model proposed by Díaz and 
González (2021). The reader may refer to Díaz and González (2020) and Díaz and González (2021) for details.

3.2.  Peak Demand Coefficients

Peak demand analysis has traditionally focused on computing peak demand coefficients (relative values) rather 
than peak demand absolute values. The peak demand coefficient Cp has traditionally been defined in the literature 
(e.g. Gargano et al., 2017) as:

𝐶𝐶𝑝𝑝 =

𝑄𝑄𝑝𝑝

𝑄𝑄𝑑𝑑

� (3)

where Qp represents the peak flow during the day and Qd corresponds to the average daily mean water demand. 
As mentioned in the Introduction, several authors have already highlighted that Cp depends on N and Δt. To be 
consistent, it will be here assumed that:

𝐶𝐶𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡) =
𝑄𝑄𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡)

𝑄𝑄𝑑𝑑(𝑁𝑁)
; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (4)

with Qp(N, Δt) and Cp(N, Δt) referring, respectively, to the peak demand value and peak demand coefficient 
associated with the N spatial and Δt temporal scales under analysis.



Water Resources Research

DÍAZ AND GONZÁLEZ

10.1029/2021WR030532

6 of 15

Equation 2 can be written in relative terms as:

𝑃𝑃 = Φ

[

𝑄𝑄𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡)

𝑄𝑄𝑑𝑑(𝑁𝑁)
, 𝜇𝜇 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁), 𝜎𝜎 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡)

]𝑛𝑛

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (5)

where 𝐴𝐴 𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

 and 𝐴𝐴 𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

 represent the mean and the standard deviation of relative demand with respect to the daily 

mean water demand. According to Equation 4, Equation 5 can be written as:

𝑃𝑃 = Φ

[

𝐶𝐶𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁), 𝜎𝜎 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡)

]𝑛𝑛

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (6)

The standard deviation can be computed from the corresponding mean and coefficient of variation (CV):

𝜎𝜎 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) = 𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁); ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (7)

So Equation 6 can be rewritten as:

𝑃𝑃 = Φ

[

𝐶𝐶𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁), 𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁)

]𝑛𝑛

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (8)

Note that �
�
��

(�) , �
�
��

(�,Δ�) and ��
�
��

(�,Δ�) all refer to the statistical properties of water demands (or 

rather the ratio of water demands over daily values) and not to the statistical properties of peak water demands. 
In order to assess peak demands, the statistical properties of the ratio should focus on the hour where maximum 
values are expected. Within this time window, different Δt values are possible. We here assume that the mean 
ratio of water flows over daily flows at peak hour is equal to the mean of the peak demand coefficient over one 
hour [�

�
��

(�) = ��� (�,Δ��ℎ���) ]. This implies approximating the mean of relative demands over the peak period 

as the mean of the peak coefficient for the longest Δt possible within the short-term variability domain (i.e., 
Δt ≈ Δtshort). Under this assumption, Equation 8 can be simplified as:

𝑃𝑃 = Φ

[

𝐶𝐶𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

]𝑛𝑛

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (9)

4.  Results
Two case studies are here adopted to explain the full potential of using a microcomponent-based demand model to 
assess the effect of short-term variability on peak demand. The first case study corresponds to the network presented 
by Ruiz (2020). Note that a stochastic water demand microcomponent model has already been adjusted for this case 
study in the literature before (Ruiz, 2020; Ruiz et al., 2022). This means that the demand engine can be considered 
a well-fitted model to reality. The purpose of this example is to check if the analytical approach here proposed to 
compute probabilities of not exceedance for flow threshold values (Section 3.1) is consistent with equivalent Monte 
Carlo simulations. The assumption of considering water demands as normally distributed is also checked.

The second case study involves the real water distribution network of the small town Piedimonte San Germano 
(Italy), as presented in Gargano et al. (2017). This publication provides information about measured peak coeffi-
cients in the system, and these values will be used to infer the statistical properties of water demand. Moreover, it 
will be shown that using a microcomponent-based approach enables to explain the short-term variability of peak 
coefficients with a physically based model. This is advantageous with respect to deriving empirical formulas, as 
it will be discussed later.

4.1.  Validation Case Study

Ruiz (2020) presented this case study with the aim of better understanding residential water demand variability 
according to different sources of information and its implications on state estimation (Díaz et al., 2018). This 
archetypical example comprises 79 ,106 inhabitants (in 30 ,203 households), and its microcomponent stochastic 
demand model has already been adjusted in Ruiz et al. (2022) based on metered data and statistical information. 
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Thus, it can be assumed that the demand model is valid and consistently provides the temporally averaged mean 
[μQ(N)] and apparent variance [σQ(N, Δt)] of water consumption, which quantifies short-term variability.

Table 2 provides the mean water demand at peak hour (10:00) for six different spatial aggregation levels: N = 1, 
N = 100, N = 1,000, N = 10,000, N = 40,000 (approximately half of the population) and N = 79,106 inhabitants 
(total population). These values illustrate that mean water demand is directly related to the number of inhabit-
ants considered, provided that the end-use distribution is homogeneous at different spatial aggregation levels. 
Figure 1a shows the water demand variance values obtained with the model for different spatial aggregation 
levels and temporal scales at peak hour. Variance (i.e., quantification of apparent variability) has a S-shaped 
curve that represents the evolution of the short-term variance with Δt: the greater the temporal scale, the smaller 
the associated variance. These curves were named by Ruiz et al. (2022) as TESIC (which stands for Temporal 
scale Effect Sigmoid Curve). Figure 1a proves that TESIC (i.e., variance) rises as the population increases, with 
maximum values of nearly 20 L2/s2 for its maximum population. Figure 1b shows the equivalent coefficients of 
variation, which also decrease as Δt increases for a particular N value. However, coefficients of variation increase 
as the number of inhabitants reduces. This figure proves that short-term variance gains relative importance as N 
reduces.

Probabilities of not exceedance are analytically computed according to Equation 2. In this theoretical example, 
four threshold values are considered:

1.	 �Qp(N, Δt) = μQ(N)
2.	 �Qp(N, Δt) = μQ(N) + σQ(N, Δt)
3.	 �Qp(N, Δt) = μQ(N) + 2 ⋅ σQ(N, Δt)
4.	 �Qp(N, Δt) = μQ(N) + 3 ⋅ σQ(N, Δt)

Because n = Δtshort/Δt is assumed in this work, it is expected that the first threshold value will be associated with 
P = 0.5 (50% probability) for Δt = Δtshort = 3,600 s and smaller values as the number of intervals increases (0.5n). 

N = 1 N = 100 N = 1,000 N = 10,000 N = 40,000 N = 79,106

μQ (L/s) 0.0025 0.2099 2.0163 19.7142 78.1249 154.5292

Table 2 
Mean Water Demand Values μQ(N) at 10:00 in the Validation Case Study

Figure 1.  Water demand (a) short-term variance (TESIC) and (b) coefficient of variation at 10:00 for different number of inhabitants (N) and temporal scales (Δt) in 
the validation case study.
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The rest of Qp(N, Δt) values will exceed the mean value, and thus enable a variety of probabilities in this example 
network. Figure 2 provides the analytically computed probabilities of not exceedance and their equivalent values 
according to 1,000 Monte Carlo simulations. For Monte Carlo simulations, 1,000 per-second demand series have 
been generated over 1 h for each N value. Then, water demands have been averaged over each Δt time interval, 
and the maximum value has been selected. The numerical probability of not exceedance has been computed by 
counting the number of times that the maximum average value remains below the four threshold Qp(N, Δt) values.

Figure 2 shows good correspondence between analytical and numerical results for N ≥ 100. This proves that 
water demands can be considered normal for a sufficient number of aggregated users. The upper row of Fig-
ure 3 includes the normal probability plot of the maximum averaged water demands according to Monte Carlo 
simulations for N = 1, 100, and 79,106 inhabitants when Δt = Δtshort. Note that for Δt = Δtshort, the exponent in 
Equation 2 is n = 1 and so maximum averaged water demand values should correspond to a normal distribution. 
This starts to happen for N ≥ 100, but not for a lower number of inhabitants. For N = 1, data is far from fitting 
to a normal probability plot. This is because averaged water demands are predominantly zero, and so a normal 
distribution cannot be assumed for water demands. For N = 100 there is some skewness, which is consistent with 
the findings of Creaco et al. (2021), but data starts to resemble a normal probability plot. Data fits a normal prob-
ability plot for the total population (N = 79,106). The lower row in Figure 3 shows the analogous for Δt = 1 s. In 
this case, the exponent in Equation 2 is n = Δtshort/Δt = 3,600. This explains the curvature at the extremes of the 
normal probability plot for N ≥ 100, which calls for a Gumbel distribution rather than a normal distribution as the 
number of intervals within the hour increases.

In the overall, Figure 2 proves that the analytical approach is a good approximation for Δt > 60–120 s as long 
as normality can be assumed for water demands, that is, a sufficient amount of inhabitants is considered. If this 

Figure 2.  Probability of not exceedance for different peak demand values Qp(N, Δt): analytical approach (ANA) versus Monte Carlo simulation (MCS).
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condition is met, the analytical approach is reasonable for temporal scales above the order of one or two minutes. 
According to De Marinis et al. (2003) and Tricarico et al. (2007) 1-min intervals provide a good compromise 
for peak demand characterization, and the analytical approach here presented can be validated for that range of 
application. This means that the effect of short-term variability on peak demand values or peak coefficients for 
time intervals 60 s ≤ Δt ≤ Δtshort can be explored with the methodology presented in Section 3 as long as a reliable 
stochastic demand model exists.

4.2.  Piedimonte San Germano (PSG)

Piedimonte San Germano is a monitored network in Italy. As presented by Gargano et al. (2017), the monitoring 
system consists of four measurement points that measure supplied flow (i.e., aggregated demands) to N = 239, 
777, 981, and 1,220 inhabitants. The analysis presented by these authors assumes an initial time resolution of 
Δt = 60 s, although measurements are then aggregated to assess the mean and the coefficient of variation of peak 
demands up until Δt = Δtshort = 3,600 s. This publication provides values of 𝐴𝐴 𝐴𝐴𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) . This 

implies that instead of having information about water demand statistical properties [μQ(N) and σQ(N, Δt)] like in 
the previous case study, statistical properties of peak demand coefficients are available. Therefore, this case study 
is analyzed according to the formulation in Section 3.2.

Figure 3.  Normal probability plot of maximum averaged water demand values according to Monte Carlo simulations for N = 1, 100, and 79,106 inhabitants for 
Δt = Δtshort and Δt = 1 s: testing the normality hypothesis and the importance of N and Δt.
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Figure 4 gathers the mean (4a) and the coefficient of variation (4b) of peak demand coefficients for different 
N and Δt values. These values have been obtained by digitalizing the original figures in Gargano et al. (2017), 
which correspond to measured data. The authors also propose empirical formulas, but they have not been used in 
this work to avoid possible deviations from original values. Figure 4a shows that the mean peak demand coeffi-
cient reduces as the number of inhabitants increases. This implies that the greater the population size, the smaller 
the peak coefficient, and it is consistent with prior observations in the literature (see Balacco et al., 2017 for ref-
erences). It also shows that the peak demand coefficient reduces as the temporal scale increases, highlighting the 
importance of assessing the temporal scale effect on peak demands. Figure 4b shows the coefficient of variation 
for peak demand coefficients, which also reduces as the number of inhabitants increases. This is reasonable given 
that the smaller the population, the greater the variability. The coefficient of variation for relative peak demands 
reduces with the temporal scale: the smaller Δt, the smaller 𝐴𝐴 𝐴𝐴𝐴𝐴𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡) . Note that points for N = 239 have a less 
clear trend in terms of coefficient of variation. This behavior can already be seen in Gargano et al. (2017), and its 
assessment is out of the scope of this paper.

Because 𝐴𝐴 𝐴𝐴𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) is known (Figure 4a), it is important to determine 𝐴𝐴 𝐴𝐴𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) so that the probability of 
no exceedance can be determined for any peak demand coefficient according to Equation 9. With this purpose, 
probability has been sampled (Psample) between 0 and 1 with 1,000 values. According to Equation 9, it can be 
written that:

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Φ

[

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡), 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

]𝑛𝑛

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (10)

So:

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑁𝑁𝑁Δ𝑡𝑡) = Φ−1

[

𝑃𝑃
1

𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
, 𝜇𝜇𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

]

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (11)

At the same time, 𝐴𝐴 𝐴𝐴𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡) can be estimated by computing the mean and coefficient 
of variation of Cp,sample(N, Δt). The unknown 𝐴𝐴 𝐴𝐴𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) can be determined by minimizing the sum of relative 
quadratic errors for the mean and coefficient of variation of Cp,sample(N, Δt) and those published by Gargano 
et al. (2017):

Figure 4.  Peak demand coefficient statistical properties: (a) mean 𝐴𝐴 𝐴𝐴𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) , (b) coefficient of variation 𝐴𝐴 𝐴𝐴𝐴𝐴𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡) . From Gargano et al. (2017).
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min
𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡)∈ℝ

[

(

𝜇𝜇𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) − 𝜇𝜇𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡)

𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡)

)2

+

(

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) − 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡)

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡)

)2
]

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (12)

Optimization function (Equation 12) is here solved with the simplex search method (Lagarias et al., 1998) to 
compute 𝐴𝐴 𝐴𝐴𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) for all N and Δt according to the relationship established by Equation 11.

Once 𝐴𝐴 𝐴𝐴𝐴𝐴 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) is computed, the associated variance can be obtained as:

𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) =

[

𝐶𝐶𝐶𝐶 𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ⋅ 𝜇𝜇𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

]2

; ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (13)

Note that 𝐴𝐴 𝐴𝐴𝐶𝐶𝑝𝑝
(𝑁𝑁𝑁Δ𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐶𝐶𝑝𝑝

(𝑁𝑁𝑁Δ𝑡𝑡) were originally computed from a measurement time series (where long, 
medium and short-term variability is present), so this variance represents the “total” relative variance of water 
demands. Figure 5a shows that the total relative variance diminishes in general as Δt increases, and greater val-
ues are obtained for smaller N. This is because variance is expressed in relative terms, so the less inhabitants, 
the greater the expected variance. A relationship can be found between the relative total variance for N inhabit-
ants [𝐴𝐴 𝐴𝐴2

𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) ] and the individual total relative variance for one inhabitant [𝐴𝐴 𝐴𝐴2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁 = 1,Δ𝑡𝑡) ]. By considering 

Qd(N) much less variable than the peak flow, it can be written that:

𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) =
𝜎𝜎2

𝑄𝑄
(𝑁𝑁𝑁Δ𝑡𝑡)

𝑄𝑄2

𝑑𝑑
(𝑁𝑁)

=

𝑁𝑁 ⋅ 𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁 = 1,Δ𝑡𝑡)

𝑁𝑁2
⋅𝑄𝑄2

𝑑𝑑
(𝑁𝑁 = 1)

=
1

𝑁𝑁
⋅ 𝜎𝜎2

𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁 = 1,Δ𝑡𝑡); ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (14)

So the individual total relative variance can be obtained by multiplying the relative total variance by N:

𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁 = 1;Δ𝑡𝑡) = 𝑁𝑁 ⋅ 𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡); ∀𝑁𝑁𝑁∀Δ𝑡𝑡� (15)

Figure 5b shows the resulting individual total relative variance. This figure proves that the individual relative 
variance evolves similarly no matter the reference number of inhabitants (N) considered for its computation. 
Remember that N = 239 is not to be fully trusted.

Figure 5.  Total variance for different number of inhabitants (N) and temporal scales (Δt) at Piedimonte San Germano (PSG) case study: (a) relative variance, (b) 
individual relative variance.
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Figure 5 shows that the total relative variance and the individual total relative variance do not tend to zero for 
Δtshort = 3,600 s. This is because adjusted values represent the total variance of water demands according to meas-
ured data. As explained in Section 2, variability when assessing peak demands includes not only short, but also 
medium and long-term components. These unpredictable (short-term) and predictable (long/medium-term) terms 
can be separated based on previous observations. It has already been proven that the short-term variance tends 
to zero for Δtshort (see Section 4.1 or Díaz & González, 2021). For this reason, the long/medium-term variance is 
here considered equal to 𝐴𝐴 𝐴𝐴2

𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and short-term variability can be computed as:

𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑
,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑁𝑁𝑁Δ𝑡𝑡) = 𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡) − 𝜎𝜎2
𝑄𝑄

𝑄𝑄𝑑𝑑

(𝑁𝑁𝑁Δ𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠); ∀𝑁𝑁𝑁∀𝑡𝑡� (16)

Figure 6 summarizes the behavior of short-term relative variance in this case study. Figure 6a provides the short-
term relative variance for different N and Δt values, and Figure 6b shows the corresponding individual short-term 
relative variance, obtained by multiplying Equation 16 by N. Figure 6a shows that the short-term relative variance 
is greater for smaller N, but Figure 6b illustrates that the individual relative TESIC curve remains constant no 
matter the spatial aggregation level used to derive its values. This implies that once an individual TESIC curve 
is obtained, it can be used to extrapolate short-term variability for other scales. Additionally, Table 3 gives the 
relative importance (in %) of the individual short-term relative variance (Figure 6b) with respect to individual 
total relative variance (Figure 5b). It shows that short-term variance has a greater influence for small Δt and N 
values. This implies that long/medium-term variance loses importance for time intervals in the order of minutes, 
where short-term variability is crucial.

Figure 6.  Short-term variance for different number of inhabitants (N) and temporal scales (Δt) at Piedimonte San Germano (PSG) case study: (a) relative variance, (b) 
individual relative variance.

Δt = 60 s Δt = 300 s Δt = 600 s Δt = 900 s Δt = 1,200 s Δt = 1,800 s Δt = 3,600 s

N = 239 93.6292 90.3700 86.8841 71.1751 68.4238 50.1012 0

N = 777 82.5610 75.9209 67.8348 62.0611 52.6877 39.0581 0

N = 981 80.2737 76.3741 68.6208 61.1309 52.7570 38.4335 0

N = 1,220 80.0311 73.7580 69.0417 61.0459 54.1811 37.2727 0

Table 3 
Relative Importance (in %) of Individual Short-Term Relative Variance With Respect to Individual Total Relative Variance
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4.3.  Practical Implications

These examples enable to conclude that microcomponent stochastic demand models can be a useful tool to assess 
the effect of short-term variability on peak demands. Note that the most important equations for the analysis here 
presented correspond to Equation 2 for peak demand value assessment (more general), Equation 9 for peak de-
mand coefficient analysis, and Equation 16 to understand how TESIC curves are incorporated in the formulation. 
Depending on the available information, there are different ways of benefiting from the conceptual framework 
presented in this paper:

1.	 �If a consistent microcomponent demand model is available, both μQ(N) and σQ(N, Δt) can be computed at peak 
hour. Note that the so called TESIC curve is a representation of σQ(N, Δt) over different time intervals for a 
specific N and at a specific time: the peak hour. Having a reliable stochastic model enables to compute the 
TESIC curve and the mean consumption value for N at peak hour. With this input, peak values for different 
Δt ≤ Δtshort can be probabilistically computed according to Equation 2 in order to asess the short-term variabil-
ity effect on peak demands. This procedure was applied in the validation case study presented in Section 4.1.

2.	 �If there is no access to a full stochastic demand model, but a TESIC curve is available at peak hour, the effect 
of short-term variability on peak demands can still be analyzed. Note that TESIC at peak hour is an isolated 
result from the stochastic demand model (i.e., σQ(N, Δt); ∀ Δt ≤ Δtshort at peak hour). A measurement series 
for that N and a Δt sampling rate would still be needed to apply Equation 2. The conceptual framework here 
presented would enable to extrapolate peak demands from a measurement series with a specific Δt to other 
Δt ≤ Δtshort thanks to the TESIC curve. This may seem unimportant when high-resolution (e.g., per minute) 
measurements are available, but it becomes of utmost importance when conventional low-resolution (i.e., per 
hour) measurements are available. Note that it is easy to aggregate measurements for ascending Δt values, but 
it is not straightforward to decompose averaged values over long Δt into smaller time intervals. The TESIC 
curve is therefore an asset to analyze and better understand the effect of short-term variability on peak de-
mands. Moreover, the shape of the TESIC curve could be extrapolated from results at other populated areas 
that are similar to a particular case study. In purely empirical approaches (like the one presented by Gargano 
et al., 2017), extrapolations are not possible.

3.	 �If there is no access to a microcomponent demand model or a TESIC curve at all, the conceptual framework 
here presented can still be used to assess the effect of short-term variability on peak demands. Note that Gar-
gano et al. (2017) (like other authors that work with measurement series) start from a per-minute measurement 
series and progressively aggregate the metered values in order to analyze the temporal scale effect on peak 
demands, proposing empirical formulas to compute peak coefficients for different N and Δt. In Section 4.2 of 
this work, the individual short-term relative variance TESIC curve is inferred from the statistical properties of 
peak demand coefficients published by Gargano et al. (2017). Once this curve is known, Equation 9 is used 
to assess the short-term variability effect on peak demands. In other words, TESIC curve is an alternative to 
the empirical formulas originally proposed to interpolate peak coefficients over different Δt. The difference is 
that this expression is physically based and supported by a microcomponent-based stochastic demand model. 
In Section 4.2, the TESIC curve has been obtained from the statistical properties of peak demands for seven 
Δt values. If the information at only one Δt was available (e.g., per-hour sampling rate) and population charac-
teristics were similar, the equivalent TESIC curve could still be inferred by assuming the characteristic shape 
of the curve here obtained (Figure 6b) or from other similar case studies.

To finish with, note that in these three hypotheses of available information, only the extrapolation or interpolation 
to other 60 s ≤ Δt ≤ Δtshort has been discussed. Extrapolation to other N would be possible if it can be guaranteed 
that short-term effects predominate, that is, population is homogeneous. This implies that the approach here 
presented would be suitable on its own to assess the variability of peak demands on a short-term basis, with 
direct implications on simulation and/or water quality applications. The approach could be further extended by 
combining short-term variability curves with suitable models that explain long/medium-term variability. Their 
combination would provide a fully operative methodology to compute peak demands over any N and Δt. This 
would be crucial to design or test new supply areas within a water system based on available information in the 
pre-existing network. Therefore, this paper is presenting a methodological approach that could be systematically 
extended to account for demand variability across all temporal horizons.
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5.  Conclusions
In this work, an analytical methodology to probabilistically assess the effect of short-term variability on peak 
demand values and/or peak demand coefficients is presented. This is possible by combining peak demand as-
sessment principles with the analytical approach to SIMDEUM model proposed by Díaz and González (2021). 
This analytical approach is here adopted to quantify and/or explain the short-term variability of water demands. 
Note that short-term variability (below one hour) is random and unpredictable, so it can only be estimated either 
with stochastic demand models or analyzing measurement series. Long and medium-term variability effects on 
peak demands are out of the scope of this paper, but they could be incorporated if a suitable variability model 
was available.

The interest of using an analytical approach to assess peak demands lies in avoiding the site-specific empirical 
formulas that can be derived from measurement series. This physically based perspective enables not only to 
compute, but also to better understand, the meaning of peak demand variations over different temporal resolu-
tions within the short-term threshold. Results in both case studies have proved that a short-term variance curve 
for different time intervals can either be built (with a stochastic demand model) or inferred (from measurement 
series analysis) to assess peak demands. This curve can then be used to characterize short-term variability for any 
number of inhabitants as long as end-uses are similarly distributed. This paper proves that short-term variability 
has a significant effect on peak demand assessment. Moreover, it has been here identified as crucial when dealing 
with small populations and small time intervals. This contribution highlights the importance of developing strat-
egies that enable bottom-up peak demand assignment, as applying a single peak coefficient to the whole network 
results in an overly simplified top-down approach given the variability of water demands.

Data Availability Statement
The data and code that support this work are available at https://doi.org/10.5281/zenodo.5834352
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