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 2 

Abstract 17 

Mitochondrial energetic deficit is one of the hallmarks of neurodegenerative 18 

disorders, e.g. Alzheimer´s disease (AD). Adherence to a Mediterranean diet is 19 

associated with lower incidence of cognitive decline and AD and extra virgin olive 20 

oil’s (poly)phenols such as oleuropein and hydroxytyrosol (HT) are being actively 21 

studied in this respect. In this study, we assessed the effects of HT on 22 

mitochondrial energetic dysfunction in the 7PA2 cells cellular model, i.e. one of 23 

the best cellular models of Aβ toxicity with a well-characterized mitochondrial 24 

dysfunction typically observed in AD. We report an increase of new mitochondria 25 

at 8 hours post HT-treatment, which was followed by higher mitochondrial fusion. 26 

Further, ATP concentrations were significantly increased after 24 hours of 27 

treatment with HT as compared with controls. 28 

Our data suggest that HT may revert the energetic deficit of a cellular model of 29 

AD by potentiating mitochondrial activity. Because HT is being proposed as 30 

dietary supplement or component of functional foods, future studies in 31 

appropriate animal models and - eventually - humans are warranted to further 32 

investigate its potential neuroprotective actions in AD. 33 

 34 
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1. INTRODUCTION 37 

 Mitochondrial energetic deficit is an intracellular dysfunction shared by 38 

many neurodegenerative disorders, e.g. Alzheimer´s disease (AD). AD is one the 39 

main aging-related diseases whose prevalence increases from 65 years of age: 40 

approximately 46.8 million people worldwide are affected by AD and this figure 41 

will triple by 2050 [1]. Therefore, it is indispensable to elucidate the 42 

physiopathology of AD to design new strategies to prevent, mitigate, and/or delay 43 

AD development. AD is characterized by an irreversible memory loss, partly 44 

triggered by the formation of extracellular senile plaques, accumulations of 45 

amyloid  peptide (A), and intracellular neurofibrillary tangles of 46 

hyperphophorylated tau protein, which negatively affect synaptogenesis [2]. This 47 

dynamic neurobiological process is dependent on high levels of energy, provided 48 

by mitochondria. Specifically, the most amount of cellular adenosine triphosphate 49 

(ATP) derives from the mitochondrial electron transport chain. The electron flow 50 

from complex I to complex IV simultaneously generates an electrochemical 51 

proton gradient in the inner mitochondrial membrane, which is used by complex 52 

V (ATP synthase) to produce ATP. A supply of reduced nicotinamide adenine 53 

dinucleotide (NADH) to mitochondria as well as oxygen are necessary to trigger 54 

this transport. Aralar, the mitochondrial carrier of aspartate/glutamate, is a 55 

component of the malate/aspartate shuttle that is essential to provide NADH and 56 

to ensure the oxidative phosphorylation performance in the mitochondria [3]. In 57 

summary, mitochondria are crucial to a proper neuronal activity. In AD, both Aβ 58 

peptide as well as hyperphosphorylated tau protein accumulations actively 59 

exacerbate mitochondrial dysfunction by inducing many mitotoxic effects [4, 5].  60 

Numerous studies have suggested that A inhibits mitochondrial respiration 61 
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leading to a reduced ATP production [6, 7]. Further, Aβ is able to enter into the 62 

mitochondria and interact with the ATP synthase subunit , leading to lower ATP 63 

production [8, 9]. A decreased respiratory complexes V, III, and II is 64 

commonplace in mitochondria from frontal cortices of AD patients [10]. In 65 

transgenic AD mice, there is a deregulation of complex I tau-dependent, at both 66 

protein and activity levels [11]. To date, all studies suggest that the reduced levels 67 

of mitochondrial ATP actively contribute to neuronal cell death and to AD 68 

progression. 69 

Mitochondrial biogenesis (mitochondriogenesis) is the process by which 70 

cells increase the amount of their mitochondria; it is also impaired in AD brain, 71 

where an unbalanced mitochondriogenesis contributes to mitochondrial energetic 72 

dysfunction [12].  Members of the peroxisome proliferator-activated receptor γ 73 

coactivator1 α (PGC-1α) family are key regulators of mitochondrial biogenesis 74 

and function in highly metabolic tissues, such as liver, kidneys, and brain. In 75 

particular, PGC-1α acts as a transcriptional coactivador of nuclear genes involved 76 

in the mitochondriogenesis induced by energy needs. Further, PGC-1 77 

participates on the maintenance of basal mitochondrial function [13]. Moreover, 78 

various studies have showed that the expression of PGC-1, as well as of other 79 

nuclear transcriptional factors are significantly decreased in hippocampus of AD, 80 

indicating altered mitochondriogenesis [14, 15]. In addition, fusion and fission 81 

mitochondrial processes are also tightly related to mitochondrial integrity and 82 

function, as mitochondria are dynamic organelles which constantly divide and 83 

fuse with each other in response to different physiological state. Various studies 84 

have found altered levels of fusion and fission proteins in cell and animal models 85 
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of AD, indicating that the presence of abnormal mitochondrial dynamics could 86 

represent an early marker of AD [16, 17]. 87 

Adherence to a Mediterranean diet is associated with lower incidence of 88 

cognitive decline and AD [18-21]. Extra virgin olive oil’s (poly)phenols such as 89 

oleuropein [22-25] and hydroxytyrosol (HT) [18, 26-32] are being actively studied 90 

in this respect and are being attributed neuroprotective properties. As an 91 

example, HT restores the impaired insulin signalling pathway in a cell model of 92 

AD [32] and prevents cognitive decline in a mouse model of A-deposition [33]. 93 

In terms of cerebral mitochondrial dysfunction, some studies have suggested that 94 

HT could improve it in animals exposed to high oxidative stress conditions, i.e. in 95 

db/db mice and in arsenic-treated rats [34, 35]. Of note, all these works focused 96 

on the purported antioxidant actions of HT [18]. Yet, the effect of HT on the 97 

reduced mitochondrial ATP production associated to AD has been poorly 98 

investigated. 99 

We wanted to ascertain the effects of HT on mitochondrial energetic 100 

dysfunction in a cellular model of AD, using 7PA2 cells because it is one of the 101 

best cellular models of Aβ toxicity with a well-characterized mitochondrial 102 

dysfunction typically observed in AD [36, 37]. 103 

 104 

2. MATERIALS AND METHODS 105 

2.1 Cell line and culture conditions 106 

The 7PA2 cell line was a kind gift of Prof. Dennis J. Selkoe, the Neurologic 107 

Diseases Institute at Harvard Medical School (Boston. USA). These cells were 108 

originally obtained from the Chinese hamster ovary (CHO) cell line stably 109 
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transfected with cDNA encoding human amyloid precursor protein APP751, a 110 

protein that bears the Val717Phe familial AD mutation related to the development 111 

of early AD [38]. Cells were routinely cultured in 100 mm culture dishes in 112 

Dulbecco´s modified Eagle´s medium (DMEM) supplemented with 10% (v/v) fetal 113 

bovine serum (FBS), 0.01% glutamine, 100 U/ml penicillin-streptomycin, and 200 114 

µg/ml G-418 (to maintain the phenotype of transfected cells). All these reagents 115 

were purchased form Lonza (Basel, Switzerland). Cells were grown at 37 ºC in 116 

an atmosphere containing 5% CO2. 117 

2.2 Treatment of the cells 118 

For all experiments, cells were plated in 60 mm culture dishes (100.000 119 

cells/cm2) with supplemented DMEM. Once cells reached 80% confluence, they 120 

were maintained for 24h with DMEM without FBS to inhibit cellular proliferation. 121 

Subsequently, cells were treated with 5 µM of HT for 4, 8, or 24 hours. HT was 122 

kindly donated by Seprox Biotech (Madrid, Spain) and was dissolved in absolute 123 

ethanol to the desired concentrations. The controls received equivalent volume 124 

of the vehicle and all cells were recollected at 4, 8, or 24 hours. Three different 125 

experiments were performed in duplicate for each assay. 126 

2.3 Measurement of ATP levels 127 

 Intracellular ATP levels were quantified by a fluorometric assay (Sigma-128 

Aldrich, St Louis MO, USA). Cells were homogenized and deproteinized using a 129 

10kDa molecular weight cut-off spin filter (Millipore Corp., Bedford, Mass.). The 130 

assay was performed according to the manufacturer´s protocol and fluorescence 131 

(ex = 535/ em = 587) was measured in a microplate reader (Biochrom Asys UVM 132 

340, Cambridge, UK). 133 
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2.4 Protein extraction and quantification 134 

 7PA2 were exposed to the treatments previously described. The media 135 

were removed and cells were collected on ice in 200 µL of lysis buffer pH 7.6 136 

containing 50 mmol/L HEPES, 10mM EDTA, 50 mmol/L sodium pyrophosphate, 137 

100 mmol/L sodium fluoride, 10 mmol/L sodium orthovanadate, 1% Triton X-100, 138 

2 mmol/L phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, and 10 µg/ml 139 

aprotinin.  Samples were homogenized, incubated overnight at – 80 ºC, and then 140 

centrifuged at 14,000 rpm for 30 min at 4 ºC to remove cellular debris. Clear 141 

supernatants were transferred to new tubes to determine the total protein 142 

concentration by BCA (Pierce, Thermo Fisher Scientific).  143 

2.5 Western Blot analysis 144 

Total proteins (30 µg) were resolved on a 10% SDS-PAGE gel and then 145 

transferred to polyvinyl difluoride (PVDF) membranes. Membranes were blocked 146 

with Tris-buffered saline containing 0.1% Tween 20 (TTBS) and 5% (w/v) milk 147 

powder during 2 h at 25 ºC. Blots were incubated with primary antibodies diluted 148 

in TTBS at 4 ºC overnight. Antibodies included anti-citrate synthase; anti- PGC-149 

1 (1:1000 dilution) from Santa Cruz Biotechnology (Santa Cruz, CA); anti-ATP 150 

synthase (1:1000 dilution); anti-Mitofusin 2 (1:5000 dilution) from Abcam PLC 151 

(Cambridge, UK); and anti-Aralar which was a gift from Professor A del Arco [39]. 152 

The membranes were subsequently washed and incubated with the 153 

corresponding secondary antibody conjugated with horseradish peroxidase 154 

diluted (1:2000) in TTBS during 90 min at 25 ºC.  Proteins were detected by 155 

chemiluminescence with a West Pico substrate (Thermofisher). All blots were 156 

reblotted with their corresponding total forms or with anti-glyceraldehyde-3-157 
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phosphate dehydrogenase (GADPH) to normalize each sample for gel-loading 158 

variability. Bands were quantified by densitometry using Adobe Photoshop´s 159 

(Adobe systems, Inc., Mountain View, CA). 160 

2.6 RNA extraction and quantification  161 

Total RNA from cells was obtained using the Tripure Isolation reagent 162 

(Sigma-Aldrich, San Luis, Misuri, USA), following the manufacturer's instructions. 163 

RNAs were quantified using the NanoDrop 2000 (Take3, BioTek). 164 

Complementary DNA (cDNA) was synthesized from 1 μg of DNase-treated RNA 165 

[40]. 166 

2.7 Real time qPCR analysis 167 

Real time quantitative PCR (q-PCR) was performed by using ABI PRISM 168 

7500 Fast Sequence Detection System instrument and software (Applied 169 

Biosystem, Foster City, CA). Relative quantification of target cDNA in each 170 

sample was performed from 10 ng of cDNA in TaqMan One-Step real time PCR 171 

Master Mix and using Pre-Developed TaqMan Assay Reagents (PE Applied 172 

Biosystem) for PGC1 (Rn00580241_m1) and 18S rRNA (Hs99999901_s1) with 173 

VIC as real time reporter was used as control to normalize gene expression. The 174 

ΔΔCT method was used to calculate the relative differences between experimental 175 

conditions and control groups as fold change in gene expression [41]. 176 

2.8 Mitochondrial DNA (mtDNA) quantification 177 

Total genomic DNA was isolated from cells using Tripure Isolation reagent 178 

(Sigma-Aldrich, San Luis, Misuri, USA) following the manufacturer's instructions. 179 

The mtDNA copy number quantification (2-ΔΔCT)) was evaluated by quantitative 180 

PCR as previously reported [42, 43] using 16S rRNA as a mtDNA marker (sense 181 
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primer 5´-AGAGTTTGATCCTGGCTCAG-3´; antisense primer 5´-182 

CTACGGCTACCTTGTTACGA-3´) and -actin as a nuclear DNA (nucDNA) 183 

marker (sense primer 5´-GGTATGGAATCCTGTGGCATCCATGAAA-3´; 184 

antisense primer 5´-GTGTAAAACGCAGCTCAGTAACAGTCC-3´) 185 

2.9 Mitochondrial permeability transition (MPT) assay 186 

7PA2 cells were plated in 24-well plates at the density of approximately 187 

104 cells/well and treated as described above. After washing with PBS, cells were 188 

stained with Mitotracker® Red CMX Ros (Invitrogen) diluted in PBS (100 nM). 189 

After being incubated at 37 ºC for 15 min, the samples were washed with PBS 190 

and with paraphormaldehyde 4% for 15 min. Nuclei were labelled with bis-191 

benzimide (Hoechst 33258; 1 mg/mL for 10 min at RT). Coverslips were mounted 192 

on glass slides with fluorescent mounting medium. Finally, samples were 193 

photographed by a laser scanning confocal microscope (Leica, TCS SP5, 194 

Germany). The images were analyzed using ImageJ NIH software that allowed 195 

quantification of the signal strength corresponding to mitotracker. 196 

3. Statistical analyses 197 

Data are expressed as means ± SEM. Statistical analysis was performed 198 

using one-way ANOVA (GraphPad Prism 5.03 software, GraphPad Software, 199 

Inc., San Diego, CA). When the main effect was significant, the Bonferroni post-200 

hoc test was applied to determine individual differences between means. 201 

Statistical significance was set at p< 0.05. Pearson´s correlation coefficient r was 202 

used to measure the degree of association between different variables measured 203 

in each group. Two-tailed p values < 0.05 were considered significant. 204 

 205 
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4. RESULTS 206 

4.1 HT improves the energetic status of 7PA2 cells 207 

Krako and collaborators [36] reported that 7PA2 transfected cells display 208 

decreased ATP production from their respiratory chain, as well as a reduced 209 

mitochondrial membrane potential in comparison with untransfected CHO cells. 210 

Furthermore, they suggested that the high production of toxic A could be 211 

triggering the severe bioenergetic impairment in 7PA2 cells. We assessed the 212 

effect of HT treatment on ATP production in 7PA2 cells by a fluorometric assay. 213 

After 24 hours of treatment with HT, ATP concentrations were significantly 214 

increased as compared with controls. However, HT did not modify ATP levels at 215 

4 and 8 hours (Table 1.). To shed some light on this HT-induced effect, we wanted 216 

to find out whether it could be due to an increased mitochondrial content or/and 217 

activity in 7PA2 cells. 218 

4.2 HT alters the mitochondrial content of 7PA2 cells 219 

In order to determine whether HT increased ATP levels via increased 220 

mitochondriogenesis, we measured some markers of mitochondrial mass. First, 221 

we assessed the concentrations of citrate synthase (CS), a mitochondrial matrix 222 

protein implicated in oxidative metabolism and commonly used as a marker of 223 

mitochondrial content [44, 45]. We found an increased CS expression in 7PA2 224 

cells treated with HT for 8 hours. Conversely, we observed no significant effect 4 225 

and 24 hours after HT-supplementation (Fig. 1A).  226 

Based on this result, we hypothesized that the HT-induced increased 227 

mitochondrial mass could be related to the formation of new mitochondria. 228 

Therefore, we measured messenger RNA (mRNA) levels and protein expression 229 
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of the transcriptional factor PGC-1 as well as the mtDNA copy number in HT-230 

treated 7PA2 cells. PGC-1 levels were significantly increased at 8 hours post 231 

HT-treatment. Nevertheless, HT treatment for 4 and 24 hours did not alter the 232 

expression of this mitochondrial regulator (Fig. 1B and C).  233 

Several reports have suggested that the evaluation of mtDNA copy 234 

number can be a good indicator of the amount of mitochondrial mass, because it 235 

remains almost constant in a normal physiological state [46-48]. Interestingly, we 236 

found a HT-induced mtDNA copy number increase in treated 7PA2 cells, at 8 237 

hours (Fig. 1D). Moreover, mtDNA copy number positively correlated with the 238 

PGC1 and CS concentrations in the 7PA2 cells that were treated for 8 hours 239 

(correlation coefficient (r) = 0.8377; p< 0.001*** and r = 0.7098, p< 0.01**; 240 

respectively), suggesting that HT induces the formation of new mitochondria in 241 

7PA2 cells after eight hours.  242 

Together, these findings show that the increased ATP production 243 

observed in 7PA2 cells 24 hours after HT-treatment is unlikely to be due to an 244 

increased mitochondrial mass. 245 

4.3 HT boosts mitochondrial activity 246 

Considering the aforementioned results, we wanted to determine whether 247 

the high ATP levels observed 24 hours after HT-treatment could be produced by 248 

an increase in mitochondrial activity. Therefore, we quantified - by mitotracker 249 

probes - the number of active mitochondria in HT-treated 7PA2 cells.  As shown 250 

in Figure 2A, HT increased the number of active mitochondria 24 hours after 251 

treatment in comparison with controls. Moreover, we found an increased level of 252 

aralar in HT-treated 7PA2 cells after 8 and 24 hours, corroborating the finding 253 
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that HT facilitates the provision of NADH to the respiratory chain (Fig. 2B). 254 

Likewise, the levels of the mitochondrial ATP synthase were significantly 255 

increased in HT-treated 7PA2 cells (after 24 hours) whereas the 8-hour treatment 256 

induced a small and non-significant increase (Fig. 2C.). 257 

In summary, all these findings indicate that HT increases mitochondrial 258 

activity in 7PA2 cells after 24 hours of treatment.  259 

4.4 HT favors mitochondrial fusion 260 

We wanted to ascertain whether the HT-induced augmented mitochondrial 261 

activity could be related to changes in the mitochondrial machinery. Therefore, 262 

we studied the levels of a membrane protein involved in the fusion of 263 

mitochondria. Mitofusin is a GTPases embedded in the outer membrane of the 264 

mitochondria, which maintains the balance of the mitochondrial network [49]. 265 

Interestingly, increased mitofusin levels were found in HT- treated 7PA2 cells 266 

after 24 hours (Fig. 3), indicating that HT could be inducing mitochondrial fusion 267 

in 7PA2 cells in that period. However, we did not detect changes in mitofusin 268 

levels at 4 and 8 hours after treatment with HT. 269 

 270 

5. DISCUSSION 271 

This study provides evidence that HT is able to improve the cellular 272 

energetic state of an “in vitro” model of AD. Various investigators suggested that 273 

HT acts on mitochondrial dysfunction in different pathologies such as obesity, 274 

type 2 diabetes [35, 50] and inflammatory angiogenesis as associated with 275 

cancer and vascular disease [51].  As regards AD, Peng and collaborators [52] 276 

showed that HT ameliorates mitochondrial dysfunction and cognitive behaviour 277 
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in the cerebral cortex of APP/PS1 mice, an animal model of AD. However, the 278 

Authors only focused on evaluating mitochondrial markers of oxidative stress and 279 

the inflammatory response induced by Aβ accumulation.  280 

In our study, we elucidated how HT is able to restore the mitochondrial 281 

energetic deficit of 7PA2 cells, a cellular model of AD with an Aβ-induced 282 

mitochondrial impairment.  We assessed both the mitochondrial content and 283 

activity of such cells to clarify the intracellular process responsible for the HT-284 

induced bioenergetic improvement. 285 

The 7PA2 cell line exhibits impaired mitochondrial machinery, leading to 286 

lower ATP production similar to that found in AD patients’ brains [36, 53, 54]. We 287 

observed that HT significantly increased ATP concentrations after 24 hours of 288 

supplementation. This agrees with Reutzel et al, who fed aged mice a mixture of 289 

(poly)phenols typical of olive oil [55] and with Schaffer et al. who used HT-rich 290 

olive mill waste water [28, 29]. Also, HT was able to augment the intracellular 291 

ATP concentration in degenerated mouse muscle cells [56]. Our data show that 292 

the altered mitochondrial function of 7PA2 cells could be restored by HT. 293 

To shed some light on the mechanisms by which HT increases ATP 294 

production by AD cells, we ascertained whether this phenomenon was due to a 295 

change in the quantity of mitochondria or in their activity. To measure the 296 

mitochondrial mass, we quantified the levels of CS, a mitochondrial protein, 297 

PGC1, a transcriptional regulator of mitochondriogenesis, and the mtDNA copy 298 

number after HT treatment.  We showed that all these parameters were increased 299 

in the 7PA2 cells treated for 8 hours with HT and we computed significant 300 

correlations among them, strongly suggesting that HT increases the 301 
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mitochondrial content of 7PA2 cells 8 hours after supplementation. Similar results 302 

were found in HT-treated adipocytes, although the concentration of HT and the 303 

treatment period were different than the ones used in our study [57]. Here we 304 

demonstrate that HT increases the amount of mitochondria in a cellular model of 305 

AD, suggesting that the HT-induced cognitive improvement found in previous 306 

studies and the association between olive oil consumption and lower incidence 307 

of neurodegeneration could be partly explained by such action [52]. The HT-308 

induced mitochondriogenesis could be, indeed, responsible for the increased 309 

ATP production observed in 7PA2 cells 24 hours post HT-treatment. 310 

Nevertheless, an active respiratory chain is necessary to increase ATP levels. 311 

Therefore, we evaluated mitochondrial activity by measuring some of its markers.  312 

Mitochondrial label assays carried out with mitotracker probes showed an 313 

increased number of active mitochondria in 7PA2 cells treated with HT for 24 314 

hours. The same experimental group also exhibited a higher expression of two 315 

molecules essential for a proper activity of the respiratory chain, i.e. the 316 

transporter Aralar and ATP synthase, the mitochondrial complex V.  These data 317 

indicate that HT augments the NADH flux mediated by Aralar and also favours 318 

ATP synthesis, increasing the levels of the key enzyme involved in this process. 319 

An in vitro study performed in serum-starved fibroblasts demonstrated that HT 320 

regulates the biogenesis of OXPHOS complexes, activating Protein kinase A and 321 

CREB pathways [58]. Another study reported that HT supplementation increases 322 

mitochondrial complex I activity (NADH-dependent) in muscle from rats subjected 323 

to excessive physical activity [59]. Soni and collaborators [34] demonstrated that 324 

HT restores the enzymatic activities of mitochondrial complexes I, II and IV in 325 

brains of rats with arsenic-induced mitochondrial dysfunction, which fits with our 326 
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finding because the NADH necessary to activate the mitochondrial complex I 327 

could be provided by Aralar, whose expression is potentiated by HT. Moreover, 328 

we have found high levels of ATP synthase at 24 hours after HT-treatment, which 329 

could partially contribute to the increased ATP production found in 7PA2 cells at 330 

the same treatment time. An increase in mitochondrial function should be 331 

associated with higher mitochondriogenesis. Conversely, we showed an increase 332 

of new mitochondria at 8 hours post HT-treatment rather than at 24 hours. Given 333 

that mitochondria are dynamic organelles, we hypothesize that the lack of 334 

increased mitochondrial content at 24 hours after treatment could be caused by 335 

the fusion of the new mitochondria generated at 8 hours, which become fully 336 

activated at 24 hours. To corroborate this hypothesis, we measured mitofusin 337 

levels as a mitochondrial fusion indicator.  Indeed, immunoblots revealed high 338 

mitofusin levels at 24 hours, which suggests that, between 8 and 24 hours after 339 

supplementation, HT could be inducing mitochondrial fusion in 7PA2 cells. This 340 

is noteworthy because, according to Wang et al [16], mitochondrial fusion is 341 

decreased - via APP overexpression - in AD. Consistent with our data, another 342 

study proposed that HT induces mitochondrial fusion in muscles of rats subjected 343 

to high intensity exercise [59]. In summary, accrued evidence supports the 344 

hypothesis that the putative protective role of HT in AD is partly due to the its 345 

inducting mitochondrial fusion. 346 

In conclusion, our data suggest that HT may revert the energetic deficit of 347 

a cellular model of AD by potentiating mitochondrial activity. Because HT is being 348 

proposed as dietary supplement or component of functional foods, future studies 349 

in appropriate animal models and - eventually - humans are warranted to further 350 

investigate its potential neuroprotective actions in AD. 351 
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Table 1. Effect of HT (5 µM) on the ATP levels (pmol/µl) of 7PA2 cells, at 4, 8, 567 

and 24 hours. 568 

 ATP pmol/l 

 CONTROL HYDROXYTYROSOL 

4 hours 639.90 ± 93.97 553.30 ± 35.96 

8 hours 530.30 ± 47.56 619.70 ± 36.69 

24 hours 586.60 ± 17.99 963.50 ± 82.33** 

 569 

Values are means ± SEM of three independent experiments that were 570 

performed in duplicate. ***p< 0.001 after ANOVA as compared with control 571 

group.  572 
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Figure Legends 595 

Figure 1. Effect of hydroxytyrosol (5 µM) on markers of mitochondrial mass in 596 

7PA2 cells treated for 4, 8, and 24 hours. Control groups (C) are shown as open 597 

bars and treated groups (HT) as solid bars. (A) Relative protein levels of citrate 598 

synthase (CS) and (C) peroxisome proliferator-activated receptor γ coactivator 599 

1 (PGC-1). (B) Relative levels of mRNA of PGC-1 and (D) mitochondrial 600 

DNA. Data are means ± SEM of three different experiments carried out in 601 

duplicate. DU, densitometry units. *P< 0.05; **P< 0.01; ***P< 0.001 after ANOVA.  602 

Figure 2. Effect of hydroxytyrosol (5 µM) on markers of mitochondrial activity in 603 

7PA2 cells treated for 4, 8, and 24 hours. Control groups (C) are shown as open 604 

bars and treated groups (HT) as solid bars. (A) Mean intensity of active 605 

mitochondria labelled with mitotracker probes in 7PA2 cells treated for 24 h with 606 

HT. (B and C) Western blot and densitometry from immunoblots derived from the 607 

protein expression levels of Aralar and ATP synthase in control and treated 7PA2 608 

cell groups. Data are means ± SEM of three different experiment carried out in 609 

duplicate. DU, densitometry units. *P< 0.05; **P< 0.01 after ANOVA. 610 

Figure 3. Densitometry from immunoblots derived from the Western blot analysis 611 

of the relative mitofusin 2 protein levels in 7PA2 cells treated with hydroxytyrosol 612 

for 4, 8, and 24 hours. Control groups (C) are shown as open bars and treated 613 

groups (HT) as solid bars. The data are percentages of the respective control 614 

means ± SEM of three different experiments performed in duplicate. DU, 615 

densitometry units. *P< 0.05 after ANOVA. 616 
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