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Abstract

The Kernel Logistic Regression is a popular technique in machine learning. In this work this technique is applied to the field of dis-
crete choice modeling. This approach is equivalent to specifying non-parametric utilities in random utility models. A Monte Carlo
simulation experiment has been carried out to compare this approach with Multinomial Logit models, comparing the goodness of
fit and the capability of obtaining the specified utilities.
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1. Introduction

Nowadays, artificial intelligence (AI) has achieved great popularity due to its success in applications such as au-
tonomous vehicles, intelligent robots, image and voice recognition, automatic translation, etc. The construction of
most of these intelligent machines is based on machine learning (ML) methods. These achievements have led to an
increment in the usage of ML methods and there is an increasing interest in expanding the domain of applications, for
instance in the field of transport planning.

Discrete choice methods based on Random Utility Theory (RUM) have been developed over the last four decades,
and currently they have acquired a high degree of sophistication which allows them to obtain a set of measures such
as willlingness to pay (WTP), value of the time (VOT), elasticities, market shares, etc. These measures quantify
essential magnitudes of the studied problem and allow to evaluate the result of any intervention in the transport
system. Discrete choice models describe how a rational decision-maker chooses an alternative between a set of choices
depending on the characteristics of each one of them and the peculiarities of the decision-maker (Ben-Akiva and
Bierlaire (1999a); McFadden (1978); Train (2009)). In the decision process there are some latent (unobservable)
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2 José Ángel Martı́n-Baos et al. / Transportation Research Procedia 00 (2019) 000–000

functions called utility functions which measure the interest of each alternative for a user. The decisor-maker is
supposed to choose the alternative that maximizes his utility. The utility of each alternative consists of a deterministic
part and a stochastic one. The probability distribution of this stochastic part determines the resultant model, being
the multinomial logistic (MNL) model the most widespread example. These models are estimated using maximum
likelihood estimation methodology which allows to determine an asymptotic distribution of the estimators and makes
possible to test hypotheses in the parameters.

The combination of MNL with radial basis functions is known in the machine learning community as Kernel Logis-
tic Regression (KLR) (Zhu and Hastie (2005)), which is derived without any probabilistic assumptions. Moreover, in
KLR the parameter estimation problem is based on a penalized maximum likelihood estimation in which the goodness
of fit criterion weighs the empirical risk and its complexity.

Espinosa-Aranda et al. (2018) propose a Nested Logit (NL) model with restrictions in which utilities are specified
by radial basis functions. This paper extends the KLR to the situation of NL models with (exogenous or endogenous)
constraints. The NL model with restrictions is defined implicitly through the resolution of an optimization problem.
This characteristic leads to a bi-level structure of the estimation problem and the need to employ meta-heuristic
methods instead of using a canonical method as Newton’s method. Additionally, Espinosa-Aranda et al. (2015) uses
this model in a passenger-centered train timetabling problem.

Discrete choice models require the modeler to specify a functional expression using the attribute set and a vector of
parameters (parametric utilities), while in above ML models, such as KLR, this analytical expression is not necessary,
being enough to choose a type of the so-called kernel function. We refer to this second approach as non-parametric
utilities.

ML methods have been compared with the RUM models in the literature, being limited to analyzing which has the
highest predictive capacity in the discrete choice problems. One approach that should be researched is to generalize
the RUM theory in order to incorporate several achievements of the ML methods, thus allowing to take advantage
of both methodologies. In this work the KLR methods are reviewed under a RUM perspective, showing that these
approaches provide a way to specify utilities (non-parametric utilities) and associated estimation techniques. A con-
trolled computational experiment have been conducted, using Monte Carlo simulation methods, to motivate the use
of non-parametric utilities in non-linear phenomena.

2. Methodology

In this section, RUM and KLR methods are reviewed in order to introduce a common notation in a way they can
be compared in the next section.

2.1. Random Utility Model

As described in Ben-Akiva and Bierlaire (1999b), utility theory assumes that the decision-maker’s preference for
an alternative can be captured by a value, which is called utility, and the decision-maker selects the alternative with
the highest associated utility from his/her choice set. This approach presents some strong limitations in practical
applications because the underlying assumptions of this concept are often violated. For this reason, some models such
as Random Utility Models (RUMs) assume that the decision-maker has perfect discrimination capability. However,
the analyst is considered to have incomplete information and, therefore, uncertainty must be taken into account.

In RUM the utility defined for a decision-maker n to select an alternative i from the choice set Cn is given by

Uin = Vin + εin, (1)

where Vin is the deterministic (also called systematic) component of the utility, and εin is the unobserved component,
which is a random term used to include the impact of all the unobserved variables that have an impact on the utility
function. Hence, the probability that a decision-maker n chooses an alternative i from the choice set Cn is

P (i|Cn) = P
(
Uin ≥ U jn ∀ j ∈ Cn

)
= P
(
Uin = max

j∈Cn
U jn

)
. (2)
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Some assumptions are necessary to make the random utility model operational. The concept of utility is relative
and not absolute, for this reason only the signs of the differences between utilities are relevant. This is shown in eq.
(3) where location and scale parameters are introduced, represented as α and µ, respectively, and where µ > 0.

P
[
Uin ≥ U jn ∀ j ∈ Cn

]
=

P
[
µUin + α ≥ µU jn + α ∀ j ∈ Cn

]
=

P
[
Uin − U jn ≥ 0 ∀ j ∈ Cn

]
.

(3)

The scale parameter is usually selected in order to obtain a convenient normalization of one of the variances of the
unobserved component. Generally, the location parameter α is set to zero.

The hypotheses about the errors distribution εin determines the probability of choosing each alternative by the
expression (3). The MNL models assume a Gumbel distribution and, therefore, in this case the probability of each
alternative is given by the expression

P(i/Vn,Cn) =
exp(Vin)∑

j∈Cn
exp(Vjn)

, (4)

where Vn is the utility vector of the alternatives for the decision-maker n, i.e. Vn = (V1n, · · · ,VIn)T , being I the total
number of alternatives.

The deterministic term of the utility Vin of each alternative i, which is defined in Eq. (5), is a function that depends
on the vector zin of attributes of the alternative itself as perceived by the individual n and a vector S n of characteristics
of the decision-maker. It’s written mathematically

Vin = V(zin, S n). (5)

The previous equation can be simplified if an appropriate vector valued function h is used, which defines a vector
of attributes xin from zin and S n, that is

xin = h(zin, S n). (6)

Therefore, the deterministic utility Vin can be defined, for example, using a linear function

Vin = Vi(xin,βi) = β
�
i xin =

K∑
k=1

βik xink, (7)

where βi is the vector of parameters.
The utility functions depend on a vector of parameters βi which needs to be estimated for each i. Let Θβ =

(β�1 , · · · ,β�I )�. The canonical method for estimating Θβ is the maximum likelihood estimation. It is assumed that the
sample X = {xin} of attributes for each decision-maker n = 1, · · · ,N and for each alternative i = 1, · · · , I has been
observed. The choice set for the decision-maker n is denoted by Cn and their decisions by y where yin = 1 if the n
decision-maker chooses the i alternative or yin = 0, otherwise.

The likelihood of the sample is

p(y|V) =
N∏

n=1

∏
i∈Cn

P(i|Vn,Cn)yin . (8)

The estimate of the βi parameters of the utilities Vi(xin,βi) is obtained using Maximum Likelihood Estimation (MLE),
by solving

Maximize
Θβ

LL(Θβ) = log p(y|X,Θβ), (9)
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where

log p(y|X,Θβ) =
N∑

n=1

∑
i∈Cn

yin log P(i|xn,Θβ,Cn). (10)

and xn = (x�1n, x
�
2n, · · · , x�in, · · · , x�In)�.

Once the main concepts related to the RUM have been established, the following point introduces KLR.

2.2. Kernel Logistic Regression

Many machine learning methods approach the problem of classification from a non-statistical point of view. These
procedures do not intend to explain the process of choosing for a specific user, but to develop procedures with the least
classification error. For this reason they consider all available information about a user to explain the choice of the
alternative i, i.e. xn = (x�1n, x

�
2n, · · · , x�in, · · · , x�In)�, and consider that all the users have the same choice set, i.e. Cn = C

for all decision-makers n. The goal is to predict the alternative chosen by the decision-maker n given the characteristic
vector xn. Support Vector Machine (SVM) (Cortes and Vapnik (1995)) has been one of the most promising methods
over the last few decades but with the emergence of deep networks this dominance has been weakened, Theodoridis
(2015). KLR is considered a variant of SVM, which not only predicts the classification of an object (an individual’s
choice), but also estimates the probability of belonging to each category.

KLR builds some latent functions, Vi(x) for all i ∈ C, which is equivalent to the systematic utility functions of
RUM, but considering them as black box functions. Due to their equivalence they are denoted in the same way. The
classification criteria is based on maximizing the expected utility

i∗ = arg maximize
i∈C

{Vi(x)} . (11)

If the function Ψ(x) is added to all the functions Vi(x) in KLR, the decision rule (11) does not change:

i∗ = arg maximize
i∈C

{Vi(x)} = arg maximize
i∈C

{Vi(x) + Ψ(x)} . (12)

This illustrates that, just like the utility functions in RUM, the latent functions Vi(x) are overspecified. Therefore,
without prejudicing the explanatory capacity of the model, it can be assumed that VI(x) = 0.

KLR provides estimates of the class probabilities based on the functions Vi(x) equivalent to the Eq. (4),

P(i|V,C) =
exp(Vi(x))

1 +
∑I−1

i=1 exp(Vi(x))
. (13)

The main problem is finding the latent functions Vi : X �→ R for i = 1, · · · , I − 1. KLR search for functions Vi(x)
within function spaces named Reproducing Kernel Hilbert Spaces (RKHS). The RKHS space is a vector space which
is univocally generated by the so-called kernel function k(x, x′), and its associated RKHS space is denoted byHk. The
family of functions {k(x, x′)}x′∈X constitutes a basis of the vector space. Any element fromHk can be represented as a
linear combination of basis elements, in particular from Vi(x) ∈ Hk, the expression of the non-parametric utilities is
given by:

Vi(x,αi) =
N∑

n=1

αink(xn, x). (14)

Two popular kernel functions are the dth polynomial kernel, k(xn, x) = (x�n x + ρ)d, and the Gaussian kernel,
k(xn, x) = exp

(
−‖x−xn‖2

2σ2

)
, where ‖ · ‖ is the Euclidean norm. Another is the squared exponential kernel with Automatic
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Relevance Determination,

k(xn, x) = σ2 exp
(
−1

2
(x − xn)�Λ−1(x − xn)

)
, (15)

where Λ is a diagonal matrix of the squared lengthscale hyperparameters and σ2 is a variance hyperparameter. This
kernel function is particularly relevant when the attributes are measured on different scales.

Once a kernel function k(x, x′), has been chosen, the expression (14) shows that to obtain the functions Vi requires
estimating the parameter vector, αi = (αi1, · · · , αin, · · · , αiN)�. The parameter vector of the KLR model is denoted by
Θα = (α�1 , · · · ,α�I−1)�.

The literature proposes a regularized function estimation in RKHS for the estimation of Θα. This method suggests
estimating the parameters by solving the following optimization problem

Minimize
Θα

N∑
n=1

I∑
i=1

L(yin,Vi(xn,αi)) +
λ

2

I∑
i=1

‖Vi(x,αi)‖2Hk
, (16)

where L(·) is a loss function that measures discrepancies between predicted and observed classifications, λ is a regu-
larization parameter that controls the trade-off between goodness of fit and complexity of the model and the norm of
the utility functions is computed in the space RKHS by ‖Vi(x,αi)‖2Hk

= αT
i Kαi, being K the Gram matrix, defined by

Kn,n′ = k(xn, xn′ ).
Note that Eq. (16) has the form of loss + penalty. The loss function L(·) allows many different ways of mea-

suring the model adjustment, the KLR uses the negative value of the log-likelihood function as a loss function, i.e.
− log p(y|X,Θα). Therefore,

N∑
n=1

I∑
i=1

L(yin,Vi(xn,αi)) = −
N∑

n=1

I∑
i=1

yin log P(i|xn,Θα). (17)

This procedure is called minimizing Regularised Negative Log-Likelihood (RNLL) or equivalently maximizing Pe-
nalised Maximum Likelihood Estimation (PMLE).

KLR operates with the utility functions as black boxes, without trying to explain the choice process. This procedure
starts from a feature vector xn for each decision-maker n and aims to predict the selected choice, represented by the
dummy variable yin, and to that end uses all the information in the classification process, without distinguishing
between features of one alternative against the other. In other words, to estimate the utility Vi of the decision-maker n,
it uses both the characteristics of the alternative i itself and those of the rest. Mathematically, RUM takes into account
functions Vi(xin), while KLR proposes the use of functions Vi(xn) which depend on the whole vector xn.

The main difference between the approach followed by the KLR models, which is referred as non-parametric, and
that followed by RUM, which is denominated as parametric, is how they specify the utility function. In the parametric
approach it is necessary to define a functional expression in advance, establishing from the beginning the effect of
each attribute against the others, while in the non-parametric approach the kernel functions k(·, ·) are chosen and this
choice determines the RKHS Hk where the utilities Vi(x) ∈ Hk are searched. The non-parametric approach presents
the fundamental advantage that these utility specifications allow to approximate very diverse linear and non-linear
phenomena, without the need to have prior knowledge of the phenomenon. Once RUM and KLR methods have been
reviewed, in next section presents some numerical results obtained using both methodologies.

3. Numerical results

To compare KLR in relation with RUM, an experimental study has been designed. A Monte Carlo simulation has
been designed in order to control the error term and the utility specification. The utility of the alternative i for the
individual n is given by the expression:

Uin = V(xin1, xin2) + εin; with i ∈ {1, 2, 3}, (18)
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where the error terms εin are independent and identically distributed (IID) random variables draw from a Gumbel
distribution with scale parameter λ and location parameter 0.

For the simulation experiment three systematic utilities have been supposed:

V(xin1, xin2) = β1xin1 + β2xin2 Linear (19)
V(xin1, xin2) = xin1

β1 xin2
β2 Cobb-Douglas (CD) (20)

V(xin1, xin2) = min{β1xin1, β2xin2} Minimum (21)

For each of the previous models three pairs of parameters have been considered, being the parameter β1 = 1 and
β2 ∈ {0.5, 1, 2}. Moreover, each of these nine models has been defined using two levels of uncertainty, by means of
the scale parameter λ ∈ {0.1, 0.01}. Therefore, 18 different models have been considered. For each model, a total of
N = 1000 individuals was generated using a uniform distribution of xin on the square [0, 1] × [0, 1]. Finally, to obtain
more accurate results, we have generated 100 samples of each model.

In this numerical experiment two multinomial logit models have been estimated using two different utility specifi-
cations

Vi(xin,βi) = β
i
0 + β1xin1 + β2xin2 (Linear utilities) (22)

Vi(xin,α) =
∑

m

αm exp
(
ρ‖xin − xm‖2

)
(Non-parametric utilities) (23)

Both kind of parameters have been estimated using MLE and all the analyses have been coded in the R program-
ming environment (see The R Development Core Team (2008)). In order to estimate the linear multinomial logit
model in R, the ‘mlogit’ package was used (see Croissant). The intercept of the first alternative is always fixed to 0,
i.e β1

0 = 0. Concerning KLR, the ‘kernlab’ package is used which provides kernel-based machine learning methods
in R (see Karatzoglou et al. (2004)). Using these R packages, several functions have been constructed to estimate the
non-parametric utilities using the MLE.

For each of the 18 different models, for each of the 100 generated samples and for each level of error λ, the Log-
likelihood (LL) and the McFadden value ρ2 = 1 − LL(Θ̂)

LL(0) are calculated, where Θ̂ is the estimate of the vector of
parameters. Tables 1 to 3 show the mean and standard deviation value of the log-likelihood and the ρ2 indices. These
tables compare the goodness of fit between linear utilities given in Eq. (22) and the non-parametric utilities given in
Eq. (23).

Table 1. Cobb-Douglas

Lambda Parameters Linear utilities Non-parametric utilities
Mean value Standard deviation Mean value Standard deviation

λ = 0.01

β1 = 1 LL = −261.79 σLL = 18.83 LL = −118.21 σLL = 14.81
β2 = 1 ρ2 = 0.76 σρ2 = 0.02 ρ2 = 0.89 σρ2 = 0.01
β1 = 1 LL = −273.27 σLL = 18.05 LL = −155.20 σLL = 19.47
β2 = 2 ρ2 = 0.75 σρ2 = 0.02 ρ2 = 0.86 σρ2 = 0.02
β1 = 1 LL = −244.95 σLL = 19.77 LL = −117.17 σLL = 13.80
β2 = 0.5 ρ2 = 0.78 σρ2 = 0.02 ρ2 = 0.89 σρ2 = 0.01

λ = 0.1

β1 = 1 LL = −601.99 σLL = 22.56 LL = −537.13 σLL = 20.42
β2 = 1 ρ2 = 0.45 σρ2 = 0.02 ρ2 = 0.51 σρ2 = 0.02
β1 = 1 LL = −701.07 σLL = 25.34 LL = −616.16 σLL = 22.35
β2 = 2 ρ2 = 0.36 σρ2 = 0.02 ρ2 = 0.44 σρ2 = 0.02
β1 = 1 LL = −549.99 σLL = 23.56 LL = −503.17 σLL = 23.72
β2 = 0.5 ρ2 = 0.50 σρ2 = 0.02 ρ2 = 0.54 σρ2 = 0.02
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Table 2. Linear

Lambda Parameters Linear utilities Non-parametric utilities
Mean value Standard deviation Mean value Standard deviation

λ = 0.01

β1 = 1 LL = −30.81 σLL = 7.21 LL = −59.90 σLL = 6.73
β2 = 1 ρ2 = 0.97 σρ2 = 0.01 ρ2 = 0.95 σρ2 = 0.01
β1 = 1 LL = −19.02 σLL = 5.40 LL = −62.20 σLL = 6.24
β2 = 2 ρ2 = 0.98 σρ2 = 0.00 ρ2 = 0.94 σρ2 = 0.01
β1 = 1 LL = −39.23 σLL = 7.84 LL = −66.66 σLL = 7.04
β2 = 0.5 ρ2 = 0.96 σρ2 = 0.01 ρ2 = 0.94 σρ2 = 0.01

λ = 0.1

β1 = 1 LL = −322.90 σLL = 19.12 LL = −324.48 σLL = 19.16
β2 = 1 ρ2 = 0.71 σρ2 = 0.02 ρ2 = 0.70 σρ2 = 0.02
β1 = 1 LL = −207.11 σLL = 15.41 LL = −210.75 σLL = 15.47
β2 = 2 ρ2 = 0.81 σρ2 = 0.01 ρ2 = 0.81 σρ2 = 0.01
β1 = 1 LL = −395.32 σLL = 21.73 LL = −396.72 σLL = 21.95
β2 = 0.5 ρ2 = 0.64 σρ2 = 0.02 ρ2 = 0.64 σρ2 = 0.02

Table 3. Minimum

Lambda Parameters Linear utilities Non-parametric utilities
Mean value Standard deviation Mean value Standard deviation

λ = 0.01

β1 = 1 LL = −486.01 σLL = 20.38 LL = −186.77 σLL = 18.53
β2 = 1 ρ2 = 0.56 σρ2 = 0.02 ρ2 = 0.83 σρ2 = 0.02
β1 = 1 LL = −467.20 σLL = 19.86 LL = −215.99 σLL = 16.50
β2 = 2 ρ2 = 0.57 σρ2 = 0.02 ρ2 = 0.80 σρ2 = 0.02
β1 = 1 LL = −471.46 σLL = 23.71 LL = −226.80 σLL = 17.76
β2 = 0.5 ρ2 = 0.57 σρ2 = 0.02 ρ2 = 0.79 σρ2 = 0.02

λ = 0.1

β1 = 1 LL = −661.10 σLL = 25.78 LL = −507.04 σLL = 24.27
β2 = 1 ρ2 = 0.40 σρ2 = 0.02 ρ2 = 0.54 σρ2 = 0.02
β1 = 1 LL = −617.18 σLL = 20.42 LL = −475.74 σLL = 20.10
β2 = 2 ρ2 = 0.44 σρ2 = 0.02 ρ2 = 0.57 σρ2 = 0.02
β1 = 1 LL = −809.68 σLL = 19.97 LL = −736.89 σLL = 22.70
β2 = 0.5 ρ2 = 0.26 σρ2 = 0.02 ρ2 = 0.33 σρ2 = 0.02

Table 1 shows the result of the experiments using the models with λ = 0.01 and λ = 0.1 for the Cobb-Douglas
systematic utility. The effect of the error term εin is lower in the model with λ = 0.01, therefore, the generated data
contain more information about the phenomenon and the results of both linear and non-parametric utilities are better.
Tables 2 and 3 shows the results for Linear and Minimum systematic utilities, respectively.

As it can be noticed, the non-parametric utilities overwhelm the linear utilities as they are able to generalize better
and, consequently, it is possible to determine whether the model is non-linear and to adapt better to it. This can be
checked with Cobb-Douglas and Minimum models, where non-parametric utilities adapt better to the model and give
better results. That is not the case in linear models, where the non-parametric utilities slightly underperform linear
utilities. Nonetheless, the Log-likelihood and ρ2 values reported are very similar, so the differences do not seem
significant.

4. Conclusions

This work shows, using a Monte Carlo study, that non-parametric utilities derived from KLR allow to capture
non-linear effects of the decision process, which cannot be represented with linear RUMs. Moreover, KLR is also able
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to approximate linear effects. Therefore, KLR frees the modeler to choose the functional expression of the utilities,
because the non-parametric utilities can adapt to the phenomenon. Our future work will be focus on analyzing the
theoretical aspects of these methods and the possibility of using KLR to retrieve post-analysis estimators such as
willingness to pay, value of time, elasticities, market shares, etc.
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