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Abstract
Thedensity-peak clustering algorithm,whichwe refer to asDPC, is a novel and efficient density-based clustering approach. The
method has the advantage of allowing non-convex clusters, and clusters of variable size and density, to be grouped together,
but it also has some limitations, such as the visual location of centers and the parameter tuning. This paper describes an
optimization-based methodology for automatic parameter/center selection applicable both to the DPC and to other algorithms
derived from it. The objective function is an internal/external cluster validity index, and the decisions are the parameterization
of the algorithm and the choice of centers. The internal validation measures lead to an automatic parameter-tuning process,
and the external validation measures lead to the so-called optimal rules, which are a tool to bound the performance of a given
algorithm from above on the set of parameterizations. A numerical experiment with real data was performed for the DPC and
for the fuzzy weighted k-nearest neighbor (FKNN-DPC) which validates the automatic parameter-tuning methodology and
demonstrates its efficiency compared to the state of the art.

Keywords Density peaks clustering · Automatic parameter tuning · Optimal rules · Cluster validity index · Differential
entropy

1 Introduction

The study of clustering techniques is a very active area of
research in machine learning. Clustering is widely applied
in pattern recognition, bioinformatics and image process-
ing. It is used to find a partition of the dataset based on
similar features. Thesemethods can be divided into hierarchi-
cal methods, partitioning methods, density-based methods,
model-based methods, grid-based methods and soft comput-
ing methods, or a combination of these.

Recently, Rodríguez and Laio (2014) described a new
clusteringmethod using a fast search of density peaks (DPC).
This algorithm is based on the idea that cluster centers have
higher density than their neighbors and also that they are at a
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relatively large distance from any points with higher density.
Liu et al. (2018) note the following two essential advantages
of DPC:

1. The algorithm is simple and efficient, and it can quickly
find the high density peak points (cluster centers).

2. The DPC algorithm is suitable for cluster analysis of
large-scale data because the data points are assigned to
the clusters in a single round based on minimum nearest
distance to cluster center.

Wiwie et al. (2015) introduce the integrative clustering eval-
uation framework (ClustEval), and through an exhaustive
comparison, using 13 state-of-the-art algorithms and 24
biomedical and synthetic datasets, they showed that DPC
achieves high F1 scores in the gold-standard reconstruc-
tion. The authors also show that, numerically, the DPC gives
the best results on synthetic data, proving its efficiency in
reconstructing varied forms that are not necessarily convex.
Despite the high efficiency of DPC , especially with syn-
thetic data, its performance is strongly conditioned by the
parameter tuning dc used to calculate the densities and by
the choice of the centers c. More promising algorithms, such
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as ADPC-KNN (Yaohui et al. 2017), SNN-DPC (Liu et al.
2018), DPC-KNN (Du et al. 2016) and FKNN-DPC (Xie et al.
2016) have recently appeared, which introduce local densi-
ties, and assign data to centers in two stages. These methods
are not parameter-free and require an estimate of the num-
ber of neighbors (denoted by k) in order to calculate the local
density. Liu et al. (2018) choose the parameter k by assessing
all the values in the range [4, 50], but the weakness of this
procedure is that it requires knowledge of the true classes and
this input is unknown in the application of clustering algo-
rithms to real problems. This led Xie et al. (2016), Lu and
Zhu (2017) and Liu et al. (2018) to show in their conclusions
that the automatic choice of k needs further research.

Wiwie et al. (2015) and Wang and Xu (2017) address
the problem of automatic parameter adjustment in clustering
algorithms. The authors overcome the problem of not know-
ing the true classes by introducing internal cluster evaluation
measures, such as the Silhouette index, and by optimizing
this, they obtain the desired parameterization. The optimiza-
tion method used is based on assessing a large number of
randomly generated parameterizations. This paper formal-
izes this methodology for automatically setting parameters
in density-based clustering methods, such as dc, k, or the
centers themselves c. The resulting model of the problem
is not a standard optimization problem because optimiza-
tion is performed on a subset of vectors (the centers) rather
than on a single vector. This feature, together with the fact
that a random sampling of the centers of the dataset is not
practical, has led to the design of an ad hoc optimization
strategy.

Gaussian entropy HG and Gaussian cross-entropy H×
G are

used for internal validation, and themethodology is analyzed
via an extensive computational experiment with respect to
the external validation V -measure. The procedure described
is computationally expensive, but the aim of the paper is
to address improvements in performance at finding the gold
standard in real datasets, without, in this early stage, con-
sidering the computational efficiency of the procedure. This
kind of situation is common in biomedical data.

This paper is organized as follows. Section 2 describes
the problems related to DPC considered in the literature,
together with the lines of research to improve the perfor-
mance of DPC. Section 3 gives a brief description of DPC
including the different steps and the method for calculating
the density and distance of each point. Section 4 presents
our proposed methodology, the clustering validity indices
for the automatic parameter-tuning process and the heuristic
algorithm to obtain the parameters and the cluster centers.
Section 5 sets out a computational experiment to assess the
methodology and compare our proposal with the state-of-
the-art algorithms. Finally, Sect. 6 gives some conclusions
and the intended future work.

2 Related work

The research community has shown great interest in the DPC
algorithm, which has produced a steady stream of research,
including some 200 citations annually1 since its publication.
Many of these papers are about applications to a variety
of scientific fields, another group seeks to improve its effi-
ciency, and the final group widens the field of problems it can
solve by hybridization with other procedures or by general-
ization. Examples of this third group are Chen et al. (2015),
which address detection of outliers by introducing the cut-
off distance-based local density of each data point into the
support-vector data-description (SVDD) training model and
Bu et al. (2016), which combine the DPC and the dropout
deep-learning model to clustering heterogeneous data. Wang
et al. (2016) apply the DPC to discovering social circles with
overlap via user profile and topological structure-based fea-
tures, and Liu et al. (2017) and Du et al. (2017) apply DPC
to mixed data.

A systematic review of all these studies is beyond the
scope of this paper. We focus on improving the performance
of DPC. A number of authors, Liu et al. (2018), Xie et al.
(2016), have underlined the following problems with DPC:

Pρ ≡ When used to calculate local density, DPC does not
take into account the local structure of the data.
Poor performance might be expected of the DPC
algorithm in the case of complex datasets involving
multiple scales, that are cross-winding, have various
densities or high dimensionality.

P1S ≡ The one-step allocation strategy is not robust and
has poor fault tolerance. There is a Domino Effect
in that once a point is erroneously assigned, the error
will propagate so that more points will be assigned
incorrectly. A number of methods describe the alter-
native possibility of calculating core cluster points
before expanding to the boundary points.

Pdc ≡ The parameter dc is used to calculate the density
of each data point and to identify the border points
in the clusters. The cutoff distance dc is generally
difficult to determine, a small change in dc will still
cause a noticeable fluctuation in the result, and this
is especially true for real-world datasets.

Pc ≡ A heuristic approach is based on the so-called deci-
sion graph in order to analyze the selection of the
cluster centers. The human-based selection of the
cluster center is a big limitation. The goal is to auto-
matically determine the number of clusters and their
centers.DPC is unable to group data points correctly
when a cluster has more than one center.

1 Accessing scopus on 27th September 2019 gave 1475 references
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Table 1 Review on L1 computational complexity

References Algorithm Pρ P1S Pdc Pc PO Notes

Wang et al. (2017) KMDD � It combines K -means with DPC. It has a
near-linear time complexity with respect
to the dataset size and dimension

Xu et al. (2016) DenPEHC � � It introduces a grid granulation framework
to enable DenPEHC to cluster
large-scale and high-dimensional
datasets

Gong and Zhang (2016) – � It improves performance significantly (up
to 40x) compared with a naive approach

Bai et al. (2017) CFSFDP+A, CFSFDP+DE � It uses the K -means algorithm in order to
reduce the distance calculations
(CFSFDP+A) and to enhance the
scalability of the DPC (CFSFDP+DE)

PO ≡ Computational complexity. The method requires
measuring distance between any pair of objects,
with a high computational cost of O(N 2) where N
is the number of data points. This limits the applica-
tion of the algorithm when clustering high-volume
and high-dimensional datasets.

We introduce the notation Pρ , P1S, Pdc , Pc and PO to
refer to each of these problems.

The DPC algorithm works in two stages. In the first, the
concepts of local density and distance are used to identify
cluster centers. In the second, a label propagation method is
proposed to form clusters. The Pρ, Pc, Pdc , PO problems are
associated with the first stage, while P1S corresponds to the
second stage. Research into improving the performance of
DPC can be roughly classified into three research streams:

L1 Computational complexity. The aim of this research is
to lower the computational cost and/or identify computa-
tional paradigms to make it applicable to large volumes
of data. This line of research seeks answers to the PO
problem.

L2 Parameter-tuning and local distance/density problems.
The parameter dc determines the density ρi and the dis-
tance of each point δi and these magnitudes in turn
characterize the centers c of the clusters. These rela-
tions have been studied as to how to define new density
and distance concepts, in order to account for the local
characteristics of the data (in a neighborhood) and their
influence on the identification of the centers. L2 seeks
answers to the Pρ, Pc, Pdc problems.

L3 Multi-step labeling. Multi-step procedures for assigning
categories have been proposed to address the P1S prob-
lem.

We now review these lines of research.

2.1 L1 computational complexity

The PO problem stems from the need to calculate the dis-
tances between each pair of objects. The problem has been
addressed using parallel computing inCUDA (Li et al. 2016),
partially calculating the distance matrix (Bai et al. 2017), etc.
These studies do not seek to improve performance but rather
to broaden the DPC to handle high volumes of data. Table 1
gives an overview of some research in the line L1.

2.2 L2 parameter-tuning and local distance/density
problems

The first studies in this area focused on automatically
determining the original parameters of theDPC, that is, deter-
mining the parameter dc and the centers c. Examples of these
studies are:

Chen andHe (2016) propose a data stream clustering algo-
rithm based on DPC for mixed numerical and categorical
attributes. The approach uses a linear regression model and
residuals analysis to find the outliers of the intensity-distance
distribution graph, enabling automatic identification of clus-
ter centers.

Mehmood et al. (2016b), based on heat diffusion, propose
a non-parametric method to account both for selection of
the cutoff distance dc and boundary correction of the kernel
density estimation using the time parameter of heat diffusion.

Jinyin et al. (2017) identify centers as outliers of the γ

distribution anduse amechanism to determine a self-adaptive
density radius dc based on optimizing a fitness function using
the mountain-climbing algorithm.

Xu et al. (2016) propose a hierarchical clustering algo-
rithm based on DPC. An essential part is identification of the
centers based on the γ rule. The authors analyze the question
and introduce a grid granulation framework to enable their
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Table 2 Review of L2 parameter-tuning and local distance/density problems

References Algorithm Pρ P1S Pdc Pc PO Notes

Jinyin et al. (2017) CH-CCFDAC � � Uses identification of the outliers of the distribution γi
to detect centers and implements a self-adaptive
density parameter dc.

Li and Tang (2018) CDP � � Uses a local density measure and the �-tree to assign
labels

Jiang et al. (2018) GDPC � � Uses an alternative decision graph based on gravitation
theory

Yaohui et al. (2017) ADPC-KNN � � � Uses the k-nearest neighbors of a point to compute local
density. Proposes a formula to compute dc based on k

Tao et al. (2017) F-DPC � � Introduces the data field theory to adaptively select the
dc and uses the maximum entropy reduction to select
centers

Yang et al. (2017) LPC � Introduces the local importance index ci based on
Laplacian centrality, and ρi is replaced by ci in the
decision graph.

Zang et al. (2017) ADPC-DNAGA � � Applies the DNA genetic algorithm to optimize the
potential entropy of the data field to obtain dc and
automatically determines the cluster centers by
Gaussian processes.

Mehmood et al. (2016b) CFSFDP-HD � � Proposes a heat diffusion approach in order to account
for both selection of the cutoff distance and boundary
correction of the kernel density estimation.

Bie et al. (2016) fuzzy-CFSFDPA � An adaptive selection tool for the cluster centers based
on fuzzy rules.

Guo et al. (2017) LR-CFDP � � Linear regression model and residuals analysis are used
to obtain c, and it uses a k-NN local density

Chen and He (2016) Str-FSFDP � Linear regression model and residuals analysis are used
to obtain c in stream clustering

Du et al. (2016) DPC-KNN-PCA � � � Uses k nearest neighbors to compute local density and
principal component analysis to handle datasets that
have relatively high dimension

proposed algorithm, which they call DenPEHC, to cluster
large-scale and high-dimensional datasets.

It has recently been understood that there may exist
datasets in which the clusters have different, non-comparable
densities. Thus, locating centers through their density and
distance could be difficult for certain clusters. In such cases,
the density of a point must be evaluated with respect to
its neighbors, that is, whether it is large or small rela-
tive to the densities of its neighbors. The mechanism that
addresses this matter most successfully is the introduction
of k-neighborhoods k-NN of the points in the definition of
density and/or distance, which allows the local structure of
data to be addressed (cluster with variable densities) rather
than global densities ρ.

Du et al. (2016) introduce the k-nearest neighbors for the
local density computation of ρ. The authors use principal
component analysis to improve the performance of the for-
mer method on real-world datasets.

Wang and Song (2016) consider automatic identification
of the clustering centers via statistical testing. The authors

define a more robust metric for computing the density of an
object, which then generates a further metric for evaluating
the centrality of each object. The new density, the so-called
k-density ρ̂, is based only on the distance of the object from
the k-nearest neighbors. The authors show that the choice
k = �N� with �·� the ceil of a number is robust in density
evaluation.

There is a great deal of activity in this line, and Tables 2
and 3 summarize several of the studies.

2.3 L3 multistep labeling

Once the need toworkwith densities/local distances is under-
stood, a further improvement has been added to the DPC,
introducing center sets (union of core points) instead of cen-
ter points. This has led to clustering algorithmswithmultistep
labeling where the core points are labeled at the first stage,
and the other points at subsequent stages. The following stud-
ies are examples of this line of research.
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Table 3 Review of L2 parameter-tuning and local distance/density problems (continuation)

References Algorithm Pρ P1S Pdc Pc PO Notes

Ding et al. (2016),
Ding et al. (2018)

DPC-GEV, DPC-CI � Identification of cluster centers using
generalized extreme value distribution
and the Chebyshev inequality.

Gao et al. (2016) – � � Formula for the cutoff distance calculation
and a method for cluster center selection
to improve its robustness.

Chen and He (2015) - � � Linear regression model and residuals
analysis are used to obtain c and PSO to
optimize dc.

Hua et al. (2016) CDC � Determines the parameters based on the
inherent structure of data points.

Kun et al. (2016) - � Finds optimal cluster centers by iteration
based on genetic algorithm.

Liang and Chen
(2016)

3DC � Uses a divide-and-conquer strategy to
automatically find the correct number
and the cluster centers.

Mehmood et al.
(2016a)

IJS-CFSFDP � An adaptive rule using the characteristics
of the Improved Sheather–Jones method.

Wang and Song
(2016)

STClu � � Uses a statistical test method to identify
the clustering centers automatically on a
centrality metric based on the new local
density and new minimum distance.

Chen et al. (2016) propose CLUB (CLUstering based on
Backbone). The key feature of CLUB is that it identifies a
cluster according to its density backbone instead of just a
center. In CLUB, a three-step scheme is adopted. The first
step automatically groups any two points into the same clus-
ter if they are mutual k-nearest neighbors. In the second step,
the cluster backbones are obtained. In the third step, CLUB
assigns each unlabeled point to the cluster which the unla-
beled point’s nearest higher-density neighbor belongs to.

Xie et al. (2016) introduce a density-peak-searching and
point-assigning algorithm based on the fuzzy weighted k-
nearest neighbor (FKNN-DPC). It explores the k-NN to
calculate new local densities and then eliminates the noise.
The authors were motivated by the P1S problem of error
dragging, and they propose amultistep labeling scheme. This
methodconsists of twopoint-labeling strategies, thefirst clas-
sifying the core points and the second assigning the labels of
the halo points.

Lu and Zhu (2017) set out an algorithm called DFC. The
authors consider it better to use core points to represent one
center. The aim is to partition the data into core points and
non-core points using neighborhood density estimation, and
specifically they use reverse k-nearest neighborhood and then
do the clusteringwith theminimum spanning-tree clustering.
The parameters of the algorithm are k (the number of nearest
neighbors) and the number of real clusters.

Liu et al. (2018) introduce the concept of shared nearest
neighbors (SNN) to the definition of density and distance to

take account of local structure in the data. The authors also
adopt a two-step allocation strategy to assign labels to the so-
called inevitable subordinate points and possible subordinate
points. Table 4 summarizes some of the studies in this line
of research L3.

2.4 Contributions of the paper

This paper describes a methodology based on internal valid-
ity indices for automatically establishing the parameters of
density-based peak clustering algorithms. The methodology
is general and applicable to an arbitrary algorithm A like
those previously reviewed. The approach has been illustrated
for the original DPC algorithm and for FKNN-DPC, as they
use different parameters, dc and k respectively. A numeri-
cal study performed shows that automatically adjusting the
parameters either of the DPC or of the FKNN-DPC gives sta-
tistically significant results that are better than for the default
values.

Thismethod is also definedwith an external validity index,
but in this case it is only applied when a gold-standard clus-
tering is known, and this situation does not exist in a practical
application. However, the innovation of this paper is to apply
these measures, as V-Measure index, as a researchmethodol-
ogy to study the maximum performance of the algorithmA.
We have called this optimal rules. In the literature review on
the line of research L2, we saw a number of strategies pro-
posed for solving the problems Pc and Pdc in the algorithm
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Table 4 Review of L3 multistep labeling

References Algorithm Pρ P1S Pdc Pc PO Notes

Liu et al. (2018) SNN-DPC � � � Defines distance and density using information
on the nearest neighbors and the shared
neighbors. SNN-DPC introduces a two-step
allocation method in order to improve the
performance in complex datasets such as
multi-scale, cross-winding, variable-density
and high-dimensional datasets.

Lu and Zhu (2017) DFC � � Two-step assignment rule for core and non-core
points. The first step is based on a minimum
spanning tree and the second on an ordering
mechanism. DFC uses a neighborhood density
model.

Xie et al. (2016) FKNN-DPC � � Uses local density based on nearest neighbors
and a two-step assignment rule. The first step
assigns a subset of points by undertaking a
breadth-first search of the k−nearest neighbors.
The second step assigns the unassigned points
using the technique of fuzzy weighted k−
nearest neighbors.

Chen et al. (2016) CLUB � � CLUB is carried out in four steps, namely (1)
Find the initial clusters, (2) Identify
cluster-density backbones, (3) Assign the
remaining points, and (4) Detect outliers.

Xu et al. (2019) FDPC � Uses a merging strategy based on support vector
machine in order to avoid that a cluster is
divided into multiple ones if there exist several
density peaks in one cluster.

A = DPC. Optimal rules delimit the performance of these
strategies and so identify improvement possibilities ofAwith
respect to them within the state of the art. This paper ana-
lyzes the improvement possibilities ofA =DPCwith respect
to the strategies for solving the problems Pc and Pdc and also
A =FKNN-DPC with respect to the choice of centers c and
the parameter k.

3 Review of density peak clustering

Alex Rodríguez and Alessandro Laio proposed the so-called
Density-Peak Clustering algorithm (DPC). In the first stage,
this method locates the clustering centers, and in the second
the DPC algorithm uses locality to assign cluster labels to
the remaining points, and thus it can detect clusters in non-
convex shapes. The characterization of the centers is based
on the following two simple assumptions (Li andTang 2018):

– Assumption 1. Cluster centers are surrounded by neigh-
bors with lower local density.

– Assumption 2. Cluster centers are at a relatively large
distance from any points with a higher local density.

The mathematical formulation of these two hypotheses
requires the definition of two magnitudes for each point i
: i) its density ρi and the ii) distance δi from point i to the
nearest point with a higher density. Assume that the dataset is
X = [x1, . . . , xN ]T ∈ lRN×d where each point xi ∈ lRd×1.
Instead of representing the data as a matrix, we consider it
as a set of points called X . That is

X := {xi : i = 1, . . . , N }

Let di j denote the Euclidean distance between the points
xi and x j . With density ρi , depending on the size N , one may
calculate:

– In datasets made up of a large quantity of data, the fol-
lowing expression is used:

ρi =
∑

j �=i

χ
(

di j − dc
)

, χ(x) =
{

1, x < 0
0, x ≥ 0

(1)

which computes the number of neighboring points of i
at a distance less than dc. The parameters di j express the
Euclidean distance from point i to point j .
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Fig. 1 Illustration of the optimization of centers

– If the quantity of data is reduced, the density is calculated
based on Gaussian kernels

ρi =
∑

j �=i

exp

[

−
(

di j
dc

)2
]

(2)

In the expressions (1) and (2), it is necessary to specify
the cutoff distance dc in order to determine the densities ρi .
Originally it was proposed to calculate this value by using the
quantiles of the distance distribution between the elements,
with the expression:

dc(p) := quantile p
100

(D) (3)

which gives the p
100 − th quantile of the distribution of

D = {

di, j : i < j
}

and the parameter p is a percentage fixed
by the user. The advantage of using the parameter p rather
than dc is that p can be interpreted on the set of all instances,
whereas the value dc varies from one problem to another,
depending on the scale of the data X .

Once the densities are computed, the next stage is to cal-
culate the minimum distance from each point i to the point
j of higher density. This distance is defined by:

δi = min
j :ρ j>ρi

(

di j
)

(4)

Once ρi and δi are obtained, a decision graph is con-
structed (see Fig. 1) with the purpose of selecting the centers,
which will be points that are more separate from the rest of
the graph, as they have a higher density than their neighbors,

and are also separated from the other candidates. This graph
shows that the cluster centers have a value ρi and δi higher
than the other points that are not centers. The above proce-
dure requires human intervention to select them manually.
A heuristic for finding the centers automatically is to define
γi = ρiδi and to choose the points k with the highest values
of γi . Figure 1(a), 1(b) and 1(d) show the centers calculated
in this way as squares.

Algorithm 1 DPC algorithm
Input : The sample X ∈ lRN×d

The cutoff distance parameter dc
Output: The label vector of cluster index: y ∈ lRN×1
Function DPC(X, dc):

Step 1. Calculate distance matrix (di j )
Step 2. Calculate ρi for point i according to Formula (1) or (2)
Step 3. Calculate δi for point i according to Formula (4)
Step 4. Plot decision graph and select cluster centers
Step 5. Assign each remaining point to the nearest cluster center
Step 6. return y

end

4 Methodology for analyzing the density
peak clustering algorithms

4.1 Statement of a generalized optimization
problem

Suppose we have a clustering algorithm A based on density
peaks. In an abstract form, the operation of the algorithmmay
be described as: (1) given a parameterization p ∈ P calculate
the densitiesρ and distances δ , (2) identify the centers c ⊆ X
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from ρ and δ and finally (3) assign labels to the data starting
from the centers. The output of this algorithm is the data
partition, expressed by a label vector y, that is yi is the group
that the i − th data point belongs to. We are here considering
any algorithmA these three stages are carried out separately.
For example, the algorithm A could be the DPC itself, or
another variant derived from it, such as the FKNN-DPC.

The three stages of the algorithmA are expressed formally
as:

p = rAp (X ) (5)

c = rAc (p,X ) (6)

y = A(c, p,X ) (7)

which, given a dataset X , the equations (5) and (6) give
the parameterization and the centers where the algorithm A
should be started to assign the cluster labels to the data items.

The problems Pc and Pdc introduced in Sect. 2 seek to
determine good mappings rAc (·) and rAp (·) with p = dc
to improve the performance of the algorithm A. The ques-
tion we consider is what rules for determining centers and
for obtaining parameters will produce maximum efficiency
of the algorithm A. The following definition addresses this
question.

Definition 1 (Optimal rules) LetQ be a quality index of clus-
tering, we say that the rules r∗

c and r∗
p are optimal forX with

respect to Q iff r∗
p(X ) = p∗ and r∗

c (p∗,X ) = c∗ where
(c∗, p∗) is an optimal solution of the following generalized
optimization problem:

Maximise
(c,p)

Q(y)

y = A(c, p,X )

c ⊆ X
p ∈ P

(8)

This is not a standard optimization problem as the con-
straint c ⊆ X shows that we are seeking a subset of vectors
rather than a single vector, i.e., c ∈ X .

The problem (8) is stated by the definition of the objec-
tive function Q. In the cluster analysis, it is held that Q can
be: (i) internal or (ii) external validity indices. Both internal
and external indices are used to assess the performance of

clustering algorithms. Wiwie et al. (2015) point out that the
internal validity measures judge a clustering on the basis of
certain intrinsic statistical properties of the clustering itself,
whereas external indices compare the clustering to a user-
given gold-standard clustering � (the ”ground truth”). The
external indices are only applied when � is known and this
situation does not exist in a practical application. In the inter-
nal indices, Q does not depend on �.

This study uses external and internal indices Q for two
different purposes:

– The use of the optimal rules allows the theoretical pos-
sibility of improvement of a clustering method A by
defining new rules rc(·) and rp(·) to be assessed. Given
two arbitrary rules rc(·) and rp(·) and given the solution
of the clustering y = A(rc(p,X ), rp(X ),X ) and of the
optimality of y∗ = A(r∗

c (p,X ), r∗
p(X ),X ), it is hold

Q(y) ≤ Q(y∗) (9)

Equation (9) allows the improvement possibilities of an
algorithm to be bounded, so it can be compared to other
existing algorithms. In this context, it is more suitable to
use external validity indices as what is sought is to assess
the capacity of the algorithm to discover the ground truth
�.

– The use of internal indices Q, as it does not require
the input �, allows Problem (8) to be defined for any
dataset. Its solution implicitly defines the optimal rules
and generates a new algorithm A in which the choice
of centers and parameters is performed automatically. A
particularly important case is to consider Problem (8)
exclusively for the parameters p

Maximise
p

Q(y)

y = A(rAc (p,X ), p,X )

p ∈ P
(10)

and this leads to a variant of the algorithmA in which the
parameters are automatically adjusted for each dataset.

The purpose of the optimal rules depends on the type of
validity index. From now on, let Q(y) be the external validity
indices and ̂Q(y) the internal validity indices. We shall now
summarize the utility of the optimal rules

Optimal rules
Q(y)

=
⎧

⎨

⎩

External index Q(y) → Bounding of the performance

Internal index ̂Q(y) →
{• Automatic parameter/center selection

• Automatic parameter-tuning approach
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The methodology described is defined by the validity
index chosen and by the optimization algorithm used. The
following subsections address these questions.

4.2 External indexQ(y)

V -Measure (Rosenberg and Hirschberg 2007) is an exter-
nal entropy-based cluster evaluation measure. It accurately
assesses two desirable aspects of clustering, homogeneity
and completeness. We now give the definition. Suppose we
have two clustering solutions defined by two label vectors y
and �. The grouping y was generated by the A algorithm,
while the gold labels define �. Each of these solutions takes,
respectively, values in s ∈ {1, . . . ,m} and r ∈ {1, . . . , n}.We
shall call the marginal and joint probabilities that an object
is classified in certain categories s and r :

ps(y) = |{i ∈ {1, . . . , N } : yi = s}|
N

(11)

pr (�) = |{i ∈ {1, . . . , N } : �i = r}|
N

(12)

ps,r (y, �) = |{i ∈ {1, . . . , N } : yi = s ∧ �i = r}|
N

(13)

We define the entropy of the labels and the mutual informa-
tion

H(y) = −
m

∑

s=1

ps(y) log ps(y), H(�) = −
n

∑

r=1

pr (�) log pr (�)

(14)

I (y, �) =
m

∑

s=1

n
∑

r=1

ps,r (y, �) log

(

ps,r (y, �)

ps(y)pr (�)

)

(15)

We define the homogeneity h(y, �) and the completeness
c(y, �)

h(y, �) =
{

1 If H(�) = 0
I (y,�)
H(�)

Otherwise.
c(y, �) =

{

1 If H(y) = 0
I (y,�)
H(y) Otherwise.

(16)

The V−Measure computes the harmonic mean of distinct
homogeneity and completeness scores by

Vβ(y, �) = (1 + β)h(y, �)c(y, �)

βh(y, �) + c(y, �)
. (17)

Ifβ is greater than 1, completeness is weightedmore strongly
in the calculation, otherwise β is less than 1 and the homo-
geneity is weighted more strongly. This study considers both
factors to be equally important and takes β = 1.

The study considers as the external validity index

Q(y) = V1(y, �) (18)

Thismethodology canbe extended to other commonexter-
nal validation indices used in cluster analysis, such as the
F1 score, the Kappa concordance coefficient (López-García
et al. 2015), etc. Other options, like the Purity (Zhao and
Karypis 2001) and Entropy, only assess the homogeneity of
a solution and thus we have chosen the V-measure.

4.3 Internal index̂Q(y)

Ideally, when choosing an internal validity index, we seek a
measurement that is highly correlated with the chosen exter-
nal index, in this case the V-measure, such that when the
internal index is optimized the external index is being opti-
mized indirectly. When looking for an index such that its
optimization leads to a maximization of the V−Measure, we
thought of measures that involve minimization of entropy, as
this wouldmaximize completeness, and thus, as V−Measure
is a harmonic mean of c(y, �) and h(y, �), it would also max-
imize the V−Measure. This was what motivated out choice.

To define an entropy for clustering, tasks (Criminisi
et al. 2011) use the differential (continuous) entropy of a
d−multivariate Gaussian random variable

H(U ) = 1

2
ln

(

(2πe)d |
U |
)

(19)

with
U the d×d associated covariance matrix of the dataU
and |·| indicating the determinant of thematrix.Consequently
the Gaussian partition entropy y reduces to

HG(y) = d

2
log(2πe) + 1

2

m
∑

s=1

ps(y) ln |
s(y)| (20)

where
s(y) is the covariancematrix of thedata {xi : yi = s}.
Tabor and Spurek (2014) study the Gaussian cross–

entropy clustering and show that it minimizes the objective
cost function:

H×
G (y) = d

2
log(2πe) −

m
∑

s=1

ps(y) ln ps(y)

+1

2

m
∑

s=1

ps(y) ln |
s(y)| (21)

Finally, the internal validation indices proposed for ̂Q(y)
are HG(y) or H×

G (y). To our knowledge, it is the first time
that these indices are used as internal validity measures (Liu
et al. 2010).

The covariance matrix
s(y)may be singular if the quan-
tity of data {i : yi = s} is small with respect to the dimension
of the space d and in this case the function ̂Q(y) is not
defined. We therefore use a dimensionality reduction tech-
nique, specifically principal component analysis (PCA). The
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basic idea of PCA is to project the original data onto a
lower-dimensional subspace, which highlights the principal
directions of variation of the data. Another advantage of its
use is that it speeds up the parameter-tuning algorithm.

The following steps describe the PCA procedure.

1. Make each of the variables have the same mean (zero)
and variance.

2. Calculate the covariance matrix 
 of the data X .
3. Calculate the eigenvectors uk and the eigenvalues λk of


.
4. Sort these eigenvalues in decreasing order and stack the

eigenvectors uk corresponding to the eigenvalues λk in
columns to form the matrix U .

5. Select the first d ′ columns of U , and name this matrix
Ud ′ . Thus the projected data Xd ′ = XUd ′ .

To decide how to set the number of retained compo-
nents (d ′), we will usually look at the percentage of variance
retained for different values of d ′. We pick the smallest value
of d ′ that satisfies that the percentage of variance retained is
greater than 1 − ε:

d ′
∑

k=1
λk

d
∑

k=1
λk

≥ 1 − ε (22)

This is the data initialization process. The procedure fol-
lowed is trial and error. We initialize with the value ε, and if
during the running it is not possible to compute ̂Q(y), then
the retained variance is reduced by adjusting the threshold to
ε = ε + �ε and the whole process is repeated.

4.4 A heuristic approach

The problem (8) has a bilevel structure, in which, at the outer
level, it is optimized with respect to the vector of parameters
p and, at the inner level, optimization is carried out on the
set of centers c. The problem structure is due to the opti-
mization variables p and c being subordinated. This relation
between the variables occurs because the densities ρi depend
on the parameter p and at the same time these densities ρi (p)
determine which centers c(ρi (p)) will be chosen.

To illustrate this, consider the following example. Figure 1
shows four decision graphs for the real-world dataset Iono-
sphere and for the algorithm DPC. The Ionosphere dataset
has two clusters assigned the colors red and blue. Graphs
(a) and (b) show the true class of the points, while (c) and
(d) show the solutions found by the DPC algorithm in two
different situations. On the other hand, Graphs (a) and (c)
are calculated with the same optimal value of the parame-

ter dc obtained with our method, while Graphs (b) and (d)
are obtained using the default value dc = dc(2%). The first
observation is that the shape of the decision graph depends
on the parameter dc, and these graphs will determine the
centers c; this therefore shows the subordination of the deci-
sions of the centers to the parameters, i.e., c(dc). In Graphs
(a) and (b), a square marks the points of greatest γ . If the
centers are chosen by the rule of maximum γ , there will be
errors because both centers belong to the same cluster (the
blue one). As seen in Graph (c), this error is carried with
a domino effect to the other points. This motivates the use
of a heuristic algorithm to assign the suitable centers to the
clusters.

The optimization algorithmwe propose considers a neigh-
borhood around the starting center with the highest gamma
value, marked by a black circle in figure (a), and searches
among the elements of the neighborhood for alternative cen-
ters. If a candidate center c′ improves the validity index,
the center is updated and the search environment is moved
around c′. Figure (c) shows the result of optimizing the cen-
ter. It is seen that the new center is located inside the point
cluster.

The structure of the nested optimization problem (8) is
expressed formally as:

Maximise
p∈P

(

Maximise
c⊆X

Q(A(c, p,X ))

)

(23)

The solution procedure consists of an inner and an outer
optimization method. The inner method optimizes the valid-
ity indexQ for a known value of p with respect to the centers
c, and this procedure is denoted by ClusterCenters
Optimisation(p,X ). The outer method we propose per-
forms an exhaustive search on the list P of parameter values,
i.e., p ∈ P ⊆ P . Finally, this solution method is expressed
formally as:

Maximise
p∈P⊆P

ClusterCentersOptimisation(p,X )

(24)

Note that the expression (24) defines the parameter-tuning
problem. This problem optimizes an expensive black-box
function, and therefore the solution method based on an
exhaustive searchmay turn out not to be practical in some real
cases. In these situations, a surrogate-assisted optimization
must be used.

The optimization problem (8) is not standard, as the deci-
sion variables are a set of vectors, the centers c, rather than a
single vector. This makes it impossible to use metaheuristic
algorithms directly. Furthermore, an exhaustive search can-
not be carried out as the number of subsets c ⊆ X is

(N
nc

)

where nc is the number of centers, and this number increases
exponentially with the size of the dataset N .

123



Amethodology for automatic parameter-tuning and center selection...

We describe a ClusterCentersOptimisation
method. Its main elements are:

i) The definition of the neighborhood of the set c. Let c =
{c1, . . . , cnc }, and we define the neighborhoods of c

C = ∪iCi (25)

where Ci is the set of q−nearest neighbors of point ci .
To determine the q neighbors closest to ci , we use the
Euclidean distance in the decision graph (ρi , δi ) ∈ lR2

instead of calculating it in the space of characteristics lRd .
ii) The probability distribution over the neighborhood C. To

choose a new set of centers c′ ⊆ C a random sampling in
two stages was performed.

– The first stage chooses the centers to be changed.
Their number is calculated by nw = �w(nc−1)�with
0 ≤ w ≤ 1 and �·� is by default the floor function.We
decide by lot in the set {2, 3, . . . , nc} the nw centers
to be changed. The probability used in the draw is
inversely proportional to the parameter γi . We call
the result of the draw I ⊆ {2, 3, . . . , nc}.

– In the second stage, for each i ∈ I we choose a new
center c′

i in the neighborhood Ci , by performing a
new random draw among the neighbors c j ∈ Ci with
probability proportional to the value of γ j .

The resulting method, called ClusterCenters
Optimisation, is shown in Algorithm 2. This algorithm
assumes that the number of clusters nc is known to carry out
the computational experiment. This is a reasonable assump-
tion for an external index as the true labels � are known.
However, this algorithm can be extended to a variable num-
ber of clusters nc by adding another draw to reduce/increase
the value of nc. Therefore, in real cases where the number
of clusters is unknown, the parameter nc can be adjusted
by optimization in (24) with respect to an internal validity
index sensitive to the choice of nc such as the Silhouette
index.

The parameters niter , q and w have an effect on minimiz-
ing the solution time. They are related in order to explore
the decision graph near the center to be exchanged. A large
number of neighbors q will mean that not too many itera-
tions niter are necessary, as they explore most of the points
close to the cluster center. This means there is no sig-
nificant impact on the results when these parameters are
adjusted. The parameter w determines the number of cen-
ters to be replaced in each iteration. A high value will allow
a greater exploration of the space, while low values help the
exploitation.

Algorithm 2 Cluster center optimization for a fixed p value
Input : Let p ∈ P be the parameter of the algorithm A.

Let X be the set of data.
Let nc be the number of clusters.
Let niter be the number of main iterations.
Let q be the number of neighbors.
Let w be the proportion of changed centers in each iteration.

Output: An optimal set of cluster centers c∗ ⊆ X and the optimal
validity index Q∗.

1 Function ClusterCentersOptimisation(p, X , nc, niter ,
q,w):

// —————————– I n i t i a l i z a t i o n
—————————– //

2 Compute ρi and δi for each point i according to the rules used in
the algorithm A and for the given p value.

3 Sort the index i according to γi = ρi δi values such that γ1 ≥ γ2 ≥
. . . ≥ γN .

4 Let c∗ = {x1, x2, . . . , xnc } be the initial clusters centers.
5 Perform the clustering algorithm, y∗ = A(c∗, p,X ).
6 Evaluate the quality of the clustering solution y∗ using the validity

index, Q∗ = Q(y∗).
// —————————- M a i n i t e r a t i o n

s —————————- //
7 for each t ∈ {1, 2, . . . , niter } do
8 Draw without replacement �w(nc − 1)� values in the set i ∈

{2, 3, . . . , nc}with probability pi =
1
γi

∑nc
j=2

1
γ j

. Call the result

of the draw I .
9 For each i ∈ I compute the set of the q nearest neighbors of

the cluster center ci in the decision graph and call it Ci .
10 for each cluster center i ∈ I do
11 Use the roulette wheel selection rule for selecting a new

center c′
i ∈ Ci according to its probability pc′

i
where

pc′
i
= γc′i

∑

c j ∈Ci
γc j

.

12 end
13 Let c′ = {c′

i }i∈I ∪ {ci }i /∈I be the tentative cluster centers.
14 Perform the clustering algorithm y′ = A(c′, p,X ) and com-

pute the validity index, Q′ = Q(y′).
15 if Q∗ < Q′ then
16 Set c∗ = c′ and Q∗ = Q′.
17 end
18 end
19 return c∗ and Q∗.
20 end

5 Experimental results

This section describes a computational experiment to eval-
uate the proposed methodology based on optimal rules
and paying special attention to automatic parameter tun-
ing of density peak algorithms. We consider two basic
algorithms A, the original DPC and the FKNN-DPC intro-
duced in Xie et al. (2016). ̂Q(y) = HG(y) is used as the
internal validation index, defined by Eq. (20) and as the
external validation method Q(y) the V−Measure defined
in Eq. (18). The following notation A(a) is used to refer
to the fact that in the algorithm A the input a is adjusted
with respect to an external validity index, while the nota-
tion ̂A(a) indicates the same thing but with respect to
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Table 5 Details of datasets Dataset # Data # Attributes # Clusters References
(N ) (d) (nc)

Br. cancer 699 9 2 Dheeru and Karra Taniskidou (2017)

Ionosphere 351 33 2

Opt. digits 5618 64 10

Pen. digits 10,992 16 10

Voters 435 16 2

Image seg. 2309 19 7

Satellite 6435 36 6

Chart 600 60 6

Smartphone 10,929 561 12

Soybean 682 35 19

Dermatology 366 34 6

Glass 214 9 6

Isolet 6238 617 26

Parkinsons 195 22 2

Internet ads 3279 1,558 2

Face 5850 1200 10 Lee (2005)

an internal validity index. The algorithms analyzed by
combining these options are DPC(c∗, d∗

c ), FKNN-DPC(k∗),
FKNN-DPC(c∗, k∗), ̂FKNN-DPC(k∗), ̂FKNN-DPC(c∗, k∗)

The experimental results are structured into the following
experiments:

– Experiment 1: Evaluation of optimal rules using external
cluster validity indices. The purpose of the first exper-
iment is to assess the impact of using optimal rules r∗

c
and r∗

p on the performance of the baseline algorithm A
and to put it in the context of a number of state-of-the-art
algorithms. If the algorithm A is DPC, the optimal rules
represent the best solution to the problems Pc and Pdc
described in the introduction, and give an upper bound on
the performance of the proposed algorithms to improve
the center selection.

– Experiment 2:Automatic parameter tuning using internal
cluster validation indices. This experiment aims to assess
the methodology for automatic parameter tuning.

– Experiment 3: Comparison of algorithms. The goal is
to evaluate the performance of the peak-density-based
algorithms with respect to the state-of-the-art clustering
methods.

5.1 Datasets, algorithms and parameter settings

Experiments have been carried out using the following 16
benchmark datasets fromUCIMachine Learning Repository
and UCSD Computer Vision: Breast cancer Wisconsin orig-
inal, Ionosphere, Optical recognition of handwritten digits,
Pen-based recognition of handwritten digits, Congressional

voting records, Statlog image segmentation, Statlog landsat
satellite, Synthetic control chart time series, Smartphone-
based recognition of human activities and postural transi-
tions, Soybean disease, Dermatology, Glass identification,
Isolet, Parkinsons, Internet advertisements and Yale face
database B. In Table 5, we can see their characteristics: the
number of data points, the number of attributes and the num-
ber of clusters. These datasets are chosen because (i) they
are real problems, not synthetic, in which golden labels � are
known and they allow the ability of the algorithm to recon-
struct the true partition to be tested and (ii) it consists of a
collection of benchmark datasets widely used in the litera-
ture.

To preprocess the datasets, we replace the missing
attribute values with the average of the attribute vector, and
also normalize the data through min-max normalization.

The following state-of-the-art methods are used: NCutH,
which is a divisive clustering algorithm based on a binary
partitioning tree by normalized graph cuts across optimal
hyperplanes; NCutH0, which establishes the maximummar-
gin hyperplane and provides a balanced partition of the data
assigned to its respective leaf; K−means that has been used
with the default implementation inR and results from the best
solution from 10 initializations are considered; Bisecting K -
means (Bis.K-m); Normalized Spectral Clustering (SCn);
Iterative Support Vector Regression (iSVR); and Density
enhanced principal direction divisive partitioning (dePDDP)
were selected to compare their performances with the DPC
and FKNN-DPC algorithms. The results have already been
obtained fromHofmeyr (2017), and the setting of parameters
can be viewed in this reference.
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To carry out the experiment, we have obtained the code
of DPC provided by Rodriguez and Laio Rodríguez and Laio
(2014). The original DPC code needs the cutoff distance dc
to obtain the local density of each point, so according to
both authors, we have used Eq. (3) to compute dc taking
p = 2%. In addition, the local density is estimated by a
Gaussian kernel. The number of clusters of the datasets is
known (nc), and we have chosen as centers of the algorithms
DPC and FKNN-DPC the nc points with the highest value of
γ .

Regarding FKNN-DPC, we have coded it according to
Xie et al. (2016). As it is necessary to specify the param-
eter k (number of nearest neighbors), we have chosen k =
�0.015N� where �·� is the ceil of a number.

The algorithms DPC, FKNN-DPC and their correspond-
ing variants are coded in MATLAB. These programs are
available at this address https://bitbucket.org/jcarlos1193/
automatic_fknn-dpc.

As well as assessing the numerical results with respect
to the V−Measure, we added a second external validity cri-
terion: Purity (Zhao and Karypis 2001). Both metrics take
values in the range [0, 100], higher values are related to high
performance. Purity is computed as the weighted average of
the largest ratio of each cluster which is represented by a
single class.

Purity(y, �) = 1
N

m
∑

s=1
max

r∈{1,...,n}|ys ∩ �r | (26)

where y is the cluster solution and � the true labels (classes).

5.2 Experiment 1: Evaluation of optimal rules using
external cluster validity indices

We considered these parameters in the following algorithms:

– DPC(c∗, d∗
c ), optimizes DPCwith respect to the choice of

the centers c and the parameter dc.DPC(c∗, d∗
c ) search on

the best value of dc in the list P = {dc(0.5%), dc(1%),

. . . dc(25%)} computed using the Eq. (3). We have set
w = 0.7, q = �0.03N� and niter = 150.

– FKNN-DPC(c∗, k∗)optimizes the algorithmFKNN-DPC
with respect to the centers c and the parameter k. In this
case the list of value for k is P = {1, 2, . . . , 50}. The rest
of the parameters are the same as DPC(c∗, d∗

c ).
– FKNN-DPC(k∗) only optimizes the k parameter through
a list of values P = {1, 2, . . . , 50}, and the centers are
chosen to be nc points with the highest values of γi , using
the best according to V−Measure.

Tables 6 and 7 show, respectively, V−Measure and Purity
for Experiment 1. On the one hand, the well-known algo-
rithms are introduced on the left of the tables, while the DPC Ta
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and FKNN-DPC and their optimized versions are on the right.
The highest values of both metrics in each dataset are high-
lighted in bold. Those cases in which results could not be
obtained are marked with “-.”

We begin the analysis by considering the results of the
V−Measure shown in Table 6. The reference algorithm for
this study is the DPC. Looking at the results, we see that
the raw version of this gives a balance of 5/11 (win /loss)
over the K− means and of 6/10 over the NCutH. Nonethe-
less, this algorithm has room for improvement, as seen by
the results obtained with optimal rules DPC(c∗, d∗

c ) where
the balance is overturned and becomes 10/6 with respect to
the K−means and 9/7 with respect to NCutH. The results
obtained for the FKNN-DPC(k∗) are noteworthy as they give
a balance of 12/4 over the DPC(c∗, d∗

c ). This may indicate
that the emphasis of the research should be directed toward
designing new multi-step algorithms along these lines L3

with automatic parameter-tuning strategies, as is the case
with the algorithm FKNN-DPC with its parameter k, rather
than to refining strategies for choosing the centers c and the dc
in the DPC (research in this direction L2). Another highlight
is that FKNN-DPC(c∗, k∗) outperforms the other 11 meth-
ods. FKNN-DPC(c∗, k∗) gives a balance of 10/6 against the
other algorithms. That is, of the 16 datasets this method is
better in 10 datasets, and for the other 6 datasets it is worse
than one or other of the 11 clustering algorithms.

With the optimization of the methods carried out with
respect to the quality indexV−Measure, the conclusionsmay
vary with respect to the Purity measure. If we look at Table 7
related to Puritymeasure,we can observe similar conclusions
to the previous table: (i) FKNN-DPC(c∗, k∗) obtains a higher
performance than the rest of the algorithms again, and (ii) the
algorithm FKNN-DPC(k∗) outperforms DPC(c∗, d∗

c ).
In this experiment, it is shown that the FKNN-DPC pro-

posed by Xie et al. (2016) is promising in clustering tasks
for both external indices, and thus we focus our attention on
FKNN-DPC in Experiment 2.

5.3 Experiment 2: Automatic parameter tuning
using internal cluster validation indices

The automatic parameter adjustment described is a procedure
that seeks to optimize the external validity indices indirectly
with respect to the parameters, via the optimization of the
internal validity index. The procedure will work well if both
indices are highly correlated. This experiment assesses the
procedure for automatic parameter tuning for the algorithm
FKNN-DPC based on the internal cluster validation index
̂Q(y) = HG(y). This is done by computing the degree of cor-
relation between the external validation indices V−Measure
and Purity and the proposed internal validation index HG .
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Table 8 Comparison of
FKNN-DPC versions using
V -measure metric

Datasets FKNN-DPC(k∗) FKNN-DPC(c∗, k∗) ̂FKNN-DPC(k∗) ̂FKNN-DPC(c∗, k∗)

Br. cancer 81.69 81.69 78.79 78.79

Ionosphere 38.36 37.26 35.87 35.24

Opt. digits 88.22 93.15 87.07 92.41

Pen. digits 78.01 83.73 77.68 82.49

Voters 50.59 51.09 49.61 49.61

Image seg. 70.58 76.96 66.14 68.21

Satellite 68.75 70.74 62.15 68.13

Chart 81.40 84.39 80.56 79.13

Smartphone 69.52 77.06 66.22 68.04

Soybean 70.49 70.36 69.42 68.65

Dermatology 88.28 91.97 87.46 85.21

Glass 29.07 43.44 28.56 30.03

Isolet 76.38 78.50 75.37 76.53

Parkinsons 25.19 30.32 14.33 20.96

Internet ads 1.44 17.72 1.01 4.75

Faces 83.99 87.80 81.17 85.55

Table 9 Comparison of
FKNN-DPC versions using
Purity metric

Datasets FKNN-DPC(k∗) FKNN-DPC(c∗, k∗) ̂FKNN-DPC(k∗) ̂FKNN-DPC(c∗, k∗)

Br. cancer 97.28 97.28 96.71 96.71

Ionosphere 84.90 84.62 84.33 84.62

Opt. digits 80.16 95.71 84.04 95.39

Pen. digits 73.75 83.10 71.12 80.09

Voters 87.59 87.82 87.13 87.13

Image seg. 65.45 70.39 64.33 71.08

Satellite 80.39 82.04 74.89 81.13

Chart 73.67 66.67 66.67 73.33

Smartphone 61.84 75.24 53.94 71.54

Soybean 67.64 67.64 66.76 62.96

Dermatology 86.34 86.34 86.34 85.52

Glass 46.26 52.80 48.60 55.14

Isolet 54.22 61.96 56.62 63.24

Parkinsons 82.05 84.62 75.38 75.38

Internet ads 86.15 86.00 86.00 86.00

Faces 78.53 86.70 75.15 82.38

We shall compare, with respect to the V−Measure and the
Puritymetrics, the solutions obtained for FKNN-DPC(c∗, k∗)
with ̂FKNN-DPC(c∗, k∗), and also the algorithm FKNN-DPC
(k∗) with ̂FKNN-DPC(k∗).

An optimization is performed of the indices Q(y) and
̂Q(y) with the heuristic algorithm using the same parame-
ters (and the same as in Experiment 1). Furthermore, in the
trial/error application of the PCA we have taken ε = �ε =
0.05 in Eq. (22).

The results obtained are shown in Table 8 for the
V−Measure and Table 9 for the Purity index. As expected,
both FKNN-DPC(k∗) and FKNN-DPC(c∗, k∗) algorithms

achieve the best results. We can also check that automatic
parameter-tuning methods do not become much worse with
respect to FKNN-DPC(k∗) and FKNN-DPC(c∗, k∗), except
Glass, Parkinsons and Internet ads datasets. In addition,
between ̂FKNN-DPC(k∗) and ̂FKNN-DPC(c∗, k∗)wecan see
how the second achieves better results because the search also
includes the optimal cluster centers. Similar conclusions are
obtained using the Purity measure in Table 9.

Wiwie et al. (2015) carry out a similar experiment on
tuning the parameters using internal and external indices.
The authors calculate the Spearman correlation coefficients
between a number of indices. The best results were obtained
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Table 11 Classification of algorithms according to mean ranks

Ranking Algorithm Mean rank p-value

1. FKNN-DPC(c∗, k∗) 13.09 → 0.01

2. FKNN-DPC(k∗) 10.91 0.32

3. ̂FKNN-DPC(c∗, k∗) 9.50 1

4. NCutH 9.19 0.62

5. DPC(c∗, d∗
c ) 8.81 0.62

6. ̂FKNN-DPC(k∗) 8.78 0.32

7. NCutH0 8.56 0.13

8. K−means 6.72 → 0.03

9. BisKm 5.84 0.13

10. SCn 5.69 1

11. DPC 5.13 0.32

12. FKNN-DPC 4.91 0.62

13. dePDDP 4.19 0.32

14. iSVR 3.69

for the Silhouette value as internal index, giving a correlation
coefficient of ρ = 0.71 for the F1 Score and ρ = 0.66 for the
V−Measure. We calculated the coefficient for our internal
index ̂Q(y) = HG(y) getting the values ρ(c,k) = 0.96 and
ρk = 0.96 with respect to the V -Measure and the values
ρ(c,k) = 0.93 and ρk = 0.97 with respect to the Purity index.
This high correlation supports the HG(y) as a good choice
of internal quality measure in automatic parameter tuning.

5.4 Experiment 3: Comparison of algorithms

The goal of Experiment 3 is to test whether the differences
between the clustering algorithms considered are statistically
significant. Todetect the significant differences betweenpairs
of clustering methods, we conduct a Friedman test over the
V -Measure. Table 10 shows all comparisons between pairs
of algorithms. In the lower triangle, the symbol “*” indicates
whether there is a significant difference between the pair of
algorithms at the level of 5%. The upper triangle of Table 10
shows the mean rank differences between algorithms.

The total number of tests is 91, and this large number
makes global analysis of the results very difficult. Thus,
in order to facilitate the interpretation of the results, we
performed a ranking according to their mean rank in the
Friedman test. Table 11 shows the results. We have also
reported the p-value between each consecutive pair in the
ranking. The tests that have proven significant are highlighted
in bold, and a separator line is added. The first thing to be
observed is that there are three groups of algorithms. There
are differences between algorithms from different groups,
and within each group there may or may not exist a sig-
nificant difference. This test measures the number of times
an algorithm obtains better results than another, but it does
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Fig. 2 Boxplot comparing the algorithms with respect to the V -measure scores

not take into account the size of the improvement. To com-
plete the analysis, we performed a boxplot to compare the
V−Measure scores obtained for the algorithms. The boxplot
is shown in Fig. 2.

The notable points of this experiment are:

– FKNN-DPC(c∗, k∗) algorithm significantly outperforms
the other clustering methods with respect to the
V−Measure. As already noted, this method is not appli-
cable to real problems as it requires knowledge of the true
clustering �. This result may suggest that line of research
in algorithms of the type ̂FKNN-DPC(c∗, k∗) could be
promising. The results obtainedwith ̂FKNN-DPC(c∗, k∗)
improve those obtained with DPC(c∗, k∗) (although this
improvement is not statistically significant).

– The second highlight is that it shows the importance of
the automatic parameter tuning. The versions D̂PC and

̂FKNN-DPC significantly improve the performance of
raw methods DPC and FKNN-DPC.

6 Conclusions

This study analyzes peak-clustering methods, focusing on
two aspects: (i) developing a methodology for automatic
parameter tuning and (ii) analysis of optimal strategies. The
methodology proposed for (i) is optimization with respect
to Gaussian entropy HG and for (ii) with respect to the V -
Measure index.

The methodology is general enough to analyze arbitrary
algorithms A based on density peaks. Our numerical exper-

iments focus on the original DPC and the promising method
FKNN-DPC. We have determined, by using a set of 16 real
datasets and for the FKNN-DPC, that the internal validation
measure HG that we propose has a high Spearman corre-
lation, ρ = 0.96, with the external validation V -Measure.
This suggests that HG gives results that are very close to the
optimal rules for the V -Measure.

It is also shown that automatic parameter tuning for DPC
and for the method FKNN-DPC significantly improves its
results with respect to the raw parameterization. Automatic
parameter tuning is important because many promising algo-
rithms, such as Xie et al. (2016), Lu and Zhu (2017), and Liu
et al. (2018), require the parameter k to be estimated.

The study omits the computational cost analysis, a subject
that should be studied in the future. The framework described
allows for multiple combinations of other algorithms A in
conjunctionwith other internal or external validation indices.
One case we think would of interest is to analyze the cross-
entropy H×

G with a variable number of clusters.
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