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Abstract. A new approach to a previous passivity-based control scheme
of single-link flexible manipulators is presented herein. Such previous
scheme achieves precise positioning of the link tip by combining a po-
sition angular control of the motor (inner loop) with a link vibration
damping (outer loop), which can be designed independently by decou-
pling joint and link dynamics with a linear strain feedback. Although,
precise positioning can be achieved under large tip payload changes, the
used inner loop cannot eliminate the steady-state position error due to
the nonlinearities present in the motor. The contribution presented in
this work consists of using a two-degree of freedom PID motor controller
to solve this problem, eliminating thus the steady-state error while also
improving the settling time of the angular position. Simulation and ex-
perimental results are carried out to illustrate these improvements.

1 Introducción

”Flexible robots” or ”flexible manipulators” exhibit many advantages over their
rigid counterparts such as they are lighter robots which can be driven using
smaller amounts of energy, being more suitable for aerospace industry. In ad-
dition, these robots are safer to operate due to their reduced inertia and their
inherent property to transform kinetic energy into potential energy (i.e., link
strain). However, the vibrations make accurate positioning or trajectory track-
ing a challenging task, motivating a huge research in this topic [1].

In order to address control objectives, such as tip-position accuracy or sup-
pression of residual vibration, many techniques derived from the control theory
have been applied to flexible robots. Most of these control techniques can be
classified in two groups: adaptive control [2–4], and robust control [5–7]. Both
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robust control and adaptive control usually require complex design methodolo-
gies and may show unstability issues due to high frequency unmodeled dynamics
of the system due to spillover effects.

Control designs based on the partial differential equations can solve the afore-
mentioned stability problems, while also simplifying the control design. Some
examples are the direct strain feedback control (DSFB) [8], and the passivity-
based control [9]. However, these techniques present some limitations owing to
the coupling between the dynamics of the motor and the link of the flexible
manipulator, which may lead to slow time response and position error.

The previous work [10] proposes a passivity-based control scheme consisting
of two nested loops which are designed independently by decoupling joint and
link dynamics with a linear strain feedback. This scheme damps the vibrations
of the tip which appear after the movement of the robot, being also robust to
large changes in the payload and to spillover effects. However, the loop used to
control the motor angular position cannot remove the steady-state error due to
the frictions present in the reduction gear and the motor.

In the present work, this loop is substituted by a two-degree of freedom
(2DOF) PID motor controller. Thus, the steady-state error is eliminated while
also improving the settling time of the angular position. In addition, a step
by step design methodology is proposed to keep the design simplicity of [10].
A design example is simulated and implemented in practice to illustrate these
improvements.

2 Dynamic modelling

The scheme of the flexible robot to be controlled is shown in Fig. 1. The system
is divided in two subsystems: the subsystem comprising the motor and the gear
box, and the subsystem comprising the flexible link with a payload of mass Mp

and inertia JP . The equations of dynamic equilibrium in the joint are:

Γm(t) = nrKmV = J0θ̈m(t) + νθ̇m(t) + Γf (t) + Γcoup(t), (1)

where Γm is the applied torque by the motor, Km is a constant relating the
control voltage of the motor V with the torque in the motor side, J0 is the hub
inertia, nr is the reduction ratio, θm is the angular position of the motor, ν is
the viscous friction coefficient, Γf is the torque owing to Coulomb friction and
Γcoup is the coupling torque between the link and the joint.

The dynamic behavior of an Euler-Bernoulli beam is governed by the follow-
ing PDE (see, for example [11]),

EIwIV (x, t) + ρ ¨w(x, t) + cẇ(x, t) = f(x, t). (2)

where L is the length of the link, ρ is the volumetric density, EI is the stiffness,
w is the deflection, f(x, t) is a distributed external force, c is a damping constant
and overdots and primes indicate time and spatial derivatives, respectively.
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Fig. 1. Robotic system scheme

Solving this equation (see [12]) the transfer functions of the system can be
obtained. The assumptions made are that movement of the link is constrained to
the horizontal plane (so the gravity effects are negligible), and that the deflections
of the link are much smaller than the axial deformation.

The relationship between the coupling torque and the strain measured at the
base of the link, which is used to decouple the link from the motor+reduction
Gear, is as follows:

Γcoup(t) = −EIw
′′

0 , (3)

where w
′′

0 is the strain at the base of the flexible link.
The model dynamics is derived by considering the link as an Euler-Bernoulli

beam (see [12]). In addition, the experimental platform built in the laboratory
of the E.T.S.I.I. in Ciudad Real, whose identified system parameters are shown
in Table 1, is used to derive the dynamics model needed in the design of the
controllers.

Table 1. Experimental platform parameters

Stiffness (Nm2) EI 2.4

Thickness (m) h 0.002

Width (m) b 0.05

Length (m) L 1.26

Mass density (Kg/m3) ρ 2680

Inertia of the rotor and hub (Kg/m2) J0 0.79

Motor constant (Nm/V ) Km 0.474

Reduction gear ratio nr 50

Viscous friction coefficient (Kgm2/s) ν 3.65

Torque owing Coulomb friction (Nm) Γf 17.06
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Fig. 2. Decoupling the flexible link and the motor+reduction gear dynamics compen-
sating the coupling torque

3 Control design methodology

The objective of this section is to present the control design methodology based
on the passivity property existing between the integral of the coupling torque
Γcoup (output) and the motor angle θm demonstrated in [10]. The control strat-
egy consists of three sequential steps: First the link and motor dynamics are
decoupled, then the controller of the angular position is designed, and finally an
outer control loop is designed in order to damp the vibrations of the tip of the
link.

The contribution presented in this work consists of substituting the PD mo-
tor controller of the inner loop, which was proposed in the design methodology
presented in [10], by a 2DOF PID. The tuning of this 2DOF PID motor controller
is based on a minimization process, which consists of minimizing the error be-
tween the output of the system and a step shaped reference control signal. Once
the 2DOF PID is thus correctly tuned, the steady state error is removed and
the settling time of the motor angular position is minimised, thus improving the
results obtained in [10] without a significant increase of the complexity of design.

3.1 Decoupling the link and the motor dynamics

In order to decouple the link and the motor dynamics is necessary to compensate
the coupling torque as showed in Fig. 2. Compensating the coupling torque leads
from the original model of the plant to the equivalent one showed in Fig. 3. The
coupling torque is obtained in this work by using a strain-gauge bridge placed at
the base of the beam (see Eq. (3)). The strain signal is amplified by the dynamic
strain amplifier (Kyowa DPM600) and filtered by a second-order Butterworth
filter with its cutoff frequency set to 300 Hz.

3.2 Design of the inner loop controller robust to nonlinearities

After decoupling the motor and link dynamics, the modified motor position
control scheme is shown in Fig. 4. Note that the whole model of the motor,
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Fig. 4. 2DOF PID applied to the motor+reduction gear model

including the nonlinearities caused by the friction and the saturation of the
motor, is considered in order to design the 2DOF PID controller [13].

The relative order of the inner loop dynamics must be less or equal than
two in order to guarantee the stability and the passivity properties of the overall
control system [10]. Considering this restriction, the 2DOF PID controller design
can be divided into the following steps: i) choose the transfer functions Gc1(s)
and Gc2(s) so that the closed loop dynamics (considering only the linear part
the motor+reduction gear dynamics) has a relative degree less or equal than
two, ii) establish restrictions in the parameters of Gc1(s) y Gc2(s) in order to
simplify the resulting transfer function so that such transfer function has real
and coincident zeroes and poles, leading to a second order critically damped
system, and iii) adjust the zeroes and poles of the resulting closed loop system
in order to minimize the following functional:

J(p1, p2) =

∫ ∞
0

(u(t)− y(t))
2
tdt, (4)

where y(t) is the response of the controlled system (considering the nonlinearities
of the motor and the reduction gear), and u(t) is a step reference signal of
amplitude equal to 0.5 radians.

If the linear part is only considered in Fig. 4, the transfer function between
θm and θ∗m is as follows:

GBC(s) =
Gc1(s)A

s2 + sB +A(Gc1(s) +Gc2(s))
(5)
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where A and B are equal to nrKm/Jo and ν/J0, respectively. If it is imposed
GBC(s) to being a critically damped second order system, the following functions
Gc1(s) and Gc2(s) can guarantee this restriction:

Gc1(s) =
a2s

2 + a1s+ a0
s2 + gs

, Gc2(s) =
b2s

2 + b1s+ b0
s2 + gs

. (6)

Thus, substituting the equalities (6) into (5) the following expression is obtained:

GBC(s) =
A(a2s

2 + a1s+ a0)

s4 + (g +B)s3 + (Bg +A(b2 + a2)) s2 +A(b1 + a1)s+A(b0 + a0)
.

(7)
Therefore, if it is considered that the transfer function (7) has the following form:

GBC(s) =
p22(s+ p1)2

(s+ p1)2(s+ p2)2
, (8)

the equations for designing the parameters of (6) from the values of p1 and p2
are the following:

a2 =
p22
A
, a1 =

2p22p1
A

, a0 =
p22p

2
1

A

b2 =
B(B − 2p2 − 2p1)

A
+
p22 + p21 + 4p2p1

A
− p22
A

b1 =
2p22p1 + 2p21p2

A
− 2p22p1

A
b0 = 0, g = −B + 2p2 + 2p1. (9)

Note that Eq. (8) is an approximation because the Coulomb friction is not
considered. This approximation can be used for a range of values for p1 and p2.
Thus, the optimal values of p1 and p2 are obtained by simulation the control
scheme of Fig. 4 when the overshot is less than 10%. Fig. 5 shows the evaluation
of Eq. (4) after considering the above restrictions, where a minimum value of J
can be seen.

3.3 Design of the outer loop

The whole control scheme is shown in Fig. 6, where the inner loop is approxi-
mated by the following transfer function:

GBC(s) ' p22
(s+ p2)2

(10)

Note that the nonlinearities of the motor and the coupling between dynamics
have been compensated in the previous design steps. This approximation was
validated via experimental results with different reference inputs. Thus, if the
approximation (10) is considered adequate and if the outer control is defined as
follows:
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Fig. 5. Evolution of (4) with respect p1 and p2

C(s) = (1/s)C ′(s) = (1/s)Kc(s+ λ), (11)

the passivity property existing between the integral of the coupling torque (mea-
sures with the strain gauges) and the angular position of the motor (measured
in the encoder of the motor) can be considered to deduce the following nec-
essary and sufficient condition to guarantee the stability of the overall control
system(see [10] for more details):

Re

{
Kcp

2
2(jω + λ)

(jω + p2)2

}
> 0,∀ω > 0, (12)

which can be summarized in:

λ < 2p2 (13)

Bearing in mind this restriction on the value of λ , the remaining parameter
of C ′(s) (Kc) is chosen so that the complex conjugate poles corresponding to
the first mode of vibration of the link become into a double pole placed in the
real axis (critically damped dynamic for the closed loop system).

Note that Eq. (13) is a simple condition of inequality (the same as for the
one showed in [10]). However, if a PID is used for the inner control loop instead
the 2DOF PID proposed herein, this stability condition is more complex because
GBC(s) cannot be approximated by a critically damped second order system.

4 Experimental results and simulations

The identification of the joint dynamics is firstly carried out. This dynamics is
as follows:
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θm
Vc

=
39.26

s(s+ 4.24)
(14)

Based on this model, the functional (4) is minimized to obtain the parame-
ters of Eqs. (6), which determine the optimal regulator for the angular position
control. The parameters obtained after the minimisation are shown in the Table
2.

Table 2. Optimal values for the 2DOF PID control

Parameter Value Parameter Value

a2 2.06 b2 12218

a1 2801.7 b1 2.1 · 105

a0 9.5 · 105 b0 0

g 1371.8

Next the transfer function of the flexible link is identified from the experi-
mental platform defined in Table 1:

Γcoup

θm
= s2

(
5

s2 + 0.075s+ 43.419
+

3.5

s2 + 0.131s+ 1720.2
+

3

s2 + 0.417s+ 13439
+

3

s2 + 0.821s+ 52020

) (15)

Once the system dynamics are known and the inner loop is designed, the
values of λ and Kc can be obtained. Thus, the outer controller, which places the
poles of the first vibration mode of (15) into a double pole placed in the real
axis and guarantees the condition defined into Eq. (13), is tuned as follows:

C(s) =
0.84(s+ 4.76)

s
(16)

The results obtained applying a step input of amplitude equal to 0.5 radi-
ans to the controlled system are shown in Figs. 7(a) and 7(b). It can be seen
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that the steady state error of the system is null and the residual vibration is
approximately zero after 2s.
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Fig. 7. Step input response (Simulation and experimental results)

Finally, a small oscillation can be appreciated in Fig. 7(b). This oscillation,
which corresponds to a high vibration mode, is not significant to obtain a precise
tip positioning. It should be remarked that the passivity property (13) does not
consider the dynamics of the strain-gauge bridge, the signal amplifier and the
low pass filter. These dynamics, which could make the system unstable [14], will
be considered in future works.

5 Conclusions

This work has proposed a modification of a previous passivity based control
scheme for single link flexible manipulators. This modification is based on sub-
stituting the PD motor controller proposed in [10] by a 2DOF PID motor con-
troller. In addition, this modification has been taken into account in a step by
step design methodology, which simplifies the controller tuning parameters. The
resulting control scheme has been simulated and implemented in a laboratory
structure, showing its effectiveness to remove the steady state error position and
the residual vibration.

References

1. V. Feliu. Robots flexibles: Hacia una generación de robots con nuevas prestaciones.
Revista Iberoamericana de Automática e Informática Industrial.
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