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Received: 12 July 2019 / Accepted: 16 June 2020
� The Author(s) 2020

Abstract
The backpropagation (BP) algorithm is a gradient-based algorithm used for training a feedforward neural network (FNN).

Despite the fact that BP is still used today when FNNs are trained, it has some disadvantages, including the following: (i) it

fails when non-differentiable functions are addressed, (ii) it can become trapped in local minima, and (iii) it has slow

convergence. In order to solve some of these problems, metaheuristic algorithms have been used to train FNN. Although

they have good exploration skills, they are not as good as gradient-based algorithms at exploitation tasks. The main

contribution of this article lies in its application of novel memetic approaches based on the Gravitational Search Algorithm

(GSA) and Chaotic Gravitational Search Algorithm (CGSA) algorithms, called respectively Memetic Gravitational Search

Algorithm (MGSA) and Memetic Chaotic Gravitational Search Algorithm (MCGSA), to train FNNs in three classical

benchmark problems: the XOR problem, the approximation of a continuous function, and classification tasks. The results

show that both approaches constitute suitable alternatives for training FNNs, even improving on the performance of other

state-of-the-art metaheuristic algorithms such as ParticleSwarm Optimization (PSO), the Genetic Algorithm (GA), the

Adaptive Differential Evolution algorithm with Repaired crossover rate (Rcr-JADE), and the Covariance matrix learning

and Bimodal distribution parameter setting Differential Evolution (COBIDE) algorithm. Swarm optimization, the genetic

algorithm, the adaptive differential evolution algorithm with repaired crossover rate, and the covariance matrix learning

and bimodal distribution parameter setting differential evolution algorithm.
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Abbreviations
BP Backpropagation

FNN Feedforward neural network

MA Memetic algorithm

GSA Gravitational search algorithm

CGSA Chaotic gravitational search algorithm

MGSA Memetic gravitational search algorithm

MCGSA Memetic chaotic gravitational search

algorithm

qN Quasi-Newton

PSO Particle Swarm optimization

GA Genetic algorithm

DE Differential evolution

Rcr-JADE Adaptive differential evolution algorithm

with repaired crossover rate

COBIDE Covariance matrix learning and bimodal

distribution parameter setting differential

evolution

MSE Mean square error

SSE Sum of square error

RMSE Root mean square error

ANFIS Adaptive-network-based fuzzy inference

system

EEMD Ensemble empirical mode decomposition

EELM Enhance extreme learning machine

BFOA Bacterial foraging optimization algorithm

SBLLM Sensitivity-based linear learning method

EML Extreme machine learning

LIBS Laser-induced breakdown spectroscopy
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MLP Multilayer perceptron

IoT Internet of things

Neural network training problem
nj Number of neurons of the layer j

c Total number of layers in a FNN

Wj Weight matrix associated with the connections from

layer j� 1 to layer j

bj Threshold vector of the neurons for layer j

xi Input vector for the FNN

x
ðjÞ
i

Activation for the neuron i in layer j

s Activation function for the FNN

oi Activation of the neuron i from the output layer

x Parametrization of the FNN, denoted by

x ¼ fWj; bjgcj¼1

Memetic chaotic gravitational search algorithm
Npob Number of initial solutions in the population

t Current iteration

T Maximum number of iterations

Mt
i Mass of the solution i in iteration t

worstt Worst fitness solution in iteration t

bestt Best fitness solution in iteration t

Ft
ij Gravitational force which acts from j to mass i

Ft
i Total gravitational force acting on the mass i

Mt
pi Passive gravitational mass of i in iteration t

Mt
aj Active gravitational mass of j in iteration t

Rij Euclidean distance which separates masses

i and j

G0 Initial value of the gravitational constant

Gt Gravitational constant at iteration t

Gt
chaotic Gravitational constant at iteration t where a

chaotic map is added

a Learning rate

� Small value to avoid dividing by zero

ati Acceleration of mass i at iteration t

vtþ1
i

Speed of mass i at iteration t þ 1

dk Search direction at kth iteration

rf ðxkÞ Vector of first-order partial derivatives of the

loss function with respect to the vector x

Hk Positive definite matrix

r2f ðxkÞ Is the Hessian matrix of f at xk

1 Introduction

Neural networks are one of the most popular and successful

machine learning techniques. The aim of machine learning

techniques is to provide algorithms with the goal of

allowing the computer to learn automatically without

human intervention, and to adjust actions accordingly.

Specifically, FNNs are the best known neural network

architecture (see [33]), with the layers interconnected in

such a way that the output of ith layer is used as the input

of the iþ 1th layer. Most commercial applications which

use neural networks implement this kind of architecture,

since it has been shown to be suitable for addressing a large

class of problems pertaining to pattern recognition or pre-

diction (see [8, 41, 42, 67]). Moreover, an FNN with only

one hidden layer is considered a universal approximator

(see [31]) as it can approximate any continuous function.

In neural networks, the learning process takes place

through the adjustment of the weights and biases which

measure the strength of the connection between neurons

from different layers. These weights are usually updated in

order to minimize the error made by the network, which is

formulated using a loss function, like mean square error

(MSE), sum of square errors (SSE) or root mean square

error (RMSE). The process of adjusting the weights and

biases for a given network is known as training. Therefore,

from the mathematical point of view, behind a neural

network lies the solution of an unconstrained optimization

problem.

In the past, gradient-based techniques were the most

widely used for FNN optimization (see [32]). These algo-

rithms use a specialized method for computing the gradient

of the loss function with respect to the parameters of the

network, known as the backpropagation technique. The

most representative algorithm of this class is the steepest

descent approach known as the BP algorithm (see [21]).

This algorithm is based on the idea of propagating the

errors made by the network to the back layers. This iden-

tifies how the error varies with respect to the network

parameters and adjusts the weights and biases in order to

minimize the loss function.

Training an FNN using a BP algorithm is difficult when

the problems are non-differentiable or multimodal. This is

because gradient-based algorithms are liable to becoming

trapped local minima (see [26]), making their performance

highly dependent on the initial values of weights, biases

and the chosen hyperparameters of the optimization algo-

rithm. Furthermore, the vanishing gradient problem

becomes a major concern when many hidden layers are

added to the network. These facts motivate the challenge of

finding new approaches and algorithms which outperform

the BP in these scenarios. In order to address these prob-

lems, metaheuristic algorithms have been successfully

applied to training FNNs (see [12, 52, 53]). Metaheuristics

improve the exploration capacity of gradient-based algo-

rithms, but they exhibit slow convergence in comparison

with gradient-based approaches, which achieve conver-

gence at a (super-)linear rate (see [4]).

Neural Computing and Applications

123



In the last few years, MAs have appeared as a new

computation paradigm which tries to combine meta-

heuristic algorithms with one or more local search proce-

dures in order to combine the advantages of both

approaches (see [47, 50]). MAs have been successfully

applied in different domains such as the train timetabling

problems (see [14]) and segmentation of temporal series

(see [40]).

Recently, [20] have proposed two memetic algorithms

for unconstrained optimization based on the hybridization

of the GSA (see [60]) or CGSA (see [44]) with quasi-

Newton (qN) search directions. The resulting algorithms

are named MGSA and MCGSA. In this previous study, the

authors proved these memetic algorithms can be consid-

ered as part of the state of the art, since they outperformed

metaheuristic algorithms from the state of the art in a wide

set of synthetic and real-world global optimization prob-

lems. This paper studies the application of both memetic

approaches to a challenging machine learning problem,

specifically the training of an FNN. Both approaches are

particularly suited to training a FNN as they consider a qN

algorithm with a superlinear convergence rate and they

include a promising evolutionary algorithm, so as not to

become trapped in local minima. The main advantage of

using a metaheuristic algorithm instead of BP is that

metaheuristic algorithms are able to escape from local

optima, while BP may be trapped in local minima. How-

ever, the exploitation capabilities of BP improve upon

those of metaheuristic algorithms significantly. This situ-

ation motivates the use of the memetic approaches based

on gradient information, which combine the advantages of

BP and metaheuristic algorithms. Thus, the main advantage

of using a memetic approach is a greater rate of conver-

gence than with metaheuristic algorithms and the ability to

find a global optimum of the problem, unlike BP. In order

to do this, the implementation of these algorithms has been

adapted to this problem and the results obtained are ana-

lyzed in order to compare the performance of memetic

approaches to that of other metaheuristic algorithms from

the state of the art.

Furthermore, [45] addressed the training problem of

FNN using GSA, PSO and a hybrid of GSA with PSO. This

study replicates their computational experiment in order to

assess the performance of MGSA and MCGSA in training

FNNs. Furthermore, a statistical comparison of both

approaches with metaheuristic algorithms from the state of

the art was carried out. To do this, PSO and GA were

chosen as the traditional algorithms, while Rcr-JADE (see

[24]) and COBIDE (see [69]) were selected as recent

proposed algorithms, since these variants of the differential

evolution (DE) algorithm have been widely used in recent

years and give the best results in rankings (see [57]). The

results obtained show MCGSA improves statistically, in

terms of convergence and speed, on the results obtained by

the metaheuristics from the state of the art when training a

FNN.

The rest of the article is structured as follows: Sect. 2

gives a brief review of GSA applications in neural net-

works; Sect. 3 defines and formalizes the neural network

training problem. Then, Sect. 4 describes GSA, CGSA and

the memetic algorithms used in this paper. Section 5 shows

the results of experiments carried out in this study, and

finally, Sect. 6 summarizes the conclusions and further

work derived from this article.

2 Related work

The success of metaheuristics and evolutionary algorithms

in the field of optimization is well known. They are

approximate and non-deterministic optimization methods

which incorporate mechanisms to escape from local optima

in order to reach the global optimum. The popularity of

these methods is due, among other things, to their versa-

tility, simple coding, the few hypotheses to be fulfilled and

the fact they do not use derivatives. The applications of

these algorithms cover many, if not all, fields of

engineering.

Some recent applications are related to hydrology, such

as [9] where an adaptive-network-basedfuzzy inference

system (ANFIS) model is designed for long-term predic-

tion of discharges by the Manwan Hydropower Plant into

the Lancangjiang River, in order to manage and schedule

the hydroelectric reservoir. Subsequently, [68] proposed a

neural network model coupled with the ensemble empirical

mode decomposition (EEMD) designed for medium and

long-term forecasting in hydrological time series. Hybrid

algorithms have also been applied in this field, for example

in [46], where a hybrid firefly algorithm with support

vector regression is applied to predict evaporation with the

purpose of managing water resources and [72], where an

enhance extreme learning machine (EELM) is used to

forecast river flow in the Kelantan River (Malaysia).

Regarding other fields of science and engineering,

recent relevant applications can also be found. For exam-

ple, in chemistry, [48] have recently proposed approaches

based on neural networks, ANFIS and response surface

methods to estimate and optimize the main parameters

which affect the yield and cost of biodiesel production, and

found that neural networks with radial basis functions give
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the maximum biodiesel yield production with the minimum

production cost. In another field, [17] presented a survey of

computational intelligence techniques applied to address

severe flood management, identifying neural networks, soft

computing techniques, decision trees, fuzzy logic and

hybrid approaches. Finally, other recent applications in the

field of power systems are [1] where a hybrid algorithm

based on PSO and the bacterial foraging optimization

algorithm (BFOA) is applied to power system stabilizer

design, and [2] where the same authors used GSA to design

a static synchronous series compensator for single and

multi-machine power systems.

Metaheuristics and evolutionary algorithms in the area

of neural networks have been applied to optimize the FNN

components of: (i) connection weights, i.e., to find the

optimal combination of weights and biases which provides

the minimum error while keeping the other components

fixed at their initial setting; (ii) architecture, i.e., the

metaheuristic is used to search for optimum architecture

from a compact space of FNN topology; and (iii) hyper-

parameters such as the learning rate in the BP (remember

that the efficiency of these algorithms is highly conditioned

by these values). The first two areas have attracted the

attention of the research community, with many studies

appearing related to these fields. The aim of this section is

to review the studies and applications of GSA in the field of

neural networks, paying special attention to groups (i) and

(ii).

2.1 Using GSA for training neural networks

The complexity of the training problem derives from the

topology of the network, since the size of the network, in

terms of hidden neurons and hidden layers, leads to a large

number of parameters to be optimized. Thus, the number of

hidden neurons is assumed to be fixed in this kind of

problem, or different sizes are proposed in order to study

which network topology provides the best performance.

The sizes of the hidden layers are usually set based on the

previous experience of the practitioners.

The metaheuristics and their hybridizations have been

applied to training problem of FNN to avoid the drawbacks

of gradient-based algorithms. Hybrid algorithms can be

classified into two main categories: (i) combinations of two

algorithms to take advantage of the local and global search

capacity of both algorithms. [70, 73] thus proposed a

memetic algorithm based on GA and BP, while [75] pro-

posed a memetic PSO with BP algorithm for training FNN,

and (ii) combinations of two metaheuristics, with the pur-

pose of obtaining a more robust global search algorithm. A

representative example of this trend is [34], where PSO and

GA were used to design a hybrid algorithm for recurrent

neural network design.

Although there are many studies that discuss this kind of

algorithm (see [29, 71]), this section will focus on studies

which use the GSA for training neural networks. In 2012,

[45] proposed a hybrid PSO with GSA (PSOGSA) for

training FNN with one hidden layer. They used this algo-

rithm to test the performance of the network over three

classical benchmark problems, showing that PSOGSA

outperforms PSO and GSA in terms of convergence speed

and avoiding local minima.

Later, [62] proposed a hybrid GSA with GA showing the

performance of this algorithm outperforms BP algorithm in

approximation function problems and the XOR problem.

The idea of hybridizing GSA with GA was subsequently

used in [36] for tuning damping controller parameters in a

unified power flow controller, giving good results. More-

over, [49] proposed a neuro-fuzzy system, developed using

PSO hybridized with GSA, in order to predict the scouring

process at pile groups due to waves. Recently, [55] have

proposed a two-layer FNN trained with sensitivity-based

linear learning method (SBLLM) hybridized with GSA for

estimating the band gap of a doped titanium dioxide

semiconductor using crystal lattice distortion.

2.2 Using GSA for optimizing network topology

Choosing the optimal number of hidden neurons and of

hidden layers is a key point when considering FNNs. It is a

complex problem, since it has to be tuned for the problem

at hand. That is the reason why many studies propose

different sizes for the hidden layer and, later, the network

which exhibits the best performance is chosen (see [19]).

Thus, [5] uses an Elman-type recurrent neural network

to estimate solar radiation intensity in order to determine

the maximum power point tracking in photovoltaic sys-

tems. The number of hidden neurons of the proposed neural

model is optimized using a hybrid binary PSO algorithm

and GSA (BPSO–GSA); the best network topology had six

hidden neurons. Later, [3] proposed a two-layer FNN

optimized with an SBLLM method for estimating relative

cooling power of manganite-based materials for magnetic

refrigeration enhancement. The number of epochs and

hidden neurons of the network was optimized using GSA,

giving an optimized network with 67 hidden layers trained

over 4468 epochs. Finally, another recent application of

this approach is [56], where the authors propose an extreme

machine learning (EML) approach for precise quantitative

analysis of laser-induced breakdown spectroscopy (LIBS)
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spectra. The number of hidden neurons is optimized using a

hybrid of a GSA with EML.

The analysis of these recent studies reveals a growing

interest in hybrid algorithms based on GSA to optimize

FNN. In this paper, we address the problem of choosing an

optimal network topology based on memetic algorithms

which is not popular and it constitutes a promising direc-

tion of research.

3 The neural network training problem

This section describes and formalizes the optimization

problem which arises from the training of a FNN. In a FNN,

also known as multilayer perceptron (MLP), the network

topology is composed by the input layer, a set of hidden

layers and, finally, the output layer. The connections

between the neurons from different layers are always for-

ward, and usually, all the neurons of one layer are connected

to all neurons from the next layer. A general scheme of a

FNN or MLP is shown in Fig. 1. In the figure, nj is the

number of neurons in the jth layer and the parameter c de-

notes the total number of layers in the architecture.

In every FNN, the connections between the neurons

from different layers are associated with a real number, the

so-called weight of the connection. The weight of a con-

nection expresses the synaptic power of a given connec-

tion, which can be excitable (positive sign) or inhibitory

(negative sign). Furthermore, each neuron in the topology

has an internal threshold (b). It is used as a comparison

factor in order to produce the output of the network and

activate or not a neuron in the topology.

There are two main steps in the training process of a

FNN. First, the inputs of the network are propagated for-

ward in order to obtain an output. Next, the error between

the output produced by the network and the desirable value

is computed. Finally, in a second step, the errors are

propagated backward, adjusting the weights and thresholds

for each neuron in the topology in order to minimize an

error or loss function (defined by the designer). This last

step will be carried out by using an optimization method.

We consider a canonical FNNwith fully connected layers.

The first is the input layer, the following layers are hidden

layers and the last one is the output layer. The sizes of the

layers are nj for j ¼ 1; . . .; c. LetWj 2 Rnj�nj�1 be the weight

matrix associated with the connections from layer j� 1 to

layer j, and let bj 2 Rnj be the threshold vector of the neurons

from layer j for layers j ¼ 1; . . .; c. The process of propa-

gating the inputs of the network forward is the following:

1. Computing the activation for the neurons from the

input layer. Given an input vector xi 2 Rn0 for the

FNN, the neurons of the input layer only transmit the

received signal to the next layer, so the activation of

the x
ð0Þ
i is computed using Eq. (1).

x
ð0Þ
i ¼ xi: ð1Þ

2. Computing the activation for the neurons from the

hidden layer. The neurons from the hidden layer

process the information received from the neurons of

the input layer, applying the activation function to the

weighted sum of the activations received. FNN applies

successive transformations to the given input xi by

means of Eq. (2).

x
ðjÞ
i ¼ s Wj � xðj�1Þ

i þ bj

� �
2 Rnj ; j ¼ 1; . . .; c� 1;

ð2Þ

where the vector bj 2 Rnj contains the jth layer

parameters (biases) and s is a component-wise non-

linear activation function. The activation function of a

Fig. 1 General architecture of a

FNN
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neural network includes many alternatives such as

sigmoid, hyperbolic tangent, ReLU (rectified linear

unit), Leaky ReLU and Softmax. The activation func-

tion is necessary to avoid the linearity of the compu-

tation since, if a set of neurons are each linked by a

process, but without applying a nonlinear activation

function; then, the computation of those neurons could

have been performed by only one of them. Thus, to

provide suitable computing capacity to a neural net-

work it is necessary to establish a nonlinear relation-

ship between the input of each neuron and its output.

The most widely used activation functions s of FNNs

include the sigmoid function sðxÞ ¼ 1=ð1þ expð�xÞÞ
and the ReLU function sðxÞ ¼ maxf0; xg or the

hyperbolic tangent sðxÞ ¼ ex�e�x

exþe�x. In this paper, the

sigmoid function has been chosen. Hence, Eq. (2) can

be rewritten as:

x
ðjÞ
i ¼ 1

1þ e�ðWj�xðj�1Þ
i

þbjÞ
; j ¼ 1; . . .; c� 1: ð3Þ

3. Computing the activation for the neurons from the

output layer. The last step is to compute the activation

of the neurons from the output layer in the same way as

it was made in the hidden layer. However, in this case,

the activation of the neurons will be the output of the

network oi, as it is shown in Eq. (4).

oi ¼ x
ðcÞ
i ¼ s Wc � xðc�1Þ

i þ bc

� �
2 Rnc ; ð4Þ

where oi is the output vector provided by the network

for the input vector xi.

This process in which the neural network obtains the output

vector oi for an input vector xi, where the parametrization

of the network x ¼ fWj; bjgcj¼1 is known, can be

schematically represented by oiðxi;xÞ. Without loss of

generality, it can be considered that x is a parameter vector

x 2 Rn.

The training problem consists of determining the

parameter vector x and involves a training dataset

fðx1; y1Þ; . . .; ðxN ; yNÞg and the choice of a loss function ‘,

obtaining the resulting optimization problem:

Minimize
x2Rn

1

N

XN
i¼1

‘ðoiðxi;xÞ; yiÞ: ð5Þ

A popular choice for the loss function ‘ is MSE

MSE ¼ ‘ðoiðxi;xÞ; yiÞ ¼ kyi � oiðxi;xÞk22; ð6Þ

where k � k2 is the Euclidean norm. Hence, Eq. (6) is the

objective function of the problem, which can be formalized

through Eq. (7).

Minimize
x2Rn

1

N

XN
i¼1

kyi � oiðxi;xÞk22: ð7Þ

Therefore, and in accordance with the prior formalization,

the training problem of a FNN (without specifying a loss

function) can be stated as

Minimize
x2Rn

f ðxÞ: ð8Þ

A small example is shown to illustrate the encoding strat-

egy for the optimization algorithms. Given the fully con-

nected FNN shown in Fig. 2 with three layers where

n0 ¼ 3; n1 ¼ 4; n2 ¼ 2, a parametrization would be enco-

ded using Eq. (9).

W1 ¼

w1�4 w2�4 w3�4

w1�5 w2�5 w3�5

w1�6 w2�6 w3�6

w1�7 w2�7 w3�7

2
6664

3
7775;

W2 ¼
w4�8 w5�8 w6�8 w7�8

w4�9 w5�9 w6�9 w7�9

� �
; b2 ¼

b4

b5

b6

b7

2
6664

3
7775;

b3 ¼
b8

b9

� �
:

ð9Þ

We use the vector x to represent the parametrization of

the network

x ¼½w1�4;w1�5;w1�6;w1�7; . . .;w4�8;w4�9;

. . .; b4; b5; . . .; b9�>:
ð10Þ

Fig. 2 Example of a FNN network
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In population-based metaheuristics, each individual of the

population is represented by a vector x which includes the

weights and biases of the different layers of the network. At

the end of the optimization process, the best individual in

the population will be used to set the parameters of the

neural network.

4 Memetic gravitational search algorithms

This section describes the MGSA and MCGSA training

algorithms FNNs. Firstly, the GSA, the CGSA and the qN

algorithms are reviewed. Then, the two memetic proposals

MGSA and MCGSA are presented.

4.1 Gravitational search algorithm (GSA)

GSA is a bio-inspired algorithm proposed by Rashedi in

[60]. It is based on the theory of Newtonian gravity in

physics, in such a way that each solution in the search

space corresponds to a mass in the space on a universe

metaphor. Then, according to the universal law of gravity,

heavier masses (solutions with better fitness values) attract

the smaller ones (solutions with worst fitness values),

ensuring convergence.

The notation that we have used to describe GSA is

slightly different from the original formulation, since the

notation has been adapted to the neural network training

problem. In order not to differ excessively, the notation

will be reused, and the indices i and j will be used to refer

to population individuals since, in this context, there is no

risk of confusion with the hidden layer j or the training data

i.

At the start, a population of Npob solutions is randomly

initialized, where position and speed values are initialized

for each solution. The objective function is then evaluated

over all the solutions. The mass of each solution is related

to the fitness value in the GSA metaphor. The mass of

solution i in iteration t is computed as shown in Eq. (11):

Mt
i ¼

mt
iPNpob

j¼1 mt
j

; ð11Þ

where mt
i is computed through Eq. (12).

mt
i ¼

f ðxt
iÞ � worstt

bestt � worstt
; ð12Þ

where worstt is the solution with the worst fitness value in

iteration t and bestt is the solution which has the best fitness

value in iteration t.

Next, the gravitational force acting from each individual

to the rest is computed through Newton’s law of gravita-

tion, shown in Eq. (13).

Ft
ij ¼ Gt �

Mt
pi �Mt

aj

Rt
ij þ �

� xt
j � xt

i

� �
; ð13Þ

where Fij notes the gravitational force which acts on mass i

from mass j. Mpi corresponds to the passive gravitational

mass of i mass, whileMaj is the active gravitational mass of

j. Note that in GSA, Mai ¼ Mpi ¼ Mi. Rij is the Euclidean

distance that separates the masses i and j. R is used in GSA

instead of R2 because it provides better results (see [60]). �

parameter is a small positive constant used to avoid divi-

sion by zero. Moreover, Gt is the gravitational constant to

compute the force. It is initialized to a higher value at the

beginning of the algorithm and will be reduced over iter-

ations, according to the following equation

Gt ¼ G0 � e �a t
Tð Þ, where G0 is the initial value of G, a is the

so-called learning rate, t is the current iteration and T is the

maximum number of iterations allowed. Gt is a exponential

function which manages the balance between exploration

and exploitation during the execution of the algorithm. At

first, high G values give the algorithm greater exploration

capability. Subsequently, this value decreases according to

the expression shown above, giving the algorithm a greater

exploitation capacity. Then, to calculate the total force

exerted by one mass of space on another, the random

weighted sum of the forces exerted on a concrete mass by

the rest of space objects is made. The introduction of the

random component in this calculation provides the algo-

rithm with a stochastic behavior. The calculus of total force

is shown in Eq. (14).

Ft
i ¼

XN

j 6¼i
j¼1

randj � Ft
ij; ð14Þ

where randj is a single uniformly distributed random

number in the interval (0, 1). In addition to the gravita-

tional constant, the GSA has an additional mechanism to

control the balance between exploration and exploitation. It

is the Kbest function in which only the k best objects apply

their force to the rest at iteration t. This is a linear function

which depends on the iteration t and its value is decreased

linearly according to the number of iterations t. It means at

first of the algorithm, all the objects exert their force to rest,

enhancing exploration, and later, only the Kbest objects

will apply their force, enhancing exploitation. Thus, the

summation in (14) is taken as j 2 Kbestt � fig.
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Finally, Newton’s second law is applied to compute the

existing acceleration of each mass, which is computed by

ati ¼
Ft
i

Mt
i

at the end of each iteration. Then, their position and

speed will be updated based on the total force. These cal-

culations are expressed as vtþ1
i ¼ randi � vti þ ati and

xtþ1
i ¼ xt

i þ vtþ1
i . According to these formulae, GSA

ensures the movement of the particles toward the particles

with greater mass, performing the exploitation when the

heavier particles move slowly. Briefly, a flowchart of the

GSA is shown in Fig. 3.

4.2 Chaotic gravitational search algorithm
(CGSA)

CGSA is a variant of the GSA which appeared in [44]

aimed at dealing with the problem of slow convergence

inherent to GSA and improving the exploration/exploita-

tion trade-off.

In the GSA, the exploration–exploitation trade-off is

controlled by the two functions Gt and Kbestt. On the one

hand, Kbestt encourages the exploration step of the algo-

rithm, allowing all the masses to exert their strength on the

rest. This function is decreased using a linear function, and

therefore, as the number of iterations increases, the number

of masses which exert their force on the rest decreases,

focusing the search on the most promising environments

found so far. Kbestt thus encourages the exploitation stage

toward the end.

On the other hand, the gravitational constant Gt also

controls the trade-off between exploration and exploitation.

Initially, Gt values encourage exploration, increasing the

force exerted by a mass i on the rest. This value is later

decreased using a nonlinear function, in such a way that at

the end of the algorithm, the slow movement of heavier

agents (thanks to the low values of Gt) encourages the

exploitation skills of the GSA, that is, the ability to

approximate a local minimum when a promising search

environment has been found.

In [44], different chaotic maps are added to Gt in order

to perturb the behavior of Gt. In the original GSA, Gt is

constantly decreased over the iterations, so the algorithm

either explores or exploits. Adding a chaotic map to the

gravitational constant will chaotically change the value of

Gt while decreasing it during iterations, giving exploration

and exploitation at the beginning and at the end of the

algorithm. This approach improves significantly the per-

formance of the original GSA, showing that the sinusoidal

chaotic map is the most suitable for GSA. A graphical

example of introducing a chaotic sinusoidal map into Gt is

shown in Fig. 4. The flowchart of CGSA is identical to

GSA flowchart, the only difference being if the gravita-

tional constant is replaced by Gt
chaotic, and the chaotic GSA

appears. CGSA with the sinusoidal map is the CGSA used

in the experimental section.

4.3 Gradient-based approaches

In unconstrained optimization tasks, such as the training

problem of FNN, descent direction methods are widely

used. These methods consider the search direction dk at the

kth iteration, making a movement in the direction dk, since

these methods guarantee a decrease in the loss function

through small movements.

In order to analyze the descent property of these meth-

ods, the following function of one variable is defined

/ðaÞ ¼ f ðxk þ adkÞ: ð15Þ

The function / evaluates the progress of the loss function

in the direction dk. If we require the sign of the derivative

of the function / in the point a ¼ 0 to be negative, to

ensure descent for sufficiently small values of a, the search
direction must satisfy:

Fig. 3 Flowchart of GSA
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/0ð0Þ ¼ rf ðxkÞ>dk\0; ð16Þ

where rf ðxkÞ is the vector of first-order partial derivatives
of the loss function with respect to the vector x, i.e., the

gradient of the loss function. Condition (16) guarantees that

the method is of descent and it allows us to consider weight

changes as

Dxk ¼ akdk; ð17Þ

where ak is small enough to give a decrease in the loss

function.

The canonical example is the steepest descent method,

which is defined by the choice dk ¼ �rf ðxkÞ and it sat-

isfies the condition (16)

rf ðxkÞ>dk;¼ �rf ðxkÞ>rf ðxkÞ ¼ �krf ðxkÞk2 � 0:

ð18Þ

The steepest descent method is a first-order gradient des-

cent algorithm and it is known as BP for training FNN. The

numerical scheme leads to:

xkþ1 ¼ xk þ Dxk ¼ xk � akrf ðxkÞ; ð19Þ

where ak is the learning rate. The main feature of BP is the

gradient calculation specialization for the structure of the

problem at hand, a method known as the backpropagation

algorithm, where the error obtained at the output layer is

propagated backward to the hidden layers.

Several numerical optimization methods appear when

certain gradient transformations are applied. If dk is a

descent direction, the transformation

bdk ¼ �Hkrf ðxkÞ; ð20Þ

where Hk is a positive definite matrix means the direction

bdk is still a descent direction. The most notable example is

Newton’s method which takes Hk ¼ r2f ðxkÞ½ ��1
, where

r2f ðxkÞ is the Hessian matrix of f at xk. Nevertheless,

computing r2f ðxkÞ implies a high computational cost. In

this regard, qN method uses the observed behavior of f ðxÞ
and rf ðxÞ to compute the approximation Hk to the inverse

of the Hessian matrix. This property is what gives the

algorithm a quadratic convergence rate, despite considering

this approximation.

Furthermore, qN methods are capable of improving the

current loss function value. To do that, they need to carry

out a precise enough line search

ak :¼ Arg minimize
a� 0

f ðxk þ abdkÞ; ð21Þ

to determine a suitable step length. When the approximate

solution ak of the one-dimensional problem (21) is reached,

a new point xkþ1 ¼ xk þ akbdk is obtained with which to

update the Hessian matrix.

One of the most widely used Hessian updating methods

is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) for-

mula. There is growing evidence that BFGS is the best

current update formula for use in unconstrained optimiza-

tion (see [10]). In problems where the number of parame-

ters is large, such as deep neural networks, a number of

strategies have been proposed to address the situation,

including limited memory BFGS methods (L-BFGS) (see

[39, 51]). Thus, BFGS is considered to be the most effec-

tive of all quasi-Newton updating formulae. It approxi-

mates the inverse Hessian matrix ½r2f ðxkþ1Þ��1
by the

following expression:

Hkþ1 ¼Hk þ
s>k qk þq>k Hkqk
� �

sks
>
k

� �

ðs>k qkÞ
2

�Hkqks
>
k þ skq

>
k Hk

s>k qk
;

ð22Þ

where > indicates the transpose and

sk ¼xkþ1 � xk; ð23Þ

qk ¼rf ðxkþ1Þ � rf ðxkÞ: ð24Þ

The procedure is then repeated from the point xkþ1. The

initial array H0 can be adjusted to any symmetric positive

definite array, e.g., the identity array. Each iteration can be

accomplished at a cost of arithmetic operations O(n2) (plus

the cost of function and gradient evaluations) where n is the

number of decision variables. Storage and computing

Fig. 4 Obtaining a chaotic sinusoidal gravitational constant
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requirements increase in proportion to n2 and become

impractical for larger n. Many approaches have been pre-

sented to deal with this drawback, including quasi-Newton

limited memory methods.

4.4 Memetic algorithms based on GSA and CGSA

The proposed memetic algorithms have two main compo-

nents: (i) an evolutionary framework or a metaheuristic

algorithm and (ii) one or more local search methods which

will be introduced into approach (i). The two memetic

algorithms are proposed according to the following choi-

ces: (a) MGSA ¼ GSA for ðiÞ þ qN for (ii) and (b)

MCGSA ¼ CGSA for (i) ? qN for (ii). Both approaches

share the local search and differ at the metaheuristic stage,

as they are, respectively, GSA and CGSA.

The design of both memetic algorithms is based on the

characterization of local minima. The basis of these algo-

rithms is that they are able to detect that a promising neigh-

borhood has been found to trigger the qN method. In this way,

adding mechanisms to characterize local minima is a crucial

stage in the design of these memetic algorithms. This paper

characterizes the concept of a promising neighborhood of an

unexplored local minimum using two rules: (i) it contains a

solution which has a better fitness value than the best found so

far and (ii) it is located far from the current best solution.

These rules are formally expressed below:

Rule 1

f t�1
� � bestt [ e

Rule 2

kxt
i� � xt�1

� k[ c:

In Rule 1, f t�1
� is the best function objective value obtained

thus far, bestt is the fitness value of the best solution in

iteration t and e is a parameter which measures whether the

new best point is better than the best found so far.

In Rule 2, xt
i� is the best point in the population at

iteration t, xt�1
� is the best point obtained so far and c is a

parameter which measures whether the new best point is

far enough from a neighborhood of xt�1
� .

Rule 1 states that the point xt
i� reached in the current

iteration t is better than the previous points analyzed, and

Rule 2 constrains point xt
i� not to belong to a neighborhood

of xt�1
� , and so, it is suitable to perform an exploitation

stage to this new search environment. Parameters e� 0 and

c[ 0 are required to be set in order to detect a promising

neighborhood.

However, the detection of a promising region is not the

only consideration taken into account by the algorithm,

which also looks at where and when the local search

method is triggered and the strength with which the local

search method will be applied. Fulfillment of both rules (i)

and (ii) will trigger the qN method at the end of each GSA

or CGSA iteration starting from the best current solution

xt
i� . Finally, the intensity of the local search is based on a

tolerance parameter. The tolerance parameter tol repre-

sents a lower bound on the size of a step or a decreasing

magnitude on the loss function. If the algorithm attempts to

take a step that is smaller than the tolerance value, or the

improvement is not significant, the iterations of qN end.

Thus, the stopping criterion used in the quasi-Newton

method is

kxkþ1 � xkk\tol _ jf ðxkþ1Þ � f ðxkÞj\tol: ð25Þ

The tol parameter manages the intensity of the local

search. At first, it is convenient to explore the neighbor-

hood sparsely, increasing its intensity as the algorithm

progresses. For this reason, the parameter tol is initialized

to tol ¼ 0:01. Then it decreases to tol ¼ tol=10 each

time the quasi-Newton method is performed.

It should be noted that, although the qN search method

is used in this paper, any other conventional algorithm can

be chosen as a local search component for the memetic

algorithm. Specifically, specialized algorithms for solving

the neural network training problem, such as Rprop (see

[61]), Quickpro (see [15]) or Levenberg–Marquadt (see

[66]) algorithms, may be chosen. These algorithms allow

specialized gradient computation and have a linear con-

vergence rate. This paper uses the qN method due to its

(super-)linear convergence rate.

Finally, in order to summarize the design of the memetic

algorithms, Fig. 5 shows a flowchart of both MGSA and

MCGSA. In the flowchart, it is possible to see how the

metaheuristic algorithm is run, and when a promising area is

found (satisfying rules 1 and 2), the qN method is triggered,

starting from the best current point. The point obtained by

the qN method will replace the best population point,

updating not only its position but also its speed. The

structure of this memetic algorithm also allows the use of

qN method to be extended to non-differentiable problems.

If the memetic algorithm achieves a non-differentiable

point, then the local search step carried out by qN will be a

null stage. However, the memetic algorithm escapes from

this problematic point thanks to its evolutionary framework.

5 Experimental results

This section will describe the experiments carried out in

this paper in order to study the performance of memetic

algorithms based on GSA for training FNN. This was done
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by replicating the experiments conducted in [45] under the

same conditions. These experiments are intended to study

if the use of MAs for training FNNs can be a suit-

able choice in comparison with the current state-of-the-art

metaheuristic algorithms. In [45], a hybrid of PSO and

GSA was used to train a FNN for three different bench-

mark problems, showing that the proposed hybrid algo-

rithm outperforms individual GSA and individual PSO.

These authors chose a sample of three classical, well-

known benchmark problems where neural networks are

used: The first is a three-bit parity (XOR) problem, the

second is a function approximation problem and the last

one is a classification problem. These problems have been

chosen because they are classic benchmarks widely used

by the scientific community when a new method for

training FNN is designed. Furthermore, this set of problems

covers the spectrum of problems that FNN solves: function

approximation, binary classification and multi-classifica-

tion. Another advantage of choosing these problems is the

possibility of replicating the experiments of [45] under the

same conditions, in order to compare the results obtained

with those obtained by the hybrid GSA of these authors.

Currently, an alternative to classic benchmarks problems is

training deep neural networks as test problems. In these

problems, backpropagation has been proved to be ineffi-

cient for networks with two or more hidden layers, due to

the vanishing gradient problem, poor generalization and the

possibility of becoming trapped in a local optimum (see

[23, 37, 38]). In this scenario, the challenge is to find

alternative methods to deal with these problems. However,

the main focus of this paper is on testing hybrid methods to

train FNN.

To solve these problems, different algorithms, both

classical and from the state of the art of metaheuristics,

were chosen to train the FNNs. These are the following: the

GSA proposed in [60], the CGSA with a sinusoidal map

proposed in [44], and the MGSA and MCGSA described in

Sect. 4. These memetic algorithms have been run using, in

all trials, a basic configuration (e ¼ 0; c ¼ 1; tol ¼ 0:01)

in order to ensure that the performance of these proposed

algorithms is robust with respect to their parametrization,

and the parameter tuning is not an inconvenience in their

application. The choice of e and c means that the qN

method is applied each time a mass of the population finds

a better solution, especially when it manages to escape

from a local minimum. Of course, an optimal tuning will

guarantee better results. Also, the PSO algorithm imple-

mented by the particleswarm MATLAB function was used

Fig. 5 Flowchart of MGSA and MCGSA algorithms
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as in [34, 45, 75]. The genetic algorithm implemented in

MATLAB by the ga function has also been considered in

this study in the same way as [34, 62, 65, 73]. Both PSO

and GA have been chosen since they are classical meta-

heuristic algorithms used to train FNNs. Furthermore, in

order to compare the memetic algorithms with the state of

the art, two algorithms based on the differential evolution

(DE) algorithm have been considered in this experiment

(see [57]): The first is Rcr-JADE (see [24]). This algorithm

modifies the adaptation rule used in the crossover. Also, the

adaptation methods used in the control parameters of Rcr-

JADE have also been applied in other versions of DE (see

[25, 27, 64]). The second algorithm is COBIDE (see [69]).

Their authors proposed a new DE variant based on

covariance matrix learning and bimodal distribution

parameter setting. Both variants of the DE algorithm were

chosen since their codes could be publicly obtained and

they were in the first positions of the ranking made in [57],

where Rcr-JADE was the best algorithm over a set of thirty

algorithms in twenty two real-world problems when 50,000

and 100,000 function evaluations were allowed, while the

COBIDE algorithm was the best when 150,000 function

evaluations were allowed. These experiments have been

implemented using the MATLAB programming language,

specifically MATLAB 2017b version, and run on a server

equipped with a 4.00 gigahertz AMD FX-8370 Eight-Core-

Processor.

In order to assess the performance of the algorithms

involved in the computational experiments, the goodness of

fit reached in the training process through MSE and the

computational cost, given as the number of function eval-

uations, have been used (see [35]). Also, in [54], RMSE is

used to assess the performance of the model in many

classifiers applied to predict the travel modes of passen-

gers. However, in the case of classification problems,

alternative validation measures, such as accuracy, ROC

curve or F1 score, are also widely used on training and test

problems (see [6, 16, 28]). This paper focuses on the per-

formance of the optimization algorithms employed, and

this is the main reason why metrics based on the error

measured for by the algorithm in the objective function and

the number of function evaluations have been chosen as

performance metrics (see [57, 58]).

These three problems are then discussed, with an

emphasis on the performance of the memetic algorithms

used in this paper, and a statistical comparison is made

with the selected algorithms from the state of the art.

5.1 The m-bit parity problem (XOR problem)

This is a very famous nonlinear benchmark problem widely

used in the optimization of neural networks (see

[7, 22, 65]). The definition of this problem is the following:

Given a bit string or input vector of ‘‘0s’’ and ‘‘1s’’ with

length m, the desirable output will be 1 if the input vector

contains an odd number of ‘‘1s’’ and the output will be 0 if

the input vector includes an even number of ‘‘1s.’’ Table 1

shows the input vectors and the corresponding outputs for

the case m ¼ 3 bits.

The main feature of the XOR problem, which makes it a

widely used benchmark problem, is that it is not linearly

separable. Hence, this problem cannot be solved using a

perceptron (a neural network without hidden layers). This

feature adds complexity to the problem. Figure 6 shows an

illustration to prove this in the case of m ¼ 3 bits.

To solve the XOR problem, a feedforward neural network

with topology 3-S-1 has been chosen (where S is the number of

neurons in the hidden layer). Thus, the input layer has a total of

three neurons, according to the length of the input vector in the

case ofm ¼ 3 bits, the hidden layerwill have a variable number

of neurons whichwill generate different topologies to be tested,

and finally, the output layer has only one neuronwhichwill be 1

or 0, the possible outputs of the XOR problem. The following

topologies have also been trained in order to test the perfor-

mance of the algorithms when the number of parameters

increases: S ¼ f5; 6; 7; 8; 9; 10; 11; 13; 15; 20; 30g. These

Table 1 Three-bit parity prob-

lem (XOR problem m ¼ 3)
Input Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

The 3 bits parity (XOR) Problem

0
1

0.2

0.8

0.4

1

0.6

0.6 0.8

0.8

0.60.4

1

0.4
0.2 0.2

0 0

Output (y)

--> 1

--> 0

Fig. 6 Landscape of XOR problem with m ¼ 3 bits
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network topologies generate a set of optimization problems

with a number of dimensions (n) which is easy to compute. For

a feedforward neural network with one hidden layer, the

number of parameters to be optimized is equal to: n ¼ nw þ nb,

where nw is the number of weights in the neural network and nb
the biases of the neurons. This formula can be extended to the

following: n ¼ ni � ns þ ns þ ns � no þ no, which when sim-

plified is equal to n ¼ nsðni þ 1Þ þ noðns þ 1Þ, where ni is the
number of input neurons, ns the number of hidden neurons and

no the number of output neurons. The set S of different network

topologies therefore generates the following size of problems

n ¼ f26; 31; 36; 41; 46; 51; 56; 66; 76; 101; 151g. Figure 7

shows an illustration of the network topology used to solve the

XOR problem.

The setup of the experiment is as follows: each algo-

rithm was run 30 times for each network topology, using a

population of 30 individuals (NPob ¼ 30) where 500 train-

ing iterations are allowed. This is the only difference with

respect to [45] since these authors carried out a more

intensive computational experiment, using a population of

50 individuals over 500 iterations. This paper uses 15,000

evaluations of the function, as solutions are required in a

brief time period when addressing real-world problems. In

the computational experiments presented in this paper, only

60% of function evaluations are performed in comparison

with the experiments carried out in [45].

Tables 2 and 3 display the results of this experiment.

Average, median, standard deviation and best values of

mean square error (MSE) averaged over the thirty runs

have been reported. In addition, the nonparametric statis-

tical test called the Wilcoxon rank-sum test (see [11]) was

performed to determine whether the mean performance

between algorithms is statistically significant. This test is

very suitable when the sample size is small and further-

more does not require that the distribution of the data fulfill

any hypothesis, in contrast to parametric tests (see [18]).

The statistical significance is calculated by using the

p�values that are also shown in Tables 2 and 3. The

MCGSA has been used as baseline. It should be noted that

a p�value less than 0.05 means that there are significant

differences between the algorithm and the baseline algo-

rithm. Thus, h ¼ 1 indicates there is a significant difference

in the performance of two algorithms in favor of MCGSA,

h ¼ �1 implies that the performance of the other algorithm

is statistically better, h ¼ 0 means that there are no sig-

nificant differences in the performance of both algorithms,

and finally, NA means the test is not applicable, since an

algorithm cannot be compared to oneself.

The numerical results show that the use of the proposed

memetic algorithms to train a feedforward neural network

for the XOR problem improves significantly the results of

the GSA family of algorithms and the selected algorithms

Fig. 7 Graphical representation

of the FNN proposed for the

XOR problem
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Table 2 Statistical results of MSE in a 3-bit parity (XOR) problem (I)

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE p value h

5 MCGSA 6.16E-02 6.25E-02 4.23E-02 2.39E-14 NA NA

GSA 1.22E-01 1.25E-01 5.38E-02 1.03E-05 0.00E?00 1

CGSA 6.58E-02 6.25E-02 6.44E-02 8.61E-14 0.00E?00 1

MGSA 9.53E-02 1.10E-01 5.40E-02 1.83E-11 0.00E?00 1

PSO 2.01E?01 2.26E-01 7.72E?01 6.53E-02 0.00E?00 1

GA 4.36E-02 3.32E-02 3.79E-02 8.34E-04 0.00E?00 - 1

Rcr-JADE 9.23E-02 8.84E-02 6.17E-02 0.00E?00 0.00E?00 1

COBIDE 4.63E?02 4.94E?02 1.99E?02 1.03E?02 0.00E?00 1

6 MCGSA 2.37E-02 6.34E-07 3.25E-02 1.17E-13 NA NA

GSA 1.42E-01 1.25E-01 1.06E-01 1.16E-05 0.00E?00 1

CGSA 6.52E-02 6.25E-02 5.87E-02 7.08E-15 0.00E?00 1

MGSA 4.57E-02 6.25E-02 4.44E-02 3.98E-09 1.59E-96 1

PSO 5.43E?01 2.26E-01 2.47E?02 1.35E-04 0.00E?00 1

GA 3.94E-02 2.35E-02 3.47E-02 2.52E-04 0.00E?00 1

Rcr-JADE 8.71E-02 8.11E-02 6.33E-02 2.46E-29 0.00E?00 1

COBIDE 5.97E?02 5.69E?02 2.69E?02 1.59E?02 0.00E?00 1

7 MCGSA 2.78E-02 1.26E-06 3.40E-02 3.20E-13 NA NA

GSA 1.05E-01 1.09E-01 1.01E-01 1.28E-04 0.00E?00 1

CGSA 3.17E-02 2.04E-05 4.48E-02 1.54E-14 0.00E?00 1

MGSA 5.71E-02 3.47E-02 6.82E-02 5.82E-11 0.00E?00 1

PSO 7.45E?02 2.50E-01 3.13E?03 1.28E-02 0.00E?00 1

GA 3.55E-02 2.20E-02 3.49E-02 2.00E-03 0.00E?00 1

Rcr-JADE 8.71E-02 8.11E-02 6.33E-02 2.46E-29 0.00E?00 1

COBIDE 5.97E?02 5.69E?02 2.69E?02 1.59E?02 0.00E?00 1

8 MCGSA 1.60E-02 9.27E-09 2.76E-02 3.58E15 NA NA

GSA 1.66E-01 9.91E-02 2.22E-01 9.47E-08 0.00E?00 1

CGSA 1.10E-02 6.01E-07 2.16E-02 4.96E-13 0.00E?00 - 1

MGSA 4.36E-02 3.82E-02 4.86E-02 1.95E-08 00.00E?00 1

PSO 9.45E?01 2.18E-01 2.25E?02 3.28E-12 0.00E?00 1

GA 3.82E-02 2.44E-02 3.15E-02 1.44E-03 0.00E?00 1

Rcr-JADE 1.54E-01 1.12E-01 1.79E-01 6.16E-33 0.00E?00 1

COBIDE 9.98E?02 1.00E?03 3.62E?02 2.84E?02 0.00E?00 1

9 MCGSA 9.96E-03 3.20E-09 2.28E-02 2.65E-16 NA NA

GSA 9.04E-02 4.22E-02 1.45E-01 3.66E-21 0.00E?00 1

CGSA 9.72E-03 5.14E-10 2.55E-02 1.26E-14 0.00E?00 - 1

MGSA 2.98E-02 8.58E-05 4.03E-02 2.67E-22 1.08E-49 1

PSO 9.78E?02 2.36E-01 4.94E?03 4.50E-14 0.00E?00 1

GA 3.10E-02 2.51E-02 2.83E-02 2.25E-03 0.00E?00 1

Rcr-JADE 2.91E-01 1.65E-01 4.14E-01 2.33E-22 0.00E?00 1

COBIDE 1.04E?03 1.02E?03 4.18E?02 4.69E?02 0.00E?00 1

10 MCGSA 4.54E-03 3.57E-11 2.28E-02 6.02E-14 NA NA

GSA 2.72E-01 6.72E-02 4.78E-01 3.63E-23 0.00E?00 1

CGSA 9.93E-03 1.70E-09 2.23E-02 7.69E-14 0.00E?00 1

MGSA 3.12E-02 7.78E-04 4.11E-02 1.19E-21 0.00E?00 1

PSO 3.87E?03 2.50E-01 6.83E?03 1.07E-08 0.00E?00 1

GA 3.56E-02 3.27E-02 2.67E-02 2.43E-03 0.00E?00 1

Rcr-JADE 5.05E-01 2.92E-01 5.66E-01 4.30E-03 0.00E?00 1

COBIDE 1.27E?03 1.13E?03 5.33E?02 4.40E?02 0.00E?00 1
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Table 3 Statistical results of MSE in a 3-bit parity (XOR) problem (II)

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE p value h

11 MCGSA 2.68E-03 2.86E-10 1.16E-02 2.11E-14 NA NA

GSA 1.33E-01 1.63E-02 2.97E-01 1.13E-22 0.00E?00 1

CGSA 2.08E-03 9.41E-11 1.14E-02 1.01E-13 0.00E?00 - 1

MGSA 3.92E-02 8.71E-06 1.57E-01 5.51E-23 2.40E-36 1

PSO 3.44E?03 1.88E-01 1.32E?04 3.92E-17 0.00E?00 1

GA 3.23E-02 2.84E-02 2.66E-02 8.28E-04 0.00E?00 1

Rcr-JADE 5.19E-01 3.20E-01 5.27E-01 1.21E-18 0.00E?00 1

COBIDE 1.43E?03 1.35E?03 6.03E?02 4.75E?02 0.00E?00 1

13 MCGSA 2.08E-10 8.26E-12 6.14E-10 1.19E-13 NA NA

GSA 1.29E-01 3.01E-04 3.32E-01 4.37E-23 0.00E?00 1

CGSA 1.06E-04 2.05E-11 5.80E-04 1.15E-14 0.00E?00 1

MGSA 3.18E-03 9.26E-21 1.63E-02 1.23E-23 2.67E-21 1

PSO 3.57E?03 1.22E?00 6.74E?03 1.31E-10 0.00E?00 1

GA 4.63E-02 2.59E-02 5.00E-02 6.24E-03 0.00E?00 1

Rcr-JADE 1.80E?00 1.64E?00 1.29E?00 2.72E-01 0.00E?00 1

COBIDE 1.54E?03 1.65E?03 5.38E?02 6.61E?02 0.00E?00 1

15 MCGSA 1.93E-09 2.41E-11 7.56E-09 9.44E-14 NA NA

GSA 5.08E-02 6.00E-06 1.01E-01 1.84E-22 0.00E?00 1

CGSA 1.53E-10 1.96E-11 4.71E-10 1.87E-13 0.00E?00 - 1

MGSA 2.03E-03 5.58E-21 1.08E-02 1.75E-23 0.00E?00 1

PSO 6.13E?03 2.89E?01 1.34E?04 7.10E-17 0.00E?00 1

GA 3.93E-02 2.52E-02 3.30E-02 4.78E-03 0.00E?00 1

Rcr-JADE 3.63E?00 3.02E?00 2.40E?00 5.88E-01 0.00E?00 1

COBIDE 1.92E?03 1.93E?03 6.73E?02 6.47E?02 0.00E?00 1

20 MCGSA 1.32E-10 4.16E-11 2.40E-10 1.78E-12 NA NA

GSA 3.54E-02 1.48E-21 9.76E-02 3.39E-23 9.59E-02 0

CGSA 1.42E-10 5.34E-11 2.26E-10 7.48E-13 0.00E?00 1

MGSA 3.55E-03 1.91E-21 1.91E-02 2.05E-22 0.00E?00 1

PSO 1.99E?04 4.67E?03 2.90E?04 3.54E-16 0.00E?00 1

GA 3.85E-02 2.64E-02 2.75E-02 5.81E-03 0.00E?00 1

Rcr-JADE 5.67E?00 5.18E?00 3.28E?00 1.07E?00 0.00E?00 1

COBIDE 2.37E?03 2.28E?03 8.56E?02 7.97E?02 0.00E?00 1

30 MCGSA 4.35E-10 1.33E-10 8.99E-10 8.33E-12 NA NA

GSA 2.04E-01 6.04E-21 6.27E-01 5.64E-22 1.19E-33 1

CGSA 1.71E-10 1.06E-10 1.97E-10 8.20E-12 0.00E?00 - 1

MGSA 4.36E-01 8.09E-21 2.38E?00 2.86E-22 0.00E?00 1

PSO 6.38E?04 3.95E?04 6.75E?04 3.89E-10 0.00E?00 1

GA 6.35E-02 5.00E-02 4.96E-02 8.97E-03 0.00E?00 1

Rcr-JADE 9.90E?00 9.00E?00 4.46E?00 3.16E?00 0.00E?00 1

COBIDE 3.64E?03 3.62E?03 1.14E?03 1.67E?03 0.00E?00 1
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from the state of the art. The performance of the MCGSA

is only outperformed by the GA when S ¼ 5 and by the

CGSA when S ¼ f8; 9; 11; 15; 30g. It should also be

remarked that the MCGSA maintains its performance

despite the increased complexity of the network, which

shows the robustness of the algorithm. This does not occur,

for example, with Rcr-JADE, which has good performance

in the smallest networks, but works worse when bigger

networks are considered. Moreover, in order to study not

only the final results of the algorithms, but also their

convergence to global optima, Figs. 8 and 9 show the

average convergence in the 30 runs of the four best algo-

rithms from the eight tested. It is possible to see in these

figures that the GSA can achieve good results, but the

introduction of qN search in the MGSA speeds up con-

vergence. Moreover, the chaotic component of the

MCGSA improves the results obtained by the MGSA, and

it is possible to confirm that although the MGSA converges

more quickly, it gives a worse solution than the MCGSA,

which is capable, thanks to the chaotic component, of

avoiding local minima. Furthermore, comparing the

MCGSA with the CGSA, the convergence of the MCGSA

is quicker than in the case of the CGSA. This is due to the

introduction of qN search directions, which improves the

exploitation stage of the original CGSA, guaranteeing

better convergence. Finally, comparing the results obtained

in this study with the results obtained by [45], there is a

meaningful improvement, especially in the most complex
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problems, obtaining better mean and best values with only

60% of functional evaluations in comparison with [45].

5.2 Function approximation problem

One of the most common problems to be addressed when

using neural networks is the function approximation

problem (see [13, 63, 74]). This is why a problem of this

kind has been included in this study. The definition of a

function approximation problem is as follows: Given a

function g(x) and a set of points from the domain of g(x),

called X, the objective is to obtain the image of each point

of X which guarantees the most accurate approximation of

the function g(x).

In this experiment, the objective function from [45] has

been used. Thus, the objective of this experiment is to

approximate the function gðxÞ ¼ sinð2xÞe�x with one

dimension. This is done by using a sample of 105 points in

the interval ½0; p�, with an increment of 0.03, as a training

set. Figure 10 shows the graph of this function with one

dimension.

A FNN with the structure 1-S-1 has been used to solve

the problem. The input layer will have only one neuron,

since the input vector will have only one component (the

variable x), and the output layer will have only one neuron,

since g(x) is a real function. The hidden layer will have

several sizes which will generate different network

typologies to be trained. The values of S are:
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S ¼ f3; 4; 5; 6; 7g. The size of the problems is therefore

n ¼ f10; 13; 16; 19; 22g. The proposed FNN topology for

this problem is represented in Fig. 11.

The setup of the experiment is identical to that carried

out for the XOR problem. The statistics reported in the

results are also the same as for the previous experiments.

Again, the Wilcoxon rank-sum test has been used in order

to check whether the difference in the performance of two

algorithms is statistically significant. The results obtained

are shown in Table 4. The MCGSA significantly outper-

forms the rest of the algorithms considered in the experi-

ment, returning the best results in all problems except the

first, where the GA exhibits the best performance. This

problem has a total of ten parameters to be adjusted and is

the problem of least dimensionality, which could explain

why the GA works better in this particular case where the

number of parameters is small. However, it is possible to

see how, as the number of parameters increases, our pro-

posal continues to perform well in contrast to the GA,

whose performance is worsened by increasing the dimen-

sionality of the problem. Another interesting feature of the

performance of the MCGSA is the increase in the number

of hidden neurons, allowing it to approximate better, giving

better values of average MSE error when the number of

hidden neurons is larger.

In order to evaluate the behavior of the algorithms over

the whole optimization process, Fig. 12 shows the con-

vergence curves of the four best algorithms for each

problem. The curves shown represent the mean perfor-

mance of the four best algorithms in each problem over the

30 runs. As with the XOR problem, the memetic algo-

rithms proposed show the fastest convergence. Although

the MGSA converges more quickly than the MCGSA at
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Table 4 Statistical results of MSE in a function approximation problem

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE p value h

3 MCGSA 9.26E-03 6.72E-03 9.97E-03 4.95E-04 NA NA

GSA 2.36E-02 1.54E-02 1.73E-02 5.48E-03 0.00E?00 1

CGSA 1.38E-02 6.78E-03 1.41E-02 8.57E-04 0.00E?00 1

MGSA 1.11E-02 7.30E-03 1.17E-02 2.05E-04 1.72E-06 1

PSO 9.25E-02 4.86E-02 2.53E-01 8.31E-03 0.00E?00 1

GA 7.61E-03 3.42E-03 1.09E-02 1.33E-03 0.00E?00 - 1

Rcr-JADE 1.70E-02 1.05E-02 1.54E-02 1.63E-05 0.00E?00 1

COBIDE 9.40E?00 2.25E?00 1.47E?01 4.87E-02 0.00E?00 1

4 MCGSA 8.32E-03 6.58E-03 7.36E-03 1.14E-04 NA NA

GSA 1.87E-02 9.38E-03 1.56E-02 3.11E-03 0.00E?00 1

CGSA 1.35E-02 7.01E-03 1.40E-02 6.07E-04 0.00E?00 1

MGSA 8.48E-03 6.72E-03 6.20E-03 6.81E-04 1.05E-01 0

PSO 4.80E-02 4.86E-02 3.42E-03 2.99E-02 0.00E?00 1

GA 1.02E-02 6.91E-03 1.03E-02 1.20E-03 0.00E?00 1

Rcr-JADE 1.86E-02 1.20E-02 1.56E-02 1.32E-03 0.00E?00 1

COBIDE 2.13E?01 1.01E?01 2.57E?01 5.03E-02 0.00E?00 1

5 MCGSA 6.31E-03 6.32E-03 8.50E-03 2.73E-04 NA NA

GSA 2.18E-02 1.33E-02 1.63E-02 2.44E-03 0.00E?00 1

CGSA 1.02E-02 6.59E-03 1.34E-02 3.77E-04 0.00E?00 1

MGSA 1.03E-02 7.08E-03 1.07E-02 6.66E-04 0.00E?00 1

PSO 9.72E-01 4.86E-02 4.31E?00 1.35E-02 0.00E?00 1

GA 9.05E-03 5.30E-03 1.05E-02 1.31E-03 0.00E?00 1

Rcr-JADE 1.77E-02 1.22E-02 1.52E-02 6.24E-04 0.00E?00 1

COBIDE 4.17E?01 3.45E?01 3.12E?01 9.88E-01 0.00E?00 1

6 MCGSA 6.99E-03 6.31E-03 8.70E-03 1.01E-04 NA NA

GSA 1.37E-02 8.78E-03 1.34E-02 1.05E-03 0.00E?00 1

CGSA 9.16E-03 6.56E-03 1.18E-02 8.03E-04 0.00E?00 1

MGSA 1.12E-02 7.75E-03 1.18E-02 6.38E-04 0.00E?00 1

PSO 4.49E-02 4.86E-02 1.14E-02 9.30E-03 0.00E?00 1

GA 7.32E-03 5.40E-03 9.40E-03 1.02E-03 0.00E?00 1

Rcr-JADE 1.71E-02 1.42E-02 1.26E-02 1.13E-04 0.00E?00 1

COBIDE 4.81E?01 3.42E?01 4.01E?01 5.85E?00 0.00E?00 1

7 MCGSA 5.24E-03 3.67E-03 7.13E-03 5.59E-04 NA NA

GSA 1.90E-02 1.89E-02 1.34E-02 9.49E-04 0.00E?00 1

CGSA 7.51E-03 6.52E-03 9.49E-03 3.40E-04 0.00E?00 1

MGSA 7.19E-03 7.15E-03 6.83E-03 5.82E-04 6.54E-19 1

PSO 1.61E?01 4.86E-02 6.98E?01 1.99E-02 0.00E?00 1

GA 9.55E-03 4.45E-03 1.26E-02 7.21E-04 0.00E?00 1

Rcr-JADE 1.75E-02 1.25E-02 1.23E-02 3.73E-04 0.00E?00 1

COBIDE 7.84E?01 7.63E?01 5.35E?01 6.17E-01 0.00E?00 1
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first, the chaotic component of the latter allows it to escape

from local optima, ultimately giving the best values. This

can be seen, for example, in the curves where four and

seven hidden nodes are used. Finally, comparing the results

obtained with the results published in [45], it should be

remarked that the MCGSA guarantees results of the same

order of magnitude, and even improves the results in some

cases with only 15,000 function evaluations, in comparison

with [45], who obtained their results over 100,000 function

evaluations.

5.3 Classification problem

Classification problems are one of the most representative

supervised learning problems. This kind of problem can be

defined as follows: Given a dataset where each instance is

labeled with a class, the aim is to find a model which

classifies accurately the instances which belong to each

class. The iris or Fisher’s iris dataset is one of the most

famous such used in classification problems. It has 150

samples of iris flowers. For each one, the following

150 300 450
Number of iterations

0

0.02

0.045

M
S

E

150 300 450
Number of iterations

0

0.02

0.045

M
S

E

3 nodes in the hidden layer 4 nodes in the hidden layer

150 300 450
Number of iterations

0

0.02

0.045

M
S

E

5 nodes in the hidden layer

150 300 450
Number of iterations

0

0.02

0.04

M
S

E

6 nodes in the hidden layer

150 300 450
Number of iterations

0

0.02

0.04

M
S

E

7 nodes in the hidden layer
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features are known: sepal length, sepal width, petal length

and petal width. There are three different classes to which

each instance can belong: Iris setosa, Iris versicolor and Iris

virginica.

In order to address this problem, a FNNwith topology 4-S-

3 was designed. Four input neurons are used according to the

four features which characterize an instance. The parameter S

will again be a variable which will generate the different

network topologies to be trained. The values of S are the

following: S ¼ f4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g. These
S values provide the following set of problem dimen-

sions n¼f27;35;43;51;59;67;75;83;91;99;107;115;123g.
Finally, the output layer will have three neurons, since there

are three possible classes of iris flowers. A graphical repre-

sentation of the FNN used to solve this problem is shown in

Fig. 13.

The configuration of the experiment is the same as for

the two previous experiments, returning the same statistics

and carrying out the Wilcoxon rank-sum test in order to

check whether there are significant differences in the per-

formance of two different algorithms. Left-one cross-

validation was also used for training the FNNs, as in [45].

Thus, in each generation, 149 samples of the dataset are

chosen for training the FNN, while the unused sample is

employed to test the FNN. The statistical results obtained

for the training test are shown in Tables 5 and 6.

The results clearly show the superiority of the MCGSA

over the rest of the algorithms tested. MCGSA is the

algorithm which returns the best mean value in all prob-

lems, with the exception of the one with five neurons in the

hidden layer, where the MGSA gives the best value. In this

problem, where the number of parameters is small, MGSA

could speed up the convergence of the algorithm, since it

does not introduce chaotic maps to improve the balance

between exploration and exploitation, encouraging

exploitation through qN search directions.

Another interesting aspect derived from the results is the

behavior of the Rcr-JADE and GA. In the XOR problem

and function approximation problem, the best algorithms

are usually MCGSA, MGSA, CGSA and GA. However, in

this problem, Rcr-JADE appears as one of the four best

algorithms in the small-size problems (i.e., S� 12), and

Fig. 13 Graphical

representation of the FNN

proposed for the iris

classification problem
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Table 5 Statistical results of MSE in iris classification problem (I)

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE p value h

4 MCGSA 2.25E-01 2.42E-01 1.90E-01 2.46E-02 0.00E?00 NA

GSA 6.01E-01 4.93E-01 5.25E-01 4.40E-02 0.00E?00 1

CGSA 4.27E-01 3.70E-01 1.60E-01 9.55E-02 0.00E?00 1

MGSA 3.80E-01 3.34E-01 1.93E-01 5.78E-02 0.00E?00 1

PSO 2.46E?00 6.67E-01 5.89E?00 3.33E-01 0.00E?00 1

GA 6.15E-01 6.56E-01 1.54E-01 3.12E-01 0.00E?00 1

Rcr-JADE 6.02E-01 6.53E-01 1.14E-01 3.33E-01 0.00E?00 1

COBIDE 2.43E?03 2.46E?03 8.17E?02 7.46E?02 0.00E?00 1

5 MCGSA 3.46E-01 3.33E-01 1.98E-01 2.25E-02 0.00E?00 NA

GSA 8.16E-01 4.88E-01 8.59E-01 1.79E-01 0.00E?00 1

CGSA 3.87E-01 3.46E-01 1.52E-01 9.41E-02 0.00E?00 1

MGSA 3.16E-01 3.27E-01 3.09E-01 2.01E-02 0.00E?00 - 1

PSO 9.94E?02 5.19E-01 4.47E?03 3.33E-01 0.00E?00 1

GA 5.12E-01 5.19E-01 1.67E-01 2.97E-01 0.00E?00 1

Rcr-JADE 5.93E-01 6.54E-01 1.24E-01 3.19E-01 0.00E?00 1

COBIDE 3.16E?03 3.05E?03 9.98E?02 1.25E?03 0.00E?00 1

6 MCGSA 2.73E-01 3.29E-01 1.64E-01 1.88E-02 0.00E?00 NA

GSA 2.12E?00 8.69E-01 3.79E?00 1.72E-01 0.00E?00 1

CGSA 3.98E-01 3.85E-01 1.46E-01 6.61E-02 0.00E?00 1

MGSA 4.80E-01 3.29E-01 6.25E-01 3.60E-02 2.68E-01 0

PSO 7.92E?03 6.67E-01 2.62E?04 3.33E-01 0.00E?00 1

GA 6.48E-01 6.48E-01 3.55E-01 3.32E-01 0.00E?00 1

Rcr-JADE 5.85E-01 6.54E-01 1.45E-01 2.79E-01 0.00E?00 1

COBIDE 3.95E?03 4.07E?03 1.17E?03 1.49E?03 0.00E?00 1

7 MCGSA 2.30E-01 2.36E-01 1.65E-01 2.46E-02 0.00E?00 NA

GSA 2.22E?00 1.35E?00 2.38E?00 2.04E-01 0.00E?00 1

CGSA 6.89E-01 4.01E-01 7.68E-01 1.75E-01 0.00E?00 1

MGSA 3.71E-01 3.02E-01 4.88E-01 2.15E-02 2.35E-02 1

PSO 6.81E?03 6.15E-01 3.11E?04 1.63E-01 0.00E?00 1

GA 8.04E-01 6.53E-01 8.48E-01 3.35E-01 0.00E?00 1

Rcr-JADE 6.07E-01 6.59E-01 2.63E-01 1.10E-01 0.00E?00 1

COBIDE 4.69E?03 4.72E?03 1.07E?03 2.19E?03 0.00E?00 1

8 MCGSA 2.12E-01 2.16E-01 1.47E-01 2.50E-02 0.00E?00 NA

GSA 7.41E?00 3.86E?00 9.48E?00 3.68E-01 0.00E?00 1

CGSA 5.91E-01 5.98E-01 2.62E-01 1.82E-01 0.00E?00 1

MGSA 7.17E-01 1.65E-01 1.75E?00 3.87E-02 1.74E-41 1

PSO 1.74E?04 6.67E-01 5.87E?04 3.29E-01 0.00E?00 1

GA 1.15E?00 6.56E-01 1.37E?00 3.33E-01 0.00E?00 1

Rcr-JADE 5.43E-01 5.89E-01 3.28E-01 2.72E-02 0.00E?00 1

COBIDE 5.58E?03 5.78E?03 1.11E?03 2.43E?03 0.00E?00 1

9 MCGSA 1.82E-01 1.61E-01 1.24E-01 2.47E-02 0.00E?00 NA

GSA 1.50E?01 5.97E?00 2.02E?01 3.08E-01 0.00E?00 1

CGSA 8.80E-01 5.48E-01 1.18E?00 2.61E-01 0.00E?00 1

MGSA 4.57E-01 2.09E-01 9.56E-01 2.70E-02 3.29E-16 1

PSO 8.22E?03 9.21E?01 3.53E?04 3.30E-01 0.00E?00 1

GA 1.13E?00 7.26E-01 1.01E?00 2.55E-01 0.00E?00 1

Rcr-JADE 1.03E?00 6.60E-01 1.56E?00 8.81E-02 0.00E?00 1

COBIDE 6.22E?03 6.36E?03 1.45E?03 3.91E?03 0.00E?00 1
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Table 6 Statistical results of MSE in iris classification problem (II)

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE p value h

10 MCGSA 1.97E-01 1.51E-01 1.49E-01 2.70E-02 0.00E?00 NA

GSA 1.27E?01 8.49E?00 1.19E?01 4.24E-01 0.00E?00 1

CGSA 1.76E?00 1.08E?00 1.80E?00 8.44E-02 0.00E?00 1

MGSA 2.87E?00 3.32E-01 8.31E?00 2.46E-02 0.00E?00 1

PSO 2.96E?03 1.25E?00 6.62E?03 1.07E-01 0.00E?00 1

GA 1.90E?00 1.36E?00 1.41E?00 3.76E-01 0.00E?00 1

Rcr-JADE 7.14E-01 3.95E-01 1.04E?00 1.07E-01 0.00E?00 1

COBIDE 7.38E?03 7.38E?03 1.37E?03 4.38E?03 0.00E?00 1

11 MCGSA 2.69E-01 1.15E-01 4.77E-01 2.76E-02 0.00E?00 NA

GSA 1.30E?01 1.08E?01 1.19E?01 9.46E-01 0.00E?00 1

CGSA 2.00E?00 1.31E?00 1.96E?00 2.53E-01 0.00E?00 1

MGSA 5.08E-01 2.04E-01 1.19E?00 2.55E-02 1.69E-70 1

PSO 8.06E?03 4.48E?00 3.62E?04 1.94E-01 0.00E?00 1

GA 3.40E?00 2.53E?00 2.25E?00 1.15E?00 0.00E?00 1

Rcr-JADE 1.53E?00 4.84E-01 3.34E?00 7.53E-02 0.00E?00 1

COBIDE 7.90E?03 7.66E?03 1.82E?03 4.40E?03 0.00E?00 1

12 MCGSA 1.88E-01 1.75E-01 1.39E-01 1.74E-02 0.00E?00 NA

GSA 1.78E?01 1.65E?01 1.19E?01 4.55E-01 0.00E?00 1

CGSA 3.44E?00 2.45E?00 3.12E?00 4.05E-01 0.00E?00 1

MGSA 4.84E?00 1.76E-01 1.03E?01 5.30E-02 0.00E?00 1

PSO 1.92E?04 3.76E?02 5.86E?04 1.73E-01 0.00E?00 1

GA 2.78E?00 2.26E?00 1.77E?00 4.57E-01 0.00E?00 1

Rcr-JADE 5.51E?00 7.08E-01 1.14E?01 1.51E-01 0.00E?00 1

COBIDE 7.89E?03 7.84E?03 1.96E?03 4.50E?03 0.00E?00 1

13 MCGSA 5.46E-01 1.76E-01 1.43E?00 2.58E-02 0.00E?00 NA

GSA 1.86E?01 1.71E?01 1.37E?01 1.97E?00 0.00E?00 1

CGSA 4.21E?00 3.62E?00 3.35E?00 3.19E-01 0.00E?00 1

MGSA 7.63E?00 2.05E-01 1.52E?01 3.04E-02 0.00E?00 1

PSO 7.20E?03 4.34E?03 7.49E?03 2.16E-01 0.00E?00 1

GA 3.19E?00 2.95E?00 2.16E?00 6.92E-01 0.00E?00 1

Rcr-JADE 8.89E?00 8.22E-01 1.97E?01 2.10E-01 0.00E?00 1

COBIDE 9.17E?03 9.52E?03 2.06E?03 4.43E?03 0.00E?00 1

14 MCGSA 3.50E-01 1.52E-01 9.57E-01 2.67E-02 0.00E?00 NA

GSA 3.13E?01 2.44E?01 2.55E?01 2.98E?00 0.00E?00 1

CGSA 7.11E?00 4.29E?00 7.31E?00 8.28E-01 0.00E?00 1

MGSA 1.12E?00 2.28E-01 3.45E?00 4.44E-02 0.00E?00 1

PSO 1.02E?04 3.32E?03 1.63E?04 3.27E-01 0.00E?00 1

GA 4.66E?00 4.80E?00 2.31E?00 3.45E-01 0.00E?00 1

Rcr-JADE 1.87E?01 3.93E?00 2.70E?01 2.06E-01 0.00E?00 1

COBIDE 1.07E?04 1.05E?04 2.38E?03 6.62E?03 0.00E?00 1

15 MCGSA 1.68E-01 1.72E-01 7.47E-02 3.94E-02 0.00E?00 NA

GSA 4.29E?01 3.76E?01 3.02E?01 5.25E?00 0.00E?00 1

CGSA 4.39E?00 3.33E?00 3.90E?00 3.31E-01 0.00E?00 1

MGSA 5.13E?00 1.68E-01 1.16E?01 1.78E-02 8.33E-63 1

PSO 6.08E?04 1.09E?04 1.54E?05 1.96E?01 0.00E?00 1

GA 5.23E?00 4.65E?00 3.10E?00 8.06E-01 0.00E?00 1

Rcr-JADE 2.56E?01 5.73E?00 4.24E?01 1.58E-01 0.00E?00 1

COBIDE 1.12E?04 1.10E?04 1.77E?03 8.43E?03 0.00E?00 1
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then, GA emerges as one of the best algorithm, replacing

the other. This implies that Rcr-JADE is a good choice in

small instances, while GA is more appropriate when con-

sidering larger sizes. As in the previous experiments, the

convergence curves are shown in Figs. 14 and 15, with the

purpose of analyzing the performance of the algorithms

over the whole optimization process. It is possible to check

that the memetic proposals show the best convergences

curves. Again, and as in the previous experiments, although

MGSA converges more quickly than MCGSA, the latter is

capable of avoiding local minima due to the chaotic maps

introduced by the G constant, showing the best perfor-

mance of all the algorithms tested.

6 Conclusions and further work

This paper applies two recently proposed MAs based on qN

search directions to the FNN neural network training

problem in order to study whether the memetic approach

can improve the performance of metaheuristic algorithms

when training such networks.

To do this, MGSA and MCGSA were applied to three

classical benchmark problems, along with classical GSA

and CGSA and other metaheuristics from the state of the

art, such as PSO, GA, Rcr-JADE and COBIDE. The main

conclusions arising from the computational experiments

undertaken in this study are:

– The results obtained by MCGSA applied to the FNN

neural network training problem show this is the
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algorithm with the best performance among all the

tested algorithms in the XOR problem, the function

adjustment problem and the classification problem. The

improvement achieved by MCGSA can be seen both in

the speed of convergence and in the quality of the

solution obtained.

– The CGSA is capable of avoiding local optima, due to

the sinusoidal chaotic map added to it. This property is

inherited by MCGSA, while the introduction of the qN

algorithm in CGSA, which has a superlinear conver-

gence rate, improves the convergence speed of the

baseline algorithm. The improvement is especially

evident in the function approximation problem and in

the classification problem. It is also possible to see that

the curse of dimensionality affects the MCGSA less

than the CGSA, obtaining better solutions by an order

of magnitude in the MSE, for the classification

problems of greater dimensionality.

– The problem of metaheuristic algorithms in addressing

the curse of dimensionality problem has been noted.

MCGSA is the algorithm that best addresses this

problem.

This work has focused on the use of qN as a local search

method. However, the framework of MA allows the

inclusion of specialized algorithm for the FNN neural

network training problem, such as BP. These alternatives

should be explored.

Moreover, more effort must be made with regard to data

quality, since the effectiveness of a FNN depends to a great

extent on the data used to train it. Thus, problems like

imbalanced data, insufficient or overabundant data and
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high-dimensional data must be addressed in order to

improve the performance of FNNs (see [43]).

Currently, in the era of big data, stream data (see [76])

are a kind of high-dimensional data that are very common

in many areas, such as natural language processing, speech

processing and social network data. Although the pro-

cessing of these data is analyzed through deep learning

architectures, FNNs trained with MAs can be tested in

order to study performance. Also, memetic FNNs could be

useful in managing and reducing the data stream (see [30]).

Furthermore, the use of evolutionary algorithms for

optimizing the topology of deep neural networks is cur-

rently a hot topic in the literature. Future work should look

at specializing memetic algorithms for optimizing the

topology of deep and convolutional neural networks.

Finally, regarding the data stream provided by internet

of things (IoT) devices, such as human activity data, social

activity data or smartphone data, these need to be pro-

cessed using inexpensive complex models (see [59]). In

this context, tools such as memetic FNNs can be a suit-

able choice for analyzing these data.
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