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ABSTRACT
Background  Tumor necrosis factor (TNF)-α, a 
proinflammatory cytokine, is involved in the patho-
genesis of rheumatoid arthritis (RA). The omega-3 
unsaturated fatty acid-derived metabolites resolvin (Rv) 
D1, RvE1, and maresin-1 (MaR1) have been reported 
as anti-inflammatory lipid mediators and are known 
as specialized pro-resolving mediators (SPMs). In this 
study, we aimed to investigate the anti-inflammatory ef-
fects of SPMs on TNF-α-induced responses in synovial 
fibroblasts.
Methods  We investigated the effects of SPMs on 
gene expression and/or production of cyclooxygenase-2 
(COX-2), microsomal prostaglandin E synthase-1 
(mPGES-1), interleukin (IL)-6, and matrix metal-
loproteinase (MMP)-3, which are involved in TNF-α-
induced synovitis in RA or OA synovial fibroblasts, by 
quantitative real-time PCR. We also investigated the 
effects of SPMs on the mitogen-activated protein kinase 
(MAPK) signaling pathway by western blotting. Anti-
inflammatory effects of SPMs were evaluated by apply-
ing SPMs to cultured synovial fibroblasts, followed by 
TNF-α stimulation.
Results  The induction of COX-2, mPGES-1, IL-
6, and MMP-3 by TNF-α in synovial fibroblasts was 
not suppressed by omega 3-derived SPMs regardless 
of their origin such as RA or OA. SPMs had no effect 
on lipid mediator receptor gene expression induce by 
TNF-α and did not inhibit the TNF-α-activated MAPK 
signaling pathway. The production of COX-2 and IL-6 
protein was significantly decreased by p38 inhibitor.
Conclusion  Despite reports on the anti-inflammatory 
effect of omega 3-derived SPMs, its anti-inflammatory 
effect on TNF-α-induced responses was not observed in 
synovial fibroblasts. The reason may be that SPMs have 
no suppressive effect on p38 activation, which plays 
an important role in the production of inflammatory 
cytokines in synovial fibroblasts.
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Rheumatoid arthritis (RA) is a chronic inflammatory 
disease characterized primarily by synovitis of the joint 
synovium. In addition, subsequent progressive bone 
and cartilage destruction greatly reduces a patient’s 
quality of life. The major pathological condition is 
inflammation caused by tumor necrosis factor (TNF)-α, 
interleukin (IL)-1β, and IL-6 derived from macrophages 
and synovial cells in synovial tissues. Prostaglandins 
(PGs), the expression of which is enhanced by the 
stimulation of these cytokines, play an important role in 
RA pathogenesis.1–5 PGE2 strongly promotes pathology, 
including processes related to synovial cell prolifera-
tion, angiogenesis, and osteoclast activation, in RA.6 
Synovial fibroblasts are key players in the progression of 
RA, inducing inflammation via the secretion of various 
cytokines and chemokines, such as IL-8 or regulated 
on activation, normal T cell expressed and secreted 
(RANTES), which act as chemoattractants, promoting 
the invasion of immune cells, such as macrophages or 
neutrophils. Furthermore, synovial fibroblasts contrib-
ute to cartilage degradation, as well as inducing angio-
genesis, pannus hyperplasia, and bone erosion.1, 7 The 
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production of proinflammatory cytokines and receptor 
activator of nuclear factor-κB ligand (RANKL) by sy-
novial fibroblasts directly promotes osteoclastogenesis.

PGs are produced via the arachidonic acid 
cascade. The fatty acid arachidonic acid is converted 
to PGH2 by cyclooxygenase (COX). Then, PGH2 is 
transformed by specific synthase into PGs (PGE2, 
PGD2, PGI2, PGF2α) and thromboxane (TX) A2.8 PGE2 
is converted from PGH2 by microsomal prostaglandin E 
synthase-1 (mPGES-1). Based on these factors, COX-2 
and mPGES-1 have a strong influence on the onset of 
synovitis.9

Polyunsaturated fatty acids (PUFAs) consist of 
omega (ω)-3 and -6 types, depending on the position 
of the double bond in the molecule. ω-6 PUFA-derived 
lipid metabolites, such as PGs and leukotrienes, play 
a central role in the early stages of the inflammatory 
response. ω-3 PUFAs, which are contained in many 
fish oils, represented by ω-3 eicosapentaenoic acid and 
docosahexaenoic acid, have anti-inflammatory and 
cardiovascular protective effects.10–13 In addition, ω-3 
PUFA-derived metabolites are transiently produced via 
the activation of leukocytes at the site of inflammation, 
and exert a local anti-inflammatory effect.14 Resolvin 
(Rv) E1, RvD1, and maresin-1 (MaR1) are biosynthe-
sized from ω-3 essential fatty acids, respectively, and 
collectively termed specialized pro-resolving mediators 
(SPMs) based on their potent pro-resolving actions. 
These SPMs act as potent regulators of neutrophil 
infiltration, cytokine and chemokine production, and 
the clearance of apoptotic neutrophils by macrophages, 
which promote a return to tissue homeostasis via their 
specific receptors.15 These SPMs produced at the site of 
inflammation resolve inflammation.13, 16–21 In addition, 
it has been reported that RvE1 suppresses osteoclast 
differentiation in joint regions.22–24 We found that RvE1 
suppresses the IL-17-induced receptor activator of 
nuclear factor kappa-B ligand (RANKL) expression in 
osteoblasts, and further suppresses RANKL-induced 
osteoclast and cell differentiation to inhibit osteoclast 
formation and bone resorption.25 In an adjuvant-induced 
arthritis model rat, the intraperitoneal administration 
of 17 (R)-hydroxydocosahexaenoic acid (HDoHE), 
which is a precursor of RvD1, exerted a pain-relieving 
effect and a decrease in TNF-α and IL-1β locally in the 
joint.26 RvD1 levels decreased while connective tissue 
growth factor (CTGF) levels, which promotes synovial 
fibroblasts, pannus formation, and the damage of carti-
lage as well as bone, increased in the serum of patients 
with RA, and RvD1 suppresses pannus formation via 
decreasing CTGF by upregulation of miRNA-146a-5p in 
collagen-induced arthritis.27 In another study, patients 

with RA showed lower lipoxin A4 (LXA4), RvD1, and 
RvE1 levels compared to healthy individuals; however, 
the levels of these SPMs are not related RA activites.28 
Randomized controlled trials in patients with early 
RA have indicated that groups administered fish oil 
had longer remissions times and fewer transitions to 
second-line treatment than the untreated groups.29, 30 
On the other hand, the intake of dietary long-chain ω-3 
PUFAs was found to decrease the risk of developing 
RA.31 Proudman et al.29 reported that a high intake 
of fish oil increased the rate of American College of 
Rheumatology remission compared to a low intake of 
fish oils. However, no difference was observed in the 
Disease Activity Score-28 for RA with erythrocyte 
sedimentation rate (ESR) scores between the control 
and fish oil groups. In a meta-analysis, Goldberg et al.32 
reported on the effects of ω-3 PUFAs on RA or joint 
pain secondary to inflammatory bowel disease and 
dysmenorrhea. Dietary supplementation with PUFAs 
reduced patient-reported joint pain intensity, morning 
stiffness duration, painful and/or tender joints, and the 
use of non-steroidal anti-inflammatory drugs (NSAIDs), 
whereas physician-assessed pain did not change. The 
results of another meta-analysis indicated a reduction in 
NSAID consumption with ω-3 PUFA use.33 However, 
the tender and swollen joint count, morning stiffness, 
and physical function did not improve in a statistically 
significant manner.33

Negative large-scale test results have been reported 
regarding the anti-inf lammatory effects of SPMs 
derived from ω-3 fatty acids in recent years. The intake 
of ω-3 fatty acids derived from marine organisms was 
not found to have a significant protective effect on the 
incidence of cardiovascular disease and cancer.13, 34 
Another study found that ω-3 fatty acids did not signifi-
cantly change the incidence of cardiovascular disease 
compared to placebo.35

Thus, although SPMs are expected to promote the 
resolution of inflammation and may help to prevent 
the progression of an acute inflammatory response 
to chronic inf lammation in patients with arthritis, 
their anti-inflammatory effects remain controversial. 
Furthermore, the effects of SPMs on synovial fibro-
blasts, key players in RA patients, remain unclear. 
In this study, we investigated the effects of ω-3 lipid 
mediators on TNF-α-induced synthesis of inflammatory 
mediators in synovial fibroblasts.

MATERIALS AND METHODS
Cell culture and reagents
MH7A (Riken Bio Resource Research Center, Tsukuba, 
Japan) is a cell line isolated from intra-articular soft 
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tissues of the knee joints of patients with RA and 
established by transfection with the SV40 T antigen.36 
HT91989516 (National Institute of Biomedical 
Innovation, Ibaraki, Japan) was extracted during artifi-
cial knee joint replacement surgery in patients with knee 
osteoarthritis (OA). MH7A cells were cultured in RPMI-
1640 (Fujifilm Wako Pure Chemical Corporation, 
Osaka, Japan) with 10% fetal bovine serum (FBS), 100 
µg/mL penicillin, and 100 µg/mL streptomycin at 37°C 
in a humidified atmosphere containing 5% carbon diox-
ide. OA fibroblasts were cultured in D-MEM (Fujifilm 
Wako Pure Chemical Corporation) with 10% FBS, 100 
µg/mL penicillin, and 100 µg/mL streptomycin at 37°C 
in a humidified 5% carbon dioxide atmosphere. RvD1 
and MaR1 were purchased from Cayman Chemical 
Company (Ann Arbor, MI), and RvE1 was purchased 
from Toronto Research Chemicals (Toronto, Canada). 
These were pre-added 1 h before recombinant human 
TNF-α (R&D systems, Minneapolis, MN) stimulation, 
according to previous reports.16, 37–39 MEK inhibitor 
(U0126) was purchased from Cell Signaling Technology 
(Danvers, MA). JNK inhibitor (SP600125) was pur-
chased from Selleck Chemicals (Houston, TX), and a 
p38 inhibitor (SB202190) was purchased from Sigma-
Aldrich (Saint Louis, MO, USA). These were pre-added 
1 h before TNF-α stimulation.

Quantitative real-time PCR
MH7A cells or OA fibroblasts were plated in 6-well 
plates at a density of 1.0 × 105 cells/mL. Total RNA 
was isolated from cultured cells using the RNeasy 
Plus mini kit (Qiagen, Valencia, CA), according to the 
manufacturer’s instructions. The mRNA was reverse-
transcribed into cDNA using the Super Script VILO 
Master Mix (Invitrogen, Carlsbad, CA). The resultant 
cDNA was subjected to real-time PCR using TaqMan 
Fast Advanced Master Mix (Thermo Fisher Scientific, 

Waltham, MA). Specif ic primers (Table 1) were 
purchased from Thermo Fisher Scientific. PCR was 
conducted using the TaKaRa PCR Thermal Cycler Dice 
system (Takara Bio, Kusatsu, Japan) under the follow-
ing conditions: initial holding at 25°C for 10 min, 42°C 
for 60 min, and 85°C for 5 min. Real-time PCR was 
performed on a ViiA7 Real-Time PCR system (Thermo 
Fisher Scientific) for 40 cycles at 95°C for 1 s and 60°C 
for 20 s. The expression levels of COX-2, mPGES-1, IL-
6, and MMP-3 were normalized to glyceraldehyde 3- 
phosphate dehydrogenase (GAPDH). All real-time PCR 
experiments were conducted in triplicate and analyzed 
using the comparative 2-ΔΔCt relative quantification 
cation method.

Enzyme-linked immunosorbent assay
The amounts of PGE2 and IL-6 in the culture medium 
were determined using a commercially available 
enzyme-linked immunosorbent assay kit (Enzo 
Life Sciences, Farmingdale, NY) (R&D Systems, 
Minneapolis, MN), according to the manufacturer’s 
instructions. The data were converted to pg/mL. Finally, 
duplicate assays were conducted on each sample and the 
absorbance was recorded at 405 nm.

Western blotting
MH7A cells or OA fibroblasts were cultured in 60-
mm dishes at a density of 1.0 × 106 cells/mL. TNF-α 
was added after culturing to 70–80% confluency. After 
washing with cold phosphate buffered saline, radioim-
munoprecipitation assay buffer [50 mmol/L Tris-HCl, 
pH 7.4, 1% Triton-X100, 0.25% sodium deoxycholate, 
150 mmol/L sodium chloride, 1 mmol/L ethyleneglycol-
bis (β-aminoethyleter)-N, N, N, N-tetraacetic acid, 0.1% 
SDS, 0.5 mmol/L sodium orthovanadate, 1 mmol/L 
sodium fluoride, and protease inhibitor cocktail (Merck 
Kgaa, Darmstadt, Germany)] and collected using a cell 

Table 1.  Primers for real-time PCR

Genes Assay IDa RefSeq Exon boundary Product length (bp)
COX-2 Hs00153133 NM_000963 5–6 75
mPGES-1 Hs01115610 NM_004878.4 2–3 136
IL-6 Hs00985639 NM_000600.4 2–3 66
MMP-3 Hs00968305 NM_002422.4 6–7 126
CMKLR1 Hs01081979 NM_001142343.1 4 73
FRP2 Hs02759175 NM_001005738.1 2 98
GAPDH Hs02758991 NM_001256799.2 6–7 93
CMKLR1, Chemokine like receptor 1; COX-2, Cyclooxygenase-2; FRP2, N-formyl peptide receptor 2; GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; IL-6, Interleukin-6; MMP-3, matrix metalloproteinase-3; mPGES-1, microsomal prostaglandin E synthe-
tase-1. a: TaqMan Gene Expression Assay (Applied Biosystems).
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lifter. The collected cells were subjected to rolling at 
4°C for 10 min and then centrifuged at 13,000 rpm and 
4°C for 5 min. The protein concentration in the super-
natant was measured using a standard assay (Bio-Rad 
Laboratories, Irvine, CA). The samples were adjusted in 
concentration with radioimmunoprecipitation assay buf-
fer (Fujifilm Wako Pure Chemical Corporation) and 4× 
sample buffer (Bio-Rad Laboratories) before separating 
by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE). Thereafter, the protein was trans-
ferred to a polyvinylidene difluoride (PVDF) blotting 
membrane (GE Healthcare Life Sciences, Marlborough, 
MA) at 100 V for 75 min. To prevent the nonspecific 
reaction of the transferred PVDF membrane, blocking 
was conducted for 1 h with 5% skim milk. The primary 
antibody, diluted with 5% skim milk, was incubated 
overnight at 4°C. The following primary antibodies 
were used: COX-2 antibody (1:200; Cayman Chemical), 
mPGES-1 antibody (1:200; Cayman Chemical), 
IL-6 antibody (1:1000; Cell Signaling Technology, 
Danvers, MA), MMP-3 antibody (1:200; Santa Cruz 
Biotechnology, Dallas, TX), β-actin antibody (1 µg/mL) 
(Medical and Biological Laboratories, Nagoya, Japan), 
chemokine-like receptor 1 (CMCKLR1) antibody (1:100; 
Cayman Chemical), leukotriene B4 receptor 1 (BLT1) 
antibody (1:200; Cayman Chemical), and formyl peptide 
receptor 2 (FPR2) antibody (1:200; Santa Cruz). To 
study signal transduction, the primary antibodies used 
were phospho-p42/p44 [p-extracellular signal-regulated 
kinase (ERK)1/2] antibody (1:2000; Cell Signaling 
Technology), p42/p44 (ERK1/2) antibody (1:1000; 
Cell Signaling Technology), p-p38 antibody (1:1000, 
Cell Signaling Technology), p38 antibody (1:1000; 
Cell Signaling Technology), p- stress-activated protein 
kinase (SAPK)/c-Jun N-terminal kinase (JNK) antibody 
(1:1000; Cell Signaling Technology), SAPK/JNK anti-
body (1:1000; Cell Signaling Technology), p-Akt anti-
body (1:1000; Cell Signaling Technology), Akt antibody 
(1:1000; Cell Signaling Technology), p-NF-κB p65 an-
tibody (1:1000; Cell Signaling Technology), and NF-κB 
p65 antibody (1:1000; Cell Signaling Technology). After 
washing the PVDF membrane three times with Tris-
buffered saline-Tween (TBS-T), a secondary antibody 
diluted with 5% skim milk was reacted for 1 h at room 
temperature. The secondary antibodies used were: goat 
anti-mouse immunoglobulin G (IgG) antibodies (1:2000; 
Santa Cruz Biotechnology) and anti-rabbit IgG antibod-
ies (1:2000, Cell Signaling Technology). After washing 
the PVDF membrane three times with TBS-T, enhanced 
chemiluminescence was conducted using Amersham 
ECL Prime kit (GE Healthcare Life Science) and de-
tected with Image Quant LAS4000 (GE Healthcare Life 

Science).

Statistical analysis
Data were analyzed using GraphPad Prism 7 (GraphPad 
Software, San Diego, CA). Multiple groups were 
compared using one-way analysis of variance (ANOVA) 
and Dunn’s multiple comparison test. Differences were 
considered statistically significant at P < 0.05.

RESULTS
TNF-α induced COX-2, mPGES-1, IL-6, and MMP-3 
mRNA expressions as well as PGE2 and IL-6 re-
lease in MH7A cells
Since TNF-α is an important cytokine that induces 
PGE2 release via increasing COX-2 and mPGES-1 
expression in synovial fibroblasts,40 we examined 
the effects of TNF-α on the expression of COX-2, 
mPGES-1, IL-6, and MMP-3 mRNA using real-time re-
verse transcription PCR (RT-PCR), and PGE2 and IL-6 
protein release using enzyme-linked immunosorbent 
assay in MH7A cells. Treatment with TNF-α (10 ng/
mL) enhanced the expression of COX-2, mPGES-1, and 
IL-6 mRNA in MH7A cells (Figs. 1A–C). The maximal 
TNF-α-enhancing effects were observed after 12 h of 
culture. TNF-α increased the MMP-3 mRNA expres-
sion in a time-dependent manner (Fig. 1D). When the 
cells were treated with TNF-α (10 ng/mL) for 36 h, the 
PGE2 and IL-6 concentrations in the culture medium 
increased in a time-dependent manner (Figs. 1E and F).

When the MH7A cells were stimulated with 
TNF-α at various concentrations (0–100 ng/mL) for 12 h, 
the COX-2, mPGES-1, IL-6, and MMP-3 mRNA levels 
were enhanced in a concentration-dependent manner 
(Figs. 2A–D). COX-2, mPGES-1, and IL-6 proteins 
in the MH7A cells were enhanced by treatment with 
TNF-α for 24 h in a concentration-dependent manner, 
according to the results of western blot analysis (Figs. 
2E, F, and G). By contrast, MMP-3 protein was not 
enhanced (Fig. 2H).

Effects of ω-3 PUFA-derived lipid mediators on 
COX-2, mPGES-1, IL-6, and MMP-3 mRNA expres-
sions in MH7A cells
SPMs have been reported to exert pro-resolving and 
cartilage-protective actions in response to inflammatory 
arthritis, as well as a reduction of pro-inflammatory 
cytokine production in vivo.17, 19, 26, 41 Therefore, we 
evaluated the effects of SPMs on TNF-α stimulation 
in synovial fibroblasts. To this end, MH7A cells were 
cultured with or without 10 nM and 100 nM RvE1, 
RvD1, and MaR1 in the presence of 10 ng/mL TNF-α 
for 12 h. The mRNA expression levels of COX-2, 
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mPGES-1, IL-6, and MMP-3 were determined by real-
time PCR. The mRNA expression levels of COX-2 (Fig. 
3A), mPGES-1 (Fig. 3B), IL-6 (Fig. 3C), MMP-3 (Fig. 
3D) were increased by TNF-α; however, RvE1 failed to 
decrease the expression of these inflammatory markers 
(Figs. 3A–D). Similar results were observed for RvD1 
(Figs. 3E–H) and MaR1 (Figs. 3I–L). These mRNA 
expression levels by SPMs without TNF-α were not 
increased in MH7A cells (Supplementary Fig. S1).

Effects of ω-3 PUFA-derived lipid mediators on 
COX-2, mPGES-1, IL-6, and MMP-3 mRNA expres-
sions in synovial fibroblasts derived from OA
Since MH7A cells were derived from RA patients, we 
examined the effects of SPMs on synovial fibroblasts 

from patients with OA. The mRNA expression levels 
of COX-2 (Fig. 4A), mPGES-1 (Fig. 4B), IL-6 (Fig. 
4C), and MMP-3 (Fig. 4D) were increased by TNF-α 
stimulation. However, these inflammatory markers were 
not inhibited by RvE1 (Figs. 4A–D). Similar results 
were observed for RvD1 (Figs. 4E–H) and MaR1 (Figs. 
4I–L). Similar to MH7A cells, the anti-inflammatory 
effect of ω-3 SPMs was not observed in OA synovial 
fibroblasts. These mRNA expression levels by SPMs 
without TNF-α were not increased in OA fibroblasts 
(Supplementary Fig. S2). Thus, this result suggests that 
SPMs do not have an anti-inflammatory effect in syno-
vial fibroblasts regardless of their origin such as RA or 
OA.

Fig. 1.  Effects of TNF-α on MH7A cells. MH7A cells were stimulated with 10 ng/mL TNF-α for 1, 6, 12, 24, or 36 h. The mRNA 
expression levels of COX-2 (A), mPGES-1 (B), IL-6 (C), and MMP-3 (D) were determined by real-time PCR. Data are presented as the 
mean ± SEM of three independent experiments (*P < 0.05 vs. 0 h). The PGE2 (E) and IL-6 (F) production levels in MH7A cells stimu-
lated with 10 ng/mL TNF-α for 1, 6, 12, 24, or 36 h were determined using enzyme-linked immunosorbent assay. Data are expressed as 
the mean ± SD (n = 3; *P < 0.05 vs. 0 h).
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Fig. 2.  MH7A cell response with increasing dose of TNF-α. MH7A cells were cultured in the presence of 1, 10, 50, and 100 ng/mL 
TNF-α. The mRNA expression levels of COX-2 (A), mPGES-1 (B), IL-6 (C), and MMP-3 (D) were determined by real-time PCR. The 
expression of COX-2 (E), mPGES-1 (F), IL-6 (G), and MMP-3 (H) in cell lysates was determined by western blot analysis. The data are 
expressed as the relative protein expression of targets/β-actin. Data are presented as the mean ± SEM of three independent experiments (*P 
< 0.05 vs. untreated).
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Fig. 3.  Effects of SPMs on TNF-α-treated MH7A cells. MH7A cells were cultured with or without 10 nM and 100 nM RvE1, RvD1, and 
maresin-1 (MaR1) in the presence of 10 ng/mL TNF-α for 12 h. The effects of RvE1 on the following substances were examined using 
real-time PCR: the mRNA expression levels of COX-2 (A), mPGES-1 (B), IL-6 (C), and MMP-3 (D) or RvD1 on COX-2 (E), mPGES-1 (F), 
IL-6 (G), and MMP-3 (H) or MaR1 on COX-2 (I), mPGES-1 (J) and IL-6 (K), and MMP-3 (L). The plots represent three independent 
experiments. Data are presented as the mean ± SEM of three independent experiments (*P < 0.05 vs. untreated).
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Effects of TNF-α on expression of SPM receptors 
in MH7A cells
SPMs bind to G-protein-coupled receptors (GPCRs) and 
induce specialized biological actions.42, 43 To elucidate 
the mechanism underlying the anti-inflammatory effect 
of SPMs, the expression of chemerin chemokine-like 

receptor 1 (CMKLR1), an RvE1 receptor, was evaluated 
using real-time PCR and western blotting. MH7A cells 
were stimulated with 10 ng/mL TNF-α for 1, 6, 12, 24, 
36, or 48 h. The expression of CMKLR1 mRNA was in-
creased after stimulation with TNF-α for 1 h, according 
to the results of real-time PCR. However, no difference 

Fig. 4.  Effects of SPMs on osteoarthritis-derived synovial fibroblasts treated with TNF-α. Osteoarthritis-derived synovial fibroblasts 
were cultured with or without 100 nM RvE1, RvD1, and MaR1 in the presence of 10 ng/mL TNF-α for 12 h. The effects of RvE1 on the 
following substances were examined using real-time PCR: the mRNA expression levels of COX-2 (A), mPGES-1 (B), IL-6 (C), MMP-3 
(D), or RvD1 on COX-2 (E), mPGES-1 (F), IL-6 (G), and MMP-3 (H) or MaR1 on COX-2 (I), mPGES-1 (J), IL-6 (K), and MMP-3 (L). 
The plots represent three independent experiments. Data are presented as the mean ± SEM of three independent experiments (*P < 0.05 
vs. untreated).
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Fig. 5.  Effects of TNF-α on the expression of chemerin chemokine-like receptor 1 (CMKLR1), leukotriene B4 receptor 1 (BLT1), and 
FPR2 in MH7A cells. MH7A cells were stimulated with 10 ng/mL TNF-α for 1, 6, 12, 24, or 48 h (A) and in the presence of 1, 10, and 
50 ng/mL TNF-α for 12 h (B). The mRNA levels of CMKLR1 were determined using real-time PCR. Data are presented as the mean 
± SEM of three independent experiments (*P < 0.05, **P < 0.01 vs. 0 h). MH7A cells were incubated for 24 h with 0–50 ng/mL TNF-α. 
The expression of CMKL1 and BLT1 was determined by western blot analysis (C, D, and E). The mRNA level of FPR2 was determined 
in the presence of 10 ng/ml TNF-α for 12 h using real-time PCR (F). The expression of FPR2 in the presence of 10 ng/ml TNF-α for 24 
h was determined by western blot analysis (G). Data are presented as the mean ± SEM of three independent experiments (*P < 0.05 vs. 
control. †P < 0.05 vs. TNF-α).
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was observed at 6–48 h (Fig. 5A). CMKLR1 mRNA 
expression was further reduced by stimulation with 
10–50 ng/mL TNF-α, according to real-time PCR (Fig. 
4B). The expression of CMKLR1 and another RvE1 
receptor, BLT1, did not change after 24 h of stimulation 
with TNF-α (Figs. 5C–E). The mRNA expression of 
N-formyl peptide receptor 2 (FPR2), an RvD1 receptor, 
was increased after stimulation with TNF-α, according 
to real-time PCR (Fig. 5F); however, the expression 
of FPR2 did not change after 24 h of stimulation with 
TNF-α, according to western blotting (Fig. 5G). The 
mRNA expression level of CMKLR1 was decreased 
after stimulation with TNF-α for 6-48 h; however, the 
protein levels of CMKLR1, BLT1, and FPR2 in MH7A 
cells were not affected by TNF-α. Therefore, these 
results suggest that SPMs can act via SPMs receptors.

Effect of ω-3 PUFA-derived lipid mediators on TNF-
α-induced MAPK signal activation in MH7A cells
In synovial fibroblasts, MAPK signaling plays an 
important role in TNF-α-induced inflammation re-
sponses.42 Three MAPK signaling pathways have been 
characterized: MEK/ERK1/2, JNK, and p38 MAPK 
signaling pathways. We examined the contribution of 
MAPK signaling pathways to TNF-α-induced COX-2, 
mPGES-1, and IL-6 expression in MH7A cells using 
MAPK inhibitors. TNF-α-induced COX-2 expression 
was inhibited in the presence of the MEK inhibitor 
U0126 and the p38 inhibitor SB202190 (Fig. 6A). By 
contrast, mPGES-1 expression was not inhibited (Fig. 
6B). TNF-α-induced IL-6 expression was inhibited 
in the presence of the p38 inhibitor SB202190 and 
enhanced in the presence of U0126 (Fig. 6C). Next, we 
evaluated the bioactivity of SPMs in the MH7A cells. 
SPMs are known to activate the PI3K/AKT and ERK 
signaling pathways via receptors.16, 44 To evaluate the 
bioactivity of SPMs in MH7A cells, we investigated the 
signal activity of SPMs in the absence of TNF-α. As a 
result, RvE1, RvD1, and MaR1 were found to enhance 
ERK activation (Fig. 6D), while RvD1 and MaR1 en-
hanced Akt activation (Supplementary Fig. S3).

Next, we examined the effects of SPMs on the 
MAPK signaling pathway in MH7A cells. The expres-
sion of p-ERK, p-p38, p-JNK, and p-NF-κB was en-
hanced by 15–30 min after TNF-α stimulation; however, 
the expression of p-ERK, p-p38, p-JNK, and p-NF-κB 
was not inhibited by RvE1 (Figs. 7A–D). Similar results 
were observed for RvD1 (Figs. 7E–H) and MaR1 (Figs. 
7I–L).

No significant effect of SPMs (RvE1, RvD1, and 
MaR1) on these signaling systems by TNF-α stimulation 
was observed. These results indicate that SPMs have no 

inhibitory effect on TNF-α-stimulated MAPK signaling 
and NF-κB phosphorylation in synovial fibroblasts.

DISCUSSION
In this study, we investigated the effects of SPMs on 
TNF-α-induced inflammatory responses in synovial 
fibroblasts. We found that SPMs exhibited a non-
inhibitory effect on the TNF-α-induced inflammatory 
response in synovial fibroblasts. We also found that 
the expression of RvE1 receptors was not affected by 
TNF-α; however, the signaling pathways activated by 
TNF-α were not affected. The activation of MAPKs 
is involved in TNF-α-induced synovitis. In synovial 
fibroblasts, TNF-α enhances the expression of COX-2, 
mPGES-1, IL-6, and MMP-3 by the activation of 
MAPKs and NF-κB.21, 40, 45–51 In our study, SPMs did 
not inhibit the activation of MAPKs and NF-κB, which 
may explain why SPMs are incapable of inhibiting the 
synthesis of COX-2, mPGES-1, IL-6, and MMP-3 in-
duced by TNF-α. It has been reported that prophylactic 
and therapeutic RvE1 regimens did not ameliorate the 
incidence or severity of collagen-induced arthritis in 
mice, including the histopathological scores of synovial 
inflammation, chondrocyte death, cartilage erosion, 
bone erosion, proteoglycan depletion, and proinflam-
matory cytokine production.52 These results suggest 
that SPM has a limited anti-inflammatory response in 
patients with RA.

Furthermore, it has been reported that p38 plays an 
important role in the production of inflammatory cyto-
kines.53–55 Our study suggests that p38 phosphorylation 
plays an important role in the expression of COX-2 and 
IL-6, but that SPMs could not suppress p38 phosphory-
lation, thus failing to suppress inflammatory cytokine 
production.

As a receptor, RvE1 uses CMKLR1 and BLT1, 
which are expressed on the cell surface of inflammatory 
cells and synovial fibroblasts.56, 57 RvD1 and LXA4, an 
ω-6 derived lipid mediator, use FPR2 as a receptor.58, 59 
MaR1 has been reported to be mediated by the receptors 
for retinoic acid-related orphan receptor alpha (RORα) 
and leucine-rich repeat-containing G-protein coupled 
receptor 6 (LGR6); however, the mechanisms by which 
this regulation occurs remain poorly understood.60 
In our study, the protein levels of CMKLR1, BLT1 
and FPR2 in synovial fibroblasts were not affected by 
TNF-α while the expression level of FPR2 mRNA was 
increased after stimulation with TNF-α. Ubiquitination 
is one of the mechanism for degradation of proteins. 
Connor et al. reported that TNF-α is not only capable of 
inducting expression of E3 ubiquitin ligases involved in 
the ubiquitination pathway but may also stimulate the 
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proteasome itself in RA synovial fibroblasts.61 Y. Zhang 
et al. reported that the inhibitory receptor, leucocyte-
associated immunoglobulin (Ig)-like receptor-1 (LAIR-
1), on cell surface could be shed from RA synovial 
fibroblasts following TNF-α stimulation.62 The further 

study of leading to strengthened ubiquitination of SPMs 
receptors and shedding from the cell surface in response 
to TNF-α should be conducted.

Many types of cells are involved in the patho-
genesis of RA, and the effects of SPMs have been 

Fig. 6.  Effects of ERK1/2, JNK, and p38 inhibitors on TNF-α-induced COX-2, mPGES-1, and IL-6 expression in MH7A cells. When 
MH7A cells were pretreated with the MEK inhibitor U0126 (10 µM), the JNK inhibitor SP600125 (10 µM), and the p38 inhibitor 
SB202190 (1 µM) for 1 h, the expression of TNF-α-induced COX2 (A), mPGES-1 (B), and IL-6 (C) in cell lysates was determined using 
western blot analysis. The data are expressed as the relative protein expression of targets/β-actin. Data are presented as the mean ± SEM 
of three independent experiments (*P < 0.05 vs. untreated. †P < 0.05 vs. TNF-α, ‡P < 0.05 vs. TNF-α). Effects of SPMs on the MAPK 
signaling pathway without TNF-α in MH7A cells (D). MH7A cells were cultured with 10 nM and 100 nM RvE1, RvD1, and MaR1 
without TNF-α for 15 min. The expression of ERK, p38, JNK, and NF-κB in cell lysates was determined by western blot analysis.
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investigated in several inflammatory cells. SPMs are 
able to modulate the inflammatory response of macro-
phages and neutrophils.63 Furthermore, we previously 

reported on the inhibitory effect of RvE1 on osteo-
clasts.25 We found that synovial fibroblasts originating 
from RA express CMKLR, BLT1, and FPR2; however, 

Fig. 7.  Effects of SPMs on signaling pathways after stimulation of MH7A cells with TNF-α. MH7A cells were pretreated with SPMs for 
1 h and then stimulated with 10 ng/mL TNF-α for 15 min. The effects of RvE1 on the following substances were examined: extracellular 
signal-regulated kinase (ERK) (A), p38 (B), c-Jun N-terminal kinase (JNK) (C), and transcription factor nuclear factor-κB (NF-κB) 
(D) or RvD1 on ERK (E), p38 (F), JNK (G), NF-kB (H), and maresin-1 (MaR1) on ERK (I), p38 (J), JNK (K), and transcription factor 
nuclear factor-κB (NF-κB) (L). The plots represent three independent experiments (*P < 0.05 vs. untreated).
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SPMs on TNF-α-induced inflammatory responses was 
not elucidated in MH7A cells and synovial fibroblasts 
originating from OA. Given the positive effects of SPMs 
on other inflammatory cells, our results may be due to 
the cell specificity of synovial fibroblasts to SPMs.

In conclusion, our study shows that the anti-inflam-
matory effect of ω-3-derived SPMs on TNF-α-induced 
response was not observed in synovial fibroblasts. This 
may come from non-inhibitory effects of SPMs on 
p38 activation induced by TNF-α. Further studies will 
be needed to elucidate the precise effects of SPMs in 
the synovial tissue of patients with RA, where many 
types of cells, including neutrophils, macrophages, 
lymphocytes, osteoclasts, chondrocytes, and synovial 
fibroblasts, exist and cause inflammation. It will also 
be necessary to investigate the effects of SPMs on other 
inflammatory cytokines such as RANTES, IL-8, and 
IL-17.
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