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 9 
Abstract. Unmanned Aerial Vehicles (UAVs), equipped with mounting camera sensors, facilitate a wide domain of 10 
applications deployed in the real-time world. The situational awareness for applications such as search and rescue in 11 
case of wildfires, estimation of endangered flora and fauna and emergency responses have seen paradigm shift due to 12 
UAVs capability of accessing in remote and challenging areas such as forests. The last decade has seen tremendous 13 
growth in CNN based methods for object classification, detection and segmentation tasks. Recently emerged 14 
Attention-based Transformer models have been trying to achieve state-of-the art results in predicting images. This 15 
paper proposed a novel MLP-Mixer architecture for classification of burned piles in dense forests. MLP mixer 16 
architecture tries to eliminate the shortcomings of convolutions and attention by merging them to obtain good 17 
performance. The shallow learning of CNN layers and fixed-size patch embedding in transformers have been 18 
eliminated by introducing a new module of DePatch in proposed MLP mixer model which divides the input images 19 
in a deformable pattern to detect forest fires at an early stage. On the pile images dataset obtained by drones during a 20 
burning pile of debris in an Arizona pine forest, our suggested classification algorithm has been tested. The 21 
performance of the proposed model has been compared with transformer models. 22 
 23 
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1. Introduction 29 
The use of unmanned aerial vehicles (UAVs) as a remote sensing platform for a range of practical 30 
applications, such as traffic monitoring [1], wildfire detections [2], precision agriculture [3], and 31 
the processing of satellite data [4], has received a lot of attention recently. Due to its use in 32 
numerous civil and commercial applications, UAV growth has accelerated recently. The UAVs 33 
have characteristics of cost-effectiveness, high performance and low power consumption which 34 
make it possible to incorporate vision-based automatic applications [5]. Height of capturing, tilt 35 
camera angle, and light settings play a significant role in the information of aerial images. The 36 
quality of generated images is highly dependent on the altitude of the flying vehicle and the 37 
characteristics of the sensors used. Recent years have seen the emergence of high-performance 38 
deep learning-based categorization architectures. Applications for emergency response and 39 
catastrophe management can benefit from deep learning approaches to quickly retrieve vital 40 
information, improve response times in time-sensitive circumstances, and help in-the-loop 41 
decision-making processes. The challenges of densely located, occluded objects, noise and 42 
background clutter exist in aerial images [6]. There is a need for powerful classification algorithms 43 
for overcoming these challenges. CNNs became the mainstream for performing standard 44 
classification in computer vision. The effective deep learning classification architectures of VGG 45 
[7], GoogleNet [8], Inception [9], ResNet [10], DenseNet [11], Lite-HRNet [12], and EfficientNet 46 
[13] are based on architectural advances such as depth-wise and deformable convolutions. The 47 
CNNs continue to be the well-known foundational designs for computer vision applications, but 48 



Transformer-like architectures have also shown great promise for unified modelling of vision and 49 
language. In addition to efficiently capturing long-range dependency within the sequence and 50 
extracting additional semantic data, freshly developed transformers outperform CNNs in this 51 
regard. In terms of research discoveries and logical knowledge, transformers in vision assist in 52 
bridging the gap between the NLP and computer vision communities. The transformers help to 53 
increase the receptive field deprived from the resolutions. The effect of receptive fields on  54 

 55 

Fig. 1 Difference of receptive areas in handcrafted, CNN and Transformer based methods  56 

handcrafted, CNN and transformers based methods is observed in Fig. 1. The concentration of the 57 
receptive field in case of handcrafted methods is more when compared with CNN methods but 58 
prior methods need manual engineering. But, the transformers based methods contribute 59 
significantly to detect and classify objects in an effective manner. Transformer-based classification 60 
models employ a fixed-size patch embedding with the implicit presumption that images are 61 
appropriate for the fixed image split design. However, such strong patch splits may cause semantic 62 
disagreement between images and issues with the collapsing of local structures in an image. In 63 
order to address the discussed shortcomings of CNNs and transformers, MLP Mixer architecture 64 
is utilized for the categorization of fire photographs taken by drones during a burning pile of trash 65 
in an Arizona pine forest [14]. Only straightforward matrix multiplication operations, changes to 66 
the data layout, and scalar non-linearities are used in Mixer's architecture. The use of multi-layer 67 
perceptrons is repeated across either feature channels or spatial locations. To the best of our 68 
knowledge, the classification model we propose is the first MLP mixer that executes patch splitting 69 
in a data-specific manner. In this study, we create the DePatch deformable patch, which adaptably 70 
changes the scale and position of each patch. The DePatch module is easy to create and can be 71 
used as a plug-and-play module. Our study is focused by proposing a novel deep learning based 72 
classification model for aerial images. The proposed deep model contains a deformable patch for 73 
MLP based mixer model for object classification. The proposed study aims to identify forest 74 
wildfires by deep feature representation approach. Early wildfire detection is crucial because it has 75 
the potential to cause serious harm to ecosystems, residential areas, forests, and wildlife habitats 76 
in the past. Recent developments in aerial surveillance systems in particular can give operational 77 
troops and first responders more precise information on the behaviour of fires for improved fire 78 
management. The proposed research work aims to contribute to a modeling shift in achieving 79 
strong performance on visual recognition tasks. The major offerings of this paper include:  80 
a) Proposing a novel deformable patch based MLP mixer model for aerial image classification 81 



b) Proposed deep learning-based classification model is an amalgamation of CNN and transformer 82 
based methods 83 

c) Proposed classification model has been evaluated on the pile imagery dataset collected by 84 
drones. 85 

The organization of the paper is as follows: Section 2 describes the related work of deep learning 86 
object classification models based on CNNs and transformers. Section 3 presents the details of the 87 
proposed deep learning-based object classification model in an elaborate manner. Section 4 88 
discusses training experimental setup in which the proposed model requirements and evaluation 89 
parameters are being analyzed. Section 4 also represents analysis of results obtained from the 90 
proposed classification model. The last section concludes the results achieved with focus on future 91 
directions. 92 
 93 
2 Related Work 94 
The growth of object detection algorithms and classification architectures is shown as a timeline 95 
diagram in Fig. 2. On a year-by-year time period, the figure depicts the evolution of various hand-96 
crafted, deep learning, and transformer-based algorithms. Scale Invariant Feature Transform 97 
(SIFT) [15], Histogram of Gradients (HOG) [16] , and SURF [17] were among the manual feature 98 
descriptors that dominated prior to 2012, but since then, CNN-based object detection methods have 99 
emerged. A breakthrough happened in handcrafted-based object detection and classification 100 
methods when deep learning-based convolutional architecture AlexNet [18] performed 101 
significantly when compared with former approaches. In 2014, a powerful detector region-based 102 
CNN method was developed through the combination of region proposals with CNNs. By 103 
classifying object proposals using a deep convolution network, it obtains outstanding object 104 
identification accuracy. After the proposal of the RCNN method, advancement in deep learning-105 
based object detectors began. After 2015, a number of powerful architectures such as VGG [7], 106 
Xception [19], DenseNet [11], EfficientNet  [13] for image classification have been developed.  107 

 108 
Fig. 2 Timeline of various object detection and classification algorithms 109 

The history of computer vision demonstrates that the availability of larger datasets along with 110 
increased computational capacity frequently leads to a paradigm shift. Applications for computer 111 
vision are increasingly using CNNs and other deep learning methods. In comparison to CNN-112 
based neural networks, the recently developed attention-based transformer models represent a 113 



paradigm change for the middle of the 2020s [20]. When compared to CNNs, the recovered 114 
features from transformers can more accurately reflect long-range dependency within the 115 
sequence, and they also carry more semantic information. 116 
In the next sections, we will be having a brief idea about self-attention based transformer based 117 
models. ViTs and Swin transformer based architectures help in improving the model 118 
interpretability as it relies on attention mechanisms which makes a prediction.  119 
2.1 ViT based Classification Model 120 
The ViT transformers for image classification were unveiled at the end of 2020. ViT carried on 121 
the time-consuming process of learning from unprocessed data while eradicating arbitrary visual 122 
features and inductive biases from models. The ViT transformer consists of three parts: a patch 123 
embedding module, multi-head self-attention blocks, and feed-forward multi-layer perceptrons. 124 
To develop features for image classification, the ViT divided an image into 16x16 patches and 125 
sent the image patch sequence through the transformer architecture. After the patch embedding 126 
module has turned the input image into a list of tokens, the network alternately stacks multi-head 127 
self-attention blocks and MLPs to get the final representation. The patch embedding module 128 
separates images into set sizes and positions before embedding a linear layer into each defined 129 
patch. With the use of substantial training data, ViT obtained outcomes comparable to those of 130 
conventional CNN designs. Despite great progress, most architectures still lost information since 131 
they divided the input image according to a preset pattern without taking the input's content or 132 
geometric variations into account [21]. 133 
2.2 Swin Transformer 134 
Swin transformer functions as a general-purpose backbone for computer vision by converting 135 
traditional multi-head attention to shifted window attention based models. Swin Transformer's 136 
shift of the window partition between subsequent self-attention layers is a fundamental component 137 
of its design, and it greatly outperformed ViT and ResNeXt models with comparable latency on 138 
the tasks. Local multi-headed self-attention modules based on alternate shifting patch windows in 139 
succeeding blocks make up the Swin Transformer block. The Swin transformer design consists of 140 
a patch splitting module, similar to ViT, that divides an input RGB image into non-overlapping 141 
patches. Each patch is handled as a token, and its feature is configured as a concatenation of the 142 
RGB values of the individual pixels. The different transformer blocks with updated self-attention 143 
computation are applied to these patch tokens, which keep the token count, along with the linear 144 
embedding. The different Swin Transformer blocks are then applied to the patches in four stages, 145 
progressively reducing the number of patches to maintain hierarchical representation. As the 146 
network becomes deeper, patch merging layers reduces the number of tokens to provide a 147 
hierarchical representation. After concatenating the features of each set of two adjacent patches, 148 
the first patch combining layer applies a linear layer to the four-dimensional concatenated features. 149 
It can model information at various scales and has a linear computational complexity with respect 150 
to image size [22]. Swin Transformer obtained the best results on the MS-COCO dataset [23], 151 
although it utilizes a lot more parameters than convolutional models. Transformers offers a 152 
paradigm change away from CNN-based neural networks. Convolution may very likely be 153 
replaced by it in these tasks, even if it is still in the early stages of use in vision. The fixed scale of 154 
the tokens in the present transformer-based models precludes their usage in vision applications. 155 
Another distinction is that text passages have a significantly lower word resolution than pixels in 156 
graphics. Because the semantics of objects are destroyed by the Swin Transformers [22] and 157 
MobileViTs [24] models, which are still in development, they are still having trouble. 158 
2.3 MLP Mixer 159 



Transformers have the aforementioned drawbacks; thus, this paper incorporated the recently 160 
created MLP Mixer architecture, which comes from non-local blocks. Because it doesn't require 161 
self-attention or convolutional layers, the MLP-Mixer is a novel design in computer vision that 162 
varies from earlier, successful models like CNNs and transformers. The MLP-blocks in Mixer are 163 
designed to immediately process embeddings of these patches after converting images into a series 164 
of patches. The design of Mixer is influenced by more contemporary transformer-based systems. 165 
It utilizes conventional regularization and optimization methods, relies on token and channel-166 
mixing MLPs, and is scalable to big data sets successfully. The competitive approach behind the 167 
MLP-Mixer architecture is built exclusively on multi-layer perceptrons rather than convolutions 168 
or self-attention. These perceptrons depend on simple matrix multiplication operations, 169 
adjustments to the data layout, and scalar non-linearities. They are repeatedly used across either 170 
feature channels or spatial locations. The MLP-Mixer architecture is based on multi-layer 171 
perceptrons and contains two different layers as described in Fig. 3. These two layers were made 172 
up of two MLPs: one that is applied individually to picture patches in order to mix location-specific 173 
features, and the other that is applied across patches in order to blend spatial data. Convolutions 174 
with small kernels of 11 are used in Mixer to transform convolutions into typical dense matrix 175 
multiplications (channel-mixing MLPs), which apply independently to each spatial point [25]. 176 

177 
Fig.3 Mixer architecture containing token-mixing and channel-mixing MLP 178 

As a result, geographic information cannot be aggregated; as a workaround, dense matrix 179 
multiplications, or token-mixing MLPs, are performed to each feature across all spatial locations. 180 
The competitive scores that the MLP mixer model achieved on benchmarks for image 181 
classification served as the basis for the proposed classification method. When trained on large 182 
datasets or using contemporary regularization techniques, these models have pre-training and 183 
inference costs that are comparable to those of cutting-edge models. The MLP-Mixer Architecture 184 
uses skip-connections and normalization layers, and each layer accepts an input of the same size. 185 
Matrix multiplications are then applied to the patches and features input table. As opposed to ViTs, 186 
Mixer uses a token-mixing layer to combine spatial information rather than position embeddings. 187 
MLPs are sensitive to the order of the input tokens and use a conventional classification head with 188 
a global average pooling layer, followed by a linear classifier. 189 
 190 



3 De-Patch based MLP Mixer Architecture 191 
The existing CNN and transformer models for object classification pose serious challenges to 192 
aerial images. The transformer-based methods utilized a fixed-size patch embedding which might 193 
destroy the semantics of aerial objects. Further, the hard patch splits of CNNs brought two 194 
problems related to collapse of local structures and having semantic inconsistency across aerial 195 
images. Because scale-variance items can be seen in a variety of aerial photographs, it is difficult 196 
to capture the entire object-related local structure in a 16 * 16 regular patch [26]. The same item 197 
may appear differently geometrically in many aerial photographs, depending on the scale, rotation, 198 
etc. The fixed method of picture splitting may capture contradictory information for the same 199 
object in various photographs. These updated patches run the risk of erasing semantic data, which 200 
would reduce classification accuracy. To address the aforementioned difficulties, we suggest 201 
DePatch, a novel module in the MLP mixer architecture that learns to adaptively partition the 202 
images into patches with varying positions and scales in a data-driven way as opposed to using 203 
predetermined fixed patches. The semantics in patches may be effectively preserved using our 204 
suggested classification architecture by integrating DePatch into MLP mixer design. 205 

 206 

Fig. 4 DePatch module with offsets and scales within local features 207 

The proposed DePatch based MLP Mixer architecture is shown in Fig. 4. The rectangle region is 208 
immutable for each patch, as illustrated in the figure, because the coordinates (xct, yct ), and size s 209 
of the patch are fixed. The interior pixels of the patch being used directly depict its feature. We 210 
relax these requirements to build our deformable patch embedding module, DePatch, which can 211 
better locate key structures and handle geometric deformation. Based on the contents of the input, 212 
projected parameters include the position and size of each patch. We estimate an offset (x, y) that 213 
will allow the location to move away from the original center. In terms of scale, all we do is swap 214 
out the fixed patch size s for the predictable sh and sw. In this way, we can determine a new 215 
rectangle region, and denote its left-top corner as (𝑥1, 𝑦1) and right- bottom corner as (𝑥2, 𝑦2).  We 216 
emphasize that (𝛿𝑥, 𝛿𝑦, 𝑠𝑤, 𝑠h) can be different even for patches in a single image as shown in eq. 217 
1 and 2: 218 
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 221 

Fig. 5 Left: Original patch based MLP architecture. Right: Modified architecture equipped with DePatch module 222 

The architectural details of the proposed DePatch based MLP Mixer have been discussed. To retain 223 
semantics in the aerial photos, we integrated the DePatch module into the MLP Mixer framework. 224 
The MLP mixer architecture, as depicted in Fig. 5, receives the DePatch module as an input. The 225 
locations of the token and channel mixers are the same as in the original MLP mixer. When 226 
compared to CNNs and transformers, the performance of the suggested classification model shows 227 
that MLP Mixer is a superior option for aerial data. Our suggested classification approach is 228 
capable of handling tasks that demand pixel-level predictions without the use of transformers, as 229 
well as photos with significantly higher resolution. In this study, we use the suggested 230 
categorization model to locate slash piles that have been burned over the winter in high-elevation 231 
forests in the Southwest. The proposed model is able to combat challenges of aerial image 232 
classification such as lack of context information and imbalance of fore-ground and background 233 
training examples. 234 
 235 
4 Experimental Analysis 236 
Our proposed DePatch based MLP Mixer architecture performed pile aerial imagery classification 237 
in an effective manner. In this section, details about the aerial pile imagery dataset, training 238 
methodology and results for the proposed framework have been discussed.  239 
 240 



4.1 Aerial Pile Imagery Dataset 241 
The proposed classification technique has been evaluated on a fire image dataset collected through 242 
drones during a burning piled detritus in Arizona pines forest. This dataset contains annotated 243 
drone-based images and videos shot from infrared cameras for executing fire related detection, 244 
classification and segmentation problems. The fire based classification and segmentation studies 245 
can be evaluated on this dataset. For "Fire" vs. "Non-Fire," a total of 39,375 labelled frames were 246 
used in the training phase, and 8,617 frames were used for the test data. Early wildfire detection is 247 
crucial because it has the potential to cause serious harm to ecosystems, residential areas, forests, 248 
and wildlife habitats in the past. These troubling statistics spur scientists to look for fresh 249 
approaches to early fire detection and classification. A deep classification model can learn features 250 
more effectively by being trained to execute fire picture classification tasks. 251 
4.2 Training Methodology 252 
The large-scale images dataset ImageNet has been deployed for initial training of feature extractor 253 
for the proposed classification technique. The ImageNet dataset consists of 1.28M images 254 
belonging to 1000 categories. We performed fine-tuning on a fire images dataset to detect wildfires 255 
at an early stage. The dataset images are resized into 224 × 224 for training of proposed 256 
classification technique. To broaden the variety of categorized items, advanced data augmentation 257 
techniques like Mix up, CutMix, label smoothing, and Rand-Augment were used. The suggested 258 
classification method has been trained using a 32-person batch size over 100 iterations. There is 259 
no sign of convergence after 100 epochs. The training approach used the optimizer RMSProp with 260 
a weight decay for non-bias parameters of 0.05 and an initial learning rate of 1 103. For fair 261 
comparison, all of these settings are maintained with the MLP Mixer architecture. 262 
4.3 Evaluation Parameters  263 
The popular classification-related evaluation metrics had been used to evaluate the effectiveness 264 
of the suggested deep learning-based classification technique in order to effectively depict the 265 
findings. While recall provides the percentage of True Positives (TP) from the whole quantity of 266 
TP and False Negatives (FN), the metric precision refers to the TP fraction from the total sum of 267 
TP and False Positives (FP). The true predictions from class one with the highest probability make 268 
up the accuracy score. 269 
 270 
5 Results 271 
In this section, an analysis of the proposed optimized classification technique is provided by 272 
considering the accuracy of chosen fire based aerial dataset. The plots related to accuracy and loss 273 
for the proposed classification technique have been mentioned. The training accuracy value started 274 
from 0.925 and goes up to 1.00 over 100 epochs. The validation accuracy values initially showed 275 
bumpy behavior for starting 30 epochs, after which it started converging with the training values. 276 
The starting value for the validation accuracy was 0.85 and goes up to 0.99. The training was 277 
stopped as no further convergence took place. The training loss value started from 0.85 and goes 278 
up to 0.40 over 100 epochs. The validation loss values initially showed a steep change in behavior 279 
from .70 to 0.48 value in starting epochs, after which it started converging with the training loss 280 
values. The settled value for the validation loss was 0.48 and goes up to 0.41 for 100 epochs. The 281 
training was stopped as no further convergence took place. The predictions for the proposed 282 
classification technique have been illustrated in Figure. The fire class was properly recognized by 283 
DePatch-based MLP mixer technique. 284 



 285 

Fig. 6 Accuracy and loss plots for the proposed classification model 286 

 287 

Fig. 7 Correct Predictions for the proposed classification model 288 

 289 



5.1 Comparison with Other Approaches 290 
To compare the proposed classification technique, the promising transformer models of Vision 291 
and Swin transformers have been chosen, shown in Table 1. ViTs used learning from unprocessed 292 
data and inductive biases from models. By limiting self-attention computation to non-overlapping 293 
local windows while simultaneously allowing for cross-window connections, Swim Hierarchical 294 
Transformers were constructed with shifted windows and improved efficiency. These transformer 295 
models lacked speed and accuracy while exhausting more hardware resources. The ViT-B/16 296 
version obtained an accuracy score of 46.18 while exhausted 86.4 million parameters and 55.5 G 297 
FLOPs. The better version of transformers i.e. Swin Transformers had also attained 61.35 and 298 
82.48 as top-1 and top-5 accuracy scores. The classification results of Swin Transformers were 299 
better than vision transformers but could not hold better position in front of our proposed 300 
classification model. Transformers' subpar performance is caused by the absence of inductive bias 301 
and fixed post-training weights. The drawbacks of transformers include the fact that they can only 302 
compute global self-attention for non-overlapping local windows, the difficulty of pixel-level 303 
predictions for transformers, and the fact that the computational complexity of their self-attention 304 
is quadratic to image size. The input image size for vanilla MLP Mixer model is 224*224 and 305 
utilized 19 million parameters through which it achieved top-1 accuracy 74.67 and 87.54 top-5 306 
accuracy. The best performance was recorded by our proposed DePatch based MLP mixer model 307 
which outperformed employed other classification models. The proposed classification technique 308 
achieved top-1 accuracy of 77.23 and top-5 accuracy of 93.45 which outperformed employed 309 
transformer models. The number of employed parameters were also minimum in case of DePatch-310 
based MLP mixer model. 311 
 312 
 Table 1 Comparison of the proposed classification model with other models 313 

Model Resolution Param FLOPs Top-1 (%) Top-5 (%) 

ViT-B/16 384*384 86.4M 55.5G 46.18 73.63 

Swin 224*224 29M 4.5G 61.35 82.48 

MLP Mixer 224*224 19M 2.2G 74.67 87.54 

DePatch based 

MLP (ours) 

224*224 18M 2.0G 77.23 93.45 

 314 
A new module of DePatch had been proposed in MLP mixer model which divides the input images 315 
in a deformable pattern to detect forest fires at an early stage. This DePatch module in the chosen 316 
MLP mixer based classification model incorporated the awareness of input images and geometric 317 
variations. The improved classification model for forest pile burn images of Arizona forest has 318 
been proposed which can further be extended for performing multitude of applications. These 319 
aerial applications provide the methods for performing smart agriculture, defense missions and 320 
industry related activities. 321 
 322 
6 Conclusion 323 
This paper proposed an aerial scene classification of forest fire situations from drone images using 324 
a novel multi-layer perceptron based network model. The hard patch split of CNNs brought two 325 
problems related to collapse of local structures and having semantic inconsistency across images.  326 
Transformers would be unable to provide pixel-level predictions on high-resolution aerial photos 327 
because the computational difficulty of its self-attention scales quadratically with the size of the 328 
image. In MLP Mixer model, multi-layer perceptron blocks turn pictures into a series of patches 329 



and process embeddings of these patches directly. To efficiently analyze massive amounts of data, 330 
it relied on token and channel-mixing MLPs as well as conventional regularization and 331 
optimization approaches. In order to maintain the semantics of the aerial images, DePatch module 332 
had been included into the MLP Mixer framework. Instead of utilising pre-determined fixed 333 
patches, this DePatch module adaptively divides the photos into patches with varying positions 334 
and scales. A drone-collected fire image dataset from a smouldering pile of debris in an Arizona 335 
pine forest was used to evaluate the suggested deep learning-based categorization technique. The 336 
suggested classification method outperforms transformer models and the standard MLP-Mixer 337 
model with top-1 accuracy of 77.23 and top-5 accuracy of 93.45. The DePatch-based MLP Mixer 338 
model likewise used the fewest possible parameters. 339 
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