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Definition: Fungi produce a wide range of secondary metabolites. Some of these metabolites are
toxic to humans and cause various health disorders, ranging from acute poisoning to chronic diseases.
Contrary to this, some fungal metabolites are valuable sources in therapeutics, such as penicillin.
Herein, researchers briefly highlight the role played by different fungal metabolites in human health
and diseases and give an overview of the most common fungal genera.
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1. Introduction

Fungi are extraordinary in their ability to produce numerous natural products known
as fungal secondary metabolites, which exhibit various biological activities [1,2]. Consider-
ing the reported biological properties of fungi toward human health, they can be classified
as toxic “mycotoxins” or non-toxic metabolites [3]. Mycotoxins are natural contaminants
of food commodities and pose a measurable health risk for animal and human health [4].
Health risks are classified based on organs that are affected by the toxins, for instance,
they possess carcinogenic, immunosuppressive, hepatotoxic, nephrotoxic, and neurotoxic
effects [4,5]. Hundreds of mycotoxins have been identified [6,7]. The mycotoxins that
receive the most significant concern from scientists are aflatoxin B1 and M1, cyclopiazonic
acid, ochratoxin A, patulin, T-2 toxin, deoxynivalenol, zearalenone, ergot alkaloids, and
macrocyclic trichothecenes, due to their health and economic effects. For instance, aflatoxin
B1 is classified as the most potent hepatocarcinogen and mutagen [8,9]. However, human
exposure to mycotoxins is still underestimated as scientists only focus on economically
important mycotoxins. Therefore, it is important to intensify efforts to discover more toxic
fungal metabolites that contribute to diseases of unknown aetiology.

On the contrary, some fungal metabolites are beneficial for human health and are used
to treat many human diseases, such as antibiotics. Therefore, researchers from different
fields work together towards understanding the fungal secondary metabolites in terms
of their regulation, function, and applications, and evaluate their toxicity [10–13]. These
fungal metabolites are characterized by their chemical structures and effects on human
health [1]. A recent review mentioned that more than 1,500 fungal metabolites had been
isolated and half of them have been used for primary health care. The other half is still
under safety and toxicity investigation [1].

The scientific community has recently celebrated the 90th anniversary of Sir Alexander
Fleming’s discovery of penicillin, which was the starting point of the antibiotic era [10].
Since then, scientists worldwide have started to consider and use innovative approaches
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to study fungi due to their health and biotechnological significance. Although drug dis-
covery from fungal metabolites is increased due to the development of bioinformatics
and genomics [14], researchers expressed the need to ramp up the discovery of fungal
metabolites to improve food quality or discover novel antibiotics. This was obvious during
the pandemic when researchers initially struggled to find drugs to treat the SARS-CoV-2.

In the coming section, researchers will briefly discuss the importance of different
fungal metabolites in human health and diseases with an overview of the fungal genera
most frequently involved.

2. Mycotoxin Involved in Human Diseases

Mycotoxins are produced by hundreds of thousands of species of fungi, such as
Aspergillus spp., Penicillium spp., Fusarium spp., Claviceps spp., and Stachybotrys spp. [15,16].
Therefore, mycologists classified mycotoxins based on the fungal species that produce
them, see Table 1. These toxins can cause several health issues, such as liver and kidney
cancers [6].
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Table 1. Common toxigenic species of fungi and their chronic effects.

Fungal Species Toxin * Toxin Classification Chronic Effect Refs.

Aspergillus flavus Aflatoxins B1, B2 Aspergillus toxins Hepatotoxic [8,17]
A. parasiticus Aflatoxins B1, B2, G1, G2 Penicillium toxins

A. ochraceus Ochratoxin A Aspergillus toxins

Nephrotoxic [18–20]
[21–23]

Penicillium verrucosum Ochratoxin A, Citrinin

Penicillium toxinsP. purpurogenum Ochratoxin A, Citrinin

P. expansum Patulin, Citrinin Cytotoxic effects [21–25]

Fusarium sporotrichiodes
F. graminearum
F.verticillioides
F.proliferatum

T-2 toxin, Fumonisin Fusarium toxins
Gastrointestinal, skin,

thyroid, and bone
marrow, disorders

[26–32]

Alternaria alternata
Alternariol, Aternariol

monomethyl-ether,
Tenuazonic acid

Alternaria toxins Oesophageal cancer,
hematologic disorder [33,34]

Stachybotrys atra Satratoxins Stachybotrys Sick building syndrome [35,36]

* View chemical structure in Figure 1.

2.1. Mycotoxin Involved in Liver Diseases

Aflatoxins are difuranocumarin derivatives produced by many species of Aspergilli;
particularly A. flavus, A. parasiticus, A. bombycis, A. coracles, A. nomius and A. pseudota-
marii [6,15,37]. These fungi grow on particular foods under favourable temperature and
humidity conditions and produce aflatoxins before and after harvesting [17,38]. Aflatoxins
are primarily found in cereals, oilseeds, tree nuts, spices, milk, and dairy products [39–41].
A. flavus is the most common producer of aflatoxins. It was first isolated and characterized
following the death of more than 100,000 turkeys due to an unidentified disease, named
turkey X disease. The toxin was traced to a mould-contaminated peanut meal consumed by
the turkeys [6]. Eighteen types of aflatoxins have been identified, with the major four being
AFB1, AFB2, AFG1 and AFG2 (Figure 1A, 1–4, respectively). Due to high toxicity, aflatoxin
B1 was classified as a Group 1A human carcinogen [8,42]. Aflatoxin B1 (AFB1) is the most
potent natural toxin and may cause liver cancer [16]. The Food and Agriculture Organiza-
tion emphasized that children under 5 years in Africa are at a high risk of consuming milk
contaminated with aflatoxin M1 and M2 which cause growth retardation [17]. AFM1 and
AFM2 are metabolism products of AFB1, and thus can be found in milk. Therefore, several
regulations have been implemented worldwide to control aflatoxin consumption [15,16].

2.2. Mycotoxins Involved in Kidney Diseases

Members of the ochratoxin family have been found in varied species of Aspergillus, in
particular A. alliaceus, A. melleus, A. cabonarius, A. glaucus, and A. niger, and other related
fungal species, including Penicillium viridicatum [6,43]. These toxins are found in various
cereal grains, dried fruits, wine, and coffee. Ochratoxin A (OTA) (Figure 1A, 5) is the most
toxic compound in the ochratoxin family [19]. Early studies have connected OTA exposure
within human diseases, such as Balkan endemic nephropathy (BEN), chronic interstitial
nephropathy (CIN), and other renal diseases. The effect of OTA was reported by IARC and
is considered nephrotoxic, teratogenic, immunotoxic, and has been classified by IARC as a
class 2B carcinogen, and a possible human carcinogen [20,44]. However, a recent European
Food Safety Authority report showed that ochratoxins cause nephrotoxicity and renal
tumours in various animal species. The information related to the effect of this toxin on
human health is still limited, and more clinical studies are needed to confirm the hazardous
extent of ochratoxins [18].
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2.3. Mycotoxins Involved in Genotoxicity, Immunotoxicity, and Neurotoxicity

Patulin (PAT) (Figure 1B, 6) is a secondary metabolite produced by Aspergillus, Byssochlamys,
and Penicillium spp. [25,45] and is common infestation of fruit- and vegetable-based prod-
ucts. The risk of human exposure to patulin through the consumption of juices and jams
occurs at an early age [24].

Patulin is an α, β-unsaturated γ-lactone that has broad-spectrum antimicrobial activity
but has been classified as mycotoxin [25]. Patulin has chronic health effects, including
genotoxicity, immunotoxicity, and neurotoxicity in rodents, but insufficient evidence exists
for carcinogenicity. Therefore, the IARC has classified it as Group 3B, however, its effects
on humans are not yet clear [24,25].

2.4. Mycotoxins Involved in Damage to Organs

Citrinin (Figure 1B, 7) is mycotoxin that was isolated from Penicillium cultures that
contaminated stored food for long periods of time [21]. Initially, citrine aimed to be
used as a drug before World War II; unfortunately, it also displayed toxicity, so it was
discontinued [22]. Several Penicillium strains were found to produce citrinin such as P.
citrinum, P. expansum, P. radicicola, P. verrucosum [21,22]. Chemically citrinin is a quinone
methide with two intramolecular hydrogen bonds [23].

Moreover, numerous Aspergillus species were also able to produce it. Citrinin has also
been isolated from Monascus ruber and Monascus purpureus, which are used industrially to
produce pigments for the food industry as a preservative or for food colouring. Although
citrinin mainly targets the kidney, reports indicated it targets other organs, such as the liver
and bone marrow. However, regulating this toxin in food or animal feed would meet an
acceptable level in many countries including Europe [21,22].

2.5. Mycotoxins Involved Gastrointestinal, Skin, Thyroid, and Bone Marrow Disorders

Trichothecenes are a large group of toxic fungal secondary metabolites produced by
various fungi, including Fusarium spp., Myrothecium spp., Stachybotrys spp., and Trichoderma
spp. [46,47]. These toxins cause many health issues for humans and animals [26,47]. Over
200 trichothecene toxins were reported. They share a common tricyclic 12,13-epoxytrichothec-
9-ene (EPT) core structure and are classified into four groups A, B, C, and D based on
the substitution pattern of EPT, with groups A and D recognised as the most toxic com-
pounds [27,47].

T-2 toxin (Figure 1C, 8) is related to trichothecenes group A and is considered the
most toxic fungal secondary metabolite produced by Fusarium species, including F. sporotri-
chioides, F. poae, and F. acuminatum. T-2 toxicity effects depend on several factors, such as
the dosage, age, and exposure (oral, dermal, and aerosol). T-2 toxin causes a gastrointestinal
disorder known as Alimentary Toxic Aleukia that affects humans after consuming moldy
food. Several toxicological studies were conducted to evaluate the cytotoxic and genotoxic
impact of T-2 toxin [26,27,46]. They found that this toxin could inhibit protein synthesis and
has immunomodulatory insults [26,27,46]. This inhibitory effect is visible in proliferating
cells, such as the gastrointestinal tract, skin, thyroid, and bone marrow cells [26,31].

2.6. Mycotoxins Involved in Cancer and Heart Failure

Fumonisins are mycotoxins produced by Fusarium spp. such as F. proliferatum and
F. verticillioides. Fumonisins are classified into four major groups; FA, FB, FC, and FP,
of which fumonisin B1 (Figure 1C, 9) is the most toxic member. FB1 contaminates corn,
rice, oat, rye, barley and wheat [48]. However, the risk of contamination with these
toxic fungal metabolites depends on several environmental factors, such as humidity and
temperature [49].

FB1 (9) poses a health risk for animals and humans. It was reported that FB1 causes
oxidative stress, cellular autophagy, apoptosis, and kidney diseases. Exposure to high
levels of fumonisins in diet during early pregnancy induces a high risk of bearing a child



Encyclopedia 2022, 2 1594

with a brain or spinal cord deficiency. Therefore, worldwide regulations and legislation
have restricted a maximum limit of fumonisin in human foods and animal feeds [28,49].

2.7. Mycotoxins Involved in Oesophageal Cancer and Hematologic Disorder

Alternaria spp. is a widespread fungal genus that infects various crops, causing eco-
nomic loss [50]. Alternaria toxins are a large group of more than seventy toxins, however,
only a few have been reported and chemically characterised, including alternariol (AOH),
alternariol monomethyl-ether (AME), and tenuazonic acid (TeA) (Figure 1D, 10–12, re-
spectively) [33,51,52]. These toxins contaminate food products, such as fruits, vegetables,
cereals, and grains. According to EFSA, the information on the toxicological profile of
Alternaria mycotoxins is not enough for a proper health hazard assessment [50,53]. Many
studies described these toxins as having cytotoxic, genotoxic, mutagenic, fetotoxic and
teratogenic exchange consequences among their effects [54]. Other studies reported these
toxins to cause mutagenic, oestrogenic and clastogenic effects [50,55]. However, most
of the published studies focus on a single toxin, although Alternaria toxins, in general,
are produced simultaneously. Although one study investigated the effect of binary or
ternary combinations in vitro on relevant human cell lines [34], more data is still needed to
understand the impact of these toxins on human health.

2.8. Mycotoxins Involved in Cause Respiratory Illness

Satratoxins are macrocyclic trichothecene mycotoxins produced by Stachybotrys species.
Satratoxin G (Figure 1E, 13) is one of the most known toxins in this family [56]. Stachybotrys
chartarum is associated with dampness and is called saprophytic black mould [36,57]. Many
researchers suggested that satratoxins contribute to sick building syndrome with different
symptoms, such as upper respiratory tract symptoms including wheezing and coughing,
and in some cases they may exacerbate chronic lung diseases, such as asthma [35].

3. Fungal Metabolites against Human Disease
3.1. Fungal Metabolites Used as Antibiotics

An antibiotic is a chemical substance generally produced by microorganisms and able
to inhibit the growth or destroy different microbial pathogens. Literature indicated that
most filamentous fungi could produce different antibiotic compounds against pathogenic
bacteria, fungi, etc. [58]. Most currently used antibiotics are derived from Streptomyces
species and other actinobacteria, with relatively few compound classes derived from fungi.
This includes Penicillium-derived penicillins (Figure 2, 14) and Cephalosporium-derived
cephalosporins (Figure 2, 15), which belong to the β-glucan antibiotics, as well as the
steroid fusidic acid (Figure 2, 16) from Fusidium coccineum and pleuromutilin (Figure 2,
17) [59–61].

The discovery of the penicillin- and cephalosporin-type β-lactams has shaped the
modern pharmaceutical industry, and they have remained the most important antibiotics
for around 70 years after their discovery. Afterwards, thousands of fungal metabolites
were discovered; however, only a few have entered clinical development, which could be
attributed to the exit of most of the Big Pharma companies from the field of novel antibiotics
discovery [62].

Although penicillin G was the first fungal natural product to develop the first antibiotic,
mycophenolic acid was discovered even earlier in 1893, from a Penicillium brevicompactum
strain identified to inhibit the growth of Bacillus anthracis. It was claimed to be the first
purified natural product antibiotic [63]. Due to its toxicity, it was recently dismissed as an
antibiotic but developed as the immunosuppressant drug mycophenolate mofetil.

Recently, the antibacterial antibiotics pipeline showed that most compounds under
development had been optimised from old classes with known modes of action [64]. Hence,
antibiotic resistance is likely to happen once launched. The inhibition of biofilm forma-
tion is one of the most promising strategies to discover antibiotics that combat resistant
pathogens. Two recent examples are coprinuslactone (Figure 2, 18) derived from the mush-
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room Coprinus comatus against Pseudomonas aeruginosa biofilm [11], and roussoellenic acid
(Figure 2, 19) from a Roussoella spp., against Staphylococcus aureus biofilm [12].
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While resistant bacterial pathogens are a pressing topic, relatively low attention is
paid to the resistant pathogenic fungi. There are only a few antimycotic compound classes
on the market, including the oldest griseofulvin (Figure 2, 20), which was discovered from
Penicillium griseofulvum in 1952 [13]. The newest class of fungi-derived antifungal agents
are the echinocandin lipopeptides, such as pneumocandin B0 (Figure 2, 21) derived from
Glarea lozoyensis [65]. Another example is favolon (Figure 2, 22), isolated from Favolaschia
calocera and exhibiting a potent antifungal effect [66]. Strobilurin is also considered an
antifungal agent. Strobilurin A and B are extracted from Strobilurus tenacellus and used in
agriculture as fungicides [67].

3.2. Fungal Metabolites Used as Anticancer Agents

Although most anticancer agents were discovered from plants and bacteria, fungi are
also considered as an essential source for anticancer drug discovery. Illudin S (Figure 3, 23)
is a fungal toxin isolated from Omphalotus illudens (Jack O’Lantern mushroom) and showed
promising anticancer effects against different cancer cell lines [68]. Its semi-synthetic
derivative irofulven (Figure 3, 24) interferes with DNA replication complexes and cell
division in DNA synthesis. It passed phase II clinical trials with promising effects against
brain, breast, blood, colon, prostate, lungs, ovarian, and pancreatic cancer cell lines [69].
Aphidicolin (Figure 3, 25) is a tetracyclic diterpene isolated from Cephalosporium aphidicola
(currently changed to Akanthomyces muscarius) with antimitotic properties that acts via the
specific binding on DNA polymerases and is still under intensive clinical trials [70].

In 1971, a novel diterpene was isolated from the bark of the northwest Pacific yew
tree, Taxus brevifolia and named taxol or paclitaxel (Figure 3, 26). It demonstrated moderate
in vivo activity against different cancer cell lines. After more than 20 years of its initial
report, it was FDA-approved against breast and ovarian cancers with a unique mechanism
of action. However, the supply to the market was a real problem due to its very low yield.
With many different trials to solve this issue, Stierle et al. [71] focused on discovering a
new production source; endophytes that colonize the yew tree. They isolated 50 ng/L
of the drug for the first time from Taxomyces andreanae [70]. The continuous search for
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paclitaxel led to the discovery of over 20 endophytic fungal genera that could produce
either paclitaxel or its analogues [72].
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3.3. Fungal Metabolites Used as CNS-Disease-Related Agents

Hericium erinaceus is a medical mushroom that produces two terpenoid classes, heri-
cenones, such as hericenone A (Figure 3, 27), and erinacines, such as erinacine C (Figure 3,
28), which can stimulate the synthesis of the nerve growth factor and nerve regeneration
in vitro and in vivo [73]. During the synthesis process to produce myriocin (Figure 3, 29)
derivatives, a compound produced by the insect-associated ascomycete Isaria sinclairii,
fingolimod (Figure 3, 30) was one of the final products. Fingolimod is a potent immuno-
suppressant that was FDA-approved in 2010 as a new treatment for multiple sclerosis [74].
Ergotamine (Figure 3, 31) is the principal alkaloid produced by the ergot fungus Claviceps
purpurea. It has a similar structure to a few neurotransmitters and exhibits a vasoconstrictor
effect. It is used to prevent post-partum haemorrhage (bleeding after childbirth) and is
currently used for treating acute migraine attacks [75].

3.4. Fungal Metabolites Control Cardiovascular Diseases

Cardiovascular diseases include the malfunctioning of the heart and blood vessels
due to elevated plasma cholesterol levels. Cardiovascular diseases are the leading cause
of death worldwide, with more than eighteen million deaths yearly. Inhibition of de
novo synthesis of cholesterol through 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase inhibitors is an effective method to reduce plasma cholesterol and hence
cardiovascular diseases. The fungal metabolites statins are the most important class of
HMG-CoA reductase inhibitors. Compactin or mevastatin (Figure 4, 32) was isolated from
Penicillium brevicompactum and exhibited promising hypocholesterolemic activity, and since
then has been known under the name “ML-236B” [76,77]. Later, the first FDA-approved
statin as an HMG-CoA reductase inhibitor was lovastatin (Figure 4, 33). Although different
fungal species produce it, the commercial product is derived from Aspergillus terreus [78].
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3.5. Fungal Metabolites Used as Immunomodulatory Agents

In the global market, some of the crucial immunomodulatory drugs are biotechno-
logically produced by bacterial or fungal fermentation. Cyclosporine A (Figure 4, 34) was
first isolated from the ascomycete Tolypocladium inflatum and exhibited a mild antifungal
effect. After many years, it was discovered that this cyclopeptide possesses a precise mode
of action by selectively binding to cyclophilin A. This protein inhibits calcineurin, which
in turn inhibits interleukine II production cascade, and hence the immune response of
the human body is suppressed [63]. This is usually used in crucial immunosuppressant
therapy to prevent the rejection of organ transplants.

Mycophenolic acid (Figure 4, 35) was the first discovered meroterpenoid antibiotic and
produced by Penicillium spp., including P. brevicompactum and P. roquefortii. However, it has
never been marketed as an antibiotic [79]. Its use as an immunosuppressant became evident,
as it selectively inhibits inosine monophosphate dehydrogenase (IMPDH), an essential
enzyme for the T- and B-lymphocytes, and thereby suppresses the immune system [80]. It
can also prevent peroxynitrite tissue damage through the depletion of tetrahydrobiopterin,
a co-factor to induce nitric oxide synthase (iNOS). Consequently, its prodrug mycophenolate
mofetil (Figure 4, 36) is used to prevent organ rejection and manage psoriasis and other
immunological disorders.

3.6. Fungal Metabolites Used as Antiviral Agents

Viral diseases usually cause severe global epidemics/pandemics, especially when
vaccines or antiviral drugs are not available. So, a continuous search is urgently needed for
new antiviral agents from natural sources. A lot of potentially active fungal natural products
have shown antiviral activity; however, none of them have reached the market. The bis-
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indolyl quinone hinnuliquinone (Figure 4, 37) isolated from an unknown fungus recovered
from Quercus coccifera, inhibited the wild-type and clinically-resistant HIV-1 protease, a
key enzyme in the replication and maturation of the HIV-1 virus [81]. Stachybosin D
(Figure 4, 38), a phenylspirodrimane metabolite isolated from a sponge-derived fungus
Stachybotrys chartarum, was able to inhibit HIV-1 replication in both NNRTIs-resistant strain
and wild-type HIV-1 by targeting reverse transcriptase [82].

The terpenoid stachyflin (Figure 4, 39), isolated from a marine-derived isolate of
Stachybotrys spp. showed good activity against the influenza A virus (H1N1) [83]. The novel
tricyclic polyketide vanitaracin A (Figure 4, 40) isolated from a culture broth of Talaromyces
spp., was reported to inhibit all hepatitis B genotypes (A–D) viral entry processes through
direct interaction with the HBV entry receptor correlated to the hepatitis D virus [84].
Recently, the novel meroterpenoid rhodatin (Figure 4, 41) with its unprecedented carbon
skeleton, was isolated from cultures of the rare basidiomycete Rhodotus palmatus and
exhibited significant anti-HCV activities [85].

4. Summary

This review has emphasised the importance of fungal metabolites in human health
and disease. The fungal metabolites are divided into mycotoxin and non-toxic metabolites.
While mycotoxin contaminations are almost non-avoidable and thus constitute a serious
risk for food safety, other non-toxic metabolites may even become beneficial for human
health. This is further underlined by the recent pandemic that dragged attention to the
need for the discovery of new metabolites that can be used as treatments in the future.
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