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Abstract
The increasing quantities of polluted waters are calling for advanced purification methods. Flocculation is an essential 
component of the water purification process, yet flocculation is commonly not optimal due to our poor understanding of 
the flocculation process. In particular, there is little knowledge on the mechanisms ruling the migration of pollutants during 
treatment. Here we have created the first tensor diagram, a mathematical framework for the flocculation process, analyzed 
its properties with a deep learning model, and developed a classification scheme for its relationship with pollutants. The 
tensor was constructed by combining pixel matrices from a variety of floc images, each with a particular flocculation period. 
Changing the factors used to make flocs images, such as coagulant dose and pH, resulted in tensors, which were used to 
generate matrices, that is the tensor diagram. Our deep learning algorithm employed a tensor diagram to identify pollution 
levels. Results show tensor map attributes with over 98% of sample images correctly classified. This approach offers potential 
to reduce the time delay of feedback from the flocculation process with deep learning categorization based on its clustering 
capabilities. The advantage of the tensor data from the flocculation process improves the efficiency and speed of response 
for commercial water treatment.

Keywords Flocculation · Tensor · Tensor diagram · Deep learning · Model

Introduction

There are numerous methods used in water treatment 
processes, such as pretreatment, conventional treatment, 
advanced treatment (Crini et al. 2019; Nadia Morin-Crini 
et al. 2022; Zhu et al. 2022). Additionally, the management 
of water treatment will be enhanced by any improvement in 
consistent function of treatment processes. As the demand 
for increasingly refined operational management of drinking 

water plants grows, the potential of increasing the amount 
of data used in the operation system is being investigated 
to increase energy saving and reduce the consumption of 
chemical agents, increasing the quality and efficiency of the 
production process (Eggimann et al. 2017; Li et al. 2021a; 
Worm et al. 2010). Many water treatment plants still require 
the development of a dosing system to meet the effluent 
quality requirements, and excessive manual dosing is fre-
quently used (Zhang 2005). This situation is not conducive 
to the development of modern production, water supply, and 
drinking water quality requirements, resulting in a range of 
issues such as high chemical consumption, poor economic 
benefits, unstable water quality, and high labor intensity for 
workers (dos Santos et al. 2017; Imen et al. 2016; Zaque 
et al. 2018). In the water treatment industry, research on 
automatic control of coagulation dosing is both necessary 
and urgent.

The key to automating production and lowering rea-
gent costs is automatic control of chemical dosing, which 
includes basic feed-forward feedback and hybrid control 
(Chen and Hou 2006; Liu et al. 2017). The feedback signal 
is crucial, and when combined with a feed-forward system, it 
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allows for precise control of chemical dose. Feedback signals 
are frequently classified as a current signal (Liu et al. 2004), 
an optical signal (Sun and Zhong 2002), or an image signal 
(Xie et al. 2015). Interference from the external environment 
has a significant negative influence on signal feedback. Fur-
thermore, the feedback control system is problematic due to 
the time lag between the point of dosing with chemicals and 
obtaining water treatment results such as residual turbidity 
(Li et al. 2021b). Stream current detector (SCD) (Dentel 
et al. 1989), transmitted light fluctuation (TLF) (Of et al. 
2001), and image signal such as fractal dimension (Chen 
and Zhang 2010) are the most commonly used online feed-
back methods. For the control of coagulant dose, the stream 
current detector is positively related to zeta potential, but it 
is easily affected by environmental factors such as pH and 
electrolyte concentration (Kim et al. 2017). The TLF can 
reflect the size and the amount of flocs through a transmit-
ted light fluctuation value (Gregory 1997), but it is difficult 
to maintain the stability and sensitivity of the value (Wang 
2005). Image signal should be a promising technology that 
has received a lot of attention, and it can provide feedback 
on water quality through structure parameters of floc images, 
thereby determining the chemical dose (Lin and Ika 2019; 
Yu et al. 2015). However, there are inherent challenges, such 
as floc collection. Both floc fragmentation and image fuzzi-
ness will complicate the analysis of floc structure, lowering 
the speed of signal feedback. Furthermore, sample collection 
and calculation are both time-consuming, adding to opera-
tor demands. Studies on technologies that can reduce issues 
related to image acquisition, design, and manual calculation 
of features have received a lot of attention to improve the 
quality of the feedback signal.

Shortening signal feedback time by an effective model 
that demands relevant information as input, acquired before 
flocs settling, is an important way for solving the floccula-
tion time-delay problem. There appears to be a lack of inter-
est in manual design information that necessitates lengthy 
preprocessing. To make good predictions, we used flocs 
images as input data because a deep learning model, such 
as a convolutional neural network (CNN), can extract image 
features without the need for any pre-treatment (Yamamura 
et al. 2020), which has been successful in the development of 
other learning networks, particularly in the field of computer 
vision (Traore et al. 2018; Yuan et al. 2020). Few studies 
have looked into the use of floc image features extracted by a 
CNN model to shorten the flocculation time-delay. Because 
a tensor is the data format for deep learning models, devel-
oping flocculation tensor data that enhances the performance 
of deep learning and is a significant potential development 
in water treatment.

As a result, we created a new tensor of flocculation flocs 
made of images captured throughout the flocculation proce-
dure. Each tensor had the shape (t, n, m), which is related to 

a certain pollutant level, where t is the number of images and 
n and m are the image matrix's row and column numbers. 
Turbidity was used as a term to describe the pollutant in this 
study. The tensor diagram, a matrix constructed from the 
tensor, was then generated. A convolutional neural network 
model was built utilizing the tensor diagram, and the effec-
tiveness of feedback signals was examined. The learning 
mechanisms were evaluated by measuring relative cosine 
similarity (RCS)  and T-distributed stochastic neighbor 
embedding (t-SNE).

Materials and methods

Water samples

For the treatment of a real water sample, a coagulation 
experiment was performed on a program-controlled jar test 
apparatus (ZR4-6, ZhongRun Water Industry Technology 
Development Co., Ltd., Shenzhen, China). The water sam-
ples were taken from the Xiangjiang River in Xiangtan City, 
which is the primary source of drinking water for the city’s 
drinking water plants. As a coagulant, an analytical grade 
polymeric aluminum chloride purchased from Tianjing Kai-
tong Chemical Co. Ltd. in China was used in the flocculation 
experiment. The coagulant concentration in the water sample 
was calculated using the amount of  Al2O3 component meas-
ured with an acid–base titration according to Chinese Stand-
ard GB 15892-2009. The turbidity water was tested using a 
portable turbidity meter (2100Q, HACH Company, USA). 
The ultraviolet absorbance at 254 nm (UV254) was meas-
ured on a TU-1901 UV–visible spectrophotometer (Purkinje 
General Instrument Co., Ltd., Beijing, China).

Flocculation experiment

For the treatment of a real water sample, a coagulation 
experiment was performed on a program-controlled jar test 
apparatus (ZR4-6, ZhongRun Water Industry Technology 
Development co. Ltd, Shenzhen, China). In detail, 1 L of 
each water sample was transferred into a plexiglass cylinder 
beaker, and the initial pH of the sample was adjusted to the 
set value using 0.5 mol/L hydrochloric acid and 0.5 mol/L 
sodium hydroxide. The sample was rapidly mixed at a pre-
determined agitation speed (rpm) for a fixed time, followed 
by a slow mixing phase at a predetermined agitation speed 
for set flocculation time, and finally a 30 min settling time. 
Water quality was measured by extracting water from the 
beaker 2 cm below the water surface. The G values were 
obtained from the jar test apparatus and adjusted by varying 
the stirring speed or reaction time. A digital image capture 
instrument (GSY-753, Shenzhen Woshijie Electronic Tech-
nology Co., Ltd, China) was fixed on the outer wall of the 
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beaker. Video of flocculation process was captured during 
the above slowly stirring phase, and images were extracted 
from the videos within a fixed time interval ranging from 1 
to 6 s. Figure S1 shows an experimental setup that includes 
a video recording of flocs during the flocculation process. 
During the experiments, sample numbers collected were 
5259 (coagulant dosing) and 4264 (pH variation).

Tensor diagram

Experimental conditions for tensor data collection are shown 
in Table S1 (supplementary information). A tensor for floc-
culation was created in this study. In a two-dimensional 
coordinate system, a three-dimensional tensor graph was 
constructed. The flocculation period is shown in Fig. 1a by 
the abscissa (x). The pollutant class level can be found on the 
y-axis. Remaining turbidity is the term we use here. Coor-
dinate values shaped the pictures matrix's form structure (n, 
m). The rows and columns are represented by the numbers n 
and m, respectively. There are tensors in the tensor diagram 
(y value), n tensors in the shape structure (t, n, m), and the 
number of images in each row is represented by t.

Deep leaning model

We used the tensor diagram as input data and the class 
label as output values to establish the convolutional neural 

network model which was used to predict the class label of 
the final effluent corresponding to the input tensor diagram 
consisting of image data and the corresponding effluent tur-
bidity was determined. Experimental conditions for tensor 
data collection in different models is shown in Table S1. 
Finally, the effective convolutional neural network model 
was used to predict the class label of the final effluent cor-
responding to the input tensor diagram consisting of image 
data, and the corresponding effluent turbidity was deter-
mined. The model was self-constructed using interpreter 
python and pytorch package, and it included three convolu-
tional layers, three pooling layers, and two fully connected 
layers. Figure S2 shows the entire flowchart for the construc-
tion of the convolutional neural network framework. Prior 
to simulation, the images were pre-treated and reduced to 
a 48 × 48 pixel size in order to make the image sizes the 
same. The total number of images was divided into three 
datasets: 80% as training samples, 10% as verification sam-
ples, and 10% as test samples. In detail, the sample image 
data were fed into the first convolution layer, which calcu-
lated convolution using the kernel parameter. The output 
of the convolution operation is fed into the pooling layer, 
which employs the maximum pooling method to extract 
the most features. Convolutional kernel and polling kernel 
sizes were set to five and two, respectively. Strides were lim-
ited to two. The data were treated twice by convolution and 
polling operations with the same parameter configurations. 

Fig. 1  A two-dimensional coordinate plot of a tensor diagram of floc-
culation flocs. The flocculation time is shown on the x-axis. The pol-
lutant class level is shown on the y-axis. In practice, the value on the 
x-axis was used to determine how much sample to take, which was 

based on the ratio of the total flocculation time to the sampling inter-
val time. This study showed that a tensor diagram is made up of a 
group of tensors and that it can be used to predict the class level of a 
pollutant when a particular factor is assessed
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After completing the convolutional feature extraction, the 
final convolution layer is flattened and fed into the fully 
connected layer, where the dropout layer was introduced to 
inactivate some neurons with a fixed probability equal to 
0.5, and then the rest of the neurons come into the fully 
connected layer, which was repeated twice, and finally the 
model provided turbidity class labels. The dropout function 
was used to improve generalization capability, thereby alle-
viating the convolutional neural network model's overfitting 
problem. The activation function and classifier in the model 
were set to rectified linear unit (ReLU) and Softmax, respec-
tively. When compared to the Sigmoid and Tanh functions, 
the rectified linear unit eliminates the gradient vanishing 
problem (Pan et al. 2021). The learning rate was set to 0.01 
by default. The total number of epochs was set to 90. The 
turbidity class label was the output value as target variable 
of prediction. After the model has been properly trained, 
the sample data, including training data and test data, can 
be used to predict the turbidity class signal and evaluate 
the model performance by measuring the accuracy rate. The 
detailed parameter settings were shown in Text S1. After the 
model has been properly trained, the sample data, includ-
ing training data and test data, can be used to predict the 
turbidity class signal and evaluate the model performance 
by measuring the accuracy rate.

Clustering and similarity measurement

The accuracy rate in % is used to evaluate the convolutional 
neural network model performance by calculating the per-
centage ratio of correctly predicted samples to total samples. 
The cross-entropy is used as a loss function to evaluate the 
difference between predicted values (turbidity class label) 
and measured values (turbidity class label). Convolutional 
features are a high-dimensional dataset that is difficult to 
investigate visually. To determine whether they were sepa-
rable, they must be shown in low-dimensional space using a 
non-linear mapping technique that reduces their dimension-
ality to low dimensions. The t-SNE is a technique that solves 
crowding problems by combining a student t-distribution 
with a heavy-tailed probability distribution (Van Der Maaten 
2014). Further details are given in Text S2. The degree of 
cosine similarity between the convolutional features is then 
derived from Kaur and Aggarwal (2013).

where a and b are pixel matrices.
Because we compared more than three samples and deter-

mined the degree of similarity, we proposed a relative cosine 
similarity ( RCS ) value. In Eq. 1, each sample feature matrix 
(a) would be compared to a reference value. The average 

cos(�) =
a ⋅ b

‖a‖ × ‖b‖

feature map matrix value of all samples was used as the 
reference value (b).

Results and discussion

Effect of tensor’s deep learning by varying 
coagulant dosage and pH

The effect of coagulant dosage on deep leaning model 
accuracy was investigated by adjusting coagulant dose 
levels from 0.5 to 32 mg/L, referred to as the Mod-Dos 
model, respectively. Raw turbidity (NTU) 10.8 NTU, tem-
perature 20.7 °C, UV254 0.15  cm−1, pH 7.62, Gt 6600, 
time 15 min were other raw water parameters during image 
collection. The total number of images in this study is 
5259, divided into seven classes. Figure 2 shows how the 
loss function and percentage accuracy rate change as the 
number of epochs increases.

The model's results are given in Fig. 4a, b with the 
effect of coagulant dosage (denoted as Mod-Dos). The 
loss values for train and validation declined as the epoch 
increased, to 0.12 at epoch 42 from 1.63 and 0.08 at epoch 
36 from 1.13, respectively. The loss value could not be 
reduced by increasing the epoch. With the growth of 
the epoch, the accuracy rates for training and validation 
climbed to 95.78% at epoch 32 from 30.23 and 96.93% at 
epoch 26 from 44.33%, respectively. They did not increase 
as the epoch was increased. The ultimate training and test-
ing accuracy rates were both 92%, with an average training 
error of 0.25. Because certain classes had values that were 
near to one another and further tweaking to the sample 
structure, 98% accuracy rate could be achieved. Detailed 
information is shown in Text S3 and Fig. S3.

Similar results were seen in other factor investigation 
such as pH (denoted as Mod-pH): By adjusting the pH 
level from 4 to 10, the influence of pH on the accuracy of 
the deep leaning model was examined. Other raw water 
parameters for images collection included raw turbidity 
(NTU) 15.2 NTU, temperature 11.8 °C, UV254 0.23  cm−1, 
coagulant dosage 16 mg/L, Gt 6600, and time 15 min. The 
total number of images in this study is 4264, with 5 classes 
being used. The results of the experiment are shown in 
Fig. 4c, d as examples. The loss values for train and vali-
dation decreased as the epoch increased to a minimum of 
0.24 at epoch 55 from 1.56 and 0.13 at epoch 55 from 1.52, 
respectively. The accuracy rates for training and validation 
increased to a maximum of 91.21% at epoch 42 from 31.12 
and 98.11% at epoch 46 from 33.21%, respectively. The 
average training error was 0.46, and both the final training 
and testing accuracy rates were 98%. The above results 
showed that with the tensor the deep leaning model had a 
good effect on prediction of the water quality parameter. 
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According to our investigation in the drinking water plant, 
the raw water turbidity, coagulant dosage and flow rate 
have a great impact on the effluent turbidity, and other 
interference is often limited. In a fixed period of time, the 
water quality is very stable, and the creation of the water 
quality model based on the variation of a single factor is 
of great significance and important reference value for the 
deployment for real time treatment.

Similarity of the flocculation tensor

Because those convolutional features of tensor are so similar 
(Fig. 3), it is possible that all of the features generated in a 
flocculation process that belong to the same class can be 

successfully applied to a model. It is more likely to employ 
early stage flocculation photos to reduce the time it takes 
to predict effluent turbidity signal, hence minimizing the 
time lag of a model forecast. As a result, it will be intrigu-
ing to observe if the tensor images' convolutional features 
are similar. As a result, under the effect of coagulant dosage 
(denoted as Mod-Dos) and the pH (denoted as Mod-pH), the 
RCS values of the convolutional features of those tensor’s 
images that were assessed during flocculation time were 
investigated (Fig. 3).

As demonstrated in Fig. 3a–j, high similarity degree val-
ues were found in the same class sample, indicating that 
the form of variation in the degree of similarity of most 
convolutional features of flocculation images appeared to 
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Fig. 2  Deep learning effect on prediction of turbidity signal with (a) 
Mod-Dos for training accuracy, (b) Mod-Dos for training loss, (c), 
Mod-pH for training accuracy, (d) Mod-pH for training loss. The 
results demonstrated that the deep learning model could achieve an 

accuracy of 98%, indicating that the tensor was highly sensitive to the 
deep learning model for predicting the turbidity signal validating the 
development of this type of model
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be a horizontal line. A small number of samples showed 
similarity values that were not parallel to the horizontal line. 
In Fig. 3a, c, k, for example, the main variation emerged 
in the early and late stages of flocculation, with relatively 
stabilized values in the median stage. The divergence would 
make it more difficult to recognize such images with fewer 
pixels, impacting on turbidity feedback. However, because 
the majority of the samples had a high degree of similarity, 
we were able to build an effective model. As demonstrated 
in Fig. 3k, l, the similarity of practically all samples in the 

same class was around 0.97 throughout the flocculation pro-
cess. Although the accuracy of the Mod-Dos and Mod-pH 
with the dataset for sampling time interval of 5 s was lower 
than that of the dataset for 1 s, the degree of similarity of 
the convolutional features in the models was not so low. This 
work demonstrated that the similarity between convolutional 
features is an inherent quality of the flocculation image and 
that fluctuation in similarity is unaffected by changes in 
factors.

Fig. 3  Similarity convolutional features in those samples at differ-
ent classes in Mod-Dos and Mod-pH: a–e Class 1–5 of Mod-Dos; 
f–j Class 1–5 of Mod-pH; k Class 1 of Mod-Dos with dataset at 
sampling interval 5 s. l Class 1 of Mod-pH with dataset at sampling 
interval 5 s. The x-axis stands for number of samples. The y-axis pre-
sented the degree of similarity as RCS value. The results showed that 
most samples (images) that constituted the tensor had similar features 

in the same class, suggesting we could randomly select any sample 
from these samples to predict feedback signal. Earlier stage samples 
were prioritized because their time-delay influence was the least. 
Environmental influence may cause sample deviations. We can define 
conditions to deduct those samples that did not meet the conditions in 
a program system, which is not a problem for this technique
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Because the majority of the samples in the entire floccu-
lation process were identical, it was logical to group them 
together into a single class corresponding to a fixed turbid-
ity signal. It also shows variances in convolutional charac-
teristics among distinct classes, allowing them to be distin-
guished from one another. To analyze the characteristics of 

these differences, we assessed the RCS values of training 
samples, validation samples, and test samples. The data 
in Tables S2–5 show the results of varying the degree of 
similarity and the probability density distribution of con-
volutional features of the tensors. The RCS values appear 
to be made up of each line segment that represents each 

Fig. 4  The plots of tensor clustering of flocs. The plot shows that the 
tensor's convolutional features showed sample clustering. The results 
demonstrated that the tensor's model effect on sample clustering was 
effective, an important property. The sample size (controlled by time 

such as 1  s, 3  s, and 5  s) and factor were unlikely to influence the 
effect or nature. The nature was the fundamental basis of the tensor to 
construct an effective deep learning model after the feedback signal 
had a meaningful relationship between pollutants
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class. It means that the RCS values of samples from dif-
ferent classes differed and could be distinguished by the 
similarity values. The probability density distributions of 
the three datasets were also similar in shape, indicating an 
acceptable dataset distribution. When using a model with 
a greater accuracy or a model with a lower accuracy with 
varied sampling time interval, the results did not change. 
We can see that the similarity of the convolutional feature 
of the flocculation image is an inherent property.

Clustering of the flocculation tensor

Datasets with a potential clustering function are credited 
as the primary cause for excellent deep learning. The con-
volutional features of tensor have been shown to have good 
deep learning performance, with 98% prediction perfor-
mance, the maximum, on feedback of turbidity signal. The 
tensor' clustering effect was explored using T-distributed 
stochastic neighbor embedding (t-SNE) visualizations in a 
low-dimensional state with a 30% confusion degree. Fig-
ure 4 shows the results of t-SNE visualizations of tensors’ 
convolutional features.

As shown in Fig. 4, the convolutional features efficiently 
distinguished the training and testing samples, which were 
labeled in color numbers in three-dimensional space. We 
are encouraged to enhance the model prediction perfor-
mance through increasing the number of samples result-
ing in better predictions. We examined the effect of total 
number of samples on the accuracy in an experiment with 
coagulant dose of 16 mg/L, raw water turbidity of 8.26 
NTU, and sampling time intervals of 1–6 s. With the 5-s 
dataset, the model’s prediction accuracy rate was signifi-
cantly lower than that with 1-s dataset. The detailed dis-
cussion on the influence of number of samples on model 
prediction is shown in Text S4 and Fig. S4. However, from 
the model with the 1-s dataset to the model with 5 s, there 
was always a clustering effect, and the clustering effect of 
the samples was more visible with a large number of sam-
ples, such as for the 1-s dataset. These results showed that 
the clustering separation among different class samples is 
a characteristic of the tensor’s convolution feature and can 
be displayed in low-dimensional space. Low-dimensional 
clustering features suggest that high-dimensional data may 
have a good learning effect in sample class recognition, as 
indicated by manifold learning, and if high-dimensional 
data have a good machine learning potential and it is also 
applied to dimensional state (Turaga et al. 2020; Guérin 
et al. 2021; Liu et al. 2019; Wong et al. 2018). This iden-
tifies the clustering characteristic as a crucial method for 
convolutional neural network to learn well. It has been 
shown that extracting data features using the clustering 
method is a frequent characteristic to achieve the goal of 

successful deep learning (Dong et al. 2017; Hsu and Lin 
2017; Jalal et al. 2017). The convolution feature of the ten-
sor has a strong clustering property, which makes model 
construction much easier.

Conclusion

The flocculation tensor that we developed for water quality 
signal feedback or prediction was incorporated into a deep 
learning network throughout this study. The turbidity signal 
feedback was studied using the tensor, and the accuracy rate 
approached 98%. The tensor has two significant features that 
we discovered. We were able to select earlier flocculation 
photos because the tensor component had a similarity that 
allowed us to reduce the signal feedback time-delay. Because 
the tensor was structured in such a way that it could be clus-
tered, we were able to discover the basic reason for excellent 
deep learning. In the end, our most significant contribution 
was the development and structure of the flocculation ten-
sor, along with a demonstration of the flocculation tensor's 
effectiveness in training a deep learning model for signal 
feedback, which resulted in the reduction of the influence 
of time-delay paving the way for further development and 
implementation in practice.
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