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Abstract: The increase in carbon emissions year by year poses a severe challenge to the high-quality
development and sustainability of China’s economy. How to reduce the intensity of carbon emissions
has become a prominent issue to promote green growth. Based on the provincial panel data from
2011 to 2020, this paper uses Exploratory Spatial Data Analysis (ESDA), the spatial econometric
model and intermediary effect test as analysis methods. The following results are drawn. Firstly,
China’s industrial structure distortion index shows a downward trend. The industrial structure
distortion index is the highest in the west of China, followed by the middle of China and is the
lowest in the east of China. Secondly, the distortion of the industrial structure will not only lead to
the increase in local carbon emission intensity but also produce reverse spillover to adjacent areas.
Thirdly, the results of intermediary effect analysis show that industrial structure distortion can affect
the transmission mechanism of carbon emission intensity by affecting two-way FDI. This paper has a
profound practical significance for promoting the process of industrial upgrading by insisting on
developing foreign trade to achieve carbon emission reduction. The main innovation of this paper
is to put forward the concept of industrial structure distortion and bring it into a unified research
framework with two-way FDI and carbon emission intensity.

Keywords: two-way FDI; structural distortion; ecological civilization construction; spatial econometrics;
carbon emission intensity

1. Introduction

As the largest energy consuming country in the world, China’s long-term implementa-
tion of the inclined development policy with economic growth as the priority and rapid
industrial system construction has accelerated the pace of China’s modernization to a
certain extent, but it has also caused great damage to the ecological environment [1]. With
the rapid development of industry, China’s energy consumption has always maintained
a strong growth demand, which not only affects its industrial development and energy
supply but also profoundly affects the global carbon emission pattern [2].

In view of the current grim situation necessitating carbon emission reduction, Chinese
leaders made an important commitment at the Paris Summit that China will reach the
peak of carbon in 2030 and be carbon neutral by 2060 [3]. As to how to achieve carbon
emission reduction, academia generally believe that industrial structure adjustment, energy
consumption structure transformation and technological progress are the three major ways
to promote energy conservation and emission reduction, among which industrial structure
adjustment is the most important supporting point to achieve carbon emission reduction.
However, at present, the economic development and industrial structure of different
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provinces, municipalities and autonomous regions in China are highly out of balance,
which leads to significant differences in carbon emission levels in different regions [4].
Therefore, it is of great significance for each province to implement feasible industrial
development policies according to local conditions to achieve the goal of “double-carbon”.

Foreign trade is also considered as an important means to achieve energy conservation
and emission reduction [5]. However, due to the unbalanced economic development
among different regions in China, the lack of infrastructure construction, the deviation of
resource allocation caused by the distortion of factor markets and the excessive drive of
economic development by energy factors, the promotion effect of two-way FDI on economic
development has been diluted [6]. In addition, the excessive and inefficient energy input
caused by the distortion of industrial structure also increases carbon emission intensity.
Therefore, does the distortion of the industrial structure lead to the increase in carbon
emission intensity? In the current international environment, can actively “going out”
and “bringing in” reduce carbon emission intensity? Does the distortion of the industrial
structure have a conduction effect between two-way FDI and carbon emission intensity?
The effective answers to the above questions are of great practical significance for realizing
“carbon peak” and “carbon neutralization”, promoting the rationalization of industrial
structure and accelerating the reform of the ecological civilization system.

The main contributions of this study are as follows. Firstly, most of the previous
studies only paid attention to the positive effects of the industrial structure, but rarely
mentioned the negative effects. This paper innovatively puts forward a new concept of
industrial structure distortion and discusses the impact of two-way FDI on carbon emission
intensity as a breakthrough point. Secondly, in the past, the impact of Outward Foreign
Direct Investment (OFDI) and Inward Foreign Direct Investment (IFDI) on carbon emissions
was considered as an isolated single impact. This paper studies the relationship between
two-way FDI and carbon emissions. In this paper, IFDI and OFDI are brought into the
same research framework, and their impacts on China’s carbon emission intensity are
systematically analyzed, making the conclusion more scientific. Thirdly, regarding the
influence of two-way FDI and carbon emission intensity, most scholars use the threshold
model and intermediary effect model to explore the mechanism but inevitably ignore the
spatial law of research samples. In short, this paper breaks through the traditional practice,
investigates its evolution law from the spatial perspective and expands the existing research.

In view of the above analysis, this paper brings the distortion of industrial structure,
two-way FDI and carbon emission intensity into the unified research framework. Firstly,
based on the national panel data from 2011 to 2020, this paper calculates the carbon
emission intensity of each province. Secondly, this paper combines the exploratory spatial
data analysis (ESDA) and a spatial econometric model to analyze the spatial evolution
characteristics of industrial structure distortion, two-way FDI and carbon emission intensity.
Thirdly, to clarify the mechanism of industrial structure distortion on carbon emissions,
this study also sets two-way FDI as an intermediary variable for empirical testing. Finally,
this paper determines the key factors affecting carbon emission intensity and expects to
provide targeted suggestions for China’s carbon emission reduction from the perspective
of regional coordination with the help of the spatial measurement method.

This paper adopts the following structural arrangements: the second part combs the
literature review. The third part is theoretical hypotheses. The forth part introduces the
research methods. The fifth part makes an empirical test; The six part is the conclusion
and enlightenment.

2. Literature Review

The research on the relationship between IFDI and carbon emission intensity has a
long history, and most of them are concentrated in the host country. The earliest research
on foreign investment and ecological problems can be traced back to the hypothesis of
“pollution shelter” put forward by Copeland and Taylor [7]. Copeland and Taylor believed,
that due to the differences in the intensity of regional environmental policies, developed
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countries may transfer pollution-intensive industries to developing countries across regions,
thus, increasing the carbon emission intensity of the host country. Omri et al. [8] and
Millimet and Roy [9] have confirmed this hypothesis; that is, IFDI leads to a reduction
in pollution in the home country, while the pollution emissions of the foreign capital
inflow country are relatively increased. On the contrary, Reppelin-Hill [10] put forward the
“pollution halo” hypothesis and found that enterprises in developed countries are subject
to higher environmental supervision standards. While crowding out inefficient enterprises,
changing industrial structure and improving productivity and energy efficiency, foreign
direct investment can promote the technological progress of the host country through
horizontal, forward and backward links of enterprises, stimulating the spillover effect of
ecological innovation and reducing the carbon emission intensity. Liang [11] believed that
IFDI will promote the upgrading of the industrial structure of the host country, realize
industrial upgrading and improve environmental quality. With the acceleration of market-
oriented reform, Zheng and Sheng [12] pointed out that mature factor markets and product
transactions are conducive to the impact of IFDI on China’s carbon dioxide emissions.
However, due to the unsynchronized market development in different regions, the impact
of IFDI on the carbon emission environment is different.

As OFDI’s research on carbon emission intensity is still in its infancy, most of its
research focuses on the economic environment and environmental level. On the one hand,
from economic perspectives, Ozawa [13], Pan et al. [14] and Yao et al. [15], respectively,
demonstrated the impact of foreign direct investment on the home country’s economy
from the aspects of industrial structure upgrading, reverse technology spillover and the
agglomeration effect.

On the other hand, from the perspective of the general environment, the main views
can be divided into four points. The first point is that OFDI can reduce the carbon emission
intensity of the home country. Xin and Zhang [16] took economic development as the
starting point, simulated the environmental effects of OFDI improvement on the home
country with the help of scale, structure and technology transmission mechanism, and
affirmed that OFDI has a positive role in reducing carbon emissions. Gong and Liu [17]
found that OFDI can weaken the carbon emission intensity of the home country through the
scale effect by constructing the simultaneous equation model. Pan et al. [14] verified that
OFDI could not promote carbon emission reduction in the home country through the spatial
spillover effect and the GMM model. The third point is that OFDI has a comprehensive
influence on the carbon emission intensity of the home country. Based on the dynamic
panel model, Sung et al. [18] concluded that OFDI aggravates the environmental pollution
of the home country in terms of the economic scale, but in terms of industrial structure
and technical level, OFDI can improve the environmental quality; the positive effect is
generally greater than the negative effect, and OFDI can promote the improvement of the
overall environmental quality. The fourth point is the relation between uncertainty and
nonlinearity of OFDI in environmental governance. Hao et al. [19] proved that the impact
of OFDI on environmental pollution in the home country has an “inverted U-shape”.

This paper is mainly based on the theory of the pollution halo hypothesis, which holds
that international trade promotes the technological progress and management concept of
the host country [20]. At the same time, it also enhances the understanding of international
environmental protection standards, which can promote the host country to improve its
production methods and reduce environmental pollution. Because China has implemented
a strong environmental protection system for a long time, the theory of the pollution halo
hypothesis is more suitable for this study [21].

3. Research Hypothesis

Theoretically speaking, when the free flow of elements is blocked, the economy
will be distorted and imperfect, which will inevitably lead to inefficiency in resource
allocation [22]. Analyzing the degree of industrial structure distortion should be discussed
from two aspects: market distortion and factor allocation deviation. The product market
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distortion is caused by trade barriers, price controls and export subsidies. When this
difference is reflected in different departments, the overall efficiency of resource allocation
will have deteriorated. In the allocation of production factors, Ando and Nassar [23] found
that the transfer rate of production factors among various departments is equal through
the non-competitive equilibrium model. When productive resources can be effectively
allocated, the industrial structure is optimal. When the output and employment of one
economic sector have deviated, the balance between industries is broken, and other sectors
are reversed, resulting in the distortion of the factor market. In the industrial sector, due to
the relative increase in labor price caused by industrial distortion, producers often choose
to use the capital for labor substitution to achieve established output and reduce costs. This
often leads to excessive energy consumption, leading to an increase in carbon emissions.
When industrial investment is much higher than agricultural investment, the total energy
consumption intensity of different industrial sectors must inevitably deteriorate.

Theoretically speaking, when the free flow of factors is hindered, the economic state
can be distorted and imperfect, resulting in the inefficient allocation of resources [24].
Contrary to the distortion of industrial structure, it is the rationality of the industrial
structure, which includes two aspects. The first point is the rational allocation of factors
of production among different departments [25]. The second point is that all factors of
production can be fully “reflected in the market”. Therefore, the analysis of industrial
structure distortion should be discussed from two aspects: the deviation of factor allocation
and market distortion [26]. Market distortion refers to the unreasonable relative price of
products caused by trade barriers, price control and export subsidies. When this difference
is reflected in different sectors, it worsens the overall efficiency of resource allocation and
leads to an increase in carbon emissions.

In factor allocation, Ando and Nassar [23] argued that the rate at which factors of
production are transferred between sectors is equal and that the industrial structure is
optimal when productive resources can be allocated efficiently. However, when the output
and employment in one economic sector deviate, and the equilibrium between industries
is broken, the other sectors will deviate in the opposite direction, resulting in the distortion
of factor market and the increase in energy intensity in the process of production. In
the industrial sector, because of industrial distortions and the relatively high labor price,
producers often choose to use laborious capital substitution to achieve a given output and
reduce costs. However, this often leads to excessive energy consumption, thus, increasing
carbon emissions. Moreover, in the current reality, with the current industrial investment
being much higher than the agricultural investment, the total energy consumption intensity
obtained by the different industrial sectors could further deteriorate.

Based on this, this paper puts forward the first hypothesis:

Hypothesis 1 (H1). The distortion of industrial structure can lead to market distortions and the
improper allocation of factors, resulting in the increase in total energy consumption and increased
carbon emission intensity.

The interaction between IFDI and OFDI has a regulating effect on the economic
development of a country or region, and it also has an impact on carbon emissions. Specif-
ically, when the government reduces the environmental constraints and attracts foreign
investment through low cost, IFDI promotes the rapid development of processing and
manufacturing industries and then expands production, resulting in economies of scale,
which stimulate the significant growth of the regional economy, but also means a lot of
energy consumption. In a word, economic development can increase carbon emission
intensity. However, IFDI squeezed out some inefficient and low-quality domestic enter-
prises through technology spillovers and transferred advanced technology to China, which
promoted the upgrading of the industrial structure, improved energy utilization efficiency
and innovation ability, which is consistent with the hypothesis of the “pollution halo” [27].
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From the perspective of OFDI, long-term growth in OFDI can effectively transfer excess
capacity, reduced fixed costs and, thus, reduce carbon emission intensity. Market-driven
OFDI seeks overseas markets and production investments to promote profit growth while
transferring pollution emissions. Technology-driven OFDI can help home countries to seek
advanced technologies and promote its industrial structure to develop into new industries,
so as to improve energy efficiency, reduce emissions and suppress carbon intensity [22].
On the one hand, resource-driven enterprises can ease their own resource constraints and
reduce their dependence on overseas resources by going global. On the other hand, they
can help their own countries improve their energy utilization and optimize their energy
utilization structure through international cooperation with resource-rich countries and
regions, which has a positive effect on reducing carbon emission intensity.

On the whole, the impact of two-way FDI on carbon emission intensity is complicated.
With the acceleration of two-way FDI interaction, China’s position in the global value chain
has improved, which has promoted the two-way flow of production factors and significant
technological innovation spillovers, which will effectively reduce carbon emission intensity.
This leads to the second hypothesis of this paper.

Hypothesis 2 (H2). The coordinated development of two-way FDI has significantly restrained the
increase in carbon intensity, and the positive effect of technological innovation is greater than the
negative effect of environmental pollution.

From the perspective of industrial structure distortions affecting IFDI and, hence,
regional carbon emissions, industrial structure distortions cause lower labor costs and
attract more IFDI inflows, which are mostly labor-intensive and resource-seeking enter-
prises. Lower production costs also makes technology leaders lose their original advantage,
leading to a “race to the bottom” among enterprises, which inhibits the development and
upgrading of environmental technology [28]. Such IFDI flows into the market mainly in
exchange for low factor prices, hence, it is difficult to expect that such foreign-funded
enterprises have to produce technology spillovers and structural transformation.

On the one hand, the distortion of the industrial structure can cause the price of
production factors used by manufacturing enterprises to deviate from the equilibrium price,
thus, resulting in the cost advantage reflected in export trade. Although it promotes the
international competitiveness of enterprises and their export scale, making them profitable,
it also leads to the lack of motivation for enterprises to face high-risk and high-cost R&D
activities, their willingness to manufacture traditional industrial products and higher
carbon emission intensity [29].

On the other hand, because of the need to pursue economic development and improve
political achievements, local governments prefer enterprises with a short production cycle
and quick economic results [30]. As a result, enterprises tend to choose to enter government-
supported industries in pursuit of cheaper factors of production, which further forces
industrial structure distortions, increasing the lock-in effect on the sloppy development
model. That is to say, under the imperfect market exit mechanism, energy-intensive
enterprises continue to survive by virtue of their cost advantage, increasing the carbon
intensity of export manufacturing. In short, industrial structure distortions can have an
impact on regional carbon emission intensity through two-way FDI.

Based on the above analysis, a third hypothesis was formulated.

Hypothesis 3 (H3). Two-way FDI exerts a significant mediating effect between industrial struc-
tural distortions and carbon emission intensity.
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4. Research Methods and Data
4.1. Research Method
4.1.1. Carbon Emission Intensity Measurement

The main methods for measuring carbon emissions are the life cycle assessment [31],
the material balance approach, the carbon footprint estimation approach [32] and the
carbon emission method coefficient. In this paper, eight types of energy consumption are
selected from the China Energy Statistics Yearbook: various types of coke, coal, crude oil,
diesel, paraffin, fuel oil, gasoline and natural gas, and the carbon dioxide produced by
their combustion is included in the emission list. The carbon emissions of 30 provinces
in China (excluding Tibet, Hong Kong, Macao and Taiwan Province) from 2011 to 2020
are calculated. According to the standard coal conversion coefficient and carbon emission
coefficient (Table 1) published by IPCC, the measurement equation is as follows:

CEi = ∑ n
i=1CEi = ∑ n

i=1Ei × NCVi × CEFi (1)

Table 1. The average low calorific value of energy and carbon dioxide emission coefficient.

Coke Coal Crude Oil Diesel Oil Kerosene Fuel Oil Gasoline Gas

NCV 283,435 20,908 41,816 43,070 43,070 41,816 43,070 38,931
CEF 107,000 95,333 73,300 74,100 71,500 77,400 70,000 56,100

In Equation (1), CEi is the carbon dioxide emissions from fossil energy source i. Ei is
the consumption of energy source i. NCVi and CEFi are the average low-level heating value
and emission factor of fuel i, respectively. The province’s carbon intensity (CI) is obtained
by dividing the total amount of carbon dioxide emissions measured by Equation (1) by
GDP expressed at constant prices in 2005.

4.1.2. Measurement of Industrial Structure Distortions

At this stage, research on distortions has mainly focused on firm-level distortions,
and some studies have classified them as product market distortions and factor market
distortions, but few studies have addressed the industrial structure level.

Drawing on Ando and Nassar [23], this paper uses Euclidean distances to measure the
degree of distortion in the industrial structure, starting from the output and employment
shares between sectors in disequilibrium, as follows.

Di =
Li

∑k Lk
− VAi

∑k VAk
, D =

√
∑

i
d2

i (2)

In Equation (2), di represents the distance between the output share and employment
share, and d denotes the Euclidean distance between the added value of economy and
employment share. VAi and Li represent value-added and employment in each industrial
sector i, respectively.

The model has the following advantages. Firstly, the measurement deviation caused
by the development difference of time series among regions can be corrected. Secondly, the
model takes into account the importance of different departments. Thirdly, the numerical
distribution is reasonable; that is −1 ≤ di ≤ 1, 0 ≤ d ≤

√
N, and the total effect of distortion

of the three industrial sectors is equal to 0.

4.1.3. Spatial Correlation Test

The spatial relationship between variables is the foundation of establishing a spatial
regression model to test the description of the correlation of variables in different spaces.
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This paper uses Moran’s I to explore whether there is a spatial correlation between two-way
FDI, industrial structure distortion and carbon emissions. The equation is as follows:

Moran’s I =
∑ n

i=1∑ n
j=1Wij(Yi −Y)(Yj −Y)

S2∑ n
i=1∑ n

j=1Wij
(3)

In Equation (3), I represents Moran’s I index, yi represents the observed value of region
i, Y represents the arithmetic mean of carbon emissions from all provinces, n represents
the number of provinces and Wij represents the spatial adjacency matrix. Moran’s, I index
takes values within the range [−1, 1], with an I value greater than 0 indicating a positive
spatial correlation. The closer the I value to is to 1, the stronger the spatial correlation.
The lower the I value is than 0, the more negative the spatial correlation. The closer the I
value is to −1, the stronger the spatial difference. When I is equal to 0, it means a random
distribution.

4.1.4. Spatial Econometric Model

Two-way FDI and industrial structure distortion are not unique economic phenomena
in a region, but their causes may be related in space. When there are economic differences in
different regions, especially the differences in labor remuneration, the factors of production
will not only flow between different industries within the region but also between different
regions. At this time, there may be a spatial relationship between two-way FDI and
industrial structure distortion. This paper further constructs a spatial econometric model
to capture the spillover effect of two-way FDI and industrial structure distortion on carbon
emissions from the two dimensions, space and time series, as follows:

The Spatial AutoRegression (SAR) model only considers the spatial correlation of the
explained variables.

ln CIi,t = ρW ln CIj,i + βiXi + µi + ηi + εi,t (4)

where lnCI is the logarithm of carbon emission intensity of region i at time t, ρ is the spatial
autocorrelation coefficient, W is the spatial weight matrix, Xi is the explanatory variable, µi,
ηi are the individual fixed effect and time fixed effect models, respectively, and εi,t is the
random interference term.

The spatial autocorrelation model (SAC) considers the spatial correlation between the
error term and explained variable.

ln CIi,t = ρW ln CIj,t + βiX + µi + ηi + vi,t
νi,t = λWvi,t + εi,t

(5)

where λ represents the spatial autocorrelation coefficient, and the meaning of other variables
remains unchanged.

The Spatial Dubin Model (SDM) considers the lag of dependent variables and the
spatial effect of different factors on explanatory variables.

ln CIi,t = ρW ln CIj,t + βiXi + WXi,tγ + µi + ηt + ϕi,t (6)

where γ represents the spatial autoregressive coefficient of the independent variable, ρ
represents the spatial autoregressive coefficient of dependent variables, and the meaning of
other variables remains the same.
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4.1.5. Intermediary Effect Model

To further verify Hypothesis 3 and investigate whether the distortion of industrial
structure will have an impact on carbon emission intensity through two-way FDI, an
intermediary effect test procedure is constructed for the stepwise regression test.

CIi,t = γ0 + γ1CIi,t−1 + γ2Di,t + γ3Xi,t + vi + εi,t (7)

IFDIit = α0 + α1IFDIit−1 + α2Dit + α3Xit + υi + vi + εit (8)

OFDIit = b0 + b1OFDIit−1 + b2Dit + b3Xit + υi + vi + εit (9)

CIit = λ0 + λ1CIit−1 + λ2Dit−1 + λ3IFDIit + λ4OFDIit + λ5Xit + υi + vi + εit (10)

where Equation (7) represents the overall effect of industrial structure distortion (D) on
carbon emission intensity (CI), which is expressed in λ2. Equations (8) and (9) represent
the impact of industrial structure distortion on intermediate variables (IFDI) and (OFDI),
respectively, to investigate the impact of industrial structure distortion on China’s two-way
FDI. In Equation (10), λ2 measures the direct effect of industrial structure distortion on
carbon emission intensity. If Equations (8) and (9) are substituted into Equation (10), then
the respectively obtained coefficient products λ3α2 and λ4b2 represent the intermediary
effect of IFDI and OFDI, respectively; that is, the distortion of the industrial structure will
affect the degree of carbon emission intensity by affecting IFDI and OFDI.

4.2. Index Selection and Data Source
4.2.1. Variable Selection

Explained variable. Carbon emission intensity (CI) is calculated by dividing the total
amount of carbon emission calculated in Equation (1) by the GDP expressed at a constant
price in 2005.

Core explanatory variables. The industrial structure distortion index (D) is expressed
as the square root of the deviation square sum of the employment share and output share
of each local sector. Two-way FDI is represented by inward foreign direct investment (IFDI)
and outward foreign direct investment (OFDI).

Control variables. To reduce the bias of regression results caused by the omission
of explanatory variables, this paper refers to existing research results [33] and selects the
following as control variables.

Energy structure (ENER). Select the proportion of energy consumption converted into
standard coal in the actual GDP to measure.

Environmental regulation (ER). Select the proportion of total investment in environ-
mental pollution control in GDP to measure the impact of environmental regulations on
carbon emissions. The impact of environmental regulations on carbon emissions should
be two-way. On the one hand, appropriate environmental regulations can promote the
upgrading of the corporate production structure, achieve high energy efficiency and high
innovation ability, and effectively reduce carbon emissions. On the other hand, the environ-
mental regulations are set too high. In order to reduce pollution emissions, enterprises will
increase production costs. With the loss of profits, enterprises choose to expand production,
aggravate energy consumption and increase carbon emissions.

Therefore, the expected coefficient of environmental regulation is uncertain, which
can be used as a control variable. Economic development level (PGRP). Select GDP per
capita as an economic measurement index for the empirical test. On the one hand, the
improvement of the economic development level aggravates energy consumption, leading
to an increase in carbon emissions. On the other hand, when the “turning point of the
Environmental Kuznets Curve” is reached, the enthusiasm of the public to participate in
environmental protection and the awareness of environmental protection in economically
developed areas are enhanced, which promotes the decoupling of economic development
and carbon emission.
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Technology input (R&D). Select the actual R&D expenditure of each province as the
proportion of GDP. Technological progress can improve the innovation ability of enterprises,
promote the upgrading of industrial structure and reduce the inefficient allocation of
factors caused by the distortion effect. The technological level can bring out higher energy
efficiency, lower carbon emission and economic development.

Urbanization rate (urban). Considering the obvious differences in the area of adminis-
trative division and population size among provinces, in order to enhance the comparison
among indicators, the proportion of the urban population in the total population is selected
to measure the urbanization rate.

4.2.2. Data Sources

To reduce the regression deviation caused by data omission, based on fully considering
the availability and operability of data, the author excludes Tibet, Hong Kong, Macao and
Taiwan, and combs and cleans the relevant data of 30 provinces (cities and autonomous
regions) from 2011 to 2020. The data comes from the website of the National Bureau of
Statistics, China Statistical Yearbook, China Science and Technology Statistical Yearbook,
China Energy Statistical Yearbook and China Environmental Statistical Yearbook, and the
invalid data is identified and eliminated with the application of SPSS 22.0. Logarithmic
processing is used to eliminate the effects of heteroscedasticity and multicollinearity on the
regression results. To supplement some missing data, trend prediction and interpolation
are used. The descriptive statistics of variables are shown in Table 2.

Table 2. Descriptive statistics of variables.

Variable Observations Mean Value Standard Deviation Minimum Value Maximum

CI 300 0.971 0.707 0.151 3.922
D 300 0.336 0.139 0.033 0.670

IFDI 300 21,453.4 35142.8 67.619 22,438.3
OFDI 300 7164.43 18,631.25 0.068 15,431.44
ENER 300 69.427 28.523 4.917 155.761

ER 300 34.634 7.436 24.576 52.765
PGRP 300 1.376 0.834 0.412 4.697
R&D 300 15.134 9.427 1.564 78.477

URBAN 300 0.056 0.069 0.002 0.412

5. Empirical Test and Result Analysis
5.1. Temporal and Spatial Evolution of Carbon Emission Intensity in China
5.1.1. Temporal Characteristics of Carbon Emission Intensity in China

As can be seen from Table 3, on the whole, the national carbon emission intensity
has been “decoupled” from economic growth in terms of cycles, basically maintaining an
average annual decline of approximately 4.2%. There are significant differences between
the groups. The overall change trend of the eastern, central, and western regions of China
is consistent with that of the whole country, but their intensity changes show a pattern of
“the eastern region leads, the central region catches up and the western region of China
lags“. In terms of subregions, the decline rate of carbon emission intensity of provinces and
cities from 2011 to 2020 can be divided into five groups (Table 4). Beijing’s carbon intensity
decreased by 55.90%, leading the country, followed by Chongqing, which took multiple
measures to promote the deep integration of pollution reduction and carbon reduction
through innovative ways, such as “carbon sink +” and climate change investment and
financing pilot. The proportion of carbon intensity reduction during the study period was
54.39%. The carbon intensity of Tianjin, Sichuan, Guizhou and Yunnan decreased by more
than 50%. The carbon intensity of Hebei, Jilin, Fujian, Henan, Hubei, Hunan, Guangdong,
Guangxi, Gansu and other provinces decreased by between 35 and 50%; Inner Mongolia,
Liaoning, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Shandong, Shaanxi, Hainan,
Qinghai, and Ningxia, the intensity of carbon emissions decline in these regions is in the
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range of 25% to 30%. The decline in carbon intensity in Shanxi is in the proportion range of
between 5 and 20%. Xinjiang’s carbon emission intensity showed an increasing trend, with
an increased ratio of 12.70%.

Table 3. Carbon emission intensity values of China’s provinces from 2011 to 2020.

Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.322 0.281 0.253 0.208 0.193 0.168 0.164 0.162 0.158 0.142
Tianjin 0.608 0.534 0.479 0.423 0.382 0.329 0.311 0.314 0.309 0.302
Hebei 1.352 1.258 1.149 1.037 0.953 0.894 0.824 0.823 0.818 0.816
Shanxi 2.554 2.513 2.358 2.314 2.224 0.219 2.248 2.243 2.247 2.246

Inner Mongolia 2.153 2.043 1.795 1.716 1.583 1.496 1.506 1.488 1.476 1.473
Liaoning 1.183 1.122 0.984 0.937 0.894 0.913 0.896 0.892 0.887 0.882

Jilin 0.987 0.886 0.769 0.725 0.651 0.626 0.584 0.557 0.561 0.553
Heilongjiang 0.963 0.911 0.823 0.784 0.767 0.755 0.738 0.691 0.688 0.652

Shanghai 0.437 0.426 0.414 0.386 0.372 0.354 0.339 0.327 0.317 0.309
Jiangsu 0.524 0.519 0.503 0.495 0.461 0.454 0.387 0.364 0.351 0.346

Zhejiang 0.517 0.462 0.422 0.394 0.382 0.367 0.378 0.356 0.352 0.341
Anhui 0.844 0.786 0.763 0.731 0.722 0.668 0.609 0.583 0.587 0.552
Fujian 0.534 0.471 0.409 0.426 0.368 0.337 0.317 0.313 0.309 0.313
Jiangxi 0.646 0.592 0.562 0.524 0.514 0.476 0.433 0.418 0.426 0.408

Shandong 0.871 0.834 0.749 0.712 0.698 0.705 0.661 0.642 0.639 0.635
Henan 0.871 0.752 0.686 0.637 0.574 0.534 0.471 0.482 0.459 0.462
Hubei 0.822 0.831 0.786 0.584 0.509 0.458 0.434 0.446 0.427 0.421
Hunan 0.662 0.594 0.583 0.554 0.501 0.461 0.428 0.386 0.377 0.359

Guangdong 0.421 0.376 0.354 0.335 0.317 0.296 0.281 0.276 0.281 0.264
Guangxi 0.726 0.687 0.631 0.585 0.527 0.486 0.472 0.466 0.471 0.453
Hainan 0.949 0.927 0.759 0.765 0.743 0.722 0.667 0.643 0.638 0.622

Chongqing 0.649 0.551 0.433 0.408 0.378 0.341 0.322 0.304 0.296 0.286
Sichuan 0.635 0.557 0.543 0.507 0.459 0.381 0.346 0.321 0.309 0.297
Guizhou 1.866 1.742 1.723 1.384 1.247 1.224 1.068 1.104 0.983 0.922
Yunnan 1.097 0.976 0.811 0.718 0.624 0.583 0.557 0.543 0.546 0.529
Shaanxi 1.223 1.243 1.183 1.133 1.043 1.003 0.943 0.951 0.937 0.926
Gansu 1.537 1.402 1.316 1.218 1.113 0.984 0.967 0.944 0.950 0.935

Qinghai 1.213 1.293 1.283 1.093 0.923 1.003 0.893 0.901 0.887 0.874
Ningxia 3.947 3.797 3.677 3.467 3.327 3.047 3.497 3.312 2.976 2.972
Xinjiang 1.898 1.958 2.018 2.038 1.887 1.895 2.012 2.113 2.027 2.139

Table 4. The reduction ratio of carbon emission intensity of China’s provinces from 2011 to 2020.

Order Number Proportion Province

1 >50 Beijing (55.90%), Tianjin (50.33%), Chongqing (54.39%), Sichuan (53.22%),
Guizhou (50.59%), Yunnan (51.78%)

2 (35%, 50%] Hebei (39.64%), Jilin (43.97%), Fujian (41.38%), Henan (46.96%), Hubei (48.78%),
Hunan (45.77%), Guangdong (37.29%), Guangxi (37.60%), Gansu (39.17%)

3 (20%, 35%]
Inner Mongolia (31.58%), Liaoning (25.44%), Heilongjiang (32.29%), Shanghai

(29.23%), Jiangsu (33.97%), Zhejiang (34.04%), Anhui (34.60%), Shandong (27.09%),
Shaanxi (24.28%), Hainan (34.46%), Qinghai (27.94%), Ningxia (24.70%)

4 (5%, 20%] Shanxi (12.06%)

5 ≤5% Xinjiang (−12.70%)

On the one hand, it benefits from the strong implementation of the national overall
acceleration of green and low-carbon development and energy conservation and emission
reduction policies, and the formulation of strict and effective total energy consumption
control targets. It is also closely related to the continuous strengthening of the sense of
responsibility of governments at all levels, a deep understanding of the severe situation
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of ecological protection, and actively promoting the upgrading of local energy-related
industrial structures.

5.1.2. Spatial Characteristics of Carbon Emission Intensity in China

With the support of ArcGIS software, the spatial distribution of China’s carbon emis-
sion intensity in 2011 and 2020 was rendered by the natural discontinuity method, so as
to investigate the spatial differentiation of China’s carbon emission intensity, as shown in
Figure 1.
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Overall, from 2011 to 2020, the carbon emission intensity of the whole country de-
creased significantly, and the low-carbon emission intensity area gradually shifted to the
north. The carbon emission intensity of the Yangtze River Economic Belt and North China
withdrew from the medium carbon emission intensity area, and the difference between
the north and the south gradually increased. From the spatial distribution of “low carbon
emission” around the country in 2011, there is a middle “high carbon emission intensity”.
High-value areas are mainly distributed in Shanxi, Inner Mongolia and Ningxia, while
the median area is concentrated in the north and Anhui, Hubei, Hainan, Guizhou and
Yunnan forming a concentrated and continuous “regional block” distribution characteristic,
showing that there is a spatial correlation between carbon emission intensity.

With time flows, the regional heterogeneity of China’s carbon emission intensity will
become more prominent in 2020, showing a “step-by-step” spatial change of “high in
the northwest and low in the southeast”, forming a spatial pattern of carbon emission
intensity with Shanxi and Ningxia as high-value areas and a significant decoupling effect
of carbon emission in the central region. It is worth noting that low-value areas are widely
distributed in most areas in the south of the Yangtze River. The carbon emission intensity of
all provinces in the Yangtze River economic belt has decreased significantly, the polarization
characteristics are significant and the difference in carbon emission intensity between the
north and the south has increased, indicating that the traditional spatial development
pattern has been broken.

5.2. Industrial Structure Distortion Index

According to the classification standard of the National Bureau of Statistics, 30 provinces
and cities are divided into three regions: east, middle and west. According to Equation (2),
the average industrial structure distortion index of each region and the whole country is
calculated from 2011 to 2020. See Figure 2 for details. On the whole, the national industrial
structure distortion index shows an obvious downward trend, which shows that with the
improvement in marketization, the continuous improvement in innovation ability, the
rational allocation of production factors among different departments and the vigorous
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implementation of measures such as de-capacity and de-stocking, the production capacity
structure has been continuously optimized and the rationalization of industrial structure
has been promoted.
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Figure 2. China’s industrial structure distortion index from 2011 to 2020.

From the perspective of regions, the industrial structure distortion index of the western
region is the highest, followed by the central region and the industrial structure distortion
index of the eastern region is the lowest during the research period. The reason is that the
economic development of the western region still depends on the traditional “three high
enterprises”, the industrial foundation is weak and the investment in technology R&D is
insufficient, which leaves the emerging industries in the embryonic stage and to fall into
a “low-level cycle”, resulting in the disharmony between the existing resource allocation
and the desired resource allocation. In order to promote economic growth, the central
government intervened in the price formation and distribution of capital, labor and land.

Although the growth target was achieved in the short term, it caused an imbalance in
the industrial structure in the long term. At the same time, the distortion of the industrial
structure will also lead to the depression of labor price and the rapid growth in labor-
intensive industries. The ratio of the output value structure of capital intensive and labor-
intensive industries has expanded, which further hinders the optimization of the industrial
structure. Due to the developed economy and sound market-oriented pricing mechanism,
the eastern region can promote the rational allocation of production factors, high innovation
ability, promote the improvement of productivity, accelerate the elimination of backward
production capacity, change the traditional economic growth model and improve the
acceptable level of industrial structure.

5.3. Spatial Correlation Test Results

The comparison of temporal and spatial distribution can only simply analyze the
evolution trend of carbon emission intensity and not describe the internal evolution law.
To further explore the correlation characteristics between industrial structure distortion,
two-way FDI and carbon emission intensity, Moran’s I index in each province in different
years is calculated according to Equation (3). The results are shown in Table 5.
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Table 5. Global Moran’s I calculation results from 2011 to 2020.

Year
CI D IFDI OFDI

Moran’s I p-Value Moran’s I p-Value Moran’s I p-Value Moran’s I p-Value

2011 0.338 *** 0.000 0.454 ** 0.014 0.337 ** 0.028 0.217 *** 0.000
2012 0.308 *** 0.000 0.477 ** 0.012 0.308 ** 0.044 0.155 *** 0.003
2013 0.319 *** 0.000 0.529 *** 0.000 0.341 ** 0.001 0.049 ** 0.016
2014 0.308 *** 0.000 0.531 *** 0.000 0.352 *** 0.000 0.106 * 0.059
2015 0.297 *** 0.000 0.510 *** 0.001 0.375 *** 0.000 0.066 * 0.089
2016 0.273 *** 0.001 0.516 *** 0.000 0.324 ** 0.038 0.183 *** 0.001
2017 0.281 *** 0.000 0.456 ** 0.014 0.331 ** 0.031 0.202 *** 0.000
2018 0.263 *** 0.002 0.416 ** 0.021 0.409 *** 0.000 0.177 *** 0.002
2019 0.266 *** 0.002 0.490 *** 0.006 0.305 ** 0.046 0.241 *** 0.000
2020 0.235 *** 0.004 0.458 *** 0.009 0.367 *** 0.000 0.148 *** 0.004

Notes: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

The Moran’s I indices for carbon emission intensity, industrial structure distortion
and two-way FDI over the period from 2011–2020 are all positive, with most passing the
significance test at the 1% level and a small number passing the significance test at the 5%
and 10% levels. There was a significant positive correlation and positive agglomeration in
spatial distribution. The spatial effect between variables should be fully considered when
constructing the influencing factor model. In addition, Moran’s I value changed in wave
shape during the study period, with a large fluctuation range in individual years, which
indicated that there was fluctuation agglomeration among different provinces, and the
nearest neighbor effect was obvious.

5.4. Spatial Econometric Empirical Test
5.4.1. Model Selection

Considering that the factors affecting carbon emission intensity are complex, the
traditional OLS model, spatial autoregressive model, spatial autocorrelation model and
spatial multi-objective model are constructed for spatial econometric regression. On the
basis of ignoring the spatial correlation, Houseman’s statistical results rejected the orig-
inal hypothesis of the random effect model at a significant level of 1%. Considering the
individual heterogeneity of provinces and cities in the sample, the AC-FE, SAR-FE and
SDM-FE models are tested based on the time–space dual fixed effect regression model. In
Table 6, LR is significant at the statistical level of 1%, rejecting the original assumption
that the coefficients of the spatial lag explanatory variable are equal to 0; that is, the SDM
model cannot be simplified to the SAR model. According to the further test of AIC, BIC
and log-likelihood values, the SDM model has smaller values and is a better fit than the
sac model. Therefore, this paper finally selects the estimation results of the SDM model to
illustrate the impact of various factors on carbon emission intensity.

Table 6. Model selection test.

Model Selection Null Hypothesis LR Test p Value

SDM-FE vs. SAR-FE The coefficients of all spatial lag explanatory
variables are 0 X2 = 9.2 0.009 ***

SAC-FE vs. SDM-FE observations Value of log-likelihood Degree of freedom AIC BIC

SAC-FE 300 488.95 12 −953.88 −904.57

SDM-FE 300 484.94 10 −947.89 −907.72

Note: *** denotes statistical significance at 1% levels.
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5.4.2. Regression Result Analysis

According to the regression results, Table 7 shows that the regression coefficient of
industrial structure distortion is 0.284. Through the significance test of 1%, it shows that the
market regulation failure caused by industrial structure distortion and the allocation devia-
tion of production factor led to the output share being much higher than the employment
share. Its essence is the substitution of capital for the labor force. This substitution leads
to low energy efficiency, and the capital-driven economic growth model lags behind the
rate of aggregate energy consumption, resulting in the overall increase in carbon emission
intensity, which verifies hypothesis 1. The regression coefficient of China’s foreign direct
investment is −0.045, and the 5% significance test supports the “pollution halo” hypothesis
theory to a certain extent; that is, IFDI inhibits the increase in carbon emission intensity.

Table 7. Spatial econometric regression results.

Influence Factor OLS SAR SAC SDM

Model (1) (2) (3) (4)
lnD 0.810 *** 0.189 *** 0.205 *** 0.284 ***

lnIFDI −1.691 *** −0.027 ** −0.028 ** −0.045 **
lnOFDI 1.212 ** 0.027 *** 0.026 *** −0.036 ***
lnENER −5.191 * 0.148 ** 0.144 ** 0.134 **

lnER −0.129 * 0.314 * 1.217 * 1.613
lnPGRP −0.097 *** −0.501 ** −0.586 ** −0.645 **
lnR&D −1.506 ** −0.134 ** 0.125 ** −0.136 **

lnURBAN 0.023 *** −0.354 *** −0.485 *** −0.442 ***
lnIFDI × lnOFDI −0.561 ** −0.364 ** −0.257 * −0.154 **

lnD·W - - - 0.045
lnIFDI·W - - - −0.036 **
lnOFDI·W - - - 0.047

Spatialρ - 0.159 *** 0.155 * 0.165 ***
Log-likelihood - 483.7741 484.3731 488.3451

R2 0.431 0.354 0.591
Individual effect control control control control

time effect control control control control
observations 300 300 300 300

Note: *, ** and *** represent significance at the levels of 0.1, 0.05 and 0.01, respectively.

The above shows that the environmental cost is not the only factor that needs to be
considered for enterprises transferred through overseas investment. Labor, infrastructure
and policy subsidies have been taken into account. At the same time, foreign enterprises
promote the progress of environmental protection technology in developing countries
through the “demonstration effect” and “spillover effect” and reduces pollution emissions.

The regression coefficient of OFDI is −0.036, and it has passed the significance test of
1%; to a certain extent, it reflects the improvement in the potential of China’s global value
chain. On the one hand, “gradient” OFDI can promote the upgrading of China’s industrial
structure, digest backward production capacity, help improve resource mismatch, make
production factors flow to sectors with higher marginal reporting and promote the realiza-
tion of carbon emission reduction. On the other hand, “reverse gradient” OFDI can give
birth to the reverse spillover effect of technology and indirectly reduce the carbon emissions
of home countries, which is consistent with the research conclusions of Hao et al. [34].

The interaction terms of IFDI and OFDI are negative and pass the significance test
at the level of 5%, indicating that there is an obvious complementary effect of two-way
FDI among China’s provinces, and this effect will effectively promote improvement in the
enterprise green technology innovation level and reduce carbon emission intensity, which
is consistent with the research conclusions of Feng et al. [35] and others, and hypothesis 2
is verified.

By analyzing the control variables, the regression coefficient of energy structure to
carbon emission intensity is 0.134, and through the significance test of 5%, it shows that the
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energy structure dominated by coal will lead to serious environmental pollution. At the
same time, high energy consumption will aggravate the distortion of the industrial structure
and increase the intensity of carbon emissions. The regression coefficient of environmental
regulation on carbon emission intensity is 1.613, which it is not significant but it supports the
“green paradox” hypothesis to a certain extent; that is, the implementation of environmental
regulation intensifies carbon emissions. The reason may be that the article selects market
incentive regulation tools as the proxy variable. After paying high pollution control
investment, enterprises usually choose to expand production to make up for the loss of
profits; in addition, the insufficient development of clean energy has restrained the decline
in carbon emission intensity. The regression coefficient of the economic development level
on carbon emission is −0.645, and through the 5% significance test, combined with the
EKC hypothesis, with China’s rapid economic growth and crossing a certain threshold,
there will be a dividend period of carbon emission reduction. The regression coefficient of
technology input on carbon emission is negative and passes the significance test of 5%, and
the carbon emission intensity will be reduced by 0.136% for every 1% increase in technology
input, indicating that the progress of low-carbon technology and the development and
use of new energy have significantly controlled the increase in carbon emissions from the
source of production. The regression coefficient of the urbanization rate carbon emission
is −0.136, and through the significance test of 5%, it shows that urbanization forms the
agglomeration effect and scale effect by increasing population density and promotes the
formation of agglomeration economy, such as infrastructure sharing, service value sharing
and knowledge spillover, improves production efficiency, reduces pollution and energy
consumption and promotes the reduction in carbon emission intensity.

It can be seen from Table 7 that the spatial lag parameter ρ of the spatial Durbin
model is positive. It shows that the local carbon emission intensity will be affected by the
neighboring areas. According to LeSage and Pace [36], in the spatial regression model,
the direct effect, indirect effect and total effect of explanatory variables can, respectively,
reflect the influence degree of each variable on the local area, adjacent areas and the whole
country. In this paper, each index is decomposed, as shown in Table 8.

Table 8. Decomposition of spatial Doberman effect.

Influence Factor Direct Effect Indirect Effect Total Effect

lnD 0.053 * 0.037 ** 0.090 **
lnIFDI −0.030 * −0.015 ** −0.045
lnOFDI −0.027 0.016 ** −0.009 *
lnENER 0.114 *** 0.041 *** 0.155 **

lnER −0.026 * 0.035 * 0.009 *
lnPGRP −0.553 −0.350 * −0.903
lnR&D −0.121 * −0.091 ** −0.212 *

lnURBAN 0.394 *** −0.273 ** 0.121 **
lnIFDI × lnOFDI −0.134 ** −0.125 −0.259 *

Note: *, ** and *** represent significance at the levels of 0.1, 0.05 and 0.01, respectively.

From the perspective of industrial structure distortion, its direct and indirect impact
on China’s carbon emission intensity is significantly positive. The distortion of industrial
structure not only reduces the local resource allocation efficiency and intensifies the intensity
of energy consumption, but also has a significant adverse effect on the reduction in carbon
emission intensity in neighboring areas through indirect effects. Specifically, an increase of
1% in the distortion of industrial structure in other regions will increase the local carbon
emission intensity by 0.037%.

From the perspective of IFDI, its direct and indirect effects on China’s carbon emis-
sion intensity are significantly negative at the level of 10% and 5%, respectively. Under
the long-term investment-driven development model, the government attracts foreign
investment through policies such as tax reduction and exemption. When it enters, it will
promote the spillover effect. Foreign-funded enterprises from developed countries have
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higher innovation abilities. Domestic enterprises can reduce the fixed and variable costs
of technology research and development through the “shared product” of inter-industry
technical knowledge, promoting technological progress to reduce carbon emission and
consumption intensity.

From the perspective of OFDI, the direct impact of OFDI on local carbon emission
intensity is negative and fails to pass the significance test. However, to a certain extent,
with the acceleration of China’s economic development and to protect its ecology, Chi-
nese enterprises carry out OFDI. Although inhibiting innovation and development to a
certain extent, they also transfer some “three high” industries overseas, alleviate domestic
competition and reduce pollution emissions to promote the reduction in carbon emission
intensity. The spillover effect of foreign direct investment is positive and has passed the
significance test of 5%, which reflects the increase in the intensity of OFDI. The difficulty
of technology transfer and innovation development increase, coupled with the limited
absorption capacity of domestic reverse technological innovation and the weakening of the
innovation drive, show “negative externalities of the environment” are beginning to appear,
and the uncoordinated joint prevention and control policies among the governments of
adjacent regions, lead to the transfer of carbon emissions nearby, resulting in the increase
in carbon emission intensity in surrounding areas.

From the perspective of the interaction between IFDI and OFDI, the direct and indirect
impact of the interactive development of China’s two-way FDI on carbon emission intensity
is negative, which can significantly reduce carbon emission intensity. On the one hand,
the rapid development of IFDI drives economic growth, contributes to the increase in
OFDI, promotes the development of reverse technological innovation to a certain extent,
and directly promotes the reduction in local carbon emissions. On the other hand, OFDI
strongly supports IFDI. In the process of China’s foreign investment, it can not only transfer
excess capacity but also promote economic development. With the rise of the enterprise
economy, the requirements for the IFDI access threshold will increase. In the long run, this
will help to play a positive role in the decline in carbon emission intensity in surrounding
areas through the cross-regional flow of technicians and technology spillover.

5.5. Intermediary Effect Test

Based on the perspective of two-way FDI, this paper theoretically analyzes the trans-
mission mechanism of industrial structure distortion on China’s carbon intensity. To test
the theoretical hypothesis proposed in this paper and to check whether two-way FDI plays
a mediating role, the article chose a mediating effect model for testing, and the results are
shown in Table 9.

Table 9. Test results of mediating effect.

CI IFDI OFDI CI

(1) (2) (3) (4)

D 0.086 *** 0.142 ** −0.131 *** 0.214 *** 0.236 ** 0.219 ***
IFDI −0.087 *** 0.206 ***
OFDI 0.194 *** 0.198 ***

Constant term −0.614 *** −0.514 *** 0.376 ** 0.434 *** −0.529 *** 0.716 ***
control variable Yes Yes Yes Yes Yes Yes

time effect Yes Yes Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes Yes Yes

R2 0.2680 0.2755 0.1372 0.2031 0.1835 0.2239
N 300 300 300 300 300 300

Note: ** and *** represent significance at the levels of 0.05 and 0.01, respectively.

The results in column (1) show that the estimated coefficient of industrial structural
distortion is 0.086, which significantly contributes to the increase in China’s carbon emission
intensity, the waste of resources and ecological damage caused by structural distortion
and puts serious pressure on pollution control in China. Column (2) shows that the
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estimated coefficient of industrial structure distortion (D) is 0.142, indicating that industrial
structure distortion has contributed to the improvement in China’s IFDI level. Under the
double pressure of maintaining growth and promoting employment, local governments
are competing to formulate preferential policies on the supply and price of production
factors, which aggravates the distortion of industrial structure, and this distortion will
significantly reduce the environmental management costs of enterprises. The results in
column (3) show that the estimated coefficient of industrial structure distortion is −0.131,
which indicates that industrial structure distortion will inhibit the development of OFDI
in China. The reason is that industrial structure distortion will help enterprises transform
their factor cost advantages into export advantages, promote the growth of export scale
and export competitiveness and attract more enterprises to invest abroad. At the same time,
the industrial structure distortion will make some enterprises with excess survive, and in
order to transfer these backward production capacities, the government will encourage
overseas investment, resulting in a significant increase in the level of OFDI.

According to the test procedure of intermediary effect, it is further tested whether
two-way FDI has played the role of an intermediary variable. Two-way FDI has joined the
regression equation of industrial structure distortion affecting carbon emission intensity in
both directions. The results show that the regression coefficients of individual effect and
total effect have passed the significance test. Based on verifying the previous test process, it
is further proven that two-way FDI is the two channels for industrial structure distortion to
affect carbon emission intensity; that is, the transmission mechanism of industrial structure
distortion affects carbon emission intensity by affecting the two-way FDI. Model (4) added
the intermediary variable of two-way FDI, and the significant relationship between indus-
trial structure distortion and carbon emission intensity has not changed. However, the
coefficient in model (4) is smaller than that in model (1), which indicates that the influence
of industrial structure distortion on carbon emission intensity has weakened, and two-way
FDI plays a partial intermediary role between them, to some extent, “covering up” the
negative influence of industrial structure distortion on carbon emission intensity, which
verifies hypothesis 3.

5.6. Check Data Stationarity

In order to avoid spurious regression, before analyzing the time series data, the unit
root test should be carried out on the data related to China’s industrial structure distortion,
two-way FDI and carbon emission intensity. On this basis, it is also necessary to introduce
the difference method to stabilize the non-stationary data after the unit root test. Therefore,
we chose the Augmented Dickey–Fuller (ADF) method to test China’s industrial structure
distortion, two-way FDI and carbon emission intensity, as follows. Before the ADF unit
root test, the variables in this paper were logarithmicized.

The results of the ADF unit root test are shown in Table 10. The ADF values of all
variables are greater than the critical value at the 10% significance level, so the original
hypothesis of the unit root cannot be rejected. Next, the variables were processed by
first-order difference, and the results showed that the ADF values of all variables passed
the significance test at the 5% level. Therefore, the original hypothesis with unit root was
rejected, and all variables met the preconditions for further empirical analysis.

5.7. Robustness Test
5.7.1. Replacement Weight Matrix

Due to the unbalanced industrial development among provinces in China, the carbon
emission intensity also shows differences. In order to test the rationality of the spatial
spillover effect of various influencing factors on carbon emission intensity under different
weight matrices, this paper replaces the 0–1 matrix (W1) in the SDM model with the
economic distance matrix (W2) and the geographical distance weight matrix (W3). The
regression results are shown in Table 11. The regression coefficient of the spatial lag term is
significantly positive in different spatial matrices, except that the regression coefficient of
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some control variables has small fluctuations, and its mechanism is basically similar to that
in the previous part of this paper, which proves that the above conclusions are more robust.

Table 10. Augmented Dickey–Fuller (ADF) unit root test results.

Variables
Level Test Results First Order Difference Test Results

ADF Value p Value ADF Value p Value

lnCI −0.6348 0.319 −4.4282 0.000

lnD −0.3761 0.218 −3.6554 0.002

lnIFDI −2.4218 0.943 −3.4847 0.005

lnOFDI −1.5378 0.437 −5.5497 0.013

lnENER −0.8137 0.349 −4.3482 0.000

lnER −0.5484 0.417 −7.9259 0.006

lnPGRP −1.7786 0.664 −6.1387 0.024

lnR&D −0.9372 0.573 −4.3761 0.011

lnURBAN −2.6347 0.617 −5.7461 0.007

Table 11. Regression results of spatial Dubin model under different spatial weight matrices.

Influence Factor W1 W2 W3

lnD 0.284 *** 0.293 *** 0.274 ***
lnIFDI −0.045 ** −0.037 ** −0.048 **
lnOFDI −0.036 *** −0.042 *** −0.027 ***
lnENER 0.134 ** 0.168 * 0.211 **

lnER 1.613 0.834 * 1.436
lnPGRP −0.645 ** −0.613 ** 0.265 *
lnR&D −0.136 ** 0.301 * −0.242 **

lnURBAN −0.442 *** −0.409 *** 0.139
lnIFDI × lnOFDI −0.154 ** 0.064 −0.238 *

lnD·W 0.045 0.037 0.051
lnIFDI·W −0.036 ** −0.031 * −0.049 *
lnOFDI·W 0.047 0.056 0.028

Spatialρ 0.165 *** 0.159 *** 0.155 *
Log-likelihood 488.3451 491.5738 486.3147

R2 0.591 0.617 0.606
Individual effect control control control

time effect control control control
observations 300 300 300

Notes: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

5.7.2. Instrumental Variable Method and GMM Estimation

Considering the possible endogenous problems between industrial structure distortion
and carbon emission intensity, and avoiding missing variables and possible reverse causal
problems, this paper constructs appropriate instrumental variables for the core explanatory
variables. This paper selects the coefficients of capital mismatch as an instrumental variable
to identify the net effect of industrial structure distortion on carbon emission intensity.

The instrumental variable of capital mismatch coefficient is selected for the following
two reasons. On the one hand, from the perspective of China’s economic development,
capital mismatch is one of the reasons for the low efficiency of energy utilization. Capital
mismatch increases carbon emission intensity and industrial distortion causes high carbon
emission areas, which may also be areas with high capital mismatch. At the same time,
the rational allocation of capital is also the main driving force to reduce carbon emissions.
Therefore, this paper chooses capital mismatch as instrumental variable, which meets the
requirement of instrumental variable correlation. On the other hand, compared with the
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distortion of industrial structure, it mainly indicates the imbalance of input and output
in the industrial sector, while capital mismatch reflects the low efficiency of capital and
labor flow in the market. Therefore, after controlling other variables, introducing capital
mismatch as an instrumental variable in this paper meets the exclusive requirements.

Table 12 reports the empirical results based on the instrumental variable method.
Column (1) shows that capital mismatch is positively correlated with carbon emission
intensity, and the F-statistic is 19.65. At the same time, the number of instrumental variables
selected is equal to the number of explanatory variables in this paper, which avoids the
problems of weak instrumental variables and over-recognition.

Table 12. Instrumental variable method and GMM estimation results.

Variables
D CI CI CI CI

2SLS First Stage 2SLS Second Stage LIMI Estimation Optimal GMM Iterative GMM

D 0.634 ** 0.827 ** 0.610 * 0.767 **

Iv 0.416 **

F 19.650 21.280 37.970 43.170 40.380

Control variable Yes

Fixed effect Yes

Notes: * and ** denote statistical significance at the 10% and 5%, respectively.

6. Conclusions and Discussion

With the deepening of China’s economic system reform and the acceleration of the
“going global” process, the impact of industrial structure distortion and two-way FDI on
carbon emission intensity has become increasingly prominent. Based on relevant theories,
this paper puts two-way FDI, industrial structure distortion and carbon emission intensity
into the same research framework. Based on the panel data of China’s 30 provinces from
2011 to 2020, this paper makes a theoretical and empirical test, and deeply discusses the
impact of two-way FDI and industrial structure distortion on carbon emission intensity.

The main conclusions are as follows. Firstly, due to the improvement in marketization,
rational allocation of production factors and continuous optimization of industrial structure,
the industrial structure distortion index of China showed a downward trend from 2011 to
2020. In terms of region, because the central and western regions lag behind the eastern
regions in terms of economic development level, innovation ability and rational allocation
of labor resources, the industrial structure distortion index in the western region is the
highest, followed by the central region and the eastern region is the lowest. Secondly,
China’s carbon emission intensity is “decoupled” from economic development, and it is
decreasing year by year. However, the intensity decline shows a heterogeneous distribution
pattern of “leading in the east, catching up in the middle and lagging behind in the
west”. On the provincial scale, except in Xinjiang, the carbon emission intensity of other
provinces has declined to various degrees. In terms of spatial distribution, the carbon
emission intensity has changed from a distribution pattern of “high in the middle and
low around” to a “cascade” pattern of “high in the northwest and low in the southeast”,
with obvious polarization characteristics, thus, breaking the traditional spatial distribution
pattern. Thirdly, there is a positive spatial correlation between China’s industrial structure
distortion, two-way FDI and carbon emission intensity, and there are fluctuations and
agglomeration among the provinces. The distortion of the industrial structure leads to the
deviation of factor allocation and the failure of market regulation, which not only leads
to the increase in local carbon emission intensity, but also leads to the reverse spillover
effect, which increases the carbon emission intensity in surrounding areas. IFDI and OFDI
provide a powerful driving force for the reduction in carbon emission intensity. IFDI
has promoted the reduction in carbon emission intensity in the surrounding areas, while
OFDI has increased the carbon emission intensity in surrounding areas. The interaction
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between IFDI and OFDI can significantly reduce the carbon emission intensity in local and
surrounding areas. Fourthly, the overall test of intermediary effect shows that two-way
FDI is two channels through which the industrial structure distortion affects the carbon
emission intensity. Industrial structure distortion affects the transmission mechanism of
carbon emission intensity by affecting two-way FDI.

According to the above research conclusions, this paper puts forward the following
policy suggestions. Firstly, it is suggested to continue to promote the optimization of
industrial structure and reduce the carbon emission intensity. The government should
pay attention to the optimization and adjustment of the industrial structure, issue relevant
policy documents to promote economic growth, improve the quality and speed of economic
growth rate, eliminate backward production capacity, promote the development of innova-
tive, green and low-carbon industrial clusters and continue to promote the decoupling of
economic growth from carbon emissions. To optimize the spatial development model of
industrial structures for the central and western regions of China with slightly backward
economic development, we should issue relevant policy documents, increase support for
emerging industries, increase capital investment, narrow regional development differences,
reduce industrial structure distortion and realize ”resonance with the optimization and
upgrading of national industrial structure”. Secondly, it is suggested to guide IFDI to
develop in the field of high-tech, low-carbon emission reduction, etc. To establish a reason-
able performance evaluation system, highlight the unified and coordinated evaluation of
economic development and environmental protection, and encourage local governments
to pay more attention to quality in the process of attracting investment. To improve en-
vironmental protection-related policies, gradually abolish the “super-national treatment”
of foreign-funded enterprises, improve the entry threshold of high-carbon industries and
reduce the tolerance of foreign-funded enterprises for environmental pollution. Introduce
high-quality foreign capital, promote the coordinated development of resources, environ-
ment and economy, pay attention to the “benchmarking” of foreign-funded enterprises,
give full play to the “pollution halo” effect of IFDI, drive domestic green and low-carbon
technology innovation and realize carbon emission reduction. Thirdly, it is suggested to
speed up the transformation of the foreign economic development mode and give full play
to the effect of reverse innovation. In the process of “going global”, we should pay attention
to reverse gradient investment in developed economies, increase investment in technology
and research industries and reduce OFDI’s activities to seek markets and resources. Effort
should be made to make full use of the advantages of overseas enterprises’ proximity
to the source of technical resources, track advanced technology, learn green technology,
knowledge and management experience, promote domestic enterprises to carry out en-
vironmental innovation, produce green products and reduce domestic carbon emission
intensity. Fourthly, it is suggested to pay attention to the rational layout and guidance
of two-way FDI and promote the interactive and coordinated development of two-way
FDI. The empirical results show that IFDI will significantly affect the carbon emission
intensity. At present, IFDI in China is still looking for resources. Therefore, it is necessary
to formulate corresponding investment policies, take energy conservation and emission
reduction as a reference factor to adjust the investment structure, increase investment
in green environmental protection industries and promote China’s green transformation
and development. Meanwhile, China’s OFDI should pay attention to investing in other
countries’ research and technology industries, make full use of OFDI’s reverse technology
spillover effect, reduce the technical effect of domestic carbon emissions and promote the
in-depth development of the low-carbon economy.

For a long time, industrial structure change is considered as an important reason
to promote economic growth (Zhang et al., 2014) [37]. Rogerson (2008) [38] concluded
that under the current global warming environment, the change in industrial structure
is also of great significance for controlling the total energy consumption and reducing
carbon emissions. Meanwhile, the impact of foreign trade on the domestic environment
mainly includes the hypothesis of “pollution heaven hypothesis” and “pollution halo
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hypothesis” (Kisswani and Zaitouni, 2021) [39]. However, at present, there are relatively
few studies on the overall analysis of carbon emission intensity by integrating industrial
structure distortion with foreign trade (Yang et al., 2019) [40]. This paper focuses on the
spatial correlation among the above three variables and explores the effect of industrial
structure distortion and two-way FDI on carbon emissions with the application of the
spatial econometric model. In fact, this study found that China’s carbon emissions have
significant spatial spillover effects among provinces, which is consistent with the current
research on carbon emissions from a spatial perspective (Han and Xie, 2017) [41]. Through
the data results, we can find that the distortion of the industrial structure is not conducive
to reducing carbon emissions. At the same time, both IFDI and OFDI can be explained
by the theory of the “pollution halo hypothesis”, which also confirms the conclusion that
the expansion of foreign trade will promote domestic technological progress and achieve
carbon emission reduction. Similar to previous studies, upgrading the industrial structure
can significantly inhibit carbon emissions (Dong et al., 2020) [42]. However, after adding
the variable of industrial structure distortion in this paper, the research data show that
industrial structure distortion can also reduce carbon emissions through the intermediary
mechanism of two-way FDI, which indicates that the most critical driving factor in the
process of carbon emission reduction lies in the technical effect, and its effect exceeds the
structure and scale effect (Wang et al., 2019) [43].
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