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Abstract: Peripheral nerve injuries significantly impact patients’ quality of life and poor functional
recovery. Chitosan–ufasomes (CTS–UFAs) exhibit biomimetic features, making them a viable choice
for developing novel transdermal delivery for neural repair. This study aimed to investigate the
role of CTS–UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in
cisplatin-induced sciatic nerve damage in rats. Hence, PRO–UFAs were primed, embedding either
span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full
factorial design (24). The influence of formulation factors on UFAs’ physicochemical characteristics
and the optimum formulation selection were investigated using Design-Expert® software. Based
on the optimal UFA formulation, PRO–CTS–UFAs were constructed and characterized using trans-
mission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a
sciatic nerve injury tested the efficacy of PRO–CTS–UFA and PRO–UFA transdermal hydrogels, PRO
solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers
were assessed, supported by a sciatic nerve histopathological study. PRO–UFAs and PRO–CTS–UFAs
disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43
and 336.12 ± 4.9 nm, ζ potential of −62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively re-
leased 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO–CTS–UFAs
significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral
myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT
content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α
expression. Briefly, our findings proposed that CTS–UFAs are promising to enhance PRO transdermal
delivery to manage sciatic nerve damage.

Keywords: propranolol HCl; surface modification; chitosan–ufasomes; sciatic nerve; cisplatin

1. Introduction

There are 43 motor and sensory nerves that connect the CNS to the PNS. The skull and
vertebrae protect the CNS, but not the PNS [1]. Peripheral nerve injury (PNI) affects more
than one million individuals annually, making it a global clinical issue with a substantial
socioeconomic cost [2]. Various factors, including autoimmune illnesses, infections, and
trauma, can lead to PNI [3]. PNI is the deterioration of the peripheral nerve structure
leading to the loss of deep tendon reflex, sensory nerve dysfunction, and motor and muscle
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weakness [4]. Axonal degeneration, segmental demyelination, or both may occur in the
afflicted nerves. In addition, peripheral neuropathy can result in excessive myelin and axon
loss [5]. Toxic chemotherapeutic agents are one of the forms of PNI [6]. Cisplatin, the most
widely used anticancer medication, frequently generates peripheral neuropathy [7,8]. Most
patients treated with cisplatin experience chemotherapy-induced peripheral neuropathy
as a common adverse reaction that reduces the effectiveness of treatment and decreases a
patient’s chance of survival as a side effect [9,10].

Cisplatin generates dose-dependent peripheral neuron destruction or ototoxicity [11].
The prolonged cisplatin treatment affects the major cisplatin target, the dorsal root ganglia
(DRG), causing sensory and motor neuron loss [12,13]. Neuropathy has been associated
with mitochondrial DNA damage [14,15]. The degree of injury is demonstrated through
binding cisplatin to DNA in DRG neurons with a high tendency for platinum adduct
formation [7,16]. On the other hand, current research suggests that neural axon damage
caused by cisplatin may be associated with the suppression of autophagy and mitophagy,
resulting in the accumulation of oxidative damage in proteins and organelles [17,18].
Early axonopathy is probably caused by a mechanism involving the formation of nuclear
DNA-Pt adducts and mitochondrial DNA-Pt adducts [19], resulting in the production of
oxidative stress [20]: inflammatory and pro-inflammatory cytokines [21]. Potentiating
nerve injury causes a direct change in bone–nerve interaction and loss of bone mineral
density (BMD) [22,23]. Direct effects of nerve injury on BMD are difficult to prove since the
sciatic nerve constriction causes immobilization, paralysis, and a decrease in mechanical
loading, all of which reduce bone mineral density [5,24,25].

When deciding on an appropriate treatment strategy for PNI, the injury type and its
extent are considered [26]. An end-to-end suture is commonly utilized for injuries with
small gaps (less than 5 mm), while an autologous nerve graft is ideal for more significant
gaps [27,28]. Autologous nerve grafts have various drawbacks, including donor site
morbidity, tissue scarcity, and infection risk [29]. These limits have led to neural scaffolds
that support nerve cell growth and transport various nerve medicines.

Different scaffolds are utilized in neural regeneration [30]. Hydrogels are popular
among these materials due to their three-dimensional structure analogous to nerve tissue
and their physicochemical and biological properties [3,31]. In addition, hydrogels possess
appropriate physical and biological qualities, such as the capability to absorb water, a
similarity to the extracellular matrix (ECM) of nerve, and a porous structure, which makes
them excellent candidates in the field of neural tissue engineering [32–35]. Hydrogel can
be made using synthetic or natural polymers. However, natural polymers are preferred
due to their biocompatibility and lower costs [36,37]. Chitosan (CTS) is a non-cytotoxic,
biodegradable, naturally occurring polysaccharide proposed to assist nerve regeneration in
the PNS [38,39]. It has been widely employed in gene delivery [40,41], cell culture [42,43],
and biomedical engineering [44]. In addition, CTS also has anti-inflammatory effects on
the influx of neutrophils into organs, levels of tumor necrosis factor-alpha (TNF-α), levels
of interleukin-1 beta (IL-1), and anti-oxidative properties [44]. Additionally, the porous
structure of CTS and hydrogel allows them to carry medicines effectively, encouraging the
proliferation of neural stem cells [45].

An effective tissue engineering construction should include a bioactive agent capable
of promoting healing in addition to structural support [46]. Adrenoceptor blocker medica-
tions have been utilized in neural tissue engineering to enhance the recovery of the nervous
system’s function after a traumatic injury. Propranolol hydrochloride (PRO) is a nonse-
lective β-adrenoreceptor blocker widely used to treat hypertension. PRO could regulate
numerous pathological conditions, such as cardiac contractions and relaxations [47] and
many immunomodulatory, anti-inflammatory, and antioxidant effects [48]. Propranolol
coupled with a Gi-coupled receptor protein leads to decreased cAMP [49]. Calcium influx re-
duction toward cells blocks vascular endothelial growth factors, lowering vasoconstriction
and angiogenesis [50]. Additionally, it down-regulates apoptosis of hemangioma-derived
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stem cells or pericytes in endothelial cells via down-regulation of CDKN1B, AKT, and
angiotensin II [51,52].

On the other hand, the anti-inflammatory properties of propranolol reduce local and
systemic inflammation, helping the body heal faster while preventing cellular damage,
collagen deposition, and the activity of matrix metalloproteases [47,53]. Several studies
reveal the role of sympathetic innervation in modulating bone resorption and bone cell
activity [54,55]. Additionally, β-blockers induced trabecular bone volume in a mice ovariec-
tomized model [56,57]. A double-blind human model found that the propranolol-treated
group experienced considerable bone mass recovery [58].

Despite its significant pharmacological potential, propranolol HCl (PRO) utilization
was restricted due to its hydrophilic nature, poor oral bioavailability (15–23%), and exten-
sive first-pass hepatic metabolism [59]. As a result, it is imperative to find new ways to
improve the skin permeability of PROs; addressing the obstacles above is a crucial priority
in tailoring formulations for clinical use.

Interestingly, various delivery systems were suggested to enhance PRO skin perme-
ation, including polymeric film [60], iontophoresis [61], transethosomes [62], and nanoparti-
cles [63]. Herein, PRO skin permeability was improved with the development of ufasomes
(UFAs), which are non-phospholipid vesicles. UFAs were initially developed by Gebicki
and Hicks [64] as “unsaturated fatty acid vesicles” with a closed lipid bilayer membrane.
They belong to fatty acid vesicles that comprise fatty acid and their ionized species [65,66].
The primary components of UFAs are typically unsaturated fatty acids such as oleic acid
and linoleic acid, and their use has several benefits. Due to single-chain amphiphiles,
UFAs have a more dynamic nature than their well-known precursor liposomes. They
are more versatile by positioning them between traditional double-chain amphiphiles’
nanosystems and micelles [65]. Moreover, UFAs are distinguished by their biocompatibil-
ity and straightforward assembling method [66]. Their implementation was previously
described in accentuating topical delivery of fluconazole [67] and transdermal delivery
of clotrimazole for antifungal activity [68]. Only the current study scrutinizes this novel
nano-cargo prospective for PRO anti-sciatic nerve activity.

This study developed a CTS–UFA hydrogel loaded with PRO to investigate its poten-
tial for improving sciatic nerve regeneration. Adopting full factorial design, the effect of
UFA’s formulation variables on drug entrapment, zeta potential, particle size, PDI, and the
in vitro release were inspected. Then, PRO–CTS–UFA was assembled and characterized
using a transmission electron microscope, stability study, and ex vivo permeability studies
compared to optimal PRO-UFA. In addition, the in vivo study investigated the potential
protective benefits of PRO–CTS–UFA gel, compared to PRO solution and PRO–CTS–UFA
gel, on rats subjected to cisplatin-induced sciatic nerve injury. To fulfill this purpose,
the specific nerve injury biomarker peripheral myelin 22 gene expression, inflammatory
biomarker (CAT), and the oxidative stress biomarkers MDA and GSH were analyzed in
tissue. Additionally, the immunohistochemical study of MBP, BCL-2, and TNF-α coupled
with a histopathological examination of the sciatic nerve section was conducted.

2. Materials and Methods
2.1. Materials

Propranolol hydrochloride, cholesterol, and sorbitan monostearate (span 60) were
obtained from Sigma-Aldrich (St. Louis, MO, USA), while span 20 was obtained from
Atlas chemical industries, Wilmington, DE. Oleic acid, Na2HPO4, KH2PO4, KCl, and NaCl
were purchased from El-Nasr Chemical Co (Cairo, Egypt). Absolute methyl alcohol (99%)
and chloroform were purchased from United Company for Chemical preparations (Cairo,
Egypt). Dialysis bags with 12000 Da molecular weight cut-off were purchased from SERVA
Electrophoresis GmbH (Heidelberg, Germany). Cisplatin (catalog number 15663-27-1) was
purchased from Sigma chemicals (Saint Louis, MO, USA). Other products used include
enzyme-linked immunosorbent assay (ELISA) kits for MDA (catalog number CSB-E08558r;
CUSABIO, Houston, TX, USA), GSH (catalog number MBS724319; MY BIOSOURCE;
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San Diego, CA, USA), CAT (catalog number CSB-E13439r; CUSABIO, Houston, TX, USA),
and PCR gene expression assay for Peripheral myelin 22 (catalog number R2072, Zymo
Research Corp., Irvine, CA, USA). Other chemicals and solvents were of analytical grade
and used without modifications.

2.2. Fabrication of PRO–UFAs

PRO–UFAs were prepared using thin-film hydration methods as labeled by Al-
Mahallawi et al. [69], with a minor alteration. In a nutshell, the measured quantity of
10 mg PRO and a definite amount of oleic acid, span, and cholesterol were dissolved in a
10 mL chloroform/methanol (2:1 v/v) combination. A thin, dry layer was created on the
flask wall using a rotary evaporator (Heidolph Laborota 4000 Series, Heizbad, Germany),
spinning at 60 rpm and 60 ◦C in vacuum. Then, hydration of the produced lipid film with
phosphate buffer saline (PBS, 10 mL, pH 7.4) was performed via rotating the flask in a
water bath at 60 ◦C for 30 min. The size of the resulting vesicles was through sonication
for 10 min in a bath sonicator (Sonix TV ss-series, North Charleston, SC, USA) [70]. The
constructed nanodispersions were refrigerated overnight at 4 ◦C for maturation.

2.3. Characterization and Optimization of PRO–UFAs
2.3.1. Determination of PRO Entrapment Efficiency Percent (EE%)

By subtracting the amount of non-entrapped PRO (free PRO) from the amount of
PRO initially added, the amount of PRO held within the formulated preparation was
indirectly estimated as 10 mg [71]. Briefly, dispersions of PRO–UFA were centrifuged
at 16,500× g for two hours at 4 ◦C (Laborzentrifugen, Sigma, Osterode, Germany). The
concentration of PRO was evaluated spectrophotometrically (Shimadzu UV-1800, Tokyo,
Japan) by measuring the UV absorbance at λmax 290 nm. The EE% of PRO was computed
as follows:

EE% =
Total drug concentration− free drug concentration

Total drug concentration
× 100 (1)

2.3.2. Particle Size (PS), Zeta Potential (ZP), and Polydispersity Index (PDI) Determination

Using Zetasizer Nano 7.11 (Malvern Instruments, Malvern, UK) and the dynamic
light-scattering method at 25 ◦C and a 90◦ incident beam angle, the average PS, ZP, and PDI
of PRO–UFAs were measured. Before the measurements, 0.1 mL of each dispersion was
diluted with 10 mL of deionized water to confirm that the intensity of light scattering was
within the sensitivity range of the instrument. All measurements were taken in triplicate,
and the obtained mean values were recorded [72].

2.3.3. In Vitro Release Study of PRO–UFAs

Using Erweka DT-720 USP type 1 dissolution test (Heusenstamm, Germany), the mem-
brane diffusion method [73,74] was utilized to assess the PRO release from the produced
UFAs in triplicate. As determined by the calculated EE%, accurate aliquots of PRO–UFAs
(equal to 3 mg of PRO) were injected with the pre-impregnated dialysis membrane (Mol.
Wt. cut off = 12,000 Da) covering one end of the glass cylinders (2.5 cm internal diameter
and 6 cm length). USP dissolution tester shafts were fitted with glass cylinders containing
the loaded samples. The glass cylinder was then submerged in 50 mL of the releasing
medium (PBS, pH 5.5). The rotation was adjusted to 100 rpm, and the temperature was kept
at 37 ± 0.5 ◦C for the experiment. The entire volume of the release medium was replaced
with an equal volume of the new release medium at predetermined intervals (0.25, 0.5, 1, 2,
3, 4, 5, and 6 h). The release profiles were compared to the PRO solution and PRO–UFAs.
The proportion of PRO released was computed based on the total amount of drug released
at each interval. By obtaining UV absorbance at 290 nm, drug concentration was measured.
All measurements were conducted in triplicate, and results were expressed as the mean of
three runs (mean) standard deviation (SD).
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Using several kinetic equations, the release behavior of PRO–UFAs was kinetically
analyzed. The results were fitted into various mathematical equations to study the release
data, including zero- and first-order kinetics, Higuchi, Korsmeyer–Peppas, and Hixson–
Crowell models. For each model, the correlation coefficient (R2) was calculated.

2.3.4. Studying the Impact of Formulation Variables Using Full Factorial Design

The characteristics of PRO–UFA dispersions were assessed and optimized using a 24

full factorial design. In the design utilized, four factors were estimated, which are (A: type
of span), (B: the amount of oleic acid), (C: the amount of cholesterol), and (D: sonication
time), represented by low (−1) and high (+1), respectively, Table 1. The experiments were
achieved with all possible combinations for fabricating PRO–UFAs formulation, as shown
in Table 2. The EE% (Y1), PS (Y2), PDI (Y3), ZP (Y4), and cumulative % PRO released from
UFAs in 6 h (Q6h) (Y5) were designated as dependent variables.

Table 1. Full factorial design 24 was used for optimization of PRO–UFAs formulation.

Factors
Levels

Low (−1) High (+1)

Independent variables
A = Span type Span 20 Span 60

B = Oleic acid amount (mg) 20 40
C = Cholesterol amount (mg) 15 30

D = Sonication time (min) 0 15

Responses (dependent variables) Desirability constraints

Y1 = EE% Maximize
Y2 = PS (nm) Minimize

Y3 = PDI <0.5
Y4 = ZP (mV) Minimize
Y5 = Q6h (%) Maximize

EE%: entrapment efficiency percent, PS: particle size, PDI: polydispersity Index, ZP: zeta potential, Q6h: cumula-
tive release after 6 h.

Table 2. Experimental runs, independent variables, and measured responses of the 24 full factorial
experimental designs of PRO–UFAs.

Ufasomes
Formulation

A B C D Y1 Y2 Y3 Y4 Y5

Span
Type

Oleic Acid
Amount

(mg)

Cholesterol
Amount

(mg)

Sonication
Time
(min)

EE% PS
(nm) PDI ZP

(mV)
Q6h
%

U1 span
20 40 15 15 64.72 ± 1.12 402.62 ± 25.01 0.28 ± 0.023 −69.32 ± 2.25 81.31 ± 2.33

U2 span
60 20 15 0 86.84 ± 2.04 432.13 ± 15.66 0.62 ± 0.012 −33.52 ± 1.23 68.55 ± 1.12

U3 span
20 40 15 0 77.30 ± 1.52 302.78 ± 18.52 0.32 ± 0.016 −67.30 ± 1.11 77.28 ± 1.65

U4 span
60 40 30 0 96.13 ± 3.22 510.44 ± 20.32 0.61 ± 0.021 −33.95 ± 1.06 49.61 ± 0.98

U5 span
20 40 30 0 91.22 ± 2.67 326.85 ± 17.65 0.56 ± 0.015 −62.60 ± 1.14 53.62 ± 2.24

U6 span
20 20 30 0 88.32 ± 1.65 385.80 ± 20.31 0.59 ± 0.032 −34.47 ± 2.50 71.30 ± 3.23

U7 span
20 20 15 0 74.97 ± 2.66 408.29 ± 14.82 0.36 ± 0.022 −64.27 ± 2.14 83.21 ± 4.87

U8 span
20 40 30 15 90.44 ± 3.91 397.57 ± 22.54 0.44 ± 0.032 −66.24 ± 2.34 61.29 ± 2.45

U9 span
60 20 15 15 78.67 ± 2.54 351.11 ± 23.70 0.52 ± 0.034 −39.55 ± 3.01 74.88 ± 3.21

U10 span
60 20 30 0 90.47 ± 3.43 480.26 ± 24.13 0.71 ± 0.016 −31.15 ± 1.13 59.57 ± 2.05
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Table 2. Cont.

Ufasomes
Formulation

A B C D Y1 Y2 Y3 Y4 Y5

Span
Type

Oleic Acid
Amount

(mg)

Cholesterol
Amount

(mg)

Sonication
Time
(min)

EE% PS
(nm) PDI ZP

(mV)
Q6h
%

U11 span
20 20 15 15 53.64 ± 1.04 430.46 ± 26.23 0.31 ± 0.034 −71.12 ± 1.45 87.75 ± 3.98

U12 span
60 40 15 0 87.61 ± 2.21 470.42 ± 15.74 0.59 ± 0.010 −36.87 ± 1.08 65.58 ± 4.11

U13 span
60 40 15 15 79.45 ± 2.34 490.21 ± 10.74 0.46 ± 0.03 −40.36 ± 2.23 79.63 ± 4.56

U14 span
60 40 30 15 97.52 ± 4.05 485.86 ± 18.00 0.53 ± 0.016 −37.41 ± 1.65 56.35 ± 1.34

U15 span
60 20 30 15 82.93 ± 2.76 356.51 ± 11.65 0.57 ± 0.021 −43.87 ± 1.45 70.88 ± 2.12

U16 span
20 20 30 15 79.89 ± 1.94 382.23 ± 10.43 0.42 ± 0.035 −43.59 ± 2.06 80.44 ± 7.55

EE%: entrapment efficiency percent, PS: particle size, PDI: polydispersity index, ZP: zeta potential, Q6h: cumula-
tive release after 6 h (%). Data are mean values (n = 3) ± SD.

To examine experimental results and sources separately, the principal effects of
these components, Design-Expert® software (Version 10, Stat-Ease Inc. Minneapolis, MN,
USA) was employed, followed by the analysis of variance (ANOVA) to determine each
factor’s significance.

2.4. Optimization of PRO–UFAs

The desirability function was developed for appropriate formulation selection, ag-
gregating all responses into one variable to forecast the optimum levels of investigated
elements [75]. The criteria for selecting the most profitable formulation were achieving the
lowest PS value, ZP as an absolute value, and a PDI less than 0.5, in conjunction with the
highest EE percentage and Q6h, Table 1.

2.5. Preparation of PRO-CTS-UFAs

For the fabrication of PRO–CTS–UFAs, an accurate weight of CTS was dissolved in
glacial acetic acid solution at a concentration of 0.03% (v/v). Then, 2 mL of CTS solution
were added dropwise to the previously prepared PRO–UFAs formulation at room tempera-
ture while stirring at a magnetically regulated rate. Speeds of 0.2 mL/min and 100 rpm,
respectively, were used for the drops and stirring [76]. To verify the PRO–CTS–UFAs’
formation, the previously reported methodologies for PRO–UFAs characterization in terms
of EE%, particle size, PDI, ζ potential, and drug release were used.

2.6. Transmission Electron Microscopy (TEM)

Transmission electron microscopy was used to investigate the morphological charac-
teristics of the best PRO–UFAs and PRO–CTS–UFAs (JEM-1400, Jeol, Tokyo, Japan). A drop
of each dispersion was placed on a copper grid, and the excess was rubbed away with filter
paper. The excess aqueous phosphotungstic acid solution (2 percent w/v, negative staining)
was removed similarly. Finally, air-dried samples were examined using TEM at 80 kV [77].

2.7. Physical Stability Study

The physical stability of the optimal PRO–UFAs and PRO–CTS–UFAS was analyzed
to determine the level of vesicle expansion, drug leakage, and other physical changes. The
stability of both formulations was assessed by measuring and comparing the EE percent, PS,
and ZP after three months of storage at room temperature. The analyses were conducted in
triplicate. The mean and standard deviation were described.
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2.8. Ex Vivo Permeability Study
2.8.1. Skin Preparation

The dorsal skin of newborn rats weighing 70 ± 20 g was removed after they were
killed. The epidermal surface was not harmed by subcutaneous tissues, and adherent fats
were removed from the dermal surface. The skin was fixed in the freezer at −20 ◦C until
being used for permeation [78].

2.8.2. Ex Vivo Permeation Study

The permeation of PRO via the skin of rats was compared between optimum UFAs,
CTS–UFAs, and PRO solution in phosphate-buffered saline (pH 7.4). Before the investiga-
tion, the skin was equilibrated in PBS for 3 h after being defrosted at room temperature. The
membrane was placed on a diffusion cell with the SC facing the donor compartment and the
dermis facing the receptor compartment. Five cm2 of membrane surface area was accessible
for diffusion. The donor compartment was loaded with PRO–UFAs, PRO–CTS–UFAs, and
PRO solution (3 mg of PRO) in BPS, whereas the receptor compartment was completed to
50 mL of buffer at 32 ± 0.5 ◦C and swirled at 100 rpm. At predetermined time intervals
up to 24 h, 2 mL samples of the receptor fluid were removed, and a new BPS solution was
promptly reintroduced to preserve constant volume and sink conditions. The removed
samples were then examined at 290 nm using a spectrophotometer.

For each formulation, the cumulative amount of drug permeated per unit area (g/cm2)
was plotted against time (h). The permeation parameters Q24h in g/cm2, permeability
coefficient (Kp) in cm/h, and drug flux (Jss) in g/cm2 h were calculated for the optimal
PRO–UFAs, PRO–CTS–UFAs, and the control PRO solution. In addition, the enhancement
index (EI) was calculated using the equation below:

I =
Kp of Ufasomes

Kp of control solution
(2)

2.9. In Vivo Pharmacological Study
2.9.1. Animals

The in vivo experiment was conducted on adult male Wistar rats, whose weight
ranged from 180 to 200 g. Animals were provided from Nahda University animal house,
Beni-Suef, Egypt. Rats were reserved in an air-conditioned (25 ± 1 ◦C) pathogen-controlled
experimental animal room for two weeks for adaptation before conducting the experiments
with free access to standard forage and tap water and libitum.

2.9.2. Experimental Design

Rats were randomized into five weight-matched groups of ten rats for each; a normal
control group received vehicles, the sciatic nerve-injured group received cisplatin intraperi-
toneal for four weeks (2 mg/kg/ twice a week; [21]), and three treatment groups were the
standard PRO solution group, PRO–UFA gel group, and PRO–CTS–UFAs gel. Treatments
were applied on the rats’ dorsal region to allow systemic drug influence for thirty consecu-
tive days after cisplatin induction at doses (10 mg/kg/day; [48]). The treatment dose was
calculated through pilot studies guided by published research.

After 24 h of the last treatment dose was withdrawn, the animals were weighted and
sacrificed, and the sciatic nerve removed and preserved in 10% formalin for histoological
study and molecular evaluation.

2.9.3. Methods
Tissue Sampling

Thiopental sodium (40 mg/kg, ip of 2.5 percent thiopental) was used to anesthetize
rats [79]. The rats were then decapitated, and a tight incision on the back was made,
exposing the sciatic nerve around the greater sciatic foramen. About four to five sciatic
segments were gently isolated and cleaned with ice-cold saline to eliminate blood, rapidly
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kept in Eppendorf tubes, and fixed at −80 ◦C until the time biochemical measurement for
peripheral myelin 22 real-time PCR assay and malondialdehyde (MDA), glutathione (GSH)
and catalase (CAT) ELISA tissue assay. The other sciatic nerve section was preserved in
10% isotonic formalin solution in normal saline until being used in the histopathological
study and immunohistochemical assay of apoptosis regulator (BCL-2 associated x), matrix
metalloproteinase 9 (MMP-9), and tumor necrosis factor-alpha (TNF).

2.9.4. ELISA of Tissue Biomarkers

MDA, GSH, and CAT levels in sciatic nerve tissue were determined using ELISA test
kits and ELISA processing system (SpectraMax Plus-384 Absorbance Microplate Reader,
Philadelphia, CT, USA) following the reported sandwich method [80].

2.9.5. Quantitative Peripheral Myelin 22 Real-Time PCR Tissue Biomarkers Assessment

The housekeeping gene, actin, was used as an internal reference in the qRT-PCR
technique to calculate fold changes in the target gene from normal rats. The expression of
the target gene in normal rats was considered the baseline for calculating fold changes in
the target gene from normal rats [81]. All pure RNA from a homogenized, isolated sciatic
nerve, homogenized in lysis buffer, per the manufacturer’s instructions, was analyzed.
The purification column was initially loaded, then the desired amount of pure RNA was
extracted and tested for purity using a UV-Vis spectrophotometer Q5000 (Quawell Technol-
ogy, Inc., Sunnyvale, CA, USA) at OD260/280 nm and the nanodrop method. A reverse
transcriptase kit converted RNA to its corresponding DNA (cDNA) following the manufac-
turer’s instructions. Expressed genes were quantified using 2X Maxima SYBR Green/ROX
qRT-PCR Master Mix to amplify cDNA according to the manufacturer’s procedure and
specific gene-specific primers, as in Table 3.

Table 3. Primers sequence of peripheral myelin 22 gene.

Forward Sequence Reverse Sequence

Peripheral myelin 22 CTCCTCGCAGGCAGAAACTC TGGCCAGCTCTCCTAAC
GAPDH TGGATTTGGACGCATTGGTC TTTGCACTGGTACGTGTTGAT

2.9.6. Histopathological Study

The sciatic nerve was fixed in a 10% isotonic formalin solution for histological evalua-
tion. After ensuring tissue stiffening, samples were treated using the Bancroft and Steven
1983 paraffin embedding procedure, through dehydrating in graded ethyl alcohol (50,
70, 95, and 100%) for 2 h each and cleared in two changes of xylene after the fixation
process. Before blocking, samples were primarily embedded in paraffin wax three times for
two hours each time. Sections of 5 µm tissue were cut using the Leica microtome. Sections
stained with Hematoxylin and Eosin were examined under a light microscope with the aid
of a pathologist [82].

2.9.7. Immunohistochemical Assay

The BCL-2, MMP, and TNF α tissue assays were performed according to the previously
described assay technique [83,84]. In brief, paraffin-embedded tissues of 5-µm thickening
were dehydrated in xylene, followed by graduated ethanol concentrations. Slides were
blocked for 2 h with 5% bovine serum albumin (BSA) in Tris-buffered saline for immunos-
taining (TBS). The immune-staining with primary antibodies against BCL-2, MMP, and TNF
α were incubated overnight at 4 ◦C and then washed with TBS before adding secondary
antibodies. Then, 0.02% diaminobenzidine H2O2 was added for 10 min. A histopathologist
helped with the hematoxylin counterstaining before the slides were inspected under a
light microscope.
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2.9.8. Statistical Analysis

All data were expressed as means of 6–10 values ± standard error (SEM). Statistical
analyses were performed using a one-way analysis of variance test (ANOVA) followed by
the Tukey–Kramer multiple comparisons test using a statistical package for social sciences
software (SPSS; version 19.0), a computer program offered by (SPSS Inc., Chicago, IL, USA),
where the value of p < 0.05 was considered statistically significant.

3. Results
3.1. Analysis of Factorial Design

Identifying the variables that may affect the properties of a newly developed drug
delivery system is essential. In this regard, factorial designs are advantageous because they
can simultaneously examine the effect of multiple factors on the parameters of the drug
delivery system [85]. In the present investigation, the ranges of the independent variables
were assessed using preliminary tests (data not displayed) that were used to select the
variables and their levels. The chosen model was two-factor interaction (2 FI). For each
investigated response, the predicted R2 values correlated reasonably well with the adjusted
R2 values (Table 4). All responses exhibited adequate precision with a ratio greater than
4 (the desired value), ensuring that the model could be utilized to navigate the design
space [86].

Table 4. Output data of the 24 factorial analyses of PRO–UFA formulation.

Responses R2 Adjusted R2 Predicted R2 Adequate
Precision

Significant
Factors

EE% 0.97 0.92 0.74 15.59 A, B, C, D
PS (nm) 0.98 0.95 0.83 18.79 A, B

PDI 0.98 0.94 0.80 16.76 A, C, D
ZP (mV) 0.96 0.87 0.57 10.06 A, B, C
Q6h (%) 0.98 0.95 0.85 20.57 A, B, C, D

EE%: entrapment efficiency percent, PS: particle size, PDI: polydispersity index, ZP: zeta potential, Q6h: cumula-
tive release after 6 h (%).

3.2. PRO–UFAs Characterization
3.2.1. Effect of Formulation Variables on EE%

The higher drug capture within the vesicle’s assembly is required to provide an
acceptable drug amount [87]. In this research, the proportion of PRO engaged by UFA
formulations ranged from 53.64± 1.04% to 97.52± 4.05% (Table 2). The combined influence
of the two independent variables (cholesterol and oleic acid amounts) on the EE percent of
PRO–UFAs at the low and intermediate levels of the first and fourth variables (span type
and sonication time) is graphically depicted in Figure 1a as 3D surface plots.

Analysis of variance revealed that the span type (A) significantly influenced the EE
percentage (p = 0.0014). The EE percent values of Span 60-containing UFAs formulations
were higher than those of Span 20, which might be attributable to the solid nature, hy-
drophobicity, and higher phase transition temperature of Span 60, which allowed for a
higher degree of drug encapsulation [88]. It was reported that the encapsulation efficiency
increased as the transition temperature of the surfactant increased [89]. The increase in
alkyl chain length, Span 60 (C18) > Span 20 (C12), has led to a rise in the EE percentage, as
previously reported [90–92]. In addition, the alkyl chain length affected the hydrophilic-
lipophilic balance (HLB) value of the surfactant, which directly influenced the drug EE
percent [93]. The lower the HLB of the surfactant, the greater the drug EE percent and
stability [94], as in the case of niosomes prepared using Span 60, HLB = 4.7 compared to
Span 20, HLB = 8.6.
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Figure 1. Response surface plot for the effect of oleic acid amount (B), cholesterol amount (C) at the
middle levels of the 1st and 4th variables (Span type and sonication time) on (a) EE%, (b) particle
size, (c) PDI, (d) zeta potential, and (e) Q6h of the developed UFAs’ dispersions.

There was a positive effect of oleic acid on PRPO EE%. The presence of oleic acid
in the lipid bilayer could modulate the crystallization array due to its unsaturation and
lipid trait conferring comparative imperfection in the bilayer chains, thus maintaining
the laden drug with avoidance of its expulsion. [95]. In addition, it was determined that
the presence of oleic acid in the vesicles’ nano-cargo could provide proper space to host
the drug particles in the amorphous network of the system, resulting in an increased EE
percent [72]. This result was consistent with that of Gabr et al. [96], who stated that the
EE percent of rosuvastatin increased with oleic acid addition to the lipid domain in the
formulation of hexagonal liquid crystalline nanoformulation, thereby allowing for a greater
drug entrapment.

Cholesterol level was found to impact EE percentage (p = 0.0003) significantly. An
increase in cholesterol level led to a rise in the entrapped drug. Our findings are consistent
with those of Khalilet al. and El-Nabarawi et al., who asserted that the EE percentage of
bilosomes increased as cholesterol levels increased [97,98]. Generally, cholesterol makes
lipid bilayer membranes more hydrophobic and rigid, resulting in highly organized vesicles
with excellent membrane stability, reduced drug penetration, and, consequently, higher
drug retention [78].

Matloub et al. [99] proposed an alternative explanation for the increase in EE percent-
age of bilosomes when the amount of cholesterol is increased. Cholesterol could prevent the
gel-to-liquid phase transition of the surfactant bilayer, enhancing the vesicle membrane’s
microviscosity. This stabilizes the hydrophobic bilayer, stops drug leakage, and increases
the vesicle’s EE percentage [99].

It was also evident that sonication time significantly impacted the EE percent values
of PRO–UFAs. The exposure of UFAs to sonication for 15 min significantly decreased
the percentage of PRO EE (p = 0.001). This could be attributed to vesicle disruption and
re-agglomeration, with concomitant evasion of a large quantity of the drug to the external
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aqueous medium containing cholesterol and, thus, being kept in the aqueous milieu via
micellar solubilisation rather than being encapsulated within UFAs. This result is consistent
with El Menshawe et al. [100], who reported the reduction in EE percentage upon the
spanlastics formulation for fluvastatin delivery with an increase in sonication time.

3.2.2. Effect of Formulation Variables on PS

PS is an essential parameter in developing a transdermal vesicular delivery system
because it influences the penetration of vesicles over the skin. Multiple trails have assured
that small-sized vesicles penetrate the skin deeper than larger ones [101]. Consequently, one
of our goals was to fabricate vesicles with smaller particle sizes to ensure deeper penetration
within the epidermal layer [102]. Table 2 showed that the prepared UFAs varied between
302.78 ± 18.52 nm and 510.44 ± 20.02 nm, placing them within the nano-scale range. The
effects of span type (A), oleic acid amount (B), cholesterol amount (C), and sonication time
(D) on the PS of UFAs were graphically depicted in Figure 1b as 3D surface plots. According
to the studied design, the elements that contributed to boosting the EE%, namely span type
(A) and oleic acid amount (B), had also greatly enhanced the vesicle size. There is a direct
correlation between the vesicle size and drug entrapment as the bilayer’s distance rises due
to the inclusion of the drug in the hydrophilic zone of the vesicles [103]. The average size of
UFAs based on Span 60 was greater than that of vesicles based on Span 20. Presumably, the
larger the vesicle size produced, the longer the alkyl chains and the lower the HLB. Thus,
span 20-based UFAs (C12 and HLB = 8.6) were smaller than Span 60-based UFAs (C18 and
HLB = 4.7). These outcomes are comparable to those reported [104,105].

In addition, the increase in cholesterol (C) leads to an escalation in the mean PS. Lipo-
some vesicles with a high cholesterol level are less likely to pack tightly together, showing
a more even distribution of the aqueous phase and an increase in PS [106]. Furthermore, a
higher drug load within the UFAs was linked to the elevated cholesterol levels, which may
have also contributed to the enlarged vesicles.

Figure 1b demonstrated that an increase in oleic acid amount (B) was associated with
a significant enhancement in the particle size of the formulated PRO–UFAs (p = 0.033).
This relative increase in size might be attributable to the increased viscosity caused by
the increase in oleic acid amount. When the EE percent values were considered, these
results were not surprising, as higher oleic acid content was associated with a greater
amount of PRO encased within the vesicles, and thus a larger vesicle size was formed.
Pinilla et al. [107] reported that adding oleic acid to freeze-dried liposomes containing
natural antimicrobials increased nanovesicle size and potential. Kelidari et al. [108] realized
a reduction in particle size alongside an increase in oleic acid concentration during the
preparation of spironolactone nanoparticles. These contradictory results might be explained
by the differences in the nature and affinity of lipid in the various drugs utilized. After
sonicating PRO–UFAs for 15 min, the vesicles’ size decreased significantly, as expected. This
could be attributed to vesicle exposure to ultrasonic waves, which led to the dispersion of
UFAs into smaller sizes [109]. Such findings are supported by previous literature [110,111].

3.2.3. Effect of Formulation Variables on PDI

A PDI value ranged from 0 to 1, with 0 denoting extremely monodispersed particles
and 1 denoting highly polydispersed vesicles [112]. All UFA formulations had PDI values
between 0.28 ± 0.023 and 0.71 ± 0.016, indicating an excellent homogeneity and narrow
size distribution (Table 2). The influences of span type (A), oleic acid amount (B), cholesterol
amount (C), and sonication time (D) on the PDI of UFAs were graphically represented
in Figure 1c as 3D surface plots. An analysis of variance revealed significant effects of
span type (A) (p = 0.0001), cholesterol amount (C) (p = 0.0006), and sonication time (D)
(p = 0.0012) on PDI, whereas oleic acid amount (B) had no effect. This suggested PDI of
UFA dispersions was impacted by the same parameters that affected its PS. Regarding
the span type (A), it was evident that UFAs formulated with Span 20 had the lowest PDI
values, most likely due to smaller PS and lower EE percentage compared to UFAs prepared
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with Span 60. It was indicated that there was a direct correlation between cholesterol
quantity (C) and PDI. An increase in cholesterol amount (C) resulted in an increase in drug
entrapment within the vesicles, leading an increase in vesicle heterogeneity. In addition,
Aithal et al. highlighted the increase in PDI of liposomes with the increase in the molar
ratio of cholesterol [113].

Furthermore, sonication time (D) had a statistically significant negative impact on
UFAs PDI, resulting in a decrease in particle size and PDI when samples were subjected
to prolonged sonication in the final stages of UFAs formation. This was consistent with
the results of de Freitas et al., who found that as sonication time increased during the
preparation of small unilamellar vesicles, the size and PDI values decreased [114]. Chen
et al. [115] claimed that sonication time was the most important factor influencing particle
size and PDI. There was an inverse relationship between sonication time, particle size, and
PDI during the preparation of niosomes uploaded with diacerein [111]. In contrast, the
amount of oleic acid (B) had no significant effect on the PDI of UFAs.

3.2.4. Effect Formulation Variables on Zeta Potential (ZP)

The ZP has a vital impact on the storage stability of particle dispersions. When the
ZP value of a system is approximately ±30 mV, it is generally regarded as stable because
of the electric repulsion between the particles [116]. This confirms that the vesicles have
adequate charges to prevent aggregation due to electric repulsion. In this investigation,
the charge properties on the surface of the prepared UFA dispersions were examined, and
the outcomes revealed negative charges with ZP values on their surfaces fluctuating from
–31.15 ± 1.13 mV to −71.12 ± 1.50 mV (Table 2). Since formulations in our investigation
had negative ZP, ZP values will be presented in absolute terms to avoid misunderstanding.
The high zeta potential value is attributed to surfactant lipophilicity and the presence of
oleic acid, which increases zeta value. Abd-Elal et al. [117], in a similar paper, evaluated
zolmitriptan in trans-nasal novasome formulations. They reported that zeta potential
values ranged from 51.57 ± 2.02 to 68.10 ± 10.18 mV [117]. Figure 1d demonstrated that
the investigated independent variables significantly affected on the ZP among the various
dispersions (p = 0.05).

The results indicated that the type of span (A) significantly affected the ZP of PRO–
UFA dispersions (p = 0.0001). The Span 20-prepared UFAs exhibited the highest absolute
ZP, likely due to the lipophilicity of the surfactant-forming vesicles. Due to the decrease
in the surface free energy, decreasing the surfactant’s lipophilicity increased ZP values.
Span 20 (HLB = 8.6) was less lipophilic than Span 60 (HLB = 4.7), so its ZP values were
greater than those of Span 60 [118]. In addition, increasing the amount of oleic acid led to
significantly increased ZP values (p = 0.038). Manca et al. obtained comparable outcomes
on the formulation of rifampicin liposomes [119].

The cholesterol used in UFAs formation had the ability to fill the molecular pores
formed by the span, thereby increasing the rigidity of the bilayer membrane, which had
a negative effect on the ZP percentage [120]. Thus, adding cholesterol decreased the
system’s zeta potential and weakened the repulsion between vesicles, resulting in aggregate
formation. However, the sonication time (D) did not significantly influence the ZP of the
UFAs (p = 0.143).

3.2.5. Effect of Formulation Variables in In Vitro Drug Release Studies

The profiles of PRO release from the produced UFAs dispersions and its solution
in Sorensen’s phosphate buffer at pH 5.5 were depicted and 95.76 ± 5.12% of PRO was
released from the aqueous solution within one hour, indicating that the inspected dialysis
membrane did not prevent drug release. The percentage of PRO released from UFAs after
six hours varied between 49.61± 0.98 percent and 87.75± 3.98 percent, as shown in Table 2.
The release profiles of PRO among various UFAs were successful in delaying the PRO
solution’s release compared to other UFAs profiles. All UFAs exhibited biphasic release of
PRO, with a relatively rapid initial phase followed by a slower phase. The observed burst
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effect could be attributable to the fast partitioning of the hydrophilic, surface-adsorbed PRO
into the releasing medium [104]. This suggested that PRO–UFAs should exhibit a rapid
action and prolonged drug delivery due to their initial rapid release and slower phases.

The investigated independent variables significantly affected the Q6h for each dis-
persion (p < 0.05) (Figure 1e). Regarding span type, the Q6h values of UFAs composed of
Span 20 were significantly greater than those of UFAs composed of Span 60 (p = 0.0007). As
previously stated, the rapid release of Span 20-based UFAs could be due to Span 20′s less
hydrophobic character compared to Span 60, which promoted the diffusion of the drug to
the release medium. In addition, the lower transition temperature of Span 20 might be a
contributing factor to the observed increased release. Span 60 has a transition temperature
of 53 ◦C, compared to 16 ◦C for Span 20 [121]. As the release investigation was conducted
at 32 ± 0.5 ◦C, the reduced release rates of Span 60-composed vesicles might be attributed
to their higher phase transition temperature, which effectively placed them in a highly
ordered gel state. Elsherif et al. [109] prepared terbinafine hydrochloride–spanlastics, which
corresponded to these findings.

Notably, oleic acid-decorated vesicles containing 20 mg oleic acid produced signifi-
cantly higher release rates than those containing 40 mg oleic acid (p = 0.0006). This might
be attributed to the increased formation of oleic acid micelles, which are believed to have
a slower effect on drug release than vesicles [122]. In addition, reducing the amount of
oleic acid in UFA dispersions would produce smaller vesicles with a greater surface area
exposed to the release environment, thereby enhancing PRO release. Such outcomes are
supported in literature [72].

The cholesterol amount (C) had a significant negative impact on the percentage of
PRO release (p < 0.0001). Our findings agreed with those of Khalil et al. [98] and Ruckmani
and Sankar [123], who observed a significant reduction in the drug release with higher
cholesterol amount. The incorporation of cholesterol during the fabrication of UFAs in-
creased lipid packing while decreasing bilayer fluidity and deformability, increasing bilayer
rigidity, decreasing drug leakage, and increasing vesicle stability [99,124]. Khelashvili
et al. explained the high mechanical stiffness of vesicle membranes due to cholesterol
incorporation [125]. They proposed that the cholesterol particle’s structure, four fused
cyclohexane rings attached to a hydroxyl group and a hydrophobic tail, allows choles-
terol to be contained within the bilayer, where the steroid ring would align parallel to
the membrane phospholipid’s hydrocarbon chains. A hydrogen bonding would occur be-
tween the hydroxyl group and the phospholipid polar head groups. The rigid steroid ring
would interact with the hydrocarbon chains, contrasting the splay mode of deformation
between pairs of lipids and cholesterol. This clarification is consistent with that of Ayee
and Levitan [126].

The time of sonication had a significant positive effect on the Q6h of vesicles containing
UFAs, according to statistical analysis of the release data (p = 0.0011). This link between
sonication time and Q6h could be attributed to particle size, as the proportion of the drug
dispersed in the aqueous medium at a particular time is inversely proportional to the size
of the vesicles. Thus, the smaller vesicles that were produced could decrease the diffusional
distance of the drug, thereby increasing drug release rates [127].

A mathematical analysis of PRO release data revealed that the Higuchi kinetics release
model governed drug release from most formulated dispersions, indicating a diffusion-
controlled mechanism. According to some studies, drug-based vesicular systems that
follow Higuchi’s square root model facilitate controlled drug release [70,72].

To clarify PRO release kinetics, the Korsmeyer–Peppas model was used, to lighten
other drug release mechanisms. In the Korsmeyer—Peppas equation, the n values for Fick-
ian (diffusional), zero-order release kinetics, and non-Fickian (anomalous) release are 0.5, 1,
and 0.5 < n < 1, respectively. In our investigation, the n values for the various dispersions
ranged from 0.55 to 0.99, indicating a non-Fickian drug diffusion and atypical drug release
pattern in which drug diffusion and lipid bilayer distention might be combined [128].
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3.3. Selection of the Optimized Formulation

Utilizing Design-Expert software, the optimal formulation was chosen based on a full
factorial design. The formulation prepared using the combination of Span 20 and oleic
acid (40 mg w/w) in the presence of 22.52 mg w/w cholesterol without sonication met the
requirements for an optimal formulation (achieving maximum values of EE percent and
Q6h and minimum values of PS, ZP (absolute value), and PDI less than 0.5. As depicted
in Table 5, this formulation exhibited EE percent values of 82.72 ± 2.33 percent, PS values
of 317.22 ± 6.43 nm, PDI values of 0.441 + 0.02, ZP values of −62.06 ± 0.07 mV, and
Q6h values of 70.95 ± 8.14 percent. Therefore, it was chosen as the optimal performing
formulation for further research.

Table 5. The experimental values of the optimized PRO–UFAs and PRO–CTS–UFAs (means ± SD,
n = 3).

Solution Span
Type

Oleic Acid
Amount

(mg)

Cholesterol
Amount

(mg)

Sonication
Time
(min)

EE% PS
(nm) PDI ZP

(mV)
Q6h
%

optimized
PRO–UFAs

Span
20 40 22.52 0 82.72 ± 2.33 317.22 ± 6.43 0.441 + 0.02 −62.06 ± 0.07 70.95 ± 8.14

PRO–CTS–
UFAs

Span
20 40 22.52 0 85.32 ± 2.65 336.12 ± 4.9 0.445 ± 0.03 65.24 ± 0.10 64.03 ± 1.9

3.4. Formulation and Characterization of PRO–CTS–UFAs

Based on the most effective PRO–UFAs, PRO–CTS–UFAs were created. As shown
in Table 5, the influence of CTS nanoparticles on dependent variables such as EE percent
(Y1) and particle size (Y2) and potential was investigated. The optimal PRO–UFAs and
PRO–CTS–UFAs had a particle size of 405.22 ± 6.43 and 424.12 ± 4.9 nm, respectively.
This increase in PS could validate the coating procedure. EE values for PRO–UFAs and
PRO–CTS–UFAs were 82.72 ± 2.33 percent and 85.32 ± 2.65 percent, respectively. In
addition, the zeta potential of freshly prepared optimal PRO–CTS–UFAs of 65.24± 0.10 mV
represented quality dispersion. The coating of UFAs by CTS altered negative zeta potential
values to positive values. In fact, the greatness of the zeta potential is an excellent indicator
of a colloidal system’s overall stability [129], while Q6h was performed and found to be
70.95 ± 8.14% and 64.03 ± 1.9% for optimal PRO–UFAs and PRO–CTS–UFAs, respectively.
The decrease in Q6h could be attributed to the increase in PS.

3.5. Transmission Electron Microscopy (TEM)

TEM analysis is a useful method for determining the nanovesicles’ shape, lamellar-
ity, and size [130]. Figure 2 depicts TEM micrographs of the optimized PRO–UFAs and
PRO–CTS–UFAs. The hypothesized vesicles were nanostructured, spherical, unilamellar,
non-agglomerating, and uniformly sized. The photomicrograph of PRO–CTS–UFAs, as
shown in Figure 2b, revealed a minor increase in particle size, elucidating the adsorption of
the CTS coat, which appeared as a very thin layer encircling the UFAs’ shell. Due to the
different analysis principles involved in each technique, the size obtained by transmission
electron microscopy (TEM) is smaller than that obtained by dynamic light scattering using
a Zetasizer NanoZS (Malvern Instrument). The resultant size distribution of dynamic light
scattering (DLS) is the average hydrodynamic size of the nanoparticles and is frequently
influenced by the presence of large particles, dust, or aggregates [131]. The nanoparticles
measured by DLS techniques, in particular, are in solution surrounded by nonmoving
layers of the used medium, which increases their measured diameter. However, micro-
scopic investigation by TEM is mostly based on nanoparticle tracking analysis (NTA),
and observations are typically conducted following nanoparticle droplet air-drying on
the TEM grid as a standard technique. NTA is a technology that uses numbers to track
single nanoparticles (single-particle tracking) [131]. The latter can therefore provide an
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accurate number-based average dimension with minimal bias for artifact-free samples [132].
Consequently, DLS analysis will yield a larger size than TEM analysis.
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3.6. Physical Stability Study

The EE percentage, vesicle size, and zeta potential of the optimized PRO–UFAs and
PRO–CTS–UFAs were assessed as the primary storage stability parameters after 30, 60,
and 90 days. During storage, both aggregation and abnormality were not observed. As
depicted in Figure 3, the PRO EE percentage, vesicle size, and potential did not change
significantly during the 90 days storage (p > 0.05), indicating that the nanoformulations
were kinetically stable. The apparent increased stability highlights the significance of
the oleic acid/span/cholesterol combination. To keep the ufasomal membrane stable,
cholesterol prevents the polar head groups of SPC in the bilayer from interfering with one
other’s electrical shells and increases the distance between the phospholipid chains [133].
In addition, this high stability could be attributed to the custom-made nanovesicles’ small
particle size and narrow size distribution. Additionally, PRO–UFAs and PRO–CTS–UFAs
exhibited a high potential (>25 mV), which may contribute to colloidal stability and prevent
vesicle aggregation [134]. As shown in Figure 3b, CTS’s protective layer-covered vesicles
contributed to overall stability [134]. Our findings indicated that the amount of CTS
necessary to coat particles with opposite charges in the optimized formulation was sufficient
to produce a stable dispersion without a separation phase.

Figure 3. Effect of storage on EE%, particle size, and ζ potential of (a) PRO–UFAs and (b) PRO–CTS–UFAs.
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3.7. Ex Vivo Skin Permeation Study

Ex vivo permeation studies shed light on the in vivo effectiveness of a transdermal
medication delivery method. The permeability of PRO from UFAs and PRO-CTS-UFAs via
excised skin was investigated to compare its permeation profile to that of PRO solution. The
cumulative amount of PRO penetrated per unit area through chosen UFAs and CTS–UFAs
relative to PRO solution as a function of time was depicted in Figure 4. As shown in Table 6,
CTS–UFAs had Q24 values of 380.05 ± 13.4 (g/cm2), Kp values of 0.0169 ± 0.0007 (cm/hr),
lag times of 50.63 ± 2.23 min, and steady-state flux values of 16.98 ± 0.12 (g/cm2/h) com-
pared to 181.61 ± 10.5 (g/cm2) and Kp values of 0.00812. In reality, oleic acid could
potentially disrupt the skin barrier. According to other studies [135,136], oleic acid can
disrupt the epidermal barrier by dissolving the stratum corneum’s lipid chain. This discov-
ery is consistent with previous ones. Rowat and colleagues discovered that oleic acid can
cause phase separation in a simulated stratum corneum membrane containing bovine brain
ceramide, cholesterol, and palmitic acid, which changes the structure and permeability of
the stratum corneum [137]. Since oleic acid increases skin permeation by stimulating epi-
dermal lipid bilayer fluidization and corneocyte shrinkage via keratin condensation [138],
resulting in the enlargement of aqueous pores for transdermal drug delivery [138], oleic
acid-containing vesicles are expected to enable hydrophilic drug transportation through
the skin. In addition, the surface charge of the PRO–CTS–UFAs was the essential aspect in
deciding how the CTS may improve skin drug delivery. [139,140]. CTS coating conferred
a positive surface charge to UFAs, which provided a crucial function in interacting with
the SC’s negative charge to enhance the diffusion of the drug. The potential for positive
polymer CTS to disrupt the tight connections of negative charges in the skin, accelerating
the distribution of PRO–CTS–UFAs, is another hypothesized mechanism [141]. Moreover,
the bio-adhesion force of CTS caused the vesicle to remain in contact with the skin for a
longer period, leading to higher skin diffusion and penetration [92].

Figure 4. Ex vivo permeation study of PRO–CTS–UFAs compared to PRO solution and PRO–UFAs.

Table 6. Ex vivo permeation parameters of PRO-CTS- UFAs and optimized PRO–UFAs versus
PRO solution.

Formulation Lag Time
(min)

Jss
(µg/cm2 h)

Kp
(cm/h) EI

PRO–CTS–UFAs 50.63 ± 2.23 16.98 ± 0.12 0.0169 ± 0.0007 2.45
optimized PRO–UFAs 66.13 ± 4.34 8.12 ± 0.45 0.0082 ± 0.0013 1.19

PRO solution 146.78 ± 10.13 6.91 ± 0.12 0.0069 ± 0.0010 -
Jss: drug flux; Kp: permeability coefficient; EI: enhancement index. Data are mean values (n = 3).
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3.8. In Vivo Pharmacological Study
3.8.1. Biochemical Measurement
Catalase Activity

In the current study, we aimed to assess a new preparation of PRO–CTS–UFAs gel
against sciatic nerve neurological disorder induced via subjecting male albino rats to
cisplatin, compared to PRO–UFAs gel and PRO solution. Since it keeps drug concentration
within the therapeutic window for an extended period of time, the transdermal formulation
can ensure that medication levels do not fall below the minimum effective concentration
or rise above the maximum effective concentration [142]. Thus, our data presented that
normal catalase levels is 5.40 ± 0.14 mg/g tissue. In contrast, cisplatin induction was
significantly decreased to 1.16 ± 0.19 mg/g tissue (21.48%) compared to normal control
rats, where treatments with PRO solution and PRO–UFAs gel improved tissue levels to
3.49 ± 0.28 mg/g tissue (300.86%) and 2.31 ± 0.17 mg/g tissue (199.14%), respectively,
compared to the positive control. In rats treated with PRO–CTS–UFA gel, their CAT tissue
levels were approximately restored to normal levels of 4.42 ± 0.23 mg/g tissue (381.03%)
compared to the cisplatin group, Figure 5.

Figure 5. Effect of thirty days’ treatment with PRO solution, PRO–UFAs gel, and PRO–CTS–UFAs gel
on sciatic nerve catalase activity in cisplatin-induced neuropathy. Values are mean± SD (n = 8). Data
were analyzed by one-way ANOVA followed by Post Hoc Tukey for multiple comparisons. ANOVA;
a Significant difference in comparison with the control group. b Significant difference in comparison
with cisplatin positive control group c Significant difference in comparison with PRO–UFAs gel and
d Significant difference in comparison with PRO–CTS–UFAs gel at (p < 0.05).

Khodaei et al. [143] demonstrated that mice multiple sclerosis model induction sig-
nificantly affected catalase protein levels in both the sciatic nerve and spinal cord. Ad-
ditionally, a cisplatin-induced neuropathy model affected catalase levels protected by
co-administration of melatonin, revealing its potent antioxidant activity [144]. Recently, the
role of propranolol in tumor suppression oxidative stress in neural macrophages has been
reported by targeting β adrenergic receptors [145]. Its neuroprotective effect in several
models of transient focal stroke was attributed to its antioxidant and free radical scavenger
properties [146,147]. Propranolol, a potent membrane anti-peroxidative, exhibited cardio-
protection against the ischemia/reperfusion rat model restoring catalase content [148,149].
Moreover, propranolol administration reduces post-traumatic brain injury mobilization
and microvascular permeability in the murine penumbral neuro vasculature, cerebral
edema, and brain oxidative stress [149]. Interestingly, beta-blockade was reported to have
antioxidant potentials in different models, owing to the regulation of mitochondrial poly-
ADP-Ribose polymerase/cAMP/protein kinase A axis [48,150]. Finally, propranolol could



Pharmaceutics 2022, 14, 1536 18 of 33

act as a transdermal PNI treatment agent based on its antioxidant effect, evident in the
current study, from significant corrections in tissue levels of CAT in cisplatin PNI rats
receiving propranolol Figure 5.

Oxidative Markers

GSH is a natural endogenous antioxidant produced by the liver as a peroxidase
scavenger [151]. Consequently, it plays an essential role in treating cisplatin-induced sciatic
nerve impairment. The antioxidant effect of PRO-CTS–UFAs gel was refected by regulating
both GSH and MDA. There was a significant increase in GSH by 420.09% and mitigation
of MDA by 21.15% at (p < 0.05) compared to the cisplatin positive control group, while
restored MDA levels to normal with a significant GSH difference at (p < 0.05) compared to
the normal control group (Figure 6a,b). PRO solution and PRO–UFAs gel had improved
tissue levels of GSH by 258.62% and 168.97% and MDA by 41.46% and 70.99%, respectively,
compared to the cisplatin positive control group at (p < 0.05), as shown in Figure 6.

Figure 6. Effect of thirty days of treatment with PRO solution, PRO–UFAs gel, and PRO–CTS–
UFAs gel on sciatic nerve GSH (a) and MDA (b) against cisplatin-induced neuropathy. Values are
mean ± SD (n = 8). Data were analyzed by one-way ANOVA followed by Post Hoc Tukey for multiple
comparisons. ANOVA; a Significant difference in comparison with the control group. b Significant
difference in comparison with cisplatin positive control group. c Significant difference in comparison
with PRO solution, d significant difference in comparison with PRO–UFAs gel, and e significant
difference in comparison with PRO–CTS–UFAs gel at (p < 0.05.).

Previous research has found that propranolol reduces oxidative stress and
inflammation [152,153]. Propranolol has been reported as a potent antioxidant due to
its ability to suppress superoxide anions that have beneficial effects on endothelial dys-
function treatment [154]. β-adrenergic antagonists are extensively expressed in peripheral
neurons and play an essential role in controlling chronic pain [155]. Previous data revealed
that β1-, β2-, and β3 receptors in the osteosarcoma mouse model contribute to the presence
of pain, but by administration of beta blockers, the pain was diminished [156]. All these
studies confirmed our results on propranolol neurological role.

Furthermore, Abdel Salam et al. [157] revealed that concurrent administration of the
propranolol was associated with reduced liver injury, involving decreased hepatic oxidative
stress. Abdel-Wahab et al. [158] demonstrated the cardioprotective effects of propranolol on
clozapine-induced myocarditis by inhibiting oxidative stress, inflammation, and reducing
cell apoptosis. In agreement, the antioxidant effect of non-selective adrenergic antagonist
carvedilol was reported in an animal model of brain injury [159]. Additionally, it was
reported that β-blockers could protect against experimentally induced hepatotoxicity [160]
and nephrotoxicity [161], owing to their antioxidant potential. Sherif et al. [162] recom-
mended the addition of propranolol in acute theophylline toxicity, proving the oxidative
stress mechanism’s role in theophylline toxicity.

Gene Expression of Peripheral Myelin 22 by the Real-Time PCR

The human nervous system consists of a unique structure of myelin sheaths that
contributes to electrical nerve signals transmission and participates in many other vital
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physiological effects [163]. Therefore, nerve impulse conduction in the case of myelinated
nerve fibers is faster than with the unmyelinated ones [164]. Formerly, if they are injured,
it will take a long time to repair and remyelinate, a typical pathological manifestation of
peripheral neuronal damage [165]. On that basis, we hypothesized that cisplatin-induced
sciatic nerve injury leads to peripheral myelin 22 damage due to neuronal disorder. Our
results indicated that the mean value of peripheral myelin 22 of the rats subjected to cisplatin
was 16.19± 0.36, significantly higher than that of the control group by 133.51%. PRO–UFAs
gel treated group showed significantly lower peripheral myeline 22 gene expression group
by 86.41% compared to cisplatin positive control group, while the PRO–CTS–UFAs gel
and PRO solution treated group restored peripheral myelin 22 levels almost to normal
compared to the cisplatin positive control group, Figure 7.

Figure 7. Effect of thirty days’ treatment with PRO solution, PRO–UFAs gel, and PRO–CTS–UFAs gel
on sciatic nerve peripheral myelin 22 gene expression against cisplatin-induced neuropathy. Values
are mean ± SD (n = 8). Data were analyzed by one-way ANOVA followed by Post Hoc Tukey
for multiple comparisons. ANOVA; a Significant difference in comparison with the control group.
b Significant difference in comparison with cisplatin positive control group at (p < 0.05).

Additionally, it was reported that the highly expressed adrenaline and noradrenaline,
as in multiple sclerosis, induced the proliferation of the specific neoantigens in the draining
lymph nodes [166]. Furthermore, the experimentally induced stroke mice model revealed
the trigger of sympathetic stimulation-induced immunodeficiency as a defense mechanism
for inflammation and infection-induced injury [167]. Indeed, the sympathetic nervous
system developed a key regulatory role in modulating the immune system either in steady-
state or in inflammation and tissue damage [168]. All these previous works confirmed
that we could proceed with immunomodulatory, antioxidant, anti-inflammatory, and
anti-apoptotic effects by inhibiting adrenergic activity.

3.8.2. Histopathology
H&E Staining

Sciatic nerve sections obtained from normal control rats showed the normal histologi-
cal structure of the sciatic nerve, expressed as closely packed nerve fibers with occasional
endoneurial blood vessels and each individual nerve fiber and a central axon surrounded
by a sheath of myelin. Rats subjected to intraperitoneal injection of cisplatin reveal marked
nerve fibers’ demyelination associated with Wallerian degeneration and vacuolation of
nerve fibers, along with the dispersion of nerve fibers with excessive edema and observed
perineuritis in some areas characterized by numerous mononuclear inflammatory cells’
infiltration (Figure 8).
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Figure 8. Photomicrographs of sciatic nerve of 30-days daily dorsal application administration
of PRO solution, PRO–UFAs gel, and PRO–CTS–UFAs gel against cisplatin-induced sciatic nerve
injury (H&E; 25x); Top left (a) A normal control rat section showing normal histological structure
of myelinated nerve fibers (black arrow); Top middle (b) An cisplatin positive control rat section
showing demyelination of nerve fibers with a Wallerian degeneration coupled with significant
presence of abundant edema with inflammatory cells infiltration in the surrounding tissue (black
arrows); Top right (c) PRO solution group revealed numerous congested blood capillaries coupled
with mild inflammation in the nerve sheath (black arrows); Bottom left (d) PRO–UFAs gel section
represents demyelination and vacuolated nerve fibers (black arrows), with a numerous mononuclear
inflammatory cells infiltration in the perineuronal tissue (black star); Bottom middle (e) PRO–CTS–
UFAs gel investigation apparently with normal myelinated nerve fibers in several examined sections
coupled with few mildly dilated of endoneurial blood vessels associated with mild inflammation in
the perineuronal tissue (black arrow).

On the other hand, PRO solution-treated rats showed mild to moderate perineuritis
with mild congested blood capillaries and severe myositis. This is characterized by nu-
merous mononuclear inflammatory cell infiltrations associated with the necrosis of muscle
bundles, which sometimes affect nerve fibers. Additionally, the PRO–UFAs’ gel treated
group recorded slight improvement coupled with marked neuritis that exhibited numerous
inflammatory cells’ infiltration and vacuolated and demyelinated fibers. Moreover, exces-
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sive perineuritis with adjacent muscle bundles necrosis and accumulation of eosinophilic
and karyorrhectic tissue debris were recognized. In contrast, PRO–CTS–UFAs gel showed
a significant nerve improvement in longitudinal section investigation, apparently with
normal myelinated nerve fibers in several examined sections coupled with a few mildly
dilated endoneurial blood vessels associated with mild inflammation in the perineuronal
tissue (Figure 8).

Kamisli et al. [169] revealed histopathological changes in rats subjected to cisplatin,
shrinkage of the cytoplasm, and extensively dark pyknotic nuclei in neurons of the cerebral
cortex tissue. In addition, Abdelsameea et al. [15] showed the presence of significant de-
myelination coupled with Wallerian degeneration of nerve fibers resulting in congestion.
Moreover, propranolol also demonstrates prophylactic therapy for joint pain restoring the
histological structure to reflect the low-grade severity of inflammation [170]. Furthermore,
minimal confluent necrosis and edema are seen in propranolol (10 mg kg−1) treated rats
with myocardial infarction [171]. In addition, Esmaeeli et al. [172] revealed that propranolol
administration decreased the harmful effects of cisplatin on radiotracer uptake, histological
manifestations that may provide potential benefits in the cisplatin nephrotoxicity model.
Furthermore, arthritic rat sections treated with non-selective β-blocker carvedilol exhib-
ited relatively small region damage to the articular surface, thicker articular cartilage,
subchondral bone, and a degree of hypercellularity and cloning [48]. Based on previous
research, propranolol potentiates the adrenergic receptor blockade, linked to possible
histopathological changes in different animal models.

Immunohistochemical Staining

The radiation-induced neuropathy of the sciatic nerve has reported the presence of
tissue apoptosis and confirmed dysregulation of Bcl-2 and Bax expression in sciatic nerve
tissue [173–175]. In addition, the cisplatin-resistant ovarian cancer cell line model also ex-
hibited apoptosis via intrinsic and extrinsic mechanisms incorporating p53 alterations [176].
Bcl-2 family proteins’ expression abnormality and upregulation of apoptosis inhibitors that
block the effect of caspases and stabilize the mitochondrial permeability pore [177,178]. Our
study evaluated the apoptotic effect on sciatic nerve BCL-2 associated x immunohistochem-
ical examination for the normal control group that showed negative expression of BCL-2
in sciatic nerve fibers. In contrast, cisplatin positive control one showed a strong positive
expression in nerve fibers. PRO–CTS–UFAs gel revealed a mild expression of BCL-2 associ-
ated x, while PRO solution and PRO–UFAs gel showed a moderate expression (Figure 9).
In agreement, previous studies reported that propranolol significantly downregulates B cell
lymphoma-2 and BCl-2 associated X protein, which may be related to the TLR4/NF-κB (p65)
signal in isoproterenol-induced myocardial fibrosis in mice [179–181]. Recently, studies
demonstrated that propranolol revealed significant suppression of p38 protein expression
that primarily regulates cell proliferation, migration, cell differentiation, and BCL-2 family,
inhibiting apoptosis [182,183]. In addition, BCl-2 is considered a tissue homeostasis indi-
cator in vascular, heart, and neurodegenerative diseases [184,185]. Additionally, several
studies reported the role of hyperglycemia-induced peripheral neuropathy associated with
decreased BCl-2, increased Bax, cleaved caspase-3, and cell apoptosis [186–188].

The myelin basic protein (MBP) is a critical regulatory protein for the myelination
of nerves, as it maintains the myelin structure and membrane lipid interaction [189,190].
It is an indicator that reflects the amount of myelin and its expression level in myelin
sheath damage [191], plays a critical role in supporting neuronal functions [192,193]. Our
experimental results illustrated that the MBP control group showed normal expression
in sciatic nerve fibers in contrast with the cisplatin positive control group, which showed
a remarkable decrease in MBP expression in nerve fibers. Enhanced expression of MBP
was observed for the PRO–CTS–UFAs gel treated group, while moderate expression was
detected in PRO solution and PRO–UFAs gel (Figure 9).
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and (1d) PRO–UFAs gel group showing moderate expression BCL-2 associated x; in contrast (1e) 
PRO–CTS–UFAs gel investigation revealed a mild expression. Furthermore, immunostaining 
myelin basic protein (MBP) revealed that (2a) MBP normal control group showed normal 
expression. Meanwhile, marked decreased expression was detected in nerve fibers of cisplatin 
positive control group (2b). Moderate expression was detected in PRO solution and PRO–UFAs gel 
(2c,d), while enhanced expression of MBP was observed for the PRO–CTS–UFAs gel treated group 
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solution and PRO–UFAs gel, (3e) limited expression of TNF-α was observed in PRO–CTS–UFAs 
gel. 
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Figure 9. Photomicrographs of rat sciatic nerve sections (immunostained; 15×) for BCL-2 associated
x showing the effect of 30-day daily dorsal application administration of PRO solution, PRO–UFAs
gel, and PRO–CTS–UFAs gel against cisplatin-induced sciatic nerve injury. (1a) A normal control rat
section showing normal showing negative expression of BCL-2 associated x; (1b) A cisplatin positive
control rat section showing strong positive expression; additionally, both (1c) PRO solution and
(1d) PRO–UFAs gel group showing moderate expression BCL-2 associated x; in contrast (1e) PRO–
CTS–UFAs gel investigation revealed a mild expression. Furthermore, immunostaining myelin basic
protein (MBP) revealed that (2a) MBP normal control group showed normal expression. Meanwhile,
marked decreased expression was detected in nerve fibers of cisplatin positive control group (2b).
Moderate expression was detected in PRO solution and PRO–UFAs gel (2c,d), while enhanced
expression of MBP was observed for the PRO–CTS–UFAs gel treated group (2e). Additionally, TNF α

immunostained (3a) normal control group showed an absence of its expression in sciatic nerve fibers;
(3b) the cisplatin positive control group reveals a strong positive expression for TNF α in nerve fibers.
While (3c,d) moderate expression was detected in PRO solution and PRO–UFAs gel, (3e) limited
expression of TNF-α was observed in PRO–CTS–UFAs gel.
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Previous data indicated that cisplatin-induced sciatic nerve demonstrated heat hy-
poalgesia that induced demyelination with delayed impulse conduction and MBP ex-
pression [194,195]. Additionally, attributed apoptosis of Schwann cells (SC) is present by
cisplatin administration [196,197]. The spinal cord microglia model demonstrated that
propranolol treatment decreases interleukins’ production and frequency of spinal cord Th17
cells, enhancing MBP expression [55,198]. Furthermore, propranolol improved functional
disability, tremors, and ataxia in multiple sclerosis, restoring MBP [199,200]. All these
reports confirmed our results that propranolol administration along with cisplatin protects
rats’ sensory and motor neuropathy, evidenced by enhancement of MBP expression.

Additionally, cisplatin induced neurotoxicity with a severe inflammatory and proin-
flammatory mediator’s induction, such as TNF α and NF-κB [201,202]. TNF-α is an
essential mediator of chronic inflammation and a significant contributor to peripheral nerve
injury and neuropathic pain [203,204]. In PNI, endogenous TNF-α is immediately released
by resident cells, such as Schwann cells and macrophages, leading to elevated levels of
TNF-α at the site of injury [205,206]. Our results observed that TNF α was not expressed in
sciatic nerve fibers of the normal control group. In contrast, the cisplatin positive control
group revealed a strong positive expression for TNF α in nerve fibers. Limited expression
of TNF-α was observed in PRO–CTS–UFAs gel, while moderate expression was detected
in PRO solution and PRO–UFAs gel (Figure 9).

Previous studies reported that in the CCI-induced neuropathy model, the TNF-α,
IL-1β signals, and infiltration of CD68+ inflammatory cells induced a partial decrease
after nerve release [207,208]. Our study showed that TNF-α signaling was an essential
feature of PNS autoimmunity [209], since TNF-α expression limitation protected against
PIN [210,211]. However, activation of TNF-α triggers many proteins involved in apopto-
sis [212,213]. Additionally, treatment with non-selective adrenergic antagonist carvedilol
suppresses pro-inflammatory cytokines TNF-α in a complete Freund’s adjuvant-induced
rat rheumatoid arthritis model [48,214,215]. In addition, propranolol exhibits adjuvant
activity in the breast cancer vaccine model by modulating cytokines and TNF-α [216,217].
Propranolol was also reported to control acute ischemic stroke patients with lymphopenia
through its role in enhancing TNF-α, IL-10, and TNF-α/IL-10 [218,219]. Furthermore, it
was reported to protect dopaminergic neurons in rats with experimentally induced parkin-
sonism TNF-α production suppression [220,221]. According to De Arajo Jnior et al. [222],
carvedilol could suppress the production of TNF- and other cytokines in a peritonitis
animal model. This was consistent with previous research demonstrating propranolol’s
anti-inflammatory potential in various animal models, which was mediated by suppression
of pro-inflammatory cytokines such as TNF-α [223,224]. Previous studies have speculated
that propranolol exerts therapeutic effects on neuropathic pain-related pathogenesis based
on its immunomodulatory, anti-inflammatory, and antioxidant potentials.

4. Conclusions

This is the first trial to use CTS-coated UFAs hydrogel loaded with PRO as a bioactive
scaffold for treating PNI in a rat model. The optimized nanoparticles were 336.12 nm in
size, had a surface charge of 65.24 mV, 85.32 percent entrapment, and were highly stable.
PRO–CTS–UFAs had better permeability and a longer release time in ex vivo permeability
and release experiments. In vivo experiments revealed that the PRO–CTS–UFAs-treated
group had significantly lower MDA levels, as well as lower peripheral myelin 22 gene
expression; however, CAT and GSH levels were elevated. Furthermore, histopathological
examination investigated normal myelinated nerve fibers with mild inflammation. In
addition, immune staining sections represented MBP re-expression, BCL-2 mild expression,
and absence of TNF-α expression. Our research presented a novel opportunity for the
efficient delivery of PRO via CTS–UFAs assembly, which may be beneficial for treating
cisplatin-induced sciatic nerve damage. However, additional pharmacokinetic studies on
suitable animal models should be conducted to demonstrate the superiority and safety of
the customized PRO–CTS–UFA over conventional medications.
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Induced Peripheral Neuropathy: A New Hope? Nutrients 2022, 14, 625. [CrossRef]

11. Dos Santos, N.A.G.; Ferreira, R.S.; Dos Santos, A.C. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective
agents. Food Chem. Toxicol. 2020, 136, 111079. [CrossRef]

12. Van den Boogaard, W.M.; Komninos, D.S.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers
2022, 14, 627. [CrossRef]

13. Berta, T.; Qadri, Y.; Tan, P.H.; Ji, R.R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain.
Expert Opin. Ther. Targets 2017, 21, 695–703. [CrossRef]

14. Zhuo, M.; Gorgun, M.F.; Englander, E.W. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from
impediment of mtDNA synthesis and compromise of mitochondrial function. Free. Radic. Biol. Med. 2018, 121, 9–19. [CrossRef]
[PubMed]

15. Abdelsameea, A.A.; Kabil, S.L. Mitigation of cisplatin-induced peripheral neuropathy by canagliflozin in rats. Naunyn-
Schmiedeberg’s Arch. Pharmacol. 2018, 391, 945–952. [CrossRef] [PubMed]

16. Avan, A.; Postma, T.J.; Ceresa, C.; Avan, A.; Cavaletti, G.; Giovannetti, E.; Peters, G.J. Platinum-induced neurotoxicity and
preventive strategies: Past, present, and future. Oncologist 2015, 20, 411–432. [CrossRef]

http://doi.org/10.1177/09636897221093312
http://doi.org/10.1016/j.ijbiomac.2020.03.155
http://www.ncbi.nlm.nih.gov/pubmed/32198035
http://doi.org/10.3390/ijms20061451
http://www.ncbi.nlm.nih.gov/pubmed/30909387
http://doi.org/10.3390/ijms22041975
http://www.ncbi.nlm.nih.gov/pubmed/33671279
http://doi.org/10.4067/S0717-95022019000200509
http://doi.org/10.1093/neuonc/noaa151
http://doi.org/10.3390/nu14030625
http://doi.org/10.1016/j.fct.2019.111079
http://doi.org/10.3390/cancers14030627
http://doi.org/10.1080/14728222.2017.1328057
http://doi.org/10.1016/j.freeradbiomed.2018.04.570
http://www.ncbi.nlm.nih.gov/pubmed/29698743
http://doi.org/10.1007/s00210-018-1521-5
http://www.ncbi.nlm.nih.gov/pubmed/29862426
http://doi.org/10.1634/theoncologist.2014-0044


Pharmaceutics 2022, 14, 1536 25 of 33

17. Unchiti, K.; Leurcharusmee, P.; Samerchua, A.; Pipanmekaporn, T.; Chattipakorn, N.; Chattipakorn, S.C. The potential role of
dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur. J. Neurosci.
2021, 54, 7006–7047. [CrossRef] [PubMed]

18. Bilir-Yildiz, B.; Sunay, F.B.; Yilmaz, H.F.; Bozkurt-Girit, O. Low-intensity low-frequency pulsed ultrasound ameliorates sciatic
nerve dysfunction in a rat model of cisplatin-induced peripheral neuropathy. Sci. Rep. 2022, 12, 8125. [CrossRef]

19. Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms?
Neurosci. Lett. 2015, 596, 90–107. [CrossRef]

20. Khadrawy, Y.A.; El-Gizawy, M.M.; Sorour, S.M.; Sawie, H.G.; Hosny, E.N. Effect of curcumin nanoparticles on the cisplatin-induced
neurotoxicity in rat. Drug Chem. Toxicol. 2019, 42, 194–202. [CrossRef]

21. Zaki, S.M.; Mohamed, E.A.; Motawie, A.G.; Fattah, S.A. N-acetylcysteine versus progesterone on the cisplatin-induced peripheral
neurotoxicity. Folia Morphol. 2018, 77, 234–245. [CrossRef]

22. Fan, H.C.; Lee, H.S.; Chang, K.P.; Lee, Y.Y.; Lai, H.C.; Hung, P.L.; Lee, H.F.; Chi, C.S. The impact of anti-epileptic drugs on growth
and bone metabolism. Int. J. Mol. Sci. 2016, 17, 1242. [CrossRef]

23. Yang, P.; Yang, Y.; Sun, P.; Tian, Y.; Gao, F.; Wang, C.; Zong, T.; Li, M.; Zhang, Y.; Yu, T.; et al. βII spectrin (SPTBN1): Biological
function and clinical potential in cancer and other diseases. Int. J. Biol. Sci. 2021, 17, 32–49. [CrossRef]

24. Bosco, F.; Guarnieri, L.; Nucera, S.; Scicchitano, M.; Ruga, S.; Cardamone, A.; Maurotti, S.; Russo, C.; Coppoletta, A.R.;
Macrì, R.; et al. Pathophysiology Aspects of Muscle Atrophy and Osteopenia Induced by Chronic Constriction Injury (CCI) of
the Sciatic Nerve in Rat. Res. Sq. 2022. [CrossRef]

25. Stoy, L. Combinational Effects of Body Weight Supported Treadmill Training and Bioengineering Scaffold Releasing Neu-
rotrophins on Forelimb and Hindlimb Bone Biomechanics After Spinal Cord Injury. Master’s Thesis, Widener University,
Chester, PA, USA, 2022.

26. Samadian, H.; Ehterami, A.; Sarrafzadeh, A.; Khastar, H.; Nikbakht, M.; Rezaei, A.; Chegini, L.; Salehi, M. Sophisticated
polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve
regeneration: In vitro and in vivo study. Int. J. Biol. Macromol. 2020, 150, 380–388. [CrossRef] [PubMed]

27. Muheremu, A.; Ao, Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Res. Int.
2015, 2015, 237507. [CrossRef]

28. Lin, T.S.; Jeng, S.F. Full-thickness skin graft as a one-stage debulking procedure after free flap reconstruction for the lower leg.
Plast. Reconstr. Surg. 2006, 118, 408–412. [CrossRef] [PubMed]

29. Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014,
35, 6143–6156. [CrossRef]

30. Ai, J.; Kiasat-Dolatabadi, A.; Ebrahimi-Barough, S.; Ai, A.; Lotfibakhshaiesh, N.; Norouzi-Javidan, A.; Saberi, H.; Arjmand, B.;
Aghayan, H.R. Polymeric scaffolds in neural tissue engineering: A review. Arch. Neurosci. 2014, 1, 15–20. [CrossRef]

31. Nisbet, D.R.; Crompton, K.E.; Horne, M.K.; Finkelstein, D.I.; Forsythe, J.S. Neural tissue engineering of the CNS using hydrogels.
J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 251–263. [CrossRef]

32. Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [CrossRef]
33. Singh, S.K.; Dhyani, A.; Juyal, D. Hydrogel: Preparation, characterization and applications. Pharma Innov. 2017, 6, 25–32.
34. Yan, J.; Yao, Y.; Yan, S.; Gao, R.; Lu, W.; He, W. Chiral protein supraparticles for tumor suppression and synergistic immunotherapy:

An enabling strategy for bioactive supramolecular chirality construction. Nano Lett. 2020, 20, 5844–5852. [CrossRef]
35. Lai, W.F.; Gui, D.; Wong, M.; Döring, A.; Rogach, A.L.; He, T.; Wong, W.T. A self-indicating cellulose-based gel with tunable

performance for bioactive agent delivery. J. Drug Deliv. Sci. Technol. 2021, 63, 102428. [CrossRef]
36. George, J.; Hsu, C.C.; Nguyen, L.T.B.; Ye, H.; Cui, Z. Neural tissue engineering with structured hydrogels in CNS models and

therapies. Biotechnol. Adv. 2020, 42, 107370. [CrossRef] [PubMed]
37. Madhusudanan, P.; Raju, G.; Shankarappa, S. Hydrogel systems and their role in neural tissue engineering. J. R. Soc. Interface

2020, 17, 20190505. [CrossRef] [PubMed]
38. Jiang, X.; Lim, S.H.; Mao, H.Q.; Chew, S.Y. Current applications and future perspectives of artificial nerve conduits. Exp. Neurol.

2010, 223, 86–101. [CrossRef] [PubMed]
39. Angius, D.; Wang, H.; Spinner, R.J. A systematic review of animal models used to study nerve regeneration in tissue-engineered

scaffolds. Biomaterials 2012, 33, 8034–8039. [CrossRef]
40. Sato, T.; Ishii, T.; Okahata, Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on

the transfection efficiency. Biomaterials 2001, 22, 2075–2080. [CrossRef]
41. Jiang, X.; Dai, H.; Leong, K.W.; Goh, S.H.; Mao, H.Q.; Yang, Y.Y. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via

intrabiliary and intraportal infusions. J. Gene Med. 2006, 8, 477–487. [CrossRef]
42. Chen, M.H.; Hsu, Y.H.; Lin, C.P.; Chen, Y.J.; Young, T.H. Interactions of acinar cells on biomaterials with various surface properties.

J. Biomed. Mater. Res. Part A 2005, 74, 254–262. [CrossRef]
43. Lin, S.J.; Jee, S.H.; Hsaio, W.C.; Lee, S.J.; Young, T.H. Formation of melanocyte spheroids on the chitosan-coated surface.

Biomaterials 2005, 26, 1413–1422. [CrossRef]
44. Wang, Y.C.; Lin, M.C.; Wang, D.M.; Hsieh, H.J. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering.

Biomaterials 2003, 24, 1047–1057. [CrossRef]

http://doi.org/10.1111/ejn.15474
http://www.ncbi.nlm.nih.gov/pubmed/34561931
http://doi.org/10.1038/s41598-022-11978-z
http://doi.org/10.1016/j.neulet.2014.10.014
http://doi.org/10.1080/01480545.2018.1504058
http://doi.org/10.5603/FM.a2017.0090
http://doi.org/10.3390/ijms17081242
http://doi.org/10.7150/ijbs.52375
http://doi.org/10.21203/rs.3.rs-1463017/v1
http://doi.org/10.1016/j.ijbiomac.2020.02.102
http://www.ncbi.nlm.nih.gov/pubmed/32057876
http://doi.org/10.1155/2015/237507
http://doi.org/10.1097/01.prs.0000227624.99710.ee
http://www.ncbi.nlm.nih.gov/pubmed/16874211
http://doi.org/10.1016/j.biomaterials.2014.04.064
http://doi.org/10.5812/archneurosci.9144
http://doi.org/10.1002/jbm.b.31000
http://doi.org/10.1016/j.addr.2008.08.002
http://doi.org/10.1021/acs.nanolett.0c01757
http://doi.org/10.1016/j.jddst.2021.102428
http://doi.org/10.1016/j.biotechadv.2019.03.009
http://www.ncbi.nlm.nih.gov/pubmed/30902729
http://doi.org/10.1098/rsif.2019.0505
http://www.ncbi.nlm.nih.gov/pubmed/31910776
http://doi.org/10.1016/j.expneurol.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19769967
http://doi.org/10.1016/j.biomaterials.2012.07.056
http://doi.org/10.1016/S0142-9612(00)00385-9
http://doi.org/10.1002/jgm.868
http://doi.org/10.1002/jbm.a.30376
http://doi.org/10.1016/j.biomaterials.2004.05.002
http://doi.org/10.1016/S0142-9612(02)00434-9


Pharmaceutics 2022, 14, 1536 26 of 33

45. Wang, G.; Wang, X.; Huang, L. Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering:
A pilot study in vitro. Biotechnol. Biotechnol. Equip. 2017, 31, 766–773. [CrossRef]

46. Zhu, Z.; Zhou, X.; He, B.; Dai, T.; Zheng, C.; Yang, C.; Zhu, S.; Zhu, J.; Zhu, Q.; Liu, X. Ginkgo biloba extract (EGb 761) promotes
peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell. Mol. Neurobiol. 2015,
35, 273–282. [CrossRef] [PubMed]

47. Stüssel, P.; Dieckhoff, K.S.; Künzel, S.; Hartmann, V.; Gupta, Y.; Kaiser, G.; Veldkamp, W.; Vidarsson, G.; Visser, R.;
Ghorbanalipoor, S.; et al. Propranolol is an effective topical and systemic treatment option for experimental epidermolysis
bullosa acquisita. J. Investig. Dermatol. 2020, 140, 2408–2420. [CrossRef] [PubMed]

48. Ahmed, Y.M.; Messiha, B.A.S.; Abo-Saif, A.A. Granisetron and carvedilol can protect experimental rats againstadjuvant-induced
arthritis. Immunopharmacol. Immunotoxicol. 2017, 39, 97–104. [CrossRef]

49. Fujiu, K.; Manabe, I. Nerve–macrophage interactions in cardiovascular disease. Int. Immunol. 2022, 34, 81–95. [CrossRef]
[PubMed]

50. Mallick, R.; Duttaroy, A.K. Modulation of endothelium function by fatty acids. Mol. Cell. Biochem. 2022, 477, 15–38. [CrossRef]
[PubMed]

51. Wang, Q.Z.; Zhao, Z.L.; Liu, C.; Zheng, J.W. Exosome-derived miR-196b-5p facilitates intercellular interaction in infantile
hemangioma via down-regulating CDKN1B. Ann. Transl. Med. 2021, 9, 394. [CrossRef]

52. Sun, B.; Dong, C.; Lei, H.; Gong, Y.; Li, M.; Zhang, Y.; Zhang, H.; Sun, L. Propranolol inhibits proliferation and induces apoptosis
of hemangioma-derived endothelial cells via Akt pathway by down-regulating Ang-2 expression. Chem. Biol. Interact. 2020,
316, 108925. [CrossRef]

53. Li, H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev. Gastroenterol.
Hepatol. 2021, 15, 217–233. [CrossRef]

54. Wang, X.; Xu, J.; Kang, Q. Neuromodulation of bone: Role of different peptides and their interactions. Mol. Med. Rep. 2021, 23, 32.
[CrossRef]
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