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a b s t r a c t 

The understanding and implementation of object detection and classification algorithms help in deploying diverse 
applications of UAVs. There is a need for a simulated UAV dataset to incorporate a pipeline for various algorithms. 
To reduce human efforts, multiple simulators have been utilized to mimic the real-time behavior of drones. 
Our work inspired simulators and can be considered by engineering students to create a dataset in a simulated 
environment. In this paper, we focused on the study of MATLAB-based Simulink through multiple environment 
settings. The core objective of the paper is to create a simulated dataset from the utilized quadcopter-based flight 
control model in MATLAB-based Simulink. In this customized model, few modifications have been made to obtain 
drone videos to detect object categories such as pedestrians, other drones and obstacles while navigating in a 
simulated environment. Additionally, these simulated images are annotated for aerial image interpretation with 
multiple object categories. The dataset is annotated and is freely downloadable from: https://bit.ly/38jlAsh . In 
this research study, we mainly focus on the process of drone simulation in the MATLAB-based Simulink model. 
Further, the captured dataset is verified on state-of-the-art object detectors such as YoloV3, TinyYolov3 etc. by 
evaluating the authenticity of the dataset. 
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. Introduction 

Unmanned Aerial Vehicles (UAVs) commonly known as drones are
utonomous and meant to be hovering around a working area to gather
nformation for the deployment of computer vision-related applications
 McNeal, 2014 ). The applications of UAVs include human crowd de-
ection using Convolutional Neural Networks (CNN) ( Tzelepi & Tefas,
017 ); crop classifications ( George, Tiwari, Yadav, Peters & Sadana,
013 ); wildlife conservation ( Bondi, Dey, Kapoor, Piavis, Shah, Fang &
ambe, 2018 ); traffic monitoring through detection of vehicles ( Zhang,
ao & Mao, 2017 ); drone surveillance system for violent human ac-
ions identification ( Singh, Patil & Omkar, 2018 ); breach detection
nd mitigation ( Shijith, Poornachandran, Sujadevi & Dharmana, 2017 );
edestrian detections ( Ma, Wu, Yu, Xu & Wang, 2016 ); and identi-
cation of mosquito breeding areas ( Amarasinghe, Suduwella, Elviti-
ala, Niroshan, Amaraweera, Gunawardana & Keppetiyagama 2017 ).
he real-time hardware cost of UAVs is expensive and accessing them
equires high skilled training so it is not advisable to work on real-time
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AV data in initial scenarios. The utilization of aerial vehicles by naïve
sers’ for gathering data is potentially unsafe. As a promising solution,
fficient UAV-based simulators reduce the safety risks of maneuvering
AVs while monitoring important situations such as inspecting criti-
al infrastructure of disaster-affected spaces. The simulator capabilities
acilitate the fast acquisition of high-quality aerial data to promote valu-
ble insights to industries and promote research for developing comput-
ng paradigms for disaster emergency response stricken areas. The pre-
ented world-class simulators in this research work offer a great benefit
o research society through enabling real-time environments for test-
ng purposes. The applications of UAV-based simulators are diverse in
ature by providing navigation services ( Chen, Zhou, Yang, Chen, Li
 Wen, 2022 ), traffic surveillance ( Bashir, Boudjit & Zeadally, 2022 )
nd risk assessment ( Trepekli, Balstrøm, Friborg, Fog, Allotey, Kofie &
øller-Jensen, 2022 ; Utlu, ÖZTÜRK & Ş im ş ek, 2021 ). In this research

tudy, we explored Simulink, an add-on product in MATLAB which pro-
ides a visual editor, customizable libraries, and solvers for simulating
ynamic models. It is developed by MathWorks, which performs various
unctions such as matrix manipulations, implementation of algorithms,
nd creation of user interfaces. The aerospace blockset of MATLAB en-
bles us to incorporate vision-based algorithms into models and export
esults for further computations ( Dabney & Harman, 2004 ). A project
amed Quadcopter in Simulink is utilized for capturing the simulated

ata which mimics the behavior of a real drone. The simulated dataset 
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ith single and multiple instances of UAV objects is captured from this
imulated model. 

.1. Motivation for study 

Our study is focused on the need to analyze several UAV simulators
nd provide a simulated UAV dataset for young researchers to perform
omputer vision-related tasks. The efficient UAV-based simulators can-
ot harm human privacy and disturb airspace while reducing the safety
isks of maneuvering UAVs. The proposed study aims to provide a sim-
lated UAV dataset for further identification of aerial objects such as
edestrians, obstacles and other drones while navigating in the airspace.
urther, verified annotations for captured simulated UAV dataset are
rovided and validation through applying arbitrary classification and
etection algorithms is also presented. The main objectives of this pa-
er include: 

1. A simulated dataset of annotated tested images is generated for fur-
ther utilization for object detection purposes. 

2. A comparison of UAV-based network simulators for flight naviga-
tion. 

3. Exploring MATLAB-based Simulink for capturing dataset. 
4. Customized Simulink environmental settings for acquiring simulated

data belonging to multiple categories such as another drone, pedes-
trians and obstacles. 

The paper’s organization is as follows: Section 2 discusses the re-
ated work for the process of simulation and a brief history of available
imulators is given. The methodology process for achieving a simulated
ataset from Simulink for UAV objects is proposed in Section 3 . Further,
he sub-sections describe the different experiments through which cus-
omized settings can be done in the Simulink environment for the pro-
osed dataset. The simulated UAV dataset details are listed in Section 4 .
oreover, the comparison and validation of the proposed dataset is
entioned in Section 4 . The final section summarizes the performance

f the proposed simulated dataset on the standard object detection al-
orithms. 

. Related work 

The generic process of the simulation consists of designing models
elated to theoretical, mathematical or physical systems computed on
 computer machine. As a consequence, the development of a simu-
ated model provides a robust technical contribution to the UAVs com-
unity’s multitude of related applications. For example, the civilian air

orce of different countries is interested in developing a simulated model
hat emulates UAV behaviour during flight navigation, using a power-
ul simulator. More examples of simulators-based studies are presented
n ( Álvares, Silva & Magaia, 2021 ; Xiao, Ma, Tan, Cong & Wang, 2022 ;
ing, Dong, Wen, Wang, Guo, Kwok & Poor, 2021 ; Yaoming, Yu, An-
uan & Lingyu, 2021 ; Causa & Fasano, 2021 ; Lyu, Cao, Yuan & Xie,
021 ; Choi, Choi, Kim, Lee, Seo & Jun, 2021 ; Udroiu, Deaconu & Nanau,
021 ; Matlekovic, Juric & Schneider-Kamp, 2022 ). The process of simu-
ation helps users to initially access the working environment of drones
nd evaluates the performance of complex algorithms. There exist some
owerful UAV simulatorwhich are described below: 

Gazebo- Gazebo, a three-dimensional dynamic the simulator offers
 high degree of fidelity to users and accurately simulates robotics in
ndoor and outdoor complex environments. The typical applications of
azebo include regression testing with the real environment, design-

ng and testing robotics algorithms. It is an open-source simulator, cus-
omized for its own algorithms. The system requirements of Gazebo rely
n the configuration version but are currently best used with Ubuntu,
 version of Linux. This simulator majorly supports plugins, a soft-
are component that provides additional functionality to existing soft-
are, can analyze Robot Operating System (ROS) messages and calls
145 
or sensor-related input and output. The multiple plugins available in
azebo are camera, Inertial Measurement Unit (IMU) sensor, video, pla-
ar move and template for users who want to write their own plugin
 Koenig & Howard, 2004 ). 

AirSim - Aerial Informatics and Robotics Simulation (AirSim) simu-
ator used innovative deep learning knowledge to extract knowledge to
valuate the performance of different autonomous vehicles [4]. In UAVs,
nly quadcopter models are implemented in AirSim but users can add
ensors and robot models for their use. There exist three different views
o the observer such as view of real-time depth, drone’s and object seg-
entation with the viewpoint of the ground observer, fly with me and

irst Person View (FPV) mode. The majority code of AirSim is stored in
irSim Library (AirLib), a self-contained library that can be compiled
ith a C ++ compiler and composed of a physics engine, vehicle model,

ontrol library and sensor model. AirSim uses the directions of + X i.e.
orth, + Y i.e. East and + Z i.e. Down which is the Ned Coordinate Sys-

em and the initial point for the vehicle is (0,0,0) in the North, East and
own (NED) system. The objective of the AirSim simulator is to provide
n artificial intelligence-based research paradigm for simulating the be-
avior of autonomous vehicles. Further, a few popular simulators such
s YSFlight, AirSim and Gazebo are displayed in Fig. 1 . 

YSFlight - The simulator YSFlight is platform-independent, cus-
omized environment and has user-friendly interface. The user can
hoose their own choice of aircrafts, and military hummers for flying
urposes. It is completely free, easy to use, has aircraft choices, has a
ibrant community with many virtual groups, and events, and has been
n development since 1999. YSFlight has had over 1,000,000 downloads
n this time. The system requirements include OS which is XP/7/8, or
inux, or Mac OS X, Operating Speed 2.0 GHz or faster, equal or higher
han NVIDIA GeForce 520m / ATI Radeon 8000 GPU, 1GB or larger
AM, 5GB or larger hard disk capacity. YSFlight is a freeware flight
imulation game for Windows , OS X and Linux-based operating sys-
ems such as Ubuntu ( Nisansala, Weerasinghe, Dias, Sandaruwan, Kep-
itiyagama, Kodikara & Samarasinghe, 2015 ). 

Flight Gear - This multiplayer UAV simulator provides information
n flight and air traffic control simulation. It has multi-GPU, and multi-
creen support and can add new dynamic flight models in its interface.
sing Flight Gear v.2.0, several trajectories and different runways were

et up for computing tests on the models which provides an opportu-
ity to validate robustness, especially in cluttered scenes with multiple
athways ( Perry, 2004 ). The captured images are rendered in Flight
ear version 2.0.0 with the rendering options such as the resolution of
024 × 768, 55° field-of-view, anti-aliasing based 8X full-screen and 16X
nisotropic filtering. 

Avionics - The cockpit is included in aircraft design for providing
arning related to weather monitoring and anti-collision of UAVs in

he Avionics simulator. There are several major vendors of flight avion-
cs: Panasonic Avionics Corporation, Honeywell, and Universal Avionics
ystem Corporation. This project aims at advancing software designs for
nterfaces, sensors and cockpit systems ( Kayton & Fried, 1997 ). 

X-Plane – X-Plane is a flight simulator developed by laminar re-
earch and can be used professionally or personally with macOS, Win-
ows, and Linux, while mobile versions are also available for An-
roid and iOS. X-Plane comes with almost the latest updateimagery of
arth through which real-time performance can be evaluated. X-Plane
tands out from existing simulators through an aerodynamic model
hich is based on the blade element theory . The effective flight sim-
lators emulate the real-world performance by computing the empir-
cal data in predefined lookup tables to calculate lift or drag-based
erodynamic forces, which vary with heterogeneous flight conditions
 Garcia & Barnes, 2009 ). In the next section, a detailed description of
imulink for UAV data is provided followed by the methodology for cap-
uring the simulated dataset. The effective flight simulators emulate the
eal-world performance by computing the empirical data in pre-defined
ookup tables to calculate lift or drag-based aerodynamic forces, which

https://en.wikipedia.org/wiki/Freeware
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Ubuntu_\050operating_system\051
https://en.wikipedia.org/wiki/Blade_element_theory
https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Lookup_table
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Fig. 1. Snapshots of available flight simulators a) Gazebo b) AirSim c) X-plane 

Fig. 2. Quadcopter body and inertial frame ( Luukkonen, 2011 ) 

Fig. 3. Description of Euler angles in modelling of Quadcopter ( Nemati & Ku- 
mar, 2014 ) 
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Fig. 4. Snapshots of Quadcopter Project in MATLAB-based Simulink in different 
scenarios 
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ary with heterogeneous flight conditions ( Garcia & Barnes, 2009 ).
n the next section, a detailed description of Simulink for UAV data
s provided followed by the methodology for capturing the simulated
ataset. 

.1. Simulink 

A quadcopter is a helicopter as presented in Fig. 2 has four equally
paced rotors fixed at the corners of a square body and the propellers
ove clockwise and anticlockwise. The inertial frame is defined by the

round, with gravity pointing in the - z-direction. The orientation of the
uadcopter with the rotor axes directing in the + z-direction and the
rms pointing in the x and y directions are defined by the body frame.
he Euler angles which consist of roll, pitch and yaw are displayed in
ig. 3 . refers to the coordinate system which can describe the proper-
ies such as roll, pitch and yaw of a quadcopter. The roll and pitch an-
les give the tilt of rotors with respect to the vertical gravitational axis
hereas the yaw angle gives the amount of rotation around the vertical
xis. The 
146 
The quadcopter model has four wings and is widely used for a variety
f computer vision applications due to its small size and high stability.
he design of remote-controlled quadcopter includes Proportional In-
egral Derivative (PID) controller which is implemented with ardupilot
ega board. The system consists of IMU which comprises accelerom-

ter and gyro sensors to determine the system orientation and speed
ontrol of four motors to enable the quadcopter to fly in all directions.
he Quadcopter Project example in MATLAB shows the use of Simulink
o model a quadcopter based on the PARROT® series of mini-drones as
efined in Fig. 4 (a). The desired images in the Simulink quadcopter are
one by replacing the inbuilt environment images with our images in
he texture folder and capturing the view from the quadcopter by chang-
ng the viewpoints or by adding the camera sensor node. The Simulink
esign verifier acknowledges to identify of design errors and causes test
ase scenarios for model verification. In the MATLAB-based Simulink
imulator, a virtual reality model is added by inserting an obstacle of
ifferent shapes like a sphere at particular coordinates as represented in
ig. 4 (b). The predefined viewpoints and camera angles can also be mod-
fied to obtain required data from different viewpoints. In the MATLAB-
ased quadcopter model, multiple customizations such as modifying the
urrounding environment of simulation by performing certain opera-
ions such as changing the ground map or surrounding building images
r creating a second quadcopter in the same trajectory and base map
s shown in Fig. 4 (c). Further, the next section contains a methodology
f data collection from the simulator followed by providing annotation
nformation for the captured simulated dataset. 
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Fig. 5. Block Parameters of the Simulation in MATLAB-based Simulink 
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. Methodology of captured simulated dataset 

The MATLAB-based Simulink is compatible while dealing with con-
rol theory and model-based design. Simulink sessions can be started in
wo ways: by entering the command Simulink in the MATLAB command
indow and alternatively, clicking on the Simulink icon in the MATLAB

oolbar. There is the utilization of Simulink for the creation of a simu-
ated dataset of multiple categories which can further be deployed in
bject detection algorithms. The requirements of a custom dataset must
ulfil the following constraints: 

a should be free of copyright or at least freely usable i.e. open-source
within the vision community, which is a strong criterion 

b the number of different targets, as well as object types, should be
diverse enough to represent the needs of the object recognition ap-
plications 

c the ground truth, included in the annotations distributed with the
dataset, should be complete enough to acknowledge the estimation
of target object detection algorithms. 

The proposed simulated dataset completely adheres to the above-
iscussed constraints. The simulated environment details are discussed
n the next section. 

.1. Process of simulation 

The steps for creating a Quadcopter model is to simply run the as-
QuadcopterStart command in the command window or in the Simulink
odel library click on ‘Examples’ then in the model examples search

or Aerospace Blocksetin which click for Quadcopter model. After per-
orming these steps Simulink will initialize your Quadcopter model. The
ackend files can be seen in the current folder menu on the left side
nd the current variable can be seen in the workspace menu. Now, the
odel can be modified by making changes in the 3D world editor or

y modifying the block diagram. The modifications can also be done by
diting code in the backend files in the editor. The effects of modifica-
ions can be seen by running the simulation in the simulation window.
he Quadcopter project example is available in the aerospace blockset
f Simulink. The programming of drones with Simulink includes three
teps: 

1 Designing- Simulink can be used to design physical systems using
block modelling. A comprehensive library of predefined blocks helps
you to build models. 

2 Simulation- The blocks from the dynamic library can be extended
to the model using Simulink Editor and further, the blocks can be
connected with each other to establish mathematical relationships
between multiple components. 

3 Deployment- Then, the simulated model is deployed with the help
of suitable hardware and additional requirements. 

Several simulation experiments were explored such as importing a
ustomized map to the Simulink environment, building a virtual reality
147 
orld using Simulink 3D animation (deformation of a sphere); editing
he Quadcopter environment (changing the buildings around the Quad-
opter environment); adding obstacles in the trajectory of the Quad-
opter; inserting horizontal and vertical motion; inserting another Quad-
opter to the trajectory of the existing one and adding touch sensor to
he Quadcopter. We have performed experiments for the process of sim-
lation in order to perform customized settings for obtaining the sim-
lated dataset as described in Table I . The building of a virtual reality
orld using Simulink 3D animation while adding obstacles at particu-

ar coordinates in the trajectory of the Quadcopter is depicted in Fig. 6 .
he insertion of horizontal motion in the Quadcopter for editing the
lock models to modify the default vertical motion into horizontal mo-
ion of the Quadcopter. In addition, to import the desired images in
ur Simulink quadcopter, we simply replaced the inbuilt environment
mages with campus building images in the texture folder but kept the
ames of the replaced images the same as that of the inbuilt images so
hat the code of the project can access replaced images at run time. For
apturing the view of the environment, there is a need to adjust the dial
hich changes these (i.e. in this case velocity is increased) after every
0 sec. These velocities are integrated to calculate acceleration. Finally,
he calculated acceleration is expanded using VR signal Expander. The
xpanded signal is passed to Quadcopter translation in the VR sink. 

All of the above-discussed experiments in a quadcopter setting play
n important role in setting up an ideal environment for collecting
he data from the simulator. Multiple settings have been done such as
hange of actors and camera position, controlling the speed of quad-
opter, background images etc. to obtain a simulated dataset in a cus-
omized environment. This section provides a theoretical aspect of un-
erstanding the simulator with respect to collecting datasets from the
imulator. The speed of the quadcopter can be controlled by using a
igital clock to give time as input. The inputs from the digital clock are
apped with a velocity which is inside Matlab function blocks using

witch cases. 

. Simulated UAV dataset 

The simulation of the quadcopter is done through which a dataset
f 6 simulated videos is retrieved. The simulated videos have different
cenarios such as campus buildings, the presence of multiple obstacles,
edestrians etc. In MATLAB-based Simulink quadcopter model, differ-
nt instances of navigation videos can be obtained either by modifying
he surrounding environment of simulation by changing ground map, by
hanging surrounding building images and by adding stationary or mov-
ng obstacles. The additional viewpoints or camera angles can be intro-
uced, also the predefined viewpoints and images and by adding station-
ry or moving obstacles. The additional viewpoints or camera angles can
e introduced, also the predefined viewpoints and camera angles can
e modified to obtain navigationnavigation video from different view-
oints. The simulation data inspector helps in the visualization of differ-
nt data types that can be generated throughout the designing process
s highlighted in Fig. 7 (a) and (c). The comparisons of runs are made
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Table I 

Diverse configuration settings of MATLAB-based Simulator for capturing simulated dataset 

Building a virtual reality 
world using Simulink 3D 
animation 

Adding the boxes Add a transform node. Select children and add shapes. 
Under shape, nodes select appearance and add appearance. 
Under shape, node select material and add material 
Add box node under geometry node 
Add another box using the same steps 

Adding the sphere Select root. Click on the node and then click on a component library 
Select root. Click on the node and then click on a component library 
Add sphere.wrl 
Adjust all the sizes accordingly 

Editing the Quadcopter 

Environment 

Changing the buildings around 
the Quadcopter environment. 

opening the absQuadcopterAH1-4.wrl file or absQuadcopterAH3.wrl file 
changes are made in the image URL option present inside the appearance parameter of the transform 

node of the editor 
any image URL can be inserted in the place of the original image URL and the changes are reflected in the 
quadcopter environment 

Adding Obstacle in The 

Trajectory of the 

Quadcopter 

Adding obstacles at particular 
coordinates in the trajectory of 
the Quadcopter 

To add an obstacle in the path of the quadcopter, a Shape node is created in the ROOT 
The position of the obstacle is changed by changing the value of the transform and center parameters of 
the Shape node. 

Inserting Horizontal 

Motion in The 

Quadcopter 

Editing the block models to 
modify the default vertical 
motion into horizontal motion of 
the Quadcopter 

Select the transform and rotation nodes of the quadcopter in the Block Parameters dialog box as shown in 
Fig. 5 . The transform and rotation nodes reflect in the VR Sink of the block diagram of the quadcopter 
In the block diagram table of the quadcopter open the Axes to VR Axes block 
Attach the output line of x-axis to the given MUX to make the quadcopter move in the horizontal motion 
Connect the output lines of the block table to the quadcopter nodes of the VR Sink in the block diagram 

Inserting Horizontal 

Motion in The Obstacle 

Editing the block parameters to 
add horizontal motion to the 
obstacle present in the path of 
the Quadcopter 

Add Shape node to the ROOT 
Select the transform parameter of the shape node in the Block Parameters dialog box. The transform and 
rotation parameters reflect in the VR Sink of the block diagram of the quadcopter 
Open the Axes to VR Axes block 
Attach the output line of x-axis to the given MUX to make the obstacle move in the horizontal motion 
Connect the output lines of the block table to the shape nodes of the VR Sink in the block diagram 

Fig. 6. Block Models for changing motions in MATLAB based Simulink 

Fig. 7. Modelling of Quadcopter Project in MATLAB-based Simulink 
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Fig. 8. Snapshots of dataset bounding boxes 
annotations from MATLAB-based Simulink 
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o  
y recording logged workspace signals in the simulation data inspector
y changing the visualization block, described in Fig. 7 (b). The Quad-
opter’s trajectory can be controlled easily by introducing a user-defined
rajectory function to the block diagram. Similarly, the Quadcopter’s
peed can be controlled by introducing a user-defined velocity function
s represented in Fig. 7 (d). Further, the modelling of blocks is done for
ontrolling speed and variation in a workspace. The logging of data to
he simulation data inspector from a Simulink model is performed by im-
orting data from the base workspace. The visualization of data with the
imulation data inspector supports the design, debugging, and verifica-
ion workflows. The camera view of a quadcopter consists of two object
iews i.e. front-view and top-view mean the camera shooting along with
he object and on the top of objects, respectively. A total of 2024 images
ave been obtained with multiple categories of objects such as obstacles
, 2 and 3 in one scene, the presence of pedestrians and drones. We use
abelling (Yu, Chen, Lee, Chen & Hsiao, 2019), a graphical image anno-
ation tool to manually annotate the videos at 10 FPS. It is written in
ython language and utilizes Qt for the graphical user interface. Then
nnotations will be saved in different formats (saved XML files in PAS-
AL VOC format, vastly utilized by ImageNet). Additionally, this anno-
ation tool also supports the You Only Look Once (YOLO) object detector
ormat. The collected dataset from the simulator can be further utilized
or diverse object detection applications based on aerial datasets. The
rames are retrieved from captured videos and perform annotation in
he form of bounding boxes, displayed in Fig. 8 . There are mainly three
ategories of objects with one or multiple instances such as pedestrian,
rone, multiple obstacles etc. This overall study concludes with a de-
cription of a MATLAB-based simulator for animated aerial data. Fur-
her, a number of simulated videos have been generated from the simu-
ator to check quadcopter settings in a customized environment. These
ideos are short in length because of the limited number of actors and
an be extended by incorporating a number of classes as discussed in the
bove sections. The videos are then converted into frames for process-
ng the recent object detection and recognition algorithms. The obtained
ataset is satisfactorily in nature and can be further utilized by recent ob-
ect recognition advances in the computer vision domain. The emerging
eep learning in artificial intelligence makes a remarkable growth in im-
ge processing. As a future use, deep learning-based complex object de-
ection and classification algorithms can be tested on our simulated UAV
ataset. 
149 
.1. Performance comparison of the simulated dataset using object 

etection algorithms 

Recent years have seen noteworthy developments in object recog-
ition and detection problems because of the advent of deep learning-
ased artificial intelligence algorithms in computer vision. The obtained
imulated dataset is annotated with bounding box coordinates (Xmin,
max, Ymin and Ymax). For deployment of the generated simulated
ataset in object detection techniques, we have to first check the fea-
ibility of the dataset such that it can really be useful for detection.
ome traditional object detection approaches such as person detectors,
ptical flow and edge detectors applied on simulator captured videos in
ifferent environments to test the annotated dataset ( Pathak, Pandey &
autaray, 2018 ). The optical flow studies the apparent velocities-based
istribution of objects and by assessing the optical flow between video
rames, the velocities of objects in the video are measured ( Meier, Brock-
rs, Matthies, Siegwart & Weiss, 2015 ). Edge detection is a popular vi-
ion technique, used for a variety of domains such as image segmen-
ation ( Huguet, De Andrade, Carceroni & Araújo, 2004 ) and object de-
ection ( Ding & Zhao 2018 ) problems. The person detector algorithmde-
ected a simulated pedestrian and a bounding box is inserted around it as
hown in Fig. 9 (b). The coordinates of the bounding box then matched
ith ground truth values which resulted in correct detection of an object

rom the simulated dataset. The Canny edge detector applied on pedes-
rians and the corresponding output is highlighted in Fig. 9 (c). The cap-
ured videos are in motion so we pass respective frames to the optical
ow-based detector and motion is detected in pedestrian movements as
hown in Fig. 9 (d). The higher efficiency attribute of one-stage detec-
ors ( Redmon & Farhadi, 2017 ; Liu, Anguelov, Erhan, Szegedy, Reed,
u & Berg, 2016 ). over two-stage detectors ( Ren, He, Girshick & Sun,
015 ; He, Gkioxari, Dollár & Girshick, 2017 ) makes them deployable in
bject detection scenarios. The researchers eventually shifted towards
ne-stage detectors due to adaptability towards meeting challenges like
roviding high speed and fewer memory requirements. We passed our
imulated dataset into some single-stage algorithms such as YOLOv3
 Redmon & Farhadi, 2018 ), 

TinyYolov3 ( Yi, Yongliang & Jun, 2019 ) and RetinaNet ( Lin, Goyal,
irshick, He & Dollár, 2017 ) to check their feasibility. The key idea of
OLOv3 and TinyYolov3 is to look at an image to predict the number
f objects and identify the location of objects. These approaches trained



P. Mittal, A. Sharma and R. Singh International Journal of Cognitive Computing in Engineering 3 (2022) 144–151 

Fig. 9. Detection results achieved on Simulink captured frames 

Table II 

Performance comparisons of object detectors on UAV simu- 
lated dataset 

Object Detection Approach Accuracy Time Required (sec) 

Yolov3 98.20 3.62 
TinyYolov3 87.26 2.49 

Fig. 10. Detection results achieved on Simulink captured frames 

o  

d  

q  

p  

C  

W  

c  

t  

t  

T  

a  

p  

a  

o  

o  

a
 

d  

j  

i  

c  

o  

a  

a  

f

5

 

s  

i  

a  

s  

i  

f  

i  

i  

l  

l  

b  

d  

fl  

s  

T  

l  

j  

d  

h
 

l  

w  

t  

f  

t  

t  

u  

b

D

 

i  

t

R

Á  

 

 

A  

 

 

B  

B
 

 

n complete images and directly boosted detection performance. These
etectors are not trained from scratch so the categories of objects ac-
uired from the originally trained pedestrian object frame into Yolov3,
redicted value is the same predicted as traffic light dataset i.e. MS-
OCO ( Lin, Maire, Belongie, Hays, Perona, Ramanan & Zitnick, 2014 ).
hen we pass predicted as a traffic light and 52.63 accuracy with a pro-

essing time of 7.21 seconds. This might require further fine-tuning with
he dataset which researchers can explore working in the object detec-
ion domain. Similarly, when we pass the pedestrian object frame into
inyYOLOv3, the predicted value is the same as ground and the 87.26
ccuracy obtained with a processing time of 2.49 seconds whereas after
assing round shape obstacle into the algorithm, the obstacle predicted
s a sports ball and 72.25 accuracy with a processing time of 6.09 sec-
nds. We also passed the frame which is carrying three obstacles, only
ne object is identified by TinyYolov3 and predicted as tv with a 57.83
ccuracy value and 3.27 processing time. 

The overall summary of comparable results over the simulated
ataset is highlighted in Table II and further outputs from different ob-
ect detection algorithms are presented in Fig. 10 . By testing the dataset
nto recent object detection and recognition algorithms, it can be con-
luded that this simulated dataset of multiple objects is deployable in
bject detection scenarios. But if we only focus on deep learning-based
pproaches, the size of the acquired dataset is not enough so one can
dd more instances of objects or perform augmentation on the given
rames. 
150 
. Conclusion 

The MATLAB-based Simulink provides a suitable platform for re-
earchers working in UAV flight domains. This paper helps in simulat-
ng the behavior of UAVs by MATLAB-based Simulink by generating
 dataset for object detection and recognition processes. A validated
imulation model is developed for the computing paradigm encompass-
ng the effects of flight navigation spaces for UAVs. The experiments
or building a credible UAV simulation model are created by enforc-
ng several settings such as altering speed, sensors, number of objects
n-flight navigation etc. The customized hardware settings of the se-
ected quadcopter model have a significant impact on the UAV simu-
ation model, and a realistic representation of the simulated model is
uilt. This simulation helps in generating a verified simulated dataset of
ifferent objects that mimics the working environment of UAVs during
ight. The produced simulated UAV dataset has various object classes
uch as obstacles, another drone etc. and is tested in various situations.
he dataset is well annotated and tested against state-of-the-art deep

earning-based object detection algorithms. The one-stage Yolov3 ob-
ect detector achieved 98.20 mAP when compared with the Tiny-Yolov3
etector and the corresponding visualization of detection results is also
ighlighted. 

In the future, we aim to create more instances of objects in the simu-
ated dataset. This paradigm helps researchers to get hands-on training
ith the flying conditions of UAVs. The proposed research is justified by

he use of recent object detection and classification techniques by per-
orming some detections on captured frames by state-of-the-art detec-
ion algorithms. The study is a good platform for engineering graduates
o learn simulation of drones, the creation of simulated datasets for eval-
ating various objection detection algorithms based on deep learning-
ased methods. 
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