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Flow Cytometry Data Preparation Guidelines for
Improved Automated Phenotypic Analysis
Daniel Jimenez-Carretero,* José M. Ligos,* Marı́a Martı́nez-López,†

David Sancho,† and Marı́a C. Montoya*

Advances in flow cytometry (FCM) increasingly de-
mand adoption of computational analysis tools to tackle
the ever-growing data dimensionality. In this study, we
tested different data input modes to evaluate how
cytometry acquisition configuration and data compen-
sation procedures affect the performance of unsuper-
vised phenotyping tools. An analysis workflow was
set up and tested for the detection of changes in refer-
ence bead subsets and in a rare subpopulation of murine
lymph node CD1031 dendritic cells acquired by
conventional or spectral cytometry. Raw spectral data
or pseudospectral data acquired with the full set of
available detectors by conventional cytometry con-
sistently outperformed datasets acquired and com-
pensated according to FCM standards. Our results
thus challenge the paradigm of one-fluorochrome/
one-parameter acquisition in FCM for unsupervised
cluster-based analysis. Instead, we propose to con-
figure instrument acquisition to use all available
fluorescence detectors and to avoid integration and
compensation procedures, thereby using raw spec-
tral or pseudospectral data for improved automated
phenotypic analysis. The Journal of Immunology,
2018, 200: 3319–3331.

F
low cytometry (FCM) is the most widely used single-
cell analysis technique because of its ability to measure
multiple parameters, which allows the phenotypic

and functional study of cell populations. FCM has under-
gone a technological revolution in recent years, affecting both

instrumentation and reagent availability, greatly increasing
the number of parameters that can be analyzed simulta-
neously in a single cell (1, 2). The most widely available
cytometry technology is fluorescence-based conventional
FCM; however, it suffers from limitations in its multi-
parametric capability because of fluorochrome spectral over-
lap (3–5). Technological developments in conventional FCM
instrumentation have focused on increasing the number of
detectors, reaching as many as 30 in some instruments.
Spectral FCM technology allows the acquisition of a contin-
uous range of wavelengths for each individual cell regardless
of the fluorochrome spectrum emission (6–8). Spectral FCM
thus enables multicolor analysis through its ability to distin-
guish fluorochromes with overlapping spectra; moreover, the
optical configuration and deconvolution algorithms available
for processing spectral FCM data provide higher resolution.
This technological evolution of FCM, together with the re-
cent appearance of mass cytometry, which enables the quan-
tification of over 40 parameters in individual cells, presents
major analytical challenges due to the increased data di-
mensionality. This has prompted the development of com-
putational tools that allow semiautomatic analysis and
interpretation of high-dimensional data. These tools are
widely used in the mass cytometry field and are progressively
being adopted by the FCM community (1, 9, 10). However,
widespread use of these computational tools has been ham-
pered by the historically low-dimensional nature of conven-
tional FCM data and the lack of procedures for automated
data handling in the fluorescence-based FCM field, in
which bench scientists and analysts are still accustomed to
manual-gating approaches. Gating is a critical bottleneck in
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high-dimensional FCM data analysis because it is labor in-
tensive and subject to individual user bias (2). In addition,
gating requires prior knowledge of the populations of interest,
thus hindering the discovery of previously undefined yet
meaningful cell populations. The automated phenotyping (AP)
of cell populations using unsupervised clustering techniques has
therefore opened a promising avenue for the FCM field to
reach its full potential and avoid user-derived analytical hurdles.
The aim of this study was to provide scientists with

guidelines for the preparation of data for AP that can be
adapted to whatever FCM technology is available in their
laboratories. The intention was not to compare the perfor-
mance of different FCM technologies or clustering algorithms.
We established a reference standard experiment and prepared
datasets using conventional and spectral FCM. The datasets
contain both raw data and data subjected to different spillover
correction methods. We also implemented an automated
analysis framework for the detection of changes in subpopu-
lations among multiple samples using state-of-the-art unsu-
pervised algorithms. To our knowledge, this is the first
systematic evaluation to demonstrate the convenience of
avoiding standard configurations for FCM acquisition in at-
tempts to improve automated phenotypic analysis. Based on
our findings, we recommend cytometrists to take advantage of
the full detector configuration available in the instrument at
hand instead of restricting themselves to the conventional
detection channels matching the fluorescence emission of the
fluorophores in use. Moreover, this study reveals the advan-
tages of using raw data over compensated or integrated data to
ensure the highest accuracy in automated phenotypic analysis.

Materials and Methods
Mice

Mice were bred in specific pathogen-free conditions. Batf32/2 mice back
crossed more than 10 times to the C57BL/6 background were kindly pro-
vided by Dr. K.M. Murphy (Washington University, St. Louis, MO) (11).
These mice were further back crossed with C57BL/6 mice to establish wild
type (WT) and Batf32/2 mouse colonies from the heterozygotes. Animal
studies were approved by the local ethics committee. All animal procedures
conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC
regarding the protection of animals used for experimental and other scientific
purposes, enforced in Spanish law under Real Decreto 1201/2005.

Skin-draining lymph node preparation

Single-cell suspensions of skin-draining lymph nodes (LNs) (inguinal, axillary,
brachial, and auricular) were prepared by digestion with Liberase TL Research
Grade and DNAse I from bovine pancreas (Both from Sigma-Aldrich) as
previously described (12).

Flow cytometry

All stainings were performed in 0.5% BSA in PBS for 30 min on ice.
UltraComp eBeads Compensation Beads (Life Technologies, Carlsbad, CA)
were stained with the following anti-mouse Abs (BD Biosciences, San Jose,
CA): anti–CD45-V450, anti–CD45R-AF647, anti–CD4-PE, and/or anti–
CD4-BV711. Single-cell suspensions from LNs were blocked with FC Block
(BD Biosciences) and stained with Abs (BD Biosciences or BioLegend,
San Diego, CA) to detect MHC class II (MHC II)-FITC (2G9), CD40-
PE (3/23), CD3-PE-CF594 (145-2C11), Ly6c-PerCP-CY5.5 (HK/4), CD11b-PE-
CY7 (MI/70), CD103-BV421 (M290), CD45-BV570 (30-F11), CD19-BV605
(1D3), CD4-BV711 (GK1.5), CD11c-APC (HL3), and CD8-APC-
Fire750 (S3-G.7). After staining, beads or cells were washed with PBS
containing 0.5% BSA. Conventional FCM data were obtained in a BD
LSRFortessa (BD Biosciences) cytometer equipped with four lasers and 18
detectors (16 for fluorescence and two scatters). This system was configured
as follows: seven detectors for the 405 nm laser, four detectors for the 488
nm laser (two of them for scatter), four detectors for the 561 nm laser, and
three detectors for the 640 nm laser. Photomultiplier tube amplification was

adjusted to keep the autofluorescence signal 2.5 SD over the electronic noise
while keeping the signal within the detector’s linearity range. Spectral FCM
data were obtained using an SP6800 Spectral Cell Analyzer (Sony Biotech-
nology, San Jose, CA) flow cytometer equipped with three lasers and 68
detectors (66 for fluorescence and two for scatter). This system was configured
as follows: 34 detectors for the 488 nm laser (32 for continuous fluorescence
between 400 and 800 nm and two for scatter) and 34 detectors for the col-
linear 405 and 638 nm lasers. Photomultiplier tube amplification was set to
keep all signals within the detector’s linearity scale.

FCM data processing

Data from the conventional flow cytometer were analyzed using FlowJo
(FlowJo, Ashland, OR) and FCS Express (De Novo Software, Glendale, CA).
In all cases, compensated data were obtained from single-stained UltraComp
eBeads using the automatic software tool without further adjustment. Data
from the spectral flow cytometer were analyzed with SP6800 software (Sony
Biotechnology). Raw spectral data in comma-separated value format were
obtained using a Raw File Converter kindly provided by Sony Biotechnology.
Uncompensated, spectral unmixed, and conventionally compensated datasets
were stored in files according to the flow cytometry standard (fcs) 3.0 format
with SP6800 software. For unmixed and conventionally compensated data,
single-stained UltraComp eBeads were used as compensation controls for the
automatic tool without further adjustment.

Preparation and cleaning of FCM samples

Multi-input fcs files were generated by merging the different data input modes
exported with the proprietary software of the specific cytometry equipment
used in each case. For each sample, the three fcs files from conventional flow
cytometer acquisition containing uncompensated, compensated, and pseu-
dospectral (uncompensated from all fluorescence detectors available) channels
were concatenated as new parameters by directly matching events to form a
single fcs file with all the channels from the three conventional input modes.
Similarly, for each sample, the comma-separated value file containing raw
spectral data and the three fcs files from spectral cytometer acquisition con-
taining uncompensated, conventionally compensated, and spectrally unmixed
area channels were concatenated in a single multi-input fcs file. We disregarded
channels corresponding to detectors 20–23 in the raw spectrum because they
are bound or affected by the active Notch filter. Data were cleaned in these
multi-input fcs files by gating single events and removing outliers for all the
channels, thereby ensuring maintenance of the same events for all corre-
sponding data input modes during subsequent processing steps. Additionally,
for the cell-based analysis, debris was excluded and CD451 cells were gated.

Automatic analysis workflow

The proposed automated pipeline for studying population changes among
multiple FCM samples (Fig. 1D) comprises six stages: 1) preprocessing of
FCM data to transform fluorescence signals into a linear scale, 2) subsampling
of FCM events to facilitate suitable processing of full datasets and multiple
samples, 3) dimensionality reduction of high-dimensional fluorescence signals
for visualization purposes, 4) automatic clustering for unbiased detection of
subpopulations, 5) upsampling of FCM events to extend results to the whole
set of original events and files export, and 6) sample comparison and pop-
ulation identification.

Preprocessing of FCM data. Samples (fcs files) were transformed separately
using an automated Logicle function with a unique parameter set estimated
automatically (13) for all channels involved in the analysis of a specific data
input mode. This biexponential transformation provides an effective and
robust way to correctly linearize fluorescence signals independently both of
the scale of the data (which may differ depending on the cytometer or data
input mode) and of the presence or absence of information in each channel
(especially important in supplemental channels included in pseudo- and full-
spectral data).

Subsampling of FCM events. A subsampling procedure was applied to each
sample to reduce the number of events bound for the posterior clustering and
dimensionality-reduction steps. This was done to overcome the computational
limitations (time, memory, and resources) of jointly processing large and
multiple samples for comparative analyses. Local-density–dependent down-
sampling (14) was performed for each individual sample separately to equalize
the density of events, achieving more similar representation of both rare and
abundant populations and preventing rare types from vanishing during sub-
sampling (Supplemental Fig. 1). The pseudo-aleatory component of the
method encourages a different subsampling output with every run. In all
experiments, data were downsampled to 2500 events per sample by using
default parameters for the algorithm and all channels involved in the specific
data input mode. k-Nearest neighbors was later used to assign each original
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event to its closest downsampled event. Fluorescence fingerprinting of
subsampled events was constructed by averaging the fluorescence signals from
the corresponding original events.

Dimensionality reduction. To visualize population representations and
clustering results, we used the Barnes-Hut t-Distributed Stochastic Neighbor
Embedding (t-SNE) (15) implementation in R (https://github.com/jkrijthe/
Rtsne) with the recommended parameters (perplexity 5 30, u 5 0.5, itera-
tions 5 1000, Euclidean distance). Because the t-SNE method is completely
data dependent and provides no explicit function for projections, different
runs and different samples report different outputs. For this reason, events
from all downsamples were processed together, providing a common t-SNE
map distribution allowing sample comparison.

Automatic clustering. All subsampled events from the whole sample set were
used jointly for unbiased clustering, providing a common detection of sub-
populations that allowed sample comparison. We tested automatic clustering
algorithms recommended by Weber and Robinson (16) that allowed runs in
script mode and required no prior information about the size or number of
expected clusters. We also tested algorithms relying on t-SNE projections. All
algorithms tested, including PhenoGraph (17), DenseVM (18), ClusterX
(19), and flowMeans (20), were run in R with the default settings. Pheno-
Graph was selected as the default clustering method in the automatic analysis
workflow for further experiments because it reported the best lower 99%
confident interval of F1 scores (see Materials and Methods, Evaluation of
clustering results) when analyzing conventional FCM data input in the tra-
ditional way (CONV_4ch_CC) using the reference dataset (Supplemental
Fig. 2).

Upsampling of FCM events. By using the correspondence between original
events and closest downsampled events, computed in step two, we could infer t-
SNE coordinates and cluster membership for the whole set of original events
from a specific sample from the results obtained in the previous two stages by
direct assignment. A noisy version of t-SNE coordinates was also computed to
improve the visualization of t-SNE maps in terms of point density by cal-
culating a weighted mean of coordinates from a selection of subsampled events.
For each original event, we first selected the five most similar subsampled events
in terms of fluorescence fingerprinting and kept only the three of them with the
closest t-SNE map location with respect to the initial inferred t-SNE coor-
dinates. Their coordinates were then weighted by their proximity and averaged
to obtain the final noisy t-SNE location. Results of cluster membership and
t-SNE coordinates were included as new parameters for each original sample
and saved as fcs files.

Sample comparison and population identification. Once analyzed, fcs
files were processed to generate diverse outputs for data visualization and
comparative analyses. To identify populations, the workflow displays t-SNE
maps for individual samples or sample sets colored according to cluster
number or to the intensity of expression of the different fluorescence markers.
In addition, heatmap representations of fluorescence fingerprints of clusters
can be displayed. To compare samples, heatmaps are provided displaying
frequencies of events in each sample and the fold-change with respect to
controls,
fcðxÞ5 signðjxj2 jctrljÞ�

�
maxðjxj;jctrljÞ
minðjxj;jctrljÞ21

�
;wherejAj5frequencyðAÞ,

together with statistics reporting significance.

Software resources

The automated analysis pipeline was implemented as a script in MATLAB
(R2017a, Parallel Computing and Statistics Toolbox) and R (version 3.3.2,
packages flowCore, cytofkit, flowMeans) for stages one through five. Graphical
representations for stage six were obtained withMATLAB. t-SNEmaps colored by
different parameters were represented using the MATLAB-based cyt tool (21).

Evaluation of clustering results

The F1 measure (harmonic mean of precision and recall) was used to score the
correspondence between classes or reference standard populations (manually
gated) and automated clustering outputs. Precision, recall, and F1 scores
varies varied between 0 and 1, with high values signifying a low proportion of
false-positives in precision and a low proportion of false-negatives in recall. An
F1 score of 1 indicates a perfect reproduction of reference classes with the
specific clustering results. The Hungarian assignment algorithm (22) was used
to solve the problem of mapping one–to–one clusters and reference pop-
ulations by maximizing the sum of F1 scores across all reference classes. This
solution provides a fairer evaluation strategy compared with the individual
maximization of F1 scores for each reference population or output cluster (16)
by not mapping a single cluster to more than one reference population and
including the possibility of clusters not matching any reference class. The
reported F1 values in the text correspond to final scores obtained for all events
and reference classes from all samples in a specific analysis (one F1 score per run).

Statistics

Different data inputs from conventional and spectral acquisition modes were
processed independently (10 times each). Statistical analyses were performed in
Prism v5.0 using two-sided tests. Clustering performances were compared
across different data input modes in reference bead datasets (Fig. 4A) and cell-
based datasets (Fig. 5B) by repeated measures one-way ANOVA and Tukey’s
multiple comparison test (adjusted p values: *p , 0.05, **p , 0.01, ***p ,
0.001). Significant cluster frequency differences (*p, 0.01) between WT and
knockout (KO) sample sets (Fig. 6D, 6F) were detected by t tests.

Figures showing representative results

All examples showing t-SNE maps and specific clustering results (Figs. 2, 4C,
4D, 5, 6C–J, Supplemental Figs. 3, 4) correspond to outputs obtained with
the run that achieved the F1 score closest to the median value from all 10
independent runs of a specific data input mode.

Availability

Reference bead and cell-based datasets are freely available through Flow-
Repository (http://flowrepository.org/) via the following experiment IDs: FR-
FCM-ZYGA (MIX beads) and FR-FCM-ZYHL (murine skin-draining LNs).
Code for running the AP workflow can be accessed via GitHub: https://
github.com/nielintos/AP-workflow.

Results
Establishment of a reference standard experiment and an AP
framework for FCM data analysis

Most experimental FCM approaches involve the analysis of cell
populations with differing phenotypic signatures in a series
of samples. To simulate this experimental approach as a
benchmark for evaluation purposes, we prepared a synthetic
FCM dataset (Fig. 1A, 1B). Test tubes were prepared con-
taining capture beads stained with single, double, triple, and
quadruple combinations of Abs directly conjugated to V450,
PE, AF647, and BV711 fluorochromes (Fig. 1A). The fluo-
rescent signals were individually acquired by conventional
FCM and compensated for spillover correction to obtain fcs
files, as detailed in the Materials and Methods. For reference
purposes, each file was independently analyzed by manual
gating to ascribe a reference class to each subset of beads la-
beled with a specific fluorochrome or fluorochrome combi-
nation (RefClass no. 1 to no. 14). The manual gating strategy
used is shown for two examples: the test tubes for V450 single
staining and AF647/BV711 double staining (Fig. 1B). Fi-
nally, all labeled events (beads) from the different test tubes
were concatenated in a new joint synthetic file (named
“CONV_MIX1”). This file is considered a synthetic sample
because it contains all labeled subsets corresponding to the
real reference classes included in the different test tubes in the
whole experiment. The most common analytical goal in FCM
experiments is to detect changes in the frequencies of pop-
ulations among a series of samples. This is especially chal-
lenging with rare populations. To simulate this experimental
scenario, the CONV_MIX1 file was modified by randomly
reducing the number of events for a specific subset of beads by
half (RefClass no. 6, AF647/BV711 stained beads). This re-
duction was done in six serial steps, yielding six new synthetic
files (CONV_MIX2-MIX7), each with a different propor-
tion of the RefClass no. 6 population. These were treated as
synthetic samples in subsequent analysis. In the original
CONV_MIX1 file, the RefClass no. 6 bead subset repre-
sented 7.16% of the full dataset; this proportion was reduced
to 3.71, 1.89, 0.95, 0.48, and 0.24% in files CONV_MIX2
through CONV _MIX6. In file CONV_MIX7, the RefClass
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no. 6 bead subset reached a final frequency of 0.12%
(Fig. 1C), which can be considered as rare (23).
We set up an AP workflow for the unbiased and automated

study of population changes among different samples using
established algorithms, as schematized in Fig. 1D and detailed
in the Materials and Methods. An efficient subsampling pro-
cedure was needed to overcome the limitations of processing a
large number of events while preserving rare cell subset rep-
resentation. Because it performed better than random sub-
sampling, the local density-dependent method (14) is applied
to each individual sample (Supplemental Fig. 1a, 1b). For
data visualization, we apply t-SNE (15), a nonlinear dimen-
sionality reduction algorithm that was previously used to
graphically represent cytometry data (19, 21). To identify cell

subpopulations, we tested four state-of-the-art unsupervised
clustering methods: Phenograph (17), DenseVM (18), Clus-
terX (19), and flowMeans (20) (Supplemental Fig. 1c). Phe-
nograph outperformed the other methods and was therefore
implemented in the AP workflow for data clustering. The
workflow next recovers original events (upsampling) as output
fcs files. These include the assigned cluster annotation
(Cluster no.) and t-SNE coordinates that can be used to
represent dot plots using conventional cytometry analysis
software. Additional data analysis outputs obtained with the
AP workflow include 1) t-SNE representations color coded
according to the expression intensity of the various markers or
according to the Phenograph-assigned cluster annotations,
2) cluster-based heatmap representations of the fluorescence

FIGURE 1. Schematic representation of reference standard experiment and automated analysis framework. (A) Test tubes contain different bead combinations,

including unstained beads (Neg) and beads stained with varying combinations of the fluorochromes V450, PE, AF647, and BV711. (B) Reference class labeling

procedure and synthetic file (sample) preparation. The panels represent test tube 4, containing V450 single-stained beads, and test tube 6, containing AF647/

BV711 double-stained beads. Signals were acquired in a conventional flow cytometer, and stained beads were manually gated, exported as single file, and labeled

as RefClass no. 4 and no. 6, respectively. The synthetic file (CONV_MIX1.fcs) is obtained by merging files acquired from all test tubes, each containing stained

events labeled as Ref Classes. (C) The original file (CONV_MIX1.fcs) and the file obtained by reducing the number of RefClass no. 6 events by half

(CONV_MIX7.fcs) after six iterations. All events are plotted according to RefClass labels. Events labeled as RefClass no. 6 are highlighted with a square, and the

percentage of the total number of events is indicated. (D) Complete workflow showing population identification steps and the sample comparison pipeline; details

in Materials and Methods.
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intensity acquired in the different detection channels of
the flow cytometer, and 3) heatmaps showing fold differ-
ences in the frequency of each cluster in samples of in-
terest, relative to some reference sample or group of
samples. These representations allow comparison of dif-
ferent biological specimens, a key component of most
questions addressed by FCM.
Synthetic CONV_MIX samples acquired in a conventional

cytometer were used as ground-truth data to validate the
analysis framework. All the files (CONV_MIX1-7) were
displayed together in a t-SNE map, which was color coded
either according to the reference class annotation (RefClass
no.) as identified through manual gating (Fig. 2A) or to the
cluster ID (Cluster no.) obtained by Phenograph (Fig. 2B).
Cluster no. 12, corresponding to the serially reduced RefClass
no. 6 subset, was automatically detected as an independent
subset in all samples, including MIX7, in which this subset
represents 0.12% of the total number of events analyzed
(Fig. 2C). This result thus demonstrates the high sensitiv-
ity of the workflow for detecting rare subsets. The expression
intensity of the different fluorochromes used for bead staining
was represented as a color code in the t-SNE display (Fig. 2D).
A heatmap was generated to display the fluorescence finger-
printing of each detected cluster (Fig. 2E), confirming the
identity of Cluster no. 12 as the bead subset stained with

AF647/BV711 (RefClass no. 6). Heatmap representation of
fold differences in the frequency of Phenograph-annotated
clusters showed that the AP workflow is able to automati-
cally detect changes in Cluster no. 12 in distinct synthetic
samples (Fig. 2F), further validating the ability of the work-
flow to automatically detect changes in subpopulations within
samples.

Evaluation of AP across different data input modes

It is currently unknown how AP is affected by the instrument
configuration used for data collection or the spillover cor-
rection modes used for data preprocessing (hereafter data input
modes). To explore this, reference test tubes were acquired
in both a conventional and a spectral flow cytometer in par-
allel, thus producing two synthetic reference datasets, called
CONV and SPC. For the conventionally acquired dataset
(CONV_MIX1-7), three data inputs were analyzed (Fig. 3A).
They correspond to the compensated (CONV_4ch_CC) and
uncompensated (CONV_4ch_NC) signals obtained from
four fluorescence channels using a standard acquisition setup
(i.e., the instrument detector configuration that best matched
the panel of fluorochromes used for labeling) and an addi-
tional data input including the uncompensated signal from all
fluorescence detectors available in the instrument. These in-
clude 16 fluorescence channels (CONV_16ch_NC) and can

FIGURE 2. Automated analysis of the reference standard experiment by conventional cytometry. The reference standard experiment was acquired in a

conventional flow cytometer in standard mode. (A and B) t-SNE projections of all synthetic samples (CONV_MIX1-7) color coded according to fluorochrome

staining (RefClass no.) (A) and Phenograph cluster annotation (Cluster no.) (B). (C) t-SNE representation of individual samples (CONV_MIX1 to 7), high-

lighting events belonging to RefClass no. 6 and indicating the percentage of the total number of events in each synthetic file. (D) t-SNE map of all synthetic

samples CONV_MIX1-7 color coded according to the expression level of the indicated fluorochrome. (E) Heatmap color coded according to mean fluorochrome

expression (bottom) in each resulting cluster (main panel). Clusters were ordered by hierarchical clustering, grouping them in accordance with the actual staining

(RefClass no.) as indicated (to the left of the main panel). (F) Heatmap color coded according to the fold differences in clusters (listed on the left) of samples

(bottom) with respect to the MIX4 sample.
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thus be considered a pseudospectrum because it contains the
most complete spectral information available in this particular
instrument optical configuration. Four of these channels are
included in the CONV_4ch_NC data input, and the other 12
would in principle not be collected with a standard instru-
ment acquisition setup because the wavelengths are not suited
to the fluorochromes in the panel. The spectral dataset
SPC_MIX1-7 was acquired in parallel in a system capable of
continuous spectra data collection between 400 and 800 nm.
SPC_MIX1-7 were processed to produce four data inputs
(Fig. 3B). SPC_X corresponds to the complete fluorescence
spectral raw data; the three other data inputs were configured
to be equivalent to conventional cytometry data by integrating
the signal from the 32 fluorescence detectors into four syn-
thetic channels matching the specific fluorochromes used, as is
common practice for manual analysis. These four channel
data inputs were either left uncompensated (SPC_4ch_NC)
or were automatically compensated using either conventional
procedures (SPC_4ch_CC) or an unmixing algorithm for
spectral compensation (SPC_4ch_SC).

The various data inputs were subjected to independent
phenotypic analysis in the AP workflow. The detection ac-
curacy for all reference bead subsets (RefClass no. 1 to 14) was
evaluated using F1 measurement as previously reported (24,
25), scoring the correspondence between reference classes and
automated clustering outputs as described by Weber and
Robinson (16) (see Materials and Methods). Fig 4A shows
plots of the final F1 scores for all events and reference classes
in 10 independent runs of the AP workflow for each data
input. Surprisingly, for conventional FCM data, raw pseu-
dospectral data from uncompensated 16 fluorescence channel
acquisition (CONV_16ch_NC) significantly outperformed
both conventional compensated and uncompensated standard
four channel data (CONV_4ch_CC and _NC). This result
suggests that the 12 additional detection channels used in this
dataset, although not suited to the fluorescence emission from
the fluorochromes used, may carry valuable spectral infor-
mation that improves the performance of automated analysis.
Both the compensated CONV_4ch_CC and the uncompen-
sated CONV_4ch_NC data inputs yielded similar phenotyping

FIGURE 3. Data input modes based on cytometer detector configuration and data preprocessing. The reference standard experiment was acquired using either a

conventional flow cytometer (A) or a spectral flow cytometer (B). Color-coded histograms represent densities of specific fluorescence intensities (log scale) for each

detection channel (combination of excitation laser and detector). Channels are ordered first by the wavelengths of the independent excitation lasers (405, 480,

561, 640 nm) (top) and second by the wavelengths of their corresponding detectors (CH1, CH2, etc.) (bottom). (A) Input modes from a conventional flow

cytometer acquisition. The pseudospectrum (CONV_16ch_NC) includes the fluorescence signals from 16 detectors. The correspondence of the pseudospectral

channels to the four standard uncompensated channels is indicated at the bottom of the histogram. The uncompensated signals (CONV_4ch_NC) and

compensated signals (CONV_4ch_CC) were obtained with a standard acquisition setup. (B) Input modes from the spectral cytometer acquisition. The panels

show the full raw spectral data with 66 channels (SPC_X). The processed versions of spectra integrated into four channels include uncompensated signals

(SPC_4ch_NC), conventionally compensated signals (SPC_4ch_CC), and signals compensated by spectral unmixing (SPC_4ch_SC). The correspondence of

spectral channels to the four uncompensated channels is indicated at the bottom of the SPC_X histogram. CH21 and CH22 detectors are depicted in gray

because they are blocked when the 640 nm laser is active. Density colors are normalized for each individual channel.
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FIGURE 4. Evaluation of clustering performance in reference standard dataset across data input modes. The reference standard experiment was acquired in a

conventional or spectral flow cytometer, and a dataset was produced including all the different conventional and spectral input modes. The boxplots show (A) F1

scores measuring the ability of Phenograph to recover the reference classes of events from all MIX1-7 samples (***p , 0.001) and (B) the number of clusters

detected by Phenograph clustering for the different data inputs. For reference, the threshold lines are drawn for the expected 14 reference classes. (C and D) t-SNE

maps of all synthetic samples color coded by reference class (RefClass no., first row) and output cluster number (Cluster no., second row) for conventional (C) and

spectral (D) cytometer input modes.
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performances, suggesting that data compensation is dis-
pensable for automated analysis. In accordance with these
results, the performance of the AP pipeline with the four
data inputs obtained by spectral cytometry revealed a notable
advantage of the raw spectrum (SPC_X) over any other data
processing mode (Fig. 4A). Results were more accurate when
using data preprocessed by spectral unmixing compensation
(SPC_4ch_SC) as compared with data from the other two
preprocessed-data inputs (SPC_4ch_CC and SPC_4ch_NC).
These two inputs showed no significant difference in per-
formance, confirming that compensation using conventional
procedures offers no advantages for AP. Overall, raw spectral
data (SPC_X) produced higher accuracy than any other data
mode in either conventional or spectral cytometry. Com-
pared with other data inputs, raw spectra (SPC_X) yielded a
number of detected clusters that better matched the number
of reference classes available (14 populations). All conven-
tional and spectral FCM data inputs resulted in overesti-
mates of the number of clusters (Fig. 4B). Different
unsupervised clustering algorithms generated similar results
from the same dataset (Supplemental Fig. 2), again evi-
dencing the advantages of full-spectral and pseudospectral
input modes. Both full-spectral (SPC_X) and pseudospectral
(CONV_16ch_NC) input modes originate t-SNE maps
with a highly condensed spatial representation of reference
classes. Thus, these input modes yielded a better definition
of populations, a higher overlap between Phenograh clusters
(Cluster no.) and reference classes (RefClass no.), and less
overclustering than other input modes (Fig. 4C, 4D). In-
terestingly, these maps also show how compensation can
produce higher spatial data dispersion (related to the per-
sistent gradient-like distribution of fluorescence signals); this
is due to spillover spreading effects as evidenced in modes
CONV_4ch_CC and SPC_4ch_CC. An example of this
effect can be observed for RefClass no. 2 (red), corre-
sponding to the single-stained BV711 population (Fig. 4C,
4D). These results demonstrate that acquiring more in-
formation in a flow cytometer, regardless of whether the
detection channels match the fluorochrome emissions, im-
proves the clustering results and thus increases the accuracy
of AP. Our data further reveal that compensation procedures
do not improve phenotyping results. In the light of these
results, a set of guidelines for FCM data preparation for
automated analysis can be drawn that substantially differ
from the standard procedures used for manual gate-based
analysis (Table I).

Advantages of raw spectral or pseudospectral data input modes for the
automated detection of changes in dendritic cell subsets from
Batf3-deficient mice

Basic leucine zipper transcription factor, ATF-like 3 (Batf3),
is essential for the development of the CD1031 subset of
dendritic cells (DCs) (11, 26–28). Skin-draining LNs from
Batf32/2 mice in the C57BL/6 background show significant
reduction in the CD11c1/CD401/MHC II1/CD1031

migratory DCs. This population is rare in WT mice (0.1%)
and is reduced to 0.03% in Batf32/2 mice (12). To test the
AP workflow against data input modes in real complex
samples, we used it for unbiased phenotyping and automated
detection of cell population differences between LN samples
from WT and Batf2/2 mice. We assessed the detection of T
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CD1031 DCs among mouse LN cells labeled with a panel of
11 Abs with signals acquired by conventional and spectral
FCM. Results from spectral FCM obtained with the raw
spectral data input mode (SPC_X) are presented in Fig. 5.
The heatmap represents the fold difference in the cluster
frequency obtained from unsupervised Phenograph clustering
of LNs from five Batf32/2 mice relative to the mean value
from the LN samples from five WT mice (Fig. 5A). This
analysis highlighted Cluster no. 1, which was reduced in all

the Batf32/2 mice (p ,0.001), with a mean 4.175-fold de-
crease (Fig. 5A). Representative t-SNE maps color coded
according to cluster annotation and density reveal a reduction
in Batf32/2 samples of a clearly differentiated group of cells
corresponding to Cluster no. 1 (Fig. 5B, 5C). t-SNE repre-
sentations were also color coded according to the expression
intensity of the 11 conventionally compensated fluoro-
chromes used for staining (Fig. 5D). Heatmaps represent the
intensities of raw spectral channels (SPC_X) (Fig. 5E) and the

FIGURE 5. Automated analysis of differences in

skin-draining LN cell populations from Baft-defi-

cient mice using raw spectral data as input. Skin-

draining LN cells from WT and Batf32/2 mice

were stained and acquired using spectral FCM to

produce raw spectral data (SPC_X). (A) Heatmap

displaying the fold differences in frequencies in

automatically detected clusters for the indicated

samples (bottom) with respect to the mean values

for WT mice. Arrow highlights one cluster showing

clear differences between WT and Batf32/2 mice.

Cluster numbers are ordered accordingly to hierar-

chical clustering output using the raw spectral sig-

nal, as displayed in (E). (B and C) t-SNE map

displaying Phenograph cluster number (top row)

and cell density (bottom row) in LN cells from

KO mice [Batf32/2; (B)] and WT mice (C). Ar-

rows and circles mark the location of Cluster no.

1, which shows a lower density in KO mice. (D)

t-SNE maps color coded by the expression of

different conventionally compensated markers as

indicated. (E and F) Heatmaps displaying the

fluorescence fingerprinting for each cluster (raw

spectral mode, SPC_X) (E) and the corresponding

traditional input mode with conventional com-

pensation (SPC_11ch_CC) (F). (G) Manual gat-

ing analysis using conventional FCM software

allows the identification of Cluster no. 1 as

CD11c1/MHC II1/CD401/CD1031 migratory

DCs. The percentages of the gated subsets (circled

sections) are shown relative to the total number of

events.
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corresponding traditional input mode with signals inte-
grated into 11 channels after conventional compensation
(SPC_11ch_CC) (Fig. 5F). These representations allow visual
inspection of marker expression in the Cluster no. 1 subset.

Output fcs files containing the cluster annotation as a new
parameter were subsequently analyzed by manual gating-
based FCM analysis (Fig. 5G). Cluster no. 1 annotated cells
were gated and represented as biaxial dot plots, identifying

FIGURE 6. Evaluation of data input modes in the automated detection of changes in CD1031 DCs in Batf3-deficient mice. Skin-draining LN cells from WT

and Batf32/2 mice were stained and acquired with conventional and spectral flow cytometers, and data input modes were prepared as indicated in Materials and
Methods. (A) Manual gating for labeling the target CD1031 DC population based on expression of CD45, CD11c, CD40, MHC II, and CD103, as indicated.

The percentages of the gated subsets (circled sections) are shown relative to the number of events gated in previous steps. (B) F1 scores measuring the detection

accuracy for CD1031 DCs as an independent population in all WT and Batf32/2 samples (*p, 0.05, **p, 0.01, ***p , 0.001). (C, D, G, and H) t-SNE maps

color coded by Cluster no. and RefClass for the CONV_16ch_NC (C), CONV_11h_CC (D), SPC_X (G), and SPC_11ch_CC (H) data input modes. The

CD1031 DC target population is highlighted with circles. (E, F, I, and J) Heatmaps of mean fold difference in the frequencies of each detected cluster between

WT and KO mice (top) and of p values obtained upon comparison of raw frequencies between the two genotypes (bottom) for the different input modes, as

indicated. Black arrows mark the Cluster no. that best fits the CD1031 DC population. *p , 0.01.
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cells detected in this cluster as CD11c1/MHC II1/CD401

/CD1031 migratory DCs, in line with previous reports (12).
The precision of the clustering seemed high, with the
CD1031 DC subpopulation representing 93 and 92% of the
total number of Cluster no. 1–annotated cells for WT and
Batf32/2 samples, respectively. These results further confirm
the ability of the AP framework to detect differences between
real DC subpopulations when using raw spectral data as the
input. Similar results were obtained using conventional
cytometry with the pseudospectral CONV_16ch_NC data
input mode (Supplemental Fig. 3).
To evaluate how data input modes affect the performance of

the AP workflow in the detection of real DC subpopulations,
we prepared a reference standard by manually gating the
CD1031 DC subpopulation according to the expression of
CD45, CD11c, CD40 and MHC II, and CD103 (Fig. 6A).
Mean F1 scores measured the detection accuracy for the
manually gated reference CD1031 DC subpopulation in 10
independent analysis runs for each data input mode. In
conventional cytometry, the only data input that consistently
enabled the efficient detection of this subpopulation was the
pseudospectrum (CONV_16ch_NC; mean F1 score 0.64)
(Fig 6B). For spectral cytometry data, the highest detection
accuracy for CD1031 DCs was obtained with the raw spectra
(SPC_X) data mode (Fig 6B), which gave F1 scores above
0.73. Spectral compensation input mode (SPC_11ch_SC)
performed more accurately and consistently than the
SPC_11ch_CC and SPC_11ch_NC modes, which yielded
lower accuracies and more variable results. Thus, the full-
spectral or pseudospectral modes allowed the most efficient
detection of the target population, superior to the standard
setup data inputs. This finding is supported by t-SNE maps
for the pseudospectral (Fig. 6C) and spectral modes (Fig. 6G),
which reveal a higher spatial condensation of the target
CD1031 DC population to confined areas, with a lower
contribution of cells from different clusters than obtained
with conventional compensated data inputs (Fig. 6D, 6H) or
noncompensated data inputs (Supplemental Fig. 4). The
CD1031 DC subpopulation is reduced in the LNs of Batf32/2

mice (12) (Fig. 5), and this allowed us to evaluate the influ-
ence of the different data modes on the ability of the AP
workflow to detect significant between-sample differences. In
accordance with their ability to consistently detect the target
DC subpopulation, the spectral and pseudospectral input
modes enabled detection of statistically significant fold dif-
ferences between WT and Batf32/2 mice (Fig. 6E, 6I). The
lower accuracy of the conventional compensated data input
modes in detecting the target migratory DCs as a specific cell
subset resulted in less statistically significant fold difference
scores for this population (Fig. 6F, 6J). Moreover, the spectral
and pseudospectral input modes reduced the false-positive
detection of changes in clusters that either did not represent
real cell subpopulations or were found in individual KO mice
but not consistently in all of them (Fig. 6E, 6I). Other
standard data inputs either revealed no significant differ-
ences in the target population or detected more false positives
(Fig. 6F, 6J, Supplemental Fig. 4). These results further
demonstrate the importance of data preparation, confirming
the advantages of raw spectral or pseudospectral data for the
consistent detection of changes in rare subpopulations in real
LN samples.

Discussion
We produced annotated FCM datasets from samples acquired
using conventional or spectral FCM technologies in an un-
precedented effort, to our knowledge, to evaluate how different
data acquisition configurations and preprocessing modes affect
the automated phenotypic analysis of cell populations. For
automated analysis, we implemented a workflow that uses
unsupervised state-of-the-art algorithms of data sampling,
visualization, and clustering, enabling the computationally
efficient automated detection of frequency changes among
phenotypically distinct populations in multiple samples.
The number of publicly available algorithms for computer-
aided phenotyping is growing continuously (14, 17, 19–21,
29–35). We did not attempt to test the performance of these
algorithms because this has been addressed in other studies
(16, 24, 36). These studies have revealed a variability in per-
formance that is highly dependent on the dataset used, which is
related in part to the data dimensionality. Because we sought an
unbiased phenotyping method, we focused on automated algo-
rithms that make no prior assumptions about cluster size or
number of expected populations. We followed the recommen-
dations of Weber and Robinson (16) and tested the high-
performance algorithms Phenograph (17) and flowMeans (20),
which are based on nearest-neighbor and k-means, respectively.
The other recommended algorithm (X-shift) was not tested
because it cannot be run in script mode. Another two algo-
rithms, ClusterX (19) and DenseVM (18), were tested because
they rely on t-SNE projections. The best performance was ob-
tained with Phenograph, which was therefore implemented in
the AP workflow.
Public initiatives have addressed the performance of com-

putational analysis methods (FlowCAP) (24, 36). To the best
of our knowledge, these initiatives have not considered data
inputs diferent than the standard ones for subsequent analysis.
Earlier reports evaluating high-dimensional data analysis
techniques relied on both mass cytometry and FCM datasets,
with the FCM datasets acquired using standard cytometry
data collection setups (16, 32, 37). Our results demonstrate
that the quality of results generated with automated analysis
workflows is strongly influenced by the configuration of
cytometer acquisition detectors and the data preprocessing
steps. Therefore, a careful choice of data input is critical for
obtaining best performance of AP. The most accurate phe-
notyping was obtained with raw data acquired in a spectral
cytometer; however, similar performance was obtained with
the pseudospectral raw data input, which was obtained using
the full detector resources of our conventional cytometer (16
detectors instead of the standard ,16-detector setup). Im-
portantly, all the clustering algorithms tested performed
similarly, evidencing the advantages of spectral or pseudo-
spectral raw data inputs over conventional optical configura-
tions. The analysis of data obtained with a conventional
cytometer highlights the futility of applying data compensa-
tion preprocessing steps, as this did not improve AP perfor-
mance. This finding is consistent with the aim of data
compensation being to visualize data in two dimensions to aid
human interpretation, an irrelevance when analysis is unsu-
pervised and carried out in a multidimensional computational
environment. In agreement with this, when data were ac-
quired using spectral cytometry technology, the spectrally
compensated data mode was significantly less efficient than
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the raw spectral data mode at enabling automated detection of
cell populations. The efficiency of automated clustering was
further reduced by integration of spectral data into channels
matching fluorochromes, regardless of whether the data were
compensated or uncompensated. These data input modes
involve a loss of information when the full spectrum is inte-
grated into discrete channels, again suggesting that “the more
information the better” when acquiring FCM data for AP.
Our results may be explained by the fact that compensation
and data integration neglect factors such as the signal from
donor fluorochromes in tandem dyes and cell-fluorochrome
interactions, leading to changes in the fluorescence emis-
sion spectrum; these factors can help to differentiate cell
subsets and therefore can be useful for their efficient au-
tomated detection. Accordingly, uncompensated data were
used as input in the development of the immunoClust al-
gorithm (33); although, to our knowledge, neither this nor
other studies provided a formal evaluation of different data
inputs. We believe that the datasets presented in this paper
using different data input modes are of high interest for
the future development and evaluation of new analysis al-
gorithms and made them available (see Materials and
Methods).
For data preparation for automated phenotypic analysis,

most reports recommend FCM dataset acquisition with the
standard instrument optical configuration and compensation
(10, 24, 32, 37). Our study represents a departure from
established procedures for FCM data preparation by dem-
onstrating the advantages of raw data over compensated data.
Moreover, our results advise against using the standard FCM
optical configuration, limited to the detection channels
matching the fluorescence emission of the fluorophores in use.
Instead, we recommend that the instrument be configured to
use all available fluorescence detectors for data acquisition,
ideally covering the complete fluorescence spectrum to im-
prove automated phenotypic analysis. Our study is, therefore,
especially relevant in an era in which FCM technology is
moving toward an increasing number of fluorescence detec-
tors available for simultaneous parameter acquisition. These
guidelines should be taken into account in the future acqui-
sition of FCM data by immunology research efforts and by
public initiatives evaluating computational analysis tools, such
as FlowCAP, or consortia dealing with FCM data for pop-
ulation studies, such as the Human Immunology Project
Consortium. These recommendations could also be useful for
automated analysis of spectral or pseudospectral data previ-
ously acquired and stored by these initiatives, opening the
door to new discoveries. Our recommendations promote a
more effective use of the technology available in each labo-
ratory and will contribute to the widespread use of automated
analysis techniques within the FCM community.
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6. Grégori, G., V. Patsekin, B. Rajwa, J. Jones, K. Ragheb, C. Holdman, and J. P. Robinson.
2012. Hyperspectral cytometry at the single-cell level using a 32-channel photo-
detector. Cytom. Part A 81: 35–44.

7. Schmutz, S., M. Valente, A. Cumano, and S. Novault. 2016. Spectral cytometry has
unique properties allowing multicolor analysis of cell suspensions isolated from solid
tissues. PLoS One 11: e0159961.

8. Nolan, J. P., and D. Condello. 2001. Spectral flow cytometry. In Current Protocols
in Cytometry. John Wiley & Sons, Inc., Hoboken, NJ, p. 1.27.1–1.27-13.

9. Chester, C., and H. T. Maecker. 2015. Algorithmic tools for mining high-
dimensional cytometry data. J. Immunol. 195: 773–779.

10. Mair, F., F. J. Hartmann, D. Mrdjen, V. Tosevski, C. Krieg, and B. Becher. 2016.
The end of gating? An introduction to automated analysis of high dimensional
cytometry data. Eur. J. Immunol. 46: 34–43.

11. Hildner, K., B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita,
M. Kohyama, B. Calderon, B. U. Schraml, E. R. Unanue, M. S. Diamond, et al.
2008. Batf3 deficiency reveals a critical role for CD8alpha1 dendritic cells in cy-
totoxic T cell immunity. Science 322: 1097–1100.
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