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FRAMH: a Federated Learning Risk-based
Authorization Middleware for Healthcare

Carlo Mazzocca
Rebecca Montanari

Abstract—Modern healthcare systems operate in highly dy-
namic environments requiring adaptable access control mecha-
nisms. Access to sensitive data and medical equipment should
be granted or denied according to the current health situation
of the patient. To handle the need for adaptable access control
of healthcare scenarios, we propose a novel model that allows
dynamic access control decisions based on the context character-
izing the source, type of access request, patient, and estimated
risk corresponding to the conditions of the patient. Estimating
patient status risk requires analyzing vital physiological data
whose availability is growing thanks to the widespread diffusion
of the Internet of Medical Things (IoMT) devices. Inferring
the patient health status risk through Machine Learning (ML)
techniques is possible, but to achieve better accuracy, the training
phase requires the aggregation of vast amounts of data from
different sources. This aggregation could be difficult or even
impossible due to organization regulations and privacy laws.
To address these issues, this paper proposes a novel Federated
Learning Risk-based Authorization Middleware for Healthcare
(FRAMH) that supports risk-based access control to deal with
changing and unforeseen medical situations. Our solution infers
the risk of health status through a federated learning (FL)
approach enriched with blockchain to avoid the weaknesses
of centralized servers. The implemented prototype and a large
set of experimental results demonstrate the advantages of FL
in estimating the risk in healthcare scenarios. Through this
approach, even a medical institution with a limited dataset can
achieve a satisfying risk estimation and efficient access control
enforcement.

Index Terms—Risk-based Access Control, Access Control,
Authorization, Federated Learning, Healthcare

I. INTRODUCTION

HE diffusion of the Internet of Medical Things (IoMT)

is playing a key role in the delivery of reliable and
effective healthcare services enhancing the wellness of patients
and elderly people anywhere and anytime [If]. Many tiny-
powered and lightweight wireless sensors can be used to
remotely monitor the health condition of a patient and collect
vital physiological data [2], which are helpful for emergency
medical decisions and chronic disease detection. In such
a scenario, caregivers can provide assistance anywhere and
anytime. They typically operate in a continuously changing
environment with the need to access different data and device
resources in various situations. As a consequence, access
control models for healthcare, which prevent unauthorized
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access to data and medical equipment, should be dynamically
adaptable to address different circumstances. Adaptability to
dynamic conditions is a fundamental feature that modern
access control frameworks should offer to deal with changing
and unforeseen situations. For example, in emergency cases,
such as car accidents or when the condition of a patient
suddenly worsens and the patient is not already hospitalized,
electronic medical records can contribute to saving patient
lives. Access to emergency personal information should be
granted to ambulance personnel or even to walking-by care-
givers accidentally next to the patient, although they would
not have permission in other normal situations [3]]. Adopting
statically pre-configured security policies and mechanisms to
prevent data disclosure or access to physical resources may
hamper attempts to save patient life. Therefore, the trade-off
between privacy and safety is a fundamental aspect to consider
while designing and developing authorization solutions.

We consider risk-based access control as a valuable ap-
proach to achieving adequate adaptation even in unpredictable
situations and conditions. Risk-based access control is a dy-
namic access control technique that overcomes the limits of
traditional authorization approaches by adapting access control
decisions according to the level of risk associated to access
requests. In healthcare scenarios, the level of risk is typically
calculated by considering various elements ranging from the
context conditions of the requester to the health status of the
patient. One main challenge is the estimation of the risk related
to the patient condition because it requires the correlation of
a large amount of vital physiological data. The widespread
diffusion of IoMT favors this data availability, especially from
a future perspective.

Machine Learning (ML) is a promising solution that can be
adopted to analyze large datasets and predict the health status
of a patient thus supporting medical professional operations
[4]. However, the heterogeneity, incompleteness, timeliness,
and longevity of healthcare data, in addition to privacy and
ownership constraints, open a series of research challenges [5]]
that tend to hinder the adoption of traditional centralized ML
approaches. Current regulations, such as the European GDPR
and state privacy laws in healthcare scenarios, prevent that
information related to the health of an individual be processed
or shared without the explicit consent of the interested party
(e.g., Article 9 of the GDPR [6]). These constraints limit the
possibility for hospitals and clinics to share information related
to patients. As a consequence, the adoption of centralized
ML techniques centrally collecting health information from
different sources for the training phase are discouraged. In
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addition, relying only on the amount of data collected by one
medical organization may be insufficient to train adequately
an ML model. For these reasons, we claim that Federated
Learning (FL) can be envisioned as a promising and effective
paradigm to take advantage of patient data while preserving
their privacy [7]. FL allows the training of a global model
in a central server without the need to aggregate data in the
server itself. Data are kept locally to the institutions where they
originated, thus preserving privacy and ownership. Moreover,
we propose to enrich FL with a blockchain system to avoid
weaknesses related to a centralized server, such as single point
of failure, low scalability, and to limit possible biases inducing
to prefer some partial models over others. [8]. A blockchain
can be adopted to store and aggregate partial models and to
obtain the needed global vision. The characteristics of these
technologies can guarantee to every client joining the FL
process the trustworthiness of the model employed to predict
the patient condition.

In this paper, we present a Federated Learning Risk-Based
Authorization Middleware for Healthcare (FRAMH) that al-
lows users to access patient data and equipment according to
the context information of the requester and patient including
the health status. We use FL to train an ML model that outputs
the level of risk related to the current patient condition. All
partial models are stored in the blockchain ensuring their
integrity and trustworthiness. To the best of our knowledge,
we are the first to adopt FL to infer risk related to the patient
health status and in general to estimate health status risks in
risk-based access control models for healthcare scenarios [9]].
We implement a prototype of the proposed middleware and
demonstrate with extensive experimental tests the effectiveness
of FL to estimate the health status of patients when single
medical institutions have limited available data sets.

The remainder of this paper is structured as follows. Section
provides some useful background on FL and blockchain
for this paper. Section discusses related approaches to
infer risks in access control models and risk-based access
control models for healthcare scenarios. In Section [[V] we
introduce the adopted risk classification as well as the context
modeling on which our proposal relies. Section [V] presents the
architecture of FRAMH, whose implementation is detailed in
Section [VI] Section [VII] shows the effectiveness of employing
FL in risk-based access control models for healthcare. Finally,
Section [VIIIl draws our conclusion with some indications for
future work.

II. BACKGROUND

This section presents some background about the use of
federated learning and blockchain which are the two key
technologies of our research proposal.

A. Federated Learning

FL is a decentralized machine learning technique that de-
couples model training from the need to directly access all
raw data. This paradigm is suitable to avoid data sharing
issues related to law and privacy regulations in healthcare
scenarios [10]. Unlike traditional ML which typically relies

on centralized data and computational resources, FL does not
require that data are sent to a central location. Training is
directly performed over remote clients (e.g., server nodes and
even powerful devices) using data residing on the premises of
the owner. Each client that is involved in FL learning trains a
local ML model with its data; then, it sends a partial model
to a server that merges them through a suitable aggregation
strategy. A similar approach does not require that original
raw data are sent outside the perimeter of granted access. FL
strategies can be classified according to the algorithm and type
of synchronization employed to aggregate partial models.

McMahan et al. [|[11]] presented Federated SGD (FedSGD),
an algorithm that applies stochastic gradient descent (SGD)
to optimize federated problems. In each round, a client uses
local data to perform one step of the gradient descent on
its current model, and then sends updates (various gradients)
to the server. The authors also proposed FederatedAveraging
(FedAVG), a slightly modified version of FedSGD, which
sends weights instead of gradients. Such an approach also
allows clients to perform multiple updates on local weights
before sending them. Most strategies are based on a syn-
chronous aggregation of partial models. Hence, the global
model generation is performed only when all the clients have
given their contributions. In recent asynchronous approaches
[12], the global model is sent back to clients for additional
learning round. In summary, we leverage FL because it allows
ML algorithms to collect experience from different datasets
in different locations, thus enabling multiple organizations to
collaborate on model development without having to share
private data.

B. Blockchain

Blockchain is a distributed ledger structured as a chain
of blocks linked through hashes: each block has a reference
of the hash to the previous block. Tempering a block will
result in a different hash, thus breaking the hash chain. In
our application, a blockchain represents a digital distributed
storage where no party can tamper it without being detected
as evidenced in [13]. Moreover, blockchain introduces fault
tolerance and resilience by design since it is maintained by
peer-to-peer networks, without the need for a centralized
third party. Each node keeps its copy of the ledger and uses
consensus mechanisms, such as Proof of Work (PoW) or Proof
of Stake (PoS), to ensure secure synchronization of data across
different nodes. These algorithms also discourage malicious
users from performing cyber-attacks on healthcare datasets.
Blockchain networks can be classified, according to access
models, as permissionless or permissioned. The former is
characterized by a public network where anyone can interact
with it and join the consensus process. On the other hand, in a
permissionless blockchain, only authorized parties can interact
with the blockchain, depending on granted permissions. In our
work, we employed a permissioned blockchain.

Furthermore, a growing number of blockchains support the
execution of smart contracts [14] that is, executable code
stored and executed on a blockchain-based platform. These
programs are fault-tolerant, tamper-proof, and traceable by de-
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sign. All these characteristics are important for the applications
considered in this paper.

III. RELATED WORK

Most access control models do not satisfy the necessary
adaptability required by highly dynamic medical contexts. For
this reason, we consider related work proposing risk-based
access control solutions and ML techniques for risk estimation
with a focus on healthcare scenarios.

Various researchers address issues related to changing situ-
ations in healthcare environments. Recently, Atlam et al. [[15]
presented a novel Neuro-Fuzzy System, which is a combina-
tion of an artificial neural network and a fuzzy logic system,
to estimate risk in a risk-based access control model and
applied it to a children’s hospital. Risk is estimated according
to the action and the sensitivity of the data involved, while
the patient health status condition is not considered in the risk
factor evaluations. In [[16]], the authors proposed a context-
sensitive risk-based access control framework that grants or
denies access according to the severity of the context. Doctors
are bound to a permission set based on the severity of the
situation, symptoms, and treatments. Risk is estimated through
the correlations between requested data and the corresponding
permission profile. Access is granted when the level of risk
falls below a threshold (depending on the situation), but there
is no ML model to support it. Another risk-based adaptive
security solution for healthcare is presented in [17] where
the authors refer to risk, estimated through game theory,
in terms of the possibility to compromise a medical device
when adapting security methods and mechanisms. In these
last two proposals, the authors do not explain how the risk
is quantitatively estimated and do not present any implemen-
tation to demonstrate the applicability and results of their
theories. Existing solutions tend to consider access requests
to patient data without mentioning other relevant scenarios
for healthcare, such as doctors that have to update treatments
or a nurse that has to open a medical fridge to administer
insulin to a diabetic patient. We propose and implement a
risk-based access control framework that enables fine-grained
access to data and resources and avoids the limits of previous
models. Unlike other research proposals which only discuss
qualitatively the risk estimation, we detail how the risk can be
estimated through FL models.

Recent research proposed different approaches [9] to es-
timate the risk, but few of them employ ML. Moreover, to
the best of our knowledge, we are the first to propose the
adoption of FL in risk-based access control models and to
apply it to predict the health status of patients. The authors
in [18]] use a learned classifier of access control decisions to
infer a decision. In their work, the degree of risk is given
by the uncertainty that affects the predicted access control
decision when there is no exact match between the access
request and the corresponding decision. Another paper [[19]
adopts different ML-based approaches to dynamically decide
whether or not a request should be granted or denied in a
hospital management system. The best results were obtained
by combining auto-encoder for feature selection and random

forest for classification. Although the proposed risk-adaptive
access control model presents some common features to our
solution, it mainly focuses on the authenticity and trust of the
requester. It does not take into account the current health status
of the patient, representing a key element of our proposal.
In [20], the authors presented a fuzzy modeling technique to
estimate the risk of each access request. However, the paper
does not provide information on how to estimate risk and the
construction of fuzzy rules requires prior knowledge of various
environmental scenarios.

To sum up, in most existing risk-based access control
frameworks for healthcare, independently of whether they use
ML or not, the health status of a patient is not included among
the risk factors for access control decisions. Related works
only discuss qualitatively how risk is practically estimated.
Unlike prior works, we base access control decisions even
on the current patient condition. Granting or denying access
requests according to the health status and using FL to infer
such information are two major novelties. Considering the
health status of the patient also opens up the possibility to
provide outdoor care support to patients anywhere and anytime
even when they are on the move or at their homes. As a
final consideration, we consider access requests that could
target different kinds of resources, and we add implementation
details that are often omitted in other research.

IV. FRAMH ACCESS CONTROL MODEL

The FRAMH access control middleware is designed to ad-
dress the adaptability required by modern healthcare scenarios.
In particular, it exploits two kinds of visibility to govern access
control decisions depending on the desired trade-off between
the need for security and safety: context information related
to the requester and the patient to control access to patient
data and the health status risk. In the following sections, we
describe the FRAMH underlying risk and context models and
the needed support services to enforce context-sensitive risk-
based access control decisions.

A. Risk Classification

FRAMH classifies the severity of the health status of
patients based on the same risk classification proposed in [[16]
that assumes that a patient condition could be critical, serious,
or stable. Adopting a more detailed risk classification could
be possible but at the cost of adding complexity to policy
management that should govern overlapping policies applying
to different health risk levels. In addition, we have not found
realistic cases that call for finer-grained risk classification. It is
important to observe that FRAMH can work with different risk
classifications if needed with minimal modifications. Figure [I]
shows the risk levels adopted and their relationship with safety
and privacy. It is worth outlining that as the situation becomes
riskier, safety outweighs privacy. On the other hand, under a
stable situation, privacy is preferred over safety.

o Critical: patient life is significantly in danger. In this case,

privacy becomes secondary, and requests to access data
or medical equipment can be granted. Medical personnel
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| Critical situation | Safety
Serious situation $
Stable situation Privacy

Fig. 1. Considered risk levels.

has to obtain information as soon as possible to do their
best and try to save patient life.

e Serious: patient conditions are considered urgent. In such
a situation, doctors can access patient data from other
departments. We grant access to riskier data to expedite
patient treatments.

o Stable: users can only access authorized data. There is
no reason to grant access to additional information since
the patient is not facing a life-threatening situation.

The proposed risk classification is adopted to label the
outputs predicted by our ML model. Further details about this
phase are discussed in Section [VII-B}

B. Context Modeling

The context model is used for representing, storing, and
retrieving context information that is employed to build ac-
cess control policies and consequently take access control
decisions. To allow a simple policy specification, while still
achieving a high degree of flexibility, we adopt the context
model reported in Figure 2} The employed context model
comprises elements providing all context information along
with their attributes that are used to govern access control
policies. The Context Provider includes context information
that will be evaluated to grant or deny access related to both
the Requester and the Patient. The requester is typically an
expert caregiver but, in some cases, could also be a relative or
friend. For example, in a smart home environment, medicine
for treating diabetes or other critical drugs can be kept in a
locked smart medical refrigerator [21]] that regulates the access
to insulin or other drugs and monitor their use by patients. In
case of an emergency impeding the patient from personally
accessing the medicine in a set time frame, access to the
refrigerator could be granted to everyone in the house.

The context provider has context elements that are char-
acterized by a set of attributes. Both the requester and pa-
tients have a physical context including time and
location context information. The former can be an
instant or an interval, while the latter may refer to
an absolute or a relative geo-position (that is, lon-
gitude and latitude or room within a hospital). Information
related to time enables regulating access during a specific
period, while geographical data can be used to grant or
deny access according to the current location occupied by
the requester. The requester has its context that comprises:
role, department, and usual. The role indicates the
healthcare professional category or the relationship linking the
patient and the requester, such as a familiar or friend. The
department attribute contains the department information
related to the requester specialization. The usual attribute

outlines if the patient has been already visited by that re-
quester. Context information specific to the patient involves
the treatment that has been undergoing and the health
status (critical, serious, or stable).

Our model captures the characteristics of context infor-
mation based on an ontology such as the Web Ontology
Language (OWL) [22]. Domain-independent information of
the context ontology (in white boxes) refers to common
information that is re-usable for other application domains.
In the domain-dependent part (colored boxes), we adopt the
major concepts derived from the Health Level Seven (HL7)
Reference Information Model [23]].

C. Access Control Model Formalization

Concerning the context model of Figure [2] that classifies
information belonging to the requester context as requester
attributes and those belonging to the patient context as patient
attributes. Although the health status refers to the patient
context, due to its continuously evolving nature, we classify it
as general context information, such as the time and location.
Our formal model relies on the following entities:

e Requester: we denote with U/ the set of requester wu;

e Requester Attribute: we denote with RA the set of
possible values that a requester attribute ra can assume;

o Patient Attribute: we denote with P.A the set of possible
values that a patient attribute pa can assume;

e Resource: we denote with R the set of resources r that
can be accessed by a requester u;

o Action: we denote with A4 the set of actions that a
requester v can perform on a resource r associated to
patient p;

o Context Parameter: we denote with CP the set of possible
values that a context parameter ept, with i € Y U p, can
assume. A context parameter is characterized by a name
cpn and value cpv, thus, cp is tuple {(cpn, cpv).

The set of context parameter names CPN is determined
by pre-specified parameter names. In this paper, we con-
sider as context information CPA = {Time, Location,
HealthStatus}. Context is defined as follows:

Definition 1 (Context). A Context C is a set of n context
parameters cp € CP. For each cpF, cp;, with i # j and
k = z, we have that cpf.name #+ cp;.name. While, with
i # j and k # 2, it may result that cpf.name = cp; .name.
In a context C, there cannot be two cp belonging to the same
requester u with the same name, while this may happen for a
requester and a patient p.

Context information has a primary role in dynamically
granting or denying access to resources. In risk-based access
control policies, such information enables adapting to different
circumstances overcoming the limits of rigid static access
control approaches designed to always apply the same access
control policies that do not consider environmental changes
and unpredictable situations. We formally define an access
control policy as follows:
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Fig. 2. The context model employed to build risk-based access control policies.

TABLE I
EXAMPLES OF RISK-BASED CONTEXT-SENSITIVE POLICIES.

Requester Attribute Patient Attribute

Resource

Action Context Information

Role: “Doctor”,
Hospital: “X”
Department: “Orthopedic”

”

Treatment: “Orthopedic
Hospital: “X”

Data: Neurological

Read:False,

Delete: False HealthStatus: “Stable

Role: “Doctor”,
Hospital: “X”
Department: “Orthopedic”

Treatment: “Orthopedic”
Hospital: “X”

Data: Neurological

RequesterLocation
is equal to
PatientLocation,
HealthStatus: “Serious”

Read:True,
Delete: False

Role: “Nurse”,
Hospital: “X”
Department: “Diabetes”

Treatment: “Diabetes”
Hospital: “X”

Equipment: Refrigerator

Open:True, RequesterLocation
Close: True, is equal to
IncreaseTemperature: True, PatientLocation,

DecreaseTemperature: True HealthStatus: “Stable”

Definition 2 (Access Control Policy). An access control policy
ap is a set of clauses given by RAUPAU AU RUC with
RACRA PACPA ACA and RCR.

A requester u with attributes RA can perform the actions
A, under the context C, on the patient resources PR whose
owner has attributes P A.

For the sake of clarity, in Table[l] we report some examples
of risk-based context-sensitive policies, such as the first access
control policy claims an orthopedic of hospital X cannot read
neurological data of a patient whose conditions are stable. The
adopted mechanism allows many-to-many access control since
policies are not bound to a specific requester or patient.

V. FRAMH ARCHITECTURE

FRAMH architecture consists of three layers: Authoriza-
tion, Patient, and Learning which collaborate to manage
effective risk-based access control. The Authorization Layer
provides the components employed to verify access requests
and enforce access control decisions. The Patient Layer offers
services for the collection of patient context data. Finally, the
Learning Layer, based on FL integrated with the blockchain,
is in charge of supporting the prediction of the level of risk
associated with the current patient condition. Figure [3] shows
the FRAMH architecture.

A. Authorization Layer

The Authorization Layer includes different components
belonging to the XACML architecture [24]] as shown in Figure

kil

1) Policy Enforcement Point: The Policy Enforcement
Point (PEP) handles all incoming access requests. It extracts
information from the requests and builds a query that can be
understood by the Policy Decision Point (PDP). Furthermore,
if the incoming request does not provide all the needed data,
then PEP collects additional information from external sources
that are included in the query to evaluate.

2) Policy Decision Point: The PDP is the entity responsible
for evaluating incoming requests and determining whether they
should be granted or denied. It has to be fed up with policies
and data needed to make access control decisions.

3) Policy Information Point: The Policy Information Point
(PIP) is a component deployed on each node that provides the
additional information required by the PDP to make an access
control decision. In particular, it provides patient information
including those related to the current health status predicted
by the global model.

4) Policy Administration Point: The Policy Administration
Point (PAP) is the service that allows administrators to manage
policies and upload data that are used during policy evaluation.

B. Patient Layer

The Patient Layer includes the Patient device and a FRAMH
Agent as described below.

1) Patient Device: A personable wearable [oMT device that
continuously monitors the health of a patient. It periodically
sends patient data to its associated FRAMH Agent.

2) FRAMH Agent: Each Patient Device has a FRAMH
Agent associated with it. FRAMH Agent is a local component
deployed within smart homes, hospitals, and/or clinics that
comprises all services for calculating the risk level of the
patient health status and for providing patient data along with
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Fig. 3. The FRAMH architecture with the Authorization, Patient, and Learning layers highlighted with different colors.

the current health status to other FRAMH architecture mod-
ules. The FRAMH Agent also comprises the Learning Client
module (see Section|[V-C). Every FRAMH Agent receives vital
physiological data from the Patient Device. Such information
is periodically provided as an input to the global model,
embedded in the Learning Client, that outputs the health status
of the patient. The FRAMH Agent grants access to these data
if the access request satisfies the corresponding access control
policy. When deemed by the PDP, it sends context information
of the patient needed to make access control decisions.

C. Learning Layer

Let us analyze the main components that are involved in
the learning process.

1) Blockchain: We use a blockchain because it guarantees
transparency, fairness, and impartiality even among untrusted
parties that collaborate with the FL process (e.g., [23]). In
addition, by relying on smart contract technology, we eliminate
the need for a centralized entity that is typically responsible for
aggregating all partial models in the traditional FL approach.
The adoption of smart contracts allows clients to publish
partial models on the blockchain. It is the smart contract
that aggregates them in an automated way. The blockchain
also stores all the versions of the global model. One global
model version can be retrieved by looking at the transaction
history. One advantage is, for example, that if there is a drop
in performance during the training phase due to overfitting, it
is possible to restore the best version of the model. Thanks
to blockchain features of immutability and non-repudiation, all
changes to the partial and global models can be easily tracked.
Furthermore, when keys used to sign transactions are linked to
physical entities, it is possible to provide accountability during
the FL process. These properties are relevant in healthcare
contexts, where an error in the model generation may have
even legal consequences. The use of a blockchain also prevents
a malicious user may contribute to generating the global model
without being detected. An attacker may, for instance, provide
a partial model with some backdoor to corrupt the performance

of the global model on specific sub-tasks [26] (e.g., classifying
critical patient condition as stable).

Although the legal nature of blockchain is still debatable,
some countries have begun to admit data saved on blockchain
as a piece of legal evidence. For example, on June 27, 2018,
ruling on Hangzhou Huatai Yimei Culture Media Co., Ltd.
(”Huatai”) v. Shenzhen Daotong Technology Development
Co., Ltd. ("Daotong”) 27|, the Hangzhou Internet Court was
the first to accept electronic data stored on a blockchain as
legal evidence in a process.

2) Learning Client: Learning Clients (also referred to as
clients) are the entities involved in the training process. They
use vital physiological data of patients to train locally an ML
model. The training takes advantage of both local decisions
(optimization algorithm) and global decisions (algorithm for
aggregating the various partial models). The latter discrimi-
nates which data should be published on the blockchain as well
as the frequency of publication. Once the local training has
ended, clients rely on smart contract support to publish their
results. The blockchain server exploits information provided
by the clients to update the global model which is then sent
back to clients and used as a starting point for the next round
of local training. Once the training has ended, Learning Clients
are provisioned with a global model that enables them to infer
the health status of patients.

D. FRAMH at Work

The FRAMH middleware can manage access control poli-
cies and dynamically verify access requests according to the
current circumstance. We provide a simple but effective exam-
ple that highlights the adaptability of the proposed system to
deal with different situations while performing access control
verification, which is the core function of our proposal. Let
us consider the case of an orthopedic who wants to access
the neurological data of a patient who is suffering from some
mobility problems. The doctor works at hospital X where the
patient is hosted. The following steps have to take place a
priori before any resource access attempt:
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1) Each FRAMH Agent trains a local model using the data
collected by monitored patients. Once the final global
model has been generated and sent to FRAMH Agents,
FRAMH is ready to receive and evaluate access requests;

2) The wearable IoMT device, which monitors the pa-
tient, periodically sends vital physiological data to the
FRAMH Agent that provides them with the global
model that in turn outputs the current health status of
the patient. Therefore, when a new access request arrives
the FRAMH agent is aware of the patient condition.

At run time, when the orthopedic requires access to the
patient data the access control process comprises the following
phases:

1) The doctor sends an access request, including her/his

information, to the PEP;

2) The PEP collects the data provided by the requester
as well as further context information (i.e., location
and timestamp of the request). Moreover, it retrieves,
through the PIP, the health status as well as other
context information of the patient associated with that
access request. Let us assume that, when the orthopedic
tries to access the patient neurological data, the context
information provided by the PIP states that the patient
condition is stable;

3) The PEP uses the retrieved information to build a query
that can be interpreted by the PDP;

4) The PDP evaluates the access request sent by the PEP
according to the corresponding policy. Policy and data
that are used by the PDP during the access control veri-
fication are provided by the PAP. In this case, according
to the first policy reported in Table [[ the request is
denied since the doctor is attempting to access data that
goes beyond her/his specialization without a satisfying
reason.

Let us assume that the following day, the orthopedic tries to
access again the same piece of information. The access request
goes through the same steps described above. However, if the
patient condition has turned serious, for example, due to a
sudden worsening of her/his vital parameters, and the doctor
is sending the request from the same location as the patient.
The orthopedic will be justified to access neurological data as
claimed by the second policy of Table

VI. IMPLEMENTATION

In this section, we present the implementation details of
FRAMH.

A. Authorization Layer

1) PEP: The PEP was implemented through Flaskﬂ a web
micro-framework written in Python that offers REST API.
It obtains the context information of the requester thanks to
Python libraries, while those related to the patient are retrieved
through the PIP. Such information is used to build a query
(JSON payload) that will be evaluated by the PDP. In Listing
[[] we report the structure of an access request that matches
the second row of Table [l

Uhttps://flask.palletsprojects.com/en/2.1.x

Listing 1 Example of access request

{

"requester_attributes": {
"role":"doctor",
"hospital":"X",
"department":"orthopedic"

}l

"patient_attributes": {
"treatment":"orthopedic"

s

"resource": {

"type":"data",
"value":"neurological",
"action":"read"

}!

"context": {
"health_status":"serious",
"user_location":"X",
"patient_location":"X"

Listing 2 Example of access control policy

allow {
doctor_is_orthopedic
is_serious
access_neurological_data

}

doctor_is_orthopedic {
requester := input.requester_attributes
requester.role == "doctor"
requester.hospital == "X"
requester.department == "orthopedic"

}

is_serious {
cont := input.context
cont.health_status ==
cont .user_location ==

"serious"
cont .patient_location

}

access_neurological_data {
patient := input.patient_attributes
resource := input.resource

patient.treatment[_] == "orthopedic"
resource.type == "data"
resource.value == "neurological"
resource.action == "read"

2) PDP: For our PDP, we employed Open Policy Agent
(OPAﬂ a lightweight general-purpose policy engine service
that decouples policy decision-making from policy enforce-
ment. Policies are written in Regcﬂ the native policy language
of OPA that support structured document models such as
JSON. For the sake of clarity, we provide, in the snippet below,
the implementation of the second access control policy of Ta-
ble[l As shown in Listing 2] Rego enables implementing fine-
grained access control policies. In order to show its flexibility,
we implemented the aforementioned policy by combining doc-
tor_is_orthopedic, is_serious, and access_neurological_data.
The former verifies that the requester is an orthopedic who
works for the X hospital. The second checks that the patient
condition is serious. Finally, the latter defines the patient

Zhttps://www.openpolicyagent.org
3https://www.openpolicyagent.org/docs/latest/policy-language
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attribute that allows accessing neurological data. The input
keyword enables accessing parameters of the JSON payload,
while the underscore _ is a special Rego iterator, in this
case, it looks for ”orthopedic” within the patient treatments. In
Listing[2] only to favor its comprehensibility, we compared the
request’s fields to predefined values. However, these compar-
isons are typically performed between the request’s fields and
those memorized in JSON files provided, as well as policies,
by the PAP.

3) PIP: As the PEP, also the PIP was implemented through
Flask. It periodically receives patient data that are fed up to
the global shared model to predict the health status of the
patient. The PIP exposes REST API to collect data from the
patient data and to provide patient and context information to
the PEP.

4) PAP: Our PAP comprises CouchDBﬂ an open-source
document oriented NoSQL database, and bundle server. The
former stores access control policies and data that are deemed
by the PDP during policy evaluation, while the latter sub-
scribes to changes of access control policies memorized in
CouchDB and consequently updates the cache. The bundle
server is the component that provides policies and data to the
PDP.

B. Learning Layer

1) Blockchain: The blockchain was implemented through
Hyperledger Fabricﬂ an open-source, modular, and extensible
framework for deploying permissioned blockchains. Using a
permissioned blockchain allows for more fine-grained control
over the operations performed in the network. Every node
that wants to submit transactions must have an identity issued
by a known Certificate Authority (CA). Furthermore, the
adoption of a permissioned blockchain allows checking partial
models submitted by clients and eventually excludes them
from the model aggregation phase. Fabric enables executing
smart contracts written in general-purpose languages, such as
Java, Go, and NodelJS. Moreover, Fabric-based applications are
enterprise-grade and offer a high level of security, scalability,
confidentiality, and performance. Indeed, as shown in recent
work [28]], Fabric can support about 200 transactions per
second, with an average latency of about 0.16 seconds, and
up to 100,000 participants.

We achieve the FL process through a smart contract, written
in NodelS, that implements the FedAVG algorithm. Each
client sends an array containing the weights and biases of
the neural network trained locally. For the sake of simplicity,
the aggregation was implemented synchronously: the smart
contract waits for all the models from the clients and, once
it receives the last one, it automatically aggregates them,
generating the global model. Finally, to notify the successful
aggregation, the smart contract emits an event by exploiting
Fabric’s event service and the clients download the global
model using the corresponding method of the smart contract.
The use of a blockchain does not negatively impact the
performance of our proposal. The global model has to be

“https://couchdb.apache.org
Shttps://www.hyperledger.org/use/fabric

trained before putting FRAMH into execution and possible
model updates have to take place only during the specified
time window.

2) Learning Client: Entities participating in the FL process
and developed to be Flower [29] compliant. Flower is a
framework that offers an FL infrastructure to ensure low
engineering effort that enables developers to focus only on ML
aspects. It is compatible with the most widely used ML frame-
works, such as Tensorflow and Pytorch. Moreover, Flower is
designed to simulate realistic situations with a large number of
heterogeneous devices having different computational capabil-
ities and ecosystems. To enable the communication between
Hyperledger Fabric and the Flower Client, we developed an
adapter, transparent to the client, that enables the exchange of
data with the blockchain. The Flower Client creates a gRPCﬁ
connection with the adapter, which acts as a Flower Server
and forward data to the blockchain.

3) Optimization Techniques: One of the most significant
limitations that hinder the use of blockchain for ML is the
size of transactions. Indeed, although Fabric is one of the
few blockchains that allows large transaction sizes (around
100MB), ML models can easily go beyond this threshold. For
example, some models available on Kerasﬂ reach up to S00MB
in size. To address such concerns, we adopted the following
model size optimization techniques:

e Model Compression: this technique can be used with
any type of data. In our case, it consists of compressing
the global and partial models before saving them on the
blockchain. We used pak(ﬂ, a porting of zlib for NodelJS.
zlib is a free, open-source software library for lossless
data compression and decompression. It is based on the
DEFLATE algorithm [30], which uses a combination of
the LZ77 lossless data compression algorithm and the
Huffman coding;

e Model Quantization: this method is specific to neural
network weights. Although compression is generally use-
ful in decreasing the size of data, in the case of ML
models it turns out to be underperforming. The float32
weights of a neural network are usually not suitable for
such compression due to the noise-like variation in the
parameter values, which contains few repeating patterns
[31]l. For this reason, we decided to quantize the weights
of the neural network after performing local training.
Quantization refers to the operation of mapping the 32-
bit float values of the original network weights to a more
compact representation, such as 8-bit integers. In our
case, we mapped the weights (w € [, §]) to 8-bit signed
integer values (wq, € [oy,B,]), With oy = —128 and
Bq = 127. The quantization process is defined, for each
weight, as follows :

1
wq = round(—w + z) (1)
s
and the de-quantization process is defined as:
w = s(wg — 2) 2)

Shttps://grpc.io/
Thttps://keras.io/api/applications/
8https://github.com/nodeca/pako
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where s is the scale and z is the zero point [32]. The scale
is an arbitrary positive real number, while the zero point
is the quantized value corresponding to the real value 0.
It is possible to derive s and z as follows:

5= oo
Pa = 3)
z= round(Lag : Zﬂq)

Since some neural networks have weights that differ by
orders of magnitude between layers, s and z are calcu-
lated by considering one layer at a time. This approach
improves the accuracy of the quantization process and
makes it less subject to variance in values.

VII. EVALUATION

We evaluate the feasibility of applying the proposed FL
to estimate the level of risk corresponding to the current
patient conditions. We first describe the employed dataset,
then we introduce the adopted ML model. Finally, we discuss
experimental results and draw some considerations.

A. Dataset

We used the public dataset from the PhysioNet/Computing
in Cardiology Challenge 2012 Predicting Mortality of ICU
Patients [33]]. This dataset includes the medical records of
12,000 intensive care unit (ICU) patients who have survived
or passed away. All patients were adults and were hospitalized
for several reasons. For each patient, data were collected
for 48 hours after their admission to the ICU. Observations
covered 42 different variables, which included information
from laboratory tests or non-invasive examinations. However,
not all variables were collected every hour of hospitalization.

Before performing the training, we pre-processed the
dataset. First, we followed the data cleaning and feature extrac-
tion process described in [34]]. Then, we checked each patient
measurement to correct any errors through domain knowledge.
Physiologically implausible values were replaced with valid
measures or NaN. Finally, we transformed the time series
of the individual variables into scalar features. We extracted
the following features for each temporal variable: minimum,
maximum, median, first and last values. Furthermore, to sim-
ulate a scenario where patients are monitored through IoMT
devices, we used features that can be monitored through non
or minimally invasive readings. Non-invasive means that there
is no need to cut the skin or enter any of the body spaces
to measure a vital parameter. For this reason, we only take
into account the following features: age (Age), glucose in
blood (Glucose), heart rate (HR), non-invasive diastolic arterial
blood pressure (NIDiasABP), non-invasive mean arterial blood
pressure (NIMAP), non-invasive systolic arterial blood pres-
sure (NISysABP), respiration rate (RespRate), Oy saturation
in hemoglobin (Sa02), and temperature (Temp). Each feature
X was normalized so that each value x is mapped to the range
[0, 1]:

x — min(X)

Lnorm = max(X) — min(X) “)

Not all measurements were available for all the patients and
this produced missing data in the dataset. For this reason, we
first eliminated those patients with at least two-time variables
that have never been collected. In such a way, the dataset was
reduced from 12,000 to nearly 8,000 patients. In addition, we
replaced the NaN values with the median for each feature.

As a remarkable issue, we note that the dataset is highly
unbalanced since it contains many more survived than dead
patients. After various transformations, the ratio between de-
ceased and survivors during the period is approximately 1:6.
There are many techniques to handle unbalanced data sets
(e.g., [35]). Since we decided to only use real data and avoid
those synthetic, we performed a random under-sampling of the
dominant class to obtain a balanced dataset. This step further
reduced the size of the dataset to 2254 patients.

B. Model

As our ML model, we use the Multilayer Perceptron (MLP),
which is a fully connected class of feedforward Aurtificial
Neural Networks (ANNs). The choice of hyper-parameters,
such as the number of layers, neurons, and initial learning
rate, is crucial to obtaining a performing model. There is
no unique strategy for discovering the optimal configuration.
However, some recommendations can be followed [36]. In
this work, we adopt a search technique based on a manual
trial and error of different hyper-parameter configurations. The
best configuration found consists of four dense layers, with
256, 512, 128, and 1 neuron, respectively. The first three
layers use Rectified Linear Unit (ReLU) as the activation
function [37]], while the last layer (the output layer) adopts the
Sigmoid to obtain a value between O and 1, representing the
probability of the patient death. In addition, layers using the
ReLU function are initialized using the He Normal initializer,
while the last layer is initialized using the Glorot Normal
initializer. All biases are initialized to zero. As the optimization
algorithm, we employed Adam, which is a stochastic gradient
descent method based on adaptive estimation of the first-
order and second-order moments [38], with a learning rate
of 0.01 with a decay of 0.005. As demonstrated in [39],
decreasing the learning rate during training contributes to
achieving better performance. Finally, since we aim to address
a binary classification problem, we used binary cross-entropy
as the loss function. The output value o of the model is mapped
into the risk levels shown in Figure [T] as follows:

o0 € [0,0.33[— Stable
o € [0.33,0.66]— Serious ®)

o0 € [0.66,1] — C'ritical
As anticipated in Section vital physiological data col-
lected through IoMT devices are provided to the global model

that outputs one of such risk levels that is then used by the
PDP to make access control decisions.

C. Experiments

To show the effectiveness of FL in healthcare contexts, we
applied our model in both centralized and federated config-
urations. The dataset was split into 90% training data and
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Fig. 4. Performance comparison of the centralized approach with 100% of the training set (a), centralized approach with 75% of the training set (b), and

federated approach with 3 clients each using 33% of the training set (c).
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Fig. 5. ROC comparisons of the centralized approach with 100% of the
training set, centralized approach with 75% of the training set, and federated
approach with 3 clients each using 33% of the training set.

10% testing data. We first defined a performance benchmark
by performing centralized training using the entire training
set. In the centralized approach, a single client, which could
be a hospital, performs the training process for 300 epochs.
However, since the hospital may have a smaller training set,
we ran a second experiment using 75% of the training data.

To evaluate the federated approach, we considered three
clients, that can represent three hospitals of the same region,
that join the federated learning process. Each hospital uses
33% of the training data, with no overlap, to perform the
training of a partial model. On each client, the model is trained
for 3 epochs before being sent for the aggregation, while the
global training involves 100 rounds of communication. Thus,
we are in the same condition as the centralized approach, since
overall each model will be trained for 300 epochs.

D. Results

In Figure ] we report the main results of the experiments.
From the three graphs, we can state that the model obtained

through FL achieves comparable performance with that of the
centralized model that has been trained with the entire training
set. Interestingly, the centralized model trained with 75% of
the training set performs worse than the federated one. Having
less data will result in a worse ML model, and a single clinic
cannot have an amount of data comparable to a federation
of medical institutions that collaborate to achieve a common
goal. This realistic observation justifies our choice to adopt
FL to infer the health status of patients in healthcare scenarios
where sharing sensitive data is one of the major concerns. On
the basis of the collected results, we can state that medical
institutions having a small-size dataset can remarkably benefit
from joining the FL process to infer the risk related to the
current patient condition. Although each client trains a model
using a restricted dataset, this knowledge is shared through the
aggregated model with other peers. Thanks to the proposed
process, medical institutions can achieve comparable results
to a centralized ML approach as they employed the whole
amount of data produced by all involved organizations.

TABLE 11
COMPARISON OF ML APPROACHES THAT USE THE MIMIC-III DATASET.
Project Dataset Model Performance

Centralized Accuracy = 0.70
7°C1 Subset of MIMIC-III MLP AUROC = 0.76

100%
F1-score = 0.70
Centralized Accuracy = 0.64
Subset of MIMIC-IIT MLP AUROC = 0.72

75%
F1-score = 0.65
Accuracy = 0.70
Federated | Subset of MIMIC-IIT MLP AUROC = 0.77
F1-score = 0.70
Baker at al. . Accuracy = 0.76
@0 Complete MIMIC-III | CNN-BiLSTM AUROC = 0.85
Sadeghi .. AUROC = 0.93
et al. [41] Complete MIMIC-III | Decision Tree Fl-score = 091
Brand et al. AUROC = 0.87
2] Complete MIMIC-IIT CNN Fl-score = 0.77

Furthermore, in Table [l we compare the

obtained results

with those of the state-of-the-art research proposals that use
the MIMIC-III dataset or derivatives and only consider vital
signs. Our comparisons are based on three metrics widely
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adopted in literature: Accuracy, Area Under the Receiver
Operating Characteristics (AUROC), and Fl-score. AUROC
is a performance measurement for classification problems at
various threshold settings. It tells how much the model is
capable of distinguishing between classes. Figure 3] reports the
ROC of our experiments, the graphs highlight that the AUROC
of the centralized approach using 100% of the training set
and that of the federated one are larger than that of the
centralized configuration using 75% of the training set. Thus,
this implies that the centralized approach that uses 75% of the
training set makes more wrong predictions than the other two
configurations. The F1-score can be interpreted as a harmonic
mean of precision and recall. The precision is the number of
true positives divided by the number of all positives; while the
recall is the number of true positives divided by the number
of all samples that should have been identified as positive. In
healthcare scenarios predicting false negatives and effectively
distinguishing between patients with the disease and no disease
are two serious concerns. For this reason, the F1-score and the
AUROC are the two key metrics to consider while evaluating
the ML model. Some of the papers considered, however, do
not show all the metrics. AUROC is the only one present in
each of them.

The model presented in [40] was trained to predict three
different cases of risks of mortality: within 3 days, 7 days,
and 14 days respectively. Table [lI| shows the performance of
risk mortality within 14 days. The model consists of a hybrid
neural network, composed of a Convolutional Neural Network
(CNN) and a Long Short Term Memory (LSTM). CNNs are
widely used to identify patterns, while LSTM networks are
known for their ability to remember which information in a
sequence is the most important. The data used for training
are the readings of some vital signs recorded over a 24-hour
window. In [41]], the authors trained eight different classifiers:
decision tree, linear discriminant, logistic regression, Support
Vector Machine (SVM), random forest, boosted trees, gaussian
SVM, and K-nearest Neighborhood (K-NN). In Table @ we
reported the performance of the decision tree since it achieves
the best performance. To predict risk, quantitative features
were extracted from the heart rate signals of ICU patients
with cardiovascular disease. Each signal is described in terms
of 12 statistical and signal-based features. Finally, the authors
of [42]] used a CNN architecture to predict the patient risk of
death. They employed the time series of readings of some vital
signs (Heart Rate, Respiratory Rate, Systolic Blood Pressure,
and Diastolic Blood Pressure) as training data. They compared
their model with other architectures (i.e., recurrent neural
network and logistic regression), showing how it succeeds in
outperforming them. The papers show how models not based
on deep neural networks manage, in some cases, to match or
even outperform them. In general, the most recent works tend
to prefer models based on 1-dimensional CNNs, whose usage
is recently emerging in processing time series.

VIII. CONCLUSIONS

Access control mechanisms that decide whether to grant
or deny access according to static and predefined permissions

are inadequate in dynamic contexts such as healthcare systems.
Here, adaptability is a key feature but it requires access control
frameworks capable of governing decisions according to the
risk level of patient conditions by taking into account context
information characterizing the role of the access requester and
the patient.

FRAMH is a risk-based authorization framework that ex-
ploits FL integrated with blockchain, as the main novelty, to
calculate the level of health status risk which is crucial to
properly tune access control decisions based on the trade-off
between security and patient safety. The widespread diffusion
of IoMT devices, which can continuously monitor individual
conditions, has significantly contributed to increasing the avail-
ability of healthcare data with the possibility of improving the
quality of medical services based on data evidence. However,
several legal and regulatory principles prevent the possibil-
ity of sharing sensitive information among different medical
institutions with consequent limits to leveraging traditional
ML techniques. For this reason, we propose the adoption of
FL in medical environments. This approach lays the basis
of an original risk-based authorization middleware, namely
FRAMH, that exploits FL to infer the health status of patients.
We implement a prototype and demonstrate the effectiveness
of FL in healthcare scenarios where hospitals may be driven
by common goals that could be hindered by concerns related
to sensitive information sharing. Experimental results show
that the FL approach achieves performance comparable to
the centralized approach by using the same training set.
However, by reducing the training set to 75%, the federated
configuration shows even better performance even though each
client has been trained with a smaller data partition (33%)
of the entire training set. Although the involved parties may
have a restricted dataset, the collaborative model of FL allows
them to achieve better performance than the adoption of a
centralized ML approach with a larger dataset.

The results of this paper that are focused on risk-based
dynamic access control can be extended to other smart health-
care applications, such as home healthcare, and to any online
services requiring differential accesses based on dynamic risk-
based conditions.
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