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Abstract 

Poly(vinylidene fluoride) (PVDF) displays ferroelectric, piezoelectric and pyroelectric behavior and it is widely 

used in high-tech applications including sensors, transducers, energy harvesting devices and actuators. The 

crystallization of this polymer into highly polar  phase is desirable but is hard to achieve without applying specific 

thermo-mechanical treatments. Indeed, fabrication processes directly affect PVDF molecular chain conformation, 

inducing distinct polymorphs. In this paper, we present the fabrication of PVDF/BaTiO3 composite foams by 

thermally induced phase separation method (TIPS). Different compositions are tested and characterized. The 

crystallinity, and in particular the development of electroactive  crystal phase is monitored by FTIR, DSC and 

XRD measurements. Dielectric properties are also evaluated. It turns out that TIPS is a straightforward method 

that clearly promotes the spontaneous growth of the  phase in PVDF and its composite foams, without the need 

to apply additional treatments, and also significantly improves the degree of crystallinity. BaTiO3 content gives 

additional value to the development of  phase and total crystallinity of the systems. The low permittivity values 

(between 2 and 3), combined with the cellular morphology makes these materials suitable as lightweight 

components of microelectronic circuits.  

 

Keywords: poly(vinylidene fluoride), thermally induced phase separation (TIPS), foams, crystallinity,  phase, 

barium titanate, permittivity 

 

 

Introduction 

In the last 15 years, а significant scientific attention has been dedicated to energy harvesting systems based on 

either piezoelectric or pyroelectric materials, capable of converting mechanical energy and temperature fluctuation 

into electricity. As typical electroactive polymers, poly(vinylidene fluoride) (PVDF) and its copolymers were 

widely studied from various aspects [1-3]. PVDF crystallizes in five different crystalline forms (, , , δand ), 

but only the  crystal phase is piezoactive under certain conditions [4,5]. The relative amount of these crystalline 
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polymorphs largely depends on the manufacturing process and several approaches have been applied in order to 

promote the crystallization of the electroactive  phase, such as mechanical stretching, spin-coating, and 

electrospinning [5,6]. Besides the processing techniques, certain incorporated fillers might also act as nucleators 

favoring the desired crystal phase in composite systems [7-9]. Inorganic piezoelectric fillers, such as PZT, BaTiO3, 

ZnO, AlN, are extensively used to enhance the performance of PVDF [10].  

A typical example is the PVDF/BaTiO3 organic-inorganic pair. BaTiO3 belongs to perovskite-type ceramics with 

interesting properties, possessing very high piezo and dielectric constants combined with its eco-friendlier 

character compared to all other ceramics based on lead [11,12]. A large number of PVDF/BaTiO3 composites were 

processed by various methods [13-16] obtaining different crystal phases as a result of different applied solvents, 

polymer solution concentrations and thermal annealing treatments, as well as different solution casting substrates. 

Typically, applying various methods,  phase was primarily developed with different fractions of  and  phases.  

Limited scientific attention was dedicated to PVDF composite foams, aiming to achieve high content of  phase 

and high degree of crystallinities. Lanceros-Mendez et al. have reported the production of electroactive 3D PVDF 

scaffolds by different approaches, such as NaCl salt leaching, solvent casting, and freeze extraction with nylon 

and poly(vinyl alcohol) templates. However, the obtained degrees of crystallinities were low, between 33% and 

47% [17]. Similar composite foams with excellent piezoelectric properties were produced by sugar-templating 

strategy, using polydimethylsiloxane as a matrix, and BaTiO3 nanoparticles and carbon nanotubes as nanofillers 

[18]. Since some works have demonstrated that foaming could enhance the electrical and dielectric properties, 

highly loaded piezoelectric thermoplastic polyurethane/lead zirconate composite foams were developed using 

expandable microspheres responsible for creating highly cellular structure [19]. Numerous PVDF foams were 

produced for various other applications such as insulating materials and materials used in separation processes 

[20,21]. In these systems, limited attention has been devoted to the crystal structure, the development of certain 

crystal phase, and the parameters that tune the desired piezoelectric properties.  

In the present study, PVDF/BaTiO3 composite foams were produced by thermally induced phase separation 

method (TIPS). A comprehensive structural analysis was performed in order to study the influence of the 

fabrication process and the content of BaTiO3 micro-sized filler on the development of highly desirable 

electroactive -phase and overall degree of crystallinity. The observed synergy between these two aspects is 

believed to be crucial in the development of high -phase content (up to 73.5%) and high degree of crystallinity 

(up to 87%), giving these composite foams a great potential as piezo-sensing materials. The cellular structure was 

shown to have a huge impact on the dielectric properties of the produced foams, exhibiting low-k-dielectric 

characteristics, widely used in microelectronics. 

 

Materials and Methods 

Materials 

 

PVDF polymer (Solef 6008) with density of 1.75 g/cm3 was kindly supplied by Solvay Specialty Polymers (Italy). 

Dimethyl sulfoxide (DMSO) with 99.5% purity (Merck product) was used as a solvent. Barium titanate (IV) (99%) 

powder, with particle size between 0.85-1 µm, was a product of Acros Organics. All chemicals were used as 

received, without previous purification. 
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Preparation of Composite Foams 

Composite foams were produced by thermally induced phase separation method, as a simple and cost-effective 

approach [22]. The corresponding PVDF/BaTiO3 composite foams were prepared as 5 wt% solutions in DMSO. 

The polymer solutions were heated up to 40 °C for 24 h, in order to obtain transparent solutions. After that, an 

appropriate amount of BaTiO3 powder was added to the resulting solutions, mechanically stirred for 1 h, and 

ultrasonically treated for additional 3 h. The suspensions were then poured into Petri dishes and frozen at -35 °C. 

The glass dishes side walls were protected with a thick PTFE layer, and the bottom side was positioned on metal 

support in order to provide directional freezing of the suspensions. The DMSO solvent was extracted from the 

foams, using deionized water as a non-solvent. The created foams were then dried at room temperature. The 

composition of PVDF/BaTiO3 composite foams and their abbreviations are given in Table 1. 

 

Foams Characterization 

Scanning electron micrographs were taken using a Leica Cambridge Stereoscan 360 Scanning Electron 

Microscope (SEM), operating at an accelerating voltage of 20 kV. Before observation, the samples were sputtered 

with gold.  

FTIR-ATR spectra were recorded with a Perkin Elmer Spectrum 100 FTIR spectrometer (USA) with 32 scans, in 

the range of 4000-600 cm−1, with a resolution of 4 cm-1
. 

Thermogravimetric analyzer (TGA, Q500, TA instruments) was used to determine the thermal stability of the as-

prepared composite foams in the temperature range between 30 °C and 700 °C, with a heating rate of                     

10 °C min-1. All measurements were performed under constant air flow. 

Thermal transitions were determined with a TA Instruments differential scanning calorimeter, DSC Q100, 

equipped with a refrigerated cooling system (RCS). The samples were subjected to a first heating scan at 10 °C 

min-1 from -90 °C to 200 °C, a controlled cooling at 10 °C min−1 up to -90 °C, and a second heating scan at 10 °C 

min−1. The degree of crystallinity Xc was determined using Equation 1: 

 

𝑋𝑐 =
∆𝐻𝑚

∆𝐻𝑚 
𝑜 ∙𝑤𝑃𝑉𝐷𝐹

× 100        (1) 

 

where ∆𝐻𝑚 is melting enthalpy determined in the first heating scan, ∆𝐻𝑚 
𝑜  is enthalpy of hypothetically 100% 

crystallized PVDF, taken as 104.7 J g-1, [23,24] and 𝑤𝑃𝑉𝐷𝐹  is PVDF weight fraction in the corresponding 

composite foam.  

X-ray Diffraction (XRD) measurements were performed on a Rigaku Ultima IV powder X-ray diffractometer, 

within 2 range from 10 to 80°, applying a scanning rate of 0.02 ° min-1. CuK radiation was obtained from a 

generator set at 40 kV and a current of 40 mA. To extract the relevant XRD peaks and their intensities (integrated 

area), the curve-fitting was performed using Grams AITM Spectroscopy Software. The crystallinity index (Xc) was 

determined using Equation 2:  

                     𝑋𝑐 =
∑𝐴𝑐 

∑𝐴𝑐+∑𝐴𝑎
 𝑥100%   (2) 

where ∑𝐴𝑐 and ∑𝐴𝑎 are the total integrated areas of the crystalline peaks and amorphous halo, respectively.  
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Dielectric Measurements 

Dielectric spectroscopy measurements were performed using a Novocontrol Alpha Dielectric Analyzer v2.2. It is 

based on a high voltage amplifier for the application of a variable frequency electric field on the sample. The 

measuring cell consists of a lower electrode for the application of high voltage, and a grounded upper electrode 

for signal acquisition. 

The instrument measures the material impedance, capacitance ( 𝐶 ) and dielectric loss (tanδ). The dielectric 

properties of the material (i.e. the real and imaginary parts of permittivity) are indirectly calculated once noted the 

geometric dimensions of the sample (thickness and diameter). The dielectric constant of the material 𝜀𝑟 is then 

calculated by using Equation 3:  

𝜀𝑟 =
𝐶

𝜀0
∙

𝑑

𝑆
   (3) 

where 𝜀0 is the permittivity in vacuum (8.85×10-12 F m-1), 𝑆 is the thickness of the sample, and 𝑑 is the diameter 

of the high voltage electrode of the cell. The equipment was set by applying 500 Vrms over a frequency range from 

10-1 to 104 Hz. 

 

Results and Discussion 

Morphology Observation 

PVDF-BT composite foams with different amounts of BaTiO3 were produced by TIPS as flexible thin discs of 

approximately 4 cm in diameter and about 500 µm thick (Figure 1).  

The SEM images reported in Figure 2 provide information about the 3D microstructure, pore dimensions, and the 

quality of particle dispersion. The foams displayed a highly porous interconnected structure with pores having 

dimensions in the range of 10-40 µm, with pure PVDF displaying bigger pores with respect to the composites. The 

reduction of pore dimension in the composites might be attributed to heterogeneous nucleation and increased 

number of nucleation sites upon the addition of BaTiO3 particles [25]. High-magnification images of the 

composites show the presence of BaTiO3 particles, having a diameter of few microns, as expected. The amount of 

BaTiO3 particles, detectable on the surface of the pore walls, increased with the increase of the ceramic loading, 

thus supporting the nominal amount of BaTiO3 added during the foam preparation. It is worth mentioning that 

when BaTiO3 concentration exceeded 10 wt%, some of the particles where not completely embedded in the 

polymer matrix, as detectable in Figure 2h and j. 

 

FTIR Spectroscopy Characterization of -Phase Content 

The FTIR spectra of the PVDF and PVDF composite foams were recorded to determine the relative fraction of the 

developed  phase. Figure 3 shows normalized FTIR spectra of all as-prepared foams. Special attention was given 

to the assignation of crystalline sensitive peaks. The absorption bands positioned at 762 cm-1 [CF-CH-CF)], 795 

cm-1 [CF2)] and 975 cm-1 [δCH2)] were attributed to the presence of phase [5,26], while the bands located at 

872 cm-1 [(δCH2)] and 838 cm-1 [(CH2)] were attributed to the presence of  phase [5,26]. Deformation vibration 

bands of CH2 groups, positioned at 1453 cm-1 and 1402 cm-1 were also relevant to the presence of  phase [26]. 

Similar absorption bands were detected in all composite foams with no obvious absorption band shifting, 

suggesting an absence of specific interaction between PVDF matrix and BaTiO3 filler, as expected.  

The relative fraction of the  phase was determined according to Equation 4: 
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𝐹(𝛽) =
𝐴𝛽

(
𝐾𝛽 

𝐾𝛼 
)𝐴𝛼+𝐴𝛽

=
𝐴𝛽

1.26𝐴𝛼 +𝐴𝛽
× 100 (4) 

where the absorption coefficients, 𝐾𝛼 is 6.1x104 and 𝐾𝛽 is 7.7x104 cm2 mol-1, while 𝐴𝛼 and 𝐴𝛽 are absorbances at 

762 cm-1 and 838 cm-1, respectively [27]. The F() for the PVDF powder was only 27%, while after the foaming 

process PVDF displayed a higher  phase content of 64%. The addition of 10 and 20 wt% of BaTiO3 further 

increased the  phase content to 72.1% and 73.8% for PVDF-10BT and PVDF-20BT, respectively, suggesting that 

the incorporation of BaTiO3 improved the development of electroactive  phase. The lower F() values in PVDF-

5BT and PVDF-15BT (55.8% and 60.9%, respectively), might be due to the fact that the widely used FTIR 

approach for determination of F() usually does not take into consideration the absorption peaks in the 

wavenumber range of 400-1500 cm-1, exclusively relevant to the  and  phases [26]. However, compared to 

literature data, even unfilled PVDF foam exhibited significant fraction of  phase, probably as a result of applied 

temperature gradient during the foams preparation. The polar nature of the used DMSO solvent might have 

additional influence in favoring the formation of the  phase [27]. 

 

Thermal Properties 

The TGA curves and the corresponding derivatives are presented in Figure 4a and b. All TGA curves had a similar 

trend in the investigated temperature region. The onset temperatures and the corresponding weight residues are 

given in Table 2. In air, PVDF degraded in two distinct mass loss steps with no residual weight, as previously 

reported [28]. Conversely, BaTiO3 was stable within the same temperature range. In the composites, the residual 

weight after the complete decomposition of the polymeric components corresponds to BaTiO3 content; values are 

reported in Table 2 and are perfectly in line with the nominal composition, within the accuracy of TGA 

quantification. Notably, the main DTG peak in PVDF was located at 470 °C, denoting the temperature at maximum 

rate of mass loss, while in PVDF/BaTiO3 foams this main peak was shifted to significantly lower values with the 

increase of BaTiO3 content. It is interesting to note that in composite foams, a new DTG peak was detected at 

around 400 °C, with a tendency to shift to higher temperatures with the increase of filler content. Therefore, our 

results show a decrease of PVDF thermal stability in presence of BaTiO3, whereas previous studies reported an 

opposite effect of BaTiO3 on polymer thermal degradation [29,30]. This discrepancy can be ascribed to the 

different atmospheres under which thermal stability was evaluated, i.e. air in the present study, and inert gas in the 

cited literature [14]. 

DSC thermograms (I heating run) of PVDF/BaTiO3 composite foams, in a temperature region between -90 °C and 

200 °C are shown in Figure 4c, and corresponding calorimetric data are reported in Table 3. In the first heating 

scan, the absence of a detectable stepwise specific heat increment, ascribable to the glass transition, and the 

presence of two melting endotherms clearly show that the polymer is highly crystalline. The low-T endotherm is 

centered at 68 °C, while the second melting peak occurs in the expected temperature region (around 170 °C). In 

literature, the endotherm peak at lower temperatures, which disappears in the second heating scan, is typical of 

PVDF annealed at room temperature and is usually ascribed to unstable secondary crystals [31,32]. Other origins 

have been also reported, such as upper glass transition [33], melting of paracrystalline domains [34], or -

relaxation in the crystalline/amorphous interface [23].  

It is sometimes difficult to distinguish the regular melting peaks of different types of crystal phases in PVDF (, 

or since they differ from each other by only a few degrees [35]. According to the reference data, the melting 
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peak of PVDF in the range of 165-172 °C usually corresponds to the melting of  crystal phase, while the range 

of 172-175 °C is generally associated with the melting of  crystal phase. From this point of view, it could be 

concluded that the melting peaks (mostly around 169 °C in all investigated samples) reflected the presence of the 

 phase, induced in higher fraction than  crystal phase. The degree of crystallinity was estimated based on a sum 

of the melting enthalpies corresponding to the lower and upper melting peaks. The degree of crystallinity of pure 

PVDF foam was 79.5%, while for PVDF composite foams it had higher values (between 82.1% and 87.0%) (Table 

3). The composites containing 10 and 15 wt% of BaTiO3 displayed the highest crystallinity degree, thus confirming 

previous data reporting the effect of BaTiO3 in promoting PVDF crystallization [36]. Taking into account these 

high degrees of crystallinity and the high values of relative  phase fraction, determined by FTIR spectroscopy, 

these systems could be identified as potential piezoelectric materials.  

During the second heating scans (Figure 4d, Table 3), it could be recognized that the lower melting peak (around 

68 °C, detected in the first heating scan) is absent, with a clearly defined single melting peak around 171 (±1) °C. 

The slight shift of the melting peaks in the upper temperature region to higher values (between 170-172oC), 

observable for all investigated foams, could be a result of diminishing the presence of  phase during the 

crystallization process from polymer melt, leading to the development of less desired  phase [37]. The degrees 

of crystallinity (II run), collected in Table 3, were also lower (70.7%-73.5%) than those derived from the first 

heating runs, thus supporting the fact that the preparation procedure gives additional value to the overall degree of 

crystallinity and promotes the formation of the  phase. Despite the fact that the crystallinity is lower when 

compared to Xc’s from the first runs, it is significantly higher when compared to other PVDF/BaTiO3 composites, 

which are already published in literature [33]. 

 

Microstructural Analysis 

In order to identify and distinguish the presence of different crystalline phases, the XRD analysis was performed. 

Although it was quite challenging, this important step is of vital importance to determine the developed crystalline 

phases in PVDF polymer. The collected XRD patterns of PVDF, its composite foams and BaTiO3 (inset) are 

presented in Figure 5a.  

Three main maxima at 18.4°, 19.9° and 26.4° (2) were registered in the pure PVDF foam, corresponding to (020), 

(110) and (021) reflections of the monoclinic phase [5,26,38,39]. In addition, the two less intensive peaks 

observed at 36° (200) and 39° (132) are characteristic peaks for  and crystal phases, respectively [38,40]. As 

expected, all diffraction peaks attributed to PVDF phase decreased their intensity with the increase of BaTiO3 

content. 

Another important aspect, observed from the XRD patterns (Figure 5b) of the composite foams, is the consistent 

upshift of the mean peak (from 19.9° towards 20.1° by increasing BaTiO3 content). Additionally, the peak located 

at 26.4° in the bare PVDF foam decreased its intensity in the PVDF composite foams with the increase of BaTiO3 

content (Figure 5a and 5b), suggesting diminishing presence of the  crystal phase.  

The presence of the orthorhombic crystal phase is usually associated to the appearance of the 2 peak between 

20.3° and 20.8°, which is obviously not visualized as a separate peak. However, the accurate deconvolution of the 

wide broad peak, centered at 20.1°, revealed the presence of the peak at 20.6°, and the  crystal phase was 

determined in pure PVDF foam and in all composite foams (Figure 5c). The results, pointing to the quantitative 

presence of the crystalline forms, and the degree of crystallinity of the samples, are summarized in Table 4. 
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Relatively high contents of  phase (between 54.4 and 68.5 %) were detected in the composite foams and the 

unfilled PVDF foam. The results correspond nicely with those derived from the FTIR spectroscopy.  

The degree of crystallinity, calculated as a ratio of the sum of integrated areas of all peaks arising from the 

crystalline phases, over the total integrated peaks area, varied between 62.5% to 84.6%. The obtained results are 

in good agreement with the degrees of crystallinity, determined by DSC analysis. Additionally, taking into account 

the degree of crystallinity solely to PVDF, the determined content of  phase (between 39.9% and 54.6 %) is still 

high, showing highly developed  phase when compared to literature data for various PVDF/BaTiO3 systems. 

Following the above mentioned results, the highly developed  phase is primarily a result of the preparation 

procedure, and is less affected by the different contents of BaTiO3 in its micron size. 

 

Dielectric Properties 

The importance of evaluating the dielectric properties arises from the fact that the piezoelectric voltage coefficient 

(g33) depends on the relative permittivity and Young’s modulus of the material as a measure of its stiffness [41]. 

The dielectric permittivity in PE polymer foams is usually low, but the mechanical flexibility is enhanced as a 

result of the cellular structure [19]. 

The real part of the relative permittivity of the samples for a frequency range between 10-1 and 104 Hz are presented 

in Figure 6a. No consistent variations of the permittivity were registered by varying the amount of BaTiO3 of the 

samples. Indeed, the typical relative permittivity of PVDF is in the range 7-10 (for frequencies below 100 Hz), 

while in case of foams it is significantly lower, i.e. about 2-3 [2]. These low values can be attributed to the 

dominance of low permittivity air phase in composite foams. The slight differences of the permittivity values 

among the samples can be ascribed to the different pore size in the composite foams, which was confirmed by the 

SEM images. Regarding the imaginary part of the permittivity (Figure 6b), similar trends were registered for all 

samples, with no significant variations measured with respect to the neat PVDF sample. 

 

Conclusion 

PVDF composite foams with different content of micro-sized BaTiO3 filler were prepared by thermally induced 

phase separation method (TIPS), using DMSO as a polar solvent. Foams with highly porous interconnected 

structures, with pore sizes between 10 and 40 m, were produced. A detailed structural analysis suggested that 

this simple and cost-effective technique, together with the presence of BaTiO3 content, has a significant role in the 

development of  phase content (up to 73.5 %) and high degree of crystallinity (up to 87 %). This result has 

important implications for the development of lightweight and flexible electroactive components, since the TIPS 

method provides an opportunity to produce low density structures with an easy access to PVDF electroactive phase. 

Moreover, low dielectric permittivity values (between 2 and 3 for all investigated foams) might open a new 

direction in creating low-k materials, widely applicable in microelectronics. 
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Abstract 

Poly(vinylidene fluoride) (PVDF) displays ferroelectric, piezoelectric and pyroelectric behavior and it is widely 

used in high-tech applications including sensors, transducers, energy harvesting devices and actuators. The 

crystallization of this polymer into highly polar  phase is desirable but is hard to achieve without applying 

specific thermo-mechanical treatments. Indeed, fabrication processes directly affect PVDF molecular chain 

conformation, inducing distinct polymorphs. In this paper, we present the fabrication of PVDF/BaTiO3 composite 

foams by thermally induced phase separation method (TIPS). Different compositions are tested and characterized. 

The crystallinity, and in particular the development of electroactive  crystal phase is monitored by FTIR, DSC 

and XRD measurements. Dielectric properties are also evaluated. It turns out that TIPS is a straightforward method 

that clearly promotes the spontaneous growth of the  phase in PVDF and its composite foams, without the need 

to apply additional treatments, and also significantly improves the degree of crystallinity. BaTiO3 content gives 

additional value to the development of  phase and total crystallinity of the systems. The low permittivity values 

(between 2 and 3), combined with the cellular morphology makes these materials suitable as lightweight 

components of microelectronic circuits.  
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Table 1. Samples abbreviations and composition of PVDF/BaTiO3 composite foams 

 

Sample code   PVDF/BaTiO3 wt/wt (%) 

 

PVDF    100/0 

PVDF-5BT   95/5 

PVDF-10BT   90/10 

PVDF-15BT   85/15 

PVDF-20BT   80/20 
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Table 2. TGA data of PVDF foam, BaTiO3 (BT) and its composites 

Sample Tonset  

[°C] 

Tdeg
a) 

[°C] 

mres
b) 

% 

PVDF 453 470 0 

PVDF-5BT 401 455 5.9 

PVDF-10BT 412 453 11.6 

PVDF-15BT 416 450 15.8 

PVDF-20BT 422 447 21.4 

BT n.d. n.d. 100 

a)determined by DTG; b) at 600°C 
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Table 3. Calorimetric data of PVDF/BaTiO3 composite foams 

 I heating scan II heating scam 

Sample Tm,1  

[°C] 

Hm,1  

[J g-1] 

Tm,2  

[°C] 

Hm,2  

[J g-1] 

Xc
a) 

[%] 

Tm  

[°C] 

Hm  

[J g-1] 

Xc
b) 

[%] 

PVDF 68 3.4 168 79.9 79.5 170 74.7 71.3 

PVDF-5BT 68 2.8 170 79.6 82.8 171 70.9 71.3 

PVDF-10BT 68 3.6 169 78.4 87.0 171 69.3 73.5 

PVDF-15BT 68 3.2 169 73.9 86.6 170 64.6 72.6 

PVDF-20BT 65 3.1 170 65.7 82.1 172 59.2 70.7 

a) Calculated by applying Equation 1, where Hm = Hm,1 + Hm,2 
b) Calculated by applying Equation 1 
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Table 4. XRD analysis data of PVDF composite foams 

Sample Xc 

[%] 

Xc,PVDF
a) 

[%] 

Xc,
b) 

[%] 

X
c) 

[%] 

BT 85.8    

PVDF 62.5  68.5 42.8 

PVDF-5BT 74.1 73.5 54.4 39.9 

PVDF-10BT 78.9 78.1 67.0 52.3 

PVDF-15BT 80.2 79.2 57.6 45.6 

PVDF-20BT 84.6 84.4 64.7 54.6 

a)Estimated degree of crystallinity of PVDF in the composite derived from equation: 𝜒𝑐 = 𝜒𝑐,𝑃𝑉𝐷𝐹 × 𝑤𝑃𝑉𝐷𝐹 +

𝜒𝑐,𝐵𝑎𝑇𝑖𝑂3 × 𝑤𝐵𝑎𝑇𝑖𝑂3 ; b) Fraction of the  crystal phase over the total crystal phase, calculated as: 𝜒𝑐,𝛽 =
𝐴(𝛽)

𝐴(𝛼+𝛽+𝛾)
∙

100, where A() denotes the area corresponding to the peak of  and A(++) total area of peaks of ,  and  

phases; c) Fraction of the  crystal phase, related to Xc,PVDF  
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