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Abstract

DNA sequencing methods in biology are divided into three generations based on their time of invention and

technology used. First generation sequencing technologies introduced in the 1970s sequenced short strands

of DNA, with the longest strand ranging from 300-1000 base pairs in the Sanger method. Second generation

technologies improved on the first generation by being high throughput, scalable and parallel. After successful

genome assemblies of small and large organisms using first and second generation sequencing methods, the

last two decades brought about third generation sequencing technologies. Third generation sequencing tech-

nologies focus on sequencing single nucleotide molecules and produce real-time, high-throughput basecalls

and are scalable, low cost and portable. Nanopore sequencing is a third generation sequencing technology

that works by measuring the change in electric current in an ionic membrane as a DNA strand passes through

a nanopore embedded in the membrane. A major limitation that has prevented mass adoption of nanopore

sequencing commercially is its lower accuracy compared to second generation sequencing technologies. The

aim in this project was to improve the accuracy of nanopore sequencing by reducing noise in the nanopore sig-

nal. Wavelets were used to decompose the nanopore signal, remove noise and then reconstruct the signal. The

modified signal was used for training a new basecalling model. It was observed that a significant difference in

basecall quality can be achieved between the default model used by Oxford Nanopore Technologies’s Guppy

basecaller and our custom denoised model in terms of mean percentage identity. An increase of 5.3% was

achieved in mean percentage identity while maintaining the mean read quality of basecalls for Bacteriophage

lambda dataset. Both mean percentage identity and mean read quality for the custom model were overall

more consistent with lesser low scoring outliers. Haar wavelet was demonstrated as the most suitable wavelet

candidate with level of decomposition and threshold values 4 and 0.04 respectively for denoising nanopore

sequencing data. Results were validated by training and testing with and without wavelet denoising on three

existing nanopore datasets.
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1 Introduction

1.1 DNA Sequencing

Deoxyribonucleic acid, commonly referred to as DNA, is a double helical structure of polynucleotide chains

made up of four nucleotide bases: adenine (A), guanine (G), cytosine (C) and thymine (T). DNA carries

genetic information for all living beings based on the sequence of nucleotide bases. It stores the information

necessary for all protein creation in living organisms for development, growth and reproduction. Determining

the sequence of the nucleotide bases in a DNA strand is called DNA sequencing. DNA sequencing is the

most effective method for studying genes on a molecular level, as it enables scientists to study the encoded

information in nucleotide sequences and its resulting gene expression and phenotype. Since the discovery

of DNA as a genetic material in 1944 [1], and its double helix structure in 1953 [2] [3], biologists have

been working to devise methods for sequencing DNA efficiently and accurately. The evolution of DNA

sequencing technologies is categorized into three generations. First generation sequencing started in 1970s

with the advent of the Maxam and Gilbert method [4], followed by the Sanger method [5]. Second generation

sequencing technologies improved on the first generation technologies and lowered the cost and time of

sequencing by making sequencing scalable and parallel. Third generation sequencing technologies introduced

real-time sequencing [6] with longer reads compared to first and second generation sequencing [7]. PacBio

SMRT sequencing [8] and nanopore sequencing [9] are the leading technologies in third generation sequencing.

Second generation sequencing technologies such as Illumina [10] are most commonly used in academic and

commercial sequencing applications, while third generation sequencing technologies face a challenge in mass

adoption due to comparatively lower accuracy. Errors that reduce the accuracy of a DNA sequence include

insertions, deletions and substitutions.

1. Insertion errors occur when a nucleotide base is introduced into the basecalled sequence at a location

where it does not exist in the reference sequence.

2. Deletion errors occur when a nucleotide base is skipped while basecalling.

3. Substitution errors occur when a nucleotide base is called incorrectly as a different base.
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1.2 Nanopore Sequencing

Nanopore sequencing is a third generation sequencing technology. It works by measuring the change in

electric current while the DNA nucleotides pass through a protein nanopore embedded in an electrically

charged lipid bi-layer membrane. As DNA naturally carries a negative charge, a DNA strand is passed

through the nanopore by applying a voltage across the pore. The idea of nanopore sequencing was first

described by David Dreamer and Daniel Branton in 1996 [11]. They discovered that a single DNA strand

can be passed through a protein nanopore, with each nucleotide base in DNA affecting the ionic conductivity

of the pore as it passes. In 2001, Hagan Baley published the description of a nanopore sensor’s workings

for DNA sequencing [9]. Once it had been established that it was possible to sequence DNA by measuring

current fluctuations, researchers looked into controlling the speed of DNA translocation through the pore

so measurements can be taken periodically. Motor protein enzymes, for example helicases and polymerases,

are used as translocation speed controllers for single strand DNA passing through a nanopore. Electric

current fluctuation measurements correspond to the sequence of bases in the DNA strand. The relationship

between current fluctuation and nucleotide bases is derived using machine learning methods and algorithms.

In 2005 Hagan Baley, along with some of his colleagues, founded the organization known as Oxford Nanopore

Technologies Limited. Oxford Nanopore Technologies (ONT) has been producing nanopore sequencing devices

for commercial and academic use since 2014 [11] and remains the sole provider for nanopore sequencing

devices [12]. Nanopore sequencing devices by Oxford Nanopore Technologies use “flow cells” consisting of

nanopores embedded in electro-resistant membranes. The electric current passing through a nanopore is

measured by the a sensor chip connected with that nanopore’s corresponding electrode. Change in electric

current caused by the flow of DNA molecules through the nanopore produces the raw nanopore signal used

for basecalling.

1.2.1 Advantages of Nanopore Sequencing

Nanopore sequencing devices provide real-time detection of single DNA and RNA molecules with read length

ranging between 500bp to 2.3Mbp with an average of 5kbp, which is a significant improvement over first

and second generation sequencing methods’ read lengths. First and second generation sequencing methods

produce read lengths well below 1 kilobases. Longer read length allows for greater overlap between reads,

increased possibility of spanning repeat regions and increases confidence in the basecalling accuracy. An

interesting advantage of nanopore sequencing technology is that the accuracy of one basecall does not depend

on the previous basecalls for a single strand of DNA [13]. ONT MinION devices provide real-time access to

individual reads which can be analyzed as soon as they are produced [14]. Nanopore data improves the de novo

assembly of genomes and offers accurate resolution of structural variants [15]. First and second generation

sequencing technologies use DNA amplification methods like the Polymerase Chain Reaction (PCR) [16] to

create multiple copies of DNA strands in a DNA sample. Amplification can introduce errors and bias in the
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DNA sample as compared to the original sample (prior to amplification) [11]. Nanopore sequencing works

without amplification and thus requires minimal sample preparation chemistry, lowering the cost of nanopore

sequencing to < USD1000 for a mammalian genome [13]. Nanopore sequencing is a preferred option for some

clinical applications due to the following advantages:

1. Long reads: nanopore sequencing provides a read length ranging between 500bp to 2.3Mbp [17] which

is the longest of any commercial sequencing technology. Most commonly, the read length in nanopore

sequencing averages at 5kbp. Longer reads improve the confidence in basecalling accuracy due to the

increased chance of spanning repeat regions and greater overlapping regions.

2. Portability and small size: An ONT MinION device is 4 inches long and powered over a USB connection.

It makes DNA sequencing accessible to a wide range of people interested in genomics without the

overhead of requiring an elaborate molecular biology laboratory [14].

3. Low cost and time: nanopore sequencing does not require cloning and amplification steps which results

in minimal sample preparation steps [13]. This aspect of nanopore sequencing significantly decreases

the cost and effort associated with DNA sequencing. The cost of purchasing a nanopore MinION device

is USD1000 for a basic package which includes the device, a flow cell, and chemical reagents required to

conduct a sequencing experiment. An enhanced MinION package that offers training and multiple flow

cells costs USD3300. In comparison, the Sanger method from first generation sequencing and any of the

second generation sequencing methods are expensive, both in terms of the instruments and chemical

reagents required for sequencing [18].

4. Ease of use: Oxford Nanopore Technologies’ mission is “to enable the analysis of anything, by anyone

and anywhere”. Nanopore sequencing devices are easy to use and make it possible for anyone to

sequence DNA anywhere and have great prospects of being used for clinical sequencing needs [19].

Improvements in nanopore sequencing have increased the opportunities for its various applications. Nanopore

sequencing has great potential in the study of rare and genetic diseases, gene mutations, and single nucleotide

polymorphism research [20] due to its portability, low cost and realtime basecalling ability. A feature of

nanopore sequencing is that in addition to generating a sequence, nanopore devices also provide us with

the raw electric signal obtained from the nanopore. Analysis of the raw signal carries many opportunities

for studying the characteristics of DNA and protein nanopores [14]. Access to the raw nanopore signal

provides researchers with the option to create their own basecallers, genome assembly tools and pre-processing

signal and post-processing (polishing) algorithms [14]. Similar to the ability of examining Sanger trace files,

researchers using nanopore sequencing can refer to the raw signal for clues if they do not have confidence in

the basecalled reads. Access to raw nanopore signal also provides the opportunity to apply signal analysis

techniques to the data prior to basecalling, which is explored in this thesis.
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1.2.2 Challenges of Nanopore Sequencing

Due to their relatively higher error rate, third generation sequencing technologies fall behind when compared

with second generation sequencing technologies in their adoption and use [10]. For example, Illumina from

the second generation has an impressive error frequency of 10−3 [21], making the basecalled sequences 99.9%

accurate in alignment, whereas, sequence alignment accuracy for nanopore sequencing is typically between

94-97% [22].

The reasons behind lower accuracy in nanopore sequencing include noise in the signal, non-deterministic

timing of when a DNA molecule is halted by the control enzyme, and potential systematic channel errors [23].

Other sources of errors can include training datasets, basecalling models, and algorithms. Developments in

third generation sequencing technologies are overcoming many of these challenges, but nanopore sequencing

remains less preferred when compared with second generation technologies [17].

Another known limitation of nanopore sequencing is the inaccurate sequencing of homopolymers. Ho-

mopolymers are regions in a DNA sequence containing the same nucleotide consecutively. Incorrect sequenc-

ing of homopolymers is a challenge faced by other sequencing technologies [22] as well. Insertion and deletion

errors are common in homopolyer regions sequenced by Illumina, Ion Torrent and Roche 454 leading to

incorrect length of the homopolymer region [24]. The number of deletion errors for homopolymer sequences

can increase up to 2.6 times that of a regular sequence according to a study of clinical genome sequencing

of patients with congenital abnormalities [25]. A larger rate of deletion errors for homopolyers leads to the

homopolymer region not being accurately represented in the basecalled sequence. This high rate of inaccurate

homopolymer sequencing occurs due to the fact that the signal may not change while a homopolymer passes

through the nanopore [26].

Despite of the limitations in nanopore sequencing, hardware and software have improved, resulting in

overall nanopore sequencing technology’s evolution and improvement [22]. Hardware improvements include

improvements in protein nanopores [27] and control over DNA translocation speed [28]. Software improve-

ments include improvements in basecalling methods [29] and the introduction of choices of basecallers [30].

Most random errors can be eliminated in a consensus sequence, which is generated by overlapping multiple

sequences from the same location in the genome to mitigate against any variations and inaccuracies in

nucleotides, and requires that each sequence in the genome must be basecalled more than once. There

are tools available for genome assembly and consensus calling that polish the sequence after basecalling

for example Nanocorrect, Nanopolish [31], Canu [32]. Improving individual read accuracy can reduce the

dependence on consensus sequence and post-processing of the basecalled sequence, saving time and cost.

For nanopore sequencing to become the premier sequencing method, the single-read accuracy needs to

improve to match that of second generation sequencing methods. One way to improve the accuracy is to

reduce the amount of noise in the electric signal generated by nanopore devices. In this thesis work it is

hypothesised that removing noise from the signal and creating new models for basecalling will increase the

accuracy of basecalls, making nanopore sequencing appropriate for more diverse applications. The ionic
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current across a nanopore changes when a nucleotide passes from within the nanopore and remains stable

otherwise. Within the nanopore there can be multiple nucleotides at a time, depending on the size of the

nanopore. Nucleotide molecules ratcheting to the next position within the pore also causes fluctuations in

the current across the nanopore. A nanopore signal depicts periods of time when the current appears stable

as well as the short time periods when it varies. In addition to the actual signal information, a nanopore

signal also captures errors in measurements due to experiment setup, biochemical agents or the design and

type of nanopore itself. The causes and types of noise in a nanopore signal are explained in Section 2.2.2.

Prior to this thesis work there has been no published demonstration of noise removal; however, wavelets

have been studied before for electrochemical noise analysis [33]. There is evidence in other domains that

removing noise from a signal before analysis produces more accurate results [34].

This thesis demonstrates the extent to which basecalling accuracy increases using wavelet denoising on

a nanopore signal. Wavelet analysis was used to decompose the nanopore signal, remove high frequency

noise, and recompose the signal. The resulting signal was then used to train the basecalling model and used

the new model for basecalling. Signal processing techniques were used to determine the noise band in the

nanopore signal and signal-to-noise ratio was used as a metric to narrow the list of possible parameter values

for wavelet analysis. Three experimental datasets were explored in this thesis, consisting of small to large

genomes including Bacteriophage lambda, cattle, and a multi-species dataset including E. coli, yeast and

human genomes. The datasets are outlined in detail in Section 4.1.

In this thesis it is demonstrated that reducing noise in a nanopore signal and creating custom basecalling

models with denoised signal data led to a higher read accuracy and improved read quality. Described is

an increase in basecalling accuracy when a custom model based on denoised training data was used with

raw testing data. NanoStat [35] was used to evaluate the basecalls and calculate mean percentage identity

and mean read quality for each sequence. Increase in read accuracy of nanopore sequencing opens doors for

additional research and opportunities for commercial and academic use of nanopore sequencing devices.
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2 Background

2.1 Basecalling

Nanopore sequencing technology commonly employs machine learning methods to derive DNA sequences

from an electric signal produced by the nanopore devices. The process of interpretation of experimental

observations into a sequence of nucleotide bases in DNA is known as basecalling. Machine learning models

that are commonly used in basecalling nanopore sequencing include:

1. Hidden Markov Model: HMMs have been used to basecall nanopore sequencing data statistically in

basecallers such as Nanocall [36].

2. Recurrent Neural Network: RNNs are a popular choice for basecalling nanopore sequencing data in the

more recent basecallers and have improved in performance over the years [30].

3. Connectionist Temporal Classification: Temporal Classification (CTC) [37] generates a probability

distribution of a single base (as opposed to k-mers) for each position while eliminating the need to

preprocess the signal. A flip-flop model follows the CTC style for calling the sequence base by base

using an RNN.

Table 2.1 lists a few of the many available basecalling tools. Figure 2.1 shows a timeline of the commonly

used basecallers. The active period for each basecaller was determined based on the basecaller’s release date

and most recent updates. With developments in the nanopore technology and machine learning methods,

the tools provide a variety of methods for basecalling with varying performances [30]. For this thesis, Guppy

basecaller by ONT was used, both with and without wavelet denoising. Guppy was chosen because of its current

popularity and stability, overall performance and accuracy [30] in basecalling along with its ability to easily

plug in any custom model during runtime.

Sequences generated after basecalling can be analyzed for their accuracy and correctness to determine

the best basecalling methods and techniques. Accuracy of sequences produced by a basecaller was measured

by comparing it against a known reference sequence and looking for insertions, deletions, mismatches and

matches across the two sequences. Existing tools in the open-source community provide implementations

of widely used bioinformatics algorithms for comparing sequences. Over the course of this thesis minimap2

[41] and NanoPack [35] were used as the major tools for assessing basecalling accuracy and analysis. The

MapQ score by minimap2 is based on the commonly used Phred quality scale for error analysis in sequences.

6



Figure 2.1: Active period of commonly used basecallers from Table 2.1

The Phred quality score is logarithmically related to error probabilities. For example, a Phred score of 10

corresponds to 99% accurate basecalls or a probability of 1 in 10 incorrect basecall. Similarly a Phred score

of 20, 30 or 40 corresponds to 99.9%, 99.99% or 99.999% accuracy respectively. MapQ score by minimap2

is generated on a per unique read basis and ranges from 0-60. Any read that aligns well to more than one

reference sequence is given a MapQ score of 0 and is considered multi-mapped. Highly accurate alignments

are given a score of 60. We also referred to the online Blast implementation [42] on NCBI at times for our

analysis.
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Name Description Active Period Author Reference

Albacore Albacore is a general purpose basecaller

that runs on CPUs.

v1.2.4 03/07/2017 to

v2.3.4 15/01/2019

Oxford

Nanopore

Technologies

[30]

Guppy Guppy is a neural network based base-

caller that frequently outperforms other

basecallers in terms of accuracy and per-

formance. It is similar to Albacore but

can utilize GPUs for increasing basecall-

ing speed.

v2.1.3 24/12/2018 to

Present

Oxford

Nanopore

Technologies

[30]

Scrappie Scrappie is an open-source basecaller

that Oxford Nanopore Technologies has

used to demonstrate the basecalling

technology to the community. It is often

the first basecaller to incorporate new

features that are later added to other

basecallers.

0.2.3 Feb 6, 2017 to

1.4.2 Apr 2, 2019

Oxford

Nanopore

Technologies

[30]

Flappie Flappie replaced Scrappie as the open-

source basecaller to demonstrate base-

calling technology.

v0.1.0 Nov 21, 2018 to

Present

Oxford

Nanopore

Technologies

[30]

Bonito Bonito is a PyTorch based open-source

basecaller that explores alternative tech-

nologies to basecalling.

v0.0.5 Feb 20, 2020 to

Present

Oxford

Nanopore

Technologies

[38]

Nanocall Nanocall is an open-source basecaller

that works offline.

v0.5.13 May 26, 2016

to v0.7.4 Sep 29, 2016

Matei David

et al.

[36]

Chiron Chiron is a basecaller built on

Tensorflow and uses CNNs, RNNs

and CTC for basecalling.

0.1 Aug 13, 2017 to

Present

Haotian Teng

et al.

[39]

DeepNano DeepNano is an open-source basecaller

based on deep RNNs.

March 14, 2016 to

August 13, 2017

Vladimı́r

Boža et al.

[40]

Table 2.1: Basecalling tools for nanopore sequencing published by Oxford Nanopore Technologies
and the bioinformatics research community.
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2.2 Nanopore Signal

2.2.1 Signal

A signal is a mathematical function that represents information in the form of a wave. A nanopore signal

represents the change in ionic current across a protein nanopore as a single DNA strand passes through it.

Each nucleotide base (A, T, G, C) in a DNA strand interferes with the ionic current across a nanopore in a

unique way, causing distinct fluctuation in the current. These fluctuations are used to detect the nucleotide

base passing through the pore at any one point in time. The current remains stable during the stationary

period for the strand. Movement of the DNA strand can be detected from the changes in the signal amplitude.

A few key terms related to signal analysis that were used in this thesis are:

• Time series: A time series in mathematics is a series of data points presented in intervals of time.

• Time domain: Time domain refers to presenting the changes in signal with respect to time.

• Frequency: Frequency of a signal represents the number of waves in a signal per unit time.

• Frequency domain: Frequency domain refers to presenting the amount of signal with respect to fre-

quency bands.

• Amplitude: Amplitude of a wave represents the distance between the peak of a wave or the trough of

a wave to the center line.

• Trigonometric functions: The mathematical functions sine, cosine and tangent, and their respective

inverses cosecant, secant and cotangent are collectively referred to as trigonometric functions.

• Signal coefficients: A signal can be deconstructed into a series of values in the frequency domain called

signal coefficients. The coefficients can be of two types: approximation coefficients with low frequency

information of the signal, and detail coefficients with high-frequency information of the signal.

• Power spectral density (PSD): Power spectral density of a signal represents the power per unit frequency

in a signal.

• Noise: Noise is the interference or disturbance in an electric signal that is not desired.

• Signal to noise ratio (SNR): Signal to noise ratio is commonly used to express the relationship between

an electric signal and background noise.

Raw nanopore signal generated by MinION, a nanopore sequencing device by ONT, was used for all experiments

in this thesis work.
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2.2.2 Noise in the Nanopore Signal

One of the contributors to inaccuracy in basecalls is the presence of noise in the electric signal produced

by the nanopore devices. The types and sources of noise in the nanopore signal can vary based on the

hardware, type of the nanopore protein used, and experiment setup. ONT uses two types of nanopore in their

devices: biological nanopores that exist in nature and solid-state nanopores that are created in synthetic

membranes. Early generations of ONT devices used biological nanopores created using programmed bacteria

while later generations of ONT devices use solid-state nanopores. A study that conducted a comparison

between biological and solid-state nanopores shows a higher SNR in solid-state nanopores [43], specifically

silicon nitride nanopores. Solid-state nanopores are the preferred protein nanopore for nanopore sequencing.

The same study also showed an increase in SNR when the DNA translocation speed is slowed in the nanopore.

Another study [44] noted that in solid-state nanopores, the noise in signal can vary between different pores.

A higher resistance across nanopores contributes to increased low-frequency noise in signal. These factors

are not considered in this thesis as they are determined by the hardware, biochemistry and manufacturing of

the device. In this thesis, the data generated by nanopore devices was used and signal processing techniques

were applied to that data. The physical devices and experimental setup remained fixed throughout the

experiments.

Noise in a nanopore signal is commonly modeled as being from the following types:

1. 1/f noise : Known as pink noise, 1/f noise is a signal component that has a spectral density inversely

proportional to the frequency of the signal. While no single source of 1/f noise generation in nanopore

sequencing has been confirmed, 1/f noise is expected from many different biochemical sources. Chang-

ing the nanopore materials, pH and membrane surface charge density can all lead to a change in 1/f

noise [45].

2. White noise: White noise is a signal component that has the same amplitude and intensity throughout

the signal. In other words, the power spectral density of white noise does not depend on the signal’s

frequency. It is caused by a combination of thermal fluctuations and potential barriers in the nanopore

devices [45]. Decreasing the pore size or conductance can reduce white noise in the nanopore system.

3. Dielectric noise: Dielectric noise is the noise generated by thermodynamic fluctuations in dielectric

materials. Existence of a leakage current that is not exclusive to the nanopore is a cause of this noise in

the nanopore devices. Reducing the capacitance and using a stacked dielectric structure in the nanopore

devices can reduce dielectric noise in the system [45].

4. Amplifier noise: Amplifier noise is generated by the interaction of capacitance with thermal noise at the

amplifier input and typically is a high frequency noise. It can be reduced by reducing the capacitance

of the system or by using low capacitance amplifiers [45].

Each type of noise in the nanopore signal may be distributed at different frequencies; however, a granular
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Figure 2.2: Comparison of raw signal with its denoised version. This sample signal was denoised
using the haar wavelet, decomposition level = 4 and threshold = 0.04

view of the types of noise present in the datasets involved in this thesis work is not available and all of the

above types of noise is collectively referred to as “noise” from now on.

Figure 2.2 shows a comparison of a nanopore signal before and after denoising using the haar wavelet,

decomposition level = 4 and threshold = 0.04. The detailed process of denoising the signal and choice of

wavelet and parameters has been explained in Chapter 4. Notice the processed signal contains less noise at

the peaks and troughs of the signal, but still conforms to the nanopore signal shape, ensuring that important

signal detail was not removed. The processed signal also shows the events occurring in the signal much

more obviously in a visual observation than the raw signal. We believe that this noise reduction in the

nanopore signal will lead to improved clarity in the detection of events, thus leading to better basecalling.

The parameters selected to denoise the signal in Figure 2.2 are explained in Chapter 4 in detail.
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2.2.3 Signal to Noise Ratio

Signal to noise ratio (SNR) is a commonly used measure to express the relationship between a desired electric

signal and background noise [46]. It is the ratio of signal power to noise power in a signal, expressed in decibels.

Improvements have been made in the selection and design of nanopore proteins such as reducing the thickness

of membrane, resulting in an increase in the magnitude of signal [27]. SNR is higher in pores that are smaller

in diameter (1.2nm) compared to larger pores [47]. Solid-state nanopores have been proven to generate

signal with higher SNR than biological protein nanopores [27]. However, some amount of background noise

is inevitable in any electrical measurement. The change in SNR was used to determine the optimal noise

reduction methods and parameters for this thesis. A higher SNR after denoising indicates the reduction of

noise while preserving signal information. No change in SNR or a decrease in SNR after denoising indicates

a potential loss of important information from the signal. Evaluating the change in SNR after filtering can

serve as an indicator of whether the signal has been over-filtered or under-filtered.

2.3 Signal Processing

2.3.1 Fourier Analysis

To understand the wavelet analysis and signal processing for this project, a brief understanding of the Fourier

transform is required. The Fourier Theorem introduced by J.B. Fourier is a mathematical theorem that proves

that any arbitrary signal can be represented as a sum of sine and cosine functions. Fourier analysis [48]

implements the Fourier Theorem and breaks down a signal into sinusoidal signals, representing it as a sum of

trigonometric functions. The Fourier transform is a mathematical transform widely used in signal processing

that decomposes a signal based in time and reconstructs it as a signal based in frequency. This makes it

possible for the signal to be analysed in a different domain than its original domain. Breaking down a signal

into its composing wave forms enables the analysis of the signal on a granular scale, with the ability to adjust

power spectral densities of each waveform and analyse the patterns in the composition which may not be

visible from looking at the original signal. Fourier analysis consists of a Fourier transform to decompose the

signal and an inverse Fourier transform to then reconstruct the signal using frequency components. Fourier

analysis’s ability to determine components of a signal is used in noise removal, compression and identifying

patterns which are all useful properties applied in digital signal processing [49]. Fourier analysis lacks the

ability to provide localized detail about the signal in the time domain and cannot provide detail in any one

specific portion of the signal. A window function is sometimes used with the Fourier transform to focus on

smaller portions of the signal during analysis and then shifted along the axis to other portions of the signal.

This version of the Fourier transform is known as Windowed Fourier Transform [50]. A Windowed Fourier

Transform offers localization in both time and frequency domains.
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2.3.2 Wavelet Analysis

A wavelet is a signal of limited duration (in time) that starts and ends with an amplitude of zero, and has an

increasing and decreasing amplitude in between the start and end point in time. The area under the curve of

a wavelet signal adds up to zero. Wavelets can also be defined as a family of functions derived from a single

mother wavelet. Decomposing a signal into a set of wavelet functions to reveal hidden patterns is known as

the wavelet transform [51]. There are seven discrete families of wavelets that were considered for this project.

A list of wavelet families and their example applications are provided in Table 2.2. Figure 2.3 shows five of

the most commonly known wavelets that are used in a discrete wavelet transform.

Family Symmetry Example Application

Haar (haar) Asymmetric Network traffic prediction [52]

Daubechies (db) Asymmetric Speech signal processing [53]

Symlets (sym) Near symmetric Partial discharge signals denoising [54]

Coiflets (coif) Near symmetric Partial discharge signals denoising [54]

Bioorthogonal (bior) Symmetric Image compression [55]

Reverse Bioorthogonal (rbio) Symmetric Detection of QRS complexes in ECG signal [56]

Discrete approximation of Meyer (dmey) Symmetric Wavelength detection accuracy [57]

Table 2.2: Discrete wavelet families implemented in PyWavelets.

Wavelets are localized in both time and frequency, giving them an advantage in signal processing applica-

tions that require finer granularity in time, over the Fourier transform which is only localized in frequency. A

wavelet analysis can identify changes in frequency (e.g. information) that are inherently localized in the time

domain. The wavelet transform analyses a signal in multiple passes at varying scales, which means that the

size of the portion of signal under analysis varies as opposed to the Windowed Fourier Transform in which

the size of window remains the same. This leads to a better resolution in both time and frequency spaces

with wavelet analysis as opposed to the Windowed Fourier Transform. The wavelet transform is used as an

alternate method to Windowed Fourier transform [58] when a varying scaling window is needed. Wavelet

analysis is a powerful tool to analyse power variations in a time series signal [59]. Power variations in a time

series signal are studied to notice patterns, statistics and the evolution of a signal that can provide insight

about the data.

Wavelet analysis was used to remove noise from the nanopore signal in this project, referred to as wavelet

denoising from here on. The wavelet denoising procedure has three steps:

1. Decomposition of signal: Decomposition of signal is started by choosing a wavelet and a level of

decomposition N. A level of decomposition refers to the maximum level up to which a signal can

be decomposed. It is a positive integer less than or equal to log2L, where L is the length of a signal.

Varying decomposition levels offers varying granularity of the composition and information in the signal.
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Deconstructing a signal provides us with approximation coefficients and detail coefficients, which can

be used later to reconstruct the signal.

2. Filtering noise from signal: For each level 1 - N, a threshold value is selected and soft thresholding

is applied to the detail coefficients. Soft thresholding [60] refers to shrinking the coefficients of a

deconstructed signal towards zero to remove background noise. Filtering the coefficients under a certain

threshold is used to eliminate small details from a signal which are often associated with noise, making

the signal curve smoother.

3. Reconstruction of signal: The signal is finally reconstructed based on the original approximation coef-

ficients and the modified detail coefficients.
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(a) haar from Haar family (b) db2 from Daubechies family

(c) sym17 from Symlets family (d) coif1 from Coiflets family

(e) dmey from Discrete approximation of Meyer
family

Figure 2.3: Wavelet examples from PyWavelets
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3 Literature Review

The pioneering DNA sequencing methods were invented by Maxam and Gilbert [4], and Sanger [5] in

1977 which started the first generation sequencing era. The Sanger method also known as chain-termination

or dideoxy method was the popular choice until the late 20th century. Developments in biochemistry such

as the invention of the Polymerase Chain Reaction (PCR) [16] in 1984 kept the Sanger sequencing method

relevant into the 21st century and the Human Genome Project [7] phase. A major drawback of first generation

sequencing methods was that Sanger and other methods sequenced short reads consisting of 300-1000 base

pairs. Researchers sequenced short strands of DNA with this method and later stitched them together

computationally to create longer sequences. In the stitching process, shorter strands were connected using

common overlapping regions between multiple strands which contributed to incorrect sequencing of repetitive

regions. A large amount of sample DNA is required by the first generation methods for sequencing which

is usually achieved by sample amplification. Sample amplification methods can introduce significant errors

in the sequencing process leading to inaccurate sequencing. Another drawback of the first generation was

the high cost associated with sequencing. The cost of sequencing a complete human genome in the Human

Genome Project was USD 3 billion over ten years. In 2007 there was a push from the US National Human

Genome Research Institute (NHGRI) to reduce the cost of genome sequencing to USD1000. Concurrent to the

Human Genome Project, second generation sequencing methods started being developed during the mid-20th

century that were vastly more scalable and parallel than first generation sequencing methods. These methods

reduced the cost of sequencing a human genome from millions of dollars to USD1000. Among the most

popular second generation sequencing technologies are Roche 454 sequencing, IonTorrent sequencing, Illumina

sequencing and ABI/SOLiD sequencing [61]. Illumina is one of the most widely used second generation

sequencing technologies used commercially and academically. In the recent years, third generation sequencing

technologies have emerged that sequence DNA in real-time on a single molecule level, producing substantially

longer reads [7]. Currently the most widely used third generation sequencing technologies are PacBio SMRT

sequencing [8] by Pacific Biosciences and nanopore sequencing [9] by Oxford Nanopore Technologies.

All existing sequencing technologies come with their own challenges and strengths [62]. High costs are

associated with instruments, sample preparation and amplification, and researcher’s time in first and second

generation sequencing technologies. Short read lengths in first and second generation sequencing lead to

high overhead in post-experiment analysis. Despite of the higher cost and expertise required to handle the

experimental apparatus, accurate DNA sequencing by first and second generation methods has transformed

genetic research.
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Nanopore sequencing is a third generation sequencing technology that is lower cost and offers long read

sequencing and real time analysis [63]. The lower accuracy of nanopore sequencing, even with the many

improvements made in hardware and software components over the years, still remains a challenge. The

high-throughput and long-read properties of third generation sequencing technologies have helped make

progress in genome sequencing and research over the last two decades and have opened doors for accessible

and rapid genome sequencing and assembly [63]. Nanopore sequencing offers great potential for real-time

genome sequencing. The ability of nanopore sequencing to produce long reads makes the genome assembly

much faster regardless of the size of the genome, making it an ideal sequencing method for small organisms

like Escherichia coli K-12 MG16 [31] or much larger organisms including humans [64]. However, the accuracy

of these generated sequences is still a limitation which can hinder widespread reliance on commercial ONT

devices [65]. Factors that can contribute to the inaccuracy of nanopore sequencing include type and choice of

the protein nanopore, control enzyme used to control the DNA translocation speed, measurement of electric

signal, and basecalling methods. Efforts have been made to improve the accuracy of nanopore sequencing

devices by improving the nanopore proteins [27] and controlling DNA translocation speed through the pore

[28]. The process of basecalling has been improved [29] by employing machine learning techniques and

improving the data processing pipelines [66]. Due to these updates in chemistry and software tools, the

accuracy of nanopore sequencing has made improvement from < 60% to approximately 85% compared to

reference genomes [26]. Among the most popular choices of machine learning algorithms for use in basecallers

are Hidden Markov Models (HMMs) [29] and Recurrent Neural Networks (RNNs) [30]. RNN-based basecallers

have proven to be the more popular choice as RNNs are not reliant on sequence length or sequence repetition

[67], particularly promising for plant genomes that are known to contain repetitive sequences [68]. There are

methods now available for post-processing basecalls provided by tools like Nanocorrect and Nanopolish to

produce higher quality reads [69] and optimizing the genome assembly provided by tools like Canu.

In this thesis, the focus was on reducing the raw nanopore signal noise before basecalling and analysis.

To remove the noise from a nanopore signal, it is necessary to first understand the origin and characteristics

of said noise [44]. Noise characteristics vary depending on the type of protein nanopores and their surface

properties [45]. Based on these properties the noise can be reduced by modifying the voltage, capacitance and

current across the nanopore. However, these hardware factors are beyond the scope of this thesis. We seek

to improve the final signal that a nanopore device produces as output. We hypothesize that wavelet-based

filtering can reduce noise in nanopore signals significantly, leading to better quality and high SNR of the

nanopore signal because of existing studies that demonstrated that noise in nanopore signal effects the error

rate [23] and wavelet transform can be used to improve SNR in an ECG signal [70]. Denoised signals can

be used for training basecalling models. The inspiration to use wavelet analysis was drawn from existing

studies that have utilized wavelet analysis to achieve better SNR in their applications. Wavelet analysis has

applications in various domains and its effect is explained in a few examples:

• Fault identification system for satellites [71]: Wavelet analysis was used to measure SNR and extract
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patterns from unattended land terminals for satellite communications. These patterns were matched

with existing known fault signature patterns and the fault was identified. The study found a success

ratio of 80% fault identification using wavelet techniques.

• Cardiac activity system [72]: Electrocardiogram signals (ECS) are electrical excitation patterns of the

nervous system in human heart. In this short study, the authors suggested the use of wavelet analysis

on electrocardiogram signals to detect cardiovascular inconsistencies.

• Ion channel SNR increase [73]: Wavelet denoising has proven to be more efficient in increasing the

SNR for a nanopore and ion channel signal than the traditional Bessel filtering method. The study was

conducted on nanopores that analog ion channel proteins in live cells that regulate cell functions such

as muscle contraction, hormone release and the life-cycle of cells.

Evaluating the results of wavelet analysis in these studies provides us with confidence that wavelet analysis

is a reasonable choice for reducing noise in signals from various applications and origins. This thesis used the

existing wavelet analysis framework provided by PyWavelets [74]. Well-suited parameter values for the level of

decomposition and threshold were picked, while keeping all other parameters and setup constant. Parameter

values and choice of wavelet for denoising varies across different applications and studies in existing literature

were considered as the strating point to determine the parameter space. A study of wavelet transform

parameters for 3d surface filtering showed levels 9 and 8 as top performers for different magnification levels

[75]. Similarly a study conducted on classification of multispectral images of forest vegetation determined

that the haar wavelet performed best at the 3rd level of decomposition while levels 4 through 10 gave similar

results [76]. The best-suited parameters for this thesis work are described in Chapter 5. This thesis does not

explore the mechanisms of PyWavelets, wavelet transform or the wavelets themselves.
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4 Experiment and Methodology

This thesis explores the use of wavelet analysis for removing noise from raw nanopore signals and creating

a custom model for basecalling using the denoised signal. Three datasets were used for the experiments

as explained in section 4.1. The discrete wavelet families provided by PyWavelets were tried with vary-

ing combinations of level of decomposition and threshold and the best performing wavelet and parameter

combination that worked for the datasets under consideration were picked.

Each dataset was randomly divided into two subsets: a training dataset and a testing dataset. The

training and testing datasets were kept completely separate from the start to the end of the experiment.

Figure 4.1 depicts the workflow for this project.

The experiment pipeline consisted of five main steps:

1. Random division of each dataset into training and testing datasets. The training and testing subsets

were kept approximately equal in size and number of files.

2. Reduction of noise in the training and testing datasets to create denoised versions of each dataset. The

process of denoising is explained in Section 4.3.

3. Creation of basecalling models using raw and denoised training datasets. The models created using

the raw training dataset were used as a control to establish a baseline of basecalling statistics for each

dataset. Taiyaki toolkit by ONT was used to generate custom models for the experiments. Detailed

process of model generation is described in Section 4.3.1.

4. Basecall of testing datasets with our newly generated custom models.

5. Analysis of the basecalled sequence and comparison of results.

Custom models were created for this thesis as depicted in the experiment pipeline in Figure 4.1. The

following models have been used for this project:

1. Default Guppy model: This is the model provided by the Guppy basecaller.

2. Species specific model: This model was created using Taiyaki toolkit by ONT with raw signal for

Bacteriophage lambda training dataset.

3. Denoised models: These models were created using Taiyaki toolkit by ONT with denoised signal for

Bacteriophage lambda training datasets. Multiple models were created for varying denoising parameters.

4. Multi-species model: Multi-species models were created using nanopore data from multiple organisms.
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4.1 Data

The data used in this project was generated by collaborators and was provided for the bioinformatics exper-

iments described in this thesis. Table 4.1 describes the three different primary datasets used in this thesis.

All data files used for this project were in fast5 format which is based on hdf5 format.

The Bacteriophage lambda reference genome consists of 48,502 base pairs. The Bacteriophage lambda

genome is classically used as the first step in bioinformatics pipeline creation due to its simplicity and small

size [77]. It was the first genome to be fully sequenced, and continues to be used as a benchmark dataset.

Bacteriophage lambda was used as the primary dataset in this thesis. The training dataset has a 4117 times

coverage of the Bacteriophage lambda reference genome, and the testing dataset has a 4944 times coverage

of the reference genome.

The experiment was also run for a Bos taurus dataset provided by collaborators (from bulls and calves

sired by the bulls in the collection) [78]. The reference genome of Bos taurus conists of 2.7 gigabases,

considerably larger than the Bacteriophage lambda reference genome. The purpose of running the same

experiment on two organisms of a drastically different genome size is to see the effect of wavelet filtering on

varying sizes of genomes and datasets.

The Taiyaki toolkit provides a training walk-through, referred to as Taiyaki Walk-through in this docu-

ment, with an example dataset to create a Guppy compatible basecalling model. In addition to Bacteriophage

lambda and Bos taurus, reads provided by Taiyaki Walk-through for yeast, E. coli and human genomes

to create custom models were used to observe the effect wavelets have on models that are created using

completely different groups of species than the testing dataset.

Table 4.1 summarises the properties of our training and testing datasets. Mean percentage identity, mean

read length, mean read quality, and total bases were obtained by using NanoStat 1.4.0 from the NanoPack

package [35].
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Properties
Bacteriophage lambda Taiyaki Walk-through Cattle

Training Testing Training Testing Training Testing

Organisms Enterobacteria phage

lambda (NC 001416.11)

Escherichia coli

(SCS1102),

H. sapiens (NA128783),

S. cerevisiae

(NCYC10524)

Bos taurus

(ARS-UCD1.25)

DNA

Source

and

Preparation

Source DNA was prepared

as per the manufacturer’s

burn-in experiment for the

MinION platform and in-

cluded an equimolar concen-

tration of E. coli K12 substr.

MG1655 and Bacteriophage

lambda.

Provided by ONT without

description.

DNA was isolated from

blood draws as described

previously [78]. Purified

DNA was prepared for se-

quencing using the Rapid

Barcoding Sequencing kit

(SQK-RBK004, from Ox-

ford Nanopore).

Data

Generation

Data was generated us-

ing a FLO MIN104 flow

cell. MinKNOW version

0.51.1.62 was used to con-

trol the sequencing run as

per the manufacturers rec-

ommendations.

No description provided

by ONT.

Sequencing was conducted

on FLO-MIN 106D flow cells

using MinKNOW as per the

manufacturer’s suggestions.

Reference

Genome

Size

48,502 (48.5 Kilobases) 6,193,545,673 (6.2 Gi-

gabases) (all organisms

combined)

2,715,853,792 (2.7 Giga-

bases)

Total Bases 199,675,899

(199.7

Megabases)

239,807,324

(239.8

Megabases)

917,176

(917.2 Kilo-

bases)

– 2,856,099,801

(2.9 Giga-

bases)

2,862,591,360

(2.9 Giga-

bases)

1NCBI reference genome
2E. Coli strain reference
3NCBI reference genome
4National Collection of Yeast Cultures strain reference
5NCBI reference genome
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Coverage

w.r.t

Reference

Genome

4116.9 4944.3 0.00015 – 1.05 1.05

Size on Disk 20GB 22GB 4.5GB – 69GB 69GB

Mean Read

Length

6,523.4 (6.5

Kilobases)

6,126.4 (6.1

Kilobases)

3,902.9 (3.9

Kilobases)

– 7,155.4 (7.2

Kilobases)

7,185.1 (7.2

Kilobases)

Mean Read

Quality

9.2 11.0 15.4 – 10.7 10.7

Mean Per-

centage

Identity

w.r.t

Reference

Genome

86.2 90.6 89.9 – 88.1 88.2

Table 4.1: Datasets’ properties.
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4.2 Basecalling and Alignment

Guppy was used as the basecaller in this project. Guppy is an RNN-based basecaller by ONT that includes

post-processing features. It allows customization of configuration for data analysis and comes integrated with

some nanopore sequencing devices such as MinKNOW. Initially, experiments were conducted using Scrappie

[30], Albacore [30], but Guppy was chosen due to it’s ease of use and ability to integrate user models. All tests

were run with the CPU version of Guppy 4.2.3 on Ubuntu 18.04.5. The configuration for Guppy was kept

constant throughout the process using the configuration file dna r9.4.1 450bps hac.cfg provided in the

Guppy installation. The model file template r9.4.1 450bps hac.json as provided by the Guppy package

was used for basecalls in the control groups. We used minimap2 for individual alignments, and for collective

model comparison NanoPlot (v1.20.0) and NanoStat (v1.4.0) from the NanoPack package [35] were used.

4.3 Denoising

Implementation of wavelet analysis provided by PyWavelets [74] was used for the wavelet denoising process.

Sample code for denoising nanopore data is given in Appendix A. PyWavelets provides implementations for

14 common wavelet families and their member wavelets. Table 2.2 provides brief overview about each wavelet

family considered for this thesis. These wavelets are implemented in PyWavelets. Wavelets from each of these

families have unique scaling and wavelet functions. These functions and their shapes determine which wavelet

will be the best choice for various applications. For example, wavelets Daubechies-3 and Symlets-3 have been

proven the best choice for removing noise from ECG signals [70]. Due to the large number of candidates it

is important to narrow the list of potential wavelets to a practical and testable set. A shortlisting strategy

based on MapQ score by minimap2 was used to determine the best choice of wavelet for removing noise from

nanopore sequencing data.

Digital signal processing techniques were used as the inspiration for shortlisting the parameter space

and to estimated SNR improvement after denoising our data. The implementation of Welch’s method [79]

method provided by SciPy [80] was used to determine the signal band and the noise band. The signal was

found to reside almost entirely in the lower 1/4 of the frequency range. Signal power is defined simply as the

largest spectral peak, and the noise floor as the average power in the upper 1/4 of the frequency range in

this thesis. Keeping with convention the power levels are calculated in decibels (dB), and were created using

the picoampere primary measurement and assuming a resistance of 1 ohm.

dB = 10 × log10(picoamphere2)

Using the Welch method, noise floor values were first extracted from sample signals. The noise floor was

then subtracted from the highest power peak of the signal to calculate SNR.

SNR = signal − noise
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Property Original Signal Denoised Signal

Max signal power -213.2383 dB -213.2434 dB

Noise in signal -229.4417 dB -230.3154 dB

SNR from FFT 16.2034 dB 17.0719

SNR improvement 0.8685 dB

Signal change -0.0052 dB

Noise floor change -0.8737 dB

Table 4.2: Change in signal after denoising signal with the haar wavelet at level of decomposition
4 and threshold 0.04

Figure 4.2a and 4.2b show an example comparison of the frequency spectra between the original and

denoised signal. The highlighted portion between 1500 and 2000 on the frequency axis represents the upper

1/4 range of the frequency used to determine the noise in signal.

Any filtering of the original signal may distort the signal or even add noise (in the case of over filtering).

The goal is to minimize the signal loss, while maximizing the noise reduction. Table 4.2 details the same

example as Figure 4.2 which has a very small change in signal and a significant reduction in noise. Table

4.2 shows the increase in SNR by 0.8685dB or 5.4% compared to the original nanopore signal during the

parameter shortlisting stage of the experimental process. The change in signal is small −0.0052dB while the

change in noise is −0.8737dB. This provides an example of losing significantly more noise from the signal

and keeping the signal detail intact.

All wavelets that only offer continuous wavelet transforms were removed from consideration, because

our data is discrete, leaving seven wavelet families. Those seven families were tested using a subset of

the Bacteriophage lambda dataset. Comparison of MapQ scores generated by minimap2 was used as an initial

estimate. After settling on a single wavelet based on the observations described in Chapter 5, the possibilities

for level of decomposition and threshold were narrowed down. Varying the parameters of wavelet transform

affects the results [81], inclining us to keep a few options for both level of decomposition and threshold to

observe the effect on basecalling.

In addition to denoising the training dataset, denoised copies of the testing dataset were created for each

shortlisted combination to compare any differences in result during testing. It was our hypothesis that best

results will be obtained using denoised datasets for both training basecall models and testing.

4.3.1 Creating the Model

Using the Taiyaki v(5.0.0) toolset new models for Guppy were created for basecalling. Taiyaki is a tool

developed by ONT to train models for basecalling. For this project Taiyaki was used to create custom models

compatible with Guppy. The models generated by Taiyaki were used to basecall different versions of the test

dataset and the performance of these basecalls was compared with the control configuration of each dataset.
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(a)

(b)

Figure 4.2: Comparison of noise floor in raw signal and denoised signal. The shaded portion
between 1500 and 2000 Hz on the x-axis represents the region used to calculate the noise floor. SNR
in a sample nanopore signal is 16.20 dB. After denoising a sample nanopore signal with haar wavelet,
level of decomposition = 4 and threshold = 0.04, SNR is 17.07 dB
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5 Results

This thesis work determines the most suitable wavelet for pre-filtering nanopore signal, best performing

denoising parameters and the overall impact they had on basecalling. A significant improvement in basecalling

accuracy was achieved by using custom models generated with denoised nanopore data.

5.1 Wavelet Analysis

In order to generate the models, first a single wavelet and accompanying parameters for wavelet denoising

were chosen. Figure 5.1 was generated by basecalling denoised test dataset with varying combinations of

wavelets, decomposition level and threshold values for all the discrete wavelet families. There are 7 wavelet

families and 9 values each for decomposition level (0-9) and threshold (0.01-0.09) that were considered. For

each wavelet family, Figure 5.1 presents the MapQ score for all 81 combinations of decomposition level and

threshold. For all combinations of decomposition level and threshold, MapQ scores were analysed for each

wavelet family. The default model displays the most consistently high MapQ score for raw test signal. This

was expected as the model has been trained for raw test signal. The goal of this comparison was to detect

the wavelet family that affects the basecalling process the least and maintains a high MapQ score.

The Haar wavelet family stands out amongst all wavelet families in terms of the highest mean MapQ score.

This edge of the haar wavelet over others in terms of MapQ suggests it should be preferred over the other

wavelets for this use case. The shape of the haar wavelet also resembles the near step-wise shape of the

nanopore signal, and it is our hypothesis that this property of the haar wavelet will be useful in denoising

the nanopore signal.

The effect of haar wavelet from the Haar wavelet family was then observed by only considering haar

wavelet during denoising the subset of testing dataset. Figure 5.2 shows the impact of the haar wavelet

transform on the average MapQ score distribution for each level and threshold combination for the Bacterio-

phage lambda dataset. Sample code for denoising nanopore data is given in Appendix A.

The peaks can be observed at mid-range values for both level of decomposition and threshold, suggesting

a high chance that these parameters will perform better for our use case. A dip of MapQ score at higher

extremes for threshold values suggests that these parameters are not ideal for denoising, and they diminish

the quality of the signal and basecalls produced. It was further noticed that most combinations of moderate

threshold and decomposition level values maintain a stable MapQ score for the Bacteriophage lambda dataset.

This stability in the MapQ score is a good indicator that the experiment was headed in the right direction
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Figure 5.1: MapQ score distribution across all wavelets in each wavelet familiy

while narrowing the parameter space.

Wavelet filtering should be applied carefully, using appropriate denoising parameters for any given use

case. As Figure 5.2 indicates, incorrect use of wavelet filtering on nanopore signal can be detrimental to

an experiment. In this thesis, the method and result for picking out the best parameter combinations for

denoising the nanopore signal is presented. Similar process can be used to determine the optimal settings for

any other experiment, inside and outside the realm of nanopore sequencing.

As Figure 5.1 shows a greater improvement in the average MapQ score when using the Haar wavelet

family compared to other wavelet families, and Figure 5.2 provides an insight to the MapQ distribution

across different combinations of decomposition level and threshold, giving us a starting point to consider

shortlisting the values of those parameters as well. As the Haar wavelet family consistently gave us the best

decomposition and reconstruction of our signal, the single wavelet haar from the Haar family was chosen as

the final candidate for this thesis. We believe that the step-wise shape, which resembles the expected output

from a nanopore signal [82], is the reason for its superior performance in denoising nanopore signal data

compared to other wavelets.
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Figure 5.2: MapQ score distribution for haar wavelet across all threshold and level combinations
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Decomposition

Level

Threshold

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1 0.25 0.41 0.51 0.58 0.62 0.64 0.65 0.66 0.66

2 0.26 0.42 0.53 0.61 0.67 0.71 0.73 0.76 0.78

3 0.26 0.43 0.56 0.65 0.72 0.78 0.82 0.86 0.90

4 0.26 0.43 0.57 0.67 0.75 0.82 0.88 0.93 0.99

5 0.25 0.42 0.55 0.65 0.73 0.80 0.87 0.93 0.99

6 0.23 0.39 0.5 0.6 0.67 0.74 0.8 0.86 0.92

7 0.22 0.36 0.47 0.54 0.61 0.66 0.72 0.77 0.82

8 0.21 0.34 0.44 0.51 0.56 0.6 0.64 0.68 0.72

9 0.21 0.33 0.42 0.48 0.52 0.56 0.59 0.61 0.64

Table 5.1: Mean SNR improvement for each level-threshold combination

5.2 Denoising Parameters

For the Bacteriophage lambda dataset, all combinations of thresholds (0.01 to 0.09) and levels of decomposi-

tion (1 to 9) were tested for their estimated SNR improvement. The signal to noise ratio was calculated first

for a subset of the original signals and then for the denoised signals with all combinations of levels of decom-

position and thresholds. For each threshold and level of decomposition combination the mean of change in

SNR was considered to observe the pattern of change. Figure 5.3 shows the plotted mean SNR improvements

from Table 5.1. To choose the optimal level of decomposition and threshold, the extent of smoothing of

signal that is acceptable to avoid over-filtering was considered. It is evident from Figure 5.3 that the optimal

range of levels is between 3 and 5 with an obvious inflection at a threshold between 0.03 and 0.05 range.

Threshold values over 0.05 signify the start of over-filtering because we start losing significant signal detail

along with the noise. Any threshold under 0.03 does not produce a significant enough improvement in SNR

to investigate. Loss of signal power is shown by a flattening of the curve at higher thresholds. This leaves

the mid-range values that we can shortlist further by comparing consecutive values to determine if there is

any significant improvement between them. Figure 5.4 shows the mean improvement in SNR in a 3d plane,

for Table 5.1. This 3d plot further emphasizes the improvement in SNR for mid-range decomposition level

and threshold values. The parameter values of interest correspond to the green region in the 3d plane.

A representation for median SNR improvement is provided in the Appendix C in Table C.1, and Figures

C.1 and C.2. The change in signal and change in noise were both considered independently as depicted

in Table 4.2. The mean SNR improvement in Table 5.1 was also taken into account to narrow down the

parameter space. A few extreme values were picked for these parameters to serve as an experimental control.

Table 5.2 shows the list of chosen parameter values that will be used for this experiment.
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Figure 5.3: Mean SNR improvement for each level-threshold combination

Parameter Shortlisted based on SNR improvement

Wavelet haar

Level of decomposition 1 1 , 3, 4, 5

Threshold 0.012, 0.03, 0.04, 0.06, 0.093

Table 5.2: Parameters shortlisted after SNR analysis.
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Figure 5.4: Mean SNR improvement for each level-threshold combination
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5.3 Basecalling with Custom Models

Now with the parameter space reduced, the experiments were performed as shown in Figure 4.1. Denoised

versions of the training and testing datasets were created, custom models were then generated using the

various versions of training datasets and all versions of testing datasets were basecalled. Mean percentage

identity and mean read quality generated by NanoStat were used as the measure for comparing the accuracy

of custom models against default Guppy model. Note that the read quality calculated by NanoStat is different

from the MapQ score. Basecalling the Bacteriophage lambda dataset using denoised signal improved the mean

percentage identity of basecalls by 5.3%. A complete list of experiment runs and basecall statistics is shown

in Table B.1. The best performing models from Table B.1 have been presented in Figure 5.5 and Table 5.3.

Consider Figure 5.5 to observe the number of matches, mismatches, insertions and deletions in the basecalls

produced by Guppy. The experiments were divided into three categories: control group, raw testing datasets

and denoised testing datasets. The control group will serve as the benchmark to be compared against for all

other custom models.

Figure 5.5a shows the matches, mismatches, insertions and deletions in the basecalls produced by using

the control group models, including the default Guppy model, Bacteriophage lambda species specific model

and a generic Taiyaki Walk-through generic model. Within the control group the best performer is the

Bacteriophage lambda species specific model with the most number of matches, followed by the default Guppy

model. The Taiyaki Walk-through generic species model performs the worst, as can be expected from the

composition of its training dataset. The training dataset was not diverse and only contained reads for Yeast,

Ecoli and Human.

The custom denoised models were then tested with raw signal as well as with denoised testing datasets.

Figure 5.5b shows the performance of our custom generated denoised models against un-processed testing

dataset.

Figure 5.5c shows the performance of our models when tested with denoised testing datasets. The un-

processed testing dataset group produced a consistently higher number of matches when compared against the

denoised testing datasets group, suggesting that we do not need to denoise the data to be basecalled. As can

be observed from Figure 5.5, denoised models decreased the number of insertions, deletions and mismatches -

all three indicators being used to evaluate basecalling accuracy and model performance, demonstrating that

denoising improves basecalling for all considered failure modes. The results also implied that training for a

specific organism is better than training a general pan-organism model.

1A low extreme value for level of decomposition
2A low extreme value for threshold
3A high extreme value for threshold
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Now consider Table 5.3 as it presents a finer representation of basecalls accuracy and quality. The

mean read quality and the mean percentage identity in the control group serve as a benchmark for the

performance of custom models. The leading performance of Bacteriophage lambda species specific model and

low performance of Taiyaki Walk-through generic model in the control group were both expected due to

the nature of the data. A significant increase in mean percentage identity was noticed while maintaining the

mean read quality for both raw and denoised testing groups. Also note that the raw testing group performed

better than the denoised testing group. The improvement seen in both the test groups is consistent, providing

a check that the improvement did not happen by chance. In addition to the three experiment categories in

Figure 5.5, Table 5.3 also enlists a fourth category to present the models created using extreme values for

level of decomposition and threshold.

As expected, these models do not perform well compared to the other categories. It is further noticed

that the best improvement in both percentage identity and read quality was achieved when the original raw

test dataset was basecalled with a denoised model generated with level of decomposition level = 4 and

threshold = 0.04. The performance of model 4 004 reinforces our initial hypothesis of mid-range parameter

values producing high performance basecalls, by denoising the signal effectively. The custom denoised model

was slightly behind the Bacteriophage lambda species specific model in the percentage identity measure but

exceeded it in the mean read quality. It was important to improve the percentage idenitity of basecalls

while also improving the reads quality or atleast keeping it consistent to match the generic Guppy model’s

basecalls. A higher percentage identity with a low quality score is not desirable. As expected in our initial

hypothesis, the parameter combinations involving the extreme values for decomposition level and threshold

did not perform well.

It was observed that the models generated using extreme values for decomposition level and threshold

mentioned in Table 5.2 for wavelet denoising performed the worst. This observation proved our initial

assumption that higher thresholds and decomposition levels contribute to over-filtering the nanopore signal.

Over-filtering leads to loss in signal detail, hence affecting the accuracy of the basecalling process. Our

assumption was confirmed that the lower values for both threshold and decomposition level do not filter the

noise in the signal to a significant extent, compared to the original raw signal. Such insignificant reduction of

noise does not affect the accuracy of the resulting basecalls, making the pre-processing and model generation

experiments ineffective. An additional representation of the number of matches alone is shown in Figure C.3.

Figure 5.6 compares the improvement in percentage identity of the newly created model with the denoised

training dataset against the default Guppy model. Fewer outliers and low-accuracy basecalls can be seen

when using custom model compared to basecalls generated by the default Guppy configuration. A higher

mean percentage idenitity in the custom denoised model was achieved. Figure 5.7 compares the improvement

in read quality score of our newly created model with a denoised training dataset against the default Guppy

model. Similar to Figure 5.6, a significant decrease can be seen in both the number of outliers in our basecalled

sequences and higher density in the higher score region. Both percentage identity and read quality become
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Test Category Test dataset Model

Mean
Percentage
Identity

Mean
Read

Quality

Control Group

Raw signal Default Guppy model 90.60 11.00

Raw signal Bacteriophage lambda Model 96.20 10.60

Raw signal Taiyaki walkthrough generic model 89.00 7.80

Denoised models

tested with

raw signal

Raw signal denoised Bacteriophage lambda 3 004 94.70 10.90

Raw signal denoised Bacteriophage lambda 4 004 95.90 11.00

Raw signal denoised Bacteriophage lambda 5 003 96.20 9.30

Raw signal denoised Bacteriophage lambda 5 004 95.70 10.10

Denoised models

tested with

denoised signal

1 001 Bacteriophage lambda Model* 95.60 10.50

3 004 denoised Bacteriophage lambda 3 004 93.40 10.80

3 004 denoised Bacteriophage lambda 4 004 94.60 10.70

4 004 denoised Bacteriophage lambda 4 004 94.40 10.60

5 003 denoised Bacteriophage lambda 5 003 95.20 9.00

Models created

with extreme

parameter values

1 001 denoised Bacteriophage lambda 1 001 95.90 10.70

3 009 denoised Bacteriophage lambda 3 009 91.30 8.90

4 009 denoised Bacteriophage lambda 4 009 86.20 9.20

5 009 denoised Bacteriophage lambda 5 009 86.40 9.50

Table 5.3: Experiment results for control group and top performing models for raw and denoised
signals.

a lot more consistent when using custom denoised models, decreasing the variability of basecalled sequences.

Less variability in the percentage identity and read quality are indicators of a better basecalling model and

overall higher basecalling quality.

Considering all these observations, the wavelet haar from the Haar family of wavelets was considered the

best choice for removing noise from nanopore signal, along with parameter values decomposition level = 4

and threshold = 0.04. Our hypothesis about the extreme values of denoising parameters held true, as they

did not perform well compared to the mid-range parameter values.

Models for Cattle, Yeast, Ecoli and Human were then created using the discovered settings. For Bos

taurus dataset, a decrease in mean percentage identity of 13.4% and a decrease of 0.4 in mean read quality

of basecalls was noticed with custom model, as compared to the default model. Yeast, Ecoli and Human

genome reads from the Taiyaki Walk-through dataset were used to create a standalone model and a hybrid

model in combination with Bacteriophage lambda reads. In both cases the mean percentage identity was low

compared to species specific models. We suspect that the low accuracy of these basecalls is due to much

lower coverage of the reference genome by the training datasets. These results can be further investigated in
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future work.
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(a) Percent Identity vs Aligned Read Length
when test dataset was basecalled with default
Guppy model.

(b) Percent Identity vs Aligned Read Length
when test dataset was basecalled with default
Bacteriophage lambda species specific model.

(c) Percent Identity vs Aligned Read Length
when test dataset was basecalled with Taiyaki

Walk-through data model.

(d) Percent Identity vs Aligned Read Length
when test dataset was basecalled with denoised
model.

Figure 5.6: Comparison of Percent Identity vs Aligned Read Length between default and denoised
models. All plots were generated by NanoPlot.
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(a) Length vs Quality Scatter Density Plot
when test dataset was basecalled with default
Guppy model.

(b) Length vs Quality Scatter Density Plot
when test dataset was basecalled with default
Bacteriophage lambda species specific model.

(c) Length vs Quality Scatter Density Plot
when test dataset was basecalled with Taiyaki

Walk-through data model.

(d) Length vs Quality Scatter Density Plot
when test dataset was basecalled with denoised
model.

Figure 5.7: Comparison in Length vs Read Quality between default and denoised models. All plots
were generated by NanoPlot.
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6 Discussion

6.1 Discussion

For this thesis, custom models were created for nanopore basecalling using raw training dataset as well as

denoised training datasets. These models were tested with raw testing dataset, as well as denoised testing

datasets. The results indicate that certain denoised models performed best, and did so when tested against

the raw signal. This implies that the use of wavelets can be introduced in the training and model generation

processes, but there is no need to introduce wavelet analysis in any of the later stages such as: while generating

data from a device during an experiment, sequencing that data, or any subsequent stages. This finding will

save a lot of time and resources for academic and commercial experiments, where researchers can rely on using

a custom model for more accurate basecalls and not be concerned with spending their limited computational

resources in using wavelet analysis for any other parts of the experiment.

Custom denoised models generated by using a single organism outperformed others that were generated

using multiple organisms in the training dataset, as reflected in Table B.1. This could be due to the difference

in sizes, GC content and homopolyers in the genomes of species that were used to create multi-species models.

The fold coverage of the involved datasets against their reference genomes were very different, and we believe

it contributed to the difference in accuracy of custom models across different datasets. More research is

needed to determine the underlying cause of this finding. Keeping the denoising parameters constant and

using subsets of data with various fold coverage could present an explanation of the impact that fold coverage

has on generating custom models.

Overall, the results from the experiments in this thesis work show that the reduction of noise in nanopore

signal contributes to an increase in basecalling accuracy for the Guppy basecaller. An increase in consistency

in the mean percentage identity and the mean read quality of our basecalls are an indicator that removing

the noise from raw nanopore signal reduces the number of outliers and makes the basecalls consistent in

accuracy and quality. An increase in the quality of single molecule basecalls impacts nanopore sequencing’s

applications and the bioinformatics community.

This thesis contributes to the bioinformatics and nanopore sequencing space in the following ways:

1. Efficacy of pre-filtering nanopore data: This thesis demonstrated the positive effect of pre-filtering and

pre-processing of nanopore data using wavelet analysis techniques, and the resulting improvement in

read accuracy and read quality from models trained on filtered data.
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2. Choice of wavelet and parameters: After examining many potential wavelets empirically, the haar

wavelet was found to consistently outperform other wavelet families. We believe it turned out to be

the most suitable wavelet for this thesis due to its shape that closely resembles the expected shape of

nanopore signal.

3. Denoising workflow: A workflow is provided for the bioinformatics community to follow for similar

experiments for other species. The workflow can also be used for experiments unrelated to nanopore

sequencing. Simple approaches were used for shortlisting the wavelet candidates and denoising param-

eters, as well as existing libraries built in Python like PyWavelets and SciPy.

4. Custom models: The models created in this thesis are provided for the bioinformatics community to

use, and the workflow can be used as a guide to generate other models. An example of the workflow

and models created for this project are provided at: https://github.com/coadunate/AWAND

The results obtained during the experiments for this thesis confirmed our initial hypothesis that removing

noise in raw nanopore signals leads to better basecalling models. The increase in mean percentage identity

and mean read quality obtained by using custom denoised models is a step towards new research on ways

to reduce noise in raw nanopore signal using software and signal processing techniques. With more research

in this area, nanopore sequencing can overcome the lower accuracy limitation it faces when compared to

second generation sequencing methods. Increase in basecalling accuracy and quality can lead to nanopore

sequencing being the future of sequencing for rapid real-time sequencing applications.

The scale of our findings is relevant to the nanopore sequencing community specifically, and sequencing

community in general. Our approach can be used to improve basecalling for current nanopore sequencing

users and can also encourage others to try nanopore sequencing, bringing it a wider range of academic and

commercial users. Our approach can also be used as a guide for others interested in denoising nanopore

sequencing data for basecalling and analysis. Our approach can also be used by the developers of basecallers

that provide generic models with their basecalling toolkits. An overview of the wavelet analysis technique that

worked to reduce noise in nanopore signal is provided in this thesis, which can be enhanced with exploration

of a wider parameter space and different choices of wavelets.

To our knowledge, all software components used in this thesis can be updated to their latest versions in

future without affecting the experiment pipeline. We also assume that if a major version upgrade is expected

or support for software halts for any tools involved in the Taiyaki model generation process, ONT will provide

a modified workflow for Taiyaki.

6.2 Future Work

This thesis used the Bacteriophage lambda genome which is a relatively simple and small genome to shortlist

the wavelet space and parameters for denoising raw nanopore signal. The wavelet denoising process was
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tested first on Bacteriophage lambda, and then Cattle, Yeast, E. coli and Human datasets. The work in

this thesis can be extended further to test our theory for a wider range of organisms with more complex

genomes as well as other small organisms. The time required to train a model depends on the system

specifications, GPU/CPU settings for Guppy and Taiyaki, and the size of reference genome(s). We suggest

using our method for picking the optimal parameters for wavelet denoising any given dataset. Optimal

parameters may vary across different sizes and complexities of genomes due to the nature of nanopore signal

for different species, frequency of homopolymers, GC content, and contributors of noise and experimental

setup. The custom multi-species models did not perform as well as single-species models, so additional work

needs to be done in creating multi-species models and to determine the appropriate denoising parameters.

The wavelet and parameter space was shortlisted using estimate increase in SNR and only the combinations

of those shortlisted parameters were used to create customized models. Future work can test the entire

parameter space or utilize different techniques for shortlisting. It will be interesting to see if denoising the

nanopore signal and resulting change in basecall accuracy has a correlation with the genome size, G+C

content, homopolymers, repetitive regions or organisms belonging to plant and animal kingdoms. Other

basecallers can be tested with our models to see how that affects their performance and accuracy, compared

to their default configuration. Forward and reverse strands were not separated or separately evaluated for

this project and we relied on NanoPack and minimap2 to deal with these conditions during analysis. Future

work can look into the differences and similarities between the basecalled sequences in forward and reverse

strands separately. Future work could also include looking at the effect of wavelet denoising on nanopore

sequencing for ribonucleic acid (RNA). We believe our method of wavelet denoising will help create more

accurate models and contribute to better basecalling for bioinformaticians and biologists.
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7 Conclusion

The work in this thesis connected denoising techniques of signal processing to an application in DNA

sequencing in the bioinformatics space. We proved our hypothesis that removing noise from a nanopore

signal and creating a custom model with denoised signal before basecalling can increase the accuracy of

basecalls. It was observed that custom models created using denoised nanopore signal enabled the basecaller

to produce better basecalls due to a lesser chance of confusing noise disturbances with signal events. A limited

parameter space was used in the experiments, which was shortlisted via analysis and observations made by

us and other researchers. An increase of 5.3% was achieved in mean percentage identity while maintaining

the mean read quality of basecalls for Bacteriophage lambda nanopore data.

The effect of wavelet pre-filtering on basecalls for nanopore sequencing was demonstrated in this thesis.

An increase in mean percentage identity was observed for species specific models while keeping the mean read

quality constant. However, pre-filtering applied on Bos taurus dataset had a negative effect on the accuracy

and quality of basecalls. We assume that this negative effect on basecalling was due to the low coverage of the

reference genome by the available dataset. In both cases, wavelet analysis seems to have a significant impact

on the accuracy of basecalling for nanopore sequencing data. We believe that with more trials for different

species we can determine the optimal denoising parameters for various species and multi-species models.

43



References

[1] Maclyn McCarty. Discovering genes are made of DNA. Nature, 421(6921):406–406, January 2003.

[2] Anne Sayre. Rosalind Franklin and DNA. W. W. Norton & Company, New York, 1st edition edition,
July 2000.

[3] J. D. Watson and F. H. C. Crick. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose
Nucleic Acid. Nature, 171(4356):737–738, April 1953. Number: 4356 Publisher: Nature Publishing
Group.

[4] A. M. Maxam and W. Gilbert. A new method for sequencing DNA. Proceedings of the National Academy
of Sciences, 74(2):560–564, February 1977. Publisher: National Academy of Sciences Section: Research
Article.

[5] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors. Proceedings
of the National Academy of Sciences, 74(12):5463–5467, December 1977. Publisher: National Academy
of Sciences Section: Biological Sciences: Biochemistry.

[6] Michael L. Metzker. Sequencing in real time. Nature Biotechnology, 27(2):150–151, February 2009.
Number: 2 Publisher: Nature Publishing Group.

[7] James M. Heather and Benjamin Chain. The sequence of sequencers: The history of sequencing DNA.
Genomics, 107(1):1–8, January 2016.

[8] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso, David Rank,
Primo Baybayan, Brad Bettman, Arkadiusz Bibillo, Keith Bjornson, Bidhan Chaudhuri, Frederick Chris-
tians, Ronald Cicero, Sonya Clark, Ravindra Dalal, Alex deWinter, John Dixon, Mathieu Foquet, Alfred
Gaertner, Paul Hardenbol, Cheryl Heiner, Kevin Hester, David Holden, Gregory Kearns, Xiangxu Kong,
Ronald Kuse, Yves Lacroix, Steven Lin, Paul Lundquist, Congcong Ma, Patrick Marks, Mark Maxham,
Devon Murphy, Insil Park, Thang Pham, Michael Phillips, Joy Roy, Robert Sebra, Gene Shen, Jon
Sorenson, Austin Tomaney, Kevin Travers, Mark Trulson, John Vieceli, Jeffrey Wegener, Dawn Wu,
Alicia Yang, Denis Zaccarin, Peter Zhao, Frank Zhong, Jonas Korlach, and Stephen Turner. Real-
Time DNA Sequencing from Single Polymerase Molecules. Science, 323(5910):133–138, January 2009.
Publisher: American Association for the Advancement of Science Section: Report.

[9] S. Howorka, S. Cheley, and H. Bayley. Sequence-specific detection of individual DNA strands using
engineered nanopores. Nature Biotechnology, 19(7):636–639, July 2001.

[10] Anna L. McNaughton, Hannah E. Roberts, David Bonsall, Mariateresa de Cesare, Jolynne Mokaya,
Sheila F. Lumley, Tanya Golubchik, Paolo Piazza, Jacqueline B. Martin, Catherine de Lara, An-
thony Brown, M. Azim Ansari, Rory Bowden, Eleanor Barnes, and Philippa C. Matthews. Illumina
and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Scientific Reports,
9(1):7081, May 2019. Number: 1 Publisher: Nature Publishing Group.

[11] Daniel Branton and David W Deamer. Nanopore Sequencing: An Introduction. World Scientific Pub-
lishing Company, Singapore, SINGAPORE, 2019.

[12] Clive G. Brown and James Clarke. Nanopore development at Oxford Nanopore. Nature Biotechnology,
34(8):810–811, August 2016. Number: 8 Publisher: Nature Publishing Group.

44



[13] Daniel Branton, David W Deamer, Andre Marziali, Hagan Bayley, Steven A Benner, Thomas Butler,
Massimiliano Di Ventra, Slaven Garaj, Andrew Hibbs, Xiaohua Huang, Stevan B Jovanovich, Predrag S
Krstic, Stuart Lindsay, Xinsheng Sean Ling, Carlos H Mastrangelo, Amit Meller, John S Oliver, Yuriy V
Pershin, J Michael Ramsey, Robert Riehn, Gautam V Soni, Vincent Tabard-Cossa, Meni Wanunu,
Matthew Wiggin, and Jeffery A Schloss. The potential and challenges of nanopore sequencing. Nature
biotechnology, 26(10):1146–1153, October 2008.

[14] Richard M. Leggett and Matthew D. Clark. A world of opportunities with nanopore sequencing. Journal
of Experimental Botany, 68(20):5419–5429, November 2017. Publisher: Oxford Academic.

[15] Alberto Magi, Roberto Semeraro, Alessandra Mingrino, Betti Giusti, and Romina D’Aurizio. Nanopore
sequencing data analysis: state of the art, applications and challenges. Briefings in Bioinformatics,
19(6):1256–1272, November 2018. Publisher: Oxford Academic.

[16] Kary B. Mullis, Francois Ferre, and Richard A. Gibbs, editors. The Polymerase Chain Reaction.
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Appendix A

Wavelet Denoising Example

import sys
from os import l i s t d i r
from os . path import i s f i l e , j o i n
from s h u t i l import c o p y f i l e
from datet ime import datet ime
from c o l l e c t i o n s import d e f a u l t d i c t , namedtuple
import hash l i b
import pywt
import h5py
import numpy as np

def deno i s e ( data , wavelet , thresho ld , maxlev ) :
' ' ' remove no i se from s i g n a l us ing s p e c i f i e d parameters ' ' '

w = pywt . Wavelet ( wavelet )

# Decompose i n t o w a v e l e t components , to the l e v e l s e l e c t e d :
c o e f f s = pywt . wavedec ( data , wavelet , l e v e l=maxlev )

for i in range (1 , len ( c o e f f s ) ) :
c o e f f s [ i ] = pywt . th r e sho ld ( c o e f f s [ i ] , t h r e sho ld ∗max( c o e f f s [ i ] ) , mode= '

s o f t ' )

datarec = pywt . waverec ( c o e f f s , wavelet )

return datarec

def f i l e a s b y t e s ( f i l e ) :
' ' ' to be used f o r checksum ' ' '
with f i l e :

return f i l e . read ( )

i f name == ” main ” :
' ' ' e x t r a c t s i g n a l from a l l f i l e s in a d i r e c t o r y and remove no i se ' ' '

# more o p t i o n s f o r wave l e t s , t h r e s h o l d s and l e v e l s can be added to the
r e s p e c t i v e arrays

wave le t s = [ ' haar ' ]
t h r e s h o l d s = [ 0 . 0 4 ]
l e v e l s = [ 4 ]

f a s t 5 d i r e c t o r y = sys . argv [ 1 ]
o u t p u t d i r e c t o r y = f a s t 5 d i r e c t o r y+”/ d e n o i s e d f i l e s −”+str ( datet ime . now( tz=

None ) )+”/”
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f i l e s = [ f for f in l i s t d i r ( f a s t 5 d i r e c t o r y ) i f i s f i l e ( j o i n (
f a s t 5 d i r e c t o r y , f ) ) ]

os . mkdir ( o u t p u t d i r e c t o r y )

for s r c in f i l e s :

dst = o u t p u t d i r e c t o r y+os . path . s p l i t e x t ( s r c ) [ 0 ]

# c r e a t e a checksum to v e r i f y the v a l i d i t y o f denoised f i l e
hash = str ( ha sh l i b . md5( f i l e a s b y t e s (open( f a s t 5 d i r e c t o r y+”/”+src , ' rb

' ) ) ) . hexd ige s t ( ) )

hdf = h5py . F i l e ( f a s t 5 d i r e c t o r y+”/”+src , ' r+ ' )

f a s t 5 i n f o = hdf [ ' UniqueGlobalKey/ channe l i d ' ] . a t t r s
channe l In fo = namedtuple (

' channe l In fo ' ,
( ' o f f s e t ' , ' range ' , ' d i g i t i s a t i o n ' , 'number ' , ' sampl ing ra te ' )

)

c h a n n e l i n f o = channe l In fo (
f a s t 5 i n f o [ ' o f f s e t ' ] , f a s t 5 i n f o [ ' range ' ] ,
f a s t 5 i n f o [ ' d i g i t i s a t i o n ' ] , f a s t 5 i n f o [ ' channel number ' ] ,
f a s t 5 i n f o [ ' sampl ing ra te ' ] . astype ( ' i n t ' ) )

s h i f t , s c a l e = (−1 ∗ c h a n n e l i n f o . o f f s e t , c h a n n e l i n f o . d i g i t i s a t i o n /
c h a n n e l i n f o . range )

keys = l i s t ( hdf [ 'Raw/Reads ' ] . keys ( ) )
s i g n a l = hdf [ 'Raw/Reads/ ' ] [ keys [ 0 ] ] [ ' S igna l ' ]
s i g n a l d u r a t i o n = hdf [ 'Raw/Reads/ ' ] [ keys [ 0 ] ] . a t t r s [ ' durat ion ' ]

s i g n a l = np . array ( s i g n a l )

s i g n a l n = ( s i g n a l − s h i f t ) / s c a l e

hdf . c l o s e ( )

# app ly w a v e l e t d e n o i s i n g to s i g n a l wi th a l l parameter combinat ions
for wavelet in wave le t s :

for th r e sho ld in t h r e s h o l d s :
for l e v e l in l e v e l s :

path = dst+”−”+wavelet+”−”+str ( th r e sho ld )+”−”+str ( l e v e l )+”
. f a s t 5 ”

c o p y f i l e ( f a s t 5 d i r e c t o r y+”/”+src , path )

hdf = h5py . F i l e ( path , ' r+ ' )
keys = l i s t ( hdf [ 'Raw/Reads ' ] . keys ( ) )

datase t = hdf [ 'Raw/Reads/ '+keys [ 0 ] ]
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del hdf [ ”Raw/Reads/”+keys [0 ]+ ”/ S igna l ” ]

deno i sed n = deno i s e ( s i gna l n , wavelet , thresho ld , l e v e l )
deno i sed = np . array ( ( deno i sed n ∗ s c a l e ) + s h i f t , dtype=”

int16 ” ) [ : s i g n a l d u r a t i o n ]
np . reshape ( denoised , ( len ( s i g n a l ) , 1) )
print ( deno i sed . shape )

# w r i t e the denoised s i g n a l to f i l e
hdf . c r e a t e d a t a s e t ( ”Raw/Reads/”+keys [0 ]+ ”/ S igna l ” , data=

denoised , maxshape=(None , ) )
hdf . c l o s e ( )
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Appendix B

All Models and Experiments

Table B.1 shows a complete list of models that were created and used in this thesis. All models were
created using Taiyaki with the exception of the first row which came from Guppy.

Test dataset Model

Coverage
w.r.t

Reference
Genome Mean

Percentage
Identity

Mean
Quality Median

Percentage
Identity

Median
Quality

Raw Bacteriophage
lambda signal

Default Guppy model 90.60 11.00 92.60 11.50

Raw Bacteriophage
lambda signal

Bacteriophage lambda Model 4117 96.20 10.60 98.40 11.10

Raw Bacteriophage
lambda signal

Bacteriophage lambda training
dataset/2

2055 93.90 10.70 95.90 11.10

Raw Bacteriophage
lambda signal

Bacteriophage lambda training
dataset/4

1031 96.00 10.00 98.30 10.50

Raw Bacteriophage
lambda signal

Bacteriophage lambda training
dataset/8

509 95.30 9.60 97.60 10.00

Raw Bacteriophage
lambda signal

Bacteriophage lambda training
dataset/16

256 93.80 10.00 96.00 10.30

Raw Bacteriophage
lambda signal

Bacteriophage lambda training
dataset/32

124 90.40 10.20 92.10 10.40

Raw Bacteriophage
lambda signal

1/2 denoised Bacteriophage
lambda 4 004 + denoised
Taiyaki Walk-through reads
4 004

86.6 6.6 88.1 6.8

Raw Bacteriophage
lambda signal

1/4th denoised Bacteriophage
lambda 4 004 + denoised
Taiyaki Walk-through reads
4 004

86.50 6.90 88.00 7.10

Raw Bacteriophage
lambda signal

1/8th denoised Bacteriophage
lambda 4 004 + denoised
Taiyaki Walk-through reads
4 004

85.90 6.70 87.40 6.90

Raw Bacteriophage
lambda signal

denoised Bacteriophage lambda
5 003

96.20 9.30 98.30 9.70

Raw Bacteriophage
lambda signal

denoised Bacteriophage lambda
3 004

94.70 10.90 96.90 11.40

Raw Bacteriophage
lambda signal

denoised Bacteriophage lambda
4 004

95.90 11.00 98.10 11.60

Raw Bacteriophage
lambda signal

denoised Bacteriophage lambda
5 004

95.70 10.10 97.90 10.60

1 001 denoised Bacteriophage lambda
1 001

95.90 10.70 98.20 11.30

1 001 Bacteriophage lambda Model 95.60 10.50 98.00 11.00
3 003 denoised Bacteriophage lambda

3 003
95.60 9.10 98.10 9.50
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4 003 denoised Bacteriophage lambda
4 003

95.20 9.20 97.90 9.70

5 003 denoised Bacteriophage lambda
5 003

95.20 9.00 97.90 9.50

5 003 denoised Bacteriophage lambda
3 004

93.50 10.70 96.50 11.30

3 004 denoised Bacteriophage lambda
3 004

93.40 10.80 96.70 11.40

3 004 denoised Bacteriophage lambda
4 004

94.60 10.70 97.70 11.30

4 004 denoised Bacteriophage lambda
4 004

94.40 10.60 97.60 11.30

5 004 denoised Bacteriophage lambda
5 004

94.20 9.70 97.40 10.30

5 004 denoised Bacteriophage lambda
1 001

91.00 9.50 95.00 10.10

3 006 denoised Bacteriophage lambda
3 006

93.30 8.50 97.10 9.00

4 006 denoised Bacteriophage lambda
4 006

92.60 8.90 96.80 9.50

5 006 denoised Bacteriophage lambda
5 006

92.60 8.40 96.70 9.00

3 009 denoised Bacteriophage lambda
3 009

91.30 8.90 95.60 9.50

4 009 denoised Bacteriophage lambda
4 009

86.20 9.20 89.50 9.40

5 009 denoised Bacteriophage lambda
5 009

86.40 9.50 89.00 9.80

1 001 Default Guppy model 88.70 10.30 91.20 10.60
3 003 Default Guppy model 83.30 8.60 85.90 8.80
4 003 Default Guppy model 82.70 8.40 85.10 8.60
5 003 Default Guppy model 82.60 8.40 85.00 8.50
3 004 Default Guppy model 81.20 8.00 83.10 8.10
4 004 Default Guppy model 80.30 7.70 82.00 7.80
5 004 Default Guppy model 80.10 7.70 81.80 7.80
3 006 Default Guppy model 76.70 6.90 76.90 6.90
4 006 Default Guppy model 75.20 6.70 75.20 6.60
5 006 Default Guppy model 75.00 6.60 75.20 6.60
3 009 Default Guppy model 71.60 6.10 70.90 6.00
4 009 Default Guppy model 70.40 5.90 69.90 5.80
5 009 Default Guppy model 70.2 5.8 69.8 5.8
Taiyaki

Walk-through

denoised Bacteriophage lambda
5 004

69.9 6.4 69.8 6.4

Raw Bacteriophage
lambda signal

Taiyaki Walk-through generic
model

89 7.8 90.8 8.1

5 004 hybrid model created from Raw
Bacteriophage lambda signal +
denoised Bacteriophage lambda
5 004

90.7 9.3 95 9.9

Raw Cattle signal Denoised Cattle dataset 4 004 74.8 10.3 75.4 10.4

Table B.1: All experiment runs and their output for Percentage Identity and Read Quality

54



Appendix C

Supplementary Information and Figures

Figure C.3 shows the trend of percentage of matches across various test datasets and basecalling model
combinations. The highest percentage matches can be seen at the peaks corresponding to raw signal and
4004 and 1001 models.
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Figure C.1: Median SNR improvement for each level-threshold combination
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Figure C.2: Median SNR improvement for each level-threshold combination
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Figure C.3: Surface plot for percentage matches across testing datasets and model combinations
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Decomposition
Level

Threshold
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1 0.25 0.41 0.53 0.6 0.63 0.64 0.63 0.64 0.64
2 0.25 0.42 0.55 0.64 0.7 0.73 0.74 0.75 0.76
3 0.26 0.43 0.57 0.68 0.75 0.81 0.85 0.89 0.92
4 0.25 0.42 0.57 0.68 0.76 0.84 0.9 0.95 1.01
5 0.24 0.4 0.53 0.63 0.72 0.79 0.86 0.93 0.99
6 0.22 0.37 0.48 0.56 0.63 0.7 0.76 0.83 0.89
7 0.21 0.34 0.44 0.51 0.56 0.61 0.65 0.7 0.76
8 0.2 0.33 0.42 0.48 0.51 0.54 0.57 0.6 0.63
9 0.2 0.32 0.41 0.46 0.49 0.5 0.52 0.53 0.55

Table C.1: Median SNR improvement for each level-threshold combination
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