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The shapes of rotating fluid drops held together by surface tension is an important field

of study in fluid mechanics. Recently, experiments with micron-scale droplets of liquid

helium have been undertaken and it has proven useful to compare the shapes of the resultant

superfluid droplets with classical analogs. If the helium is a mixture of He3 and He4, two

phases are present. In a recent paper, the shapes of rotating two phase fluid droplets were

calculated where the inner drop was constrained to stay at the drop center. The outer

shapes and dimensionless rotation rate-angular momentum relationships were shown to

be similar to single phase drops provided that the density and surface tension scales were

chosen appropriately. In the current paper, I investigate models in which the inner drop can

displace from the centre. In order to simplify the analyses, two dimensional drops are first

investigated. I show that the inner drop is unstable in the centre position if its density is

greater than the outer density and that the inner drop will move towards the outer boundary

of the drop in these cases. When the inner drop has a higher density than the outer drop,

the moment of inertia of displaced inner drops is increased relative to centered drops and

hence the kinetic energy is decreased. Shapes of two and three dimensional drops, rotation

rate-angular momentum and kinetic and surface energy relationships are investigated for

off-axis inner drops with parameters relevant to recent liquid He experiments.
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Two-phase rotating fluid drops with inner drop displacement

I. INTRODUCTION

The shapes of rotating fluid drops help together by surface tension have been of interest for

their own sake1–7 but also because of analogies to celestial bodies held together by gravity8 and

atomic nuclei9. Spashform tektites are glassy rocks that are believed to have formed from rotating

fluid drops resulting from large Earth impacts10–13. Experiments have recently been carried out in

which microscopic liquid helium is expelled from a nozzle14–17. Liquid He4 is a superfluid at the

ultra-low temperatures at which these experiments are carried out. As a result, these drops carry

their angular momentum in voritices if they are axisymmetric and in a combination of vortices

and capillary waves if they are prolate18 while classical viscous drops carry angular momentum

through the net rotation of the drop. Nevertheless, the classical and super-fluid drops have many

similarities in terms of their shape variations with angular momentum19 and comparison of the

two systems is useful in interpreting the results.

Recently, experiments and density functional theory calculations have been carried out on mix-

tures of He3 and He4 at temperatures where He3 is a regular fluid while He4 is a superfluid20. In

these, the He3 forms an outer shell of normal fluid surrounding an inner He4 superfluid. The clas-

sical analog for this system is a drop made of a mixture of two immiscible fluids. In a recent paper,

the shapes of rotating two phase drops were simulated numerically21 and were shown to be very

similar to single phase drops provided that an appropriate scaling was chosen. In that study, the

initial condition for the inner drops was always centered on the rotation axis and so possible off-

centered inner drops were not considered. However, recent experimental evidence suggests that

the He4 inner drop may not be centered (A. Vilesov, personal commuication, 2021) necessitating

further numerical investigations of immiscible two phase drops.

As well as three dimensional (3D) drops, cylindrical fluids are studied here because of their

simplicity relative to 3D drops. Cylindrical fluid domains and their stability to along-axis pertur-

bations were studied by Rayleigh22 in order to understand the process of jet break-up. The stability

of rotating two-dimensional (2D) drops was later investigated23,24. It was shown that drops with a

circular cross-section are stable up to a bifurcation rotation rate at which point two lobed shapes

become stable. The shapes of these drops as a function of angular frequency for drops forced at

a fixed rotation rate, or as a function of angular momentum for freely rotating drops, was later

derived25. The behavior of 2D drops is similar to that of 3D drops in that both become non-

axisymmetric above a bifurcation angular momentum. However, for all angular momenta below
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Two-phase rotating fluid drops with inner drop displacement

the bifurcation value, 2D drops all have the same (circular) form while 3D drops are ellipsoids that

become increasingly flattened with increasing angular momentum. This simplification of drop

shape in 2D is useful in investigating the effects of mobile inner drops. Additionally, the cur-

rent contribution represents the first numerical model results corroborating those of Benner et al.

(1991). Two dimensional superfluid drops have also been investigated using density functional

theory19.

In what follows I will first briefly describe the numerical model used to calculate the shapes of

equilibrium drops. I will then present some simple analyses of the energy of two phase, 2D, drops

to show that the energy is minimized for centered inner drops when the inner drop has density less

than the outer drop while off-centre inner drops are minima for denser inner phases. I will then

show numerical model results comparing single phase, two phase with centered inner drop, and

two phase with mobile inner drop results for 2D and 3D simulations for parameters relevant to the

He4-He3 system.

II. THEORY

A. Governing Equations

The fluid drops are simulated by solving the Navier-Stokes equations in a reference frame that

is co-rotating with the drop with two domains. In dimensionless form these are

ρi
Du

Dt
=−∇P+

Oh

2
∇

2u+ρiω
2
Rr̂ (1)

and

∇ ·u = 0, (2)

in which the terms represent the dimensionless inertial, pressure gradient, viscous and centrifugal

forces per unit volume. Here u and P are the velocity field and pressure while ρi is the dimen-

sionless density of phase i. Symbols R and r̂ represent the distance from the rotation axis and a

unit vector in the direction radially away from the rotation axis. Dimensionless numbers include

the dimensionless angular rotation rate ω and the Ohnesorge number Oh. Note that while effects

due to centrifugal forces have been included (the last term in equation 1), effects due to Coriolis

forces have been neglected. These latter forces are zero for zero velocity and will not affect the

final equilibrium shapes that are of interest here.
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Two-phase rotating fluid drops with inner drop displacement

The inner boundary moves with the normal component of the velocity field and the normal

component of the velocity field is continuous across the inner boundary while the position of

the outer boundary moves with the normal component of the velocity. Surface tension causes a

discontinuity in the normal stress on the inner boundary which is proportional to the curvature of

the boundary

n̂ ·Tin − n̂ ·Tout =
σin

σe f f

∇ · n̂/8. (3)

Here, Tin and Tout indicate the dimensionless fluid stress tensors in the inner and outer regions, n̂

is a unit vector normal to the boundary while σin is the interfacial surface tension coefficient and

σe f f is the surface tension scale that will be defined below. On the outer boundary, surface tension

causes a non-zero normal stress component

n̂ ·Tout =
σout

σe f f

∇ · n̂/8 (4)

where σout is the surface tension coefficient between the outer fluid and air or vacuum. With this

boundary condition, the pressure outside the drop is assumed to be 0.

The dimensionless angular momentum L is a specified constant for each simulation. The di-

mensionless angular momentum is updated at each time step using

ω =
L

Iin + Iout

(5)

where Iin and Iout are the dimensionless moments of inertia calculated from

Ii =
∫

ρiR
2dVi, (6)

where i is an index over the inner and outer regions.

B. Non-dimensionalization

The length scale for non-dimensionalization is the outer radius of the circle of equal area (for

2D drops) or the sphere of equal volume (for 3D drops), Rout . Time and pressure are scaled

as
√

ρe f f R3
out8

−1σ−1
e f f and 8σe f f R−1

out . Angular momentum, energy and moment of inertia are

scaled by

√

8σe f f ρe f f R2n+1
out , 8σe f f Rn−1

out and ρe f f Rn+2
out where n = 2 and 3 for 2D and 3D drops

respectively. In 2D simulations, these are the respective quantities per unit length perpendicular to

the domain. The density scale is chosen to be

ρe f f =
ρinRn+2

in +ρout(R
n+2
out −Rn+2

in )

Rn+2
out

. (7)
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Two-phase rotating fluid drops with inner drop displacement

Here Rin is the radius of a circle of equal area or sphere of equal volume for the inner drop for 2

and 3D calculations. This choice insures that the dimensionless moment of inertia of undeformed

drops is the same as for a single phase drop of density ρe f f . The surface tension scale is given by

σe f f =
σinRn−1

in +σoutR
n−1
out

Rn−1
out

. (8)

This choice results in the total dimensionless surface energy for undeformed inner and outer drops

being independent of material properties and drops sizes. Note that this is a different choice

for the nondimensionalization than I used previously21. However, as will be shown, the angular

frequency and kinetic and surface energy variations with angular momentum remain similar to

those for single phase drops.

The Ohnesorge number is given by

Oh = η(2ρe f f σe f f Rout)
−1/2 (9)

where η is the liquid viscosity which is assumed constant. The Ohnesorge number represents the

ratio of viscous to surface tension forces and can be thought of as a damping parameter for surface

oscillations. All of the simulations in the current paper used Oh = 1 which roughly represents

critical damping.

I characterize the inner drop using three additional dimensionless numbers, s = σin/σout , p =

ρin/ρout and r = Rin/Rout . Additionally, the inner drop’s initial position was displaced from the

centre by dimensionless distance xin0.

Simulations were initiated with drops with elliptical cross-sections with semi-major axis (1+

δ ) and semi-minor axis (1+δ )−1 where δ was given value 0.01. This perturbation to a circular or

spherical profile acted as a seed for the non-axisymmetric instability. The dimensionless numbers

characterizing the problem are summarized in table II B.

C. Numerical Model

The numerical model has been described previously21, however, it is modified to simulate 2D

drops. Briefly, the time-dependent equations are run to steady-states in order to find stable equi-

librium states. The Microfluidics Module capabilities of the commercial finite element package,
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Two-phase rotating fluid drops with inner drop displacement

Symbol Description Value 2D Value 3D

L Dimensionless angular momentum 0-2 0-2

Oh Ohnesorge Number 1 1

p Inner-outer density ratio 1.78 1.78

r Inner-outer radius ratio 0.5348 0.5348

s Inner-outer surface tension ratio 0.14159 0.14159

xin0 Initial inner drop position 0 or 0.1 0 or 0.2

δ Initial drop ellipticity 0.01 0.01

TABLE I. A summary of the problem dimensionless numbers.

Comsol Multiphysics26, is used with an Arbitrary Euler-Lagrange method (included in Comsol as

a Deforming Mesh) which is used to allow for the deforming domain. Hyperelastic smoothing

is used to determine the updated locations of the deforming mesh. In Butler (2020)21, the inner

and outer drops had initial centres at the origin (xin0 = 0). In the current investigation, the initial

positions of the inner and outer drops were moved from the central position.

The equations are solved on triangular (2D) and tetrahedral (3D) meshes. The meshes con-

sisted of roughly 3000 (2D) and 9000 (3D) elements. Automatic remeshing was used such that a

new reference mesh was created when the minimum element quality fell below a threshold. Di-

rect solvers Multifrontal Massively Parallel Sparse Direct Solver (MUMPS)27 and Parallel Sparse

Direct Solver (PARDISO)28 were used for the 2 and 3D simulations while Backward Differenti-

ation Formula (BDF)29 time-stepping was used. A numerical instability often resulted in a net

force on the drops and so they translated in a particular direction. This instability was particularly

pronounced in 3D simulations. In order to reduce this runaway, the average force on the drop was

subtracted from the body force at all positions.

D. Centre of Mass

The centre of mass of an isolated drop will remain fixed when analyzed in an appropriate

reference frame. When the inner drop is allowed to move, the centres of inner and outer drops

change with time, however. Considering only drop displacements along the x axis, the centre of

mass for 2D (circular) and 3D (spherical) drops can be written in terms of the centres of the inner
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Two-phase rotating fluid drops with inner drop displacement

and outer drops, xin and xout as

xcm =
xinrn(p−1)+ xout

rn(p−1)+1
, (10)

where again n = 2 and 3 for 2 and 3D drops.

The centre of mass of the system will not move and so if we set up the system with xcm = 0

then we can set equation 10 to 0 to get a relationship between the centres of the inner and outer

drops

xout =−xinrn(p−1). (11)

The parameter xin was selected as an initial condition for each simulation and equation 11 was

used to select the appropriate initial value for xout .

E. Energy

Stable drops will be those that minimize the total energy3. In the general case, there is a trade-

off between decreasing the kinetic energy, Ek, by increasing the moment of inertia and increasing

the surface energy, Es, as the drop deforms. The dimensionless total energy for 2 and 3 D drops is

given by

Etot =
1

2

L2

Iin + Iout

+
Cins+Cout

8(srn−1 +1)
, (12)

where Cin and Cout are the circumferences of the drops for 2D drops and their surface areas for 3D

drops.

While single phase 3D drops are deformed for all angular momenta greater than zero2, 2D

single phase drops remain circular in cross-section for angular momenta up to 0.9625. For 2D 2

phase co-centric drops, the pressure and centrifugal force fields will be axially symmetric and so

the inner and outer drops will similarly be circular. If the inner drop is displaced from the center,

the inner and outer drops may deform from circular cross-sections. In this section, I will consider

simple circular drops in order to get insight into drop stability.

When outer and inner 2D drops have circular cross-section, but are not necessarily concentric,

the energy reduces to

Etot =
1

2

L2

Iin + Iout

+
π

4
. (13)

Note that given the nondimensionalization for the surface tension in equation 8, the only di-

mensionless number on which equation 13 depends explicitly is L. We can see that for inner and
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Two-phase rotating fluid drops with inner drop displacement

outer drops of circular cross section and fixed area, all of the terms in equation 13 are constant

except for Iin and Iout and that minimizing Etot amounts to maximizing Iin + Iout . The moments of

inertia of the drops will be functions of their positions relative to the rotation axis. The centre of

mass of the inner drop will be the same as the centre of the inner drop circle. The centre of mass

of the outer drop will not be the same as the that of the large circle, however. I consider a situation

where the inner drop is displaced along the x axis only.

For the inner drop, we can use the parallel axis theorem30 to show that the contribution to the

moment of inertia for a rotation about xcm is

Iin =
π p( r4

2
+ x2

inr2)

pr4 +(1− r4)
, (14)

while for the outer circle it is

Iout =
π(1

2
+ x2

out −
r4

2
− xinr2)

pr4 +(1− r4)
. (15)

The combined moment of inertia is then

It =
π[1

2
+ x2

out +(p−1)( r4

2
+ xinr2)]

pr4 +(1− r4)
. (16)

Note that equation 16 reduces to the single phase moment of inertia if p = 1. Note also that if

p < 1, equation 16 has a maximum for xin = 0 while it increases quadratically in xin when p > 1.

As a result, for circular drops, which will generally obtain for low angular momenta, the lowest

energy state will occur with the inner drop centered when p < 1 while the inner drop will move

towards the outer edge when p > 1.

As will be shown, when the inner drop approaches the outer edge, the shapes of the inner and

outer drops deform significantly and the surface energy terms increase. Additionally note that for

centered drops with xin = xout = 0 that It reduces to π/2 for any value of p and so the total energy

becomes

Etot =
L2

π
+

π

4
. (17)

So, for centered circular inner drops, which will occur when p < 1 and L < 0.96, the total energy

will simply be quadratic in the angular momentum and is independent of s, r and p provided that

the nondimensionalizations in equation 7 and 8 are used. This function is plotted as the magenta

line in figure 1.
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Two-phase rotating fluid drops with inner drop displacement

III. RESULTS

A. Single Phase 2D drops

In order to test the 2D numerical model, single phase simulations were first run. Additionally,

to my knowledge, these are the first published numerical simulation results for 2D rotating drops.

The results for the angular velocity vs angular momentum are shown in figure 2 where the blue

line represents the results of Benner et al (1991) (there is a factor of 2 difference in the nondimen-

sionalization of L) while the blue square symbols represent the results from the current study. The

straight line for L < 0.96 indicates that the drops do not deviate from their circular cross section

and so their moment of inertia remains unchanged over this range. Benner et al (1991) found that

ω at the bifurcation point was (3/8)1/2 ≈ 0.6124 while my simulations found 0.616. The drops

become unstable to a nonaxisymmetric disturbance at L > 0.96 and take on two lobed shapes with

significantly larger moments of inertia, leading to the decrease in ω with L above the bifurca-

tion point. A high density of simulations were run near L = 0.96 in order to better constrain the

bifurcation rotation rate.

Figure 1 (blue, red and magneta dotted lines) shows the kinetic, surface and total energies (the

terms in equation 17) for a drop of circular cross-section rotating with angular momentum L .

The solid blue, red and magenta lines show the kinetic, surface and total energies for 2D single

phase drops from my simulatinos. Above the bifurcation angular momentum, the kinetic energy

increases more slowly with L than for a circular drop as the drop becomes nonaxisymmetric and

mass is moved away from the origin. Below the bifurcation angular momentum, the surface energy

is constant but it increases rapidly above it, again as the drop becomes non-axisymmetric and the

circumference increases compared with a circle.

Figure 3 shows the pressure field within the equilibrium single phase 2D drops for a range

of angular momenta. Below L = 0.96, the drops have a circular cross-section and the pressure

difference between the outer edge of the drop and the center increases as the rotation rate and the

centrifugal force increases

Above L = 0.96, the drops differ from circular and become increasingly prolate with increasing

L. The pressure is no longer axisymmetric and is maximal at the end of the long axis where the

curvature of the drop is greatest. Above L = 1, the drops begin to thin at the equator giving them

negative curvature and pressures less than the outside pressure even on the outer edges. Note
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Two-phase rotating fluid drops with inner drop displacement
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FIG. 1. The total, Etot , (magenta dotted and solid lines, green and black asterisks), kinetic, Ek (blue dotted

and solid line, green and black squares) and total surface, Estot (red dotted and solid lines, green and black

+ symbols) energies for a circular single or two phase drop, a single phase deforming drop, a two phase

drop with central inner drop and two phase drops with mobile inner drop, respectively. Green and black

dots show the surface energy, Esi, of the inner drops for fixed and mobile cases.

also that the total pressure difference becomes almost independent of L for L greater than 1.25.

In equilibrium, inside the drop, the centrifugal force is balanced by the pressure gradient. The

rotation rate decreases gradually with L for L above the bifurcation angular momentum, decreasing

the resulting pressure gradient along the long axis of the drop. However, the drop also becomes

longer in such a way as to keep the total pressure difference close to constant which also means

that the maximum curvature at the tip of the drop is similar for prolate drops with different L.

In the short axis direction through the center of the drop, the thickness decreases with L at the

same time as the rotation rate, leading to the pressure becoming almost constant in the short axis

direction for the L = 2 simulation.

Benner et al.(1992) showed that single phase drops will break-up as the central neck thins and

eventually goes to 0 for values of L around 3. The ALE method is not well suited to studying drop

break-up because it cannot simulate a change in topology. Some single phase simulations were

run with values of L near 3 and the central neck did become extremely thin (not shown) and for

some higher values, the simulations failed to converge, consistent with drop break up.
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Two-phase rotating fluid drops with inner drop displacement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 phase simulations

Benner et al., 1991

mobile 2 phase

fixed 2 phase

FIG. 2. Comparison of the variation of rotation rate with angular momentum for 1 phase, 2 phase with the

centre fixed and 2 phases with a mobile centre.

FIG. 3. The dimensionless pressure in single phase drops for angular momenta a) 0.25, b) 0.5, c) 0.75, d) 1

e) 1.25 f) 1.5 and g) 2.
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Two-phase rotating fluid drops with inner drop displacement

B. Two Phase 2D drops

Because of the relevance to the liquid helium problem, I concentrate here on dimensionless

parameter values p = 1.78, s = 0.14159 and r = 0.534820.

1. Two phase, fixed centre, 2D drops

A first set of simulations were undertaken with xin0 = 0 and regardless of the value of p, the

inner drops remained centered for an extended period of time. In some simulations, if run for long

enough, numerical instabilities eventually resulted in the inner drop displacing towards the outer

surface and in some others the central drop eventually broke into two drops connected by a thin

filament. The ALE method is unable to simulate a change in topology such as a drop breaking

into two. That the inner drop remained centered and unchanging for an extended period indicates

that centered drops represent an equilibrium state, albeit a possibly unstable one. The total energy

and angular rotation rate for the fixed centered drops are shown by the green symbols in figure 1

and 2 for drops with p = 1.78, s = 0.14159 and r = 0.5348. Using the nondimensionalization of

the current paper, the variation of total energy and angular rotation rate with angular momentum is

essentially unchanged from the single phase case. For these values of p, s and r, it can also be seen

that the kinetic energy and surface energy (the sum of the inner and outer drop surface energies)

are essentially the same as for a single phase drop.

In figure 4, the pressure field is shown for the fixed centered calculations. The drop shape

evolution with L as well as the total pressure difference within the drops is very similar to those

for single phase drops. In the presence of the inner drop, there is a pressure discontinuity at

both the outer boundary and the inner one. At L = 0.25 (figure 4a), the pressure variation due

to the centrifugal force is small compared with the discontinuities due to surface tension and the

pressure fields are close to constant in the inner and outer drop regions. The maximum pressure

is also found within the inner drop. As L increases but for values less than the bifurcation angular

momentum, the centrifugal forces increase and the pressure differences required to balance these

similarly increase and become greater than the pressure discontinuity at the inner drop boundary.

For L > 0.96, both the inner and outer drops become prolate and have similar shapes. Butler

(2020) found that the outer shapes of 3D two phase drops were very similar to those for single

phase drops. However, the shape of the inner drop varied significantly particularly for small values
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Two-phase rotating fluid drops with inner drop displacement

FIG. 4. The dimensionless pressure in two phase drops with fixed central drop for angular momenta a) 0.25,

b) 0.5, c) 0.75, d) 1 e) 1.25 f) 1.5 and g) 2.

of r. When s was large and p small, the inner drops were often close to spherical due to significant

inner surface tension effects and little centrifugal forces in the inner drop. Drops with small s and

large p, such as the those simulated here, took on shapes similar to the outer drops as seen here.

2. Mobile Inner Drops, 2D

A subsequent set of simulations were undertaken with xin0 = 0.1. Equation 11 was then used

to set the initial position of the outer drop so that the initial value of xcm = 0. Simulations were

first undertaken with p < 1. In these cases, the inner drop returned to the centre as is predicted by

the maximum of the moment of inertia. Subsequent simulations were undertaken with p > 1 and

in these cases, the inner drop displaced towards the outer surface.

The time evolution of a drop with L = 2 is shown in figure 5. Shapes of the inner and outer

drops are shown at the times indicated where colors indicate the pressure field while magenta

arrows show the fluid velocity. The drop has become prolate by time 10. Subsequently, the inner

drop slowly migrates to the right outer surface, forming at time 700 a narrow neck connecting its
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Two-phase rotating fluid drops with inner drop displacement

FIG. 5. The shapes for a drop with parameters p = 1.78, s = 0.14159 and r = 0.5348 xonin = 0.1, L = 2

and Oh at the times indicated. Colors indicate the pressure while magenta arrows show the velocity field.

Velocity arrows are scaled by the maximum velocity. At time 5000, there is still small magnitude fluid

motion but the drop has essentially obtained its final shape.

two ends. The timescale for the nonaxisymmetric instability to evolve the outer drop to a prolate

shape is clearly shorter than the timescale for the inner drop to migrate to one side or the other.

Since the principal aim of this investigation was calculating equilibrium shapes, effects of Coriolis

and Poincare forces were neglected. With their inclusion, the time evolution of the drops may have

been somewhat different.

Figure 6 shows the results of simulations with p = 1.78, s = 0.14159 and r = 0.5348 for angu-

lar momenta L = 0.25,0.5,0.75,1,1.25,1.5,1.75 and 2. The simulations have been run to equilib-

rium. Figures 1 and 2 (black circles) show the corresponding energies and angular rotation rates

as a function of the angular momentum.

At L = 0.25, the outer drop remains close to circular and the energy and angular rotation rates

are very similar to those for a single phase drop even though the inner drop has displaced close to

the outer boundary. Similar to the centered inner drop case, pressure variations are dominated by

the discontinuity at the inner drop boundary. However, even at this low angular momentum, the

inner drop has deformed from a circular shape. At L = 0.5, the outer and especially the inner drops

have become significantly deformed from circular. The additional curvature of the outer drop can

be seen to be causing an enhanced pressure gradient near the wall of the outer drop and is keeping

the inner drop in. The increase in the moment of inertia caused by moving the inner drop to the

outer boundary can be seen as causing a decrease in the angular rotation rate compared with a
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Two-phase rotating fluid drops with inner drop displacement

single phase drop. By L = 0.75, the outer drop has become visibly different from circular despite

the angular momentum being less than 0.96 and the angular rotation rate is considerably decreased

from that of a single phase drop. For L = 1, the kinetic energy of the mobile drop is noticeably less

than for the fixed case while the surface energy is slightly higher due to the increased deformation

of the outer surface. In figure 2 it can be seen that for mobile inner drops, there is no longer a

cusp in the L vs ω curve as the drops transition more gradually from circular to prolate forms. For

angular momenta above 1.25, both the kinetic energy and the surface energies are reduced for the

mobile drop case compared with the fixed drop case. This is at least partially due to the lower

surface energy of the inner drop which is closer to circular at high L than the fixed drop cases.

The simulations shown were all run with the semi-major axis of the initial outer drop along the

same axis (the x axis) as the displacement of the inner drop from the centre. Some simulations (not

shown) were undertaken with the semi-major axis at 90, 45 and 22.5 ◦ to the initial displacement

of the inner drop. The simulations at 22.5 and 45◦ showed identical results to those shown here.

At high angular momenta, when the outer drop was prolate, for simulations where the semi-major

axis was exactly perpendicular to the initial inner drop displacement, the inner drop became sym-

metrically split between the two outer lobes and was connected by a narrow filament. For real

drops, it would be unlikely that the non-axisymmetric perturbation would occur exatly 90◦ to the

inner drop displacement and so the splitting of the inner drop would be unlikely to occur.

Some simulations (not shown) were run with Oh = 0.1. In these simulations, both the inner and

outer drops oscillate significantly but eventually settled to the same equilibrium state as was found

in the simulations run with Oh = 1. Additionally, simulations were run with Oh = 0.1 in the inner

drop and 1 in the outer region. As expected, although the time variation differed from drops with

constant viscosity, the final state was unchanged. A simulations was also run with p = 2.67 and

L = 2. The final shape of the drop was very similar to the simulation using p = 1.78.

C. Three Dimensional Drops

In figure 7, the total (magenta line), surface (red line) and kinetic (blue line) energies for single

phase equilibrium 3D drops are shown as a function of angular momentum. For 3D drops, the

bifurcation angular momentum occurs for L close to 1.2. Unlike 2D drops, the drops increasingly

deform up to the bifurcation angular momentum leading to the slight increase in the surface energy

up to that point. Above L = 1.2, the surface energy increases rapidly while the kinetic energy be-
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Two-phase rotating fluid drops with inner drop displacement

FIG. 6. Examples of 2D drop shapes at angular momenta a) 0.25, b) 0.5, c) 0.75, d) 1, e) 1.25, f) 1.5, and g)

2. Colors indicate the pressure.

comes close to constant as drops become increasingly prolate and their surface areas and moments

of inertia increase rapidly. Figure 8 shows the variation of ω with L and similar to the 2D case,

the cusp in the curve at the bifurcation angular momentum is not present when the inner drop is

mobile.

Simulations were run with p = 1.78, s = 0.14159 and r = 0.5348 and xin = xout = 0 and,

like for the 2D simulations, the inner drops remained centered for extended periods of time. The

resulting energies of equilibrium drops are shown in figure 7 and the angular rotation rate is shown

in figure 8 with the green symbols. The surface energy associated with the inner drop is shown

by the dots while the sum of the surface energies of the inner and outer drops is shown by the

’+’ symbols. The dimensionless energies and angular rotation rates are essentially the same for

fixed-centre two phase drops as those for single phase drops.

These simulations were then repeated with xin = 0.2 (black symbols in figures 7 and 8). The

kinetic energy is slightly reduced for mobile central drops relative to fixed central drops particu-

larly near L = 1. Slices of the pressure field at different angular momenta are shown in figure 9.

Near L = 1, the drop with a mobile central drop has become prolate while at this angular momen-
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Two-phase rotating fluid drops with inner drop displacement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L

0

0.5

1
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2.5
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t, 
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FIG. 7. For 3D drops, the total, Etot , (magenta solid line, green and black asterisks), kinetic, Ek (blue solid

line, green and black squares) and total surface, Estot , (red solid line, green and black + symbols) energies

for a single phase rotating drop, two phase drop with central inner drops and two phase drops with mobile

inner drop, respectively. Green and black dots show the surface energy of the inner drops, Esi, for fixed and

mobile inner drops. Dotted lines show Ek (blue), Estot (red) and Etot (magneta) for an undeformed uniform

sphere.

tum, single phase and two phase drops with fixed central drops (not shown) remain oblate and

have smaller moments of inertia. At L approaching 2, the kinetic energy for the mobile drop case

becomes similar to the fixed centre drop case while the surface energy is slightly reduced. At this

high angular momentum, the drops are prolate, however, the inner drop is found in only one end.

The end of the drop not containing the inner drop is not as strongly deformed as a case with no

inner drop leading to the reduction in surface energy. In all cases, the total energies of the mobile

inner drop simulations are slightly lower than those for fixed centre drops. It can also be seen that

the aspect ratio of 3D prolate drops is less than for 2D drops with the same angular momentum and

that the pressure difference within the drops is larger for the 3D drops. Both of these effects can

be understood to occur because there is curvature in two directions for 3D drops which roughly

doubles the pressure drop across the interfaces and reduces deformation.

IV. CONCLUSIONS

Modeling of two dimensional rotating liquid drops with surface tension has been carried out

and the resulting angular momentum - angular velocity relationship has been shown to be in good
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Two-phase rotating fluid drops with inner drop displacement

0 0.5 1 1.5 2 2.5

L

0

0.1

0.2

0.3

0.4

0.5

0.6

Brown and Scriven

2 phase fixed

2 phase mobile

FIG. 8. For 3D drops, angular rotation rate as a function of angular momentum for single phase drops

(digitized results of Brown and Scriven) as well as two phase drops with fixed (green symbols) and mobile

(black symbols) inner drops. p = 1.78, s = 0.14159 and r = 0.5348 for the two phase drops.

FIG. 9. Slice plots of the pressure field for 3D drops. The view is tilted slightly from the rotation axis.

p = 1.78, s = 0.14159 and r = 0.5348 a) L = 0.25, b) L = 0.5, c) L = 0.75 d) L = 1 e) L = 1.25 f) L = 1.5

g) L = 2. There is one slice in the plane perpendicular to rotation and in the plane contaning the rotation

axis perpendicular to the displacement of the inner drop. There are five planes perpendicular to these two

directions.
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Two-phase rotating fluid drops with inner drop displacement

agreement with the predictions of Benner and Scriver (1991)25 for single phase drops. A simple

examination of the moment of inertia for 2D two phase circular drops showed that the minimum

energy occurs when the drops are cocentric when the inner drop fluid is less dense than the outer

fluid while the energy decreases as the drop moves towards the outer edge when the inner drop is

more dense. For rotating drops, the centrifugal force plays a role that is analogous to gravity and

causes a buoyancy force where light drops move to the centre and heavy ones move to the outer

edge. When the inner drop is more dense, centered inner drops represent equilibrum states but

there exist lower energy states for inner drops displaced close to the outer edges. As such, I expect

that rotating two phase drops, where the inner drop is more dense, will always be found with the

inner drop close to the outer boundary. In a previous paper12, I investigated 3D two phase drops

but in all cases, the inner drop was centered and models were not run for sufficiently long periods

of time that numerical errors combined to perturb the drop from its central position which would

lead to denser inner drops then displacing to the outer boundary.

The behaviours of two and three dimensional 2 phase drops are broadly similar in terms of their

rotation rate- angular momentum relations, energy variation with angular momentum and shape

variations with angular mometum. Because 3D drops have curvature in two directions while 2D

drops have curvature in only one, 2D drops deform to a greater extent from circular cross sections

than 3D drops do from spheres.

In Butler (2020)21, I showed that the dimensionless angular momentum-angular velocity rela-

tionship was similar for single phase and two phase drops provided that the density and surface

tension were scaled appropriately. In that paper, the density scale was chosen so that the moment

of inertia for the two phase drops was the same as a single phase drop for a sphere while the sur-

face tension scale was chosen empirically as a the weighted average of the inner and outer surface

tension coefficients where the weights were the radii of the inner and outer drops. In the current

paper, the density scale was generalized for 2D as well as 3D drops while the surface tension scale

was chosen so as to give the same total dimensionless surface energy for two phase and single

phase drops. For the parameters investigated, the 2D and 3D angular momentum-angular velocity

relations as well as the variation of the total, surface and kinetic energies with angular momentum

were very similar for fixed-center two phase drops and single phase drops. These relations for mo-

bile drops were somewhat different as the displacement of the inner drop increased the moment of

inertia and changed the total deformation. I believe that the scalings used in the current paper are

the most useful in investigating two phase drops as they allow easy and meaningful comparisons
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Two-phase rotating fluid drops with inner drop displacement

of the kinetic and surface energies.

Insights from the current paper on classical two phase drops will be useful in interpreting results

for He3-He4 two phase droplets. Since the more dense He4 has the higher vacuum surface tension,

it is expected that it will make up the inner drop. As such, if the classical analogy for these drops

holds, I expect that the inner drops will be displaced from the drop center. Results in the current

paper show that when the inner drops displace from the center, at high angular momenta, the drops

lose their symmetry about a reflection through their centers in a plane perpendicular to their long

axes. Additionally, when drops can displace from the center, the transition from oblate to prolate

forms with angular momentum becomes more gradual – these effects that may be seen in these

experiments.
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