
Energy-Efficient and Fresh Data Collection in

IoT Networks by Machine Learning

A Thesis Submitted

to the College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Botao Zhu

Saskatoon, Saskatchewan, Canada

© Copyright Botao Zhu, July, 2022. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to the author

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, it is agreed that the Libraries of this University may

make it freely available for inspection. Permission for copying of this thesis in any manner, in

whole or in part, for scholarly purposes may be granted by the professors who supervised this

thesis work or, in their absence, by the Head of the Department of Electrical and Computer

Engineering or the Dean of the College of Graduate Studies and Research at the University of

Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof, for financial

gain without the written permission of the author is strictly prohibited. Proper recognition

shall be given to the author and to the University of Saskatchewan in any scholarly use which

may be made of any material in this thesis. Request for permission to copy or to make any

other use of material in this thesis in whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5A9

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Acknowledgments

I am very grateful for an opportunity of meeting many people during my studies who had

helped me to make this dissertation possible. A few words mentioned here cannot adequately

express my appreciation.

First, I would like to express my deepest gratitude to my supervisors, Prof. Ebrahim B.

Mohamed and Prof. Ha H. Nguyen. Throughout my research program at the university, it is

a great honor to receive invaluable support and extremely helpful guidance of Prof. Mohamed

and Prof. Nguyen, without which, this dissertation would not have been completed.

Second, I would like to also thank the other members of the committee, Prof. Francis

Bui, Prof. Xiaodong Liang, Prof. Brian Berscheid, and Prof. FangXiang Wu from the

University of Saskatchewan and Prof. Lin Cai from the University of Victoria for reviewing

and evaluating this thesis. Their insightful comments and suggestions have significantly

improved the quality of this thesis.

Last but not least, I would like to thank my family for the support that they have pro-

vided me throughout my study. Without their love and encouragement, I would not have

finished this thesis. My special thanks are extended to all my friends: Peter, Long, Ali, Khai,

Nghia, Shania, Aiman, Mohammad, Mahendra, Om Jee, Alireza, Son, and Atefeh in Com-

munications Theories Research Group (CTRG) for sharing their knowledge and invaluable

assistance.

ii

Abstract

The Internet-of-Things (IoT) is rapidly changing our lives in almost every field, such as

smart agriculture, environmental monitoring, intelligent manufacturing system, etc. How to

improve the efficiency of data collection in IoT networks has attracted increasing attention.

Clustering-based algorithms are the most common methods used to improve the efficiency

of data collection. They group devices into distinct clusters, where each device belongs to

one cluster only. All member devices sense their surrounding environment and transmit

the results to the cluster heads (CHs). The CHs then send the received data to a control

center via single-hop or multi-hops transmission. Using unmanned aerial vehicles (UAVs)

to collect data in IoT networks is another effective method for improving the efficiency of

data collection. This is because UAVs can be flexibly deployed to communicate with ground

devices via reliable air-to-ground communication links. Given that energy-efficient data

collection and freshness of the collected data are two important factors in IoT networks,

this thesis is concerned with designing algorithms to improve the energy efficiency of data

collection and guarantee the freshness of the collected data.

Our first contribution is an improved soft-k-means (IS-k-means) clustering algorithm

that balances the energy consumption of nodes in wireless sensor networks (WSNs). The

techniques of “clustering by fast search and find of density peaks” (CFSFDP) and kernel

density estimation (KDE) are used to improve the selection of the initial cluster centers of

the soft k-means clustering algorithm. Then, we utilize the flexibility of the soft-k-means

and reassign member nodes by considering their membership probabilities at the boundary

of clusters to balance the number of nodes per cluster. Furthermore, we use multi-CHs to

balance the energy consumption within clusters. Extensive simulation results show that, on

average, the proposed algorithm can postpone the first node death, the half of nodes death,

and the last node death when compared to various clustering algorithms from the literature.

iii

The second contribution tackles the problem of minimizing the total energy consumption

of the UAV-IoT network. Specifically, we formulate and solve the optimization problem that

jointly finds the UAV’s trajectory and selects CHs in the IoT network. The formulated prob-

lem is a constrained combinatorial optimization and we develop a novel deep reinforcement

learning (DRL) with a sequential model strategy to solve it. The proposed method can ef-

fectively learn the policy represented by a sequence-to-sequence neural network for designing

the UAV’s trajectory in an unsupervised manner. Extensive simulation results show that the

proposed DRL method can find the UAV’s trajectory with much less energy consumption

when compared to other baseline algorithms and achieves close-to-optimal performance. In

addition, simulation results show that the model trained by our proposed DRL algorithm

has an excellent generalization ability, i.e., it can be used for larger-size problems without

the need to retrain the model.

The third contribution is also concerned with minimizing the total energy consumption

of the UAV-aided IoT networks. A novel DRL technique, namely the pointer network-A*

(Ptr-A*), is proposed, which can efficiently learn the UAV trajectory policy for minimizing

the energy consumption. The UAV’s start point and the ground network with a set of

pre-determined clusters are fed to the Ptr-A*, and the Ptr-A* outputs a group of CHs and

the visiting order of CHs, i.e., the UAV’s trajectory. The parameters of the Ptr-A* are

trained on problem instances having small-scale clusters by using the actor-critic algorithm

in an unsupervised manner. Simulation results show that the models trained based on 20-

clusters and 40-clusters have a good generalization ability to solve the UAV’s trajectory

planning problem with different numbers of clusters, without the need to retrain the models.

Furthermore, the results show that our proposed DRL algorithm outperforms two baseline

techniques.

In the last contribution, the new concept, age-of-information (AoI), is used to quantify

the freshness of collected data in IoT networks. An optimization problem is formulated to

minimize the total AoI of the collected data by the UAV from the ground IoT network.

Since the total AoI of the IoT network depends on the flight time of the UAV and the data

collection time at hovering points, we jointly optimize the selection of the hovering points

iv

and the visiting order to these points. We exploit the state-of-the-art transformer and the

weighted A* to design a machine learning algorithm to solve the formulated problem. The

whole UAV-IoT system, including all ground clusters and potential hovering points of the

UAV, is fed to the encoder network of the proposed algorithm, and the algorithm’s decoder

network outputs the visiting order to ground clusters. Then, the weighted A* is used to find

the hovering point for each cluster in the ground IoT network. Simulation results show that

the model trained by the proposed algorithm has a good generalization ability to generate

solutions for IoT networks with different numbers of ground clusters, without the need to

retrain the model. Furthermore, results show that our proposed algorithm can find better

UAV trajectories with the minimum total AoI when compared to other algorithms.

v

Table of Contents

Permission to Use i

Acknowledgments ii

Abstract iii

Table of Contents vi

List of Tables xi

List of Figures xii

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 5

1.2.1 Balancing WSNs’ Energy Consumption 5

1.2.2 Saving Energy in UAV-Aided Networks 9

1.2.3 Freshness Data Collection in UAV-Aided Networks 17

1.3 Research Objectives . 21

1.4 Organization of the Thesis . 22

2 Improved Soft-k-Means Clustering Algorithm for Balancing Energy Con-

sumption in Wireless Sensor Networks 33

2.1 Introduction . 35

2.2 Preliminaries . 38

2.2.1 Soft k-Means . 38

vi

2.2.2 Kernel Density Estimation . 40

2.2.3 “Clustering by Fast Search and Find of Density Peaks” Algorithm . . 43

2.3 Proposed IS-k -Means Algorithm . 44

2.3.1 Energy Model . 46

2.3.2 Selection of Initial Cluster Centers 48

2.3.3 Cluster Formation . 48

2.3.4 Selection of Multi-CHs . 51

2.3.5 Switching to a Next CH . 53

2.3.6 Complexity Analysis . 53

2.4 Experiment Results and Analysis . 55

2.4.1 Simulation Settings . 55

2.4.2 Nodes Reassigning of Improved Soft k-Means Analysis 56

2.4.3 Network Lifetime . 58

2.4.4 Energy Variance . 64

2.5 Conclusions . 65

3 Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT

Networks by Reinforcement Learning with Sequential Model 73

3.1 Introduction . 75

3.2 System Model and Problem Formulation . 79

3.2.1 Channel Model . 80

3.2.2 UAV’s Energy Model . 81

3.2.3 IoT Network’s Energy Models . 83

vii

3.2.4 Problem Formulation for UAV’s Trajectory 84

3.3 Deep Reinforcement Learning for UAV Trajectory 85

3.3.1 UAV’s Trajectory as Sequence Prediction 85

3.3.2 Encoder-Decoder Framework for UAV’s Trajectory 86

3.3.3 Training Method . 90

3.4 Numerical Results . 92

3.4.1 Complexity Comparison . 94

3.4.2 Environment and Parameters Settings 95

3.4.3 Trajectory and Energy Consumption Comparison 96

3.4.4 Trajectory and Energy Consumption Comparison on the 7-Clusters

IoT Network . 100

3.4.5 Further Investigation for the Generalization Ability 102

3.5 Conclusion . 103

4 UAV Trajectory Planning in Wireless Sensor Networks for Energy Con-

sumption Minimization by Deep Reinforcement Learning 111

4.1 Introduction . 114

4.1.1 Motivation . 114

4.1.2 Related Works . 116

4.1.3 Contributions . 118

4.2 System Model and Problem Formulation . 120

4.2.1 Channel Model . 120

4.2.2 UAV’s Energy and Trajectory Model 121

viii

4.2.3 Ground Network and Energy Model 123

4.2.4 Problem Formulation for UAV’s Trajectory 125

4.3 Deep Reinforcement Learning for UAV Trajectory Planning 126

4.3.1 Pointer Network-A* Architecture for UAV’s Trajectory Planning . . . 127

4.3.2 Parameters Optimization with Reinforcement Learning 130

4.4 Numerical Results . 135

4.4.1 Environmental Settings and Model Training 135

4.4.2 Decoding Search Strategies at Inference 135

4.4.3 Small-Scale Clusters . 137

4.4.4 Large-Scale Clusters . 141

4.5 Conclusions . 145

4.6 Appendix . 146

5 UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided

IoT Networks by Transformer 155

5.1 Introduction . 158

5.2 System Model and Problem Formulation . 163

5.2.1 Data Collection Model . 163

5.2.2 UAV’s Mobility Model . 166

5.2.3 Age of Information Model in a UAV-IoT System 168

5.2.4 Problem Formulation . 169

5.3 Transformer-Weighted A* Algorithm . 171

5.3.1 Encoder . 172

ix

5.3.2 Decoder . 176

5.3.3 Selection of Hovering Points . 178

5.3.4 Computational Complexity Analysis 179

5.3.5 Training . 181

5.4 Numerical Results . 182

5.4.1 Test Settings . 183

5.4.2 Analysis of the Results . 185

5.5 Conclusions . 192

5.6 Appendix . 192

6 Conclusions and Suggestions for Further Studies 199

6.1 Conclusions . 199

6.2 Suggestions for Further Studies . 202

x

List of Tables

2.1 Simulation parameters . 57

2.2 Probabilities comparison . 58

2.3 Comparison of energy variance of different rounds 64

3.1 Simulation parameters . 94

3.2 Running time comparison. 103

4.1 Simulation parameters . 134

4.2 Running time comparison on small-scale clusters. 141

4.3 Running time comparison on large-scale clusters. 144

5.1 Simulation parameters . 184

5.2 Comparison of running time (second). 187

xi

List of Figures

1.1 A simple information update system. 4

1.2 A cluster-based WSN architecture. 6

1.3 An UAV-aided IoT network for data collection. 9

1.4 An example of UAV-aided cluster-based IoT network. 12

1.5 A general structure of a Seq2Seq model. 16

1.6 Structure of a vanilla transformer. 19

1.7 Encoder. 19

1.8 Decoder. 20

2.1 Example of soft k-means clustering. 41

2.2 An example of KDE. (a) Nodes distribution. (b) 3-dimensional density con-

tour of nodes in (a). (c) 2-dimensional density contour of nodes in (a). . . . 42

2.3 CFSFDP in two dimensions. (a) Nodes distribution. (b) Decision graph for

nodes in (a): X-coordinate is local density ρ, and Y-coordinate is δ. (c) Two

center nodes are determined. 45

2.4 Flowchart of the proposed algorithm. 47

2.5 A node at the boundary of two clusters. 49

2.6 Multi-CHs scheme. 52

2.7 Comparison of different clustering results, β = 0.2. (a) k -means clustering

result. (b) Soft k -means clustering result. (c) IS-k -means clustering result. . 55

xii

2.8 Comparison of residual energy of CHs. (a) Residual energy of CHs after 5

rounds. (b) Residual energy of CHs after 10 rounds. 56

2.9 Comparison of FND, HND, and LND. (a) Scenario 1. (b) Scenario 2. 59

2.10 Comparison of network lifetime of LEACH, k -means, VLEACH, EECPK-

means, KM-LEACH, EB-CRP, and IS-k -means. (a) Scenario 1. (b) Scenario

2. 60

2.11 Comparison of residual energy curve. (a) Residual energy after 400 rounds in

scenario 1. (b) Residual energy after 1000 rounds in scenario 1. (c) Residual

energy after 100 rounds in scenario 2. (d) Residual energy after 300 rounds

in scenario 2. 63

3.1 System model of an UAV-aided cluster-based IoT network. 81

3.2 Seq2Seq model with encoder-decoder framework. 86

3.3 Training curve of the actor network. 95

3.4 Trajectory comparison of DRL, greedy algorithm, ACO, and Gurobi for dif-

ferent values of ω. (a) ω = 0. (b) ω = 0.3. (c) ω = 0.6. (d) ω = 0.9. 97

3.5 Energy consumption comparison for 4 clusters. 98

3.6 Trajectory comparison of DRL, greedy algorithm, ACO, and Gurobi for dif-

ferent values of ω. (a) ω = 0.1. (b) ω = 0.3. (c) ω = 0.5. (d) ω = 0.8. 99

3.7 Energy consumption comparison for 7 clusters. 101

3.8 Energy consumption comparison when K varies. 102

4.1 Comparison of different UAV’s trajectories. 116

4.2 Example of Ptr-A* architecture for a 3-clusters network. 127

4.3 Trajectories comparison on 25 clusters test instance when ω = 0. 138

xiii

4.4 Energy consumption comparison on small-scale clusters. 139

4.5 Energy consumption comparison on large-scale clusters 140

4.6 Comparison of energy consumption. 143

5.1 System model of a UAV-assisted IoT network. 164

5.2 The time sequence of data collection in the considered UAV-IoT system. . . 169

5.3 The proposed algorithm framework. 174

5.4 Multi-head self attention. 175

5.5 Comparison when M varies. 186

5.6 Comparison of energy consumption when M varies. 187

5.7 Comparison for different values of γth. 189

5.8 Comparison when N varies. 191

xiv

List of Abbreviations

ACO Ant Colony Optimization

AoI Age of Information

BS Base Station

CHs Cluster Heads

CFSFDP Clustering by Fast Search and Finding of Density Peaks

CNNs Convolutional Neural Networks

CVRP Capacitated Vehicle Routing Problem

DQN Deep Q-network

DRL Deep Reinforcement Learning

DNNs Deep Neural Networks

DDPG Deep Deterministic Policy Gradient

EV Energy Variance

FPT Fixed Parameter Tractable

FND First Node Death

GTSP Generalized TSP

HND Half of Nodes Death

IoT Internet of Things

IS-k-means Improved Soft-k-means

KDE Kernel Density Estimation

LoS Line-of-Sight

LBCP Load Balanced Clustering Problem

xv

LEACH Low Energy Adaptive Clustering Hierarchy

LSTM Long Short-Term Memory

LND Last Node Death

NLoS Non Line-of-Sight

PDF Probability Density Function

Ptr-A* Pointer Network-A*

RL Reinforcement Learning

RNNs Recurrent Neural Networks

Seq2Seq Sequence-to-Sequence

SNR Signal-to-Noise Ratio

TDMA Time Division Multiple Access

TDM Time Division Multiplexing

TSP Traveling Salesman Problem

TSPN TSP with Neighborhoods

TWA* Transformer-weighted-A*

3D Three-dimensional

UAVs Unmanned Aerial Vehicles

VRP Vehicle Routing Problem

WSNs Wireless Sensor Networks

xvi

1. Introduction

1.1 Motivation

Cisco forecasts that by 2030 approximately 500 billion Internet-of-Things (IoT) devices

will be deployed worldwide [1]. These devices are linked via IoT systems, and the data

generated by these devices can be accumulated, processed, and distributed by IoT services

and applications for different purposes. Wireless Sensor Networks (WSNs) are among the

basic components of IoT, which integrate the physical world with the information world to

expand the functions of existing networks and the ability of human to understand the world.

IoT applications span a wide range of areas in our daily life. For example, monitoring in dif-

ferent fields is one of the most common applications. In agricultural monitoring, IoT devices

are deployed in given areas to monitor and collect physical conditions of the surrounding

environment such as temperature, humidity, and pressure [2]. Devices also can be deployed

in cities to monitor the concentration of dangerous gases [3]. Furthermore, in high-speed

train monitoring, IoT devices can provide information on the health of bridges, tracks, and

various train components, which can help improve safety and reduce maintenance costs. In

addition to monitoring, IoT has gradually appeared in various new forms, such as industrial

IoT, Internet of vehicles, smart home, intelligent manufacturing systems, to name a few [4].

In IoT networks, most of the IoT devices are designed to be small, inexpensive, and

wireless. Since IoT devices also need energy resources to acquire, process, and transfer data,

they are commonly powered by on-devices power supply. However, battery technology is

significantly limited in large-scale IoT deployments because the amount of energy that can

be stored in batteries is limited. Batteries need to be recharged or replaced periodically,

which not only leads to inconvenience and high cost, but can also be impossible in some

1

deployments. Hence, reducing the energy consumption of IoT networks is very important to

prolong their lifetime.

Clustering in energy-limited IoT networks has been widely investigated to reduce the

energy consumption of the overall IoT networks [5]. Clustering is the task of dividing the

“data” into clusters of similar objects. Each cluster includes the data points that are most

similar to other data points in the same group, and less similar to the data points in other

groups. In IoT networks, clustering-based algorithms group devices that are close to each

other into the same cluster based on distance, and each device belongs to one cluster only.

All member devices sense their surrounding environment and send the results to the cluster

heads (CHs). Then, CHs collect and transmit the sensed data to the base station (BS) via

single-hop or multi-hops transmission. Each device consumes a certain amount of energy

when it collects, processes, and transmits data, and a device is defined to be dead when it

runs out of energy.

Clustering algorithms can significantly reduce energy consumption of devices in IoT net-

works when compared to non-clustering-based data collection methods, because they can

avoid long-distance communication for devices. Although clustering methods are considered

to be efficient ways to save energy for devices in IoT networks, the structure of clusters has

a considerable impact on networks’ lifetime. This is because a poor clustering structure of

IoT networks often leads to inefficient energy consumption. Clustering algorithms have been

extensively studied in IoT networks. However, there are several design challenges that, if not

properly addressed, may lead to poor clustering structures. The first of these challenges is

how to choose the initial cluster centers, which will affect the subsequent cluster formation.

Second, unbalanced clusters (large or small) can lead to unbalanced energy consumption of

devices, which can significantly affect the lifetime of networks. Third, choosing unsuitable

CHs can quickly exhaust their energy because CHs need to consume more energy to receive

and forward data. Fourth, in some clustering algorithms, the devices in IoT networks are

organized in clusters for a fixed number of communication rounds. This may result in un-

balanced energy consumption for devices. Hence, the first objective of this research is to

balance energy consumption of devices in wireless networks in order to extend their lifetime.

2

The use of unmanned aerial vehicles (UAVs) to collect data in IoT networks has received

increasing attention due to their numerous advantages, such as cost-effectiveness, high

probability of line-of-sight (LoS) links with the ground devices, mobility, and reliable network

access [6]. UAVs are considered as mobile sinks for receiving data from CHs, and then, they

can carry/transmit the collected data to terrestrial BSs for further processing. Using UAVs

as mobile sinks can reduce energy consumption of ground devices in IoT networks when

compared to the traditional multi-hop networks which transmit data from each device to a

BS over a long distance or several hops. Despite these advantages, the integration of UAVs

and IoT networks still grapples with many challenges. First of all, due to the limited energy

source carried by UAVs, the service range of UAVs is constrained by the reality that they

cannot travel very long distances or fly for a long period of time. Second, the battery life

of ground devices in IoT networks is typically limited. As a result, frequent communication

with UAVs can cause devices to exhaust their energy rapidly. Hence, it is important to study

the energy consumption minimization problem in UAV-enabled IoT networks.

Prior works on energy consumption minimization for UAV-enabled wireless networks can

be classified into three categories depending on the objectives. The first category only con-

siders minimizing the UAV’s energy consumption. In contrast, the second category considers

only minimizing the energy consumption of ground devices in the UAV-aided wireless net-

works. In the third category, the energies of both the UAV and ground devices are taken

into account when minimizing energy consumption of the UAV-enabled networks. However,

most of prior works assume that the UAV directly communicates with each device of the

ground wireless network. Such a scenario leads to high energy consumption of both the UAV

and ground devices, especially when the network size increases. As a result, the UAV may

run out of its energy in flight or may need to recharge its battery frequently, and ground

devices may quickly exhaust their energy. Hence, the second objective of this research is to

minimize the overall energy consumption of the UAV-enabled IoT networks.

Apart from energy consumption, the freshness of the collected information is another key

performance metric in time-sensitive IoT applications, such as environmental monitoring

and safety protection. In these applications, the generated data needs to be sent to the

3

Figure 1.1 A simple information update system.

destination as soon as possible. Outdated information can lead to incorrect control and even

cause major disasters. Therefore, it is essential to ensure the freshness of data that arrives at

the destination. To measure the freshness of information, a new performance metric called

the age of information (AoI) was proposed in [7]. From the perspective of the receiver, AoI

describes the amount of time elapsed since the generation of the most recent data update.

According to the definition of AoI, the AoI of a packet at time ζ is defined as [8]

A(ζ) = (ζ − u(ζ))+ (1.1)

where u(ζ) is the instant at which the packet is generated, and (x)+ = max{0, x}.

AoI-based data collection can achieve information freshness in IoT networks, which is

quite different from the traditional delay-based metric. To better explain the concept of

AoI, consider a simple information update system with a source node and a destination

node as illustrated in Figure 1.1. Based on the enqueue-and-forward model [9], the source

node enqueues updates and sends them to a destination via a channel. The low data update

frequency of the source node will cause short queuing delays because the queue is almost

empty. But the destination may eventually have stale data due to low update frequency.

However, high data update frequency will not only increase queuing delay, but also increase

the AoI of data. This is because data updates require a long waiting time in the queue.

Therefore, the delay increases as the update frequency increases, but the AoI first decreases

and then increases with respect to the update frequency [8].

Energy-constrained IoT networks generally experience higher likelihood of packet loss,

which can affect the timely delivery of sensed data. This is a more serious problem in

large-scale deployment IoT networks, where devices may have very poor direct links to their

4

destinations. New IoT network architectures need to be designed to efficiently utilize the

limited energy of IoT devices and ensure timely delivery of their data and status updates.

As UAVs are becoming key components of wireless network architectures, utilizing them to

maintain the freshness of data has attracted increasing attention and will also be the third

objective of this research.

1.2 Literature Review

This subsection gives a detailed review of existing studies that are directly related to our

research objectives. Note that devices, nodes, and sensors are synonymous terminologies

and used interchangeably in this thesis. Likewise, BS, gateway, destination, and sink have

the same meaning and are used interchangeably.

1.2.1 Balancing WSNs’ Energy Consumption

To balance the energy consumption of devices and extend their lifetime, different clus-

tering techniques have been used in WSNs. By clustering, devices in WSNs are divided into

small clusters where each cluster elects one device as the CH to collect data from member

devices in the same cluster and forward the collected data to the BS. Figure 1.2 illustrates

a cluster-based WSN architecture. Clustering algorithms can effectively avoid long-distance

communications of devices, and hence, reduce their energy consumption. There is rich liter-

ature concerning the problem of clustering in WSNs.

The low energy adaptive clustering hierarchy (LEACH) [10] is one of the well-known

energy-efficient clustering algorithms. In every round of LEACH, each node is assigned a

probability between 0 and 1, which is used to determine whether or not it could be a CH.

If the assigned probability of a node is less than a predetermined threshold, then this node

becomes a CH. After CHs are decided, other member nodes join the cluster of the nearest

CH depending on the strength of the advertisement message from CHs. However, LEACH

may result in a nonuniform distribution of CHs.

Low energy adaptive clustering hierarchy centralized (LEACH-C) [11] is a modified ver-

sion of LEACH, where each node sends its current location and residual energy to the BS. The

5

Figure 1.2 A cluster-based WSN architecture.

BS determines the required number of clusters by using the simulated annealing algorithm

and ensures balancing the load among different clusters. The average energy consumption

of LEACH-C is lower than that of LEACH. However, this centralized approach can increase

the communication overhead required for CHs selection. The authors in [12] proposed an

efficient CHs election method where CHs are alternately selected among the nodes with

higher energy in different communication rounds. In particular, the method considers the

initial energy, residual energy, and an optimal number of CHs in the phase of CHs selection.

Then, member nodes join different CHs according to the distances between them and CHs

to form clusters.

A joint clustering and routing (JCR) algorithm is proposed in [13] to improve the en-

ergy efficiency of large-scale WSNs. JCR employs a back-off timer and gradient routing to

simultaneously execute the CH selection and multi-hop routing under the constraint on the

maximum transmission range. The authors in [14] presented a node-density-based clustering

and mobile elements algorithm (NDCMC) to combine the hierarchical routing and mobile

6

elements data collection in WSNs. In NDCMC, the nodes surrounded by a large number of

deployed nodes are selected as CHs in order to improve the efficiency of intra-cluster routing.

To solve the load balanced clustering problem (LBCP) in WSNs, the authors in [15] used

a fixed parameter tractable (FPT) approximation algorithm with an approximation factor

of 1.2 based on the parameterized complexity theory to develop a new energy-efficient and

energy-balanced routing algorithm. The FPT-approximation algorithm determines which

gateway each sensor node must be assigned to, which can better balance load and energy

consumption among the gateways. In addition, the authors proposed a routing tree for the

inter-cluster communication to distribute the overhead of the routing among almost all of

the nodes. In [16], the authors proposed an FPT-approximation algorithm with an approx-

imation factor of 1.1, which is more precise than previous approximation factors reported

for LBCP. The FPT-approximation algorithm is used to assign sensor nodes to gateways

such that the maximum load of the gateways is minimized. Then, an energy-aware routing

algorithm is employed to find the optimal routing tree between gateways and the sink with

the aim of balancing the energy consumption of the nodes. The same authors also considered

another FPT-approximation algorithm with an approximation factor of 1.1 in [17]. In order

to make the FPT-approximation algorithm to be practical in large-scale WSNs, a virtual grid

infrastructure with several equal-size cells is used where the FPT-approximation algorithm

runs in each cell independently. These FPT-approximation algorithm only chooses one CH

in each cluster, which may cause all nodes to be re-clustered frequently because CHs may

quickly exhaust their energy. In addition, they use a fixed number of communication rounds

during each steady-phase, which may lead to CHs to die earlier.

The k-means algorithm and its variants are the most common machine learning algo-

rithms used in WSNs to balance the devices’ energy consumption and prolong their lifetime.

The authors in [18] proposed a modified k-means clustering algorithm that considers two

factors, namely, (i) distances among CHs and their member nodes, and (ii) the remaining

energy of nodes, to reduce the overall energy consumption and extend the network lifetime.

In [19], the authors proposed a hybrid clustering algorithm based on the k-means cluster-

ing algorithm and LEACH, where balanced clusters are generated by k-means and CHs are

7

selected by LEACH. This hybrid algorithm outperforms LEACH in terms of the energy con-

sumption. However, due to the frequent re-clustering, the energy consumption of the nodes

may increase in the phase of cluster formation and CHs selection.

An energy efficient clustering protocol based on k-means (EECPK-means) is proposed

in [20] with the aim of balancing the load of CHs in WSNs. The midpoint method is used

to improve the initial selection of centroids in the k-means algorithm in order to generate

balanced clusters. In [21], the authors proposed a method based on fuzzy c-means clustering

and particle swarm optimization (FCM-PSO) to reduce the total energy consumption of the

network and reduce the number of network disconnects. The FCM-PSO algorithm considers

the energy consumption and constraints of communication in the calculations of the CHs

and nodes’ membership probability. The energy-efficient k-means LEACH (KM-LEACH)

algorithm is proposed in [22] to create symmetric clusters and reduce the average intra-

cluster communication distance, which can save nodes’ energy and improve the network

lifetime.

To address the problem of how to control the failure of a CH in each cluster, the k-medoids

clustering algorithm and vice CH scheme (VLEACH) are used together with LEACH in [23].

A vice CH will become a new CH in case the CH of a given cluster dies, which helps to

prolong the lifetime of WSNs by balancing the nodes’ energy consumption. The authors

in [24] used k-means and Gaussian elimination algorithms to reduce energy consumption of

WSNs and extend their lifetime. An innovative classification algorithm based on “clustering

by fast search and finding of density peaks” (CFSFDP) for balancing energy is proposed

in [25]. The authors extend the original CFSFDP algorithm to take into account residual

energy (in addition to local density and distance) to select CHs, and accordingly cluster

nodes based on the selected CHs.

With respect to prolonging the network lifetime, there are several outstanding-questions

that need to be answered. (1) How to determine the number of clusters in WSNs? (2) How

to choose the initial centers of clusters for machine learning-based clustering algorithms?

(3) How to form balanced clusters to avoid unbalanced energy consumption in different

clusters? (4) How to choose CHs to prolong the WSNs’ lifetime? (5) How to balance the

8

Sensor

BS

UAV

Moving path

Figure 1.3 An UAV-aided IoT network for data collection.

energy consumption among CHs? The research works discussed previously only consider

some of these five problems. In this research, we propose an energy-efficient algorithm with

the aim of balancing the energy consumption of all devices in WSNs and extending their

lifetime by considering all these five problems.

The reader is referred to Section 1 of Chapter 2 and [5] for more detailed discussion on

related works.

1.2.2 Saving Energy in UAV-Aided Networks

Employing UAVs has attracted growing interests and emerged as a state-of-the-art tech-

nology for data collection in wireless networks due to their high flexibility and high ma-

neuverability. Figure 1.3 illustrates an example of UAV-aided IoT network where a UAV is

dispatched to collect data from ground sensors and forwards the collected data to the BS.

Because of the limited energy resources carried by UAVs and devices of wireless networks,

it is important to study the energy saving problem in UAV-aided networks.

9

Comparison of UAVs

Depending on different use cases, there are two main types of UAVs that are used for

data collection in IoT networks: fixed wing and rotary wing [26]. Fixed-wing UAVs use

fixed static wings like aeroplanes and use energy to provide forward motion only in order to

generate lift. Rotary-wing UAVs usually use multiple rotors to create lift via diverting the air

downwards. These two types of UAVs have their own strengths and weaknesses. Fixed-wing

UAVs are able to cover longer distances, fly for longer times, and can carry heavy payload

when compared to rotary-wing UAVs that have limited payload and endurance. Rotary-

wing UAVs, on the other hand, have smaller size and are easier to control than fixed-wing

UAVs. One downside of fixed-wing UAVs is that they are unable to hover in one spot, which

limits their usage for data collection in some IoT applications. In contrast, rotary-wing UAVs

not only have the ability to stay stationary to collect data from the ground IoT network but

also can move in any directions. Another downside of fixed-wing UAVs is that they tend

to be significantly more expensive than rotary-wing UAVs. In general, the choice of UAVs

depends on the specific requirements of data collection.

Energy Consumption of UAV-Aided Networks

By jointly considering the UAV’s trajectory and devices’ transmission schedule, the au-

thors in [27] use an efficient differential evolution-based method to minimize the maximum

energy consumption of all devices in an IoT network. In [28], the authors aim to minimize

the transmission energy consumption of the sensor nodes within a given data collection time

by jointly optimizing the UAV’s trajectory and the transmission policy of nodes. In [29],

the authors consider maximizing the minimum residual energy of sensor nodes after data

transmission in order to prolong the network lifetime. The authors in [30] jointly optimize

the sensor nodes’ wake-up schedule and the UAV trajectory to reduce the maximum en-

ergy consumption of all sensor nodes. In [31], the authors minimize the maximum energy

consumption of all IoT devices subject to the UAV’s energy budget.

The aforementioned works only focus on minimizing the energy consumption of ground

devices in an UAV-aided wireless network. In contrast, other works consider UAV-related

10

energy consumption minimization when UAVs are deployed in wireless networks. In [32], the

authors study the problem of minimizing the completion time and the energy consumption

of an UAV flying over a large area and propose a fly-and-communicate protocol. The au-

thors in [33] aim to minimize the total energy consumption of the UAV, including both the

propulsion and communication energy, in a UAV-enabled system serving multiple ground

nodes. The authors in [34] study methods to control a group of UAVs for effectively covering

a large geographical region while minimizing their energy consumption. In [35], the authors

minimize the total UAV’s energy consumption for a given path by optimizing its velocity.

The above two categories of research focus on minimizing the energy consumption of

UAVs and ground devices separately; while research in the third category aim to jointly

minimize the energy consumption of both UAVs and ground devices. An energy-efficient

solution is proposed in [36] to minimize UAVs’ and sensors’ energy consumption when

collecting data from the spatially distributed WSN. By considering the communication power

consumption of ground devices and the propulsion power consumption of the UAV, the

energy consumption trade-off between the UAV and ground devices in the UAV-enabled

data collection system is studied in [37]. The authors in [38] aim to minimize the weighted

sum of the energy consumption of all UAVs and the energy consumption of all sensors in a

multi-UAVs enabled WSN.

Most of the above studies assume that the UAV directly communicates with each device

of the ground wireless network. In this case, if the UAV flies over all devices in a large-scale

WSN, it would lead to a long flight trajectory for the UAV which increases its energy

consumption. As a result, the UAV may run out of its energy in flight or may need to

recharge its battery frequently. Against the above literature, in this research, we consider

to minimize the total energy consumption of the ground network and the UAV by designing

an energy-efficient UAV trajectory in a cluster-based IoT network. An important difference

between our work and existing studies is that we take into account how the UAV interacts

with the ground network. Specifically, as illustrated in Figure 1.4, we consider a clustered

IoT network and that the UAV only communicates with the CH of each cluster in order to

reduce the energy consumption. As such, it is clearly important and relevant to study the

11

Figure 1.4 An example of UAV-aided cluster-based IoT network.

energy-efficient UAV’s trajectory planning in clustered IoT networks in order to minimize

the overall energy consumption of the UAV and the ground network.

Energy-Efficient UAV Trajectory Planning

Energy-efficient trajectory planning for UAVs has recently attracted significant research

interest, and multiple solutions have been proposed for UAV-enabled wireless networks. Most

of UAVs trajectory design problems in wireless networks are NP-hard, and hence, can not

be solved by polynomial-time complexity algorithms.1

In general, existing solutions for energy-efficient UAV trajectory planning can be classified

into two categories: traditional methods and machine learning based techniques. In the first

category, researchers mostly use mathematical programming or heuristic algorithms to solve

the trajectory optimization problem. In order to find the most suitable trajectory for the

UAV to collect data, the authors in [6] firstly find the global optimal solution for a small-scale

IoT network by using the high-complexity branch, reduce, and bound algorithm, and then

1NP-hardness (non-deterministic polynomial-time hardness) is the defining property of a class of problems

that are informally “at least as hard as the hardest problems in NP”.

12

they use the successive convex approximation to develop a sub-optimal algorithm to generate

the solution for the large-scale IoT network. The authors in [39] jointly optimize the route

planning and task assignment for a number of UAVs from an energy-efficient perspective

by using the dynamic programming and the Gale-Shapley algorithms. The authors of [40]

develop a hierarchical directional dynamic programming algorithm to solve the UAV’s path

planning. In [29], the authors jointly optimize the path and the UAV’s velocities to minimize

the total energy consumption. The optimization problem is solved by dynamic programming,

which achieves a good performance at a high computation cost. However, the computation

time of mathematical programming algorithms may increase exponentially as the problem

size increases. Although some heuristic algorithms are applied to design the energy-efficient

path in the UAV-enabled wireless networks, such as ant colony optimization [41], differential

evolution [27], and cuckoo search [42], they usually cannot fully adapt to the increasing

complexity of scalable wireless networks and also not guaranteed to provide close-to-optimal

performance.

Regarding the machine learning-based category, deep reinforcement learning (DRL) and

reinforcement learning (RL) are the most common techniques in solving the UAV’s trajectory

planning problems. In [34], the authors propose a DRL-based method which is composed

of two deep neural networks (DNNs) and deep deterministic policy gradient (DDPG) to

maximize the energy efficiency for a group of UAVs by jointly considering communications

coverage, energy consumption, and connectivity. In order to minimize the UAV’s trans-

mission and hovering energy, the authors in [43] formulate the energy-efficient optimization

problem as a Markov decision process. Then, they use two DNNs and the actor-critic-based

RL algorithm to develop an online DRL algorithm that shows a good performance in terms

of energy savings. In [44], the authors jointly optimize the UAV’s 3D trajectory and the

frequency band allocation of ground users by considering the UAV’s energy consumption

and the fairness of the ground users. A DDPG-based DRL algorithm is developed to gener-

ate the energy-efficient trajectory with fair communication service to ground users. In [45],

with the aim of designing an energy-efficient UAV’s route for long-distance sensing tasks, the

authors propose a DRL-based framework where convolutional neural networks (CNNs) are

13

used for extracting features and the deep Q-network (DQN) is utilized to make decisions.

Towards realizing green UAV-enabled IoT, the authors in [46] formulate the UAV’s path

planning problem as a dynamic decision optimization problem, which is solved by dueling

DQN. In [47], the authors use the DQN with experience replay memory to solve the for-

mulated energy-efficient trajectory optimization problem, while maintaining data freshness

2. With the objective of saving energy, the authors in [48] propose a deep stochastic online

scheduling algorithm based on two DNNs and the actor-critic to overcome the traditional

DRL’s limitations in addressing the UAV trajectory optimization problem.

The aforementioned machine learning-based methods show strong ability to handle com-

plex wireless environments and effectively learn the UAV’s trajectory policy. Motivated

by this, we also make use of machine learning to solve the trajectory planning problems in

our research. Specifically, in this thesis, we formulate the UAV’s trajectory problem as a

combinatorial optimization problem which can be modeled as a sequential decision-making

problem. The UAV works as the agent to interact with the environment to perform a set of

actions to construct a solution. In sequential decision problems, the decision maker makes

successive observations of the process where each observation has a cost [49]. The goal of

sequential decision-making is to form a rule, called a policy, that maximizes a measure of the

total amount of accumulated cost. The above mentioned CNN, DQN, and DDPG are not

suitable for dealing with sequential problems as the output of the current step depends on

the output of previous steps in sequential problems, and CNN, DQN, and DDPG do not have

the ability to store information of previous steps for a very long time. Sequence-to-sequence

(Seq2Seq) models composed of recurrent neural networks (RNNs) and an attention mecha-

nism are emerging as promising machine learning techniques to handle sequential problems.

This is largely because the RNNs’ hidden units can store historical information [50]. In this

research, we exploit the appealing concept of Seq2Seq to design the DRL algorithm to solve

the UAV’s path planning problem in clustered IoT networks.

2The concept of data freshness is explained in Section 1.1.

14

Sequence-to-Sequence Model

Seq2Seq learning was first introduced for machine translation by Google [51]. It concerns

training models to map input sequences from one domain (e.g. English language) to output

sequences in another domain (e.g. French language) that are based on deep learning.

Seq2Seq models have two main components: encoder and decoder, as illustrated in Figure

1.5. For the illustration in Figure 1.5 with an example of the input sequence containing

three elements, the encoder of a seq2seq network is a RNN that reads the input sequence

G = {g1, g2, g3} and generates a vector which is a semantic summary of the input sequence.

Then, the semantic summary vector is given as an input to the decoder, which is another

RNN, to output a target sequence T = {π1, π2, π3}. The number of total decoding steps is

equals to the length of the input sequence. The probability of the target sequence T can be

factorized by a product of conditional probabilities according to the chain rule:

Pθ(T |G) =
K∏
t=1

P (πt|π1, . . . , πt−1,G), (1.2)

where t is the time step, K is the length of the input sequence, Pθ(T |G) parameterized

by θ is a stochastic policy. The conditional probability P (πt|·) models the probability of

any element being decoded at the t-th time step according to the given G and the elements

already decoded in previous time steps. A trained θ can assign high probabilities to good

results and low probabilities to bad results. The reinforcement learning can be applied to

train the optimal model policy θ∗ for producing the optimal output sequence T ∗ with the

highest probability.

Sequence-to-Sequence Learning for Combinatorial Optimization

In recent years, Seq2Seq models are used for a variety of applications. For example, some

combinatorial optimization problems, such as traveling salesman problem (TSP), vehicle

routing problem (VRP), etc., are often solved as Seq2Seq prediction problems in machine

learning [52]. Similarly, in our considered model, since the UAV needs to visit all clus-

ters sequentially to collect data, we also view the combinatorial optimization problem of

interest as a sequential problem and aim to design an algorithm to have good ability to

15

Encoder Decoder

Semantic

summary

Figure 1.5 A general structure of a Seq2Seq model.

learn the policy on sequential data. Machine learning algorithms, such as CNN, DQN, and

DDPG, are inefficient to handle sequential problems in which the current element of the

sequence depends on historical information from previous elements of the sequence. The

reason is that these algorithms cannot store information of past elements for very long

time [50]. RNNs with long short-term memory (LSTM) are frequently used to deal with

sequential problems because their hidden units can store historical information for long time

steps. In addition, RNNs are the state-of-the-art neural networks to tackle variable-length

sequences, e.g., variable-size data in our problem, by re-using the neural network blocks and

parameters at every step of the sequence [53]. Attention mechanism is another technique

to process a variable-length sequence by sharing its parameters. Hence, RNNs and the at-

tention mechanism-based Seq2Seq models are emerging as attractive techniques to tackle

variable-size sequential problems and they show promising results in various domains.

For example, in [54], the authors proposed a new neural network structure, called pointer

network, which is composed of RNNs and an attention mechanism. The pointer network is

trained in a supervised fashion to learn solutions to three different combinatorial optimization

problems: convex hull, delaunay triangulation, and TSP. The work in [55] focuses on TSP

and uses a RL-based unsupervised method to train the parameters of the pointer network

by giving a set of city coordinates and considering negative tour length as the reward signal.

This work obtains better results when compared to the supervised learning in [54]. In [56],

the authors transformed the online routing problem to a vehicle tour generation problem and

proposed a structural graph embedded pointer network to develop online vehicular routes

16

in intelligent transportation systems. The proposed algorithm outperforms conventional

strategies with limited computation time for both static and dynamic logistic systems.

The authors in [57] viewed keyword recommendations as a combinatorial optimization

problem and proposed a modified pointer network to solve it in sponsored search advertis-

ing system. The model is trained by an actor-critic framework, and the equal size k-means

method is proposed to accelerate the training. In [58], a simplified pointer network is in-

troduced to solve VRP in dynamic traffic environments. The parameters of the model are

trained by a policy gradient algorithm. The trained model can solve similar-sized instances

without retraining for every new instance. The authors in [59] propose a DRL algorithm

with Seq2Seq and the actor-critic to control traffic in WSNs for energy efficiency. The artifi-

cial agent learns from the state of a wireless sensor network, and outputs the optimal route

path. The authors in [60] model each sub-problem of the multi-objective TSP optimization

as a pointer network. Then, they collaboratively optimize the model parameters of all the

sub-problems using a neighborhood-based parameter-transfer strategy and the DRL training

algorithm. The trained model can scale to any new problems without the need to retrain the

model. The network function virtualization forward graph embedding problem is formulated

as a constrained combinatorial optimization problem in [61], which is solved by the proposed

Seq2Seq-based pointer network.

Given that we formulate the UAV trajectory planning problem in an UAV-aided cluster-

based IoT network as a combinatorial optimization problem, Seq2Seq models with RNNs and

an attention mechanism are the right ingredients for developing an efficient DRL algorithm

to solve this challenging problem. The reader is referred to Section 1 of Chapter 3, Section

1 of Chapter 4, and [62] for more detailed discussion on related works.

1.2.3 Freshness Data Collection in UAV-Aided Networks

AoI-Oriented Data Collection

Extensive studies have been done on AoI-oriented data collection in UAV-assisted wireless

networks due to the importance of AoI. In [63], the authors aimed to minimize the average

17

AoI of the system by optimizing the trajectory of the UAV in a UAV-aided data collection

system. In [64], the authors optimized the trajectory of the UAV to minimize the maximal

AoI and the average AoI of sensor nodes. In [65], the authors assumed the UAV supports

three modes to collect data and jointly optimize the trajectory and data collection modes

of the UAV to minimize the average AoI of all ground nodes. In [66], the UAV trajectory,

energy, and service time allocation were jointly optimized by an iterative algorithm in order

to minimize the overall peak AoI of the system. The authors in [47] developed an energy-

efficient navigation policy for the UAV to improve data freshness of the IoT network. In

order to minimize the weighted sum of AoI, the authors in [67] jointly optimized the flight

trajectory of the UAV and the transmission scheduling of sensors.

Against the above literature, in this research, we also consider to optimize the UAV

trajectory to minimize the total AoI of the collected data in a UAV-aided clustered IoT

network. The optimization problem is formulated as a TSP with neighborhoods (TSPN)

and further converted to a generalized TSP (GTSP), which is a combinatorial optimization

problem. By considering performance, computational complexity, and generalization ability

when designing the proposed algorithm, we use the state-of-the-art transformer to solve the

formulated GTSP.

Transformer

Transformer is a deep learning model proposed by Google for machine translation [68]. It

is an architecture for transforming one sequence into another one by learning relationships

in sequential data. For a vanilla transformer, its encoding component is a stack of encoders,

and the decoding component is a stack of decoders, as shown in Figure 1.6. The encoders

are all identical in structure that includes a self-attention layer and a feed-forward neural

network layer, as shown in Figure 1.7. The self-attention layer of each encoder receives

input encodings from the previous encoder and measures their relevance to each other to

generate output encodings. Then, the output encodings are fed to the feed-forward neural

network in the same encoder for further processing. Afterward, the output encodings of each

encoder are passed to the next encoder that performs the same operations as in the previous

18

Figure 1.6 Structure of a vanilla transformer.

Figure 1.7 Encoder.

encoder. The function of each encoder is to produce encodings which have information

regarding which parts of the inputs are relevant to each other. The decoders also have the

same structure. Each decoder has a self-attention layer, a feed-forward neural network

layer, and an additional attention layer over the encodings, as shown in Figure 1.8. The

function of each decoder is to process the encoder component’s output iteratively one layer

after another, and finally uses the incorporated contextual information to generate an output

19

Figure 1.8 Decoder.

sequence. The structure of a transformer highlights the fact that attention mechanisms

alone can match the performance of some sequential models that are composed of RNNs and

an attention mechanism.

Transformer for Combinatorial Optimization

Transformer has achieved great success in many areas of artificial intelligence in the past

four years, such as computer vision, audio processing, document summarization, document

generation, and sequence prediction. Some researchers also attempt to use transformer and

its variants to tackle combinatorial problems, such as TSP. In [69], the cities in TSP were

encoded by a transformer and decoded sequentially through a query consisting of the last

three cities in the partial tour. The employed transformer was trained by reinforcement

learning. In [70], the authors also used the transformer architecture as the encoder network

and the decoder network outputs the result sequentially based on the embeddings from the

encoder and the outputs generated at previous steps. The encoder and the decoder networks

were trained using a RL algorithm with a deterministic greedy baseline. The authors in [71]

proposed a transformer-based framework to automatically learn improved heuristics on two

representative routing problems: TSP and capacitated vehicle routing problem (CVRP).

In [72], the authors used the standard transformer architecture to tackle the TSP and achieve

an improved performance over recent learned heuristics.

Inspired by the successes of using transformer in solving many problems of route planning,

20

we also adopt it in this research for solving our formulated GTSP combinatorial optimization

problem. The reader is referred to Section 1 of Chapter 5 and [73], [74] for more detailed

discussion on related works.

1.3 Research Objectives

There are three objectives of this thesis and they are summarized as follows.

1. Balancing WSNs’ energy consumption: To address the challenges discussed be-

fore in applying clustering algorithms to WSNs, we develop an energy-efficient cluster-

ing algorithm to balance the energy consumption of all devices in WSNs 3 and extend

the network lifetime. Different from existing clustering algorithms that select the initial

cluster centers randomly, we investigate the use of a soft-k-means clustering algorithm

in our considered problem. We first optimize the initial centroids of the soft k means.

Then, the number of devices per cluster is optimized via a reassigning mechanism to

balance clusters. Since the clustering process needs to be repeated continually, the

communication cost during the clustering phase is increased. The energy consumption

in this phase need to be further optimized by reducing the frequency of re-clustering.

Instead of using a fixed number of communication rounds, a mechanism with a variable

number of communication rounds is considered to avoid having CHs dying early, where

the number of communication rounds is determined by the residual energy of CHs.

2. Saving energy in UAV-aided IoT networks: We investigate the problem of mini-

mizing the total energy consumption of the UAV and ground devices in a clustered IoT

network, which has not been well researched in the literature. We assume that devices

on the ground have been clustered according to some specific criterion, e.g., based on

their geographical locations. In each pre-determined cluster, one of the ground devices

is selected as the CH, which is responsible for collecting data from non-CH devices

in the same cluster. Hence, the UAV only needs to visit a set of CHs for gathering

data along a planned trajectory that is determined by locations of the ground CHs.

3In this thesis, we assume all devices are stationary after deployed.

21

The selection of CHs affects both the energy consumption of ground devices and that

of the UAV. As such, the problem of overall energy consumption minimization of an

UAV-aided IoT network can be viewed as the UAV trajectory optimization problem

by jointly selecting CHs and planning the UAV’s visiting order to these CHs. Such a

problem can be formulated as a combinatorial optimization problem. DRL techniques

are investigated to solve the formulated problem.

3. Freshness data collection in UAV-aided IoT networks: Most existing works

discussed before on optimizing the AoI-oriented transmission policies for the update

of data in wireless networks are based on the enqueue-and-forward model. However,

this model is not suitable for data update in UAV-aided IoT networks. This is because

the UAV needs to collect data from different IoT devices, and it cannot verify whether

packets are generated from certain IoT devices in a timely manner. Hence, existing

AoI-based transmission policies for wireless networks in prior works cannot be applied

to UAV-assisted IoT networks.

In this research, we investigate an AoI-oriented data collection model in cluster-based

IoT networks. The problem of interest is to jointly optimize the UAV’s hovering points

and trajectory to achieve the minimal AoI data collection. The optimization problem is

formulated as a TSPN, which is extremely challenging because it includes a continuous

problem (optimization of hovering points) and a combinatorial problem (optimization

of visiting order). To reduce the computational complexity for obtaining solutions,

we convert the formulated continuous optimization TSPN into a GTSP by using the

sampling-based idea. By viewing the converted GTSP as a “machine translation”, we

use the state-of-the-art transformer to solve such a problem.

1.4 Organization of the Thesis

The thesis is written in a manuscript-based style. In each chapter, a brief introduction

precedes each manuscript in order to connect the manuscript to the main context of the

thesis.

Chapter 1 gives the motivation of the research and an in-depth review of related literature,

22

and outlines the three research objectives.

Chapter 2 studies the problem of balancing energy consumption of WSNs and extending

their lifetime. An improved soft-k-means clustering algorithm is proposed. In order to show

advantages of the proposed algorithm in balancing the energy consumption, comparisons

with other algorithms from literature are also discussed.

In Chapter 3, the problem of minimizing the energy consumption of UAV-IoT networks

is investigated, which is formulated as jointly designing the UAV’s trajectory and selecting

cluster heads in IoT networks. A sequential model is used to model and solve the formulated

problem. Chapter 4 further investigates the energy consumption minimization problem in

UAV-assisted networks by using the sequence-based pointer network and A* search. The

generalization ability of the proposed algorithm is studied on both small-scale-clusters net-

works and large-scale-clusters networks.

Chapter 5 investigates the problem of freshness data collection in UAV-aided IoT net-

works. The optimization problem is formulated as an AoI-oriented UAV trajectory planning

problem where the hovering points of the UAV and the visiting order to these points are

jointly optimized. The state-of-the-art transformer and the weighted A* are used to design

a machine learning algorithm to solve the formulated problem.

Finally, Chapter 6 summarizes the contributions of this thesis and suggests potential

research problems for future work.

23

References

[1] Cisco, “Visual networking index: forecast and trends, 2017–2022,” tech. rep., Jul. 2019.

[2] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of things for

the future of smart agriculture: A comprehensive survey of emerging technologies,”

IEEE/CAA Journal of Automatica Sinica, vol. 8, pp. 718–752, Apr. 2021.

[3] T. Anagnostopoulos, A. Zaslavsky, K. Kolomvatsos, A. Medvedev, P. Amirian, J. Mor-

ley, and S. Hadjieftymiades, “Challenges and opportunities of waste management in

IoT-enabled smart cities: A survey,” IEEE Transactions on Sustainable Computing,

vol. 2, pp. 275–289, Jul. 2017.

[4] F. Javed, M. Afzal, M. Sharif, and B. Kim, “Internet of things (IoT) operating systems

support, networking technologies, applications, and challenges: A comparative review,”

IEEE Communications Surveys and Tutorials, vol. 20, pp. 2062–2100, Mar. 2018.

[5] L. Xu, R. Collier, and G. M. P. O’Hare, “A survey of clustering techniques in WSNs and

consideration of the challenges of applying such to 5G IoT scenarios,” IEEE Internet of

Things Journal, vol. 4, pp. 1229–1249, Oct. 2017.

[6] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, “UAV trajectory

planning for data collection from time-constrained IoT devices,” IEEE Transactions on

Wireless Communications, vol. 19, pp. 34–46, Jan. 2020.

[7] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?,”

in Proc. IEEE Conference on Computer Communications (INFOCOM), pp. 2731–2735,

Mar. 2012.

[8] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or

wait: How to keep your data fresh,” IEEE Transactions on Information Theory, vol. 63,

pp. 7492–7508, Aug. 2017.

24

[9] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information in status

update systems with packet management,” IEEE Transactions on Information Theory,

vol. 62, pp. 1897–1910, Apr. 2016.

[10] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient commu-

nication protocol for wireless microsensor networks,” in Proc. the 33rd Annual Hawaii

International Conference on System Sciences (HICSS), pp. 1–10, Jan. 2000.

[11] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific pro-

tocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless

Communications, vol. 1, pp. 660–670, Oct. 2002.

[12] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H.

Gandomi, “Residual energy-based cluster-head selection in WSNs for IoT application,”

IEEE Internet of Things Journal, vol. 6, pp. 5132–5139, Jun. 2019.

[13] Z. Xu, L. Chen, C. Chen, and X. Guan, “Joint clustering and routing design for reliable

and efficient data collection in large-scale wireless sensor networks,” IEEE Internet of

Things Journal, vol. 3, pp. 520–532, Aug. 2016.

[14] R. Zhang, J. Pan, D. Xie, and F. Wang, “NDCMC: A hybrid data collection approach

for large-scale WSNs using mobile element and hierarchical clustering,” IEEE Internet

of Things Journal, vol. 3, pp. 533–543, Aug. 2016.

[15] R. Yarinezhad and S. N. Hashemi, “A routing algorithm for wireless sensor networks

based on clustering and an FPT-approximation algorithm,” Journal of Systems and

Software, vol. 155, pp. 145–161, Sep. 2019.

[16] R. Yarinezhad and S. N. Hashemi, “Increasing the lifetime of sensor networks by a

data dissemination model based on a new approximation algorithm,” Ad Hoc Networks,

vol. 100, p. 102084, Apr. 2020.

[17] R. Yarinezhad and S. N. Hashemi, “Solving the load balanced clustering and routing

problems in WSNs with an FPT-approximation algorithm and a grid structure,” Per-

vasive and Mobile Computing, vol. 58, p. 101033, Jun. 2019.

25

[18] S. Randhawa and S. Jain, “Performance analysis of LEACH with machine learning al-

gorithms in wireless sensor networks,” International Journal of Computer Applications,

vol. 147, pp. 7–12, Aug. 2016.

[19] A. Mahboub et al., “Energy-efficient hybrid k-means algorithm for clustered wireless

sensor networks,” International Journal of Electrical and Computer Engineering, vol. 7,

pp. 2054–2060, Aug. 2017.

[20] A. Ray and D. De, “Energy efficient clustering protocol based on k-means (EECPK-

means)-midpoint algorithm for enhanced network lifetime in wireless sensor network,”

IET Wireless Sensor Systems, vol. 6, pp. 181–191, Dec. 2016.

[21] N. T. Tam, D. T. Hai, L. H. Son, and L. T. Vinh, “Improving lifetime and network

connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm

optimization,” Wireless Networks, vol. 24, pp. 1477–1490, Jul. 2018.

[22] M. Bidaki, R. Ghaemi, S. Reza, and K. Tabbakh, “Towards energy efficient k-means

based clustering scheme for wireless sensor networks,” International Journal of Grid

and Distributed Computing, vol. 9, pp. 265–276, Jul. 2016.

[23] A. Sasikala et al., “Improving the energy efficiency of LEACH protocol using VCH in

wireless sensor network,” International Journal of Engineering Development and Re-

search, vol. 3, pp. 918–924, May 2015.

[24] E. Rabiaa, B. Noura, and C. Adnene, “Improvements in LEACH based on k-means and

gauss algorithms,” Procedia Computer Science, vol. 73, pp. 460–467, Dec. 2015.

[25] Y. Zhang, M. Liu, and Q. Liu, “An energy-balanced clustering protocol based on an

improved CFSFDP algorithm for wireless sensor networks,” Sensors, vol. 18, pp. 1–18,

Mar. 2018.

[26] A. A. Khuwaja, Y. Chen, N. Zhao, M. S. Alouini, and P. Dobbins, “A survey of chan-

nel modeling for UAV communications,” IEEE Communications Surveys & Tutorials,

vol. 20, no. 4, pp. 2804–2821, 2018.

26

[27] Z. Wang, R. Liu, Q. Liu, J. S. Thompson, and M. Kadoch, “Energy-efficient data col-

lection and device positioning in UAV-assisted IoT,” IEEE Internet of Things Journal,

vol. 7, pp. 1122–1139, Feb. 2020.

[28] B. Liu and H. Zhu, “Energy-effective data gathering for UAV-aided wireless sensor

networks,” Sensors, vol. 19, pp. 1–12, May 2019.

[29] J. Baek, S. I. Han, and Y. Han, “Energy-efficient UAV routing for wireless sensor

networks,” IEEE Transactions on Vehicular Technology, vol. 69, pp. 1741–1750, Feb.

2020.

[30] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in UAV enabled

wireless sensor network,” IEEE Wireless Communications Letters, vol. 7, pp. 328–331,

Jun. 2018.

[31] C. Zhan and H. Lai, “Energy minimization in internet-of-things system based on rotary-

wing UAV,” IEEE Wireless Communications Letters, vol. 8, pp. 1341–1344, Oct. 2019.

[32] Q. Song, S. Jin, and F. Zheng, “Completion time and energy consumption minimization

for UAV-enabled multicasting,” IEEE Wireless Communications Letters, vol. 8, pp. 821–

824, Jun. 2019.

[33] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with

rotary-wing UAV,” IEEE Transactions on Wireless Communications, vol. 18, pp. 2329–

2345, Apr. 2019.

[34] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control for

effective and fair communication coverage: A deep reinforcement learning approach,”

IEEE Journal on Selected Areas in Communications, Sep. 2018.

[35] D. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse trajec-

tory design for energy minimization in UAV-enabled,” IEEE Transactions on Vehicular

Technology, vol. 69, pp. 9483–9496, Sep. 2020.

27

[36] M. B. Ghorbel, D. Rodŕıguez-Duarte, H. Ghazzai, M. J. Hossain, and H. Menouar,

“Joint position and travel path optimization for energy efficient wireless data gathering

using unmanned aerial vehicles,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 2165–2175, Mar. 2019.

[37] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy tradeoff in ground-to-UAV commu-

nication via trajectory design,” IEEE Transactions on Vehicular Technology, vol. 67,

pp. 6721–6726, Jul. 2018.

[38] C. Zhan and Y. Zeng, “Aerial–ground cost tradeoff for multi-UAV-enabled data col-

lection in wireless sensor networks,” IEEE Transactions on Communications, vol. 68,

pp. 1937–1950, Mar. 2020.

[39] Z. Zhou et al., “When mobile crowd sensing meets UAV: Energy-efficient task assign-

ment and route planning,” IEEE Transactions on Communications, vol. 66, pp. 5526–

5538, Nov. 2018.

[40] Z. Zixuan, W. Qinhao, Z. Bo, Y. Xiaodong, and T. Yuhua, “UAV flight strategy algo-

rithm based on dynamic programming,” Journal of Systems Engineering and Electron-

ics, vol. 29, pp. 1293–1299, Dec. 2018.

[41] A. A. Al-Habob, O. A. Dobre, S. Muhaidat, and H. Vincent Poor, “Energy-efficient data

dissemination using a UAV: An ant colony approach,” IEEE Wireless Communications

Letters, vol. 10, pp. 16–20, Jan. 2021.

[42] K. Zhu, X. Xu, and S. Han, “Energy-efficient UAV trajectory planning for data collection

and computation in mMTC networks,” in Proc. IEEE Globecom Workshops, pp. 1–6,

Dec. 2018.

[43] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Actor-critic deep rein-

forcement learning for energy minimization in UAV-aided networks,” in Proc. European

Conference on Networks and Communications (EuCNC), pp. 348–352, Jun. 2020.

[44] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and frequency band

allocation for energy-efficient and fair communication: A deep reinforcement learning

28

approach,” IEEE Transactions on Wireless Communications, vol. 19, pp. 7796–7809,

Dec. 2020.

[45] B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, “Learning-based energy-

efficient data collection by unmanned vehicles in smart cities,” IEEE Transactions on

Industrial Informatics, vol. 14, pp. 1666–1676, Apr. 2018.

[46] W. Liu, P. Si, E. Sun, M. Li, C. Fang, and Y. Zhang, “Green mobility management in

UAV-assisted IoT based on dueling DQN,” in Proc. IEEE International Conference on

Communications (ICC), pp. 1–6, May 2019.

[47] S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, “Data freshness and

energy-efficient UAV navigation optimization: A deep reinforcement learning approach,”

IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 5994–6006, Dec.

2021.

[48] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, S. Sun, and B. Ottersten, “Energy mini-

mization in UAV-aided networks: Actor-critic learning for constrained scheduling op-

timization,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 5028–5042, Apr.

2021.

[49] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement learning for AI-

enabled wireless networks: A tutorial,” IEEE Communications Surveys & Tutorials,

vol. 23, no. 2, pp. 1226–1252, 2021.

[50] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement learning for multi-

agent systems: A review of challenges, solutions, and applications,” IEEE Transactions

on Cybernetics, vol. 50, pp. 3826–3839, Sep. 2020.

[51] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Proc. International Conference on Neural Information Processing Systems

(NIPS), pp. 3104–3112, Dec. 2014.

[52] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for

29

combinatorial optimization: A survey,” Computers Operations Research, p. 105400,

Dec. 2021.

[53] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization:

a methodological tour d’horizon,” European Journal of Operational Research, vol. 290,

pp. 405–421, Apr. 2021.

[54] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. Advances in

Neural Information Processing Systems (NIPS), vol. 28, pp. 1–9, Dec. 2015.

[55] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial opti-

mization with reinforcement learning,” in Proc. International Conference on Learning

Representations (ICLR) Workshop, pp. 1–5, Apr. 2017.

[56] J. J. Q. Yu, W. Yu, and J. Gu, “Online vehicle routing with neural combinatorial op-

timization and deep reinforcement learning,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 20, pp. 3806–3817, Oct. 2019.

[57] Z. Li, J. Wu, L. Sun, and T. Rong, “Combinatorial keyword recommendations for

sponsored search with deep reinforcement learning,” arXiv preprint arXiv:1907.08686,

2019.

[58] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác, “Reinforcement learning for

solving the vehicle routing problem,” in Proc. International Conference on Neural In-

formation Processing Systems (NIPS), pp. 9861–9871, Dec. 2018.

[59] J. Lu, L. Feng, J. Yang, M. M. Hassan, A. Alelaiwi, and I. Humar, “Artificial agent:

The fusion of artificial intelligence and a mobile agent for energy-efficient traffic control

in wireless sensor networks,” Future Generation Computer Systems, vol. 95, pp. 45–51,

Jun. 2019.

[60] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective opti-

mization,” IEEE Transactions on Cybernetics, vol. 51, pp. 3103–3114, Jun. 2020.

30

[61] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and F. Liberal, “Vir-

tual network function placement optimization with deep reinforcement learning,” IEEE

Journal on Selected Areas in Communications, vol. 38, pp. 292–303, Feb. 2020.

[62] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on UAVs for

wireless networks: Applications, challenges, and open problems,” IEEE Communica-

tions Surveys and Tutorials, vol. 21, pp. 2334–2360, Mar. 2019.

[63] J. Liu, X. Wang, B. Bai, and H. Dai, “Age-optimal trajectory planning for UAV-assisted

data collection,” in Proc. IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 553–558, Apr. 2018.

[64] J. Liu, P. Tong, X. Wang, B. Bai, and H. Dai, “UAV-aided data collection for informa-

tion freshness in wireless sensor networks,” IEEE Transactions on Wireless Communi-

cations, vol. 20, pp. 2368–2382, Apr. 2021.

[65] Z. Jia, X. Qin, Z. Wang, and B. Liu, “Age-based path planning and data acquisition in

uav-assisted iot networks,” in Proc. IEEE International Conference on Communications

Workshops (ICC Workshops), pp. 1–6, May 2019.

[66] M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-information minimization

in UAV-assisted IoT networks,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 2003–2008, Feb. 2019.

[67] M. Yi, X. Wang, J. Liu, Y. Zhang, and B. Bai, “Deep reinforcement learning for fresh

data collection in UAV-assisted IoT networks,” in Proc. IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 716–721, Jul. 2020.

[68] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proc. Advances in Neural Information

Processing Systems (NIPS), pp. 6000–6010, Dec. 2017.

[69] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau, “Learning

heuristics for the TSP by policy gradient,” in Proc. Integration of Constraint Program-

31

ming, Artificial Intelligence, and Operations Research (CPAIOR), pp. 170–181, Jun.

2018.

[70] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!,”

in Proc. International Conference on Learning Representations (ICLR), pp. 1–25, May

2019.

[71] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuristics

for solving routing problems,” IEEE Transactions on Neural Networks and Learning

Systems, pp. 1–13, Apr. 2021.

[72] X. Bresson and T. Laurent, “The transformer network for the traveling salesman prob-

lem,” arXiv preprint arXiv:2103.03012, 2021.

[73] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of

information: An introduction and survey,” IEEE Journal on Selected Areas in Commu-

nications, vol. 39, pp. 1183–1210, May 2021.

[74] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age of information

in the internet of things,” IEEE Communications Magazine, vol. 57, pp. 72–77, Dec.

2019.

32

2. Improved Soft-k-Means Clustering Algorithm

for Balancing Energy Consumption in

Wireless Sensor Networks

Published as:

B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton and J. Henry, “Improved soft-k-means

clustering algorithm for balancing energy consumption in wireless sensor networks,” IEEE

Internet of Things Journal, vol. 8, no. 6, pp. 4868–4881, Mar. 2021.

The manuscript included in this chapter studies the problem of balancing the energy

consumption of WSNs in order to extend the networks’ lifetime. To achieve this goal, an

improved machine learning-based clustering algorithm is proposed. The proposed algorithm

improves the selection of initial cluster centers and reassigns nodes at the edge of different

clusters to a low-density cluster according to the nodes’ membership probabilities to balance

the number of nodes per cluster. Furthermore, multi-CHs scheme was used in the selection

of final CHs to balance the traffic load of CHs.

33

Improved Soft-k-Means Clustering Algorithm for

Balancing Energy Consumption in Wireless Sensor

Networks

Botao Zhu, Ebrahim Bedeer, Ha Nguyen,

Robert Barton, and Jerome Henry

Abstract

Energy load balancing is an essential issue in designing wireless sensor networks

(WSNs). Clustering techniques are utilized as energy-efficient methods to bal-

ance the network energy and prolong its lifetime. In this paper, we propose

an improved soft-k -means (IS-k -means) clustering algorithm to balance the en-

ergy consumption of nodes in WSNs. First, we use the idea of “clustering by

fast search and find of density peaks” (CFSFDP) and kernel density estimation

(KDE) to improve the selection of the initial cluster centers of the soft k -means

clustering algorithm. Then, we utilize the flexibility of the soft-k -means and

reassign member nodes considering their membership probabilities at the bound-

ary of clusters to balance the number of nodes per cluster. Furthermore, the

concept of multi-cluster heads is employed to balance the energy consumption

within clusters. Extensive simulation results under different network scenarios

demonstrate that for small-scale WSNs with single-hop transmission, the pro-

posed algorithm can postpone the first node death, the half of nodes death, and

the last node death on average when compared to various clustering algorithms

from the literature.

Index Terms

Clustering by fast search and find of density peaks (CFSFDP), energy load bal-

ancing, kernel density estimation (KDE), multi-cluster heads, soft k -means, wire-

less sensor networks (WSNs).

34

2.1 Introduction

The general concept of Internet-of-Things (IoT) is to facilitate the network connection

of billions of devices to collect and exchange information to provide various services [1, 2].

Wireless sensor networks (WSNs) are among important parts of an IoT system because they

can be used to gather and send data [3]. WSNs are like the eyes and ears of the IoT and

they build the bridge between the real and the digital worlds. WSNs typically consist of

a large number of low-cost sensor nodes with restricted battery supplies. Sensor nodes are

deployed in various application scenarios to monitor and collect physical conditions of the

surrounding environment such as temperature, humidity, pressure, position, vibration, and

sound, to name a few [4]. The collected data is then sent to the base station (BS) for further

analysis and processing.

Reducing energy consumption is a key challenge in WSNs, as sensor nodes can be placed

in hard-to-reach areas and/or their batteries may not be rechargeable [5]. Clustering in

energy-limited WSNs has been widely investigated to reduce the energy consumption [6].

Clustering-based algorithms group sensor nodes into distinct clusters, where each sensor

node belongs to one cluster only. All member nodes sense their surrounding environment

and send the results to the cluster heads (CHs). Then, CHs collect and process the data

and send information to the BS [7]. Each node consumes a certain amount of energy when

it collects, processes, and sends data, and a node is defined to be dead when it runs out

of energy [8]. Hence, it is crucial to develop efficient clustering algorithms to balance the

energy consumption among sensor nodes in WSNs.

Different clustering techniques have been proposed to design energy-efficient WSNs and

increase their lifetime. The authors in [9] proposed a CH election method, which rotates the

CH positions among the nodes with higher energy in different communication rounds. In

particular, the method considers the initial energy, residual energy, and an optimal number of

CHs to decide the next group of CHs among the nodes in the network. Then, member nodes

join different CHs according to the distances between them and CHs to form clusters. A joint

clustering and routing algorithm is proposed in [10] to improve the energy efficiency of large-

scale WSNs. This algorithm employs a back-off timer and gradient routing to execute the CH

35

selection and multi-hop routing simultaneously. The authors in [11] presented a node-density-

based clustering and mobile elements algorithm (NDCMC) for collecting data in WSNs. In

NDCMC, the nodes surrounded by more deployed nodes are selected as CHs in order to

improve the efficiency of intra-cluster routing. The authors presented a fixed parameter

tractable (FPT) approximation algorithm with an approximation factor of 1.2 based on the

parameterized complexity theory in [12] in order to solve load balanced clustering problem

(LBCP) in WSNs. The FPT-approximation algorithm determines which gateway each sensor

node must be assigned to, which can lead to more balanced load and energy consumption

among the gateways. On the other hand, a routing tree for the inter-cluster communication

is proposed, which can distribute the overhead of the routing among almost of all of the

nodes. In [13], the authors further proposed an FPT-approximation algorithm with an

approximation factor of 1.1, which is more precise than previous approximation factors

reported for LBCP. The FPT-approximation algorithm is used to assign sensor nodes to

gateways such that the maximum load of the gateways is minimized. Then, an energy-

aware routing algorithm is employed to find the optimal routing tree between gateways

and the sink with the aim of balancing the energy consumption of the nodes. The same

authors also considered another FPT-approximation algorithm with an approximation factor

of 1.1 in [14]. In order to make the FPT-approximation algorithm to be practical in large-

scale WSNs, a virtual grid infrastructure with several equal-size cells is used where the

FPT-approximation algorithm runs in each cell independently. In [15], a distributed multi-

objective based clustering algorithm is presented to assign sensor nodes to appropriate CHs.

Then, an energy-efficient routing algorithm is proposed to balance the relay load among the

CHs. In [16], the authors implemented a distributed clustering algorithm by considering a

trade-off between the energy efficiency and coverage requirement. This algorithm can form

unequal-size clusters to balance the load of the CHs. The same authors in [17] proposed a

distributed fuzzy logic-based unequal clustering approach and routing algorithm (DFCR) to

solve the hot spot problem, which is caused by the fact that some CHs deplete their energy

much faster as compared to other CHs. The DFCR algorithm designs an unequal clustering

mechanism by reducing the cluster size nearest to the BS.

36

The authors in [18] proposed a modified k-means clustering algorithm that considers two

factors, namely, (i) distances among CHs and their member nodes, and (ii) the remaining

energy of nodes, to reduce the overall energy consumption and extend the network lifespan.

In [19], the authors proposed a hybrid clustering algorithm based on the k-means clustering

algorithm and LEACH [20], where balanced clusters are generated by k-means and CHs are

selected by LEACH. This hybrid algorithm outperforms LEACH in terms of the energy con-

sumption. However, due to the frequent re-clustering, the energy consumption of the nodes

may increase in the phase of cluster formation and CH selection. An energy efficient cluster-

ing protocol based on k-means (EECPK-means) is proposed in [21] with the aim of balancing

the load of CHs in WSNs. The midpoint method is used to improve the initial selection of

centroids in the k-means algorithm in order to generate balanced clusters. In [22], the au-

thors proposed a method based on fuzzy c-means clustering and particle swarm optimization

(FCM-PSO) to reduce the total energy consumption of the network and reduce the number

of network disconnects. The FCM-PSO algorithm considers the energy consumption and

constraints of communication in the calculations of the CHs and nodes’ membership prob-

ability. The energy-efficient k-means LEACH (KM-LEACH) algorithm is proposed in [23]

to create symmetric clusters and reduce the average intra-cluster communication distance,

which can save nodes’ energy and improve the network lifetime. To address the problem of

how to control the failure of a CH in each cluster, the k-medoids clustering algorithm and

vice CH scheme (VLEACH) are used together with LEACH in [24]. Vice CH will become

a new CH in case the CH of a given cluster dies, which helps to prolong the lifetime of

WSNs by balancing the nodes’ energy consumption. The authors in [25] used the k-means

and Gaussian elimination algorithms to reduce energy consumption of WSNs and extend

their lifetime. An innovative classification algorithm based on “clustering by fast search and

finding of density peaks” (CFSFDP) [26] algorithm for balancing energy is proposed in [27].

The authors extend the original CFSFDP algorithm to take into account residual energy (in

addition to local density and distance) to select CHs, and accordingly cluster nodes based

on the selected CHs.

Against the above background, in this paper, an improved soft-k-means (IS-k-means)

37

clustering algorithm is proposed with the aim of balancing the energy consumption of all

nodes in WSNs and extending the network lifetime. The proposed IS-k-means can be widely

used in industrial control, smart home, smart agriculture, environment perception, health

monitoring, etc., because it can extend the life of sensor nodes in these application scenarios.

The novelty of the proposed algorithm can be summarized as follows.

1) Compared with existing clustering algorithms that select the initial cluster centers

randomly, we choose the initial centroids of the IS-k-means clustering algorithm by using

the idea of density from CFSFDP and kernel density estimation (KDE) [28] to achieve a

better clustering result. The nodes with high local density and relative large node distances

are chosen as the initial centroids.

2) After the proposed algorithm converges, we reassign member nodes that are located at

the boundary of two or more clusters to balance the number of nodes per cluster according

to the flexibility of the soft-k -means.

3) Since the clustering process needs to be repeated continually, the communication cost

during the clustering phase is increased. We use multi-cluster heads (multi-CHs) scheme to

balance traffic load of CHs of different clusters and reduce the frequency of clustering.

The rest of this paper is organized as follows. The necessary background for our research

is discussed in Section 2.2. Section 2.3 describes the proposed IS-k-means algorithm. In

Section 2.4, we compare the performance of the proposed IS-k-means with other algorithms.

Finally, Section 2.5 concludes the paper.

2.2 Preliminaries

2.2.1 Soft k-Means

The soft k-means [29] is a kind of fuzzy clustering algorithm where clusters are repre-

sented by their respective centers. Since traditional k-means clustering techniques are hard

clustering algorithms, which may fail to separate overlapping clusters or properly cluster

noisy data [30], the soft k-means algorithm can be applied to address these cases. With the

38

soft k-means algorithm, each node may belong to one or more clusters with different degrees

of membership [31]. Nodes located at the boundaries of clusters are not forced to fully be-

long to a given cluster, but rather they can be members of many clusters with membership

degrees or probabilities between 0 and 1 [32]. Nodes at the edge of a cluster may have

lower membership probabilities than nodes close to the center of a cluster. This flexibility of

the soft k-means clustering is in sharp contrast with the k-means clustering, where a node

belongs to only a single cluster.

For a set of nodes’ locations X = {x1,x2, . . . ,xn} in WSNs, the goal of the soft k-means

is to partition the n nodes into k sets C = {c1, c2, . . . , ck} with small intra-cluster distances

and large inter-cluster distances. Thus, we define the following cost function:

J(X;Z,M) =
k∑
v=1

n∑
j=1

zvj||xj − µv||2, (2.1)

where M(µv; v = 1, . . . , k) is the matrix of cluster centers, and Z(zvj; v = 1, . . . , k; j =

1, . . . , n) is the membership probability matrix of X. zvj is the membership value of the jth

node to the vth cluster and is defined as [29]

zvj =
e−β||xj−µv ||2∑k
l=1 e

−β||xj−µl||2
, (2.2)

where β is the stiffness parameter that impacts the membership probability of each node.

The best clustering solution is obtained by minimizing J , which differs from the conventional

k-means since weighted squared errors are used in the cost function instead of squared

errors [29]. The result of the soft k-means algorithm will depend on the choice of β. We will

discuss the choice of β when presenting simulation results.

In order to minimize the objective function in (2.1), zvj must satisfy the following three

constraints [29].

1. Each node is assigned a membership probability between 0 and 1 for belonging to a

cluster:

zvj ∈ [0, 1], v = 1, . . . , k, j = 1, . . . , n. (2.3)

39

2. The sum of the membership probabilities for one node over all clusters is equal to 1:

k∑
v=1

zvj = 1, j = 1, . . . , n. (2.4)

3. There will be at least one node with some non-zero membership probability for be-

longing to each cluster

n∑
j=1

zvj > 0, v = 1, . . . , k. (2.5)

By minimizing the objective function, we can calculate the cluster centers as [29]

µv =

∑n
j=1 zvjxj∑n
j=1 zvj

. (2.6)

The operations of the soft k-means algorithm can be summarized as follows: the algorithm

calculates the membership probabilities and the cluster centers according to (2.2) and (2.6)

in each round, respectively. If the changes of the membership probabilities Z or the cluster

centers M are below given thresholds, the clustering process ends. Otherwise, the algorithm

recalculates the new membership probabilities Z and the new cluster centers M . If the

algorithm does not converge after a given number of iterations, it will re-initiate by choosing

new initial cluster centers. Fig. 2.1 shows an example of the clustering result of 100 nodes

by the soft k-means algorithm.

2.2.2 Kernel Density Estimation

Non-parametric estimators are flexible for modeling probability density function (PDF)

of data points. They have no fixed functional form and depend on data points to reach an

estimate when compared to parametric estimators [33]. Non-parametric estimators can be

classified into histogram-based and kernel-based estimation. A histogram-based estimator

needs large data sets to guarantee convergence, and it cannot produce smooth continuous

estimation curve [34]. KDE finds the distribution characteristics from data points without

attaching any assumptions to data. It can ensure a smooth PDF approximation for given

data points [28]. In KDE, the kernel function is centered at each data point, and it has the

40

1 2 3 4 5
m

0

1

2

3

4

5

6

m

Figure 2.1 Example of soft k-means clustering.

peak value at the data point location while decreasing in intensity with the distance from

this location [28].

Using KDE, the PDF of the nodes’ locations X = {x1, . . . ,xn} ∈ Rd is represented by a

weighted sum of the kernel functions [35]

f̂h(xi) =
1

nhd

n∑
t=1

K
(
xt − xi

h

)
, (2.7)

where h is the smoothing parameter called the bandwidth and it controls the size of the

neighborhood around xi, i ∈ 1, . . . , n. K(·) is called the kernel function, which is defined in

a d-dimensional space. The kernel function controls the weight given to X at each point xi

based on their proximity. To yield meaningful estimates, a kernel function should satisfy the

following conditions [28].

1. Normalization: ∫
Rd

K(u)du = 1. (2.8)

2. Symmetry:

K(−u) = K(u). (2.9)

3. Non-negative and real-valued integrable:

K(u) > 0. (2.10)

41

0 2 4 6 8 10 12 14 16 18 20

m

0

2

4

6

8

10

12

14

16

18

20

m

(a) (b)

(c)

Figure 2.2 An example of KDE. (a) Nodes distribution. (b) 3-dimensional density

contour of nodes in (a). (c) 2-dimensional density contour of nodes in

(a).

A multivariate kernel function can be seen as a product of symmetric univariate kernel

functions [36]

K(u) =
d∏
j=1

ϕ(uj), (2.11)

where uj is the jth component of the d-dimensional vector u, and ϕ(·) is a univariate kernel

function. In our proposed algorithm, we use the Gaussian kernel function due to its well-

42

known properties [37], which is defined as follows:

ϕ(uj) =
1√
2π

exp

(
−
u2j
2

)
. (2.12)

Fig. 2.2 is an example of KDE for a set of data. The set of discrete points is transformed

into a smooth density map, as shown in Fig. 2.2 (b), which displays its spatial distribution.

The higher the PDF value in a location is, the higher the density is.

2.2.3 “Clustering by Fast Search and Find of Density Peaks” Al-

gorithm

CFSFDP is a new clustering algorithm proposed by Rodriguez and Laio [26]. It is based

on the assumptions that cluster centers are surrounded by lower local density neighbors and

they are at a relatively large distance from any nodes with a higher local density. This

method needs to calculate two quantities for each node i: local density ρi and distance δi.

The cluster centers are the nodes with higher local density and larger distance. For a set of

nodes’ locations X = {x1,x2, . . . ,xn}, and nodes’ label set I = {1, . . . , n}, the local density

of a node xi is defined as

ρi =
∑
i ̸=j

χ(dij − dc), (2.13)

where

χ(α) =

1, α < 0,

0, α ≥ 0,

(2.14)

dij is the distance between nodes xi and xj, and dc is the cutoff distance. The choice of dc

should yield an average number of neighbors around 1 to 2% of the total number of nodes.

In essence, ρi can be seen as the number of nodes that are neighbor to node xi in the range

of dc.

Two cases need to be considered in calculating a node’s distance. If node i has the highest

density, then its distance δi is defined as the distance dij between node i and node j which

is furthest from node i in I. Otherwise, the distance of node i is defined as the distance dij

between node i and its nearest neighbor node j having a higher density [38]. Specifically,

43

the distance δi is expressed as

δi =

max(dij)j∈I , if ρi is maximum,

min(dij)j∈I(i) , otherwise,

(2.15)

I(i) = {t ∈ I : ρt > ρi}, (2.16)

where I(i) is the nodes’ label set with node densities greater than ρi. After these two

quantities are calculated, the cluster centers are selected from nodes with high values of

both ρi and δi. Then, the CFSFDP algorithm assigns other remaining points to the nearest

cluster center to form clusters. Specifically, if ρi is large and δi is small for node i, it means

node i is close to the cluster center but not the center. On the other hand, if node i has

small ρi and large δi, it implies that the node is away from the cluster center [39].

Fig. 2.3 (b) shows the plot of δi as a function of ρi for each node in Fig. 2.3 (a). This

representation is called the decision graph. According to the decision graph, we can have

two nodes with higher values of both density ρ and distance δ. Hence, they can be chosen

as cluster centers, as shown in Fig. 2.3 (c).

2.3 Proposed IS-k-Means Algorithm

The proposed IS-k-means algorithm involves two phases: (i) set-up phase, and (ii) steady

phases. During the set-up phase, each node broadcasts a HELLO message including its ID

and location within the range of its coverage so that each node can acquire information of its

neighbor nodes. Next, each node sends its information to the BS by the geographic multi-

hop routing algorithm [11] because it already knows the positions of its neighbor nodes. The

BS runs the proposed IS-k-means algorithm according to the information received from all

nodes. The proposed algorithm uses CFSFDP and KDE algorithms to optimize the selection

of initial cluster centers of the soft k-means clustering method. Then, the soft k-means is

used to form clusters and node reassigning scheme is employed to balance the numbers of

nodes in different clusters. In order to balance the energy overhead of CHs, the multi-CHs

scheme is utilized. After formulation of clusters and selection of CHs are completed, the BS

broadcasts the results to all nodes by the restricted flooding method [11]. Thus, each node

44

0 5 10 15 20

m

0

2

4

6

8

10

12

14

16

18

20

m

(a)

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8

9

21

(b)

0 5 10 15 20

m

0

2

4

6

8

10

12

14

16

18

20

m

1

2

(c)

Figure 2.3 CFSFDP in two dimensions. (a) Nodes distribution. (b) Decision graph

for nodes in (a): X-coordinate is local density ρ, and Y-coordinate is

δ. (c) Two center nodes are determined.

can identify its role, e.g., CH or member node, and choose to join a corresponding CH if it

is a member node. The steady phase is composed of many communication rounds. In each

round r, member nodes collect and transmit data to CHs in their allotted time slots, and CHs

aggregate the data and send it to the BS. When the energy of a CH is less then a threshold,

it will broadcast a SWITCH message to activate the next candidate CH in the same cluster

as the new CH and inform member nodes to send data to this new CH. If all CHs in a certain

45

cluster are enabled sequentially, the last working CH will send a RESTART message to the

BS to trigger re-clustering. The flowchart of the proposed IS-k-means algorithm is shown in

Fig. 2.4.

2.3.1 Energy Model

The first-order radio model [20] is used to calculate the energy consumption of the net-

work. The transmitter’s energy consumption involves the transmitter circuitry and the power

amplifier, while the energy consumption of the receiver accounts for the receiver circuitry.

The free space and the multipath fading models are used in the transmitter power amplifier.

If the distance between the transmitter and the receiver is less than a threshold, the power

amplifier uses the free space model; otherwise, the multipath model is used [40]. The energy

consumption of the transmitter and the receiver for transmitting an l-bit message can be

calculated as follows [20]

ET =

lEelec + lεfsd

2, d ≤ d0,

lEelec + lεmpd
4, d > d0,

(2.17)

ER = lEelec, (2.18)

d0 =

√
εfs
εmp

, (2.19)

where ET is the dissipated energy in the transmitter and ER is the dissipated energy in

the receiver. Eelec is the dissipated energy per bit in both the transmitter circuitry and the

receiver circuitry. d is the transmission distance between the transmitter and the receiver.

d0 is the distance threshold. εfs and εmp represent the radio amplifier energy parameter of

the free space and multipath fading models [11], respectively.

Because there are many rounds within the steady phase, the energy consumption of a

CH in round r can be calculated as

ECH(r) = gcET + g(clEDA + ER), (2.20)

where EDA represents the dissipated energy of data aggregation and c is the data aggregation

ratio. The first term of the right hand side of (2.20) is the energy consumption of a CH

46

Clustering start

Selection of initial cluster

centers by CFSFDP and KDE

Formation of clusters by soft k-means

Selection of multi-CHs

Steady phase

If residual energy of CH < Threshold

Has next CH?

Switching next CH

Y

Y

N

N

Figure 2.4 Flowchart of the proposed algorithm.

47

for sending aggregated data to the BS and the second term is the energy consumption of

receiving and aggregating data of g member nodes. The energy consumption of a member

node sending data to its CH in round r is

EnonCH(r) = ET. (2.21)

Hence, the residual energy of node i in round r can be computed by

Ei (r) =

Ei (r − 1)− ECH(r), i ∈ CHs,

Ei (r − 1)− EnonCH(r), i /∈ CHs,

(2.22)

where Ei (r − 1) is the residual energy of node i in the r − 1 round.

2.3.2 Selection of Initial Cluster Centers

We use CFSFDP and KDE algorithms to determine the initial cluster centers as the

input to the soft k-means clustering algorithm to produce a better clustering result. Because

cluster centers are surrounded by neighbors with lower local density and they are at a

relatively large distance from any points with a higher local density, they are selected by

the maximum distance δ and relatively high local density ρ, which is illustrated in Fig. 2.3.

First, we calculate the density of each node and find the nodes’ set X ′ with relatively high

density ρ′. Then, the distances δ among nodes in X ′ are computed. In order to choose

cluster centers, we only choose nodes with relatively high density, and then we multiply

their density ρi and distance δi together as

γi = ρi × δi, i ∈ {1, . . . ,m}, (2.23)

where m is the number of nodes with relatively high density. Since each initial cluster center

node should have a high γ value, we choose nodes with relatively large γ value as the initial

cluster centers. In addition, the value of k is equal to the number of the initial cluster centers.

Algorithm 1 describes the detailed steps.

2.3.3 Cluster Formation

Some k-means-based algorithms form clusters according to the distances between normal

nodes and CHs, such as distributed k-means clustering algorithm [41] and improved k-means

48

BS

CH

CH

a

Cluster B

Cluster A

HHHH

BS

Figure 2.5 A node at the boundary of two clusters.

Algorithm 1 Selection of initial cluster centers

Input: X = {x1, . . . ,xn}

Output: Initial cluster centers: M

1: for i = 1 : n do

2: calculate ρi

3: end for

4: ρ = {ρ1, . . . , ρn}

5: choose nodes with local maximum density X ′ = {x1, . . . ,xm} and get their density set

ρ′ = {ρ1, . . . , ρm},m < n

6: for i = 1 : m do

7: calculate δi

8: end for

9: ∆ = {δ1, . . . , δm}

10: calculate γi by (2.23) to determine the initial cluster centers

11: return M = {µ1, . . . ,µk}

cluster-based routing [42]. These k-means-based algorithms can easily lead to a large gap

in the number of nodes in different clusters in WSNs and may cause unbalanced energy

49

Algorithm 2 Cluster formation

Input: M = {µ1, . . . ,µk}, X = {x1, . . . ,xn}, the maximum number of iterations rmax

Output: k clusters

1: for r = 1 : rmax do

2: for v = 1 : k do

3: for j = 1 : n do

4: z′ = 0

5: for l = 1 : k do

6: z′ = z′ + e−β||xj−µl||2

7: end for

8: zvj = e−β||xj−µv ||2

z′

9: end for

10: end for

11: Zr =

z11 z12 · · · z1n

...
...

...
...

zk1 · · · · · · zkn

12: for v = 1 : k do

13: µv =
∑n

j=1 zvjxj∑n
j=1 zvj

14: end for

15: end for

16: final membership probabilities Zrmax

17: for j = 1 : n do

18: assign node j to cluster with the highest probability according to Zrmax

19: end for

20: k clusters C = {c1, . . . , ck}

21: for j = 1 : n do

22: reassign node j located on the border to different cluster

23: end for

24: return k new clusters C ′ = {c′1, . . . , c′k}

50

consumption of CHs. Hence, compared with these k-means-based clustering algorithms,

our proposed IS-k-means algorithm uses the soft k-means clustering algorithm to address

this problem. Each node can be a member of more than one clusters at the same time

according to membership probabilities in the soft k-means. However, member nodes need

to join only one cluster with the highest membership probability at a time. Some boundary

nodes may have similar probabilities to join multiple clusters. After the convergence of our

proposed IS-k-means algorithm, we may reassign nodes to different clusters to balance the

number of nodes per cluster. For example, node a is at the edge of two clusters and it has

a higher probability to join cluster A, as illustrated in Fig. 2.5. Before reassigning node

a, cluster A already has 10 member nodes and cluster B has 5 member nodes. Since all

member nodes send messages to their CH, CH of cluster A will deal with more information

from its member nodes. In order to balance the energy consumption of CHs, it is better to

reassign node a to cluster B. Reassigning node a from cluster A to cluster B may increase

slightly the energy consumption of transmitting messages between node a and its CH because

the transmission distance d is increased. However, this slight increase of the transmission

energy consumption is negligible as compared to the total energy consumption in CH. If

the difference of the probabilities of a node belonging to two clusters is less than a certain

threshold, it will join the cluster with low density. If a node is at the boundary of three or

more clusters, the proposed algorithm only choose the first two maximum probabilities and

follow the same rule. Algorithm 2 outlines the cluster formation algorithm.

2.3.4 Selection of Multi-CHs

Normally, the numbers of nodes in different clusters are different in WSNs. If only one

CH is selected in each cluster, CH will consume too much energy to deal with the information

from its member nodes in a high density cluster, which will cause its death too early. Hence,

our proposed IS-k-means algorithm designs a scheme of multi-CHs. The number of CHs is not

fixed in each cluster, and it is determined by the number of nodes per cluster. The larger the

number of nodes in a cluster is, the higher the number of CHs will be. The remaining energy

of nodes and distances between nodes and their cluster centers are considered in choosing

CHs. Nodes close to their cluster center and having higher residual energy than the average

51

BS

CH1

CH

Cluster B

Cluster A

CH2

CH3

C

CCHH

H11H1

CCCCCCHHHH333333

BSS

Figure 2.6 Multi-CHs scheme.

energy of the cluster can become CHs. We define a matrix CHs = {CH1, . . . ,CHk}, which

is composed of all CHs of k clusters, and CHv, 1 ≤ v ≤ k, represents the set of CHs of

cluster v. The total remaining energy of cluster v ∈ {1, . . . , k} can be computed as

Ev =
Sv∑
i=1

Ei (r) , (2.24)

where Sv is the size of cluster v, Ei (r) is the residual energy of node i in current round r,

which can be obtained from (2.22).

The average energy of cluster v is calculated as

Eavev =
Ev
Sv
. (2.25)

As an example, since the number of nodes in cluster B is around 3 times that of cluster

A in Fig. 2.6, cluster B will have three CHs if only one CH is selected in cluster A. After

the number of CHs is determined, the nodes which have larger remaining energy and close

to the cluster center are selected as CHs. This multi-CHs scheme can balance the energy

consumption of CHs per cluster in WSNs, and is summarized in Algorithm 3.

After the set of CHs and clusters are determined, the first node in each CHv is selected

as the current CH in that cluster and the BS notifies all member nodes to join the cluster to

52

Algorithm 3 Selection of multi-CHs

Input: C ′ = {c′1, . . . , c′k}

Output: CHs

1: for v = 1 : k do

2: calculate the size of cluster c′v: Sv

3: calculate average energy of cluster Eavev

4: p = Sv

constant
, the number of CHs of cluster v

5: for i = 1 : Sv do

6: Iterate xi from near the center of cluster

7: if Ei > Eavev and p > 0 then

8: p = p− 1

9: CHv (p) = xi

10: end if

11: end for

12: end for

13: return CHs = {CH1, . . . ,CHk}, CHs of k clusters

which they belong. CHs broadcast time division multiple access schedules to their member

nodes for transmitting data in different time slots to avoid data collision. Then, the network

enters the steady phase and begins to exchange data between normal nodes and their CHs.

2.3.5 Switching to a Next CH

For balancing the energy consumption of CHs, if the energy consumption ratio of a

current CH of any cluster is below a threshold value, the next candidate CH in that cluster

is enabled. Until all CHs in a given cluster are executed, the algorithm starts re-clustering.

The specific steps are described in Algorithm 4.

2.3.6 Complexity Analysis

The run-time complexity of the proposed IS-k-means algorithm mainly involves three

phases. In the phase of selecting initial cluster centers, IS-k-means needs O(n2) operations

53

Algorithm 4 Switching to a next CH

Input: CHs of k clusters, CHs = {CH1, . . . ,CHk}

Output: Next CH

1: Current round

2: for v = 1 : k do

3: T = residual energy ofCHv(p) in current round
residual energy ofCHv(p) in last round

4: if T < Threshold then

5: if CHv has CHv(p+ 1) then

6: switch to CHv(p+ 1)

7: else

8: re-clustering

9: end if

10: end if

11: end for

[43] to execute CFSFDP and KDE to calculate the nodes’ densities and distances where n

is the number of nodes. Then, the algorithm requires O(nk2rmax) operations [44] to execute

the soft k-means and O(2n) operations to assign nodes to form final clusters. Because the

selection of initial cluster centers has been optimized, the algorithm converges quickly and

the value of rmax is very small. In the third phase, the algorithm needs O(n) operations

to select CHs. Thus, the overall time complexity of the proposed IS-k-means algorithm is

O(n2 +nk2rmax +3n) operations. Obviously, the time complexity of the IS-k-means depends

mainly on the execution time of the first phase. The time complexity of the soft k-means

algorithm is O(nk2rmax) operations [44], which is lower than that of our proposed IS-k-means

algorithm. However, the higher complexity of the proposed IS-k-means algorithm can be well

justified by its ability to better balance the energy consumption of nodes. As for the memory

requirement, the proposed algorithm needs O(n) memory units to store nodes first. Then,

it costs O(n) memory units [45] to store ρ and δ in the phase of selecting initial cluster

centers. Then, O(nk) memory units are required to store membership probabilities in the

phase of cluster formation. Hence, the total storage requirement of the proposed algorithm

54

0 5 10 15 20 25 30 35

m

0

5

10

15

20
m

1

2

3

4

5

Cluster1

CH1

Cluster2

CH2

(a)

0 5 10 15 20 25 30 35

m

0

5

10

15

20

m

1

2

3

4

5

Cluster1

CH1

Cluster2

CH2

(b)

0 5 10 15 20 25 30 35

m

0

5

10

15

20

m

1

2

3

4

5

Cluster1

CH1

Cluster2

CH2

(c)

Figure 2.7 Comparison of different clustering results, β = 0.2. (a) k -means cluster-

ing result. (b) Soft k -means clustering result. (c) IS-k -means clustering

result.

is O(2n+ nk) memory units.

2.4 Experiment Results and Analysis

2.4.1 Simulation Settings

To evaluate the performance of the proposed algorithm, we consider two different scenar-

ios. In Scenario 1, the network size is 100 m× 100 m and the BS is located at (50 m, 150 m).

Scenario 2 has the size of 200 m× 200 m with the BS at location (100 m, 200 m). The main

55

IS-k-means Soft k-means k-means
0

0.05

0.1

0.15

0.2

R
es

id
u

al
 e

n
er

g
y

 (
J)

CH1

CH2

(a)

IS-k-means Soft k-means k-means
0

0.05

0.1

0.15

0.2

R
es

id
u

al
 e

n
er

g
y

 (
J)

CH1

CH2

(b)

Figure 2.8 Comparison of residual energy of CHs. (a) Residual energy of CHs after

5 rounds. (b) Residual energy of CHs after 10 rounds.

simulation parameters are selected as in [7] and listed in Table 2.1. The experiments are

implemented using MATLAB R2017b.

2.4.2 Nodes Reassigning of Improved Soft k-Means Analysis

In this subsection, we will show the advantage of the node reassigning scheme incorpo-

rated in the proposed IS-k-means algorithm to balance the energy consumption of CHs. A

total of 28 sensor nodes are randomly distributed in scenario 1. First, we use the k-means

clustering method to classify these nodes and obtain two clusters, as shown in Fig. 2.7 (a).

It is found that cluster 1 contains 20 nodes, which is quite larger than the number of nodes

56

Table 2.1 Simulation parameters

Parameter Value

Area 100 m× 100 m, 200 m× 200 m

BS coordinates (50 m, 150 m), (100 m, 200 m)

Initial energy 0.2 J, 1 J

Packet length 4000 bits

Control length 100 bits

ET 50 nJ/bit

ER 50 nJ/bit

εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

EDA 5 nJ/bit

d0 88 m

Number of sensor nodes 28, 100

Maximum communication range 250 m [46]

in cluster 2. As a result, CH of cluster 1 will be exhausted much earlier than that of cluster

2. Fig. 2.7 (b) shows the clustering result of the soft k-means algorithm. In Section III,

we define β as the stiffness parameter, which represents the tightness of a node belonging

to a cluster. Setting β = 0.2, we can find that the nodes at the edge of two clusters having

similar membership probabilities belonging to these two clusters, such as node 1, node 2,

node 3, node 4, and node 5, as shown in Table 2.2. Furthermore, if the value of β changes,

the probabilities also will change. When β = 1, all five nodes belong to the clusters with

higher probabilities when compared to the case where β = 0.2. In our proposed algorithm,

we set β = 0.2 in the following simulations. According to the rule of node reassigning, node

2, node 3, node 4, and node 5 are reassigned to cluster 2 from cluster 1 as shown in Fig. 2.7

57

Table 2.2 Probabilities comparison

Probability Node 1 Node 2 Node 3 Node 4 Node 5

β = 0.2
Cluster 1 0.4852 0.5537 0.5684 0.6125 0.6120

Cluster 2 0.5148 0.4463 0.4316 0.3875 0.3880

β = 1
Cluster 1 0.0438 0.9787 0.9860 0.9919 0.9992

Cluster 2 0.9562 0.0213 0.014 0.0081 0.0008

(c), which balances the energy overhead of CHs in these two clusters. The residual energy

of CHs, computed by (2.22), in each round could be used to check the advantage of this

scheme. Fig. 2.8 (a) and Fig. 2.8 (b) compare the residual energy of CHs among k-means,

soft k-means, and IS-k-means after 5 rounds and 10 rounds, respectively. The IS-k-means

algorithm achieves an equilibrium of energy consumption in both CHs when compared to

the k-means and the soft k-means algorithms.

2.4.3 Network Lifetime

To test the performance of the proposed IS-k-means algorithm, we compare it with

KM-LEACH [23], VLEACH [24], LEACH [20], k-means [47], EECPK-means [21], and EB-

CRP [13] with the same parameters shown in Table 2.1. Here, we state two things about the

implementation of the EB-CRP algorithm in our experiment. First, the original EB-CRP

algorithm does not need to select the CHs because the authors consider a certain number

of gateways with enough energy to act as CHs in WSN. However, our implemented EB-

CRP algorithm needs to select CHs randomly from all sensor nodes because the network

considered in our simulation contains only sensor nodes with the same initial energy and

functionality. In order to have a fair comparison, we set the number of CHs in EB-CRP to

be the same as that in our proposed algorithm. Thus, the location of CHs may be different

in each steady-state phase because all nodes have the same chance to be CHs. Second,

the steady-state phase of the original EB-CRP algorithm is composed of pre-specified 75

rounds. This is quite reasonable because the authors set the initial energy of CHs to be 10

J, which can maintain a high number of communication rounds. However, considering the

58

1671

970

1462

88

1244

2461

78

2635

3979

1132

2458

2679

1146

1339

1555
1679

2579
2723

2627

2857
2999

LEACH k-means VLEACH EECPK-means KM-LEACH EB-CRP IS-k-means

0

500

1000

1500

2000

2500

3000

3500

4000
R

o
u
n
d
s

FND

HND

LND

(a)

25

378

653

1010

36

458

1037

477

1071

508

594

712

346

577

654

457

618

727

581

711

850

LEACH k-means VLEACH EECPK-means KM-LEACH EB-CRP IS-k-means

0

200

400

600

800

1000

1200

R
o
u
n
d
s

FND

HND

LND

(b)

Figure 2.9 Comparison of FND, HND, and LND. (a) Scenario 1. (b) Scenario 2.

limited energy of CHs in our simulation, each steady-state phase is composed of 20 rounds

in our implemented EB-CRP algorithm, which can achieve the best results for the EB-CRP

algorithm.

59

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Rounds

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

d
e
a
d

 n
o

d
e
s

LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(a)

0 200 400 600 800 1000 1200

Rounds

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

d
e
a
d
 n

o
d
e
s

LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(b)

Figure 2.10 Comparison of network lifetime of LEACH, k -means, VLEACH,

EECPK-means, KM-LEACH, EB-CRP, and IS-k -means. (a) Scenario

1. (b) Scenario 2.

60

We assume there are 100 sensor nodes that are randomly distributed in both scenario 1

and scenario 2. The obtained results are the averages of 20 independent experiments. The

authors in [20] found the optimum number of clusters to be between 3 and 5 for 100-node

network in LEACH. Thus, in scenario 1, we set 4 as the initial number of clusters in LEACH.

For the other six algorithms, we use CFSFDP and KDE to determine the number of clusters

in order to ensure the same number of clusters for each algorithm. The initial number of

clusters found from the CFSFDP and KDE algorithms is 4 in scenario 1. In scenario 2, all

algorithms are set with the same number of clusters 6 that is determined by CFSFDP and

KDE. We assume that the death of 85% nodes means all nodes are dead.

Fig. 2.9 shows the first node death (FND), half of nodes death (HND), and the last node

death (LND) for these seven algorithms when the number of nodes is 100. If an algorithm can

balance energy well, the first node death will be very late. In Fig. 2.9 (a), the average number

of rounds of FND in k-means is 88, which is much earlier than 970 in LEACH and 2627 in

IS-k-means, and the average LND happens later when compared to LEACH and the IS-k-

means algorithms. Thus, it is obvious that the energy consumption of k-means is unbalanced.

Although VLEACH uses the vice CH scheme in each cluster to extend the network lifetime,

it exhibits a poor performance in balancing energy consumption because its FND is 78 and

LND is 3979, as shown in Fig. 2.9 (a). EECPK-means improves the selection of initial cluster

centers of the k-means algorithm by using the midpoint algorithm. It outperforms LEACH

and KM-LEACH in both balancing energy consumption and extending network lifetime.

For the EB-CRP algorithm, its FND is about 1.7 times that of LEACH, 19 times that of

k-means, 21 times that of VLEACH, 1.5 times that of EECPK-means, and 1.5 times that of

KM-LEACH, which demonstrates that the EB-CRP algorithm can postpone the death of the

first node when compared with the other five algorithms. In addition, the HND of EB-CRP

is 2579, which is larger than 1462 in LEACH, 1244 in k-means, 2458 in EECPK-means, and

1339 in KM-LEACH. This result means that the EB-CRP algorithm can delay the death

of the first 50% of nodes as compared to LEACH, k-means, EECPK-means, KM-LEACH.

Thus, the EB-CRP shows a good performance in balancing the energy consumption of the

nodes and increasing the network lifetime. In view of Fig. 2.9 (a), our proposed IS-k-means

61

algorithm can effectively postpone the FND, HND and LND. The average FND of IS-k-

means is 2627, which is around 2.7 times that of LEACH, 30 times that of k-means, 34

times that of VLEACH, 2.3 times that of KM-LEACH, 2.4 times that of EECPK-means,

and 1.5 times that of EB-CRP. Instead of using a fixed number of communication rounds

during each steady-phase, like in the EB-CRP algorithm, the communication rounds in our

proposed IS-k-means algorithm are determined by the residual energy of CHs. If the residual

energy of any CH is below the threshold, the algorithm will stop the current steady-phase

and trigger re-clustering, which can avoid CHs to die earlier than EB-CRP. Thus, the IS-k-

means algorithm can keep all nodes in the network alive in most rounds. The average HND

of the IS-k-means is also around 2 times among LEACH, k-means, and KM-LEACH.

In Fig. 2.9 (b), the average FND, HND, and LND of all algorithms are decreased. This

is because extending the network size will increase the communication distance of the nodes

which leads to an increase in the energy consumption. The VLEACH and k-means algorithms

still show a very poor outcome in balancing the energy consumption, a consequence of having

small FND and large LND. However, EECPK-means and EB-CRP have relatively large

values of the FND and HND, which means most nodes in these two algorithms live longer

when compared with k-means, VLEACH, and KM-LEACH. In addition, it is evident that

our proposed IS-k-means algorithm has the best results in postponing the FND, HND, and

LND as compared with the other six algorithms.

Fig. 2.10 shows the network lifetime comparison of our proposed IS-k-means algorithm

and the other six algorithms. As can be seen from Fig. 2.10 (a), the network lifetime

curves of KM-LEACH, LEACH, EECPK-means, and the proposed IS-k-means algorithms

are approximately vertical. This means that, in these algorithms, the majority of nodes die

approximately after the same number of rounds. Furthermore, one can see that the proposed

IS-k-means algorithm outperforms KM-LEACH, LEACH, and EECPK-means algorithms in

terms of the energy consumption equilibrium. The results in Fig. 2.10 (a) also show that

VLEACH has a longer network lifetime than our proposed IS-k-means algorithm. This is

reasonable since the objective of VLEACH is to extend the network lifetime, whereas our

proposed IS-k-means algorithm aims to balance the energy consumption in the network. As

62

0 20 40 60 80 100

Nodes

0

0.5

1

1.5

R
es

id
u
al

 e
n
er

g
y
 (

J)

LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(a)

0 20 40 60 80 100

Nodes

0

0.5

1

1.5

R
es

id
u
al

 e
n
er

g
y
 (

J)

LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(b)

0 20 40 60 80 100

Nodes

0

0.5

1

1.5

R
es

id
u
al

 e
n
er

g
y
 (

J)

LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(c)

0 20 40 60 80 100

Nodes

0

0.5

1

1.5

R
es

id
u
al

 e
n
er

g
y
 (

J)
LEACH

k-means

VLEACH

EECPK-means

KM-LEACH

EB-CRP

IS-k-means

(d)

Figure 2.11 Comparison of residual energy curve. (a) Residual energy after 400

rounds in scenario 1. (b) Residual energy after 1000 rounds in scenario

1. (c) Residual energy after 100 rounds in scenario 2. (d) Residual

energy after 300 rounds in scenario 2.

a result, some nodes die very early and others die very late in VLEACH, which likely results

in the inability to collect sensing data from certain areas where some nodes are dead. In Fig.

2.10 (b), although none of the algorithms shows a nearly vertical curve, like in Fig. 2.10 (a),

our proposed algorithm still outperforms the other six algorithms in balancing the energy

consumption and prolonging the network lifetime.

63

Table 2.3 Comparison of energy variance of different rounds

LEACH k-means VLEACH EECPK-means KM-LEACH EB-CRP IS-k-means

Scenario 1

200 rounds 0.0018 0.0374 0.0271 0.0127 0.0013 0.0019 0.0002

400 rounds 0.0039 0.0768 0.0496 0.0264 0.0025 0.0024 0.0004

600 rounds 0.0074 0.1161 0.0775 0.0396 0.0085 0.0026 0.0004

800 rounds 0.0108 0.1163 0.0756 0.0432 0.0098 0.0038 0.0005

1000 rounds 0.0168 0.1148 0.0882 0.0498 0.0094 0.0044 0.0008

1200 rounds 0.0172 0.1016 0.0904 0.0515 0.0055 0.0067 0.0007

1400 rounds 0.0095 0.0988 0.0901 0.0496 0.0024 0.0072 0.0009

Scenario 2

100 rounds 0.0081 0.0983 0.1070 0.0031 0.0112 0.0028 0.0022

200 rounds 0.0131 0.1642 0.1645 0.0058 0.0186 0.0052 0.0045

300 rounds 0.0248 0.1921 0.1899 0.0073 0.0258 0.0073 0.0046

400 rounds 0.0375 0.1806 0.1963 0.0105 0.0392 0.0094 0.0080

500 rounds 0.0388 0.1713 0.1821 0.0135 0.0312 0.0122 0.0110

600 rounds 0.0357 0.1491 0.1647 0.0167 0.0181 0.0168 0.0141

2.4.4 Energy Variance

Fig. 2.11 compares the average residual energy of all 100 nodes in WSNs among the

seven algorithms after different rounds in two scenarios. It is found that the residual energy

curve of all nodes in the IS-k-means algorithm is smoother than that of the other six algo-

rithms. This result demonstrates that the IS-k-means algorithm is good at balancing the

energy consumption of all nodes in WSNs. For the purpose of estimating performance of

the proposed algorithm, we introduce a new parameter called energy variance (EV), which

is expressed as

EV =

∑n
i=1

(
Ei (r)− E

)2
n

, (2.26)

where E is the average energy of all nodes. Table 2.3 clearly reveals that EB-CRP has

relatively smaller variances than LEACH, k-means, VLEACH, KM-LEACH, and EECPK-

means in different rounds. In addition, our proposed IS-k-means algorithm achieves the

smallest variances among seven algorithms, which demonstrates that the IS-k-means can

keep the residual energy of 100 nodes to be the most uniform in WSNs.

64

It is worthy to mention that the EB-CRP algorithm shows better performance in ex-

tending the network lifetime for WSNs with large network sizes [13], while the proposed

algorithm has good performance in balancing the energy consumption and extending the

network lifetime for smaller network sizes. We briefly summarize the reasons why the pro-

posed algorithm performs better than the other six algorithms for WSNs of smaller sizes.

First, optimizing the initial cluster centers of the soft k-means algorithm and reassigning

nodes can better balance the number of nodes in different clusters to form good clustering

results. Second, our algorithm selects nodes with more residual energy as the CHs, which

can prevent the CHs from dying too early and support a high number of communication

rounds. Third, the multi-CHs scheme of the proposed IS-k-means can reduce the communi-

cation energy consumption in the set-up phase caused by re-clustering because it reduces the

number of re-clustering. Thus, all sensors can save energy to maintain more communication

rounds in the steady phase, which extends the network lifetime. However, for the EB-CRP

algorithm, it only chooses one CH in each cluster, which may cause all nodes to re-cluster

frequently because CHs may quickly exhaust their energy. Fourth, instead of using a fixed

number of communication rounds during each steady-phase, like in EB-CRP, the communi-

cation rounds in our proposed IS-k-means algorithm are determined by the residual energy

of CHs. If the residual energy of any CH is below the threshold, the algorithm will stop the

current steady-phase and trigger re-clustering, which can avoid CHs to die earlier than the

EB-CRP algorithm.

2.5 Conclusions

In this paper, we proposed an energy balanced IS-k-means algorithm based on the soft k-

means for WSNs. The proposed algorithm improves the selection of initial cluster centers by

using CFSFDP and KDE algorithms. In order to balance the number of nodes per cluster, the

proposed algorithm reassigns nodes at the edge of different clusters to a low-density cluster

according to the nodes’ membership probabilities. Furthermore, multi-CHs scheme was used

in the selection of final CHs, which can effectively balance the traffic load of CHs, reduces

the number of re-clustering and saves communication cost in the set-up phase. In order to

65

show the advantages of the IS-k-means in balancing energy consumption, we compared it

with LEACH, k-means, VLEACH, EECPK-means, KM-LEACH, and EB-CRP. In scenario

1, simulation results demonstrated that the proposed IS-k-means algorithm postponed the

FND by 2.7 times, 34 times, 2.3 times, 2.4 times, 30 times, and 1.5 times when compared

to LEACH, VLEACH, KM-LEACH, EECPK-means, k-means, and EB-CRP on average,

respectively. The HND of the IS-k-means algorithm also was delayed by 2 times when

compared to LEACH, k-means, and KM-LEACH. In addition, the IS-k-means algorithm

achieved an excellent result in postponing the FND and HND in scenario 2 as compared

with other mentioned algorithms. The IS-k-means algorithm also extended network lifetime

in both scenarios as compared to KM-LEACH, EECPK-means, and EB-CRP. Furthermore,

the proposed algorithm also yields smoother average remaining energy curves of all nodes

in different rounds and smaller average energy variances. Hence, the proposed IS-k-means

algorithm is promising in balancing energy consumption in WSNs. In a future work, we plan

to design an energy-efficient multi-hop routing algorithm to extend the IS-k-means algorithm

to large-scale WSNs.

66

References

[1] L. Chettri and R. Bera, “A comprehensive survey on internet of things (IoT) toward

5G wireless systems,” IEEE Internet of Things Journal, vol. 7, pp. 16–32, Jan. 2020.

[2] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K. Markakis, “A

survey on the internet of things (IoT) forensics: Challenges, approaches, and open

issues,” IEEE Communications Surveys and Tutorials, vol. 22, pp. 1191–1221, Jan.

2020.

[3] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An overview

of internet of things (IoT) and data analytics in agriculture: Benefits and challenges,”

IEEE Internet of Things Journal, vol. 5, pp. 3758–3773, Oct. 2018.

[4] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H.

Gandomi, “I-SEP: An improved routing protocol for heterogeneous WSN for IoT-based

environmental monitoring,” IEEE Internet of Things Journal, vol. 7, pp. 710–717, Jan.

2020.

[5] F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen, “Multisource energy harvesting

system for a wireless sensor network node in the field environment,” IEEE Internet of

Things Journal, vol. 6, pp. 918–927, Feb. 2019.

[6] L. Xu, R. Collier, and G. M. P. O’Hare, “A survey of clustering techniques in WSNs and

consideration of the challenges of applying such to 5G IoT scenarios,” IEEE Internet of

Things Journal, vol. 4, pp. 1229–1249, Oct. 2017.

[7] H. Xie, Z. Yan, Z. Yao, and M. Atiquzzaman, “Data collection for security measure-

ment in wireless sensor networks: A survey,” IEEE Internet of Things Journal, vol. 6,

pp. 2205–2224, Apr. 2019.

[8] J. S. Lee and T. Y. Kao, “An improved three-layer low-energy adaptive clustering hierar-

67

chy for wireless sensor networks,” IEEE Internet of Things Journal, vol. 3, pp. 951–958,

Dec. 2016.

[9] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H.

Gandomi, “Residual energy-based cluster-head selection in WSNs for IoT application,”

IEEE Internet of Things Journal, vol. 6, pp. 5132–5139, Jun. 2019.

[10] Z. Xu, L. Chen, C. Chen, and X. Guan, “Joint clustering and routing design for reliable

and efficient data collection in large-scale wireless sensor networks,” IEEE Internet of

Things Journal, vol. 3, pp. 520–532, Aug. 2016.

[11] R. Zhang, J. Pan, D. Xie, and F. Wang, “NDCMC: A hybrid data collection approach

for large-scale WSNs using mobile element and hierarchical clustering,” IEEE Internet

of Things Journal, vol. 3, pp. 533–543, Aug. 2016.

[12] R. Yarinezhad and S. N. Hashemi, “A routing algorithm for wireless sensor networks

based on clustering and an fpt-approximation algorithm,” Journal of Systems and Soft-

ware, vol. 155, pp. 145–161, Sep. 2019.

[13] R. Yarinezhad and S. N. Hashemi, “Increasing the lifetime of sensor networks by a

data dissemination model based on a new approximation algorithm,” Ad Hoc Networks,

vol. 100, p. 102084, Apr. 2020.

[14] R. Yarinezhad and S. N. Hashemi, “Solving the load balanced clustering and routing

problems in WSNs with an fpt-approximation algorithm and a grid structure,” Pervasive

and Mobile Computing, vol. 58, p. 101033, Aug. 2019.

[15] N. Mazumdar and H. Om, “DUCR: Distributed unequal cluster-based routing algorithm

for heterogeneous wireless sensor networks,” International Journal of Communication

Systems, vol. 30, p. e3374, Jul. 2017.

[16] N. Mazumdar and H. Om, “Distributed fuzzy logic based energy-aware and coverage

preserving unequal clustering algorithm for wireless sensor networks,” International

Journal of Communication Systems, vol. 30, p. e3283, Sep. 2017.

68

[17] N. Mazumdar and H. Om, “Distributed fuzzy approach to unequal clustering and rout-

ing algorithm for wireless sensor networks,” International Journal of Communication

systems, vol. 31, p. e3709, May 2018.

[18] S. Randhawa and S. Jain, “Performance analysis of LEACH with machine learning al-

gorithms in wireless sensor networks,” International Journal of Computer Applications,

vol. 147, pp. 7–12, Aug. 2016.

[19] A. Mahboub et al., “Energy-efficient hybrid k-means algorithm for clustered wireless

sensor networks,” International Journal of Electrical and Computer Engineering, vol. 7,

pp. 2054–2060, Aug. 2017.

[20] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific

protocol architecture for wireless microsensor networks,” IEEE Transactions on Wire-

less Communications, vol. 1, pp. 660–670, Oct. 2002.

[21] A. Ray and D. De, “Energy efficient clustering protocol based on k-means (EECPK-

means)-midpoint algorithm for enhanced network lifetime in wireless sensor network,”

IET Wireless Sensor Systems, vol. 6, pp. 181–191, Dec. 2016.

[22] N. T. Tam, D. T. Hai, L. H. Son, and L. T. Vinh, “Improving lifetime and network

connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm

optimization,” Wireless Networks, vol. 24, pp. 1477–1490, Nov. 2018.

[23] M. Bidaki, R. Ghaemi, and S. R. K. Tabbakh, “Towards energy efficient k-means based

clustering scheme for wireless sensor networks,” International Journal of Grid and Dis-

tributed Computing, vol. 9, pp. 265–276, Jul., 2016.

[24] A. Sasikala et al., “Improving the energy efficiency of LEACH protocol using VCH in

wireless sensor network,” International Journal of Engineering Development and Re-

search, vol. 3, pp. 918–924, May 2015.

[25] E. Rabiaa, B. Noura, and C. Adnene, “Improvements in LEACH based on k-means and

gauss algorithms,” Procedia Computer Science, vol. 73, pp. 460–467, Dec. 2015.

69

[26] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science,

vol. 344, pp. 1492–1496, Jun. 2014.

[27] Y. Zhang, M. Liu, and Q. Liu, “An energy-balanced clustering protocol based on an

improved CFSFDP algorithm for wireless sensor networks,” Sensors, vol. 18, p. 881,

Mar. 2018.

[28] A. Ihsani and T. H. Farncombe, “A kernel density estimator-based maximum a poste-

riori image reconstruction method for dynamic emission tomography imaging,” IEEE

Transactions on Image Processing, vol. 25, pp. 2233–2248, May 2016.

[29] C. Bauckhage, “Lecture notes on data science: Soft k-means clustering,” tech. rep.,

Technical Report, Univ. Bonn, DOI: 10.13140/RG. 2.1. 3582.6643, Oct. 2015.

[30] P. Shen and C. Li, “Distributed information theoretic clustering,” IEEE Transactions

on Signal Processing, vol. 62, pp. 3442–3453, Jul. 2014.

[31] R. Sharma, V. Vashisht, and U. Singh, “EEFCM-DE: energy-efficient clustering based

on fuzzy c means and differential evolution algorithm in WSNs,” IET Communications,

vol. 13, pp. 996–1007, May 2019.

[32] H. Yang, Q. Yao, A. Yu, Y. Lee, and J. Zhang, “Resource assignment based on dynamic

fuzzy clustering in elastic optical networks with multi-core fibers,” IEEE Transactions

on Communications, vol. 67, pp. 3457–3469, May 2019.

[33] A. Majdara and S. Nooshabadi, “Nonparametric density estimation using copula trans-

form, bayesian sequential partitioning, and diffusion-based kernel estimator,” IEEE

Transactions on Knowledge and Data Engineering, vol. 32, pp. 821–826, Apr. 2019.

[34] Y. Li, Y. Zhang, M. Yu, and X. Li, “Drawing and studying on histogram,” Cluster

Computing, vol. 22, pp. 3999–4006, Mar. 2019.

[35] A. Qahtan, S. Wang, and X. Zhang, “KDE-track: An efficient dynamic density estimator

for data streams,” IEEE Transactions on Knowledge and Data Engineering, vol. 29,

pp. 642–655, Mar. 2016.

70

[36] V. Savic, E. G. Larsson, J. Ferrer-Coll, and P. Stenumgaard, “Kernel methods for

accurate UWB-based ranging with reduced complexity,” IEEE Transactions on Wireless

Communications, vol. 15, pp. 1783–1793, Mar. 2016.

[37] B. Qin and F. Xiao, “A non-parametric method to determine basic probability assign-

ment based on kernel density estimation,” IEEE Access, vol. 6, pp. 73509–73519, Nov.

2018.

[38] R. Mehmood, G. Zhang, R. Bie, H. Dawood, and H. Ahmad, “Clustering by fast search

and find of density peaks via heat diffusion,” Neurocomputing, vol. 208, pp. 210–217,

Oct. 2016.

[39] J. Zhong, W. T. Peter, and Y. Wei, “An intelligent and improved density and distance-

based clustering approach for industrial survey data classification,” Expert Systems with

Applications, vol. 68, pp. 21–28, Feb. 2017.

[40] W. B. Heinzelman, Application-specific protocol architectures for wireless networks. PhD

thesis, Massachusetts Institute of Technology, 2000.

[41] J. Qin, W. Fu, H. Gao, and W. X. Zheng, “Distributed k-means algorithm and fuzzy

c-means algorithm for sensor networks based on multiagent consensus theory,” IEEE

Transactions on Cybernetics, vol. 47, pp. 772–783, Mar. 2017.

[42] M. Lehsaini and M. B. Benmahdi, “An improved k-means cluster-based routing scheme

for wireless sensor networks,” in Proc. IEEE International Symposium on Programming

and Systems (ISPS), pp. 1–6, 2018.

[43] W. Zhang and J. Li, “Extended fast search clustering algorithm: widely density clusters,

no density peaks,” arXiv preprint arXiv:1505.05610, 2015.

[44] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami, “Fuzzy c-

means algorithms for very large data,” IEEE Transactions on Fuzzy Systems, vol. 20,

pp. 1130–1146, Dec. 2012.

71

[45] M. Wang, F. Min, Z. Zhang, and Y. Wu, “Active learning through density clustering,”

Expert systems with applications, vol. 85, pp. 305–317, Nov. 2017.

[46] L. Chhaya, P. Sharma, G. Bhagwatikar, and A. Kumar, “Wireless sensor network based

smart grid communications: Cyber attacks, intrusion detection system and topology

control,” Electronics, vol. 6, pp. 1–22, Jan. 2017.

[47] P. Sasikumar and S. Khara, “k-means clustering in wireless sensor networks,” in Proc.

IEEE Fourth International Conference on Computational Intelligence and Communica-

tion Networks, pp. 140–144, Nov. 2012.

72

3. Joint Cluster Head Selection and Trajectory

Planning in UAV-Aided IoT Networks by

Reinforcement Learning with Sequential

Model

Published as:

B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton and J. Henry, “Joint cluster head selec-

tion and trajectory planning in UAV-aided IoT networks by reinforcement learning with

sequential model,” IEEE Internet of Things Journal, vol. 9, no. 14, pp. 12071–12084, Jul.

2022.

In the previous chapter, an efficient clustering algorithm is proposed for balancing the

energy consumption among devices in WSNs. Given the growing interest in using UAVs

to collect data in IoT networks, in this chapter we study the energy saving problem in

UAV-aided networks.

The manuscript included in this chapter investigates the problem of jointly designing

the UAV’s trajectory and selecting CHs for an IoT network to minimize the total energy

consumption in the UAV-IoT system. DRL with a Seq2Seq neural network is used to learn

the policy of the UAV trajectory to meet the objective of minimizing the total energy

consumption of the whole UAV-IoT system. The proposed algorithm offers an appealing

balance between performance and complexity.

73

Joint Cluster Head Selection and Trajectory Planning

in UAV-Aided IoT Networks by Reinforcement

Learning with Sequential Model

Botao Zhu, Ebrahim Bedeer, Ha Nguyen,

Robert Barton, and Jerome Henry

Abstract

Employing unmanned aerial vehicles (UAVs) has attracted growing interests

and emerged as the state-of-the-art technology for data collection in Internet-

of-Things (IoT) networks. In this paper, with the objective of minimizing the

total energy consumption of the UAV-IoT system, we formulate the problem of

jointly designing the UAV’s trajectory and selecting cluster heads in the IoT

network as a constrained combinatorial optimization problem which is classified

as NP-hard, and challenging to solve. We propose a novel deep reinforcement

learning (DRL) with a sequential model strategy that can effectively learn the

policy represented by a sequence-to-sequence neural network for the UAV’s tra-

jectory design in an unsupervised manner. Through extensive simulations, the

obtained results show that the proposed DRL method can find the UAV’s tra-

jectory that requires much less energy consumption when compared to other

baseline algorithms and achieves close-to-optimal performance. In addition, sim-

ulation results show that the trained model by our proposed DRL algorithm has

an excellent generalization ability to larger problem sizes without the need to

retrain the model.

Index Terms

Deep reinforcement learning, Internet-of-Things, UAV, cluster head selection,

trajectory planning.

74

3.1 Introduction

The Internet-of-Things (IoT) is a system that connects a massive number of devices to

the Internet, which is rapidly changing the way we live in almost every field [1]. Wireless

Sensor Networks (WSNs) are viewed as the basic component of IoT. WSN can integrate the

physical world with the information world to expand the functions of existing networks and

the ability of humans to understand the world. A typical WSN is composed of a large number

of devices deployed over a geographical area for monitoring physical events. These devices

form a multi-hop self-organizing network to monitor, sense, and collect the information of

the target area, and transfer the collected data to users for processing [2]. However, WSNs

have gradually merged with different applications and appeared in various new forms, such

as industrial IoT [3], Internet of vehicles (e.g., 5G long distance WSN) [4], smart home (e.g.,

short distance WSN) [5], environmental monitoring (e.g., autonomous underwater vehicles

network) [6], intelligent manufacturing system, etc.

Traditional long-distance multi-hop communication requires high energy consumption of

end devices, and because of the limited energy resources of end devices in IoT networks, it

leads to shortening the network lifetime. In [7], an ant optimization based routing algorithm

is proposed to dramatically reduce the energy consumption of networks. In [8], the authors

consider economic theory and compressive sensing theory to propose an energy-saving routing

algorithm to extend the lifetime of WSNs. These energy saving techniques only focus on

designing the routing algorithms to reduce the energy consumption of networks. Recently,

the use of unmanned aerial vehicles (UAVs) has received increasing attention due to their

high flexibility and high maneuverability. Compared with the conventional IoT networks

that use static multi-hop data collection methods, UAV-enabled IoT networks dispatch a

UAV to collect data from ground IoT devices based on the planned UAV’s trajectory [9],

which can effectively reduce the energy consumption of devices. However, any increase in the

flight time or distance of the UAV for a given data collection mission will increase its energy

consumption. Hence, there is a need to carefully design the UAV trajectory to minimize the

overall energy consumption of the wireless network.

There is rich literature concerning the problem of energy consumption in UAV-aided

75

wireless networks. By jointly considering the UAV’s trajectory and devices’ transmission

schedule, the authors in [10] use an efficient differential evolution-based method to minimize

the maximum energy consumption of all devices in an IoT network. In [11], the authors

aim to minimize the transmission energy consumption of the sensor nodes within a given

data collection time by jointly optimizing the UAV’s trajectory and the transmission policy

of nodes. In [12], the authors consider maximizing the minimum residual energy of sensors

after data transmission in order to prolong the network lifetime. The authors in [13] jointly

optimize the sensor nodes’ wake-up schedule and the UAV trajectory to reduce the maximum

energy consumption of all sensor nodes.

All the above mentioned works only focus on minimizing the energy consumption of

ground devices in an UAV-aided wireless network. In contrast, other works consider UAV-

related energy consumption minimization when UAVs are deployed in wireless networks.

In [14], the authors study the problem of minimizing the completion time and the energy

consumption of an UAV flying over a large area and propose a fly-and-communicate protocol.

The authors in [15] aim to minimize the total energy consumption of the UAV, including

both the propulsion and communication energy, in a UAV-enabled system serving multiple

ground nodes. The authors in [16] study methods to control a group of UAVs for effectively

covering a large geographical region while minimizing their energy consumption. In [17], the

authors minimize the total UAV’s energy consumption for a given path by optimizing its

velocity.

Against the above literature, we consider to minimize the total energy consumption of

the ground network and the UAV by designing an energy efficient UAV trajectory in a

cluster-based IoT network. An important difference between our work and existing studies

is how the UAV interacts with the ground network. Specifically, existing studies consider

the scenario that the UAV directly communicates with each device of the ground network.

Such a scenario leads to high energy consumption of both the UAV and ground devices,

especially when the network size increases. In contrast, we consider a clustered IoT network

and that the UAV only communicates with the cluster head (CH) of each cluster in order

to reduce the energy consumption. As such, the UAV trajectory optimization problem is

76

formulated to jointly select CHs and plan the UAV’s visiting order to these CHs to minimize

the overall energy consumption of the UAV-aided IoT network. The formulated optimization

problem turns out to be one canonical example of combinatorial optimization problems, i.e.,

the generalized traveling salesman problem (GTSP).

In general, existing solutions for energy-efficient UAV trajectory planning can be classi-

fied into two categories: traditional methods (including exact algorithms, heuristic or meta-

heuristic algorithms, etc.), and machine learning based techniques. Although exact algo-

rithms can provide the optimal solutions (through systematic enumeration, mathematical

programming, etc), as the size of the optimization problems increases, their computational

costs grow and may prohibit practical implementations [18]. As for heuristic or meta-

heuristic algorithms, there is no guarantee that the obtained solutions are close-to-optimal

solutions [19]. On the other hand, deep reinforcement learning (DRL) techniques have gained

remarkable attention in solving the energy efficient UAV trajectory planning problems. For

instance, the authors in [20] propose a DRL algorithm to design the UAV cruise route in a

smart city environment, where convolutional neural networks (CNNs) are used for feature ex-

traction and the deep Q-network (DQN) is utilized to make decisions. In [21], the authors use

the DQN with experience replay memory to solve the formulated energy-efficient trajectory

optimization problem, while maintaining data freshness. To provide energy-efficient and fair

communication service, the authors in [22] design a DRL algorithm based on deep neural net-

works (DNNs) and deep deterministic policy gradient (DDPG) to plan the UAV trajectory

in a 3D coverage scenario. With the objective of saving energy, the authors in [23] pro-

pose a deep stochastic online scheduling algorithm based on two DNNs and the actor-critic

to overcome the traditional DRL’s limitations in addressing UAV trajectory optimization

problem.

In designing a machine learning-based algorithm to solve our formulated combinatorial

optimization problem, it is useful to require the algorithm to have the following capabilities:

scalability, generalization, and automation on variable-length data structures. This stems

from the fact that the number of clusters or nodes in the IoT network may not be the

same in different data collection tasks over a given region. The scalability means that the

77

algorithm is not only able to handle IoT networks with small-scale clusters but also scale to

IoT networks with large-scale clusters. The generalization means that the machine learning

algorithm should also perform well on unseen problems. The automation of the machine

learning algorithm is to automatically execute operations of generalization and scalability on

new problem instances, without retraining the model or manually modifying its parameters.

In other words, once the model is trained by the designed machine learning algorithm in

our work, it can automatically produce good solutions to new IoT networks with different

number of clusters and different locations of nodes.

Since combinatorial optimization problems, such as TSP, vehicle routing problem (VRP),

etc., are often solved as sequence-to-sequence (Seq2Seq) prediction problems in machine

learning [24], we require the designed machine learning algorithm to have an excellent ability

to learn policy on sequential data as in our formulated combinatorial optimization problem

that also can be seen as a sequential problem. Machine learning algorithms, such as CNN,

DQN, and DDPG, are inefficient to handle sequential problems where the current element of

the sequence depends on historical information from the previous elements of the sequence.

This makes it hard for these algorithms to store information of past elements for very long

time [25]. Recurrent neural networks (RNNs) with long short-term memory (LSTM) are fre-

quently used to process sequential problems because their hidden units can store historical

information for long time steps [24]. In addition, RNNs are the state-of-the-art neural net-

works to tackle variable-length sequences, e.g., variable-size data in our problem, by re-using

the neural network blocks and parameters at every step of the sequence [26]. Attention

mechanism is another technique to process a variable-length sequence by sharing its pa-

rameters [26]. Hence, RNNs and the attention mechanism-based Seq2Seq models that are

commonly composed of the encoder component and the decoder component are emerging

as attractive techniques to tackle variable-size sequential problems and they show promising

results in various domains, see e.g. [27–32]. Given that we formulate the UAV trajectory

planning problem in an UAV-aided cluster-based IoT network as a GTSP, Seq2Seq model

with RNNs and the attention mechanism are the right ingredients for developing an efficient

DRL algorithm to solve this challenging problem. The main contributions of this paper are

78

summarized as follows:

1. We formulate the energy consumption minimization problem in the UAV-IoT system

by jointly selecting CHs from a cluster-based IoT network and planning the UAV’s

trajectory to the selected CHs.

2. By viewing the formulated UAV trajectory planning problem in the clustered IoT

network as a combinatorial optimization problem, we propose a Seq2Seq neural network

to model and solve the trajectory planning problem. The inputs to the Seq2Seq neural

network are all clusters and the UAV’s start/end point; while the output of the Seq2Seq

is the UAV’s trajectory including the set of selected CHs. Reinforcement learning (RL)

is used to train the parameters of the Seq2Seq in an unsupervised way to produce a

close-to-optimal trajectory that ensures the minimum energy consumption in the UAV-

IoT system.

3. Extensive simulations demonstrate that the proposed DRL-based method can find

the optimal or close-to-optimal UAV’s trajectory and outperforms baseline techniques

when evaluating both the energy consumption in UAV-IoT system and the algorithms’

computation time. In addition, the trained model by our proposed DRL algorithm

shows good abilities of scalability, generalization, and automation to deal with IoT

networks with different numbers of clusters without the need to retrain the model.

The rest of this paper is organized as follows. Section 3.2 describes the system model and

problem formulation. Section 3.3 explains how deep reinforcement learning can be used to

address the UAV’s trajectory planning problem considered in our work. Section 3.4 presents

simulation results. Finally, Section 3.5 concludes the paper.

3.2 System Model and Problem Formulation

We assume that one rotary-wing UAV is dispatched to collect data from K ground

clusters. Each cluster Gk, k = 1, . . . , K, is composed of N nodes, and only one node is

selected as the CH, denoted by bk, bk ∈ Gk. The selection of CHs will be determined by the

79

proposed algorithm. In each cluster, member nodes are responsible for sensing and collecting

the environmental data and then send the collected data to the CH. The UAV is assumed

to have the flying-hovering model without considering the acceleration-deceleration pattern.

It takes off from the start hovering point c0, corresponding to the ground BS b0, visits each

target hovering point ck in a certain order, which is vertically above each CH bk, and returns

to c0 after completing the data collection mission. The location of bk in the cluster Gk is

represented by a 3D Cartesian coordinate (xCH
k , yCH

k , 0), and the position of n-th member

node in this cluster is (x
(n)
k , y

(n)
k , 0). Similarly, the position of each hovering point ck can be

represented as (xCH
k , yCH

k , H) where H is the fixed flight height of the UAV. The problem of

UAV trajectory planning can be regarded as the determination of hovering points {ck}Kk=1

and a permutation of {ck}Kk=1 and c0. As an illustrative example in Fig. 3.1, if we choose

the center node of each cluster as the CH, the energy consumption in the ground network

will be minimum because the Euclidean distances between member nodes and their CHs are

small in each cluster [33]. However, this increases the length of the UAV trajectory, and thus

increases the energy consumption of the UAV (see the golden dashed line). On the other

hand, if a boundary node in each cluster is chosen as the CH, the energy consumption of the

UAV will be lower because it has a short trajectory (see the black dashed line). However,

in this case the energy consumption for communication in the ground network will increase.

Therefore, studying the problem of jointly selecting CHs and planning the UAV’s trajectory

to minimize the energy consumption of the UAV-IoT network is relevant and very important.

This problem will be described in more detail in the following subsections.

3.2.1 Channel Model

In this work, we consider the air-to-ground channel model as in [34] where line-of-sight

(LoS) links and nonline-of-sight (NLoS) links are used between the UAV and the ground

devices. The probability of a LoS link typically is given by

PLoS =
1

1 + η exp (−β[τ − η])
(3.1)

where η and β are environment constants, and τ = arcsin (H/dk)180/π, where dk = ||ck−bk||

is the distance between the UAV and the ground CH bk when the UAV hovers at ck. The

80

Hovering point

Trajectory if selected nodes work as CHs

BS

Projection of trajectory if selected nodes work as CHs

Projection of trajectory if center nodes work as CHs

Projection of trajectory if boundary nodes work as CHs

Selected CH Boundary nodeCenter node

Figure 3.1 System model of an UAV-aided cluster-based IoT network.

probability of a NLoS link is given by PNLoS = 1 − PLoS. The average path loss between bk

and the UAV can be expressed as [34]

P loss =PLoS

(
10α log10

(
4πfcH

c

)
+ µLoS

)
+ PNLoS

(
10α log10

(
4πfcH

c

)
+ µNLoS

)
(3.2)

where µLoS and µNLoS are the average additional losses in LoS and NLoS links, respectively,

α is the path loss exponent, c is the speed of light, and fc is the carrier frequency. Assuming

that all CHs have the same transmit power PCH, the average data rate for the communication

between each CH and the UAV is defined by [34]

rdata = Bwidth log2

(
1 +

PCH

P lossN0

)
(3.3)

where Bwidth is the communication bandwidth and N0 is the noise power.

3.2.2 UAV’s Energy Model

Without loss of generality, we assume that the UAV flies with a fixed speed vUAV from

one hovering point to another. The propulsion power consumption of the UAV for movement

81

is given by [34,35]

Pmove =

√
(mtotg)3

2πr2pnpρ
+
Pfull − Ps

vfull
vUAV + Ps (3.4)

where g, mtot, rp, np, and ρ are the earth gravity, UAV’s mass, propeller radius, number of

propellers, and air density, respectively. Pfull and Ps are the hardware power levels when the

UAV is moving at full speed vfull and when the UAV hovers, respectively. When the UAV

hovers at the hovering point ck to collect data from the ground CH bk, its power consumption

Phover for hovering status is obtained by substituting vUAV = 0 in (5.9). We assume that

the hovering time of the UAV is equal to the data transmission time. Hence, its energy

consumption is given by

Eck =
Dk

rdata
(Phover + Pcom) (3.5)

where Dk is the amount of data needed to be collected, and Pcom is the UAV’s communication

power. The energy consumption of the UAV for moving from point ck to another point cj is

given by

Eck,cj =
||ck − cj||
vUAV

Pmove. (3.6)

Hence, by substituting (5.9) into (3.6), the total energy consumption of the UAV in flight

can be written as

Eflight =
K∑
k=0

K∑
j=0
j ̸=k

Eck,cjLck

=
K∑
k=0

K∑
j=0
j ̸=k

Lck,cj ||ck − cj|| (Pfull − Ps)

vfull

+
K∑
k=0

K∑
j=0
j ̸=k

Lck,cj ||ck − cj||
vUAV

(√
(mtotg)3

2πr2pnpρ
+ Ps

)
,

∀ck, cj ∈ C (3.7)

82

where C = {c0, c1, . . . , cK}, ck is determined by bk, bk ∈ Gk, and Lck,cj indicates whether the

UAV travels from ck to cj. Specifically, it is defined as

Lck,cj =

1, the path goes from ck to cj

0, otherwise.

(3.8)

As can be seen from (3.7), Eflight is inversely proportional to the speed vUAV. Furthermore,

one can show that the choices of vUAV and hovering points in C have independent effects on

Eflight. This means that the UAV speed vUAV and the hovering points in C can be optimized

separately. It is simple to see that, according to our system model, in order to minimize

Eflight, and hence, the overall energy consumption, vUAV should be set to the maximum flight

speed vfull. It should be pointed out, however, that for other power models of UAVs (see [15]

for example), the optimal value of vUAV can be any value lower than or equal to vfull.

The following constraints need to be considered for the UAV’s trajectory:

K∑
k=0
k ̸=j

Lck,cj = 1, ∀ck, cj ∈ C (3.9)

K∑
j=0
j ̸=k

Lck,cj = 1, ∀ck, cj ∈ C (3.10)

∑
ck∈F

∑
cj∈F

Lck,cj ≤ |F| − 1, ∀F ⊂ C; |F| ≥ 2. (3.11)

The constraints (3.9) and (3.10) guarantee that the UAV should visit each point in C exactly

once. Constraint (3.11) enforces that there is only one single trajectory without partial loop

exists, where F is the subset of C [36].

3.2.3 IoT Network’s Energy Models

The total energy consumption in the ground network includes energy consumption for

intra-cluster communication and energy consumed for data transmission from CHs to the

UAV. We use the first-order radio model [37] to calculate the intra-cluster energy consump-

tion. In order to transmit an l-bit message to its CH bk, the energy consumed by a member

83

node n is given by [37]

Ebk
n = lEelec + l

(
χεfsd

2
n,bk

+ (1− χ) εmpd
4
n,bk

)
(3.12)

where

χ =

1, dn,bk ≤ d0

0, dn,bk > d0

(3.13)

and

d0 =

√
εfs
εmp

; (3.14)

Eelec is the dissipated energy per bit in the circuitry, dn,bk is the distance between CH bk and

member nodes n, d0 is the distance threshold, εfs and εmp are the radio amplifier’s energy

parameters corresponding to the free space and multi-path fading models, respectively [38].

On the other hand, the energy consumption of CH bk to receive an l-bit message from member

node n is calculated as [37]

E
(n)
bk

= lEelec. (3.15)

Furthermore, the energy consumed by CH bk to complete data transmission to the UAV is

Ebk = PCH
Dk

rdata
, (3.16)

where Dk = (N − 1)l.

3.2.4 Problem Formulation for UAV’s Trajectory

Based on the discussed energy models, after the UAV completes a round of data collection

task, the total weighted energy consumption of the UAV-IoT system is formulated as

E (b0, b1, . . . , bK) = ω

(
K∑
k=1

N−1∑
n=1

(
Ebk
n + E

(n)
bk

)
+

K∑
k=1

Ebk

)

+ (1− ω)

(
Eflight +

K∑
k=1

Eck

)
, 0 ≤ ω ≤ 1 (3.17)

where ω is a weighting coefficient that adjusts the energy consumption trade-off between the

UAV and the ground networks. Note that the first term is the total energy consumption

of the ground network, which only depends on the positions of CHs, and the second term

84

is the total energy consumption of the UAV. Eck depends on CHs, and Eflight is related to

CHs and the visiting order to CHs. With the aim of minimizing the overall weighted energy

consumption of the UAV-IoT system, we formulate the optimization problem as jointly

selecting CHs and designing the UAV’s trajectory, which can be written as

min
{b0,b1,...,bk,...,bK}

bk∈Gk

E (b0, b1, . . . , bK)

(3.18)

s.t. (3.8)− (3.11).

Clearly, the above formulated problem is GTSP, where the UAV is required to find a tour

with the minimal energy consumption of the UAV-IoT system that includes exactly one node

from each cluster. Due to the NP-hardness of the formulated problem, it is difficult to solve

with conventional methods such as heuristic algorithms. Recent major breakthroughs in DRL

have shown that DRL has the ability to successfully solve some combinatorial optimization

problems [39]. Hence, we propose a sequential model-based DRL method to tackle the

problem of jointly selecting CHs and planning the UAV’s trajectory.

3.3 Deep Reinforcement Learning for UAV Trajectory

3.3.1 UAV’s Trajectory as Sequence Prediction

Because the UAV needs to visit all clusters sequentially to collect data, the trajectory

planning problem can be viewed as the visiting decision problem by a policy. This policy

can be modeled as a Seq2Seq neural network where one network encodes the input clusters,

and then another network is used to convert the encoded information to a visiting order of

clusters as its output. Given the start position b0 and K clusters, the input of the Seq2Seq

model is C = {b0, G1, . . . , GK} and the output is the UAV’s visiting order to these elements

in C, denoted as Y = {π0, π1, . . . , πK}. Because the UAV takes off from b0, b0 should be in

the first position of Y . For keeping consistency of symbols, we use π0 to represent b0 in Y .

Hence, the probability of Y , i.e., the probability that the UAV follows the corresponding

85

Figure 3.2 Seq2Seq model with encoder-decoder framework.

trajectory, can be decomposed using the chain rule as follows

Pθ(Y |C) =
K∏
t=0

P (πt|π0, . . . , πt−1,C) (3.19)

where t is the time step, P (πt|·) models the probability of any cluster being visited at the t-th

time step based on the clusters that have been visited at previous time steps and C [40]. Note

that the stochastic policy Pθ(Y |C) is parameterized by θ. In the following subsections, we

will use the Seq2Seq neural network architecture in [41] to calculate the probability P (πt|·).

3.3.2 Encoder-Decoder Framework for UAV’s Trajectory

A typical Seq2Seq neural network includes an encoder and a decoder, where the encoder

reads and arranges the input sequence into a vector, and the decoder outputs a target

sequence by decoding this vector [42].

Encoder

Since the inputs are coordinates of the nodes of all clusters, which do not convey sequential

information, we use a set of embeddings corresponding to different elements of the input

as the encoder in our model instead of using RNNs. Specifically, the embeddings are to

map the low-dimensional inputs to a high D-dimensional vector space. By doing so, the

86

computational complexity of the embedding layer is reduced without reducing its efficiency.

The mapping from the input C to the embedded output C is shown as

C = WbC (3.20)

where Wb is the embedding matrix, C = {ek}Kk=0, ek ∈ RD. For example, in Fig. 3.2, there

are three clusters and one start position, hence C = {b0, G1, G2, G3}. After embedding, C

is converted into C = {e0, e1, e2, e3}.

Decoder

Since the hidden units of the RNN can be used for learning historical information, it is

very common in the literature to use the RNN as the decoder in the encoder-decoder frame-

work. However, the traditional RNN shows poor performance in dealing with the problem

of the long-term dependencies, which makes it difficult to be trained in practice [43]. Hence,

we use the LSTM which is capable of learning long-term dependencies to construct a RNN

as the decoder. The number of decoding steps is equal to the length of C. At each decoding

step t, the hidden state ht ∈ RD of the LSTM, which stores information of previous steps,

and the embedded C are used to generate the conditional probability P (πt|π0, . . . , πt−1,C)

for deciding the output in this step. Calculating the conditional probabilities is performed

by the attention mechanism, whose details are described next.

Attention Mechanism

Attention mechanism is used to improve the encoder-decoder model, which allows the

model to give different weights to different elements of the input [44]. For planning of the

UAV’s trajectory, attention mechanism tells us the relationship between each cluster in C at

current step t and the output πt−1 of the last decoding step. The most relevant cluster with

the maximum probability is chosen at decoding step t. Specifically, ht is the hidden state of

the LSTM at decoding step t. The quantity akt represents how relevant each element ek in

87

C is at decoding step t. It is calculated using the softmax function1 as

akt = softmax
(
ukt
)

(3.21)

where

ukt = φa tanh (W1ek +W2ht) , (3.22)

with φa ∈ R1×D, W1 ∈ RD×D, W2 ∈ RD×D. The context vector gt ∈ RD is computed as

gt =
K∑
k=0

akt ek. (3.23)

Then, we combine gt with the embedded inputs

ũkt = φg tanh (W3ek +W4gt) (3.24)

with φg ∈ R1×D, W3 ∈ RD×D, W4 ∈ RD×D. The vector ũt = {ũ0t , ũ1t , . . . , ũkt , . . . , ũKt } ∈

R(K+1) is called the logits. To encourage exploration, we use a logit clipping function to

control the distribution of the logits

ūt = CL tanh (ũt) (3.25)

where CL is a hyper-parameter that limits the range of the logits to [−CL, CL], and hence,

the entropy associated with P (·). The value of CL is set to 10 by following [39]. To avoid

clusters being visited more than once, we apply the mask vector to ūt to mark clusters that

have been visited before:

ût = {û0t , . . . , ûkt , . . . , ûKt } = ūt +Mt (3.26)

where Mt ∈ R(K+1) is the mask vector, which is initialized to a vector of all zeros and its

values are updated at each decoding step. If a cluster is selected for access, we update the

value in the corresponding position of Mt to −∞. Then, the element in the corresponding

position of ût also becomes −∞. Finally, we compute the probability of each element in ût

as

P (πt|π0, π1, . . . , πt−1,C) = softmax (ût) (3.27)

1The softmax function is defined as: akt =
exp{uk

t }∑K
j=0 exp{uj

t}
.

88

where the negative infinities in ût get zeroed out after using the softmax function. We choose

the cluster pointed by the highest probability as the output at decoding step t and update

the value of the same position in Mt to −∞. Thus, each P (·) distribution is represented

by the softmax function over all elements in the input sequence. The learnable variables are

φa, φg,W1,W2,W3, and W4, which make up the policy parameter θ.

We further give an example to explain how the masking mechanism works. As shown

in Fig. 3.2, there are three clusters and one start position; hence, C = {b0, G1, G2, G3}.

After embedding, C is converted into C = {e0, e1, e2, e3}. We assume that the outputs of

the decoder network at decoding step 0 and 1 are b0 and G2, respectively. In order to get

the output of decoding step 2, ũ2 = {ũ02, ũ12, ũ22, ũ32} is obtained by equations (3.21)–(3.24),

and the mask vector is M2 = {−∞, 0,−∞, 0}. By summing the elements of ū2 and M2

at the same position, we can obtain û2 = {û02, û12, û22, û32} = {−∞, ū12,−∞, ū32}. Applying

equation (3.27) to û2, we assume the final probability distribution over û2 is calculated as

{0, 0.2, 0, 0.8}. Hence, the cluster G3 is selected at this step because the highest probability

value points to it. Then, the mask vector is updated as M2 = {−∞, 0,−∞,−∞}. As we

can see, the masked clusters cannot be visited again. Hence, the masking scheme in our

proposed algorithm can effectively prevent the clusters from being visited multiple times.

Selection of CHs

We assume that the output πt of the model at step t is the cluster Gk, and its CH bk is

chosen by

bk = min{E(br,n)}Nn=1 (3.28)

where br is the CH of cluster Gr that is visited at step (t−1), E(br,n) is the energy consumption

of the UAV and the ground IoT network when the UAV flies from the CH br to a node n

in the next cluster that will be visited. The node n in Gk that can guarantee the minimum

energy consumption of the UAV-IoT from br to n is selected as the CH of the cluster Gk.

In the example of Fig. 3.2, the start point b0 is visited at the 0-th decoding step. Then,

the output π1 of the decoding step 1 is the cluster G2 because it has the highest probability

P (π1|π0,C). We calculate the overall energy consumption of the UAV-IoT from b0 to each

89

node in G2 and choose the CH by (3.28). Finally, we obtain a set of sorted CHs and output

the UAV’s trajectory, which is shown as

b0(π0) −→ b2(π1) −→ b3(π2) −→ b1(π3).

The above trajectory may not be the best. Hence, we need to train the policy parameter θ

from samples by RL to produce the optimal or close-to-optimal trajectory.

3.3.3 Training Method

In RL, an agent optimizes its behavior by interacting with the environment. The goal

of the agent is to search for an optimal policy that can solve the constrained optimization

problem through iterative training. All ground clusters, our objective function, and all

constraints are considered as the environment. Note that for the agent, the environment

is actually treated as a black box. The goal of the agent is to maximize the accumulated

rewards by learning an optimal policy which is a mapping of states and actions.

State

The state of the problem at time step t is composed of the coordinates of all clusters, the

location of the UAV, and the energy consumption.

Action

The action for the UAV at current step t is the selection of the next cluster and its CH

to be visited. Hence, we define the output of the attention mechanism and the CH selection

as the action at each step.

Reward

The reward function is defined as the negative of the total energy consumption in the

formulated problem (3.18). The reward of one full episode generated under the policy is

denote as R = −E.

90

REINFORCE [45], the well-known policy gradient, is employed in this paper, and the

UAV works as the agent. Unlike value-based methods such as DQN that finds the optimal

policy through Q-values, a policy gradient method directly optimizes the policy by changing

its parameters. The REINFORCE algorithm uses an estimate of the gradient of the expected

reward to update the policy parameter θ. The agent observes a full sequence that includes

all states, actions, and rewards from start to finish generated under the policy. We compute

the sum reward from this sequence by setting the discount factor to one, which is actually

based on the real observed return. To train the proposed Seq2Seq model, the REINFORCE

algorithm includes the actor network (policy network) and the critic network (value network).

The Seq2Seq model works as the actor network that generates a set of ordered CHs for a

given input problem instance. In the critic network, the output probabilities of the actor

network are used to compute a weighted sum of the embedding inputs. Then, the weighted

sum vector is fed into two-fully connected layers with one ReLU activation and one linear

layer with a single output. The critic network, denoted by ψ, provides an approximated

baseline of the solution for any problem instance to reduce the variance of gradients [46].

Given a problem instance C, the training objective is the expected reward, which is defined

as

J (θ|C) = EY ∼pθ(.|C)
[R]. (3.29)

One can use policy gradient and stochastic gradient descent to optimize θ. The gradient of

(3.29) is formulated using REINFORCE algorithm, which can provide an unbiased gradient,

as follows

∇θJ (θ|C) = EY ∼pθ(.|C)
[(R− Vψ (C))∇θ log pθ (Y |C)] (3.30)

where Vψ (C) is a parametric baseline implemented by the critic network to reduce the

variance of the gradient. We use batches to speed up the training process. Assuming there

are B problem instances in each batch, the gradient in (3.30) is approximated with Monte

Carlo sampling as

∇θJ (θ) ≈ 1

B

B∑
i=1

(Ri − Vψ (Ci))∇θ log pθ (Yi|Ci) . (3.31)

91

Algorithm 5 REINFORCE with the baseline algorithm

Input: Batch size B, training step S, training data set Q = {C1, . . . ,CS×B}

1: Initialize the actor network parameter θ and the critic network parameter ψ

2: for s = 0 to S − 1 do

3: Obtain train data Cs = {C1+(s×B), . . . ,C(s×B)+B} from Q for the current training step

4: Find CHs and calculate Ri for each Ci in Cs with

the actor network

5: Calculate Vψ (Ci) with the critic network

6: dθ ← 1
B

(s×B)+B∑
i=1+(s×B)

(Ri − Vψ (Ci))∇θ log pθ (Yi|Ci)

7: L(ψ)← 1
B

(s×B)+B∑
i=1+(s×B)

(Vψ (Ci)−Ri)
2

8: θ ← Adam (θ, dθ)

9: ψ ← Adam (ψ,∇ψLψ)

10: end for

11: return θ

The critic network is trained by using stochastic gradient descent on a mean squared error

objective between Vψ (Ci) and the actual energy consumption, which is given by

L(ψ) =
1

B

B∑
i=1

(Vψ (Ci)−Ri)
2 . (3.32)

The training procedure of the actor network and the critic network is shown in Algorithm

5. The parameters of the actor and critic networks are updated iteratively by using the Adam

algorithm [47].

3.4 Numerical Results

We compare the proposed approach with the following three common baseline methods:

1. Greedy: The greedy algorithm follows the problem-solving heuristic of making the lo-

cally optimal choice at each stage [48]. When looking for a solution, it always takes the

best immediate or local decision, which may lead to poor solutions for some problems.

92

The greedy algorithm is usually faster than exact methods because it does not consider

the details of possible alternatives.

2. Gurobi: The Gurobi optimizer is the most powerful mathematical optimization solver

for linear programming, quadratic programming, mixed integer linear programming,

mixed-integer quadratic programming, mixed-integer quadratically constrained pro-

gramming, etc [49]. It is an exact algorithm solver that enables users to build math-

ematical models for their problems and produces the optimal solutions globally. For

the optimization problem considered in this paper, the presented optimal solutions are

obtained using Gurobi.

3. Ant colony optimization (ACO): ACO is a meta-heuristic method inspired by the

observation of real ant colonies, which can be used to solve various combinatorial

optimization problems. In ACO, multi-ants leave their nest and walk randomly until

they find food. Each ant deposits a substance called pheromone along its trail so that

the other ants can follow. An ant tends to choose the path with the highest pheromone

concentration because its length is the shortest. Since our formulated problem is GTSP,

we use the extended ACO method proposed in [50] to compare with our proposed DRL

technique. In the following simulations, the parameters of ACO are set as follows. The

number of ants is 30, the number of iterations is 200, the pheromone evaporation

coefficient is set as 0.1, and the importance of pheromone and the relative importance

of visibility are 1 and 5, respectively.

To thoroughly evaluate the performance of the proposed DRL algorithm, we compare the

trajectories of the UAV and the energy consumptions obtained by the proposed algorithm

with that obtained by three baseline methods. It should be noted that the energy consump-

tion mentioned in all comparisons refers to the energy consumption in one communication

round. In each round, member nodes send data to their CHs, and the UAV visits these CHs

to collect data.

93

Table 3.1 Simulation parameters

Parameter Value Parameter Value

PCH 21 dBm/Hz [35] rp 20 cm [51]

Bwidth 1 MHz np 4 [51]

N0 −174 dBm/Hz [35] ρ 1.225 kg/m3 [51]

fc 2 GHz [35] mtot 500 g [51]

α 3 [35] Pfull 5 W [51]

H 50 m Ps 0 W [51]

µLoS, µNLoS 1 dB, 20 dB [52] vUAV = vfull 15 m/s [35]

β 0.03 [35] Pcom 0.0126 W [35]

η 10 [35] N 20

εfs 10 pJ/bit/m2 [37] εmp 0.0013

pJ/bit/m2 [37]

l 1 MB

3.4.1 Complexity Comparison

In terms of computational complexity, the greedy algorithm has O(KN) time complexity,

which performs K steps to visit all clusters and consumes O(N) operations to select a CH

at each step. The computational complexity of ACO is estimated by O(ImaxK
2MantN)

where Imax is the number of iterations and Mant is the number of ants [50]. At inference, the

computational complexity of the attention mechanism in our proposed algorithm is O(K+1)

at each decoding step, and the computational complexity of selecting a CH is O(N). We

have to perform K + 1 steps to output the final result, and hence, the total computational

complexity of our proposed algorithm can be further simplified as O((K + 1)2 + KN)) ≈

O(K(K + N)), which is lower than the complexity of the ACO. According to Gurobi’s

website [49], they use the branch-and-bound method to solve optimization problems. Thus,

94

0 5000 10000 15000 20000 25000 30000 35000 40000
Training step

0.0

0.2

0.4

0.6

0.8

1.0
∇ θ

J(θ
)

1e6

Figure 3.3 Training curve of the actor network.

the computational complexity of Gurobi is ultimately exponential, which is worse than our

proposed algorithm.

3.4.2 Environment and Parameters Settings

We consider a target area of 1 km × 1 km where the BS is located with coordinate b0 =

(500 m, 0 m). Simulation parameters are presented in Table 3.1. We employ Pytorch 1.4 and

Python 3.7 on a computer with 1 NVIDIA TESLA P100 GPU to implement the proposed

DRL algorithm. Each problem instance C is composed of the initial location b0 and K

clusters. The center (xk, yk) of each cluster Gk is firstly sampled from the distribution

torch.rand(2, 1) ∗ 1000. Then, the nodes in each cluster are sampled from the uniform

distribution Gk = np.random.uniform([xk − ζ, yk − ζ], [xk + ζ, yk + ζ], [N, 2]), where ζ is

a constant, [xk − ζ, yk − ζ] represents the left and lower boundaries of cluster Gk in the

2-dimensional space, [xk + ζ, yk + ζ] is the right and upper boundaries, 0 < xk− ζ < xk + ζ <

1000, 0 < yk − ζ < yk + ζ < 1000, and all clusters do not overlap with each other, i.e.,

G1 ∩ · · · ∩ Gk ∩ · · · ∩ GK = ∅. The final training data set Q is composed of all sampled

95

problem instances. Setting K = 4, we implement 40,000 training steps to train the model

where the batch size B is equal to 256 at each training step. Each element in any problem

instance C is embedded into a vector of size 128 by the encoder network. Accordingly, we

use LSTM cells with 128 hidden units in the decoder network. The initial learning rate of

the actor network and the critic network is set at 0.0001.

Fig. 3.3 shows the training curve of the actor network. One can see that the value

of ∇θJ (θ) decreases sharply in early steps, which is due to the rough approximation at

initialization that causes a large loss. When the number of iterations increases, ∇θJ (θ)

stabilizes and the proposed algorithm converges.

3.4.3 Trajectory and Energy Consumption Comparison

To show the effectiveness of the proposed algorithm, we compare its performance with

the performances of the greedy algorithm, ACO, and Gurobi in this section. We generate

a problem instance with four clusters {G1, G2, G3, G4} in the same way as generating the

train data. Then, the test data is fed into the trained model to evaluate the proposed DRL

algorithm.

In Fig. 3.4 (a), the value of ω in (4.21) is set to 0, which means that the goal is to minimize

the energy consumption of UAV only, which is proportional to UAV’s flight distance in our

system model. Since the greedy algorithm only yields locally optimal solutions by visiting

the nearest next CH as shown in Fig. 3.4 (a), it will not achieve the shortest UAV trajectory.

However, the trajectory generated by our proposed DRL algorithm completely coincides with

the optimal one obtained from Gurobi, which ensures the energy consumption of the UAV

is minimum. In addition, there is a visible gap between the trajectory generated by ACO

and the optimal trajectory.

For the results in Fig. 3.4 (b), we set ω = 0.3, which means that the energy consump-

tions of ground nodes and UAV account for 30% and 70% of the total energy consumption,

respectively. In order to minimize the total energy consumption in this case, the CH of

each cluster should be between the center and the edge of the cluster and close to the edge.

Obviously, all four algorithms can select CHs in the right position as well as plan trajectories

96

0 100 200 300 400 500 600 700 800 900
m

0

100

200

300

400

500

600

700

800

900

m

G1

G2

G3

G4

b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(a)

0 100 200 300 400 500 600 700 800 900
m

0

100

200

300

400

500

600

700

800

900

m

G1

G2

G3

G4

b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(b)

0 100 200 300 400 500 600 700 800 900
m

0

100

200

300

400

500

600

700

800

900

m

G1

G2

G3

G4

b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(c)

0 100 200 300 400 500 600 700 800 900
m

0

100

200

300

400

500

600

700

800

900

m

G1

G2

G3

G4

b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(d)

Figure 3.4 Trajectory comparison of DRL, greedy algorithm, ACO, and Gurobi

for different values of ω. (a) ω = 0. (b) ω = 0.3. (c) ω = 0.6. (d)

ω = 0.9.

to access these CHs. However, the trajectory obtained by our proposed DRL algorithm and

the one by Gurobi are almost identical, which exhibits our proposed algorithm can produce

the close-to-optimal solution.

The results in Fig. 3.4 (c) are obtained by setting ω = 0.6, which means that the

energy consumption of the ground nodes accounts for a larger proportion of the total energy

consumption. As a consequence, it is expected that CHs should be closer to the center of

97

0.0 0.2 0.4 0.6 0.8
ω

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175
En

er
gy

 c
on

su
m

pt
io

n
ra

tio
 n

or
m

al
ize

d
to

 G
ur

ob
i Greedy

ACO
Gurobi
DRL

Figure 3.5 Energy consumption comparison for 4 clusters.

the cluster. The visiting path produced by the greedy algorithm is

b0 → G1 → G4 → G3 → G2 → b0

which travels suitable CHs, but does not present the optimal path to access these CHs. The

trajectory produced by ACO is much better than the one of the greedy algorithm, which is

given by

b0 → G1 → G3 → G4 → G2 → b0.

However, our algorithm not only can find the appropriate CHs but also plan the optimal

access path to these CHs. The trajectories found by the proposed DRL algorithm and Gurobi

almost coincide again, as can be seen in Fig. 3.4 (c).

For the results in Fig. 3.4 (d), the value of ω is set to 0.9. The greedy algorithm

determines CHs and the trajectory according to its local “greedy” strategy, and it finally

98

0 100 200 300 400 500 600 700 800 900 1000
m

0

100

200

300

400

500

600

700

800

900

1000

m

G1

G2

G3
G4

G5

G6

G7b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(a)

0 100 200 300 400 500 600 700 800 900 1000
m

0

100

200

300

400

500

600

700

800

900

1000

m

G1

G2

G3
G4

G5

G6

G7b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(b)

0 100 200 300 400 500 600 700 800 900 1000
m

0

100

200

300

400

500

600

700

800

900

1000

m

G1

G2

G3
G4

G5

G6

G7b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(c)

0 100 200 300 400 500 600 700 800 900 1000
m

0

100

200

300

400

500

600

700

800

900

1000

m

G1

G2

G3
G4

G5

G6

G7b0

Selected CH and trajectory by Greedy
Selected CH and trajectory by ACO
Selected CH and trajectory by Gurobi
Selected CH and trajectory by DRL

(d)

Figure 3.6 Trajectory comparison of DRL, greedy algorithm, ACO, and Gurobi

for different values of ω. (a) ω = 0.1. (b) ω = 0.3. (c) ω = 0.5. (d)

ω = 0.8.

produces the below access order to the four clusters

b0 → G4 → G3 → G2 → G1 → b0.

The access order to clusters obtained by ACO is

b0 → G1 → G2 → G4 → G3 → b0

which is better than the order obtained with the greedy algorithm, and inferior to the one

found by our proposed DRL algorithm. As for the proposed DRL algorithm, the access order

99

to four clusters is found to be

b0 → G1 → G3 → G4 → G2 → b0

which also nearly coincides with the trajectory obtained by Gurobi. Through the above four

cases, it is clear that our DRL algorithm can find optimal or nearly optimal trajectories when

compared with the trajectories found by Gurobi, and it also performs much better than the

greedy and the ACO algorithms.

Based on the above simulation results, we present a more detailed analysis of our proposed

algorithm in Fig. 3.5. Specifically, this figure plots the ratios of the energy consumptions

of our proposed DRL, the greedy and the ACO algorithms to the energy consumptions of

Gurobi which are all normalized to one at different values of ω. The results are averaged

over 30 test instances. It can be clearly seen that the energy consumption of our proposed

DRL algorithm is very close to the optimal value obtained by Gurobi and less than that

of the ACO and the greedy algorithms for all different values of ω. As expected, the ACO

algorithm outperforms the greedy algorithm in reducing the energy consumption.

3.4.4 Trajectory and Energy Consumption Comparison on the 7-

Clusters IoT Network

In this subsection, we generate a 7-clusters problem instance using the same way as

generating the training data, and observe the obtained trajectories on the previously trained

4-clusters model and the three baselines. As shown in Fig. 3.6, our proposed DRL algorithm

can find the appropriate CH from each cluster even when the value of ω changes. In addition,

it can plan the access trajectory to CHs under different ω, as follows

b0 → G1 → G6 → G4 → G3 → G2 → G5 → G7 → b0.

We can see that the trajectories obtained with the proposed DRL algorithm are very close

or fully coincide with the optimal trajectories generated by Gurobi in four cases of Fig. 3.6.

However, the greedy algorithm shows the worst trajectory planning ability. In Fig. 3.6 (a),

(b), (c), the UAV’s access order to clusters by the greedy algorithm is given by

b0 → G1 → G2 → G3 → G5 → G7 → G6 → G4 → b0

100

0.0 0.2 0.4 0.6 0.8
ω

1.00

1.05

1.10

1.15

1.20

1.25

1.30

En
er

gy
 c

on
su

m
pt

io
n

ra
tio

 n
or

m
al

ize
d

to
 G

ur
ob

i Greedy
ACO
Gurobi
DRL

Figure 3.7 Energy consumption comparison for 7 clusters.

and in Fig. 3.6 (d), the access order is

b0 → G2 → G3 → G5 → G7 → G1 → G6 → G4 → b0.

As for the ACO algorithm, when compared to the greedy and our proposed DRL algorithms,

it can plan a reasonable trajectory to 7 clusters as shown in Fig. 3.6 (a), (b), (c)

b0 → G1 → G6 → G4 → G3 → G2 → G5 → G7 → b0

but in Fig. 3.6 (d), its trajectory turns worse, which is given by

b0 → G2 → G5 → G3 → G4 → G6 → G1 → G7 → b0.

The trajectory comparison results show that the model trained by our proposed DRL al-

gorithm has good scalability and generalization abilities to plan the trajectories for new

problem instance without retraining the model.

In Fig. 3.7, energy consumption comparison over the averaged results of 30 test instances

shows that our proposed DRL algorithm can achieve close-to-minimum energy consumption

101

4 5 6 7 8 9 10
K

1.00

1.05

1.10

1.15

1.20

1.25

1.30

En
er

gy
 c

on
su

m
pt

io
n

ra
tio

 n
or

m
al

ize
d

to
 G

ur
ob

i Greedy
ACO
Gurobi
DRL

Figure 3.8 Energy consumption comparison when K varies.

obtained by Gurobi, and performs better than the greedy and the ACO algorithms. From

the above analysis, one can see that the trained model by a large amount of 4-clusters

problem instances can plan a near-optimal trajectory on 7-clusters problem instance, without

retraining the model for the test data. This is consistent with the fact that RNNs used in

our model have been shown to have very good scalability and generalization [53].

3.4.5 Further Investigation for the Generalization Ability

The scalability and generalization abilities of the trained model is further studied when K

varies, and the results are shown in Fig. 3.8 for ω = 0.5. Since Gurobi is the exact solver, it

always obtains the optimal solutions at different values of K. It is clear that the performance

gap between the other three algorithms and Gurobi gradually increases as the value of K

increases. However, our proposed DRL algorithm clearly exhibits a superior performance

than the greedy and the ACO algorithms in terms of saving the energy consumption. Table

3.2 compares the running times of different algorithms. As the number of clusters increases,

102

Table 3.2 Running time comparison.

Time

Greedy ACO Gurobi DRL

K

4 0.18 s 6.92 s 1800 s 0.36 s

5 0.19 s 10.15 s 2711 s 0.37 s

6 0.22 s 14.33 s 3722 s 0.39 s

7 0.25 s 19.23 s 5405 s 0.39 s

8 0.29 s 25.82 s 6908 s 0.41 s

9 0.32 s 31.21 s 9701 s 0.41 s

10 0.33 s 38.14 s 12500 s 0.42 s

the computation times of all four algorithms increase. Although Gurobi obtains the best

performance in reducing the energy consumption according to the previous simulation results,

it takes the most computational time to deliver the optimal results. The computation time

of our DRL algorithm is slightly higher than that of the greedy algorithm, but significantly

less than that of the ACO algorithm and Gurobi.

3.5 Conclusion

In this paper, we have investigated the problem of jointly designing the UAV’s trajectory

and selecting CHs for an IoT network to minimize the total energy consumption in the

UAV-IoT system. Inspired by the promising development of DRL, we propose a novel DRL-

based method to solve this problem. In our proposed method, DRL with a Seq2Seq neural

network is used to learn the policy of the trajectory planning with the aim of minimizing the

total weighted energy consumption of the UAV-IoT system. Extensive simulation results

demonstrated that our proposed method outperforms the ACO and greedy algorithms in

planning the UAV’s trajectory and achieves nearly optimal results when compared to the

results obtained by the Gurobi optimizer. In addition, our proposed DRL algorithm has

103

excellent abilities of generalization, scalability, and automation to solve different problem

instances with different numbers of clusters, without retraining the model for new problems.

Considering computation times and the energy consumption results, our proposed method

offers an appealing balance between performance and complexity.

Acknowledgement

This work was supported by an NSERC/Cisco Industrial Research Chair in Low-Power

Wireless Access for Sensor Networks.

104

References

[1] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT: Applications, challenges,

and opportunities with china perspective,” IEEE Internet of Things Journal, vol. 1,

pp. 349–359, Aug. 2014.

[2] H. Xie, Z. Yan, Z. Yao, and M. Atiquzzaman, “Data collection for security measure-

ment in wireless sensor networks: A survey,” IEEE Internet of Things Journal, vol. 6,

pp. 2205–2224, Apr. 2019.

[3] K. R. Choo, S. Gritzalis, and J. H. Park, “Cryptographic solutions for industrial

internet-of-things: Research challenges and opportunities,” IEEE Transactions on In-

dustrial Informatics, vol. 14, pp. 3567–3569, Aug. 2018.

[4] Q. Zhang, M. Liu, X. Lin, Q. Liu, J. Wu, and P. Xia, “Optimal resonant beam charging

for electronic vehicles in internet of intelligent vehicles,” IEEE Internet of things journal,

vol. 6, pp. 6–14, Feb. 2018.

[5] C. Tseng, C. Cheng, Y. Hsu, and B. Yang, “An IoT-based home automation system

using Wi-Fi wireless sensor networks,” in Proc. IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC), pp. 2430–2435, Oct. 2018.

[6] D. Wei, L. Yan, C. Huang, J. Wang, J. Chen, M. Pan, and Y. Fang, “Dynamic magnetic

induction wireless communications for autonomous-underwater-vehicle-assisted under-

water IoT,” IEEE Internet of Things Journal, vol. 7, pp. 9834–9845, Aug. 2020.

[7] Y. Kim, E. Lee, and H. Park, “Ant colony optimization based energy saving routing

for energy-efficient networks,” IEEE Communications Letters, vol. 15, pp. 779–781, Jul.

2011.

[8] D. Lin, W. Min, and J. Xu, “An energy-saving routing integrated economic theory with

compressive sensing to extend the lifespan of WSNs,” IEEE Internet of Things Journal,

vol. 7, pp. 7636–7647, Aug. 2020.

105

[9] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, “UAV trajectory

planning for data collection from time-constrained IoT devices,” IEEE Transactions on

Wireless Communications, vol. 19, pp. 34–46, Jan. 2019.

[10] Z. Wang, R. Liu, Q. Liu, J. S. Thompson, and M. Kadoch, “Energy-efficient data col-

lection and device positioning in UAV-assisted IoT,” IEEE Internet of Things Journal,

vol. 7, pp. 1122–1139, Feb. 2019.

[11] B. Liu and H. Zhu, “Energy-effective data gathering for UAV-aided wireless sensor

networks,” Sensors, vol. 19, p. 2506, May 2019.

[12] J. Baek, S. I. Han, and Y. Han, “Energy-efficient UAV routing for wireless sensor

networks,” IEEE Transactions on Vehicular Technology, vol. 69, pp. 1741–1750, Feb.

2019.

[13] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in UAV enabled

wireless sensor network,” IEEE Wireless Communications Letters, vol. 7, pp. 328–331,

Jun. 2018.

[14] Q. Song, S. Jin, and F. Zheng, “Completion time and energy consumption minimization

for UAV-enabled multicasting,” IEEE Wireless Communications Letters, vol. 8, pp. 821–

824, Jun. 2019.

[15] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with

rotary-wing UAV,” IEEE Transactions on Wireless Communications, vol. 18, pp. 2329–

2345, Apr. 2019.

[16] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control for

effective and fair communication coverage: A deep reinforcement learning approach,”

IEEE Journal on Selected Areas in Communications, vol. 36, pp. 2059–2070, Sep. 2018.

[17] D. H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse

trajectory design for energy minimization in UAV-enabled,” IEEE Transactions on Ve-

hicular Technology, vol. 69, pp. 9483–9496, Sep. 2020.

106

[18] D. Rojas Viloria, E. L. Solano-Charris, A. Muñoz-Villamizar, and J. R. Montoya-Torres,

“Unmanned aerial vehicles/drones in vehicle routing problems: A literature review,”

International Transactions in Operational Research, vol. 28, pp. 1626–1657, Mar. 2020.

[19] K. Zhu, X. Xu, and S. Han, “Energy-efficient UAV trajectory planning for data collection

and computation in mMTC networks,” in Proc. IEEE Globecom Workshops, pp. 1–6,

Dec. 2018.

[20] B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, “Learning-based energy-

efficient data collection by unmanned vehicles in smart cities,” IEEE Transactions on

Industrial Informatics, vol. 14, pp. 1666–1676, Apr. 2018.

[21] S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, “Data freshness and

energy-efficient UAV navigation optimization: A deep reinforcement learning approach,”

IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 5994–6006, Sep.

2021.

[22] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and frequency band

allocation for energy-efficient and fair communication: A deep reinforcement learning

approach,” IEEE Transactions on Wireless Communications, vol. 19, pp. 7796–7809,

Dec. 2020.

[23] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, S. Sun, and B. Ottersten, “Energy mini-

mization in UAV-aided networks: Actor-critic learning for constrained scheduling op-

timization,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 5028–5042, May

2021.

[24] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning

for combinatorial optimization: A survey,” Computers Operations Research, vol. 134,

p. 105400, Oct. 2021.

[25] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement learning for multi-

agent systems: A review of challenges, solutions, and applications,” IEEE Transactions

on Cybernetics, vol. 50, pp. 3826–3839, Sep. 2020.

107

[26] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization:

A methodological tour d’horizon,” European Journal of Operational Research, vol. 290,

pp. 405–421, Apr. 2021.

[27] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3D bin packing problem

with deep reinforcement learning method,” arXiv preprint arXiv:1708.05930, 2017.

[28] J. Lu, L. Feng, J. Yang, M. M. Hassan, A. Alelaiwi, and I. Humar, “Artificial agent:

The fusion of artificial intelligence and a mobile agent for energy-efficient traffic control

in wireless sensor networks,” Future Generation Computer Systems, vol. 95, pp. 45–51,

Jun. 2019.

[29] J. J. Q. Yu, W. Yu, and J. Gu, “Online vehicle routing with neural combinatorial op-

timization and deep reinforcement learning,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 20, pp. 3806–3817, Oct. 2019.

[30] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective opti-

mization,” IEEE Transactions on Cybernetics, vol. 51, pp. 3103–3114, Jun. 2021.

[31] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and F. Liberal, “Vir-

tual network function placement optimization with deep reinforcement learning,” IEEE

Journal on Selected Areas in Communications, vol. 38, pp. 292–303, Feb. 2020.

[32] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “UAV trajectory planning

in wireless sensor networks for energy consumption minimization by deep reinforcement

learning,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 9540–9554, Sep.

2021.

[33] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Improved soft-k-means

clustering algorithm for balancing energy consumption in wireless sensor networks,”

IEEE Internet of Things Journal, vol. 8, pp. 4868–4881, Mar. 2021.

[34] J. Yao and N. Ansari, “Qos-aware power control in internet of drones for data collection

service,” IEEE Transactions on Vehicular Technology, vol. 68, pp. 6649–6656, Jul. 2019.

108

[35] M. B. Ghorbel, D. Rodŕıguez-Duarte, H. Ghazzai, M. J. Hossain, and H. Menouar,

“Joint position and travel path optimization for energy efficient wireless data gathering

using unmanned aerial vehicles,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 2165–2175, Mar. 2019.

[36] R. Roberti and P. Toth, “Models and algorithms for the asymmetric traveling salesman

problem: an experimental comparison,” EURO Journal on Transportation and Logistics,

vol. 1, pp. 113–133, Jun. 2012.

[37] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific pro-

tocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless

Communications, vol. 1, pp. 660–670, Mar. 2002.

[38] W. B. Heinzelman, Application-specific protocol architectures for wireless networks. PhD

thesis, Massachusetts Institute of Technology, 2000.

[39] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial opti-

mization with reinforcement learning,” in Proc. International Conference on Learning

Representations (ICLR) Workshop, pp. 1–5, Apr. 2017.

[40] I. Bello, S. Kulkarni, S. Jain, C. Boutilier, E. Chi, E. Eban, X. Luo, A. Mackey, and

O. Meshi, “Seq2slate: Re-ranking and slate optimization with RNNs,” in Proc. Inter-

national Conference on Learning Representations (ICLR), pp. 1–12, May 2019.

[41] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác, “Reinforcement learning for

solving the vehicle routing problem,” in Proc. Advances Neural Information Processing

Systems (NIPS), pp. 9861–9871, Dec. 2018.

[42] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. Advances in

Neural Information Processing Systems (NIPS), vol. 28, pp. 2692–2700, Dec. 2015.

[43] Y. Zhu, X. Dong, and T. Lu, “An adaptive and parameter-free recurrent neural struc-

ture for wireless channel prediction,” IEEE Transactions on Communications, vol. 67,

pp. 8086–8096, Nov. 2019.

109

[44] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption

generator,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3156–3164, Jun. 2015.

[45] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[46] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Advances Neural

Information Processing Systems (NIPS), pp. 1008–1014, Dec. 1999.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.

International Conference on Learning Representations (ICLR), pp. 1–13, May 2015.

[48] F. B. Mismar, B. L. Evans, and A. Alkhateeb, “Deep reinforcement learning for 5G

networks: Joint beamforming, power control, and interference coordination,” IEEE

Transactions on Communications, vol. 68, pp. 1581–1592, Mar. 2020.

[49] Gurobi, “Math programming modeling basics,” 2021. [Online]. Available:

https://www.gurobi.com/resource/mip-basics/.

[50] J. Yang, X. Shi, M. Marchese, and Y. Liang, “An ant colony optimization method for

generalized TSP problem,” Progress in Natural Science, vol. 18, pp. 1417–1422, Nov.

2008.

[51] H. Ghazzai, M. Ben Ghorbel, A. Kadri, M. J. Hossain, and H. Menouar, “Energy-

efficient management of unmanned aerial vehicles for underlay cognitive radio systems,”

IEEE Transactions on Green Communications and Networking, vol. 1, pp. 434–443, Dec.

2017.

[52] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum

coverage,” IEEE Wireless Communications Letters, vol. 3, pp. 569–572, Dec. 2014.

[53] Z. Tu, F. He, and D. Tao, “Understanding generalization in recurrent neural networks,”

in Proc. International Conference on Learning Representations (ICLR), pp. 1–16, Apr.

2020.

110

4. UAV Trajectory Planning in Wireless Sensor

Networks for Energy Consumption

Minimization by Deep Reinforcement

Learning

Published as:

B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton and J. Henry, “UAV trajectory planning

in wireless sensor networks for energy consumption minimization by deep reinforcement

learning,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9540–9554, Sep.

2021.

In Chapter 3, the total energy consumption minimization problem in a UAV-IoT system

is formulated to jointly design the UAV’s trajectory and select CHs for the IoT network.

The formulated problem is viewed as a Seq2Seq decision problem and solved by the DRL al-

gorithm with a sequential model. The proposed DRL algorithm can achieve close-to-optimal

performance on small-scale-clusters networks when compared to other baseline algorithms.

In this chapter, we continue to investigate the total energy consumption minimization

problem in an UAV-WSN network. Because the visiting order of the UAV to ground clusters

can be regarded as a sequential decision problem, we design a novel DRL-based method,

called pointer network-A* (Ptr-A*), to find the trajectory of the UAV. The UAV’s start

point and all clusters, as the input, are fed into the Ptr-A* model, and its output is a set

of CHs and the visiting order to these CHs, i.e., the UAV’s trajectory. Specifically, the

pointer network of the proposed Ptr-A* model is used to determine the visiting order to

clusters. Then, a search graph for all clusters is built according to the visiting order. The

111

A* search algorithm is utilized to quickly find the CH for each cluster from the search graph

with the aim of minimizing the energy consumption of the UAV-WSN system. In order to

obtain optimal parameters of the Ptr-A*, we employ the model-free RL method to train

the proposed Ptr-A* model in an unsupervised manner. The proposed Ptr-A* model shows

good performance not only on small-scale-clusters networks, but also on large-scale-clusters

networks.

112

UAV Trajectory Planning in Wireless Sensor Networks

for Energy Consumption Minimization by Deep

Reinforcement Learning

Botao Zhu, Ebrahim Bedeer, Ha Nguyen,

Robert Barton, and Jerome Henry

Abstract

Unmanned aerial vehicles (UAVs) have emerged as a promising candidate solution

for data collection of large-scale wireless sensor networks (WSNs). In this paper,

we investigate a UAV-aided WSN, where cluster heads (CHs) receive data from

their member nodes, and a UAV is dispatched to collect data from CHs. We aim

to minimize the total energy consumption of the UAV-WSN system in a complete

round of data collection. Toward this end, we formulate the energy consumption

minimization problem as a constrained combinatorial optimization problem by

jointly selecting CHs from clusters and planning the UAV’s visiting order to the

selected CHs. The formulated energy consumption minimization problem is NP-

hard, and hence, hard to solve optimally. To tackle this challenge, we propose

a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-

A*), which can efficiently learn the UAV trajectory policy for minimizing the

energy consumption. The UAV’s start point and the WSN with a set of pre-

determined clusters are fed into the Ptr-A*, and the Ptr-A* outputs a group of

CHs and the visiting order of CHs, i.e., the UAV’s trajectory. The parameters of

the Ptr-A* are trained on small-scale clusters problem instances for faster training

by using the actor-critic algorithm in an unsupervised manner. Simulation results

show that the trained models based on 20-clusters and 40-clusters have a good

generalization ability to solve the UAV’s trajectory planning problem in WSNs

with different numbers of clusters, without retraining the models. Furthermore,

the results show that our proposed DRL algorithm outperforms two baseline

techniques.

113

Index Terms

Combinatorial optimization, deep reinforcement learning, trajectory planning,

UAV, WSN.

4.1 Introduction

The use of unmanned aerial vehicles (UAVs) has recently attracted a lot of attention from

both the research community and industry. UAVs have been used for a variety of purposes [1],

such as environmental monitoring, mobile cloud computing, disaster management, security

operations, and wireless power transfer, to name a few. The popularity and widespread

applications of UAVs are due to their many advantages, such as cost-effectiveness, having

line-of-sight (LoS) links with the ground devices, mobility, and reliable network access [2].

In order to overcome the limitations of the tradition wireless sensor networks (WSNs),

extensive research has been done on the integration of UAVs and WSNs for long-distance

mission communications where UAVs are considered as mobile sinks for receiving data from

cluster heads (CHs), and then, they can transmit the collected data to terrestrial BSs for

further processing. Using UAVs as mobile sinks can reduce the energy consumption of ground

nodes in WSNs when compared to the traditional multi-hop WSNs which transmit data from

each node to the sink node over a long distance or several hops [3]. Despite the advantages,

the integration of UAVs and WSNs still grapples with many challenges. First of all, due to

the limited energy source carried by UAVs, the service range of UAVs is constrained by the

reality that they cannot travel very long distances or fly for long periods of time. Second,

battery life of sensor nodes in WSNs is typically limited, and in many cases it is hard to

regularly replace their batteries. As a result, frequent communication with UAVs can cause

sensor nodes to exhaust their energy rapidly. Hence, it is important to study the energy

saving problem in UAV-enabled WSNs.

4.1.1 Motivation

Prior works on the energy consumption minimization for UAV-enabled WSNs can be

classified into three categories depending on the objectives. The first category only considers

114

minimizing the UAV’s energy consumption, e.g., [4, 5]. In contrast, the second category

considers only minimizing the energy consumption of the ground devices in the UAV-aided

wireless networks, e.g., [6, 7]. In the third category, the energy of both the UAV and the

ground devices are taken into account when minimizing the energy consumption of the UAV-

enabled system, e.g., [8, 9]. However, most of the aforementioned studies assume the UAV

directly communicates with each device of the ground wireless network. In this case, if the

UAV flies over all devices in a large-scale WSN, it would lead to a long flight trajectory for

the UAV which increase its energy consumption. As a result, the UAV may run out of its

energy in flight or may need to recharge its battery frequently.

Motivated by the aforementioned works, in this paper we investigate the problem of mini-

mizing the total energy consumption of the UAV and the ground devices in a clustered WSN,

which has not been well researched in prior works. We assume that devices on the ground

have been clustered according to some specific criterion, e.g., based on their geographical

locations; hence, clustering techniques for WSNs will not be discussed in this paper. In each

pre-determined cluster in our system model, one of the ground devices will be selected as

the CH, which is responsible for collecting data from the non-CH devices in the same clus-

ter. Hence, the UAV only needs to visit a set of CHs for gathering data along the planned

trajectory that is determined by locations of the ground CHs. The selection of CHs affects

both the energy consumption of the ground devices and the UAV, as shown in the following

illustrative example.

Consider the case where nodes of three clusters are deployed in a given area as shown

in Fig. 4.1. There are two candidate solutions of potential CHs. One possible solution, i.e.,

trajectory 1, selects the “center” node of each cluster as the CH, such as cc1, cc2, cc3, and the

other possible solution, i.e., trajectory 2, selects non-center nodes as the CHs, e.g. c1, c2, c3.

The start/end location of the UAV is (0, 0). If the UAV chooses to follow trajectory 1,

the energy consumption between CHs and their member nodes will be minimal because the

Euclidean distances between member nodes and their CHs are minimal (on average) per

cluster [10]. However, this will lead to an increase in energy consumption of the UAV as its

flight trajectory may be longer, and hence, may not be optimal from the start point to the

115

0 10 20 30 40 50 60 70 80 90 100

m

0

10

20

30

40

50

60

70

80

90

100

m

Figure 4.1 Comparison of different UAV’s trajectories.

end point, which can be seen from trajectory 1 in Fig. 1. On the contrary, if the UAV goes

through trajectory 2, it will consume less energy in flight because trajectory 2 is shorter than

trajectory 1. But, the communication energy consumption between CHs and their member

nodes will be higher in this case. From the above simple example and discussion, it is clearly

important and relevant to study the energy-efficient UAV’s trajectory planning in clustered

WSNs in order to minimize the overall energy consumption of the UAV and the ground

network.

4.1.2 Related Works

UAV Trajectory Planning

Energy-efficient trajectory planning for UAVs has recently attracted significant research

interest, and multiple solutions have been proposed for UAV-enabled wireless networks.

In general, existing solutions for energy-efficient UAV trajectory planning can be loosely

116

classified into two categories: non-machine learning-based methods and machine learning-

based methods. In the first category, researchers mostly use mathematical programming or

heuristic algorithms to solve the trajectory optimization problem. However, the computation

time of mathematical programming algorithms may increase exponentially as the problem

size increases, e.g., [11, 12]. Although some heuristic algorithms are applied to design the

energy-efficient path in the UAV-enabled wireless networks, such as ant colony optimization

[13] and cuckoo search [14], they usually cannot fully adapt to the increasing complexity of

scalable wireless networks.

Regarding the machine learning-based category, deep reinforcement learning (DRL) and

reinforcement learning (RL) are the most common techniques in solving the UAV’s trajectory

planning. In [15], the authors propose a DRL-based method which is composed of two

deep neural networks (DNNs) and deep deterministic policy gradient (DDPG) to maximize

the energy efficiency for a group of UAVs by jointly considering communications coverage,

energy consumption, and connectivity. In order to minimize the UAV’s transmission and

hovering energy, the authors in [16] formulate the energy-efficient optimization problem as a

Markov decision process. Then, they use two DNNs and the actor-critic-based RL algorithm

to develop an online DRL algorithm that shows a good performance in terms of energy

savings. In [17], the authors jointly optimize the UAV’s 3D trajectory and the frequency

band allocation of ground users by considering the UAV’s energy consumption and the

fairness of the ground users. A DDPG-based DRL algorithm is developed to generate the

energy-efficient trajectory with fair communication service to ground users. In [18], with the

aim of designing an energy-efficient UAV’s route for long-distance sensing tasks, the authors

propose a DRL-based framework where convolutional neural networks (CNNs) are used for

extracting features and the deep Q-network (DQN) is utilized to make decisions. Towards

realizing green UAV-enabled Internet of Things (IoT), the authors in [19] formulate the

UAV’s path planning problem as a dynamic decision optimization problem, which is solved

by dueling DQN. The aforementioned machine learning-based methods show strong ability

to handle complex wireless environments and effectively learn the UAV’s trajectory policy

from experiences; however, they are implemented by using some common neural network

117

models, such as DNNs, DQN, and CNNs. Instead of common neural network models, in

this paper we exploit the appealing concept of sequence-to-sequence learning that originally

emerged in Natural Language Processing to design the DRL algorithm to solve the UAV’s

path planning problem in clustered WSNs.

Sequence-to-Sequence Learning

Sequence-to-sequence learning has shown great success in machine translation where

sentences are mapped to correct translations [20]. Over the last several years, many neural

networks based on sequence-to-sequence models have been proposed in different applications.

For example, pointer network is one of the extensively studied models because of its excel-

lent ability in solving sequence decision problems. In [21], pointer network is trained in a

supervised fashion to solve the traveling salesman problem (TSP). The work of [22] uses a

RL-based unsupervised method to train the pointer network and obtains better results when

compared to the supervised learning in [21]. In [23], the authors propose a structural graph

embedded pointer network to develop online vehicular routes in intelligent transportation

systems. The authors in [24] propose a modified pointer network to solve the keyword rec-

ommendation problem in sponsored search advertising system. In [25], a simplified pointer

network is introduced to solve Vehicle Routing Problem (VRP) in dynamic traffic environ-

ments. Different from the above-discussed research works, we extend the state-of-the-art

pointer network-based DRL to solve the UAV’s trajectory planning problem. Our contribu-

tions are elaborated in the next subsection.

4.1.3 Contributions

We aim to minimize the overall UAV-WSN’s energy consumption by designing an efficient

UAV’s trajectory in a clustered WSN. Since the UAV’s visiting order to the ground CHs can

be seen as a sequence decision problem, we propose a sequence-to-sequence learning-based

DRL strategy with pointer network to deal with the challenging trajectory planning problem.

The pointer network can capture the relation between a problem instance and its solution

by using a sequence-to-sequence neural network. It has been demonstrated to be an effective

method to solve some NP-hard problems, such as TSP [22] and VRP [25]. Hence, it is

118

expected that the pointer network-based DRL algorithm is also promising for solving the

problem of the UAV trajectory planning for the UAV-WSN system. The main contributions

of this paper are summarized as follows:

1. We consider a UAV-enabled energy-efficient data collection framework for clustered

WSNs. We formulate an optimization problem to minimize the energy consumption of

the entire UAV-WSN system by jointly designing the UAV’s trajectory and selecting

CHs in pre-determined clusters of the ground WSN.

2. We show that the UAV’s trajectory planning problem in the clustered WSN can be seen

as a sequence of decisions. Hence, a sequence-to-sequence pointer network-A* (Ptr-A*)

model is proposed to solve the formulated problem. Particularly, the pointer network

is utilized to model the visiting order of all ground clusters, and A* algorithm [26] is

used to efficiently select CHs from clusters’ ground nodes. The UAV’s start point and

all clusters, as the input, are fed into the Ptr-A* model, and its output is a set of CHs

and the visiting order to these CHs, i.e., the UAV’s trajectory.

3. We use a self-driven learning mechanism that only needs the reward calculation to

train the parameters of Ptr-A* network on problem instances with small-scale clusters

for faster training.

4. Our proposed DRL method has an excellent generalization capability with respect to

the number of clusters used for training. In other words, given a new problem instance

with any number of clusters, the trained model can automatically generate a trajectory

for the UAV to visit clusters, without retraining the new model.

5. We perform extensive simulations to demonstrate that the proposed DRL method

outperforms other baseline techniques when considering both the computation times

and energy consumption results.

The rest of this paper is organized as follows. Section 4.2 presents the system model and

the problem formulation. Section 4.3 describes the proposed DRL algorithm. Section 4.4

provides simulation results. Finally, Section 4.5 concludes the paper.

119

4.2 System Model and Problem Formulation

As mentioned earlier, we assume that devices on the ground have been clustered accord-

ing to some specific criterion, e.g., based on their geographical locations; hence, clustering

techniques for the ground WSN are not discussed in this work. In particular, we consider

K clusters of sensor nodes {G1, . . . ,GK} located in the sensing (service) area for data col-

lection. Each cluster contains N nodes, one of which is the CH, represented by bk ∈ Gk,

that will be selected by our proposed algorithm. We assume that only one rotary-wing UAV

is dispatched to visit CHs to collect data from the ground network. The UAV takes off

from the start position b0 and then back to b0 after finishing the data collection task. The

trajectory of the UAV should contain the start/end hovering position c0 corresponding to

b0, and the K target hovering positions {c1, . . . , cK}, which are vertically above the ground

CHs. Hence, the trajectory planning problem of the UAV can be seen as a permutation

of (K + 1) hovering positions. It is obvious that the locations of CHs determine the flight

trajectory, and hence, the energy consumption of UAV and the ground nodes. We consider a

three-dimensional (3D) Cartesian coordinates system to define the positions of ground nodes

and the UAV. The position of the CH of the k-th cluster is bk = (xk, yk, 0). Correspondingly,

the coordinate of the UAV’s hovering position ck can be represented by (xk, yk, H), where

H is the fixed flight height of the UAV. Similarity, the coordinate of the n-th member node

of the k-th cluster b
(n)
k is denoted as

(
x
(n)
k , y

(n)
k , 0

)
, n = 1, . . . , N − 1, k = 1, . . . , K, and

b
(n)
k ̸= bk.

4.2.1 Channel Model

There is a number of channel models that have been developed for UAV communications,

e.g., [27,28]. In this work, we consider a simple air-to-ground channel model that is described

as follows. For ground-to-air communication, there is a certain probability that each CH bk

has a LoS view towards the UAV when it hovers at the hovering position ck. This probability

typically depends on the environment and elevation angle, and is given by [8]

PLoS =
1

1 + η exp (−β[τ − η])
, (4.1)

120

where η and β are constants determined by environment, and τ = 180
π
× sin−1

(
H
dk

)
, where dk

is the distance between bk and ck. Since it is assumed that each hovering position is directly

above the corresponding CH, one has dk = H. Obviously, the non-line-of-sight (NLoS)

probability is given by PNLoS = 1 − PLoS. The average path loss between each CH and the

UAV can be expressed as [8]

P loss = PLoS (K0 + µLoS) + PNLoS (K0 + µNLoS) (4.2)

where µLoS and µNLoS are the mean values of the excessive path losses in LoS and NLoS links,

respectively, K0 = 10α log10

(
4πfcH
c

)
, α is the path loss exponent, c is the speed of light, and

fc is the carrier frequency. Thus, the average data rate from each CH to the UAV can be

computed as [8]

rdata = Bwidth log2

(
1 +

PCH

P lossN0

)
(4.3)

where Bwidth is the available bandwidth, N0 is the noise power spectral density, and PCH is

the transmit power of each CH.

4.2.2 UAV’s Energy and Trajectory Model

We assume that the UAV supports a flying-hovering mode without considering acceleration-

deceleration patterns. After the UAV flies to the hovering position ck with a fixed speed vUAV,

it hovers there and transfers a beacon frame to wake up the corresponding CH bk from sleep

mode to active model. Then, bk starts to collect data from its member nodes by time-division

multiple access (TDMA) and forwards the collected data to the UAV. At each hovering posi-

tion, the energy consumption of the UAV includes two parts: communication-related energy

and hover-related energy. The hovering power is given by [8], [29]

Phover =

√
(mtotg)3

2πr2pnpρ
(4.4)

where g is the earth gravity, ρ is the air density, np is the number of propellers, rp is the

propeller radius, and finally mtot is the mass of the UAV. Thus, the energy consumed by the

121

UAV at each hovering position ck is given by

Eck = Tk(Phover + Pcom)

=
Dk

rdata
(Phover + Pcom) (4.5)

where Tk is the total hovering time of the UAV at ck, Dk is the amount of data that needs to

be transferred from CH bk to the UAV, and Pcom is the communication power of the UAV.

In order to simplify the analysis, we assume that the hovering time is equal to the data

transmission time from bk to the UAV.

The horizontal movement power is assumed as a linear function of the UAV’s flight speed

vUAV, which is expressed as [8], [29]

Pmove =
Pmax − Pidle

vmax

vUAV + Pidle (4.6)

where vmax is the maximum speed of the UAV, Pmax and Pidle are the hardware power levels

when the UAV is moving at full speed and when the UAV is in idle state, respectively.

Because the UAV needs to start from the start hovering location c0, goes through all target

hovering positions c1, . . . , cK , and then back to c0, the total energy consumption of the UAV

in flight is given by [8], [29]

Eflight = Tflight (Phover + Pmove) (4.7)

where Tflight is the total flight time, which can be expressed as

Tflight =
1

vUAV

K∑
i=0

K∑
j=0
j ̸=i

dci,cjLci,cj , ∀ci, cj ∈ C (4.8)

where C = {c0, c1, . . . , cK}, ck is determined by bk, bk ∈ Gk, and Lci,cj specifies whether the

UAV travels from stop position ci to cj, which is defined as

Lci,cj =

1, if the path goes from ci to cj

0, otherwise.

(4.9)

The quantity dci,cj is the Euclidean distance between ci and cj, which is given by

dci,cj = ||ci − cj|| = ||bi − bj||. (4.10)

122

In order to meet the requirements of the UAV’s trajectory, we need to consider the following

constraints:
K∑
i=0
i ̸=j

Lci,cj = 1, ∀ci, cj ∈ C (4.11)

K∑
j=0
j ̸=i

Lci,cj = 1, ∀ci, cj ∈ C (4.12)

∑
ci∈F

∑
cj∈F

Lci,cj ≤ |F | − 1, ∀F ⊂ C; |F | ≥ 2. (4.13)

The constraints (4.11) and (4.12) guarantee that there is only one UAV path entering and

leaving a given node, which means that the UAV should visit each point in C exactly once.

Constraint (4.13) is the sub-trajectories elimination constraint and enforces that no partial

loop exists where F is the subset of C [30], which means there is only one single trajectory

covering all CHs.

According to the above analysis, the total energy consumption of the UAV is composed

of the flying-related and the hovering-related energy consumption, which can be written as

EUAV = Eflight +
K∑
k=1

Eck . (4.14)

4.2.3 Ground Network and Energy Model

We assume that all nodes have the same computation and transmission capabilities. In

other words, all nodes are capable of acting as a CH. Nodes are static after being deployed.

All member nodes transmit their sensing information to CHs periodically and CHs forward

the collected data to the UAV. We also assume that the transmission energy of each node is

sufficient to send messages to its CH. In addition, the UAV can simultaneously connect to

at most one CH. Hence, there is no interference among neighboring CHs.

The energy consumption in the ground network includes two components. The first

component is the communication energy consumption between CHs and their member nodes.

The first-order radio model [31] is used to calculate the energy consumption of the ground

network. The transmission energy is consumed by the transmitter’s circuitry and power

123

amplifier. If the distance between a member node and its CH is less than a given threshold,

the power amplifier uses the free space model; otherwise, the multi-path model is used [32].

The energy consumed to transmit an l-bit message from a member node to its CH bk is given

by [31]

Ebk
n = lEelec + l

(
χεfsd

2
n,bk

+ (1− χ) εmpd
4
n,bk

)
(4.15)

where

χ =

1, dn,bk ≤ d0

0, dn,bk > d0

(4.16)

and

d0 =

√
εfs
εmp

. (4.17)

In (4.15), Eelec is the dissipated energy per bit in the circuitry, dn,bk is the distance between

the CH bk and one of its member nodes n, n = 1, . . . , N − 1, d0 is the distance threshold, εfs

and εmp represent the radio amplifier’s energy parameter of the free space and multi-path

fading models, respectively. Moreover, the energy consumed to receive an l-bit message from

member node n by bk is given by [31]

E
(n)
bk

= lEelec. (4.18)

In addition, the second component of the energy consumption of the ground network is

the energy consumed by each CH bk to complete its data transmission to the UAV. This

component can be written as

Ebk = PCHTk = PCH
(N − 1)l

rdata
(4.19)

where (N − 1)l is the amount of data transferred by bk to the UAV. Hence, the total energy

consumption of all nodes in the ground network in a complete data collection task, where

member nodes transmit the sensing data to their CHs and CHs forward data to the UAV, is

Eground =
K∑
k=1

N−1∑
n=1

(
Ebk
n + E

(n)
bk

)
+

K∑
k=1

Ebk . (4.20)

124

4.2.4 Problem Formulation for UAV’s Trajectory

Based on (4.14) and (4.20), the total weighted energy consumption in the UAV-WSN

system can be formulated as

E = ω

(
K∑
k=1

N−1∑
n=1

(
Ebk
n + E

(n)
bk

)
+

K∑
k=1

Ebk

)

+ (1− ω)

(
Eflight +

K∑
k=1

Eck

)
, 0 ≤ ω ≤ 1 (4.21)

where the first term corresponds to the total energy consumption of the ground network,

while the second term is the energy consumption of the UAV, and ω is the weighting coef-

ficient that can be adjusted to achieve the trade-off between the two terms. With the aim

of minimizing the total energy consumption of the ground network and the UAV, we jointly

find a set of CHs from the ground cluster-based WSN and design the UAV’s visiting order

to these CHs. The optimization problem of interest is formulated as

min
{b0,b1,...,bk,...,bK}

bk∈Gk

E

(4.22)

s.t. (4.9), (4.11)− (4.13).

Obviously, the problem at hand is a constrained combinatorial optimization problem,

which is NP-hard. Some promising approaches have been put forward to solve such combi-

natorial optimization problems, and their advantages and disadvantages are discussed below.

1. Exact methods : Exact methods often search for the optimal solution of the problem

through systematic enumeration, integer programming, and constraint programming,

etc. [33]. At least in theory, they can provide the optimal solution for the optimization

problem. However, such algorithms cannot be applied to combinatorial optimization

problems with large data scale because their computation complexity becomes pro-

hibitive.

2. Heuristics : Heuristics are higher-level problem-independent algorithmic frameworks

125

that provide a set of guidelines to develop optimization algorithms [34]. However, they

generally cannot guarantee to find globally optimal solutions.

3. RL: Q-learning, one of the RL techniques, is demonstrated to be promising in solving

NP-hard problems [35]. Specifically, it can deal with the path decision problem when

provided with sufficient state space variables. However, if the number of ground nodes

is high, Q-learning will need more storage space for action and state space variables [18].

As discussed before, DRL has recently shown to have important advantages in solving

combinatorial optimization problems. A typical neural combinatorial framework is proposed

in [22] that uses RL to optimize a policy modeled by the pointer network. In [25], the

authors view a combinatorial optimization problem as a sequence of decisions, and they

use a sequence-to-sequence neural network model and the RL approach to obtain a near-

optimal solution for the optimization problem. Inspired by these promising developments, we

extend the application of sequence-to-sequence model to solve the UAV’s trajectory planning

problem described earlier.

4.3 Deep Reinforcement Learning for UAV Trajectory Planning

Because all clusters {G1, . . . ,GK} must be visited by the UAV sequentially, we convert

the visiting decisions problem into a sequence-to-sequence prediction problem. The problem

can be simply formalized as follows. Given start position and all clusters, denoted by G =

{b0,G1, . . . ,GK}, we want to output a permutation of the items in G that maximizes some

measure of interest. The output sequence is denoted as T = {π0, π1, . . . , πK}, where each

πt is the index of any element in G being placed at the t-th position of T . In fact, T

is the UAV’s visiting order to clusters in our problem. Thus, for a given input sequence

G, the probability of the output sequence T can be factorized by a product of conditional

probabilities according to the chain rule

Pθ(T |G) =
K∏
t=0

P (πt|π0, . . . , πt−1,G) (4.23)

where t is the time step, Pθ(T |G) parameterized by θ is a stochastic policy for deciding

the visiting order. The conditional probability P (πt|·) models the probability of any cluster

126

Figure 4.2 Example of Ptr-A* architecture for a 3-clusters network.

being visited at the t-th time step according to the given G and clusters already visited at

previous time steps [36]. A trained θ can assign high probabilities to good results and low

probabilities to bad results. The reinforcement learning can be applied to train the optimal

model policy θ∗ for producing the optimal visiting order T ∗ with the highest probability.

4.3.1 Pointer Network-A* Architecture for UAV’s Trajectory Plan-

ning

With the rapid development of neural network techniques, the neural network-based

frameworks have been applied to sequence-to-sequence learning [20]. The general sequence-

to-sequence neural network [25] encodes the input sequence into a vector that includes in-

formation of the input by a recurrent neural network (RNN), called encoder, and decodes

the vector to the target sequence by another RNN, called decoder [21]. In this work, we

employ the pointer network to model the conditional probability P (πt|·), which has been

proved to be effective to solve the combinatorial optimization problems. The architecture of

the pointer network is similar to sequence-to-sequence network model, but it uses attention

mechanism as a pointer to choose items of its input sequence as the output. The proposed

Ptr-A* model in this work is elaborated as follows.

127

Encoder

The traditional RNN shows poor performance in dealing with the problem of long-term

dependencies, which makes it difficult to be trained in practice [37]. Hence, we use Long

Short-Term Memory (LSTM) cells which are capable of learning long-term dependencies to

construct a RNN as the encoder. Each item (a start position or a cluster) in G is converted

into a high D-dimensional vector space, which enables the policy to extract useful features

much more efficiently in the transformed space [38]. Then, the embedding vectors are fed into

LSTM cells. At each encoding step, the LSTM cell reads one embedded item and outputs a

latent memory state. Finally, the input sequence G is transformed into a sequence of latent

memory states E = {e0, . . . , eK}, each ek ∈ RD. In fact, the motive of the encoder network

is to acquire the representation for each element in G.

Decoder

We also adopt LSTM cells to construct the RNN of the decoder network. The output

{e0, . . . , eK} of the encoder are given to the decoder network. At each decoding step t, the

LSTM cell outputs the hidden state ht ∈ RD that includes the knowledge of previous steps.

And then, the decoder employs the attention mechanism to output the visiting decision πt

based on ht and {e0, . . . , et}. Attention mechanism can help the model to give different

weights to different elements of the input and extract more critical information [39]. It tells

us the relationship between each element in the input at current step t and the output πt−1 of

the last decoding step. The most relevant element with the maximum conditional probability

is selected as the access element at decoding step t. Thus, the calculation is given by

utj =

φ tanh (W1ej +W2ht), if j /∈ {π0, . . . , πt−1}

−∞, otherwise

(4.24)

where W1, W2 ∈ RD×D are attention matrices, φ ∈ R1×D is the attention vector. W1, W2,

and φ are denoted collectively by θ, which is the learnable parameter in our pointer network.

In essence, utj is the score associated with item j (ej) in position t.

The conditional probability is calculated by a softmax function over the remaining items

128

(not visited in the previous steps), as follows:

P (πt = j|π0, . . . , πt−1,G) = softmax
(
utj
)

=
exp

(
utj
)∑

m/∈{π0,...,πt−1} exp (utm)
, j ∈ m. (4.25)

The probability P (πt = j|·) represents the degree to which the model points to item j at the

decoding step t [36]. As shown in the example in Fig. 4.2, the start position b0 and clusters

G1,G2,G3 are inputted into the encoder network. vgo is the start tag of the decoder, which

is a learned vector. At each decoding step, the item of the input sequence with the highest

probability is pointed by a thicker black arrow. The output of the 0-th decoding step points

to b0 (π0), which will be visited at this step and given as the input of the next decoding step.

Finally, we will obtain a visiting order sequence T = {π0, π1, π2, π3} corresponding to the

input sequence.

To help the reader familiarize with the attention mechanism, a numerical example is

provided in Appendix A.

A* search

Once the output sequence of the decoder network is obtained, we can build a search

graph for all clusters according to this sequence, where each layer is composed of nodes of

one cluster. This is illustrated with an example in Fig. 4.2. It is worth mentioning that the

first layer is the start position b0 and the last layer is the end position b
′
0 which is the copy

of b0. Thus, the created graph has a total of (K+2) layers. We use the A* search algorithm,

one of best path-finding algorithms, to find the CH from each cluster to build a path having

the smallest cost (total weighted energy consumption of the UAV-WSN system) from the

start position to the end position. In each iteration, the A* algorithm needs to calculate the

cost of the traversed path and the estimated cost required to extend the path to the end to

determine which of its partial paths to expand into one or more longer paths [26]. Any node

m is chosen to be visited by the following function

f(m) = g(m) + h(m) (4.26)

129

where g(m) represents the exact energy consumption of the UAV-WSN system when the

UAV moves from the start node to a candidate node m, following the path generated to get

there, h(m) is the estimated energy consumption of the UAV to travel from the candidate

node m to the end. Then, the node with the lowest f(m) value is selected from candidate

nodes as the next node to be traversed.

The main implementation of the A* algorithm is to maintain two lists. The OPEN list

contains those nodes that are candidates for checking. The CLOSED list contains those

nodes that have been checked. The neighbor nodes of any node located in any layer are

defined as all nodes in its previous and next layers. Also, each node keeps a pointer to

its parent node so that we can determine how it was found, which is implemented by a

map COME FROM. The pseudocode of using the A* algorithm to find the path from the

start position to the end position is described in Algorithm 1. As shown in the example in

Fig. 4.2, the output of the A* algorithm is the trajectory from b0 to b
′
0, which can ensure

the minimum energy consumption E. In addition, the CH of each cluster is found on this

trajectory, given by {b0, b3, b1, b2, b
′
0}. Finally, the Ptr-A* model outputs the trajectory and

the minimum energy consumption E.

4.3.2 Parameters Optimization with Reinforcement Learning

In order to find a good trajectory for the UAV, we need to obtain the optimal model

parameter θ∗ that can be trained from samples. If we adopt a supervised learning to train

the model parameter, high-quality labeled data is needed because it decides the performance

of the model. However, it is expensive to get the high-quality labeled data in practice

for the proposed UAV’s trajectory problem. Instead, we choose the well-known model-

free policy-based RL, known as the actor-critic algorithm [40], to train the model because

it is shown to be an appropriate paradigm for training neural networks for combinatorial

optimization [22]. The UAV works as the agent to make a sequential action set in a given

state of the environment. In the following, we describe the state, action, reward, and training

of the proposed DRL algorithm.

130

Algorithm 6 A* search algorithm for the trajectory planning
Input: T

Output: Trajectory, minimum energy consumption E

1: Build a search graph by T

2: Initialize OPEN, CLOSED, and COME FROM

3: f(b0) = 0, OPEN.add(b0)

4: while OPEN is not empty do

5: Find the node q with the lowest f(q) from OPEN

6: if q = b
′
0 then

7: Construct path from b0 to b
′
0 by COME FROM

8: return Trajectory, E

9: end if

10: OPEN.remove(q)

11: CLOSED.add(q)

12: Obtain neighbor nodes of q

13: for each neighbor node m of q do

14: cost = g(q) + the energy consumption of UAV-WSN from q to m

15: if m in OPEN and cost < g(m) then

16: OPEN.remove(m)

17: end if

18: if m in CLOSED and cost < g(m) then

19: CLOSED.remove(m)

20: end if

21: if m not in OPEN and CLOSED then

22: g(m) = cost

23: f(m) = g(m) + h(m)

24: OPEN.add(m)

25: COME FROM[m]= q //set m’s parent

26: end if

27: end for

28: end while

131

State

The state includes coordinates for all clusters, the UAV’s location, and the energy con-

sumption of UAV-WSN at current step t.

Action

The action represents the choice of the next cluster to be selected at current step t and

the CH in this cluster. Thus, we define the output of the right-hand side of (5.26) and the

CH selection by A* as the action at each step.

Reward

We design the reward as the negative of the total energy consumption in (4.21). This

means that the DRL is set to get the maximal reward (minimal energy consumption).

Training

The actor-critic method includes the actor network and the critic network. The actor

network is the proposed Ptr-A* in this work. The critic network is used to provide an

approximated baseline of the reward for any problem instance to reduce the variance of

gradients during the training phase and increases the speed of learning [40]. Our critic

network, parameterized by ψ , has the same architecture as that of the encoder of the Ptr-

A*. Then, its hidden states are decoded into a baseline prediction by two fully-connected

ReLU layers [22]. Our training objective is the expected energy consumption, which is

defined as

J (θ|G) = ET ∼pθ(.|G)
[E]. (4.27)

We use policy gradient method and stochastic gradient descent to optimize θ. The gradient

of (4.27) is formulated by REINFORCE [41] algorithm

∇θJ (θ|G) = ET ∼pθ(.|G)
[(E − Vψ (G))∇θ log pθ (T |G)] (4.28)

where Vψ (G) is a baseline function for reducing the variance of the gradients, which is

implemented by the critic network. Assume we have B i.i.d train samples, the gradient in

132

Algorithm 7 Training Ptr-A* by Actor-Critic algorithm

Input: Training samples set D = {G1,G2, . . . }, batch size B, training steps S

1: Initialize actor network θ and critic network ψ with random weights

2: for s = 1 to S do

3: Sample Gi from D, ∀i ∈ {1, . . . , B}

4: Calculate Ei and T i with Ptr-A* network, ∀i ∈ {1, . . . , B}

5: Calculate Vψ (Gi) with Critic network, ∀i ∈ {1, . . . , B}

6: dθ ← 1
B

∑B
i=1 (Ei − Vψ (Gi))∇θ log pθ (T i|Gi)

7: L(ψ)← 1
B

∑B
i=1 (Vψ (Gi)− Ei)2

8: θ ← Adam (θ, dθ)

9: ψ ← Adam (ψ,∇ψL(ψ))

10: end for

11: return θ∗ = θ

(5.35) can be approximated with Monte Carlo sampling as follows

∇θJ (θ) ≈ 1

B

B∑
i=1

(Ei − Vψ (Gi))∇θ log pθ (T i|Gi) . (4.29)

We train the parameters of the critic with stochastic gradient descent on a mean squared

error objective L(ψ) between its predictions Vψ (Gi) and the actual energy consumption.

L(ψ) is formulated as

L(ψ) =
1

B

B∑
i=1

(Vψ (Gi)− Ei)2 . (4.30)

The training procedure is presented in Algorithm 9. Notice that Adam algorithm is

used to update the parameters of the actor network and the critic network iteratively. Adam

algorithm designs independent adaptive learning rates for different parameters via calculating

the first and second moment estimates of the gradient instead of using a single learning rate

to update all parameters by the traditional random gradient descent [44]. Given the initial

learning rate, the learning rates in different steps adaptively change according to the learning

results. Because of the generalization property of RNNs [45], our proposed models, including

the Ptr-A* and critic, have a very good generalization ability. In the training phase, we can

133

Table 4.1 Simulation parameters

Parameter Description Value

εfs Amplifier’s energy parameter of the

free space fading

10 pJ/bit/m
2
[31]

εmp Amplifier’s energy parameter of the

multi-path fading

0.0013 pJ/bit/m
2
[31]

Eelec Energy consumption per bit in the

circuitry

50 nJ/bit [31]

PCH Transmit power of each CH 21 dBm/Hz [8]

N Number of nodes per cluster 20

Bwidth Bandwidth 1 MHz

N0 Noise power −174 dBm/Hz [8]

fc Carrier frequency 2 GHz [8]

α Path loss exponent 3 [8]

H UAV’s flight height 50 m

µLoS, µNLoS Mean values of the excessive path loss 1 dB, 20 dB [42]

β, η Environmental parameters 0.03, 10 [8]

vUAV = vmax UAV’s flight speed 15 m/s [8]

mtot UAV’s mass 500 g [43]

rp Radius of UAV’s propellers 20 cm [43]

np Number of propellers 4 [43]

Pmax UAV’s hardware power level at full

speed

5 W [43]

Pidle UAV’s hardware power level when it

hovers

0 W [43]

Pcom UAV’s communication power 0.0126 W [8]

use small problem instances to train the model, and then the trained model can be utilized

to solve large problem instances.

134

4.4 Numerical Results

In this section, we first introduce detailed environment settings, and then describe the

decoding search strategies at inference. Furthermore, we compare the performance of the

proposed DRL algorithm with several baseline algorithms.

4.4.1 Environmental Settings and Model Training

We consider the ground network size of 2 km × 2 km, and the start position of the UAV

is located at (0 m, 0 m). Simulation parameters are listed in Table 4.1. We use mini-batches

of size 512 and LSTM cells with 128 hidden units in the encoder and the decoder. We

implement the proposed model by using Pytorch 1.4 and Python 3.7 on a VM instance of

Google Cloud Platform with 1 NVIDIA TESLA P100 GPU. The parameters of both the

actor and critic networks are initialized by the Xavier initialization method and trained by

the Adam optimizer with an initial learning rate of 0.0001 and decayed every 5,000 steps by

0.96.

It is assumed that nodes in a given cluster Gk are distributed according to the Gaussian

distribution. Each cluster’s nodes are sampled from a torch.normal(ν, std) where ν is the

mean and std is the constant standard deviation. Each Gaussian distribution’s ν is ran-

domly sampled from a torch.rand() function to determine the position of each cluster in the

two-dimensional space. We train the model using instances of 20 clusters and 40 clusters,

respectively. The 20-clusters model is trained for 100,000 steps, and the 40-clusters model

is trained for 200,000 steps. We give a simple example on how to obtain the train data. At

each training step of the 20-clusters model, we sample 20 means from torch.rand() for 20

Gaussian distributions, respectively. Then, we use these 20 i.i.d. distributions to generate a

set (problem instance) of 20 clusters where the number of nodes per cluster is 20. The test

data sets are also generated in the same way, only the number of clusters is different.

4.4.2 Decoding Search Strategies at Inference

Given a new problem instance G at inference, the decoder network of our trained Ptr-A*

architecture can easily output an access sequence for all clusters. The decoding process of

135

Algorithm 8 Active Search

Input: Test input G, steps S, ζ

1: Randomly sample a solution T for G

2: Calculate E according to T by A*

3: O ← E

4: for s = 1 to S do

5: T i ∼ Sample solutions Pθ(·|G), ∀i ∈ {1, . . . , Q}

6: E(T j |G) ← argmin
(
E(T 1|G), . . . , E(T Q|G)

)
7: if E(T j |G) < E then

8: T ← T j

9: E ← E(T j |G)

10: end if

11: dθ ← 1
Q

∑Q
i=1

(
E(T i|G) −O

)
∇θ log pθ (T i|G)

12: θ ← Adam (θ, dθ)

13: O ← ζO + (1− ζ) 1
Q

∑Q
i=1 Vψ (G)

14: end for

15: return T , E

the decoder at inference shows how solvers search over a large set of feasible access sequences.

In this work, we consider the following three decoding search strategies.

Greedy Search

Greedy search strategy always select the cluster with the largest probability at each

decoding step during inference, which is labeled as DRL-greedy in the simulation results.

Sampling Search

This strategy samples M candidate solutions from the stochastic policy Pθ(·|G) by run-

ning the trained Ptr-A* on a single test input G and selects the one with the minimum

expected energy consumption from M candidate outputs. The more we sample, the more

likely we will get the better output. In the simulation, we set M = 51200, and this strategy

136

is labeled as DRL-sampling.

Active Search

Unlike the greedy search and the sampling search, this strategy can refine the parameter θ

of the Ptr-A* during inference to minimize the expected energy consumption on a single test

input G. Active search samples multiple solutions T 1, . . . ,T Q from Pθ(·|G) for a single test

input G and uses policy gradients to refine θ [22]. The process is presented in Algorithm 8.

In the simulation, we sample three different sets of candidate solutions, {512, 5120, 10240},

which are labeled with DRL-active-512, DRL-active-5120, and DRL-active-10240, respec-

tively.

4.4.3 Small-Scale Clusters

To thoroughly evaluate the performance of the proposed DRL algorithm, we first test

the trained 20-clusters model on small-scale clusters. Since ω in (4.21) is the weighting

coefficient, its value does not impact the comparison results among algorithms. When ω = 0,

our optimization problem only considers the energy consumption of the UAV, which mainly

depends on the flying distance of the UAV. Fig. 4.3 illustrates how the proposed DRL

algorithm performs with different search strategies on the 25-clusters problem instance. As

can be seen, the trajectory generated by DRL-greedy is the longest (9241 m), while DRL-

active-10240 produces the shortest trajectory (8693 m) among strategies.

Next, we compare our proposed DRL algorithm having different decoding search strate-

gies with the nearest neighbor (NN) heuristic [46] and the genetic algorithm [47]. We first

investigate the energy consumption comparison between our proposed DRL on the trained

20-clusters model and two baselines when ω = 0.5. The genetic algorithm runs for 4,000

generations, the chance of mutation is 0.5%, and the size of population is 150. In Fig. 4.4,

we plot the average ratios of the energy consumption of our proposed DRL algorithm with

different search strategies and two baselines to the energy consumption of DRL-active-10240

versus different numbers of clusters K. Although the model is trained on 20-clusters prob-

lem instances, it still obtains good performance on the 10-clusters, 30-clusters, 40-clusters,

137

(a)

(b)

Figure 4.3 Trajectories comparison on 25 clusters test instance when ω = 0.

138

�� �� �� �� 	�
�

���

���

���

���

���

��	

�
��
�"
��
��
�
�
��
��
��
��
���

��
��
�
��
�#
��
���

�
��
��

��
��
�!
��
��
��
��

� ��
���

�
�
���

���
��

���

���

��������!�������
��������!��	���
��������!��	��
������������
���������"
�������
��

Figure 4.4 Energy consumption comparison on small-scale clusters.

and 50-clusters networks. This shows that the proposed DRL algorithm achieves an excel-

lent generalization ability with respect to the number of clusters used for training. When

K = 10, genetic, DRL-active-10240, DRL-active-5120, DRL-active-512, and DRL-sampling

obtain almost the same energy consumption result; however, the NN algorithm has higher

energy consumption when compared with our proposed DRL with active search and sam-

pling search strategies. As the number of clusters increases, the energy consumption savings

of our proposed algorithm increase when compared to the NN and genetic algorithms. For

example, when K = 30, the energy consumptions of UAV-WSN produced by NN and ge-

netic algorithms are almost equal, which is about 11% more than that of DRL-active-10240,

8% more than that of DRL-sampling, and 7% more than that of DRL-greedy. When the

number of clusters increases to 50, the energy consumption of NN is around 21% more than

that of DRL-active-10240, 13% more than that of DRL-sampling, and 8% more than that

of DRL-greedy. Likewise for K = 50, the energy consumption of the genetic algorithm is

around 33% more than that of DRL-active-10240, 24% more than that of DRL-sampling, and

139

�� � �� �� ��� ���
�

���

���

��

���

���

���

���

��

���
��

�!
�&

��
��

"$
�
 #
��
��
!�
#��

��
�!
�
��
�'
��
�#�

�
��
��

��
�#
�%
��
��

�

��
�

��
��
$"
#�
!"
��

��
��
�

���
���

��
��� 	��

�

��
���

��	�

	��
	�����

������#�%�����
���
����$"#�!"�������
������#�%��������
����$"#�!"�������
������#�%�������
����$"#�!"�������
����"�� ������
����$"#�!"�������
�����!���&��
����$"#�!"�������
����#��
��

(a) On 40-clusters model.

�� � �� �� ��� ���
�&���#�!����&$%�#$

���

���

��

���

���

���

�
�#
�(

��
!

$&
�
"%
�!
 �
#�
%�!

�
!#
�
��
�)
��
�%!

�
��
��

��
�%
�'
��
��

�

��
��
��
��
&$
%�
#$
��

!�
��
�

	��

��

��

�����
�	�

	��

���

���

��
�
�

���

������%�'�����
��������&$%�#$��!����
������%�'�������������&$%�#$��!����
������%�'������������&$%�#$��!����
����$��"�� ��������&$%�#$��!����
�����#���(�������&$%�#$��!����
�� �%��
��

(b) On 20-clusters model.

� �� �� � ��� ���
�#��� ������#!"� !

���

���

���

��

���

���

��
�

�%
��

��
!#

�
�"

��
��

 �
"��

��
�

�
��

�&
��

�"�
�

��
��

��
�"

�$
��

��
��

��
��

��
��

#!
"�

 !
��

��
��

�

������"�$��������������#!"� !�������
������"�$��������������#!"� !�������
������"�$��	����������#!"� !�������
������"�$��	���������#!"� !�������
����!��������������#!"� !�������
����� ���%�������#!"� !�������

(c) 40-clusters model vs. 20-clusters model

Figure 4.5 Energy consumption comparison on large-scale clusters

17% more than that of DRL-greedy. It can be seen that our proposed DRL algorithm using

any of three active search strategies can achieve better results than other search strategies

and algorithms. This is because the active search strategy can refine the parameters of the

Ptr-A* model for producing the best solution while searching for candidate solutions on a

single test instance at inference. From Fig. 4.4, we can see that DRL-sampling also obtains

a relatively competitive result.

Table 4.2 compares the running time at inference. As the number of clusters increases, the

running time of the proposed DRL algorithm with all strategies and two baseline techniques

increases. Although DRL-active-10240 obtains the best performance in reducing the energy

consumption as can be seen from Fig. 4.4, it has the longest running time. This is because

140

Table 4.2 Running time comparison on small-scale clusters.

Time (s)

Algorithm

K
10 20 30 40 50

DRL-active-10240 17.1 57.15 121.62 209.27 319.64

DRL-active-5120 8.59 29.12 60.85 105.82 160.68

DRL-active-512 0.98 3.4 7.05 12.11 18.48

DRL-sampling 14.26 29.34 43.39 59.89 81.3

DRL-greedy 0.31 0.63 1.07 1.68 2.46

Genetic 60.37 64.85 73.35 80.21 90.91

NN 1.12 1.12 1.13 1.15 1.16

it needs more iterations to update the parameters. If the number of candidate solutions is

relatively small, active search strategy tends to spend less time to produce the solution, like

DRL-active-512. In addition, we can see that the running time of NN is always minimal

among all algorithms for all values of K. DRL-greedy’s running time is comparable with

that of NN. Meanwhile, the running times of DRL-sampling and DRL-active-512 are lower

when compared with the genetic algorithm.

4.4.4 Large-Scale Clusters

In this subsection, we test the performance of the trained models on large-scale clusters

test instances. The genetic algorithm runs for 10,000 generations. We first observe the re-

sults of the proposed DRL algorithm on the trained 40-clusters model, as shown in Fig. 4.5

(a). Clearly, our proposed DRL algorithm exhibits much better performances than the two

baseline techniques in reducing the energy consumption of the UAV-WSN system. As the

number of clusters increases, there is an increasing performance gap between the proposed

DRL algorithm and the baseline techniques. For instance, when K = 80, the genetic al-

141

gorithm consumes 50%, 58%, and 76% more energy than when compared to DRL-greedy,

DRL-sampling, and DRL-active-10240, respectively. As the number of clusters increases to

100, the energy consumption of the UAV-WSN when using the genetic algorithm is 72%

more than that of DRL-greedy, 82% more than that of DRL-sampling, and 103% more than

that of DRL-active-10240. NN also shows a similar trend to that of the genetic algorithm.

In particular, its energy consumption is 47% more than that of DRL-active-10240 when

K = 80 and increases to 55% more than the energy consumption of DRL-active-10240 when

K = 100. When compared with DRL-greedy, the extra amount of energy consumed by the

UAV-WSN when using NN increases from 25% to 31% as the number of clusters increasing

from 80 to 100. However, NN exhibits an obviously superior performance than the genetic

algorithm. As we can see, the active search strategies outperform the greedy strategy and

sampling strategy for large-scale clusters problems. DRL-sampling shows a slightly better

performance than DRL-greedy, which is reasonable.

Next, we use the trained 20-clusters model to evaluate the performance of the proposed

DRL algorithm on large-scale clusters test instances. In Fig. 4.5 (b), our proposed DRL

algorithm with different search strategies still obtains relatively good results as compared

to the two baseline techniques on large-scale problem instances when the value of K varies,

while the results generated by active search strategies are still the best among all search

strategies. For example, when K = 80, the energy consumption of the genetic algorithm is

48% more than that of DRL-active-10240, 40% more than that of DRL-sampling, and 31%

more than that of DRL-greedy. Although NN exhibits a better performance than the genetic

algorithm, its energy consumption is 23% more than that of DRL-active-10240, 16% more

than that of DRL-sampling, and 8% more than that of DRL-greedy when K = 80. However,

compared with the results obtained on the trained 40-clusters model, the 20-clusters model

clearly shows inferior performance. When K = 100, the energy consumption gap between

the genetic algorithm and DRL-active-10240 is 103% on the 40-clusters model, but this gap

decreases to 65% on the 20-clusters model. Likewise, the gap in the energy consumption

between the genetic algorithm and DRL-active-10240 decreases from 76% on the 40-clusters

model to 48% on the 20-clusters model when K = 80.

142

� �� �� � ��� ���
�

���

���

	��

��

���

���

��

����

�
�
!�
"�#
 �
�
���

��
"�
'�
�
�#
%�

!$
�
��
��

��
������$�&��������������%#$�"#�� ����
����$��
��

Figure 4.6 Comparison of energy consumption.

To investigate the difference between the two trained models, we compare the results

obtained on the 20-clusters model with the results of DRL-active-10240 on the 40-clusters

model. As shown in Fig. 4.5 (c), DRL-active-10240 (40-clusters model) clearly exhibits

superior performance in reducing the energy consumption than three search strategies on the

20-clusters model. This performance merit constantly increases as the value of K increases.

Thus, the trained 40-clusters model is more suitable for solving the trajectory planning

problem for the UAV in cases of large-scale clusters.

Fig 4.6 shows the comparison of the total weighted energy consumption of the genetic

algorithm, NN algorithm, and the DRL-active-10240. As one can see, the total weighted

energy consumption E generated by our proposed algorithm is significantly lower then its

counterpart of the NN and genetic algorithms. 1

1This figure and the associated discussion are added based on the advisory committee request. They are

not included in the published paper.

143

Table 4.3 Running time comparison on large-scale clusters.

Time (s)

Algorithm

K
60 70 80 90 100 110

DRL-active-10240
20-clusters model 448.65 584.71 754.23 920.83 1149.36 1329.96

40-clusters model 449.01 584.81 755.37 920.61 1150.05 1330.28

DRL-active-5120
20-clusters model 225.98 293.52 382.03 480.87 590.5 705.11

40-clusters model 226.26 294.31 382.15 480.92 590.04 705.36

DRL-active-512
20-clusters model 24.99 33.08 44.08 55.54 67.21 79.31

40-clusters model 25.75 33.57 44.1 55.78 67.54 79.88

DRL-sampling
20-clusters model 102.06 148.72 171.65 210.4 257.64 306.85

40-clusters model 102.47 148.79 171.9 210.29 258.53 307.11

DRL-greedy
20-clusters model 3.11 4.23 5.84 7.83 9.96 12.55

40-clusters model 3.39 4.54 5.81 7.48 10.2 12.89

Genetic 213.39 217.06 225.5 233.88 239.54 247.19

NN 1.17 1.17 1.18 1.19 1.2 1.22

The running time comparison of different strategies and algorithms at inference on large-

scale problem instances is provided in Table 4.3. We can observe that for a given number

of clusters, the same strategy running on different models produces solution in almost the

same amount of time. For example, DRL-active-10240 takes 448.65 s on the 20-clusters

model and 449.01 s on the 40-clusters model. DRL-active-10240 takes the longest time

among all the algorithms because it requires more iterations to refine the parameters of the

Ptr-A* to produce the best performance. The running time of DRL-sampling is acceptable

in comparison with the genetic algorithm given its performance merits. Furthermore, the

computation time spent by DRL-greedy is the least among all strategies, which is also

144

significantly less than the running time of the genetic algorithm and slightly more than the

time spent by NN. Although the NN algorithm spends the least amount of time, it produces

worse results.

4.5 Conclusions

In this paper, we investigated the problem of designing the UAV’s trajectory for a clus-

tered WSN to minimize the total energy consumption in the UAV-WSN system. Inspired

by the recent developments of DRL, we propose a novel DRL-based method to solve the

UAV’s trajectory planning problem. Because the visiting order of the UAV to clusters can

be regarded as a sequential decision problem, we design a Ptr-A* model to produce the tra-

jectory of the UAV. The pointer network of the proposed Ptr-A* model is used to determine

the visiting order to clusters. Then, a search graph for all clusters is built according to the

visiting order. The A* search algorithm is utilized to quickly find the CH for each cluster

from the search graph with the aim of minimizing the energy consumption of the UAV-WSN

system. In order to obtain optimal parameters of the Ptr-A*, we employ the model-free RL

method to train the proposed Ptr-A* model in an unsupervised manner. Lastly, we propose

three search strategies at inference.

We conduct comprehensive experiments to evaluate the performance of the proposed

DRL algorithm. The simulation results show that the proposed DRL algorithm with dif-

ferent search strategies can produce better trajectories for the UAV when compared with

the baseline techniques. In particular, DRL-active-10240 always produces the best results

with different numbers of clusters of test instances. We also analyze the impact of different

trained models on the results. The trained 40-clusters model is shown to be able to solve

the trajectory planning problem of the UAV on large-scale clusters problems. The proposed

DRL algorithm offers an appealing balance between performance and complexity. A key

advantage of our proposed DRL algorithm is its generalization ability with respect to the

number of clusters used for training. The model can be trained on small-scale clusters for

faster training, and then can be used to solve larger-scale clusters problems. This makes it

clearly more suitable for solving large-scale clusters problems as compared to the baseline

145

techniques.

As for future work, we are interested in exploring other search strategies at inference to

further improve the performance. It would also be interesting to develop a distributed DRL

algorithm based on the Ptr-A* model to solve multiple UAVs’ trajectory planning problem

jointly. We also plan to investigate and improve the generalization capability of the proposed

DRL algorithm, i.e., when the number of nodes per cluster at inference is significantly larger

than that used for training.

Acknowledgement

This work was supported by an NSERC/Cisco Industrial Research Chair in Low-Power

Wireless Access for Sensor Networks.

4.6 Appendix

A. Example of Attention Mechanism

Here, we give a detailed numerical example of 3-clusters network to explain how the

attention mechanism works. In Fig. 4.2, the input sequence G = {b0, G1, G2, G3} is trans-

formed into a sequence of latent memory states E = {e0, e1, e2, e3}, which is the input of the

decoder network. At decoding step 0, we calculate correlations between all elements in E

and the start tag vgo by (4.24) and (4.25), which can be expressed as

u00 = φ tanh (W1e0 +W2h0) (A.1)

u01 = φ tanh (W1e1 +W2h0) (A.2)

u02 = φ tanh (W1e2 +W2h0) (A.3)

u03 = φ tanh (W1e3 +W2h0). (A.4)

The learning parameters, namely φ,W1,W2, are initialized by the Xavier initialization method

and trained by the Adam optimizer as explained in Section IV.A. Then, the softmax function

is used to normalize the vector u0 = {u00, u01, u02, u03}. For the sake of illustration, we assume

146

that the four elements in u0 determine the following four conditional probability values:

P (π0 = 0|G)

=
exp (u00)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.6 (A.5)

P (π0 = 1|G)

=
exp (u01)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.1 (A.6)

P (π0 = 2|G)

=
exp (u02)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.1 (A.7)

P (π0 = 3|G)

=
exp (u03)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.2. (A.8)

Since e0 has the highest conditional probability value at decoding step 0, the output π0 of

this step points to the first element of G, b0. At decoding step 1, we use the same approach

to calculate the correlations between b0 and the remaining elements in E as follows

u11 = φ tanh (W1e1 +W2h1) (A.9)

u12 = φ tanh (W1e2 +W2h1) (A.10)

u13 = φ tanh (W1e3 +W2h1). (A.11)

Similarly, by using the softmax function, we calculate the following conditional probabilities

based on the obtained elements {u11, u12, u13}:

P (π1 = 1|π0,G)

=
exp (u11)

exp (u12) + exp (u12) + exp (u13)
= 0.2 (A.12)

P (π1 = 2|π0,G)

=
exp (u12)

exp (u12) + exp (u12) + exp (u13)
= 0.1 (A.13)

147

P (π1 = 3|π0,G)

=
exp (u13)

exp (u12) + exp (u12) + exp (u13)
= 0.7. (A.14)

The output π1 of this step points to G3 because the conditional probability of e3 is maximum.

Then, the process repeats until we obtain the full output sequence of the decoder network

as {b0, G3, G1, G2}, i.e., {π0, π1, π2, π3}.

148

References

[1] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on UAVs for

wireless networks: Applications, challenges, and open problems,” IEEE Communica-

tions Surveys Tutorials, vol. 21, pp. 2334–2360, Mar. 2019.

[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial ve-

hicles: opportunities and challenges,” IEEE Communications Magazine, vol. 54, pp. 36–

42, May 2016.

[3] D. A. Hedges, J. P. Coon, and G. Chen, “A continuum model for route optimization in

large-scale inhomogeneous multi-hop wireless networks,” IEEE Transactions on Com-

munications, vol. 68, pp. 1058–1070, Feb. 2020.

[4] D. H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse

trajectory design for energy minimization in UAV-enabled,” IEEE Transactions on Ve-

hicular Technology, vol. 69, pp. 9483–9496, Sep. 2020.

[5] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with

rotary-wing UAV,” IEEE Transactions on Wireless Communications, vol. 18, pp. 2329–

2345, Apr. 2019.

[6] C. Zhan and H. Lai, “Energy minimization in internet-of-things system based on rotary-

wing UAV,” IEEE Wireless Communications Letters, vol. 8, pp. 1341–1344, Oct. 2019.

[7] J. Baek, S. I. Han, and Y. Han, “Energy-efficient UAV routing for wireless sensor

networks,” IEEE Transactions on Vehicular Technology, vol. 69, pp. 1741–1750, Feb.

2019.

[8] M. B. Ghorbel, D. Rodŕıguez-Duarte, H. Ghazzai, M. J. Hossain, and H. Menouar,

“Joint position and travel path optimization for energy efficient wireless data gathering

using unmanned aerial vehicles,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 2165–2175, Mar. 2019.

149

[9] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy tradeoff in ground-to-UAV commu-

nication via trajectory design,” IEEE Transactions on Vehicular Technology, vol. 67,

pp. 6721–6726, Jul. 2018.

[10] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Improved soft-k-means

clustering algorithm for balancing energy consumption in wireless sensor networks,”

IEEE Internet of Things Journal, vol. 8, pp. 4868–4881, Mar. 2021.

[11] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, “UAV trajectory

planning for data collection from time-constrained IoT devices,” IEEE Transactions on

Wireless Communications, vol. 19, pp. 34–46, Jan. 2019.

[12] S. Zhang, S. Shi, S. Gu, and X. Gu, “Power control and trajectory planning based inter-

ference management for UAV-assisted wireless sensor networks,” IEEE Access, vol. 8,

pp. 3453–3464, Dec. 2019.

[13] A. A. Al-Habob, O. A. Dobre, S. Muhaidat, and H. V. Poor, “Energy-efficient data

dissemination using a UAV: An ant colony approach,” IEEE Wireless Communications

Letters, vol. 10, pp. 16–20, Jan. 2021.

[14] K. Zhu, X. Xu, and S. Han, “Energy-efficient UAV trajectory planning for data collection

and computation in mmtc networks,” in Proc. IEEE Globecom Workshops, pp. 1–6, Dec.

2018.

[15] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control for

effective and fair communication coverage: A deep reinforcement learning approach,”

IEEE Journal on Selected Areas in Communications, vol. 36, pp. 2059–2070, Sep. 2018.

[16] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Actor-critic deep rein-

forcement learning for energy minimization in UAV-aided networks,” in Proc. European

Conference on Networks and Communications (EuCNC), pp. 348–352, Jun. 2020.

[17] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and frequency band

allocation for energy-efficient and fair communication: A deep reinforcement learning

150

approach,” IEEE Transactions on Wireless Communications, vol. 19, pp. 7796–7809,

Dec. 2020.

[18] B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, “Learning-based energy-

efficient data collection by unmanned vehicles in smart cities,” IEEE Transactions on

Industrial Informatics, vol. 14, pp. 1666–1676, Apr. 2018.

[19] W. Liu, P. Si, E. Sun, M. Li, C. Fang, and Y. Zhang, “Green mobility management in

UAV-assisted iot based on dueling DQN,” in Proc. IEEE International Conference on

Communications (ICC), pp. 1–6, May 2019.

[20] H. Zhang, J. Li, Y. Ji, and H. Yue, “Understanding subtitles by character-level sequence-

to-sequence learning,” IEEE Transactions on Industrial Informatics, vol. 13, pp. 616–

624, Apr. 2017.

[21] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. Advances in

Neural Information Processing Systems (NIPS), vol. 28, pp. 2692–2700, Dec. 2015.

[22] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial opti-

mization with reinforcement learning,” in Proc. International Conference on Learning

Representations (ICLR) Workshop, pp. 1–5, Apr. 2017.

[23] J. J. Q. Yu, W. Yu, and J. Gu, “Online vehicle routing with neural combinatorial op-

timization and deep reinforcement learning,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 20, pp. 3806–3817, Oct. 2019.

[24] Z. Li, J. Wu, L. Sun, and T. Rong, “Combinatorial keyword recommendations for

sponsored search with deep reinforcement learning,” arXiv preprint arXiv:1907.08686,

2019.

[25] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác, “Reinforcement learning for

solving the vehicle routing problem,” in Proc. Advances Neural Information Processing

Systems (NIPS), pp. 9861–9871, Dec. 2018.

151

[26] V. del Razo and H. Jacobsen, “Smart charging schedules for highway travel with electric

vehicles,” IEEE Transactions on Transportation Electrification, vol. 2, pp. 160–173, Jun.

2016.

[27] Z. Ma, B. Ai, R. He, G. Wang, Y. Niu, and Z. Zhong, “A wideband non-stationary

air-to-air channel model for UAV communications,” IEEE Transactions on Vehicular

Technology, vol. 69, pp. 1214–1226, Feb. 2020.

[28] Z. Lian, L. Jiang, C. He, and D. He, “A non-stationary 3D wideband GBSM for HAP-

MIMO communication systems,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 1128–1139, Feb. 2019.

[29] D. Hulens, T. Goedemé, and J. Verbeke, “How to choose the best embedded processing

platform for on-board UAV image processing,” in Proc. International Conference on

Computer Vision Theory and Applications (VISAPP), pp. 377–386, 2015.

[30] R. Roberti and P. Toth, “Models and algorithms for the asymmetric traveling salesman

problem: an experimental comparison,” EURO Journal on Transportation and Logistics,

vol. 1, pp. 113–133, Jun. 2012.

[31] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific pro-

tocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless

Communications, vol. 1, pp. 660–670, Mar. 2002.

[32] T. S. Rappaport et al., Wireless communications: principles and practice, vol. 2. pren-

tice hall PTR New Jersey, 1996.

[33] J. Puchinger and G. R. Raidl, “Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classification,” in Proc. International Work-

Conference on the Interplay Between Natural and Artificial Computation (IWINAC),

pp. 41–53, Jun. 2005.

[34] D. Gong and Y. Yang, “Low-latency SINR-based data gathering in wireless sensor

networks,” IEEE Transactions on Wireless Communications, vol. 13, pp. 3207–3221,

Jun. 2014.

152

[35] L. Liu and U. Mitra, “On sampled reinforcement learning in wireless networks: Exploita-

tion of policy structures,” IEEE Transactions on Communications, vol. 68, pp. 2823–

2837, May 2020.

[36] I. Bello, S. Kulkarni, S. Jain, C. Boutilier, E. Chi, E. Eban, X. Luo, A. Mackey, and

O. Meshi, “Seq2slate: Re-ranking and slate optimization with RNNs,” in Proc. Inter-

national Conference on Learning Representations (ICLR), pp. 1–12, May 2019.

[37] Y. Zhu, X. Dong, and T. Lu, “An adaptive and parameter-free recurrent neural struc-

ture for wireless channel prediction,” IEEE Transactions on Communications, vol. 67,

pp. 8086–8096, Nov. 2019.

[38] W. Koehrsen, “Neural network embeddings explained,” 2018. [Online]. Available:

https://towardsdatascience. com/neural-network-embeddings-explained-4d028e6f0526.

[39] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption

generator,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3156–3164, Jun. 2015.

[40] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Advances Neural

Information Processing Systems (NIPS), pp. 1008–1014, Dec. 1999.

[41] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[42] A. Al Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum

coverage,” IEEE Wireless Communications Letters, vol. 3, pp. 569–572, Dec. 2014.

[43] H. Ghazzai, M. Ben Ghorbel, A. Kadri, M. J. Hossain, and H. Menouar, “Energy-

efficient management of unmanned aerial vehicles for underlay cognitive radio systems,”

IEEE Transactions on Green Communications and Networking, vol. 1, pp. 434–443, Dec.

2017.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.

International Conference on Learning Representations (ICLR), pp. 1–13, May 2015.

153

[45] Z. Tu, F. He, and D. Tao, “Understanding generalization in recurrent neural networks,”

in Proc. International Conference on Learning Representations (ICLR), pp. 1–16, Apr.

2020.

[46] B. Hu and G. R. Raidl, “Effective neighborhood structures for the generalized traveling

salesman problem,” in Proc. European Conference on Evolutionary Computation in

Combinatorial Optimization (EvoCOP), pp. 36–47, Mar. 2008.

[47] J. Li, Q. Sun, M. Zhou, and X. Dai, “A new multiple traveling salesman problem and its

genetic algorithm-based solution,” in Proc. IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pp. 627–632, Oct. 2013.

154

5. UAV Trajectory Planning for AoI-Minimal

Data Collection in UAV-Aided IoT Networks

by Transformer

Submitted as:

B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton and Z. Gao, “UAV Trajectory Planning for

AoI-Minimal Data Collection in UAV-Aided IoT Networks by Transformer”, under major

revision, IEEE Transactions on Wireless Communications.

In previous chapters, we studied energy-related problems concerning data collection in

wireless networks. Apart from energy, the freshness of the collected data is another important

metric in wireless networks, which can be measured by a new concept, AoI.

In this chapter, we are interested in investigating the AoI-minimal data collection problem

in UAV-aided IoT networks. We propose an AoI-oriented data collection model in a cluster-

based IoT network and formulate a total AoI-minimal UAV trajectory planning problem.

The formulated problem not only considers the flying time of the UAV but also the data

collection time spent at each hovering point, which is expressed as a TSPN where the hovering

points of the UAV and the visiting order to these points are jointly optimized. To reduce

the computational complexity for solving the formulated optimization problem, we convert

the continuous optimization TSPN into a GTSP by the sampling-based technique.

The formulated GTSP is viewed as a “machine translation” problem in which the “source

language” is the whole UAV-IoT network and the “target language” is the UAV trajectory

with the minimal total AoI. We use the state-of-the-art transformer and the weighted-A*

algorithm to design a novel machine learning algorithm to solve the formulated problem.

155

The parameters of the proposed algorithm are trained by reinforcement learning that only

needs the reward calculation.

156

UAV Trajectory Planning for AoI-Minimal Data

Collection in UAV-Aided IoT Networks by

Transformer

Botao Zhu, Ebrahim Bedeer, Ha Nguyen,

Robert Barton, and Zhen Gao

Abstract

Maintaining freshness of data collection in Internet-of-Things (IoT) networks has

attracted increasing attention. By taking into account age-of-information (AoI),

we investigate the trajectory planning problem of an unmanned aerial vehicle

(UAV) that is used to aid a cluster-based IoT network. An optimization problem

is formulated to minimize the total AoI of the collected data by the UAV from

the ground IoT network. Since the total AoI of the IoT network depends on

the flight time of the UAV and the data collection time at hovering points, we

jointly optimize the selection of hovering points and the visiting order to these

points. We exploit the state-of-the-art transformer and the weighted A* to design

a machine learning algorithm to solve the formulated problem. The whole UAV-

IoT system is fed into the encoder network of the proposed algorithm, and the

algorithm’s decoder network outputs the visiting order to ground clusters. Then,

the weighted A* is used to find the hovering point for each cluster in the ground

IoT network. Simulation results show that the trained model by the proposed

algorithm has a good generalization ability to generate solutions for IoT networks

with different numbers of ground clusters, without the need to retrain the model.

Furthermore, results show that our proposed algorithm can find better UAV

trajectories with the minimum total AoI when compared to other algorithms.

157

Index Terms

AoI, IoT, transformer, trajectory optimization, UAV

5.1 Introduction

The use of unmanned aerial vehicles (UAVs) has attracted a lot of attention from

academia and industry. Because of UAVs’ high maneuvering capability and mobility, they

can be used as wireless relays or mobile base stations to provide reliable communications

and better coverage for ground devices [1]. Thanks to these advantages, UAVs can be flex-

ibly deployed to provide fast and reliable network access in different applications, such as

disasters [2], surveillance [3], monitoring [4], to name a few.

Since UAVs can fly close to the ground devices and build low-altitude air-to-ground

communication links with them, UAVs can be deployed to hover the area of interest to collect

data from ground Internet-of-Things (IoT) networks. By doing so, UAV-aided data collection

can save the energy of devices in traditional IoT networks, thus extending their lifetime [5].

However, maintaining the freshness of the collected information is an important issue in

time-sensitive IoT applications, such as environmental monitoring and safety protection.

In these applications, the generated data needs to be sent to the destination as soon as

possible. Outdated information can lead to incorrect control and even cause major disasters

[6]. Therefore, it is essential to ensure the freshness of the data received at the destination.

To measure the freshness of information, the age of information (AoI) as a new performance

metric was proposed in [7]. In a nutshell, AoI describes the amount of time elapsed since

the generation of the most recent data update. AoI-based data collection can guarantee

information freshness in IoT networks, which is quite different from traditional delay-based

and throughput-based metrics [8]. As such, it has attracted increasing attention.

Due to the importance of AoI, a number of studies have been carried out on AoI-oriented

data collection in UAV-assisted wireless networks. In [9], the authors aimed to minimize the

average AoI of the system by optimizing the trajectory of the UAV in a UAV-aided data

collection system. In [10], the authors optimized the trajectory of the UAV to minimize the

158

maximal AoI and the average AoI of sensors. In [11], the authors assumed the UAV supports

three modes to collect data and jointly optimize the trajectory and data collection modes

of the UAV to minimize the average AoI of all ground nodes. In [12], the UAV trajectory,

energy, and service time allocation were jointly optimized by an iterative algorithm in order

to minimize the overall peak AoI of the system. The authors in [13] developed an energy-

efficient navigation policy for the UAV to improve data freshness of the IoT network. In

order to minimize the weighted sum of AoI, the authors in [14] jointly optimized the flight

trajectory of the UAV and the transmission scheduling of sensors. According to the above

analysis, AoI-oriented data collection problems in the UAV-assisted IoT network are usually

related to UAV’s trajectory design.

When collecting data in the UAV-assisted IoT network, if the UAV is dispatched to visit

every ground IoT device, the energy consumption of the UAV will increase because of the

increased UAV trajectory. Hence, to reduce the energy consumption of the UAV, clusters-

based system model is extensively investigated in UAV-assisted wireless networks. In [15],

to gather compressive data measurements, the authors divide the sensor network into mul-

tiple clusters. In each cluster, all nodes build a forwarding tree based on compressive data

gathering to send data to the cluster head (CH). The UAV has then to traverse all CHs to

collect the aggregated data. The authors jointly optimized the UAV trajectory, CH selection,

and forward tree construction to minimize the total transmit power in the network. In [16],

the authors consider a pre-clustered network where a UAV equipped with multiple-antenna

communicates with multiple ground users simultaneously, in a given time slot, using space

division multiple access. The authors jointly optimized the time slot allocation and the UAV

hovering time to minimize the overall energy consumption. In [17], the authors considered a

UAV-enabled massive machine-type communications (mMTC) data collection system where

machine-type communication devices (MTCDs) are divided into several clusters. A UAV

visits each hovering position which corresponds to a MTCD cluster and sequentially collects

data from each MTCD in the corresponding cluster. They formulated a problem of min-

imizing the total energy consumption of the system. In our previous work [5], we used a

UAV to collect data from a clustered IoT network, where the hovering points of the UAV

159

are determined by the unknown CHs location. In other words, we jointly select the CHs

and their visiting order to minimize the total energy consumption. Considering the above

mentioned advantage, we examine the scenario that the UAV collects data from a group of

clusters where the UAV only interact with the CHs of clusters. The problem of interest in

this paper is to jointly optimize the UAV’s hovering points and trajectory to achieve the

minimal AoI data collection in a cluster-based IoT network. The optimization problem is

formulated as a traveling salesman problem (TSP) with neighborhoods (TSPN), which is

extremely challenging because it includes a continuous problem (optimization of hovering

points) and a combinatorial problem (optimization of visiting order).

The hovering points of the UAV and the visiting order to these hovering points have

a great impact on the flying time of the UAV and data collection time, which directly

influence the total AoI of collected data. There have been some works on solving the TSPN

efficiently. For example, a genetic algorithm was presented in [18] to solve the TSPN with the

Dubins vehicle model for a set of polygonal regions. The authors in [19] proposed a memetic

algorithm (an extension of the traditional genetic algorithm) to jointly optimize the selection

of waypoints and the sequence of visits for the Dubins TSPN problem. These evolutionary

techniques may provide acceptable solutions, but they are computationally demanding, which

makes them not suitable to handle moderate or large scale problems. In order to reduce the

computational complexity, some sampling-based algorithms were developed by sampling a

finite set of points from a continuous state space. In [20], the Dubins TSPN was converted

to a generalized TSP (GTSP) by using the sampling-based roadmap method, and then to

an asymmetric TSP that can be addressed by the Lin-Kernighan heuristic algorithm. To

handle the continuous optimization problem of waypoints within each circular neighborhood,

the authors in [21] proposed a discretization scheme that equidistantly samples possible

locations along the circular border of the interest neighborhood to determine the locations

of the waypoints. In this paper, in order to reduce the computational complexity for solving

the joint optimization of the UAV’s hovering points and trajectory to achieve the minimal

AoI data collection in a cluster-based IoT network, we transform the formulated continuous

optimization TSPN into a GTSP by borrowing the sampling-based idea. The transformed

160

GTSP is a combinatorial optimization problem that can be solved using traditional methods,

such as exact algorithms, approximate algorithms, or heuristic algorithms. However, these

traditional algorithms may not achieve a good balance between optimality and computational

complexity. Thus, by considering optimality, computational complexity, and generality, we

plan to develop a machine learning-based algorithm to solve the transformed GTSP, i.e. the

UAV’s trajectory design problem.

Machine learning has been introduced as a new breakthrough technique in the UAV-

assisted IoT network for solving UAV’s trajectory planning problem. To minimize the

weighted sum-AoI in the UAV-assisted network, the authors in [22] developed a deep rein-

forcement learning (DRL) to optimize the UAV’s trajectory using a deep Q network (DQN)

and an artificial neural network (ANN). In [23], the authors utilized Q-learning to optimize

AoI-optimal UAV path by considering the deadline constraints of data in the UAV-aided sens-

ing network. In [24], the authors jointly optimized the UAV’s trajectory and the scheduling

of the status update packets to minimize the normalized weighted sum of AoI in the UAV-

assisted wireless network. Specifically, they used ANN, DQN, and long short-term memory

(LSTM) to develop a DRL algorithm for learning the UAV trajectory in large-scale scenarios.

Different from them, we employ the state-of-the-art transformer and the weighted A* search

method to design a UAV trajectory planning algorithm for AoI-oriented data collection.

Transformer was originally proposed by Google as a sequence-to-sequence model to deal

with machine translation problem [25]. It has achieved great success in many areas of artifi-

cial intelligence in the past four years, such as computer vision, audio processing, document

summarization, and document generation. Some researchers also attempt to use transformer

and its variants to tackle combinatorial problems, such as the TSP. In [26], the cities in the

TSP were encoded by a transformer and decoded sequentially through a query consisting of

the last three cities in the partial tour. The used transformer was trained by reinforcement

learning. In [27], the authors also used the transformer architecture as the encoder network

and the decoder network outputs the result sequentially based on the embeddings from the

encoder and the outputs generated at previous steps. The encoder and decoder networks

were trained using a reinforce algorithm with a deterministic greedy baseline. The authors

161

in [28] proposed a transformer-based framework to automatically learn improved heuristics

on two representative routing problems: the TSP and capacitated vehicle routing problem

(CVRP). In [29], the authors used the standard transformer architecture to tackle TSP and

achieve an improved performance over recent learned heuristics. Inspired by the success of

employing transformer in solving various problems of route planning, we also exploit it in

this paper for solving our formulated GTSP combinatorial optimization problem. The main

contributions of this paper are summarized as follows:

1. We propose an AoI-oriented data collection model in a cluster-based IoT network and

formulate a total AoI-minimal trajectory planning problem where the hovering points

of the UAV and the visiting order to these points are jointly optimized.

2. We view the formulated problem as a “machine translation” problem where the “source

language” is the whole UAV-IoT network and the “target language” is the UAV trajec-

tory with the minimal total AoI. The state-of-the-art transformer-weighted-A* (TWA*)

is employed to solve the formulated problem. The parameters of the proposed algo-

rithm are trained by reinforcement learning that only needs the reward calculation.

3. The learned policy by the proposed algorithm generalizes well on different sizes of

problem instances. In other words, the trained model by the proposed algorithm can

automatically find a trajectory with the minimal total AoI for new problem instances,

without retraining the model.

4. Extensive simulations are conducted to evaluate the performance of the proposed al-

gorithm. Results show that the proposed algorithm achieves significant performance

gain in maintaining data freshness while reducing computation time when compared

with other baseline algorithms.

The rest of this paper is organized as follows. Section 5.2 introduces the system model

and presents the formulated problem. Section 5.3 develops the proposed algorithm. Section

5.4 provides simulation results. Finally, Section 5.5 concludes the paper.

162

5.2 System Model and Problem Formulation

We consider a UAV-assisted IoT network that consists of one rotary-wing UAV, one

ground base station (BS) located at b0, and M clusters of ground sensor nodes. Specifically,

each cluster m, m = 1, . . . ,M , has one CH, located as bm, and Nm ordinary sensor nodes,

located at as Bm = {b(1)m , . . . , b
(Nm)
m }. The ground IoT network performs some sensing tasks

in the surrounding area where the ordinary sensor nodes are responsible for sampling data

and forwarding the collected data to their corresponding CHs. The UAV is dispatched from

the start hovering point c0 which is directly above b0 to visit M mission hovering points

{c1, . . . , cm, . . . , cM} by a pre-designed trajectory for data collection, and then flies back to

c0 after completing the data collection task. Each hovering point corresponds to one ground

cluster and its position will be determined by the proposed algorithm. The three-dimensional

(3D) Cartesian coordinates system is considered to define positions of hovering points and

all CHs. The coordinate of the m-th hovering point is denoted by cm = (xcm , ycm , H) ∈ R3,

where H is the flight height of the UAV, whereas the location of the corresponding ground

CH is given by bm = (xbm , ybm , 0) ∈ R3.

We assume that the rotary-wing UAV supports a flying-hovering mode without consider-

ing acceleration-deceleration, i.e., it flies to the hovering points with a fixed speed vUAV and

hovers at these points with static status to collect data from ground CHs. We illustrate the

UAV-assisted data collecting process in Fig. 5.1. The UAV takes off from c0, determines the

position of the hovering point c2 that will be visited first and arrives at it. The UAV repeats

this procedure until data collection of all clusters is completed, and flies back to c0. Hence,

the final trajectory of the UAV in this example is {c0, c2, c3, c4, c1, c0}.

5.2.1 Data Collection Model

When the UAV arrives at cm, it sends a beacon message to wake up the corresponding

CH bm from its sleep mode. The beacon message includes the type of sensor nodes to be

activated in response to the beacon, the data collection height of the UAV, a threshold

to limit the number of sensor nodes in the CH (if necessary), and a trailer that has error

detection capabilities. Then, bm switches to its active mode and informs its member nodes

163

Figure 5.1 System model of a UAV-assisted IoT network.

in the same cluster to sample and send their sampled data sequentially according to the

pre-allocated equal-length time slots using time-division multiplexing (TDM) protocol to

avoid collision. We consider the generate-at-will model [30] as the data sampling model for

all ordinary sensor nodes, by which nodes can generate information updates at any time.

Specifically, we assume that each node can generate an update message of size Ldata only in

its allocated time slot to eliminate the waiting time. Also, each message has a time stamp,

which is the start of each time slot. The length of a time slot is denoted as τ seconds.

After the CH located at bm finishes collecting data from its member nodes, it will forward

the collected data to the UAV. For ease of analysis, the wake-up time of nodes, including

CHs and all ordinary nodes, and the information sampling time of each node are assumed

negligible as compared to the data collection time. Thus, the data collection time of the

UAV at each hovering point mainly consists of two parts: the data transmission time from

ordinary nodes to their CHs and the time consumed for forwarding the collected data from

CHs to the UAV.

We consider both the line-of-sight (LoS) and non-line-of-sight (NLoS) links to design the

164

ground-to-air communication when the UAV hovers at mission hovering points. The LoS

link probability is related to environment, elevation angle, and transmission distance, which

can be expressed as [31]

P (LoS)
cm =

1

1 + β exp
(
−β̃ (θcm − β)

) (5.1)

where β and β̃ are constants determined by the environment, θcm = arctan (H/R(cm,bm)) is the

elevation angle between bm and the UAV when it hovers at cm, R(cm,bm) =
√

(xcm − xbm)2 + (ycm − ybm)2

is the horizontal distance between the CH bm and the hovering point. Correspondingly, the

probability of NLoS is given by P
(NLoS)
cm = 1 − P (LoS)

cm . In addition, the path loss models of

LoS and NLoS between the CH bm and the UAV follow [32]

L(LoS)
cm = 20 log10

(
4πfcd(cm,bm)

vlight

)
+ ξLoS,

L(NLoS)
cm = 20 log10

(
4πfcd(cm,bm)

vlight

)
+ ξNLoS (5.2)

where fc is the carrier frequency, vlight is the speed of light, d(cm,bm) =
√
H2 +R2

(cm,bm) is the

distance between the UAV and the CH bm, ξLoS and ξNLoS (ξLoS < ξNLoS) are the excessive

path losses in LoS and NLoS links, respectively. We consider the average path loss to describe

the link from the ground CH to the UAV, which can be expressed as

Lcm = P (LoS)
cm L(LoS)

cm + P (NLoS)
cm L(NLoS)

cm . (5.3)

To avoid the interference among CHs, we assume that only one CH can transmit data

to the UAV at any given time. Hence, the average available transmission rate in bits per

second (bps) from CH bm to the UAV can be expressed as rcm = Bwidth log2 (1 + γcm), where

Bwidth is the channel bandwidth in hertz (Hz), γcm = PCH/
(
σ210Lcm/10

)
is the signal-to-

noise ratio (SNR) of the transmission link, σ2 is the noise power at the UAV, and PCH is the

transmission power of the CH. Regarding the transmission quality, we set a SNR threshold

γth and the transmission is considered successful if the SNR is greater than the threshold.

Thus, the SNR constraint at the UAV receiver is given as

γcm ≥ γth. (5.4)

165

Lemma 1: Given the fixed flight height H, cm should be located in a horizontal disk

region centered at the position that directly above bm and having the radius R∗ which can

guarantee that the UAV successfully receives data. When R(cm,bm) = R∗, the received SNR

of the UAV at cm is equal to γth.

Proof : See Appendix A.

Based on Lemma 1, we formally define a hovering disk region for each mission hovering

point (excluding the start point c0) as

Om = {cm : ||cm − b′m|| = R(cm,bm) ≤ R∗} (5.5)

where b′m = (xbm , ybm , H) ∈ R3 is the center of the disk Om, and R∗ is the radius to maintain

a pre-defined quality-of-service, which can be found numerically. As long as the UAV enters

a hovering disk region, it can collect data from the corresponding ground CH. The total data

collection time of the UAV at cm ∈ Om (or its hovering time) can be simply written as

T (hov)
cm = Nmτ +

NmLdata

rcm
(5.6)

where the first term in the right hand side is the time consumed for transmitting data from

ordinary nodes to their corresponding CH bm, and the second term is the data transmission

time from bm to the UAV. Therefore, the energy consumption of propulsion-related and

communication-related activities of the UAV while hovering at cm is expressed as

Ecm = PhovT
(hov)
cm + Pcom

NmLdata

rcm
(5.7)

where Phov and Pcom are the UAV’s powers for hovering and communication, respectively.

After finishing the data collection task, bm switches to the sleep model for saving energy.

The UAV continues to select the next hovering point and executes the same processes to

collect the sensed data from the corresponding ground cluster.

5.2.2 UAV’s Mobility Model

Without loss of generality, the flight trajectory of the UAV can be seen as a permutation

of the visiting order to M mission hovering points, with the start point being c0, i.e., c =

166

{c0, c1, . . . , cM}. The set of all possible permutations is denoted as Φ with the size of M !.

We represent one of the permutations as π = {π(0), . . . , π(M + 1)} and express the ordered

hovering points as cπ = {cπ(0), cπ(1), . . . , cπ(M), cπ(M+1)}, where cπ(t), t = 0, . . . ,M + 1, is the

hovering point that is visited at step t in the trajectory, and cπ(0) = cπ(M+1) = c0. For ease

of understanding, if the hovering point cm is visited at step t, its corresponding cluster of

ground ordinary nodes (Bm) and the number of ordinary nodes (Nm) are redefined as Bπ(t)

and Nπ(t), respectively.

After finishing data collection at cπ(t) with the hovering model, the UAV horizontally flies

to the next hovering point cπ(t+1) along the line segment connecting cπ(t) and cπ(t+1). The

flying time of the UAV during this period is given by

T
(fly)
(cπ(t),cπ(t+1))

=
||cπ(t) − cπ(t+1)||

vUAV

(5.8)

where ||cπ(t) − cπ(t+1)|| is the Euclidean distance between cπ(t) and cπ(t+1).

Following [33], the propulsion power consumption of the UAV for horizontal movement

is the function of speed vUAV and given by

Pmov(vUAV) = P0

(
1 +

3v2UAV

U2
tip

)
+ P1

((
1 +

v4UAV

4v40

)1/2

− v2UAV

2v20

)1/2

+
1

2
d0ρs0δv

3
UAV (5.9)

where P0 and P1 represent, respectively, the blade profile power and induced power in the

hovering state, Utip is the tip speed of the rotor blade of the UAV, v0 is the mean rotor

induced velocity in the hovering state, d0 denotes the fuselage drag ratio, s0 represents the

rotor solidity, ρ is the density of air, and δ denotes the area of the rotor disk. According to

the analysis in [33], the power consumption Pmov(vUAV) firstly decreases and then increases

with the increasing value of the speed vUAV. The energy consumption in the UAV’s flight

from cπ(t) to cπ(t+1) is computed as

E(cπ(t),cπ(t+1)) = Pmov(vUAV)T
(fly)
(cπ(t),cπ(t+1))

. (5.10)

In the hovering state, the power consumption of the UAV can be obtained by substituting

vUAV = 0 into (5.9), Phov = P0 + P1, which is a constant value.

167

5.2.3 Age of Information Model in a UAV-IoT System

We use the AoI metric to measure the freshness of information. According to the defini-

tion of AoI in [34], the AoI of a packet collected from node b
(n)
π(t) in the π(t)-th visited cluster

at time ζ is defined as

A
(n)
π(t)(ζ) =

(
ζ − u(n)π(t)(ζ)

)+
(5.11)

where u
(n)
π(t)(ζ) is the instant at which the packet is generated, and (x)+ = max{0, x}. When

ζ < u
(n)
π(t)(ζ), we define A

(n)
π(t)(ζ) = 0, this is because the packet of node b

(n)
π(t) has not been

sampled. It is evident that the AoI of a packet will increase with time. In the considered

UAV-IoT system, the BS is seen as the observer, thus, the AoI of a data packet can be

seen as the amount of time elapsed from the instant at which the packet is generated to the

instant at which the UAV flies back with the collected data to the BS.

For ease of analysis, for any ordinary node b
(n)
π(t), n = 1, . . . , Nπ(t) in the π(t)-th visited

cluster, the AoI of its packet can be simply divided into two components. The first component

is the time needed for the CH of its associated cluster to collect data from b
(n)
π(t) and other

nodes whose data have not been gathered (i.e., nodes b
(n+1)
π(t) , . . . , b

(Nπ(t))

π(t)) and forward the

collected data to the UAV. The second component is the time consumed by the UAV to

carry the packet of b
(n)
π(t) to the end point cπ(M+1). Specifically, this period includes the flight

time of the UAV to unvisited ground clusters and the data collection time in these clusters.

For example, after completing the data collection at cπ(t), the UAV will fly to the next

hovering point cπ(t+1) and gather information from the corresponding cluster. During this

period, the AoI of the packet of b
(n)
π(t) increases with time, which is the sum of the flight time

T(cπ(t),cπ(t+1)) from cπ(t) to cπ(t+1) and data collection time Tcπ(t+1)
at hovering point cπ(t+1).

Then, the UAV performs the same process to unvisited clusters until it returns to the end

point. The time sequence of data collection in the UAV-IoT system is illustrated in Fig.

5.2. Mathematically, the total AoI of the packet generated by b
(n)
π(t) in the UAV-IoT system

is given as

168

Figure 5.2 The time sequence of data collection in the considered UAV-IoT system.

A
(n)
π(t) =

(
Nπ(t) − (n− 1)

)
τ +

Nπ(t)Ldata

rcπ(t)︸ ︷︷ ︸
first component

+
M−1∑
g=t

(
T

(fly)
(cπ(g),cπ(g+1))

+ T (hov)
cπ(g+1)

)
+ T

(fly)
(cπ(M),cπ(M+1))︸ ︷︷ ︸

second component

(5.12)

which can be further simplified as

A
(n)
π(t) =

M∑
g=t

(
T (hov)
cπ(g)

+ T
(fly)
(cπ(g),cπ(g+1))

)
− (n− 1)τ. (5.13)

For packets of nodes in the same cluster, we have

A
(1)
π(t) > A

(2)
π(t) · · · > A

(Nπ(t))

π(t) . (5.14)

On the other hand, the AoIs of packets in different clusters should satisfy

A
(n)
π(1) > A

(n)
π(2) > · · · > A

(n)
π(M). (5.15)

5.2.4 Problem Formulation

The total AoI of all ordinary nodes in the network can be computed as

A =
M∑
t=1

Nπ(t)∑
n=1

A
(n)
π(t) =

M∑
t=1

Nπ(t)∑
n=1

M∑
g=t

(
T (hov)
cπ(g)

+ T
(fly)
(cπ(g),cπ(g+1))

)
−

M∑
t=1

Nπ(t)∑
n=1

(n− 1)τ. (5.16)

According to (5.16), the total AoI is expressed as a weighted sum of the flight time of

the UAV and the data collection time at each hovering point, which is determined by the

locations of hovering points c, the visiting order to these hovering points π. It is evident

that the hovering points of the UAV and its trajectory have a strong impact on the total AoI

169

of data. If the position of any hovering point cm is close to the center of the disk region Om,

a high data transmission rate can be achieved. As a result, the data transmission time from

CHs to the UAV can be reduced, even though the UAV may have a longer flight trajectory,

and hence the flight time. Conversely, if the UAV is located near the boundary of the disk

region, the length of the UAV’s trajectory might be reduced, but it will result in a lower

data transmission rate, and hence increased data transmission time.

Our objective is to jointly find the hovering point from each disk and plan the visiting

order to these hovering points for the UAV to minimize the total AoI of data in the considered

UAV-IoT system. The optimization problem is expressed as follows:

P1 : min
c,π

A (c,π) , (5.17a)

s.t. π ∈ Φ, (5.17b)

(5.4), (5.6), (5.8), (5.14), and (5.15).

Constraint (5.17b) is the trajectory constraint. The SNR constraint is given in (5.4), and

(5.6) is the data collection constraint. The flight time constraint is expressed as (5.8).

AoI constraints are (5.14) and (5.15). It is evident that the formulated problem P1 is a

TSPN [35], which combines the determination of hovering points at each disk with the

problem of trajectory planning of the UAV. The traditional TSPN problem involves finding

a minimum-cost tour (i.e., the total length of the tour is minimum) that travels each region

exactly once for a collection of compact regions before returning to the initial departure

point [36]. However, our formulated problem not only considers the traveling cost but also

the cost spent at each hovering point. The problem P1 is extremely challenging because it is

composed of a continuous problem (optimization of hovering points c) and a combinatorial

problem (optimization of visiting order π). Given a set of hovering points c, the optimization

of π can be viewed as the TSP, which can be normally be solved quite effectively by some

dedicated TSP solvers, such as Concorde [37], etc. However, the optimization of hovering

points c consists of an infinite number of variables, which is infeasible to be solved optimally.

To reduce computational time, we leverage the sampling approach that samples finite discrete

sets of hovering points from a continuous state space to transform the continuous TSPN in

P1 into the GTSP. Specifically, each disk Om is equally partitioned into Lsub × Lsub sub-

170

regions and the center of each sub-region is selected as the possible hovering point. For some

marginal sub-regions with non-square shape, we choose the centers of their actual areas.

Hence, we can obtain a cluster Gm of sampling points with the size of L2
sub from Om. As a

result, our objective is changed to jointly select hovering points from M clusters of sampled

hovering points and plan the UAV’s trajectory to visit selected hovering points exactly once

to minimize the total AoI. Using the sampling approach, the formulated problem P1 is

converted to

P2 : min
c,π

A (c,π) , (5.18a)

s.t. cm ∈ Gm, Gm ∈ Om,m ∈ {1, . . . ,M}, (5.18b)

(5.4), (5.6), (5.8), (5.14), (5.15), and (5.17b).

Obviously, the formulated problem P2 is a combinatorial optimization problem, and

hence, NP-hard. There are two traditional methods to handle combinatorial problems: exact

algorithms and heuristic algorithms. Exact algorithms can find optimal solutions, but they

will become intractable when the size of problems grows. Heuristic algorithms’ complexity is

polynomial and they commonly find sub-optimal solutions. In contrast, we cast the proposed

GTSP as a sequence-to-sequence problem where the source sequence is a set of clusters of

hovering points and CHs and the target sequence is a set of selected hovering points and the

visiting order to these points. We adopt the transformer, the weighted A*, and reinforcement

learning to efficiently solve this problem.

5.3 Transformer-Weighted A* Algorithm

Because the UAV needs to sequentially collect data from each ground cluster in the IoT

network, we view the problem of the total AoI-minimal trajectory planning as a “machine

translation” problem that is common in natural language processing. The whole UAV-IoT

network as the “source language” is translated into the “target language”, i.e., the UAV

trajectory, by using our proposed TWA* algorithm. The TWA* algorithm is composed of

an encoder network, a decoder network, and the weighted A* search algorithm which can

171

effectively find the trajectory policy from hidden patterns behind a large number of training

datasets.

5.3.1 Encoder

The role of the encoder network is to take the UAV-IoT network represented as an input

sequence and map it into an abstract representation that is the learned information. The

input sequence includes the start point of the UAV, each and every CH, number of nodes in

each ground cluster, and all sampling points from each hovering disk. Specifically, we define

h
(in)
0 = c0 ∈ R3, and h

(in)
m = (Gm, bm, Nm) ∈ R3(L2

sub+1)+1,m ∈ {1, . . . ,M}, where the cluster

Gm of sampling points is represented as a 3L2
sub-dimensional vector as it includes L2

sub points

with 3D Cartesian coordinates, the CH bm is a 3-dimensional vector, and the number of nodes

Nm is a constant. Hence, the input can be expressed as H(in) =
(
h

(in)
0 ;h

(in)
1 ; . . . ;h

(in)
M

)
.

The encoder network used in this paper is the standard transformer encoder with one

embedding layer and six identical encoder layers as in [29]. Each encoder layer is composed

of one multi-head self attention sub-layer and one point-wise feed-forward network sub-layer.

Each sub-layer adds a residual connection and layer normalization. The embedding layer

is to map each element of input to the dem-dimensional vector space by a learnable linear

projection. Specifically, to enable the model to distinguish the start point of the UAV from

clusters, we separately utilize different parameters to compute the embeddings of the start

point and the other clusters as follows:

h(0)
m =

W0h

(in)
m + Wb0 , m = 0

W1h
(in)
m + Wb, m = 1, . . . ,M

(5.19)

where W0 ∈ Rdem×3, W1 ∈ Rdem×(3(L2
sub+1)+1), Wb0 ∈ Rdem , and Wb ∈ Rdem are learnable

parameters. Then, the embeddings H(0) =
(
h

(0)
0 ;h

(0)
1 ; . . . ;h

(0)
M

)
∈ R(M+1)×dem are fed into

the encoder layers. Note that we do not consider the positional decoding used in the original

transformer in [25] because the order of the input sequence is irrelevant to the GTSP.

The attention layer in each encoder layer uses the multi-head self-attention mechanism

with 8 heads to jointly attend to information from different representation subspaces at

172

different positions. The 8 heads perform the attention calculation in parallel and their

results are merged to produce an input for the next step. In the encoder layer l, l = 1, . . . , 6,

the output of self-attention on the h-th head, h = 1, . . . , 8, is computed as

Z
(l)
h = Attention(Q

(l)
h ,K

(l)
h ,V

(l)
h) = softmax

(
Q

(l)
h K

(l)
h

T

√
dv

)
V

(l)
h (5.20)

where dv is used for scaling the dot products, Q
(l)
h ∈ R(M+1)×dv , K

(l)
h ∈ R(M+1)×dv , and

V
(l)
h ∈ R(M+1)×dv are matrices query, key, and value for the h-th head, respectively. They

can be created by projecting the input query Q(l), key K(l), and value V (l) of multi-head

self attention with three learnable weight matrices W
Q(l)
h ∈ Rdem×dv , W

K(l)
h ∈ Rdem×dv , and

W
V (l)
h ∈ Rdem×dv , respectively, as follows

Q
(l)
h = Q(l)W

Q(l)
h ,K

(l)
h = K(l)W

K(l)
h ,V

(l)
h = V (l)W

V (l)
h (5.21)

where Q(l) = K(l) = V (l) = H(l−1). In this paper H(l−1) is the output of the encoder layer

(l− 1) or the output of the embedding layer before the encoder layer 1. Matrices Q
(l)
h , K

(l)
h ,

and V
(l)
h can be further expressed as

Q
(l)
h =

q0

...

qM

, K
(l)
h =

k0

...

kM

, V
(l)
h =

v0

...

vM

 (5.22)

where ∀q,k,v ∈ Rdv . Then, we can obtain the scaled attention scores

Q
(l)
h

(
K

(l)
h

)T
√
dv

=
1√
dv

(q0,k0) . . . (q0,kM)

(q1,k0) . . . (q1,kM)

. . . (qi,kj) . . .

(qM ,k0) . . . (qM ,kM)

=

u00 . . . u0M

u10 . . . u1M

. . . uij . . .

uM0 . . . uMM

(5.23)

where (qi,kj), i, j ∈ {0, . . . ,M} is the inner product of vectors, which measures the similarity

of vector qi and vector kj. The row-wise softmax function is used on each element of the

above scaled attention scores matrix, which is given by uij = euij/
∑M

j′=0 e
uij′ . Then, the

output Z
(l)
h ∈ R(M+1)×dv of the h-th head is expressed as

173

Figure 5.3 The proposed algorithm framework.

Z
(l)
h =

∑M
j=0 u0jvj∑M
j=0 u1jvj

...∑M
j=0 uMjvj

=

u0

u1

...

uM

. (5.24)

Hence, we end up with 8 different outputs from 8 heads where each head could learn

something different. These outputs are concatenated and multiplied by an additional learn-

able weight matrix W
(l)
o ∈ R8dv×dem to generate the final output of the multi-head attention

layer, as follows:

Z(l) =
(
Z

(l)
1 , . . . ,Z

(l)
8

)
W (l)

o , Z(l) ∈ R(M+1)×dem . (5.25)

174

Figure 5.4 Multi-head self attention.

To facilitate the understanding of multi-head attention layer, all operations from (5.20)

to (5.25) are defined as a function MHA(·). Thus, Z(l) = MHA
(
Q(l),K(l),V (l)

)
. Then,

Z(l) is added to the input of the multi-head attention in this encoder, which is a residual

connection operation. Subsequently, the output of the residual connection is fed into a batch

normalization, defined as a function BN(·), and it is written as Z
′(l) = BN

(
H(l−1) + Z(l)

)
.

The use of the residual connection is to avoid the degradation problem of the network in

training, while the layer normalization can improve the training speed and the stability of the

networks. The normalized residual output goes through a pointwise feed-forward network

(defined as a function FFN(·)), which is a couple of linear layers with a ReLU activation in

between. Then, the output of the pointwise feed-forward network is added to its input by

a residual connection and further normalized to obtain the final output H(l) ∈ R(M+1)×dem

of the encoder layer l, which is given by H(l) = BN
(
Z

′(l) + FFN
(
Z

′(l)
))

. In each encoder

layer, we perform the same computational process and finally output the final result of the

encoder part at layer 6, H(6) =
(
h

(6)
0 ;h

(6)
1 ; . . . ;h

(6)
M

)
∈ R(M+1)×dem , which is the continuous

representation with attention information of the input H(in). All of these operations will

175

help the decoder network focus on the appropriate elements in the input during the decoding

process.

5.3.2 Decoder

The decoding is autoregressive and generates the result one by one. The output of the

decoder network can be represented as an ordered sequence of the input of the encoder.

The decoder begins with the start point at decoding step 0 since the trajectory of the UAV

should start at the start point as well as end at this point. The output of each decoding step

is based on the information from the encoder and the already-generated previous output in

the decoder. Hence, the decoding process can be modelled using the probability chain rule:

P (π|H(in)) =
M+1∏
t=0

P (π(t)|π(0), . . . , π(t− 1),H(in)). (5.26)

The decoding process aims at finding the optimal π to maximize P (π|H(in)).

The decoder network is composed of two identical decoder layers, and a single-head

attention layer. Each decoder layer contains two multi-head attention sub-layers which

employ a residual connection around them followed by layer normalization. These sub-layers

have the same structure as the sub-layers in the encoder network but each of them has a

different job. Since the output of the decoder network is related to the order, we need to inject

some information about the positions into the input sequence of the decoder network. The

locations are implicitly represented by the order of the data input to the decoder network.

Hence, the input of the decoder network is the output of the encoder network combined with

the positional encoding. Suppose the outputs of the decoder network at previous t decoding

steps are π(0), π(1), . . . , π(t), the decoder wants to predict the output at t+1 step. Then, the

input to the decoder network is expressed as Ĥ
(0)
t+1 =

(
ĥ

(0)
π(0); ĥ

(0)
π(1); . . . ; ĥ

(0)
π(t)

)
. Each element

in Ĥ
(0)
t+1 can be calculated by ĥ

(0)
π(t) = h

(6)
π(t) + PEt, where h

(6)
π(t) ∈ R1×dem is one element in

H(6) which is decoded at the t-th step, PEt ∈ R1×dem is the positional encoding based on

the sinusoidal function, which is given by [38]

PEt(di) =

sin (ωdit), if di is even

cos (ωdit), if di is odd

(5.27)

176

where di is the dimension, 1 ⩽ di ⩽ dem, ωdi is the hand-crafted frequency for each dimension.

The position encoding of each position successfully provides the position information to the

decoder network. The input Ĥ
(0)
t+1 gets fed into the first multi-head attention sub-layer of

the first decoder layer and pass through the residual connection and layer normalization

(denoted as a function LN(·)) to prepare the query for the next multi-head attention sub-

layer, as follows

Ẑ
(1)
t+1 = MHA

(
ĥ

(0)
π(t), Ĥ

(0)
t+1, Ĥ

(0)
t+1

)
, Ẑ

(1)
t+1 ∈ R1×dem (5.28)

Ẑ
′(1)
t+1 = LN

(
ĥ

(0)
π(t) + Ẑ

(1)
t+1

)
, Ẑ

′(1)
t+1 ∈ R1×dem (5.29)

where ĥ
(0)
π(t) is the query, Ĥ

(0)
t+1 works as the key and the value matrices in the current multi-

head attention sub-layer. The second multi-head attention sub-layer is used to match the

encoder’s input to the decoder’s input to allow the decoder network to decide the next

possible output among the non-visited elements. For this sub-layer, the encoder network’s

output H(6) is the key and the value matrices, and Ẑ
′(1) is the query matrix. The calculations

are given by

Ẑ
′′(1)
t+1 = MHA

(
Ẑ

′(1)
t+1,H

(6),H(6)
)
, Ẑ

′′(1)
t+1 ∈ R1×dem (5.30)

Ĥ
(1)
t+1 = LN

(
Ẑ

′(1)
t+1 + Ẑ

′′(1)
t+1

)
, Ĥ

(1)
t+1 ∈ R1×dem . (5.31)

Note that we add the mask of visited elements to the scaled attention scores in this sub-layer.

Then, Ĥ
(1)
t+1 goes through the second decoder layer to get the output Ĥ

(2)
t+1 ∈ R1×dem . In order

for the decoder network to compute output probabilities P (π(t + 1)|π(0), . . . , π(t),H(6)),

Ĥ
(2)
t+1 and the output H(6) of the encoder network get fed into a single-head attention to get

a distribution over the non-visited elements, which is given by [29]

Pt+1 = softmax

(
tanh

(
Q̂t+1K̂

T
t+1√

dem
⊙Mt+1

))
(5.32)

where Q̂t+1 = Ĥ
(2)
t+1Ŵ1, K̂t+1 = H(6)Ŵ2, Ŵ1 ∈ Rdem×dem and Ŵ2 ∈ Rdem×dem are learnable

weight matrices, Mt+1 is the mask of the visited elements considered in this layer, ⊙ is the

Hadamard product, and Pt+1 ∈ R1×(M+1) is the distribution over the non-visited elements,

which is composed of probability scores. Then, the output that will be selected is sampled

from the distribution with three decoding methods:

177

Greedy

At each decoding step, this method greedily selects the element with the largest proba-

bility P (π(t+ 1)|π(0), . . . , π(t),H(6)).

Random Sampling

This method randomly samples Wsampling solutions, where each solution includes fully

visiting order, and selects the solution with the highest probability as the final result.

Beam Search

This method chooses the top Wbeam possible solutions that have the highest probability

at each step, where Wbeam is the beam width. Those Wbeam solutions will move to the next

time step, and the process repeats. Then, we can obtain a tree of solutions of each step and

the π that has the highest overall probability is picked as the final result.

We assume that the index of the highest probability score in Pt+1 is selected with the

greedy decoding as the output π(t+ 1) at step t+ 1. Thus π(t+ 1) points to the element at

the same position of the input sequence H(in) of the encoder network, which is represented

as h
(it)
π(t+1). Then, the decoder network takes the encoding information of h

(it)
π(t+1) from H(6),

i.e., h
(6)
π(t+1), and adds it with its position encoding to the list of the decoder input to continue

decoding for the next step. Finally, we can obtain a set of the visiting order, π. As shown

in the example in Fig. 5.3, H(in) = (c0; (G1, b1, N1) ; (G2, b2, N2) ; (G3, b3, N3) ; (G4, b4, N4)) is

the input to the encoder network and the decoder network outputs the final visiting order

π = {π(0), π(1), π(2), π(3), π(4)} to elements in H(in).

5.3.3 Selection of Hovering Points

Given the visiting order π, we know the visiting order to all hovering points clusters

and construct a graph containing all of them, as illustrated in Fig. 5.3. Each layer of the

graph is composed of one hovering points cluster. Then, we will calculate the path with the

minimal total AoI starting from the start point (marked as π(0) in the visiting order), going

178

through each cluster Gm, and ending at the clone of the start point (marked as π(M + 1)

in the visiting order). To guarantee that at most one hovering point is selected from each

cluster, we assume that all edges between possible hovering points of consecutive clusters to

be directed by π. We use the weighted A* search algorithm [39] to quickly find the hovering

point from each cluster to build the path with the minimal cost (total AoI). We assume that

the UAV currently reaches the point s′ and will decide the next point to be expanded by the

following cost function

f(s) = g(s) + ωh(s) (5.33)

where s is any neighbor point of s′, g(s) is the total movement cost on the path from the

start point c0 to s, h(s) is the heuristic function to estimate cost from s to the end point c0
′,

and ω > 1 is a constant factor. The neighbor point with a minimal f(s) value is expanded.

The pseudocode is described in Algorithm 9. We use COST and FRONTIER to keep track

of g(s) and the expanding process, respectively. Each point that has been reached keeps

a pointer to its parent in CAME FROM so that we can know where it came from. With

CAME FROM, we can construct a path having the minimal AoI from the start point to the

end point, as illustrated by the solid red line with arrow in the example in Fig. 5.3.

5.3.4 Computational Complexity Analysis

In the encoder network, each encoder layer is the standard transformer encoder with

the quadratic computational complexity O((M + 1)2dem) [25]. Since the number of layers is

constant, the computational complexity of the encoder network is still O((M+1)2dem). In the

decoder network, although each decoder layer contains two multi-head attention sub-layers,

its computational complexity is still estimated to be quadratic O((M+1)2dem) [25]. Likewise,

the number of decoder layers does not affect the computational complexity of the decoder

network. In addition, the computational complexity of the single-head attention used in the

final step of the decoder network is also quadratic O((M + 1)2dem) [25]. Hence, the used

transformer model has the computational complexity O((M + 1)2dem), which is quadratic in

the length of the input sequence. Different data structures used to implement the weight A*

algorithm, and hence, affect its computational complexity. We use the min heap to implement

179

Algorithm 9 Pseudocode for weighted A* search algorithm to find hovering points
Input: created graph

1: FRONTIER = PriorityQueue()

2: FRONTIER.put(c0, 0)

3: CAME FROM = []

4: COST = []

5: CAME FROM[c0] = None

6: COST[c0] = 0

7: while FRONTIER is not empty do

8: current point s′ = FRONTIER.get()

9: if s′ = c0
′ then

10: break

11: end if

12: for each neighbor s of s′ do

13: g(s) = COST[s′]+ the total AoI from s′ to s

14: if s not in COST or g(s) < COST[s] then

15: COST[s] = g(s)

16: f(s) = g(s) + ωh(s)

17: FRONTIER.put(s, f(s))

18: CAME FROM[s] = s′

19: end if

20: end for

21: end while

22: calculate A according to CAME FROM

the weight A* algorithm. We assume that at most ML2
sub points (the total number of

points in the search graph) are visited, and the min heap uses O(log(ML2
sub)) computational

complexity to extract a point each time [40]. The weighted A* algorithm’s computational

complexity is estimated to be O(ML2
sub log(ML2

sub). Hence, the computational complexity

of the proposed algorithm is O((M + 1)2dem) +O(ML2
sub log(ML2

sub).

180

Algorithm 10 Training TWA* by REINFORCE with rollout baseline
Input: Epochs Eepochs, training steps S, batch size Bsize

1: Initialize parameters ϑ, ϑ(BL) ← ϑ

2: for epoch = 1 to Eepochs do

3: for step = 1 to S do

4: H
(in)
i ← generate instances() ∀i ∈ {1, . . . , Bsize}

5: πi ← Sampling solutionPϑ

(
·|H(in)

i

)
6: π

(BL)
i ← Greedy solutionPϑ(BL)

(
·|H(in)

i

)
7: Ai ← weighted A* (πi)

8: A
(BL)
i ← weighted A*

(
π
(BL)
i

)
9: ∇ϑJ ←

∑Bsize
i=1

(
Ai −A

(BL)
i

)
∇ϑ logPϑ

(
πi|H(in)

i

)
10: ϑ← Adam (ϑ,∇ϑJ)

11: end for

12: if t-test(Pϑ(·), Pϑ(BL)(·)) < 5% then

13: ϑ(BL) ← ϑ

14: end if

15: end for

5.3.5 Training

To enable the transformer model to produce the optimal π, we use the well-known policy

gradient approaches to train it. The transformer model is parameterized by ϑ, which includes

all trainable variables in the encoder and the decoder networks. We regard the UAV as an

agent to learn a good policy π to maximize long-term rewards by iteratively interacting with

the environment to optimize parameter ϑ. At each step, the agent in a given state chooses

an action by its decision policy, which actually is the mapping from states to actions.

State

The state consists of the environment encoded by the encoder network and the visited

clusters before the current step in the decoder, which are H(6) and Ĥ
(0)
t+1 in the transformer,

respectively.

181

Action

At each step, the agent makes an action π(t) based on its state, which can be seen as

the processes of the right-hand side of (5.26). Thus, we view all operations in the decoder

network as the action.

Reward

The negative of the total AoI A in (5.16) is used as the reward.

Our objective for training is given by

J
(
ϑ|H(in)

)
= Eπ∼Pϑ(·|H(in))

(
A
)
. (5.34)

The gradient of (5.34) is calculated using the REINFORCE algorithm [41] with the greedy

rollout baseline A
(BL)

[27]

∇ϑJ
(
ϑ|H(in)

)
= Eπ∼Pϑ(·|H(in))

[(
A− A(BL)

)
∇ϑ logPϑ

(
π|H(in)

)]
(5.35)

where A is the cost of a solution that is obtained from the current training transformer

model by sampling decoding. We set the greedy policy as the baseline policy in our model,

and hence, A
(BL)

is the cost of a solution of the deterministic greedy decoding, which is

used to eliminate variance during training. By doing so, the transformer model is trained to

improve over its (greedy) self. The training process is summarized in Algorithm 10. In each

training step, new instances are generated first (line 4). Then, the transformer model uses

sampling decoding and greedy decoding to produce πi and π
(BL)
i (lines 5 and 6), respectively.

The total AoIs are further obtained from the weighted A* (lines 7 and 8). The gradient in

(5.35) is approximated with Monte Carlo sampling in a batch size Bsize (line 9). The model

parameter ϑ is updated using the Adam optimizer (line 10). We compare the current policy

with the greedy baseline policy and update the parameter ϑ(BL) only if the improvement is

significant according to a paired t-test (5%) [27].

5.4 Numerical Results

We conduct extensive experiments to investigate the performance of the proposed TWA*

algorithm in solving the problem of trajectory planning to minimize the total AoI for the

182

UAV-IoT network. The proposed model is implemented by Pytorch 1.7 and Python 3.8 and

trained on a machine with 1 NVIDIA RTX 2080Ti GPU.

5.4.1 Test Settings

Decoding Strategies

As we mentioned in Section 5.3-D, the random sampling decoding and the greedy decod-

ing are employed for training the model. At inference, we evaluate performance of all three

decoding methods on test instances and they are marked as TWA*–greedy, TWA*–sampling

(Wsampling = 5120), and TWA*–beam search (Wbeam = 100).

Comparison Algorithms

To evaluate the effectiveness of the proposed model with different decoding methods,

we compare it with the genetic algorithm [42], the simulated annealing (SA) algorithm

[43], and Ptr-A* with the sampling strategy [5]. Common parameters are selected for the

genetic algorithm: The population size is the number of all possible hovering points in one

instance, the maximal iteration is 10000, crossover is 0.1, and mutation probability is 0.8.

The parameters of SA for the initial temperature, cooling coefficient, and maximal iteration

are taken as 100, 0.99, and 1000, respectively. Ptr-A* is a LSTM-based model, which

processes the elements of a sequence one by one. Each element’s hidden state is assumed

to be dependent only on the previously hidden state. Hence, Ptr-A*’s structure makes it

hard to use parallel computing to process sequences. However, TWA* is composed of a

set of multi-head self-attention mechanism, which has the ability of parallel computation to

process all elements of a sequence as a whole rather than one by one. Another benefit of

TWA* is that it does not suffer from long dependency issues, which are very common in

recurrent-based networks, such as LSTM. This is because transformer used in TWA* does

not rely on the past hidden state to capture dependencies with previous elements.

183

Table 5.1 Simulation parameters

Parameter Value Parameter Value

H 100 m β 12.08

β̃ 0.11 PCH 0.1 W

γth 20 dB

(default)

ξLoS 1 dB

ξNLoS 20 dB σ2 −110 dBm

vUAV 15 m/s fc 2 GHz

Ldata 5 Mb Bwidth 1 MHz

Pcom 0.1 W Lsub 5

P0 99.66 W P1 120.16 W

Utip 120 m/s v0 0.002 m/s

d0 0.48 ρ 1.225 kg/m
3

τ 0.1 s δ 0.5

s0 0.0001

Data Generation

We assume there is a probability distribution over a family of problems. During training,

problem instances are generated according to this distribution, and any test examples are

also produced from the same distribution at inference. For any problem instances, all CHs

{b1, . . . , bM} are randomly sampled from the distribution U = torch.F loatTensor(1, 2).

uniform(0, 3000). With the SNR threshold γth and environment parameters, we can cal-

culate the hovering disk Om for each CH bm, and each cluster of candidate hovering points

Gm is sampled from Om. The number of nodes Nm in each ground cluster is randomly

chosen from {5, 10, 15, 20, 25, 30}. Hence, any of the problem instances is obtained as

H(in) = (c0; (G1, b1, N1) ; . . . ; (Gm, bm, Nm) ; . . . ; (GM , bM , NM)).

184

Environment Parameters and Hyperparameters

We consider a ground network with a size of 3 km × 3 km, and the start position of

the UAV is located at (0 m, 0 m, H m). Environment parameters are listed in Table 5.1. The

embedding dimension dem is equal to 512 and dv is equal to 64. We train the proposed model

using the Adam optimizer with a learning rate of 0.0001 on Eepochs = 200 epochs, where each

epoch includes S = 1000 training steps. At each training step, the batch size Bsize is equal

to 512, which means there are 512 instances in each batch. In each instance, we set M = 10.

5.4.2 Analysis of the Results

We first compare the total AoI between our proposed algorithm against the genetic and

SA algorithms on the trained model when the value of M varies. Although the model is

trained on 10-clusters IoT networks (M = 10), it still shows good performance on IoT

networks with different sizes, like 20-clusters, 30-clusters, etc., as can be seen in Fig. 5.5

(a). Specifically, the TWA*-sampling algorithm always obtains the minimal total AoI when

compared with other three decoding methods, as well as the two other algorithms under

comparison. The TWA*-beam search and TWA*-greedy algorithms exhibit an obviously

superior performance than the genetic and SA algorithms in reducing the total AoI. The

above observations indicate that the proposed algorithm with the three different decoding

methods achieves an excellent generalization ability with respect to the size of the IoT

network used for training. When M = 10, TWA*-sampling, TWA*-beam search, TWA*-

greedy, Ptr-A*, and the genetic algorithms obtain almost the same total AoI; however, the

SA algorithm has a higher total AoI when compared to our proposed algorithm with all three

decoding strategies. As the value of M increases, the performance gap increases gradually

between our proposed algorithm and comparison algorithms. For instance, whenM = 25, the

total AoI values of the TWA*-sampling, TWA*-beam search, TWA*-greedy, Ptr-A*, genetic,

and SA algorithms are 13134, 13134, 13546, 13431, 15205, and 15452 seconds, respectively.

As M increases to 45, the total AoI values obtained by the TWA*-sampling, TWA*-beam

search, and TWA*-greedy algorithms are 42803, 43971, and 46118 seconds, respectively. The

total AoI value of Ptr-A is 45663 seconds. However, the total AoI values of the genetic and

185

10 15 20 25 30 35 40 45
M

0

10000

20000

30000

40000

50000

60000

Ao
I (

se
co

nd
)

TWA*-sampling
TWA*-beam search
TWA*-greedy
Ptr-A*
Genetic
SA

(a) Comparison of the total AoI when M varies.

10 15 20 25 30 35 40 45
M

0

500

1000

1500

2000

2500

3000

3500

Ao
I o

f t
he
 o
ld
es
t p

ac
ke
t (
se
co
nd

)

TWA*-sampling
TWA*-beam search
TWA*-greedy
Ptr-A*
Genetic
SA

(b) Comparison of the oldest packet’s AoI when M varies.

Figure 5.5 Comparison when M varies.

SA algorithms are 54061 and 59537 seconds, respectively, which are obviously inferior than

what obtained by our proposed algorithm. In summary, our proposed algorithm using any

of the three decoding methods can obtain better total AoI results than both the genetic and

SA algorithms. In addition, TWA*-sampling always obtains better AoI values than Ptr-A*

with the sampling strategy. This comparison result is consistent with the conclusions in [27]

and [29] that transformer-based technique outperforms pointer network-based technique.

186

10 15 20 25 30 35 40
M

1.00

1.05

1.10

1.15

1.20

1.25

1.30

E
ne
rg
y
co
ns
um

pt
io
n
ra
tio

 n
or
m
al
iz
ed

 to
 T
W
A*
-s
am

pl
in
g

TWA*-sampling
TWA*-beam search
TWA*-greedy
Genetic
SA

Figure 5.6 Comparison of energy consumption when M varies.

Table 5.2 Comparison of running time (second).

Algorithm

M TWA*-

sampling

TWA*-beam

search

TWA*-

greedy

Ptr-A* Genetic SA

10 1.9693 2.0653 1.9556 11.1556 47.57 5.5345

15 2.1412 2.2861 2.1055 19.3212 95.46 6.4262

20 2.3392 2.4900 2.3037 27.9023 163.41 6.8623

25 2.6006 2.8087 2.5778 36.9560 261.69 7.4619

30 2.8700 3.0876 2.8300 43.5498 392.97 8.3378

35 3.2018 3.4531 3.1536 52.4981 562.25 9.2576

40 3.8059 3.7506 3.5583 61.6301 749.16 9.6988

45 4.5112 4.5190 3.8995 75.8817 991.85 10.2019

Next, we compare the AoI of the oldest packet which is from the node b
(1)
π(1) that samples

data first in the whole IoT network, among different algorithms. As can be seen in Fig. 5.5

(b), our proposed algorithm also exhibits a good performance in reducing the AoI of the

oldest packet when compared with the genetic and SA algorithms. Furthermore, the TWA*-

sampling algorithm obtains the best results among the three decoding methods and Ptr-A*.

187

Given that the proposed algorithm can find the best UAV trajectory with the minimal

AoI in the UAV-IoT network among all the algorithms under comparison, it is of interest

to further investigate the effective energy consumption of the UAV. It can be seen from

(5.7) and (5.10) that the energy consumption of the UAV is related to its flying time and

hovering time. The effective energy consumption is defined as the energy consumption of

the UAV from the first visited hovering point to the end point, i.e., in completing its data

collection task. Fig. 5.6 compares the effective energy consumptions for all the algorithms

for different values of M . In particular, plotted in the figure are the average ratios of the

effective energy consumptions by different algorithms with over that of the TWA*-sampling

algorithm. As can be seen, our proposed algorithm with any of the three decoding methods

has a better performance when compared to the genetic and SA algorithms, whereas the

TWA*-sampling algorithm obtains the best result. The results in Fig. 5.6 are in line with

expectations because with our proposed algorithm, the UAV spends less time to gather data

than with the other two algorithms, which helps to reduce the effective energy consumption

of the UAV.

Table 5.2 compares the running time at inference. As M increases, the running time of all

the algorithms increases, which is well expected. We can see that among all the algorithms

and for all the values of M , the running time of the TWA*-greedy algorithm is always

shortest. Although TWA*-sampling obtains the best performance in reducing the total AoI

as well as the AoI of the oldest packet (as can be seen from Fig. 5.5 (a) and Fig. 5.5 (b)), it

has a longer running time than TWA*-greedy, which is reasonable. Similarly, TWA*-beam

search takes slightly more time than TWA*-greedy because it needs more computational

time to search for a better solution than TWA*-greedy. We can observe that the genetic

algorithm takes the longest time among all the algorithms and its running time significantly

increases as M increases. The running time of SA is acceptable in comparison with the

genetic algorithm. Overall, the computational performance of our proposed model with all

three decoding methods is significantly better than the SA and genetic algorithms. The

running time of Ptr-A* is largely greater than that of TWA*-sampling, TWA*-beam search,

and TWA*-greedy. This is because transformer-based techniques can process a sequence in

188

10 20 30 40
M

0

5000

10000

15000

20000

25000

30000

35000

Ao
I (
se
co

nd
)

30 dB
20 dB
10 dB

(a) Comparison of the total AoI for different values of γth.

10 20 30 40
M

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
s
of

 to
ta

l f
ly
in

g
tim

e
an

d
to

ta
l h

ov
er

in
g

tim
e

 c
on

tr
ib

ut
in

g
to

 th
e
Ao

I v
al
ue

 o
f t

he
 o
ld

es
t p

ac
ke

t

Flying time (30dB)
Hovering time (30dB)
Flying time (20dB)
Hovering time (20dB)
Flying time (10dB)
Hovering time (10dB)

(b) Percentages of the total flying time and the total hovering time

for different values of γth.

Figure 5.7 Comparison for different values of γth.

parallel. However, in Ptr-A*, the elements of a sequence must be processed one by one.

Hence, our proposed TWA* with three decoding methods is faster than Ptr-A*.

In order to provide insights about the effect of γth on the total AoI, we set the same

number of devices, namely Nm = 20, in each ground cluster and evaluate in Fig. 5.7 (a) the

189

performance of TWA*-sampling for different values of γth. According to Lemma 1 and (5.5),

the smaller the value of γth is, the larger the area of each hovering disk Om will be. This

will affect the positions of hovering points and thus the total AoI. As we can see in Fig. 5.7

(a), for any given number of ground clusters, the total AoI gradually increases as the value

of γth decreases. For example, when M = 30, the values of total AoI in 10 dB, 20 dB, and

30 dB are 22707, 21655, and 20457 seconds, respectively. We can also observe that the total

AoI gap among three values of γth increases as γth becomes higher.

Next, we compare the total flying time and the total hovering time of the UAV that make

up of the AoI value A
(1)
π(1) of the oldest packet in networks with different number of clusters.

Specifically these total flying time and total hovering time of the UAV are calculated as∑M
t=1 T

(fly)
(cπ(t),cπ(t+1))

and
∑M

t=1 T
(hov)
cπ(t) , respectively. In each network, we also compare these

portions of time when γth varies. Note that, the AoI values of the oldest packet are different

for different γth values in a network. The percentages of the total hovering and the total

flying time that contribute to the AoI value of the oldest packet are plotted in Fig. 5.7

(b). When M = 10, the total flying time is always higher than the total hovering time for

any thresholds γth. In addition, as γth increases, the flying time portion increases. This is

because the selected hovering point may be closer to the center of each hovering disk if the

value of γth is large, which will cause the flight distance to be longer and thus increases the

total flying time. When M increases, the UAV needs more time to collect data, and we can

see that the hovering time portion slowly increases as expected.

Fig. 5.8 (a) compares the total AoI for different algorithms and for different numbers

of devices in each cluster. We test the trained model on a 20-clusters instance with the

same number of devices in each cluster. It can be seen that the proposed algorithm with

the sampling decoding method always obtains the minimal values when compared to the

genetic and SA algorithms. This clearly shows that our proposed algorithm can find a better

trajectory in reducing the total AoI. As N increases, there is a large performance gap between

TWA*-sampling and the two algorithms under comparison.

Fig. 5.8 (b) plots the percentages of the total flying time and the total hovering time

that make up of the AoI value of the oldest packet in the 20-clusters network when N varies.

190

5 10 15 20 25 30
N

0

2000

4000

6000

8000

10000

12000

14000

16000

Ao
I (
se
co
nd

)

TWA*-sampling
Genetic
SA

(a) Comparison of the total AoI when N varies

5 10 15 20 25 30
N

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

s
of
 to

ta
l f
ly
in
g
tim

e
an

d
to
ta
l h

ov
er
in
g
tim

e
 c
on

tr
ib
ut
in
g
to
 th

e
Ao

I v
al
ue

 o
f t
he

 o
ld
es
t p

ac
ke
t

Flying time (TWA*-sampling)
Hovering time (TWA*-sampling)
Flying time (Genetic)
Hovering time (Genetic)
Flying time (SA)
Hovering time (SA)

(b) Percentages of flying time and hovering time when N varies.

Figure 5.8 Comparison when N varies.

For all the algorithms considered in Fig. 5.8 (b), as N increases, the percentage of the total

hovering time gradually increases. This trend is justified because the UAV needs more time

to collect data from a larger number of ground nodes.

191

5.5 Conclusions

In this paper, we have investigated and solved the problem of AoI-oriented data collection

in UAV-enabled cluster-based IoT networks. With the aim of minimizing the total AoI of

the collected data, we formulated the trajectory optimization problem as the GTSP by

jointly optimizing the selection of hovering points of the UAV and the visiting order to these

hovering points. To solve the formulated problem, we designed a novel algorithm framework

based on the state-of-the-art transformer. In particular, the formulated trajectory planning

problem is viewed as a “translation problem”. The whole UAV-IoT network serves as the

“source language” to the proposed model and the “target language” of the model is the

UAV’s trajectory with the minimal total AoI, where the transformer is utilized to generate

the visiting order and the weighted A* is used to quickly find the hovering points. The

proposed model is trained by reinforcement learning to learn a trajectory planning policy.

Comprehensive experiments were conducted to evaluate the performance of the proposed

algorithm. The obtained simulation results showed that the learned policy by the proposed

algorithm has a strong generalization ability. When compared with other algorithms, our

proposed algorithm with three different decoding methods not only reduces the total AoI,

but also reduces the AoI of the oldest packet and the effective energy consumption of the

UAV. Moreover, our method also has lower computation time. In future, we plan to extend

the system model and the proposed algorithm to the multiple UAVs-assisted IoT network.

Acknowledgement

This work was supported by an NSERC/Cisco Industrial Research Chair in Low-Power

Wireless Access for Sensor Networks.

5.6 Appendix

By substituting (5.1)–(5.3) into (5.4), we can get the formulation (A.1) shown on top of

the next page. For a fixed H, 20 log10

(
4πfc

√
H2 +R2

(cm,bm)/c
)

is monotonically increasing

with respect to R(cm,bm). As the analysis in [31] shows, P
(LoS)
cm is monotonically increasing

with respect to θcm . Since θcm = arctan(H/R(cm,bm)), P
(LoS)
cm is monotonically decreasing

192

with respect to R(cm,bm) for a fixed H. Then, (ξLoS − ξNLoS)
/(

1 + β exp
(
−β̃ (θcm − β)

))
is

monotonically increasing with respect to R(cm,bm) because ξLoS < ξNLoS. Finally, we arrive at

the conclusion that the left side of (A.1) is monotonically decreasing with respect to R(cm,bm)

for a fixed H. When the SNR γcm decreases to the threshold γth, we can obtain the maximum

R∗. Hence, for any cm, the UAV can successfully receive data from bm if R(cm,bm) ≤ R∗.

PCH
1

σ2
(
P

(LoS)
cm L

(LoS)
cm +

(
1− P

(LoS)
cm

)
L
(NLoS)
cm

) ≥ γth

PCH
1

σ2
(
20 log10

(
4πfcd(cm,bm)

vlight

)
+ P

(LoS)
cm (ξLoS − ξNLoS) + ξNLoS

) ≥ γth

PCH
1

σ2

(
20 log10

(
4πfc

√
H2+R2

(cm,bm)

vlight

)
+ ξLoS−ξNLoS

1+β exp (−β̃(θcm−β))
+ ξNLoS

) ≥ γth (A.1)

193

References

[1] S. Hu, X. Chen, W. Ni, E. Hossain, and X. Wang, “Distributed machine learning for

wireless communication networks: Techniques, architectures, and applications,” IEEE

Communications Surveys & Tutorials, vol. 23, pp. 1458–1493, Jun. 2021.

[2] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on UAVs for

wireless networks: Applications, challenges, and open problems,” IEEE Communica-

tions Surveys & Tutorials, vol. 21, pp. 2334–2360, Mar. 2019.

[3] S. Hu, W. Ni, X. Wang, A. Jamalipour, and D. Ta, “Joint optimization of trajectory,

propulsion, and thrust powers for covert UAV-on-UAV video tracking and surveillance,”

IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1959–1972, 2021.

[4] S. Hu, Q. Wu, and X. Wang, “Energy management and trajectory optimization for

UAV-enabled legitimate monitoring systems,” IEEE Transactions on Wireless Commu-

nications, vol. 20, pp. 142–155, Jan. 2021.

[5] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “UAV trajectory planning

in wireless sensor networks for energy consumption minimization by deep reinforcement

learning,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 9540–9554, Sep.

2021.

[6] S. Zhang, H. Zhang, Z. Han, H. V. Poor, and L. Song, “Age of information in a cellular

internet of UAVs: Sensing and communication trade-off design,” IEEE Transactions on

Wireless Communications, vol. 19, pp. 6578–6592, Oct. 2020.

[7] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update,”

in Proc. IEEE Conference on Computer Communications (INFOCOM), pp. 2731–2735,

Mar. 2012.

[8] H. Hu, K. Xiong, G. Qu, Q. Ni, P. Fan, and K. B. Letaief, “AoI-minimal trajectory

194

planning and data collection in UAV-assisted wireless powered IoT networks,” IEEE

Internet of Things Journal, vol. 8, pp. 1211–1223, Jan. 2021.

[9] J. Liu, X. Wang, B. Bai, and H. Dai, “Age-optimal trajectory planning for UAV-assisted

data collection,” in Proc. IEEE Conference on Computer Communications Workshops

(INFOCOM), pp. 553–558, Apr. 2018.

[10] J. Liu, P. Tong, X. Wang, B. Bai, and H. Dai, “UAV-aided data collection for informa-

tion freshness in wireless sensor networks,” IEEE Transactions on Wireless Communi-

cations, vol. 20, pp. 2368–2382, Apr. 2021.

[11] Z. Jia, X. Qin, Z. Wang, and B. Liu, “Age-based path planning and data acquisition in

UAV-assisted IoT networks,” in Proc. IEEE International Conference on Communica-

tions Workshops (ICC), pp. 1–6, May 2019.

[12] M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-information minimization

in UAV-assisted IoT networks,” IEEE Transactions on Vehicular Technology, vol. 68,

pp. 2003–2008, Feb. 2019.

[13] S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, “Data freshness and

energy-efficient UAV navigation optimization: A deep reinforcement learning approach,”

IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 5994–6006, Sep.

2021.

[14] M. Yi, X. Wang, J. Liu, Y. Zhang, and B. Bai, “Deep reinforcement learning for fresh

data collection in UAV-assisted IoT networks,” in Proc. IEEE Conference on Computer

Communications Workshops (INFOCOM), pp. 716–721, Jul. 2020.

[15] D. Ebrahimi, S. Sharafeddine, P. Ho, and C. Assi, “UAV-aided projection-based com-

pressive data gathering in wireless sensor networks,” IEEE Internet of Things Journal,

vol. 6, pp. 1893–1905, Apr. 2019.

[16] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, S. Sun, and B. Ottersten, “Energy mini-

mization in UAV-aided networks: Actor-critic learning for constrained scheduling op-

195

timization,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 5028–5042, May

2021.

[17] L. Shen, N. Wang, Z. Zhu, Y. Fan, X. Ji, and X. Mu, “UAV-enabled data collection

for mMTC networks: AEM modeling and energy-efficient trajectory design,” in IEEE

International Conference on Communications (ICC), pp. 1–6, 2020.

[18] K. Obermeyer, “Path planning for a UAV performing reconnaissance of static ground

targets in terrain,” in Proc. AIAA Guidance, Navigation, and Control Conference,

pp. 1–11, Mar. 2009.

[19] D. G. Macharet, A. A. Neto, V. F. da Camara Neto, and M. F. M. Campos, “Effi-

cient target visiting path planning for multiple vehicles with bounded curvature,” in

Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 3830–3836, Nov. 2013.

[20] J. T. Isaacs and J. P. Hespanha, “Dubins traveling salesman problem with neighbor-

hoods: A graph-based approach,” Algorithms, vol. 6, pp. 84–99, Feb. 2013.

[21] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering problem with neigh-

borhoods,” in Proc. IEEE International Conference on Unmanned Aircraft Systems

(ICUAS), pp. 1555–1562, Jun. 2017.

[22] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, “Deep reinforcement

learning for minimizing age-of-information in UAV-assisted networks,” in Proc. IEEE

Global Communications Conference (GLOBECOM), pp. 1–6, Dec. 2019.

[23] W. Li, L. Wang, and A. Fei, “Minimizing packet expiration loss with path planning in

UAV-assisted data sensing,” IEEE Wireless Communications Letters, vol. 8, pp. 1520–

1523, Dec. 2019.

[24] A. Ferdowsi, M. A. Abd-Elmagid, W. Saad, and H. S. Dhillon, “Neural combinatorial

deep reinforcement learning for age-optimal joint trajectory and scheduling design in

UAV-assisted networks,” IEEE Journal on Selected Areas in Communications, vol. 39,

pp. 1250–1265, May 2021.

196

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proc. Advances in Neural Information

Processing Systems (NIPS), pp. 5998–6008, Dec. 2017.

[26] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau, “Learning

heuristics for the TSP by policy gradient,” in Proc. International Conference on the

Integration of Constraint Programming, Artificial Intelligence, and Operations Research

(CPAIOR), pp. 170–181, Jun. 2018.

[27] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!,”

in Proc. International Conference on Learning Representations (ICLR), pp. 1–25, May

2019.

[28] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuristics

for solving routing problems,” IEEE Transactions on Neural Networks and Learning

Systems, pp. 1–13, Apr. 2021.

[29] X. Bresson and T. Laurent, “The transformer network for the traveling salesman prob-

lem,” arXiv preprint arXiv:2103.03012, 2021.

[30] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or

wait: How to keep your data fresh,” IEEE Transactions on Information Theory, vol. 63,

pp. 7492–7508, Nov. 2017.

[31] A. Al Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum

coverage,” IEEE Wireless Communications Letters, vol. 3, pp. 569–572, Dec. 2014.

[32] J. Yao and N. Ansari, “Qos-aware power control in internet of drones for data collection

service,” IEEE Transactions on Vehicular Technology, vol. 68, pp. 6649–6656, Jul. 2019.

[33] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with

rotary-wing UAV,” IEEE Transactions on Wireless Communications, vol. 18, pp. 2329–

2345, Apr. 2019.

197

[34] P. Tong, J. Liu, X. Wang, B. Bai, and H. Dai, “UAV-enabled age-optimal data collection

in wireless sensor networks,” in Proc. IEEE International Conference on Communica-

tions Workshops (ICC), pp. 1–6, May 2019.

[35] A. Dumitrescu and J. S. Mitchell, “Approximation algorithms for TSP with neighbor-

hoods in the plane,” Journal of Algorithms, vol. 48, pp. 135–159, Aug. 2003.

[36] B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing problem in wireless

sensor networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 19,

pp. 1252–1261, Sep. 2007.

[37] Concorde. [Online]. Available: http://www.math.uwaterloo.ca/tsp/concor -de.html.

[38] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” arXiv preprint

arXiv:2106.04554, 2021.

[39] R. Ebendt and R. Drechsler, “Weighted A search unifying view and application,” Arti-

ficial Intelligence, vol. 173, pp. 1310–1342, Sept. 2009.

[40] G. Ramalingam and T. Reps, “On the computational complexity of dynamic graph

problems,” Theoretical Computer Science, vol. 158, pp. 233–277, May 1996.

[41] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 1992.

[42] J. Yang, C. Wu, H. P. Lee, and Y. Liang, “Solving traveling salesman problems using

generalized chromosome genetic algorithm,” Progress in Natural Science, vol. 18, no. 7,

pp. 887–892, 2008.

[43] S. Zhan, J. Lin, Z. Zhang, and Y. Zhong, “List-based simulated annealing algorithm for

traveling salesman problem,” Computational Intelligence and Neuroscience, vol. 2016,

2016.

198

6. Conclusions and Suggestions for Further

Studies

6.1 Conclusions

This thesis proposed several algorithms to improve the efficiency of data collection in IoT

networks.

In Chapter 2, we studied the problem of balancing the energy consumption of nodes

in WSNs and proposed an improved soft k-means (IS-k -means) clustering algorithm. The

initial centroids of the IS-k-means clustering algorithm were determined using CFSFDP and

KDE. The mechanism of reassigning nodes was used to balance the number of nodes per

cluster. In addition, the multi-CHs scheme was utilized to balance traffic load of CHs of

different clusters and reduce the frequency of clustering. Simulation results demonstrated

that the proposed IS-k-means algorithm postponed the FND by 2.7 times, 34 times, 2.3

times, 2.4 times, 30 times, and 1.5 times when compared to LEACH, VLEACH, KM-LEACH,

EECPK-means, k-means, and EB-CRP respectively in a network with the size of 100 m

× 100 m. The HND of the IS-k-means algorithm was delayed by 2 times when compared

to LEACH, k-means, and KM-LEACH. In addition, the IS-k-means algorithm achieved an

excellent result in postponing the FND and HND in the network with a size of 200 m

× 200 m when compared to other algorithms. Hence, the proposed IS-k-means algorithm

outperformed all the algorithms under comparison in balancing energy consumption in

WSNs.

In Chapter 3, the problem of jointly designing the UAV’s trajectory and selecting CHs

for an IoT network was investigated to minimize the total energy consumption in the UAV-

199

IoT system. To solve the formulated problem, a novel Seq2Seq-based DRL method was

proposed. Simulation results demonstrated that our proposed DRL method outperformed

the ACO and greedy algorithms in planning the UAV’s trajectory and achieved almost the

same performance as the Gurobi optimizer. However, the computation time of our DRL

algorithm was significantly less than that of Gurobi optimizer. Although the proposed DRL

algorithm was trained on 4-clusters problems, it could plan near-optimal trajectories on 5-

clusters, 6-clusters, 7-clusters, 8-clusters, 9-clusters, and 10-clusters problems. This showed

that our proposed DRL algorithm had excellent abilities of generalization, scalability, and

automation to solve different problem instances with different numbers of clusters, without

the need to retrain the model for new problems.

In Chapter 4, we continued to investigate the total energy consumption minimization

problem in an UAV-aided network. We designed a DRL model to produce the trajectory

of the UAV where the pointer network was used to determine the visiting order to clusters

and the A* search algorithm was utilized to find the CH for each cluster. At inference,

greedy search, sampling search, and active search were used for improving the performance

of the proposed model. On small-scale clusters problems, the trained 20-clusters model

by the proposed DRL algorithm with three search strategies produced better trajectories

for the UAV when compared with the genetic and NN algorithms. In particular, active

search always obtained the best results. For example, when the number of clusters was 30,

the total energy consumptions produced by NN and genetic algorithms were almost equal,

which was about 11% more than that of DRL-active-10240, 8% more than that of DRL-

sampling, and 7% more than that of DRL-greedy. When the number of clusters increased

to 50, the energy consumption of NN was around 21% more than that of DRL-active-10240,

13% more than that of DRL-sampling, and 8% more than that of DRL-greedy. Likewise

for 50 clusters, the energy consumption of the genetic algorithm was around 33% more than

that of DRL-active-10240, 24% more than that of DRL-sampling, and 17% more than that of

DRL-greedy. For large-scale clusters problems, the 40-clusters model trained by our proposed

DRL algorithm still outperformed two algorithms under comparison. For instance, when the

number of clusters was 80, the genetic algorithm consumed 50%, 58%, and 76% more energy

200

when compared to DRL-greedy, DRL-sampling, and DRL-active-10240, respectively. As the

number of clusters increased to 100, the total energy consumption of the UAV-WSN when

using the genetic algorithm was 72% more than that of DRL-greedy, 82% more than that of

DRL-sampling, and 103% more than that of DRL-active-10240. NN also showed a similar

trend to that of the genetic algorithm. In particular, its energy consumption was 47% more

than that of DRL-active-10240 in the 80-clusters problem and increased to 55% more than

the energy consumption of DRL-active-10240 in the 100-clusters problem. In addition, the

trained 20-clusters model and 40-clusters model showed an excellent generalization ability

on small-scale clusters problems and large-scale clusters problems, respectively.

In Chapter 5, the problem of minimizing the total AoI of the collected data in UAV-

enabled cluster-based IoT networks was investigated by jointly selecting hovering points of

the UAV and designing the visiting order to these hovering points. The formulated op-

timization planning problem was viewed as a “translation problem”, and a novel solution

based on the state-of-the-art transformer and the weighted A* was designed, called TWA*.

The whole UAV-IoT network served as the “source language” to the proposed algorithm

and the “target language” of the alorithm was the UAV’s trajectory with the minimal to-

tal AoI. Greedy, random sampling, and beam search decoding methods were used in the

proposed algorithm. Simulation results demonstrated that the TWA*-sampling algorithm

always obtained the minimal total AoI when compared with other two decoding methods,

as well as the genetic and SA algorithms. The TWA*-beam search and TWA*-greedy al-

gorithms exhibited an obviously superior performance than the genetic and SA algorithms

in reducing the total AoI. For instance, when the number of clusters was 20, the total AoI

values of the TWA*-sampling, TWA*-beam search, TWA*-greedy, genetic, and SA algo-

rithms were 10503, 10503, 10543, 12666, and 15433 seconds, respectively. As the number of

clusters increased to 40, the total AoI values obtained by the TWA*-sampling, TWA*-beam

search, and TWA*-greedy algorithms were 35003, 35163, and 36318 seconds, respectively,

which were very close to each other. However, the total AoI values of the genetic and SA

algorithms were 40861 and 43937 seconds, respectively, which were clearly inferior than

what obtained by our proposed algorithm. Furthermore, although the model was trained on

201

10-clusters IoT networks, it still showed good performance on IoT networks with different

sizes such as 20-clusters and 30-clusters.

6.2 Suggestions for Further Studies

The main goal of this thesis was to develop novel techniques to achieve energy-efficient

and fresh data collection in IoT networks. While conducting our research, several issues

came up that would be worthwhile for further studies. These issues are elaborated below.

In Chapter 2, the improved IS-k-means clustering algorithm is proposed to balance the

energy consumption of nodes in WSNs. The CH of each cluster directly communicates with

BS to transmit data, which may cause longer communication distance between the CH and

BS, and thus, increase the transmission energy consumption. Hence, designing an energy-

efficient multi-hop routing algorithm to extend the applicability of the IS-k-means algorithm

to large-scale WSNs is necessary.

In Chapter 3 and Chapter 4, we investigated the problem of minimizing energy consump-

tion in the UAV-IoT network where one UAV is used to collect data. Machine learning tech-

niques were developed to solve the formulated energy problems. Multi-UAVs-IoT network

is worthwhile to study for improving the efficiency of data collection in more complicated

UAVs-IoT network. It would also be interesting to develop distributed machine learning

techniques to solve multiple UAVs’ trajectory planning problem.

In Chapter 5, an AoI-oriented data collection model in a clusters-based IoT network is

proposed. Then, we formulated a total AoI-minimal trajectory planning problem where the

hovering points of the UAV and the visiting order to these points are jointly optimized.

The state-of-the-art transformer was employed to solve the formulated problem. It will be

an interesting study to jointly design the UAV’s trajectory and cluster ground devices to

minimize the total AoI in a general (unclustered) IoT network.

202

