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Abstract

Artificial Intelligence (AI) is a successful paradigm with application in many fields; however,

there can be some challenging scenarios like the deployment of AI models in remote locations or

with limited connectivity, possibly needing to perform inference closer to where data is collected.

A potential solution is the study of ways to optimize AI models, for deployment of intelligent

algorithms closer to the edge.

This thesis focuses on applications of AI that need to have characteristics that make them

suitable for implementation on portable devices (e.g., aeroponics container, drone, mobile robot);

thus, the development and implementation of custom models, and their optimization (i.e., reduction

in size and inference time) is of upmost importance and the main goal of this dissertation. For this

task, a number of options have been explored, including developing techniques to select relevant

features from the samples that the model analyzes, and pruning and quantization. Therefore, this

thesis proposes a scheme for the development, implementation, and optimization of custom AI

models used mainly in agriculture, so that they have the desired characteristics that are needed

for their deployment in edge devices. This main goal is fulfilled by implementing a number of

sequential steps that include the validation of the hypothesis that there is at least an AI model

capable of generating useful predictions for the applications being studied, the exploration and

implementation of an approach for their optimization, and their final implementation in hardware

of limited resources.

The main contributions of this thesis are on the general workflow for optimization of custom

models, as well as in the proposed scheme for feature selection based on model interpretability

approaches. This carries most of the novelty of the thesis, since we have not found previous

implementations of these ideas, at least in the field under study. This optimization is mainly based

on a feature selection approach, but finally complemented with pruning and quantization. The

implementation of some of these models on an edge-like device, demonstrates the feasibility of this

approach.

Finally, although this thesis tries to be a self-contained work, encompassing all the aspects

required to go from AI model design to implementation on an edge device, there are some aspects

that could be further studied, analyzed, and improved. Furthermore, it is almost impossible to

keep the pace with all the new developments in the fields of AI, edge computing, hardware and

software tools, etc. which opens the field for new discussions and proposals. This work tries to

fill some gaps and to propose some ideas that hopefully will be useful for future researchers in the

development of new technologies and solutions.
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1 Introduction

Artificial Intelligence (AI) has achieved great success in recent years. Although commercially

profitable applications such as image and speech recognition currently compete with humans in

terms of accuracy, there are many other areas that could benefit from these technologies, but some

obstacles have to be surpassed first. One of the current issues to adopt and adapt AI to help

solve new problems is the difficulty of porting AI models into applications that are further away

from compute servers and with limited connectivity, which leads to the possible need to perform

inference closer to where the data is collected. A potential solution is the study of ways to optimize

AI models that allow for the deployment of intelligent algorithms closer to the edge, where data is

being generated.

This thesis evaluates a number of approaches to generate AI models that use different kinds of

data, such as tabular, sequential, and multi- and hyper-spectral images (MSI and HSI, respectively);

while trying to understand which features are more relevant for the predictions generated by these

DL models. This understanding is relevant not only from a purely scientific curiosity point of

view, but also as a tool for implementing smaller and faster models, that could run on hardware of

restricted characteristics, allowing them to finally be deployed under edge intelligence frameworks.

A general scheme of the steps followed to reach these goals is presented in Fig. 1.1, and serves

as a basic outline of the works described throughout this thesis. The feedback arrows represent

how the products of each step are or could be used for the improvement of the outcomes of the

proposed workflow. In the feedback, the continuous line represents the main flow of information

applied in this thesis, while the dashed lines represent mostly what is left for future works.

1.1 The success of Machine and Deep Learning

AI is a concept as old as computers themselves, and it saw its firsts real advances in the mid

twentieth century [1, 7], where some scientists tried to mathematically and electronically replicate

the basic understanding that was available at the time of how neurons and the human brain work.

However, in its beginnings, most successful AI approaches consisted on what is called symbolic AI,

or the idea that intelligence could be achieved by programming a sufficiently large set of rules. This

approach lacked flexibility and has now almost entirely been replaced by Machine Learning (ML),

a subfield of AI (Fig. 1.2), that uses learning algorithms to extract information from data in order
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Figure 1.1: Graphical representation of the general workflow of this thesis.

to make predictions, instead of humans trying to derive complicated rules [7].

There are many definitions of ML in literature; however, all of them agree on the basic idea

of machines being able to learn from data[1, 3, 7, 8]. Some also point out that it is mainly an

engineering problem [3], due to its statistical foundations but high reliance on computers and

relaxed confidence intervals [8]. That highly application-oriented nature makes it a science, but

also an art [3, 7]. All of this has some implications; the most important being a paradigm shift

in programming, which is better visualized in Fig. 1.3. In classical programming, a human has to

write a set of rules that operate over data to provide some answers, while with ML, a computer

uses the data and known answers in order to derive a set of rules that can then operate over new

data to generate original answers [1]. This process, of course, still has the need for humans to write

a program. The main change is that programmers now do not need to code the rules, but instead

they need to specify a limited model space within which the computer needs to find an optimal

model that fits the data, with the help of a feedback signal [1]. This process is called training.

Going deeper into Fig. 1.2, we have that DL is a particular form of ML [8], a mathematical

framework that is not based on how the brain works [1]. This approach has gained attention in this

century due to its recent advances [3], mainly powered by developments in hardware, data collec-
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Figure 1.2: Artificial intelligence, machine learning, and deep learning [1].

Figure 1.3: Machine learning: a new programming paradigm [1].

tion, new algorithms, and the amount of new applications that it finds (new ones being constantly

realized)[1]. The main characteristic of DL is the added layers of increasingly meaningful represen-

tations [1]. In such networks, each layer generates a feature map that extracts essential and unique

features within the samples that will eventually be used by the network for its characterization [9].

1.2 Motivation

1.2.1 Importance of the Applications of AI in this Thesis

ML and DL have achieved great success in many applications in recent years, such as medicine,

robotics, and climatology. However, there are many other applications that can benefit from these

technologies. In the case of this thesis, the main application for the developed ML and DL models

is agriculture. Agriculture in general is a broad field encompassing different areas of knowledge,

but the main challenges addressed in this work correspond to the development and implementation

of models that can predict the yield [5, 10, 11, 12] (and moisture content in one particular case [13])

of a crop, based on some sensor data. The sensors utilized to collect the data, range from in-situ

[5, 11] (e.g., temperature, light, etc.) to remote [10, 12, 13] (e.g., MSI and HSI images).

Importantly, regardless of the data collection method and the information contained, AI models
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can be adapted to deal with other applications. Provided that the used methods are alike, similar

models and approaches can be implemented. To demonstrate this, one work [14] in this thesis,

focuses on a security application based on a chemical sensing system. The common ground between

this application and the agricultural ones is the similar data collection process, which becomes

virtually transparent for the phase of AI model development and following steps.

Applications in Agriculture

Agriculture is one of the oldest and most important economical activities of humanity, which has

undergone numerous changes throughout history. It began as a primitive process that eventually

became what we call modern agriculture. Traditional methods for plant phenotyping (identification

of external characteristics) are time consuming and prone to error [15]; therefore, optimization of

this process is required. Furthermore, plant phenotyping, and specific tasks such as yield prediction

or moisture content determination, could be the basis of fully automated control systems in which

the final yield could be maximized by setting the variables under control (e.g., irrigation, light

conditions, nutrients, temperature) [16]. Considering that the Government of Canada forecasts

a production of 33.6 million tonnes of wheat for the 2020-2021 season [17], as an example, the

improvement of the previously mentioned tasks can have a considerable impact in agricultural-

based economies such as in the case of Saskatchewan.

In recent years, there have been some attempts to use ML for agricultural applications, as de-

scribed in a review [25] about remote sensing and ML for crop water stress determination in various

crops. There are also studies utilizing DL models and high-resolution image technology were able to

develop more precise predictions of yield. A 2019 study in corn yield prediction found that a DNN

model had a superior prediction accuracy on average yield [56]. [57] used CNNs that outperformed

the yield prediction when compared with the traditional RS based model. In literature there are

also some attempts to use SHAP values to interpret a CNN trained to predict soil organic carbon

content [35].

Finding important features for yield and moisture content prediction is also relevant for the

development of small, low-cost sensors that focus on capturing only the information that is needed

for a given task. It is also important for the implementation of data collection strategies that

could even become automated. All of this could open new research possibilities in the development

of Internet of Things (IoT) based solutions for plant phenotyping. Thus, there are economical,

scientific, and technical reasons that make agriculture an interesting application field for AI.

Chemical Sensing

Chemical sensing is a type of sensing where chemical substances are under analysis. As a proof

of generalization of the main concepts, this thesis presents one work that deals with one specific
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chemical sensing topic: the identification of explosive compounds by means of an electronic nose,

which tries to emulate the complex biological olfactory system [14]. This application is very relevant

for the analysis of volatile organic compounds (VOC) that can be generated by different chemical

processes. At first, this situation might seem very dissimilar from the agricultural applications;

however, once data is collected, it can be processed and analyzed in a similar fashion to data

obtained from in-situ sensing for agricultural applications. Furthermore, the time-series nature of

the data and the related target for a portable, fast, and accurate application, makes it a good

candidate for sharing architectural and training constraints when developing a DL model. Finally,

it is important to mention that electronic noses are an active field or research in applications related

to agriculture, such as quality assurance and identification of ingredients/components [18, 19, 20,

21, 22].

1.2.2 The Need for Custom Architectures

ML and DL are finding application in new fields of study all the time; however, those applications

usually mean the use of pre-trained networks and in some cases a fine tuning process to fit the

needs of such application. This happens mainly because of the lack of computational power for

training new architectures, the long heuristic process of finding the optimal hyperparameters of a

network, and the relative uniformity of the datasets that are being used. In the case of this thesis,

the absence of the latter has been the driving force for having to implement and test customized

architectures. The datasets used throughout this work, have been collected for different projects

and with different goals in mind; thus, they are not conventional images, videos, or sequences that

can easily be adapted to public pre-trained networks. Therefore, the development of architectures

tailored to the different datasets is the first and one of the major components of this thesis. For

that, it was necessary to use relatively large computational resources and the exhaustive search for

optimal hyperparameters, as will be clearly described in each chapter.

1.2.3 Models Optimized for Edge Computing

Given that the applications of AI analyzed here have as a final goal to be implemented on portable

devices, the optimization of the models is of upmost importance and it is the main focus of this

thesis. For this task, a number of options have been explored, like techniques to select relevant

features from the samples that the model analyzes, and pruning and quantization.

1.2.4 AI, a Growing Business

AI is a technology that is expected to grow in the near future, as shown in Fig. 1.4. Other data that

support this trend mention that the worldwide enterprise spending on AI hardware, software, and
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services, are expected to reach $204 billion in 2025; or that by 2024, 60% of G2000a companies will

expand the use of AI across all business-critical functions [2]. However, it is not only the adoption

of AI, but also its efficient implementation, which implies the optimization of AI models for their

use in edge devices, keeping in mind that this is also a promising field. Enterprise spending on

edge hardware, software, and services will reach an estimated $250 billion by 2024 [23]. Therefore,

innovations in relevant technologies and the inclusion of new applications are critical.

Figure 1.4: Worldwide AI Hardware, Software, and Services Revenue ($B), 2022–2025 [2].

1.3 Objectives

The main objective of this thesis is to propose a scheme (which general concept is described in Fig.

1.1) to develop, implement, and optimize custom AI models used mainly in agriculture, so that

they have the characteristics needed to be deployed in edge devices. This main goal is built on the

following specific objectives, which have to be accomplished as sequential steps:

1. The first objective, in which all the others are supported, is to validate the hypothesis that

there is at least a ML/DL model capable of generating useful predictions for the applica-

tions being studied: yield and moisture content prediction from remote sensing sources, yield

prediction from an aeroponic farm, and explosive detection by means of an e-nose.

2. Provided that the first objective is fulfilled, the second one is to explore, propose, and im-

plement an approach for the optimization of such models, using feature selection as the main

component.

aThe Forbes Global 2000 (G2000) is an annual ranking of the top 2000 public companies in the world by Forbes
magazine.
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3. The final objective is to demonstrate that such models, which original format might contain

an elevated number of parameters, can be optimized and implemented in hardware of limited

resources, facilitating the implementation of edge intelligence. This should be done on a

general purpose computer, in order to facilitate the adoption and deployment of the proposed

solution.

1.4 Overview of Research Works

In this thesis, based on the concepts discussed throughout this chapter, some solutions are provided

in order to first implement customized models for the particular tasks being addressed, and then

for the optimization of some of those models. This optimization is mainly based on a feature

selection approach, but finally complemented with pruning and quantization. It has also been an

important task to implement some of these models on an embedded device, in order to demonstrate

the feasibility of this approach. In the end, the main contributions of this thesis are on the general

workflow for model optimization, as well as in the proposed scheme for feature selection based on

model interpretability approaches. This carries most of the novelty of the thesis, since we have not

found previous implementations of these ideas, at least in the field under study. The whole thesis

is composed of five parts with nine chapters shown as follows:

• Part I Preface includes:

– Chapter 1 Introduction: presents the importance of deep learning and the motivations,

the objectives, and the contributions of the research works.

– Chapter 2 Background: introduces the technical information required to present the

research works.

• Part II Custom Machine Learning Models includes:

– Chapter 3 Ensemble Learning for Improving Generalization in Aeroponics Yield Predic-

tion: presents an introduction to the use of ML techniques, particularly for analyzing

data collected from unconventional sources (an aeroponics growing module). This chap-

ter attempts to verify if ML could be a viable approach for processing data obtained

from various kinds of electronic sensors.

• Part III Feature Selection in Deep Learning includes:

– Chapter 4 Identifying Useful Features in Multispectral Images with Deep Learning for

Optimizing Wheat Yield Prediction: presents the use of DL for the analysis of MSI

taken at different times and locations, with yet another customized model. Moving one

step forward into this thesis main workflow, this chapter also explores the possibility of
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identifying the most relevant features for the predictions of the DL model. A simple

algorithm is used in this initial stage.

– Chapter 5 A Novel Approach to Identify the Spectral Bands that Predict Moisture Con-

tent in Canola and Wheat: presents a game-theory-based method for feature selection,

based on a feature attribution algorithm designed for model explainability/interpretability

(SHAP). This approach is used to analyze which features generate certain predictions.

One advantage of the proposed technique is that this can preserve the physical mean-

ing of the original features, providing more meaningful results than feature extraction

algorithms like PCA. Another benefit of this line of action is that it can generate ex-

planations of the trained model, focused on a target (e.g., moisture content), a feature

(e.g., spectral or spatial), or a subset of the samples. If a comprehensive explanation

is needed, the individual contributions can be aggregated into a single SHAP value per

feature, due to its additive property. This proposed approach is the main novelty of this

work.

• Part IV Model Optimization and Edge Intelligence includes:

– Chapter 6 Interpretability of Artificial Intelligence Models that use Data Fusion to Pre-

dict Yield in Aeroponics: presents concepts that elaborate on previous chapters; first,

it extends the use of DL models for sensor-data, also applying data fusion, and second,

it introduces the use of SHAP-based feature selection for model optimization, by using

only the most relevant features in the dataset. This is the first step towards the im-

plementation of these DL models in embedded devices. This chapter is also the only

one that explores the ideas of model interpretability, by focusing on the ways that some

features affect the final predictions, their meaning, and their relationship to the current

scientific knowledge of the particular phenomena.

– Chapter 7 Improving the Detection of Explosives in a MOX Chemical Sensors Array

with LSTM Networks: presents an example of the whole proposed process, starting with

the implementation of customized AI models, going through model optimization, and

finally ending in the implementation on an edge-like device. In this particular case, it

implements a simple approach for feature selection, by taking only the initial time-steps

of a sequence in order to make a prediction.

– Chapter 8 Optimizing a Multispectral-Images-Based DL Model, Through Feature Selec-

tion, Pruning and Quantization: presents the use of pruning and quantization, which

are model optimization techniques that complement the feature selection approach, and

further improve the task of creating models for embedded applications. This chapter

demonstrates that after applying some optimization techniques, a DL model can be im-
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plemented on an edge device, which could in turn be mounted on or near a data gathering

devices (such as a drone, an exploration robot, or an aeroponics growing chamber).

• Part V Conclusion includes:

– Chapter 9 Conclusions and Future Research: presents the conclusions of the thesis and

proposes ideas for future work.

1.5 Summary of Contributions

In this thesis, some new ideas are proposed particularly in the feature selection field, and its usage

as an optimization tool for DL models. The papers that support this thesis present examples of the

implementation and application of these ideas. Another important component is the implemen-

tation of customized AI models that serve as an initial step towards that end. Therefore, all the

papers here described contribute in one way or another to the achievement of the aforementioned

goals. Below is the list of publications, arranged according to the order of appearance in this thesis:

• Chapter 3: J. Torres-Tello, S. Venkatachalam, L. Moreno, and S.-B. Ko, “Ensemble

Learning for Improving Generalization in Aeroponics Yield Prediction,” in 2020 IEEE In-

ternational Symposium on Circuits and Systems (ISCAS), Spain, Oct. 2020, pp. 1–5. doi:

10.1109/ISCAS45731.2020.9181283.

• Chapter 4: J. Torres-Tello and S.-B. Ko, “Identifying Useful Features in Multispectral

Images with Deep Learning for Optimizing Wheat Yield Prediction,” in 2021 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), May 2021, pp. 1–5. doi: 10.1109/IS-

CAS51556.2021.9401360.

• Chapter 5: J. W. Torres-Tello, S. Ko, K. D. Singh, and S. J. Shirtliffe, “A novel approach

to identify the spectral bands that predict moisture content in canola and wheat,” Biosystems

Engineering, vol. 210, pp. 91–103, Oct. 2021, doi: 10.1016/j.biosystemseng.2021.08.004.

• Chapter 6: J. Torres-Tello and S.-B. Ko, “Interpretability of artificial intelligence models

that use data fusion to predict yield in aeroponics,” J Ambient Intell Human Comput, Sep.

2021, doi: 10.1007/s12652-021-03470-9.

• Chapter 7: J. Torres-Tello, A. V. Guamán, and S.-B. Ko, “Improving the Detection of

Explosives in a MOX Chemical Sensors Array With LSTM Networks,” IEEE Sensors Journal,

vol. 20, no. 23, pp. 14302–14309, 2020, doi: 10.1109/JSEN.2020.3007431.

• Chapter 8: J. Torres-Tello and S.-B. Ko, “Optimizing a Multispectral-Images-Based DL

Model, through Feature Selection, Pruning and Quantization,” in 2022 IEEE International

Symposium on Circuits and Systems (ISCAS), In press.

10



• Other publications that are not included in this thesis: P. Pérez, J. Torres-Tello,

and S. Ko, “Low-Cost 2-D Map Generation System for a Mobile Robot,” in 2019 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–5. doi: 10.1109/IS-

CAS.2019.8702764.
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2 Background

This chapter is a review of the main concepts discussed in this thesis. The main goal is to

introduce the reader to the general concepts before they appear in the following chapters, where

these concepts and ideas are presented again and/or further discussed.

This chapter begins with the description of basic concepts on sensors and data types that will

be used to train the AI models. Then, it continues with a description of ML/DL and the particular

techniques applied in this thesis. Later, it introduces the concepts that support the idea of model

optimization, mainly focusing to the identification of salient features in the datasets. Finally, some

characteristics of the edge-like devices and their model implementation are mentioned.

2.1 Sensors and Types of Data

A transducer is a device that transforms some kind of energy into another one, typically electric.

On top of it, a sensor is a kind of transducer in which the output signal is a function of the

measured variable. In a broad sense, this measurement also implies some kind of data processing

and/or the display of results, being either in-situ or remote; functions that are usually integrated

in the same device. This has been possible mainly due to three technological advances: computer

miniaturization, improvements in semiconductor fabrication, and distributed control schemes [24].

There are many different kinds of sensors, but the ones used in this thesis can be classified in

two categories regarding the type of output: time-series and image sensors.

2.1.1 Time-series

This is the most basic kind of data collection scheme, in which a sensor samples a signal at a given

frequency. Thus, the sample contains a number of datapoints at fixed time intervals. Different

sensors can be measuring the same or different variables at the same time, to construct a unique

sample, in univariate (one sensor at a time) and multivariate (multiple sensors at the same time)

situations. Fig. 2.1 shows an example of time-series data used in this thesis, which include magni-

tudes like relative humidity, temperature, gas concentrations, etc. These sensors are usually cheap,

small, and energy efficient, and their measurements are valuable inputs to ML algorithms, although

they usually need some level of signal pre-processing.
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Figure 2.1: Examples of time-series data used in this thesis

2.1.2 Image Sensors

A more complex kind of sensor is one that has to construct a two-dimensional spatial representation

of an object. This is the case of image sensors, like the ones included in photographic cameras,

as well as in MSI/HSI sensors. Images are usually used for remote sensing, in which there is

no physical contact between the sensor and the measured object or magnitude. These sensors in

particular respond to the electromagnetic spectrum reflected by an object. In that sense, they

constitute passive sensors, meaning that they do not inject any energy into the system. For this

thesis, MSI and HSI are used.

Multi- and Hyper-spectral Images

Traditional photography or imaging is based on the idea that color can be represented as a com-

bination of three channels: red, green, and blue (RGB). This is usually enough to represent the

colors that the human eye can distinguish; however, the electromagnetic spectrum contains more

information that can be collected by other sensors. An HSI camera is a passive sensor that captures

the spectral reflectance that corresponds to the wavelength of the electromagnetic field collected

from objects on the ground. This information is then associated with biochemical and biophysical

properties of the surface, and the number of spectral bands recorded can range from a few to a few

hundred (150 in this thesis) [25].
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In that sense, MSI is a subfield of HSI, in which the number of spectral bands is very limited. In

the case of the dataset used in this thesis MSI samples contain only five bands (RGB plus red-edge

and near infrared channels). This difference also means that HSI with more bands usually have a

better spatial resolution (each band is narrower).

Thus, HSI is a combination of digital imaging and spectroscopy, best matched to applications

in which spectral information is more reliable or measurable than shape or morphology [26], as it is

the case of the studies described in following chapters. Considering that most current approaches

that involve HSI and plant phenotyping tend to use spectral (or vegetation) indexes, which are

mathematical combinations of two or more spectral bands [25, 27], ML seems a viable option to

find similar and probably more complex relationships that could generate better results, despite

the problems associated to it, including high dimensionality of the data, redundant information,

and insufficient samples [28].

As an example, Fig. 2.2 shows RGB representations of a canola field where HSI have been

collected, as well as the spectral curve corresponding to a canola plot (mean values for all pixels in

the plot). Each pixel in the HSI data contains spectral curves similar to the one presented in this

figure, and this is the information fed to our DL models. Also, this information is later analyzed

with a feature attribution/selection method.

Figure 2.2: HSI samples of a canola field. Top: RGB representation. Bottom: Spectral
curve of a sample.

In the end, regardless of the sensor used to collect the data, samples will be organized into

multi-dimensional arrays that can be operated upon by the ML and DL algorithms implemented

for each particular case.
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2.2 Machine and Deep Learning

As it was mentioned in the previous chapter, multiple ML and DL models have been implemented

throughout this thesis. This section contains a brief description of those algorithms. It is important

to remember that the main goal of these algorithms is to learn the relationship between a set of

samples X and their target values Y , in what is called a supervised training. Once that relationship

has bean learned, the algorithm should be able to predict a value ŷ based on a new sample x with

minimum error. The most difficult part of this process is to find a trade off between the capacity

of the model (how much it can learn) and its generalization capability (how good it performs when

dealing with unseen samples).

2.2.1 Machine Learning

There are several ML techniques that have been developed in past years, all of them with different

limitations and target applications. Some chapters in this thesis implement ML models, in most

cases with the goal of evaluating that this programming paradigm could be used for the problem

under analysis. These implementations are also useful to establish a baseline in order to evaluate

the performance of more complex (DL) models. The ML models implemented in this thesis are:

k Nearest Neighbors

k Nearest Neighbors (kNN) is a very simple algorithm that assigns the class of a sample, among the

k nearest neighbors (samples), by majority vote. One downside of this method is that the model

needs to memorize the whole training set in order to be able to make a decision, which makes it

poorly scalable.

Support Vector Machine

This algorithm is widely used due to its good performance in terms of training speed and unique

solution. The main idea behind a Support Vector Machine (SVM) is the definition of a hyperplane

that separates the samples in their respective classes; however, not all the samples are used for this

task. Only the samples closest to the hyperplane (i.e. the hardest to classify) are used, and they

are called support vectors; hence the name. A parameter ε defines the epsilon-tube inside of which

no penalty is associated in the training loss function. There is also a regularization parameter

C that controls the misclassification penalty. To deal with non-linear data, SVM implements

the so-called kernel trick that transforms the data into a higher dimensional feature space via a

mapping function. The kernel trick has a γ parameter associated to it, that indicates how soft the

decision boundary would be. Although SVM is initially defined for classification, it can be applied

15



to regression problems as well. In this case, the acceptable error is defined and the model finds a

hyperplane to fit the data.

Random Forest

A Random Forest (RF) is an ensemble or combination of multiple decision trees that generates a

final prediction by majority vote. This approach attempts to generate a strong learner, based on

the weaker decision tree; which is a simple concept where the model learns a series of questions

that define cut-off values for the different features in the dataset. It separates the samples based

on how the features relate to those cut-off values, starting at the root and sequentially splitting the

data on the feature that generates the largest information gain, in an iterative process that finishes

when the leaves are pure or at a predefined depth [7].

Artificial Neural Network

An Artificial Neural Network (ANN) is a concept roughly based upon the understanding of how the

human brain works, and it was first introduced in the 1940’s [7]. Its basic element is a processing

unit called neuron that connects to other neurons and can be arranged in layers in order to fit

complex functions. The connections between neurons have weights associated to them, which are

the learnable parameters. These weights are updated simultaneously on every pass of the training

set, or epoch, and this is performed by an optimization algorithm that calculates the gradient of a

loss function. The final goal is to minimize the loss function. Fig. 2.3 shows a simple ANN known

as a perceptron, where the neuron computes the weighted sum of the inputs and then applies a

step function (or a threshold - so this is also known as a Threshold Logic Unit) in order to generate

the output [3]. Modern ANN’s replace the step with other activation functions.

Figure 2.3: Scheme of a simple perceptron [3].
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2.2.2 Deep Learning

The main idea behind DL is stacking multiple layers of ANN’s in order to capture more complex

features with each layer and the term deep comes from the relatively high depth of the network

caused by the multiple layers. DL has evolved into two main branches: Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN), both of which are used in this thesis.

The former is usually applied to image analysis, while the latter focuses on sequential data.

Convolutional Neural Networks

CNN’s are very popular especially in computer vision, given the good results they provide. The main

idea behind a CNN is the implementation of multiple layers of feature detectors, that automatically

identify patterns within the data. In order to learn those patterns, convolutional layers use a sliding

filter (kernel) that covers the whole sample (input feature map), as shown in Fig. 2.4, and generates

an output feature map that captures the important characteristics that are finally used by a classifier

or regressor layer(s). Many architectures have been proposed and used in the last years, and the

first successful implementation was the LeNet-5 [29], that was used to classify handwritten digits.

LeNet-5 consists of a stack of convolutional-pooling blocks and has been used as the basis for

following architectures that stack more layers and add different types of connections between those

layers, such as the case of VGG-16, used in some of the chapters of this thesis.

Figure 2.4: Sliding kernels on a CNN [4].

CNN’s have been designed for processing visual data [30], which requires two dimensional ker-

nels; however, they can handle any number of dimensions [4]. The works described in this thesis use

1 to 3 dimensional kernels depending on the application. The use of 1D convolutions means that

the network uses the same filter for each of the individual n channels at its input. For 2 dimensions,

the kernel slides over height and width, and so on.

CNN’s are a good choice due to their relatively reduced number of weights (they are shared)
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and translation invariance (CNN is also known as shift invariant ANN, or SIANN) [31]. The use

of the pooling operation contributes to achieve invariance to small local distortions and reduce

dimensionality of the feature space [31].

Recurrent Neural Networks

RNN’s are a kind of network for processing sequential data, mainly because they are able to

scale to much longer sequences than other networks [8]. They are able to achieve this task by

keeping information from the past. The original RNN design suffers from vanishing and exploding

gradient problems, as the backpropagation through time (BPTT) procedure depends exponentially

on weights for each time step, failing to learn information that goes over a few time steps. Thus,

new designs such as Gated Recurrent Unit (GRU) or Long Short Term Memory (LSTM) have been

proposed. Among these RNN candidates, despite various efforts, no real improvements have been

achieved over LSTM. For example, [31] compares six different methods for time series prediction

and finds out that including CNN, LSTM and autoencoders, LSTM is one of the best performers on

all the evaluated datasets. The most important concept about RNNs is that they connect neurons

outputs to their own inputs. This closed loop gives RNNs the ability to memorize information

regarding trends.

Long Short Term Memory LSTM has emerged as an effective and scalable model for several

learning problems related to sequential data. Previous methods for addressing these problems have

either been specifically designed towards a particular case or did not scale well [32]. One downside

of this network is that it involves more operations than other options and therefore demands more

computational resources. LSTM is a special implementation of the general RNN, that deals with

the vanishing gradient problem by means of three gates: forget, input, and output; which are

described by equations (2.1), (2.2), and (2.3) [8].

The forget gate controls the self-loop weights, and a unit f
(t)
i for the time step t and cell i, is

defined by (2.1).

f
(t)
i = σ

bfi +
∑
j

Uf
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

 , (2.1)

where bf , Uf , and W f are the biases, input weights, and recurrent weights for those forget

gates, in that order; and xt and ht are the current input and hidden layer vectors, respectively.

Note that the final value of the gate is set to be between 0 and 1, due to the sigmoid activation

function. Accordingly, the input g
(t)
i and output q

(t)
i gates are defined in a similar fashion, but with
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their own parameters.

g
(t)
i = σ

bgi +
∑
j

Ug
i,jx

(t)
j +
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j

W g
i,jh

(t−1)
j

 , (2.2)

q
(t)
i = σ

b0i +
∑
j

U0
i,jx

(t)
j +

∑
j

W 0
i,jh

(t−1)
j

 . (2.3)

Other Networks for Sequential Data As it was mentioned before, CNN’s can be implemented

using 1D kernels, which makes them appropriate for sequential data processing, with the advantage

of using less computational resources than RNN’s; however, this comes with a reduced performance

in most cases.

Finally, it is worth mentioning that most current approaches for sequential data involve the use

of transformers, which are a networks based on the concept of the attention mechanisms that have

revolutionized the natural language processing world, because they overcome some short memory

downsides of LSTM networks, making them suitable for long sequences. Transformers also involve

the idea of an encoder-decoder scheme, which is very useful for sequence to sequence tasks, such as

language translation.

Improving predictions

Some of the custom models that were first tried in this thesis did not perform as expected. Thus,

in some cases, some additional techniques have been used to improve the training process or the

final predictions. Among these, we have the use of data augmentation, data fusion, pre-trained

networks, and ensemble of models.

Data augmentation is a common approach to fight overfitting and it simply means generating

artificial samples in order to increase the size of the dataset. The most common and understandable

example comes from computer vision and it implies rotating and/or flipping images so that the

dataset contains a few times more samples with new images that were not initially there. This

thesis uses data augmentation by rotating images (Chapters 4 and 8), using a sliding window to

take pieces of the sample (Chapter 5), or using a moving average (Chapter 7).

Another useful technique to improve training is the use of combined data sources to generate

a single prediction. This is implemented in Chapter 6 where tabular and sensor-acquired data are

combined by a single DL model to generate predictions about the yield. Thus, the model should

mix the information to learn the patterns that relate those different inputs to the given output.

As it was already indicated, the use of pre-trained networks also facilitates the DL workflow

whenever possible, because we have a model that was trained using millions of samples and we can

just fine-tune it to our particular needs. The resulting model can be then combined with other
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models or used as it is. A good approach for using a pre-trained network is to use the initial

layers until they are able to extract the features relevant to a given problem, and then to train a

customized dense network on top of it [1]. In Chapter 5 a pre-trained model is used as one of the

components.

Finally, the ensemble of models is also implemented in this work. This is used to increase the

generalization performance of models by combining them into a meta-model. The error probabil-

ity of an ensemble is always better than the error of any of its components, provided that their

individual error is better than a random guess [7]. This is implemented in Chapters 3 and 5.

2.3 Model Optimization

As it was mentioned in Chapter 1, most of the novelty of this thesis is in the feature selection for

model optimization. The most relevant approach used for this purpose is the use of SHAP values,

a feature attribution method for model interpretability.

2.3.1 Feature Selection

In ML there is a well know issue called the curse of dimensionality. Intuitively, we can think that

the more features (dimensions) a dataset has, the more information it carries, and thus the easier

it will be to find a model that can fit the dataset. While this might be true up to a certain point,

eventually the dataset will likely contain too many features (compared to the number of samples)

that it is represented in so many dimensions that the samples are too sparse; in such a way that

it becomes impossible to find a model which: (i) can fit the dataset, and (ii) can generalize well

to previously unseen samples. At this point, it is important to find ways to alleviate this issue,

using different approaches like adding more samples whenever possible (which makes the samples

to be closer to each other), projecting the samples to a lower-dimensional space (dimensionality

reduction or feature extraction), or by selecting the most important features in the dataset, called

feature selection.

Feature selection can be implemented in a few different ways. The most obvious one is having

an expert that can choose them by hand; which is useful mostly in tabular datasets that have

well known characteristics (a typical example is the one of real estate, where an expert can assess

market prices based on their experience). However, when the datasets are more complex and with

less understood features, we have to rely on other tools. Two main approaches have been used in

this thesis: (i) Sequential Backward Selection (SBS), and (ii) Feature Attribution. Both of these

approaches imply the selection of features after an initial model has been trained and analyzed.

It is important to mention that the feature selection approach, besides palliating the curse of

dimensionality, allows for the implementation of smaller and faster models, which is one of the goals
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of this work.

Sequential Backward Selection

When dealing with the selection of a subset of the original features, SBS is a classic algorithm that

sequentially removes them from the full feature set until the new feature subspace contains the

desired number of features [7], or assures a certain performance level. In this thesis, the process of

sequentially removing features is applied in two ways: (i) Chapters 4 and 8 implement a scheme

in which different features (temporal or spectral) are removed in different combinations, and (ii) in

Chapter 7 only the temporal component is affected, by progressively reducing its size. Both cases

look forward to the implementation of DL models of a reduced size by means of selecting a subset

of the original features.

Feature Attribution

Feature attribution consists in assigning some level of relevance to the features in a dataset. After

attributing this relevance, it is possible to pick only a number of those feature for further analysis

or to train new models. This process is relatively straightforward for ML algorithms like decision

trees or random forests [7], but it becomes more cumbersome for DL algorithms. Thus, there is the

need to find some feature attribution mechanisms that works well for the DL case. In this thesis,

the use of a model agnostic interpretability approach is proposed.

The issue of explainability and interpretability arises from the fact that AI models are so complex

and constituted by a very high number of parameters (it is usual to have thousands or millions)

that they are called black boxes. The name comes from the fact that data enters on one side

of the model, and the predictions are obtained on the other, without really knowing how these

were obtained, or which features in the sample or the dataset were the ones that influenced those

predictions [33]. The most typical example is the algorithm that decides if a person qualifies or not

for a bank loan, which might be efficient and resource saving for the bank, but it might not be fair

for the person being analyzed. Questions like the kind of biases or possible discrimination of race,

gender, religion, among others might appear. These questions have fostered the implementation of

model explainability/interpretability methods.

In the particular case of this work, it is proposed that these explanations could be used as a

tool to asses the features (mainly either spectral bands or the kind of sensor used to collect the

data) in the datasets that influence the predictions of the implemented AI models. The benefit

of this approach is twofold, since besides gaining knowledge about the model and data [3], the

results are used as an optimization tool because the models could be retrained on the dataset

containing only the selected features, which in turn generates smaller models which are a first step

towards the implementation of light-weight prediction models that run on computers with very
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limited resources. It is not always trivial to determine which variables will be good predictors to

the output variable, but a relationship between an input variable and the output gives an idea of

which features are likely to be important for a statistical model to make good predictions [34].

While in some cases, the distinction between interpretability and explainability might not be

clear [35], interpretability refers to the degree of human comprehensibility of a given model or

decision [33], and explainability is a previous condition to reach that level of understanding. Thus,

most approaches involve the two steps: (i) explainability in the sense of at least feature attribution,

and (ii) offering some tools for the analysis of those results, tending to facilitate the understanding

of the predictions, the model, and the data. The general workflow of this dissertation focuses on

the former, as a tool for feature selection and model optimization; however, Chapter 6 explores the

concept and some implications of interpretability.

Explainability methods can be applied to a global (all possible datapoints) or local level (only

one or some samples). The advantage of the latter is that it can explain single predictions made

by a model, but its results can also be combined to explain the whole or a subset of the dataset. In

any case, these explanations are not full scientific explanations (general relationships or scientific

laws), but rather causal relationships between the set of variables in a given model. Thus, local

approximations can be useful to explore slices of a model for prototyping or debugging [33].

A Brief Description of SHapley Additive exPlanations (SHAP)1

SHAP is a game theory technique originally introduced by Lundberg and Lee in 2017 [36] that

treats each feature as a player in a game, where that player (feature) contributes to increase or

decrease the predicted value. SHAP unifies six previous additive feature attribution methods (Local

interpretable model-agnostic explanations (LIME), DeepLIFT, Layer-wise relevance propagation,

Classic Shapley value estimation, Shapley sampling values, and Quantitative input influence) that

use the same linear explanation model.

SHAP is a local method, which means that it studies the effects of each feature on individual

predictions. To explain a prediction f(x) based on a single input x, a function x = hx(x′) maps the

original input to a simplified x′. SHAP views any explanation of a model as a simple linear model

(Eq. 2.4) that approximates the decision of the original model in the neighborhood of the point of

interest.

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (2.4)

Where g is the explanation model (approximation of the original model f), M is the number

1The content of this subsection corresponds to the Supplementary Information of a paper originally published in

Biosystems Engineering [11]. It has been reformatted for inclusion in this thesis.
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of features (maximum coalition size in cooperative game theory), φi ∈ R (Shapley values in game

theory) represents the feature attribution values of feature i, and z′i ∈ {0, 1} is the observed feature

(coalition vector in game theory). Eq. 2.4 shows that each binary variable z′i is given an effect

φi, and these are summed M times to approximate the original prediction f(x). Binary variables

(z′i ∈ {0, 1}) activate or deactivate a particular feature to produce simplified inputs x′. Local

methods like SHAP try to ensure that g(z′) ≈ f(hx(z′)) for z′ ≈ x′.

SHAP uses the expected value E[f(z)] over the analyzed dataset as the base value (predicted

value if no feature is known), and the effects of φi are then subsequently added for each feature.

The sum of these effects adds up to the predicted value.

2.3.2 Reducing the size of the model

As previously mentioned, selecting a subset of features from the original dataset allows for the

implementation of smaller models with fewer parameters and thus fewer computational operations.

This in turn produces models that can run on computers with limited resources. However, there

is more that can be done to optimize these models. Two techniques that are popular for this task

are pruning and quantization.

The main idea behind pruning is that the already trained weights (parameters of the model)

below a threshold are removed from the network [37]. On the other hand, quantization reduces the

precision of the numbers and works well on pruned networks [37]. For their applicability, they are

usually implemented together. The goal is to have in the end a model that can be implemented on

embedded devices for inference purposes [22, 38, 39].

2.4 Edge Computing and Edge Intelligence

The goal of optimizing AI models is that they could be deployed in devices with limited compu-

tational capabilities, that are closer to where data is being collected. This scheme of performing

computations on devices that are closer to the edge (where data is generated and collected) is

referred to as edge computing, and when that computing involves the use of AI models, it is known

as edge intelligence. This is one of the fastest growing trends in enterprise computing, because

reducing the distance between where data is collected and where it is processed allows users to

react quickly to real-time insights [23].

Fig. 2.5 shows a general scheme of this collaboration architecture, in which edge computing and

AI implement real-time small data processing at the edge, and transmit results back to the cloud

for long-term and big data processing [2]. This working model is important for this thesis in order

to implement inference on the data collected from the sensors [23], shortening the long round-trip

time between the sensor and cloud or the datacenter that in many cases prevents AI from further
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playing its role [2], as is usually the case of the applications analyzed in this thesis.

Figure 2.5: Cloud-Edge-Endpoint Collaboration Architecture [2].

In order to validate the hypothesis that the optimized models were small enough to be deployed

into portable devices, these were implemented and tested on Raspberry Pi boards. From there, they

could be used as on-site processing elements directly connected to the acquisition devices, which

could contribute to the edge intelligence component. Models 3 and 4 of the Raspberry Pi computer

were used for Chapters 7 and 8, respectively. The main challenge in these cases was running newer

versions (and not yet officially supported) of Tensorflow. Tests and results will be explained in the

aforementioned chapters.
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Part II

Custom Machine Learning Models

25



3 Ensemble Learning for Improving

Generalization in Aeroponics Yield Prediction 2

This chapter presents an introduction to the use of ML techniques, particularly for analyzing

data collected from sensors, in-situ. The goal of this chapter in the context of this thesis, is to

verify if ML could be a viable approach to processing data obtained from various kinds of electronic

sensors. As it has been previously described, the customization of AI models is important when data

collected is unconventional, as it is the case here. Thus the design and implementation of tailored

architectures, and the procedure to do so is relevant throughout this thesis. In later chapters we

will explore optimization options that will add more value to these experiments.

Agriculture plays a crucial role in economy of several countries and yield prediction is essential

for production management and operation planning. ML is a growing trend in determining yield

as a complex function of multiple input variables. Aeroponics is one of the efficient sustainable

farming methods and allows all season farming despite hostile outdoors growing environment. In

this chapter, yield prediction in aeroponics is studied using ML. We have compared and analyzed

three popular supervised ML methods - DNN, RF based on decision trees and Support Vector

Regression (SVR). Air quality and water quality measurements including temperature, humidity,

CO2, pH and Total Dissolved Solids (TDS) are used for yield prediction. Other static inputs such as

number of days before and after transplant are also used. Six crops are studied (garlic chives, basil,

red chard, rainbow chard, arugula, and mint). DNN performs particularly well with the prediction.

The root MSE, MAE and coefficient of determination (R2) are calculated to estimate the efficiency

of the method. Mean square error and R2 score of DNN are 0.10 and 0.67, RF follows DNN

correctness with MSE and R2 of 0.12 and 0.62, and SVR achieves 0.18 and 0.45 respectively, all of

these values over the validation dataset. In addition to individual models, the two top performing

models are combined as an ensemble model to improve overall performance, which shows an average

2The content of this chapter is originally published in ISCAS 2020 [5]. The manuscript has been reformatted for

inclusion in this thesis.
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R2 score over the whole dataset divided by crop of 0.81.

3.1 Introduction

There is an increasing trend in demand for healthy fresh foods. On a global scale, there is a need

to meet food demands and predicting yield with better accuracy is important to plan import and

export in case of deficit or excess [40]. Methods like green house, hydroponics, and aeroponics allow

for year around harvest, protection from harsh cold or warm weather, portability, cultivation of

diverse crops and disease free cultivation. Among these alternatives, aeroponics has been evolving

as a promising and efficient modern day plant growing method in multiple countries [41]. Studies

in [42] show that, compared to traditional farming, aeroponic farming shows an increase of yield

ranging from 7% to 65% based on the type of crop. Along with faster crop cycle, they also have

reduced water, pesticide and fertilizer usage [43].

Aeroponics systems are soil-less growing methods where plants get their nutrition from a mix

of water and nutrient tonics. Aeroponics are more commonly closed or semi-closed systems, with

automated controlled variables that influence the growth of the plants. Unlike traditional field

agriculture, air quality variables such as temperature, humidity, CO2 and light can be maintained

within specific ranges by automated systems. Water quality variables including pH and TDS can

be controlled as well, and sprayed to roots to deliver nutrients. They also allow for more dense

growing environment since plants can be grown in a stacked tower structure.

Yield prediction is a complex task based on various parameters including crop type, environment

and water quality. Human based yield prediction is time consuming and prone to error. The

outcome of the harvest is hard to predict in advance, but yield knowledge can help growers model

and plan price, supplies, and future techniques. Recently, ML is becoming an important tool

for predictions in medicine, robotics, economic sciences, climatology and yield prediction is no

exception.

Furthermore, yield prediction could be the basis of a fully automated control system in which

yield could be maximized by setting the variables under control (light, nutrients, etc.) in the best

possible way. Such a system would increase revenues by using the minimum possible resources to

produce the maximum yields. This is extremely valuable in aeroponics, where the farmer has much

more control over the environmental conditions when compared to traditional farming.

In traditional agriculture, yield predicted from remote sensing data is extensively used. NDVI

is used as an main indicator of yield projection [44, 45]. However, prediction of crop yield with

better accuracy demands other inputs like water nutrients, fertilizer and pesticides information. In

controlled aeroponics farming, where sensors and controllers are an integral part, this information

is used for yield prediction and typically without the need for remote sensing.
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In our chapter, data is collected from a sustainable and organic aeroponic farming device called

AeroPod of Farm Boys Design, a corporation based in Saskatchewan, Canada. A typical Aeropod

system and a single stacked tower in AeroPod are given in Fig. 3.1.

(a) (b)

Figure 3.1: Aeroponics container (a) and one of the towers in AeroPod (b).

Three ML techniques - DNN, RF and SVR are studied and compared. DNN is a neural network

structure with multiple layers which has dramatic breakthroughs in multimedia recognition, object

detection and classification [46, 47]; RF, proposed in [48] is used to improve prediction accuracy by

taking in account large number of decision tree models. SVR [49] is an effective regression method

with an advantage of one global optimum compared to neural network approach. Of the three

methods, DNN is found to have better yield prediction, followed by RF. An ensemble regressor

that puts together these two models is analyzed as well.

This chapter is organized as follows: Section 3.2 discusses what data is used as inputs to the

models and three ML models used in our work are explained in detail. Section 3.3 discusses mean

square, mean absolute error and R2 score of all our models. Section 3.4 concludes the chapter.

3.2 Methodology

3.2.1 Growing Methods and Data Collection Materials

The crops taken for studying yield prediction are garlic chives, basil, red chard, rainbow chard,

arugula and mint. Seeds are sown in rockwool grow cubes medium in a tray, until they germinate

and attain early stages of growth. Then, they are transplanted to stacked towers in AeroPod.

Rockwool absorbs nutrients and retains oxygen for fast growth. Each layer in a tower consists of

few spots which can accommodate a rockwool cube. In the AeroPod, nutrient mixture comes in
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Figure 3.2: Screenshot of the data acquisition platform.

contact with rockwool cubes at constant intervals, thereby nourishing the roots. When the plants

reach the expected harvest growth, they are harvested and yield is measured as weight per spot.

Air quality and water quality sensors are implemented in AeroPod container (an example of

the data collection system is shown in Fig. 3.2), whose measurements are valuable inputs to ML

algorithms. Environment and nutrient input variables include average (calculated for the time

frame in which each plant has been in the AeroPod) of hourly values of room Carbon-di-oxide

levels, room relative humidity, room light level, room temperature, room vapour pressure deficit,

water pH, water TDS and reservoir temperature. Number of days in tray, number of days in tower,

harvest number (how many times the plant has been harvested since first transplanted to AeroPod)

and grow number (how many times a plant has been transplanted into that spot) are given as inputs

to the model. The label of the ML model is yield measure of weight per spot (oz/spot). A block

diagram of our model is given in Fig. 3.3. For this study, 200 samples have been collected between

November 2018 and August 2019.

3.2.2 ML models and training parameters

The training process of all the algorithms has involved k-fold cross validation (k=10). This resam-

pling technique without replacement is applied in order to obtain an error rate as independent as

possible of the train-validation split of the dataset.

The only pre-processing technique applied to this dataset is the standardization of the features
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Machine Learning
model

Static inputs:
Type of crop,

Number of days in tray,
Number of days in tower,

 Grow number and
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Environment variables:
Temperature, 

Humidity,
   Carbon-di-oxide levels, 

Room light level and
 Vapor pressure deficit.

 Nutrient variables:
 Solution pH,

Solution TDS and 
Reservoir temperature.

 Yield 
(weight/spot)

Figure 3.3: Block diagram of the machine learning approach used in our analysis.

by subtracting the mean and scaling to unit variance, according to (3.1):

y =
x− µ
σ

, (3.1)

where x is the original feature, y the resulting one, µ is the mean of the samples, and σ is their

standard deviation.

3.2.3 Support Vector Regression model description

SVR is used in yield prediction to provide an estimate of output as a non-linear function of inputs.

The kernel function plays a crucial role in transforming inputs into higher dimensional space. Here,

we use a non-linear kernel called Radial Basis Function (RBF). In our model, the influence of single

training example gamma is taken as 0.1, factor C is 100 which decides the increase or decrease of

margin, and a margin of tolerance epsilon = 0.1.

3.2.4 Random Forest model description

RF is an effective classification and regression method. It involves ensemble learning of multiple

decision trees. We implemented an RF algorithm and tuned the hyperparameters in order to obtain

the best possible results. The results of the tuning process indicated that the ideal number of trees

for the ensemble is 100 and their maximum depth must be 20. One important difference between

RF and the previous ML model is that RF does not require data normalization.
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Figure 3.4: Architecture of the DNN implemented for this work.

3.2.5 Deep Neural Network model description

The DNN model used in our work is given in Fig. 3.4. The model uses rectified linear unit (ReLU)

as activation function for all layers, including the output. Rectified linear function can be given as:

R(z) = max(0, z), (3.2)

which is basically a linear function that cancels out any negative value. Usually, regression

problems use linear activation for the output neuron; however, in our case we had the issue that

in some cases the DNN would predict negative yields (mathematically possible due to the linear

response of the function, but impossible from the physical interpretation of the yield) so we decided

to make those predictions zero (i.e. to use a ReLU activation function). This modification improved

the results of the predictions of the DNN, and not only for the values previously predicted as

negative, but for all of them.

Our DNN has three hidden layers with 48, 48 and 24 neurons respectively. After trying different

combinations of number and size of layers and regularization techniques (we tested dropout and L2

with different coefficients), the architecture shown in Fig. 3.4 was our optimal solution, without

the need of using any other method to fight over-fitting than the reduced size of the network itself,

which in the end has 4,465 weights. Some of the important training parameters are the optimizer,

loss function and metrics (adam, MSE and MAE, respectively), and that the model was trained

for between 101 and 327 epochs per fold (early stopping was implemented), using a batch size of

4. The average of training and validation losses of this algorithm are shown in Fig. 3.5.
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Figure 3.5: Training and validation losses (10-fold average) of the DNN model.

3.2.6 Ensemble of DNN and RF model description

A common technique used in the field of ML in order to increase the generalization performance

of models is to combine them into a meta-model, in which the error probability of an ensemble is

always better than the error of any of its components, provided that their individual error is better

than a random guess [7]. As we will see in the following section, the best performing algorithms

are RF and DNN, and they are used to create the ensemble learner finally used in this work.

3.3 Results and Discussion

Our ML models were implemented in Python 3, using Scikit Learn for SVR and RF, and Keras

with Tensorflow backend for the DNN. All of them were trained on an machine with 12 Intel(R)

Core(TM) i7-8750H CPU’s at 2.20GHz, 16 GB of RAM, and a Nvidia GTX 1060 GPU used only

for the DNN.

The main results of the regression process over the above described dataset are summarized in

Table 3.1, where we can see that the best performing model is DNN, when measuring both the error

(either MAE or MSE) and the coefficient of determination. However, RF shows similar although

not as good results as DNN. Fig. 3.6 is a plot of the predictions generated by the (a) DNN and (b)

RF models for the training and validation sets, after the 10-fold training process.

Both, Table 3.1 and Fig. 3.6 show that these models have a good performance when dealing

with the training set, but their error increase when dealing with the validation set (especially SVR

shows a poor R2 for validation), which means that they do not have a good generalization power.

In our implementations we have tried to tackle overfitting in many ways, but we believe that in our

case the only remaining options are the implementation of a meta-model by means of an ensemble
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Table 3.1: Mean Squared Error (MSE), Mean Average Error (MAE) and coefficient of
determination (R2), for the training and validation sets.

MSE MAE R2

train val train val train val

SVR 0.08 0.18 0.15 0.26 0.86 0.45

RF 0.05 0.12 0.13 0.21 0.90 0.62

DNN 0.05 0.10 0.11 0.18 0.91 0.67

Figure 3.6: Predictions over the training and validation sets with (a) the DNN model and
(b) the RF model.

of regressors, and as the main future work, to increase the size of our dataset by collecting new

samples.

Additionally, it was important to evaluate how the models perform on the different crops that

conform our dataset. Table 3.2 presents the coefficient of determination calculated with the two

best performing models (RF and DNN) over each of the six different crops. It is interesting to note

that the predictions are acceptable for most of them, except for the rainbow chard which will need

further analysis of the phenotype of this plant.

Finally, we built an ensemble of these two models in order to improve the prediction and

generalization capabilities of our ML models. This ensemble gave the best result with weights of

48% to DNN and 52% to RF, and obtained the results presented in Table 3.2, which are better

that the individual-model predictions, and it is quite obvious that this increases the coefficient of

determination especially for the case of garlic chives. As a matter of example, Fig. 3.7 shows the

results of the ensemble model for the best (Garlic Chives) and worst (Rainbow Chard) predicted

crops.

These results show that with an adequate tuning of weights in the ensemble model, we could

tackle future generalization issues when we increase our dataset, as a future work.
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Table 3.2: Coefficient of determination (R2) calculated over the complete dataset divided
by type of crop, for the two best performing ML algorithms and the ensemble of the two.

RF DNN Ensemble

Garlic Chives 0.80 0.71 0.89

Basil 0.85 0.89 0.88

Red Chard 0.83 0.86 0.87

Rainbow Chard 0.70 0.61 0.66

Arugula 0.74 0.73 0.74

Mint 0.80 0.83 0.82

Average 0.79 0.77 0.81

Figure 3.7: Predictions with the ensemble of models, over the best -Garlic Chives- (a) and
worst -Rainbow Chard- (b) performing crops.

3.4 Conclusion

This work presents a yield prediction model for aeroponic crops in a controlled environment, based

on the environmental variables that can be controlled and/or measured in the production system.

For this purpose we have used 200 samples covering 6 different crops, and we have reached an

average coefficient of determination value R2 = 0.81 when testing an ensemble of the two best

models (DNN and RF) over the whole dataset separated by type of crop. This and the other

results presented in this chapter show the potential for implementing a yield prediction model that

could become the first step towards the full automation of a crop production system based on

aeroponics, such as the one shown here.

This work draws the main path to be followed in order to have a robust yield prediction (and

automated production) tool that would eventually require less human intervention with a bigger

profit margin. The next step towards that goal is the collection of more data, organized in such a

way that it does not present the issues that have had to be addressed for this work. We believe
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that it would allow us to generate more accurate and self-explanatory results, that could be easily

implemented in a final control system.
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Part III

Feature Selection in Deep Learning
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4 Identifying Useful Features in Multispectral

Images with Deep Learning for Optimizing Wheat

Yield Prediction3

This chapter explores the use of DL for the analysis of multispectral images taken at different

times and locations. The main challenge comes from the additional dimension (time) and two extra

spectral bands (red-edge and near infrared), when compared to traditional image processing, which

means that there was the need to train a model from scratch (another customized model). Given the

aforementioned constraints, it was decided to also explore the possibility of identifying the features

(either in time or spectrum) that are more relevant for the predictions of the DL model, with the

final goal of model optimization. The results of this research could be a tool for the development

of more efficient sensors and strategies for data collection in plant phenotyping that would acquire

images with only the useful spectral bands, or at the best stages of the crops.

Since unmanned aerial vehicles have been utilized in plant phenotyping, they have revolution-

arily improved its accuracy. In this chapter, we introduce a deep learning based approach for

optimizing the yield prediction process of spring wheat (triticum aestivum), using multispectral

images. We assessed both the temporal features to find the most valuable time to take images, as

well as the contribution of spectral bands. We processed full stage multispectral images from four

site-years (two sites during two years) of a wheat breeding project, and determined the prediction

accuracy of the image-based predicted yields and compared them to the harvested yields taken in

the field. The results compared the wheat images throughout the season and validated the most

crucial flying times for acquiring images were at late-heading, late-flowering, dough-development,

and harvesting stages. The two most useful colour-bands for yield prediction were red and red-edge.

We found that removing these bands significantly decreased the prediction correctness. The results

of this research could be a tool for the development of more efficient sensors and strategies for data

3The content of this chapter is originally published in ISCAS 2021 [10]. The manuscript has been reformatted

for inclusion in this thesis.

Julio Torres-Tello: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Cu-

ration, Writing - Original Draft. Seok-Bum Ko: Conceptualization, Methodology, Writing - Review & Editing,

Supervision, Project administration.

We would like to thank the Plant Phenotyping and Imaging Research Centre (P2IRC) for providing the dataset.
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collection in plant phenotyping.

4.1 Introduction

The Government of Canada forecasts a production of 33.6 million tonnes of wheat for the 2020-

2021 season [17]. Traditional methods for the selection of high yielding wheat varieties are time

consuming and prone to error [15]; therefore, optimization of yield prediction is required.

Phenotype is the observable expression of an organism and the interaction effects of genotype and

environment [50]. Unmanned Aerial Vehicles (UAV) are a relatively novel phenotyping platform in

Remote Sensing (RS) that allow a fast, high-throughput, and high-quality image of a large field-base

experiment at different crop stages. High-throughput plant growth observations aim to improve the

prediction accuracy of trait determination and selection speed [51]. Plant breeders are especially

interested in phenomics because of the potential to quickly image and select desirable genetic lines.

Finding important features for yield prediction is also relevant for the development of small, low-

cost sensors that focus on capturing only the information that is needed for a given task. It is also

important for the implementation of data collection strategies that could even become automated.

All of this could open new research possibilities in the development of IoT based solutions for plant

phenotyping.

Neural Networks (NN) have emerged as one of the most important tools for data analysis, and

within them there is an area called DL in which the NNs have multiple layers ranging from just

a few to hundreds. DL is one of the main trends in artificial vision due to its good results when

visual characteristics are hard to identify. This is the case of the images available for this work.

A popular form of DL, especially when dealing with images, is the CNN, which is composed of

multiple convolutional layers. In such networks, each layer generates a feature map that extracts

essential and unique features within the image that will eventually be used by the network for the

characterization of a given sample [9].

Most studies found in literature related to RS and plant phenotyping, have focused on generating

predictions based on vegetation indices, such as chlorophyll content and NDVI [27]. Similar works

on yield prediction with multispectral images include, among others, [52] that found that certain

colour channels can be more useful than others for yield estimation, such as narrow wavelengths of

the red-edge channel, which could be used as an alternative measure for leaf area index (LAI), or

[53] that found that red and near-infrared (NIR) portions of the spectrum can be used to develop

NDVI, which indicates a high correlation to the yield potential in potato, cotton [54], and rice [55].

Thus, multispectral images are important not only because they provide spatial information just

like any other image, but also because they give additional information regarding the reflectance

spectrum of an object. In the case of our dataset, we have information on the red-edge and NIR
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channels that would not be available in traditional RGB images.

In recent years, studies utilizing DL models and high-resolution image technology were able to

develop more precise predictions of yield. A 2019 study in corn yield prediction found that a DNN

model had a superior prediction accuracy on average yield [56]. [57] used CNNs that outperformed

the yield prediction when compared with the traditional RS based model.

In this chapter, we introduce the development of a DL model for optimizing yield prediction

of spring wheat using multispectral images. We assessed both the temporal features to try to find

the most valuable UAV flight times, as well as the contribution of the spectral bands. We utilized

several multispectral images from a wheat breeding project and correlated the predicted yield values

to the actual yield measurements taken at harvest.

The first goal of this study is to implement a DL model able to predict the yield from each

multispectral image. The second goal is to determine which days and spectral bands contribute

the most to yield prediction. This research could eventually lead to the speed up in the variety

selection process, and with more training data, become available as a tool for plant breeders. Also,

our results could be an aid for the development of more efficient sensors and strategies for data

collection in plant phenotyping.

This chapter is organized as follows: Section II describes the materials and methods used in our

work, including the data collection process, the implemented DL model and the process followed to

find out the best features (dates and channels) for yield prediction. Section III presents the results

of this work, and Section IV concludes the chapter.

4.2 Materials and Methods

Images were initially pre-processed (stitched together) in order to create an orthomosaic and then

annotated with the yield information, which is used by our model. An example is shown in Fig.

4.1.

Figure 4.1: Example of an orthomosaic image. Left: Plotted using only RGB channels.
Right: Bounding boxes (annotations) over the wheat plots.
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4.2.1 Site Description and Image Collection

The wheat breeding sites are located east of Saskatoon, Canada, at the Kernan Research Farm.

Trials were set up using a Randomized Complete Block Design (RCBD) including 16 wheat varieties

and 3 replications (or experimental blocks). Two fields were seeded near the middle of May, during

the 2017 and 2018 growing seasons, for a total of four trials.

In total, we had 48 orthomosaic images to train and test the network, from 12 different dates

across four site-locations (two locations in two different years). From the images, we extracted 48

plots per location for a total of 192 samples, each containing information of 12 dates and 5 colour

bands. Out of these 192 samples, in order to get predictions for all the wheat varieties in the four

locations, the dataset was split in 144 images (2 replicates) for training and 48 (1 replicate) for

testing (75% - 25%). This took into account that the same wheat varieties are present in each

repetition and in all locations, so we trained the model with the same varieties that we tested

(which was not guaranteed with a random split of the dataset).

In order to increase the number of samples, we used a common data augmentation technique,

which consists of rotating the images. Given the non-square dimensions of the crops, the images

were only rotated 180 degrees, which gave us a training dataset with 288 samples. Finally, we

split the training set into training and validation, randomly dividing the dataset in 80% and 20%

respectively.

To summarize, the dataset was split by crop replication to extract the test set (e.g., Replication

1 in four locations). On the remaining two replications (for the four locations), we applied data

augmentation and then we split randomly into training and validation. And this process was

performed three times (one per replication) in a 3-fold cross validation fashion, in order to guarantee

a small variance of the error in the predictions with respect to the split [7] and to obtain predictions

for all the samples in our dataset.

4.2.2 The Deep Learning model

The DL model chosen for this work was based on CNN. In the field of artificial vision, there are

some well known models with good performance. For our work, we have chosen VGG-16 as a

reference architecture, given its proven good results, and easy implementation and modification (as

it will be important to reshape the network). There are new architectures that might offer greater

performance, but they are usually much deeper and complex, especially when trying to adapt them

to achieve our goals.

Fig. 4.2 shows the architecture of the CNN model implemented for this study. In this case,

there are five convolutional-pooling blocks that are used to extract the useful features from the

images, and finally we have a block with two fully connected layers that make the final prediction.
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However, as it is shown in Fig. 4.2, our model is not exactly the same as the original VGG-16

architecture. The main difference is that we have implemented convolutional layers with three

dimensional kernels. Despite 2D convolution being usually implemented for image analysis, it can

be generalized to N-D convolutions (3D in our case), given that we have a dataset that contains

a temporal dimension as well (images of the same location taken at different dates). The main

difference in the latter case is that the kernel would be a cuboid and would slide across the height,

width and depth (time) of the different input feature maps [4].

This model considers the use of all dates and all spectral bands. In the tests, these 2 dimensions

are variable according to the different experiments.

Figure 4.2: Block diagram of the implemented DL model (based on VGG-16).

The CNN described above was implemented in Keras with Tensorflow backend. Initial tests

were done on a GeForce GTX1060 Nvidia GPU, and in order to speed up the analysis all the final

and reported tests were performed on a Tesla V100 Nvidia GPU. The training process took place

for around 500 to 1000 epochs, depending on each case (early stop implemented) and it used a

batch size of 8, Adadelta optimizer, and dropout after the convolutional blocks (40%) and dense

layers (30%) in order to avoid or at least minimize overfitting. Mean Absolute Percentage Error

(MAPE) was used as a measure of the performance of the CNN in each case.
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4.2.3 Experimental set up to decide which traits contribute to the yield

prediction

Once we had a model that was able to predict yield from the sequence of multispectral images, we

tested which dates and channels were more important for this prediction. For this process, we used

reduced versions of the model already introduced in Fig. 4.2. In the case of the temporal analysis

(best dates to fly the UAV), we used a 2D version of the model which was trained and tested for

predicting yield based on one date at a time. For the spectral analysis (best channels), we only

discarded one channel at a time. This later approach was used considering that there is a spectral

correlation in the images, which is in fact the basis of the popular use of vegetation indexes in plant

phenotyping.

To determine which temporal features to select for the final computer model, we ran the results

for each individual flight day alone. From there, we selected which days had the greatest coefficient

of determination (R2) value. This was considered a relevant feature (date) only when the (R2) value

was higher than the baseline, which for this process is the result of the 3D CNN model because it

was tested with all 12 dates at the same time.

When determining which colour bands were most useful in optimizing yield prediction, we first

ran the control test which included all 5 spectral bands of the multispectral images, with the 3D

CNN model. Following this, we took out one selected colour band at a time to see how the results

would reflect the loss of that spectral band, leaving a four-channel image at a time in different

combinations. In this case, a relevant feature (colour) was considered when the results had a much

lower R2 value than the baseline because in this case, that would be a measure of how much the

absence of such colour would affect the yield prediction.

4.3 Results

The final trained model, for all cases, had around 10 million parameters. Fig. 4.3 shows the

relationship between real and predicted yields for the results generated with the 3D CNN network.

These predictions are the baseline to compare the results of the other experiments and decide which

dates and spectral bands contribute the most to the predictions.

4.3.1 Effect of different imaging stage for yield prediction

These results are shown in Table 4.1, where we have highlighted the flight dates that achieve an

R2 value higher than the baseline (0.676, using all dates). We see in the table that the best dates

to flight the UAV are 5, 7, 11, and 12. These dates correspond to 62 (late-heading), 72 (late-

flowering), 91 (dough-development), and 95 (harvest) days after seeding (DAS), respectively, in the
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Figure 4.3: Real and predicted values for the whole test set, using all features.

development stages of the crop.

4.3.2 Effect of colour channel contribution for yield prediction

These results are presented in Table 4.2. There we have highlighted the lowest values of the R2

coefficient. We must remember that in this case we have removed one band at a time, so these low

values mean that when the multispectral image does not have those channels, the predictions are

bad, or in other words, those low values mean that red and red-edge channels are the most important

for yield prediction. We can see that by removing any of the other three channels, the coefficient

of determination is similar or even higher than the baseline value (not removing any channel). Of

the other three channels, only removing the green one affects the predictions. Although red and

red-edge channels are expected to be important features, since they are used for vegetation analysis

[26, 52, 53, 54, 55], it is somehow unexpected that NIR did not seem to contribute that much to

yield prediction. It could be that when this channel is absent, red and red-edge compensate the

missing information.

4.3.3 Representations learned by the CNN

Some additional and interesting results of this work are the graphical representation of the patterns

that the filters in the network look for in an image because that is what DL for image processing

is about: finding interesting patterns. Fig. 4.4 shows as an example, the patterns that the filters

of the last conv-pooling block look like. This corresponds to the original 3D CNN network, trained

with all dates and all colours. It is interesting to see that the filters look for rugous patterns in the
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Table 4.1: R2 values, for independent dates

Dates Coefficient of Determination

all 0.676

1 0.631

2 0.305

3 0.622

4 0.619

5 0.766

6 0.575

7 0.698

8 0.170

9 0.504

10 0.659

11 0.728

12 0.747

Table 4.2: R2 values, for independent channels

Channel not used Coefficient of Determination

none 0.676

Blue 0.710

Green 0.638

Red 0.240

Red-edge 0.244

Near-infrared 0.716
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centre of the images, which in the spatial context of the crop, probably would relate to how the

wheat plants are packed and organized within the plot.

Figure 4.4: Filter patterns that the 3D CNN model looks for in the samples, after the last
conv-pooling block.

As previously mentioned, the main objective of this work was to find the useful features that

allow yield prediction, which would lead to the implementation of a more robust yield predicting

model. In order to achieve this, it is also important to collect and use bigger datasets. For this work,

we have only used images from two locations corresponding to two growing years (four site-years

in total), which could make our model weak against any environmental variations that may occur

within a growing season. Due to differences in precipitation between 2017 and 2018, yield varies

considerably in our dataset and it gives us some robustness. These differences are clearly seen as

two clusters of yield values in Fig. 4.3.

4.4 Conclusion

The results presented in this chapter show that a DL model is capable of finding useful features

within a multispectral image dataset for yield prediction purposes. The comparison between single-

date image and whole season images found the best timing for phenotyping wheat yield prediction

were late-heading, late-flowering, dough-development, and harvesting stages. Furthermore, even a

single flight at one of these stages would be better than using an entire season of images. Exploiting

the optimal features would be a methodology to improve yield prediction.

Analyzing the predicting efficiency among the five bands in the multispectral images allowed us

to determine that the model that lacked red and red-edge bands decreased the prediction accuracy.

We hope this provides a direction to utilize and develop vegetation indices for wheat yield prediction.
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This research found that using less spectral bands would also allow us to use software tools designed

to handle only three channels; for example, a pre-trained VGG network using green, red and red-

edge. That could be matter of a future work.

Finally, this work is of great value since it gives us guidance relative to data collection, storage

and processing. As well, this work lets us know which characteristics we should take into account

in the implementation, training and validation of our final yield prediction DL model for spring

wheat. Furthermore, these results could be used for implementing more efficient data collection

strategies and in the design of sensors tailored for a specific application that would acquire images

with only the useful spectral bands.
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5 A Novel Approach to Identify the Spectral

Bands that Predict Moisture Content in Canola

and Wheat4

This chapter continues to explore the relevance of different features for the predictions made

by DL models. Instead of using a traditional approach, as in the previous chapter, we now pro-

pose the use of a game-theory-based technique designed for model explainability/interpretability

(SHAP). This method tries to figure out the reasons why a model predicted a certain value, and

this could be used to analyze which features generate certain predictions. One advantage of the

proposed technique is that this can preserve the physical meaning of the original spectral bands,

providing more meaningful results than feature extraction algorithms like PCA. Another benefit

of the proposed approach is that we can generate explanations of the trained model, focused on a

target (moisture content), a feature (spectral or spatial), or a subset of the HSI. If a comprehensive

explanation is needed, the per-pixel contributions can be aggregated into a single SHAP value per

covariate (feature), due to its additive property. As it has already been mentioned, this approach

could eventually become a resource for the elimination of redundant bands, which is helpful for

saving computational resources and improving model performance. Moreover, wavelength selection

is essential for the implementation of real-time HSI applications.

Due to the relevance of agriculture in economy and human development, the inclusion of tech-

nology in this activity is of utmost importance, and moisture content prediction is relevant for

assessing the degree of maturity of a crop, which relates to efficient harvesting and quality control.

This chapter presents an accurate deep learning model for the prediction of the moisture content

of canola and wheat crops, based on hyperspectral images taken by several drone flights. This

model serves as the starting point for a supervised band selection process that involves a novel

4The content of this chapter is originally published in Biosystems Engineering [13]. The manuscript has been

reformatted for inclusion in this thesis.
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gation. Steve Shirtliffe: Data Curation, Formal Analysis, Resources, Investigation, Funding acquisition. Seok-Bum

Ko: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project administration, Funding

acquisition.
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approach based on a game-theory model-interpretability analysis. The deep learning model for

moisture content prediction included a final ensemble of two branches for analysis of spatial and

spectral features, and it reached a coefficient of determination of 0.916 and 0.818 for the canola

and wheat test datasets, respectively. SHapley Additive exPlanations analysis allowed us to study

the individual predictions of the models, which is the most important contribution of this chapter

because this approach could eventually lead to the design and implementation of more tailored

software and hardware for the analysis of spectral information. The obtained results validate the

idea that using this approach actually obtains the spectral bands that are important for this task,

since they are similar to PCA results, and they fall on the NIR part of the spectrum, which is

widely used in moisture measurement of agricultural products and vegetation analysis.

5.1 Introduction

Agriculture is one of the oldest and most important economical activities of humanity, which has

undergone numerous changes throughout history. It began as a primitive process that eventually

became what we call modern agriculture, where we see the inclusion of new technologies [58]. In

the case of our study, these technologies involve the use of RS, UAV, HSI, and AI.

Conventional data collection techniques in agriculture, either manual or sensor based, are usually

costly, time-consuming, labour-intensive, and invasive; RS on the other hand, being a contactless

method to obtain and analyse data, could alleviate those issues [25]. RS data collection could

be achieved by different means; however, the most common approaches are the use of satellites

and more recently UAVs. Modern agriculture uses UAV technology to reduce farm labour and

increase productivity. This flexible and cost-effective solution for non-intrusive, precise, and rapid

phenotyping is commercially available as UAV platforms, which could include several sensors (e.g.,

HSI cameras) and software [59].

HSI is a combination of digital imaging and spectroscopy, relevant for the study of plant pheno-

typing. An HSI camera is a passive sensor that captures the spectral reflectance that corresponds

to the wavelength of the electromagnetic field collected from objects on the ground. The spectral

reflectance is associated with biochemical and biophysical properties of plants [25]. Plant breeders,

researchers, and industry professionals have to test a large number of crop varieties, and HSI tech-

nology has the potential to speed up the process with direct use in the fields, in a non-destructive

way [60, 61].

Current approaches that involve HSI tend to use spectral (or vegetation) indexes, which are

mathematical combinations of two or more spectral bands [25], to extract the relevant information.

However, more recently, ML has started to contribute to the RS field with HSI applications because

it constitutes an effective approach for creating regression models of non-linear and multivariate
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systems [25]. Specifically DL techniques have been widely employed in RS in recent years in many

fields, including agriculture [62].

Statistical models like Partial Least Squares Regression (PLSR) and classical ML approaches

like RF and SVM are now common in RS [25]. However, despite their popularity and constant

improvement, they are limited in the amount of spectral information they can extract [63]. New DL

based models have been successfully applied in many fields such as medicine [64, 65], transportation

[66], and security [14], mainly because they can effectively discover complex structures in large

datasets [31]. The use of ML (and DL) and RS has already reshaped precision agriculture, and the

future of farming depends largely on the adoption of such new technologies [25].

DL models such as LSTM and CNN are hot topics in RS applications [31]. CNN models are

well known for their success in artificial vision, and they are currently relevant due to the growing

amount of UAV and satellite images being collected [59]. On the other hand, RNN and LSTM, by

extension, are natural candidates for HSI analysis due to their ability to process sequential data

[67]. Furthermore, feature fusion is a common method for improving results in RS and DL tasks,

and it can involve different approaches such as features being extracted by different branches of

a single model [63, 68], or the use of ensembles of models [69, 70]. Ensembles combine multiple

learners with the advantage of easy parallelization [71].

The DL approach is useful to find hidden relationships within the data [71], but despite being

able to make accurate predictions, DL models lack the interpretability that is desired in many

applications [31]. The study of this interpretability and explainability, or how a model arrived at

a prediction [33], has led to interesting methods such as SHAP [36]. These methods try to figure

out the reasons why a model predicted a certain class or value, and this could be used to analyse

which features generate certain predictions.

A DL model can be inspected using SHAP [35], and that idea is used for example in the

analysis of soil mapping in the spatial context [35]. In the case of our study, SHAP was used as a

tool for supervised band selection. Band selection can preserve the physical meaning of the original

spectral bands, providing more meaningful results than feature extraction algorithms like Principal

Component Analysis (PCA), with the additional difference that supervised band selection methods

use label information [28]. This approach could eventually become a resource for the elimination

of redundant bands, which is helpful for saving computational resources and improving model

performance [72]. Moreover, wavelength selection is essential for the implementation of real-time

HSI applications [73].

Similar models found in literature that have provided ideas for this chapter include works like

[59], that used UAVs, AI, and multispectral images for counting, locating and evaluating trees,

and [68], that implemented a dual branch model that extracts spectral features plus serialised

information about space with a LSTM network. The later approach uses a 3D CNN to extract
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information about the correlation of spectral and spatial features, which are cascaded before being

fed to a classifier. [74] also integrated spatial and spectral features, although in a very different

manner; this is a sequence of blocks that classify easier samples first. Moreover, [10] tried to

evaluate the best time and spectral bands to predict wheat yield using multispectral images and

2D/3D CNNs. Similarly, [74] used 2D/3D dense networks for HSI classification, with a focus on

mixed pixels. Finally, regarding model interpretability and feature selection, in the literature we

have found other interesting proposals like the binary firework algorithm (BFWA) which selects

bands before using PLSR [60]. We also found [75], that visualizes spatio-temporal attention weights

as means of interpretability of the model predictions.

However, to the best of our knowledge, current works focus on the implementation of accurate

prediction models which in most cases do not look for the features that generate those predictions,

and even if they look for optimal wavelengths [60], they do not use HSI or moisture content in-

formation related to crops in development stages. In other cases, they use traditional statistical

approaches [76]. Thus, we try to fill this gap in the literature by implementing a DL model that is

able to predict moisture content of crops based on HS images of real-life scenarios, and moreover we

look for the spectral bands that have an impact on those predictions. The prediction of moisture

content is important to determine the degree of maturity of the crops [61, 76] and to implement

quality control schemes [60, 77], which might have an impact on the revenue of farmers.

To summarise, this chapter presents two main contributions: (i) an accurate DL model for the

prediction of the moisture content of canola and wheat crops as an indirect estimate of maturity,

based on HSI taken by several UAV flights, using spatial and spectral information; and (ii) a

novel approach for assessing the importance of spectral bands in those predictions, using a game-

theory model-interpretability analysis. The chapter is organized as follows: Section 5.2 presents

the AI models, their architecture, hyperparameters and training process, and introduces the SHAP

analysis; Section 5.3 shows the way in which we found the optimal hyperparameters for the DL

models; Section 5.4 presents the results of our study and compares them to other well-known

methods; and Section 5.5 concludes the chapter.

5.2 Materials and Methods

5.2.1 Acquisition of Hyperspectral Images

Plant breeders traditionally need to manually assess each plot (or some of them) based on the

plant characteristics they are seeking. Assessing the traits of a crop is usually performed by point-

sampling techniques, which are costly, laborious, and spatially unrepresentative [78]. Crop leaves

and canopies usually show changes in the plants with variations in their pigment contents, such as

xantophylls, chlorophylls, and carotenoids [78]. These changes are exploited by the analysis of HSI,
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which provides discriminative spectral signatures despite the problems associated with it including

high dimensionality of the data, redundant information, and insufficient samples [28].

HSI data samples were collected throughout the growing season of the two crops under analysis,

at different time points, using a multi-rotor drone (DJI M600) UAV unit with a Corning microHSI

SHARK push-broom scanner of 150 spectral bands ranging from 400 to 1000 nm. A gimbal always

kept the camera in horizontal position. The UAV was flown at an altitude of 30 m. All data

were acquired before noon under ideal weather conditions (mostly during cloudless days). The

radiometric correction was conducted using a non-uniformity correction (NUC) procedure which

converts raw data to spectral radiance.

Noteworthy, the HSI samples and moisture measurements were taken by other collaborators of

P2IRC at the University of Saskatchewan, following a procedure similar to what is described by

[76]. This information was made available to the authors of this study and it has been used here.

In this chapter, we study the effectiveness of UAV-based HSI sensors to estimate the moisture

content of canola and wheat crops.

5.2.2 Description of the datasets

The province of Saskatchewan, Canada, is home to more than 40% of cultivated farmland in the

country and is the largest exporter of peas, lentils, durum wheat, mustard seed, canola, flaxseed,

and oats in the world [79], making it important to study these crops. P2IRC as part of its projects,

collects different types of data, including HSI and manual measurements of several crops. Using

the available information, in the case of our work, two datasets corresponding to canola and wheat

were assembled.

For our experiments we used these data because of the importance of these two crops, the

availability of the data, and in order to evaluate how well the DL models perform on different

crops, which could relate to the generalization capabilities of the resulting model and data processing

pipeline.

Canola dataset

The canola trial was conducted during the 2019 growing season in a field located at Nasser near Ker-

nen Crop Research Farm, University of Saskatchewan, in Saskatoon (52◦9′42.3786′′N, 106◦31′0.249′′W ),

and it contains HSI of 8 stages, including manual measurements of the pod moisture, among others.

It was an experiment with 2 varieties of canola and 8 different nitrogen treatments, on 4 replicates.

As per the aim of this study, we are interested to relate HSI to the degree of maturity of the pod,

measured by its moisture content.

The HSI images and moisture content measurements took place at 77, 81, 88, 91, 95, 101, 108,

and 117 Days After Sowing (DAS), during the months of August and September. Fig. 5.1 shows
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Table 5.1: Samples per dataset

Crop Plots in a Rep # of Reps # of dates Total Plots

Canola 16 4 8 512

Wheat 15 3 2 90

Total samples 602

an example of an image corresponding to half of the field.

Figure 5.1: Two replicates within the canola field, RGB representation

Wheat dataset

This trial was conducted during the wheat growing season in the spring-summer of 2019 in the

aforementioned Nasser field. The experiments were designed with 15 varieties and three replicates.

For this case, moisture content was measured only twice, at flowering and ripening stages;

therefore, only these two batches of images have been used.

Table 5.1 summarises the number of samples and particularities of the canola and wheat

datasets.

5.2.3 Reflectance Data Extraction

Narrow wavebands used in hyperspectral RS increase our ability to accurately extract phenological

attributes in plants. Each pixel in an HSI has a spectral signature that contains the reflections of

that spatial position in all the available wavelengths, which constitutes a feature vector [80].

Fig. 5.2 shows the spectral curves corresponding to two plots (mean values for all pixels in

the plot). We can see that the spectra are similar for canola and wheat, with higher reflectance

values in bands greater than 70, which correspond to red-edge and near-infrared zones. Each

pixel in the HSI data contains spectral curves similar to the presented in this figure, and this is

the information fed to our DL models and later on analysed with SHAP. We use all the spectral

and spatial information contained in the areas of interest. Most current approaches use the data

after dimensionality reduction which diminishes their performance, but DL allows an end-to-end

approach [81].
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Figure 5.2: Spectral curves of two randomly selected samples. Left: canola. Right: wheat

Finally, we labelled the plots separately and tried to avoid the edges due to some overlaps of the

plots and to avoid edge-effects. This would make measurements more robust, standardized, and

repeatable.

5.2.4 Deep Learning Models

Non-linear regression problems require advanced solutions. Typical approaches include SVM and

Naive Bayes; however, these might not be the best options when dealing with data in which features

are dependent, since those models assume they are independent [71]. These methods also have the

disadvantage that they use the spectral information of the pixels without including spatial details

[68, 80, 82]. Spatial context is an important complement to the spectral feature [67] instead of

using a single-pixel information [35].

In order to tackle those issues, DL approaches are being used in RS and HSI analysis. The

most obvious option would be the use of 3D CNN in order to capture spatial and spectral features

at the same time [10]. A 3D CNN could create a hierarchical representation of spectral-spatial

data. However, the number of parameters grows exponentially when adding new dimensions, which

makes the network prone to overfitting and highly increases the required computational load [63,

67, 74, 80, 81], besides decreasing their performance with depth [80].

Thus, in our proposed architecture, we have implemented two separate models for extracting

spatial and spectral features in HSI. As depicted in Fig. 5.3, this information is fed into the models

which generate predictions that are combined in an ensemble approach. Final predictions are then

generated using both spatial and spectral features. These models and predictions are finally used

in our analysis of the spectral bands that explain such predicted values, as well as the spatial

contributiona.

aNote added for the thesis: Here it is worth noting that the SHAP analysis is applied to the results of the spectral
and spatial models, separately. Although the final predictions are obtained with the ensemble.
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Figure 5.3: Block diagram that represents the whole information extraction scheme and
analysis of predictions

Spatial Model

The model implemented for extracting spatial information (Fig. 5.4) relies on two main concepts:

(i) the use of a pointwise convolution to convert the 150 bands into 3 that would correspond to the

RGB channels used in everyday imagesb and (ii) the use of a pre-trained network to extract the

spatial features.

A pointwise convolution is a regular convolutional operation in which the kernel is of size 1× 1,

and it is used to project the channels (bands) of an image onto a new channel space, capturing

the cross-channel correlations [83]. The use of this operation is the first step to extract spatial

information, and this replaces methods such as PCA which is commonly used as a preprocessing

technique [82].

In the second step, we use a pre-trained VGG-16 network [71] fed with the information extracted

with the pointwise convolution. In RS, the use of transfer learning from popular image classification

models such as ImageNet is not uncommon [63, 71], mainly due to the small number of training

samples (labelled HSI) [62].

Each of the layers (and blocks of layers) in a CNN is implemented to extract more complex

features as we go deeper into the network. A good approach for using a pre-trained network is to

use the initial blocks until they are able to extract the features relevant to a given problem (we

tested different options for this), and then to train a customized ANN on top of it [1]. The regressor

(a dense ANN) is based on the popular LeNet-5 architecture [29].

bJ. Torres-Tello, K. Singh, S.-B. Ko, S. Shirtliffe, Transfer Learning from RGB to Hyperspectral Im-
ages by means of Pointwise Convolutions, 5th Annual P2IRC Symposium, Unpublished results (Oct. 2020).
doi:10.13140/RG.2.2.31919.56480
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Figure 5.4: Block diagram of the DL model trained with spatial information

Spectral Model

RNNs are especially good at time-series tasks [31]. In the case of the spectral information contained

in an HSI, we can treat it as a time-series feature vector in which each spectral band would corre-

spond to a time step [68]. The original RNN design suffers from vanishing and exploding gradient

problems, as the BPTT procedure depends exponentially on weights for each time step, failing to

learn information that goes over 10 time steps. LSTM mitigates the vanishing gradient problem by

introducing a linear unit (cell) called a Constant Error Carousel (CEC), which error flow control is

conducted using gates [31].

Fig. 5.5 shows the architecture of the LSTM network that we have implemented. It has

three LSTM blocks for extracting the spectral features, that are then fed to the same regressor

implemented for the spatial branch. We used bidirectional (Bi-LSTM) layers because the spectral

information has no semantic order and this approach is useful to exploit the forward and backward

relationships of sequential data [68].

Figure 5.5: Block diagram of the DL model trained with spectral information

5.2.5 Ensemble Learning

Spectral signatures of HSI pixels that describe the same information may vary due to differences in

imaging conditions, interference, or other factors, so that spatial information becomes an important
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complement that provides context and improves the final predictions, by combining them [68, 80,

82]. In spectral-spatial feature fusion, these features can be analysed individually or simultaneously

[80]. In the case of our study, as seen in Fig. 5.3, we treated them separately and then combined

their predictions in an ensemble approach, which is common technique used in ML/DL in order to

increase the generalization performance of models [5].

The feature fusion strategy makes the process of generating predictions smoother (less noisy

results), by using spatial information while maintaining the ability to extract spectral information

[63]. An appropriate fusion rule is important; simple linear combinations are popular, weighted or

not. In the case of a weighted combination, those weights should be proportional to performance

of the models [80]. Thus, here we implemented a weighted linear ensemble method.

5.2.6 The training process

To train the DL models we had to separate the samples in the datasets previously described into

different groups. One of the three or four replicates shown in Table 5.1 has been reserved for testing.

The data for testing the model should include all kinds of characteristics in the image that might

influence the prediction [62], and they should come from the same distribution of the data used for

training. Reserving one replicate for testing assures that all varieties and treatments are included

in the training and testing sets. The test set is only used for reporting the results of our test, in an

attempt to make them as independent as possible of the training and validation (tuning) processes.

In the case of the train-validation split, it was done in a random fashion with 80% of the samples

used for train and 20% for validation.

Considering that in our case all the pixels in an HSI plot correspond to the same target and

if all the pixels from an object are members of the same class, the scene can be represented by a

single feature set [80], we adopted a split and average strategy for our samples. Splitting is used to

generate a larger amount of training data, given the limited number of HSI images. This is a useful

concept to fit the requirements of AI models, usually by a moving window strategy [62], which we

implemented with non-overlapping regions. Those sub-samples were used to train the spatial model

while a spectrum obtained by averaging the pixel values on that sub-sample was used to train the

spatial model. This is useful to remove the noisy pixels from a segment [80] under the assumption

that neighbouring pixels belong to the same class [69]. CNN and LSTM are sometimes avoided in

RS applications because they require a large number of training samples [71], and splitting helps

to overcome that issue.

In order to find the optimal hyperparameters of the models, we use the approach described in

Section 5.3. The spatial model was trained for 2000 epochs and the spectral for 5000. Due to the

difference between canola and wheat, both in phenotype and amount of samples, the models and

their hyperparameters were tuned for canola, and then retrained (applying also some regularization
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in the form of dropout) for wheat samples. This would also help us evaluate the generalization

capabilities of our model. In all cases, the loss function was MAPE, and the evaluated metrics were

MAE and MSE.

All the models described here were implemented on Python 3.6.9, using ScikitLearn 0.24 and

Tensorflow 2.1, and they were trained using the Microsoft Azure Machine Learning platform on a

standard NC6 server with 6 Cores, 56 GB RAM, 380 GB Disk and a NVIDIA Tesla K80 GPU.

The average time for training one of our models ranged from 10 to 173 hours.

5.2.7 Model Interpretability for Feature Selection

Feature selection is an important process in the analysis of HSI, mainly due to the high dimension-

ality of the raw data. The so-called curse of dimensionality refers to the difficulty of dealing with

high dimensional data and the need for more data samples to tackle this problem [26].

There are useful tools to reduce the dimensionality of data, for example, PCA that is a linear

transformation that generates components, where a few of them capture most of the data variability

[26] becoming one of the most popular pre-processing techniques in HSI analysis [26, 72, 78, 82].

However useful and widely used, the PCA approach has two drawbacks: (i) it is an unsupervised

method, meaning that it does not use the information contained in the labels of the HSI images

and (ii) it transforms the data, so that the original features are not preserved. To tackle those

issues, in this study we propose the use of a model interpretability approach that can point out the

spectral bands (and areas of the plot) that contribute to generate a prediction, by explaining such

predictions of DL models like the ones we have trained.

To this end, we have used SHAP which is a game theory technique that treats each feature as a

player in a game, where that player (feature) contributes to increase or decrease the predicted value

[35, 36]. The SHAP approach is also interesting because it generally shows a stronger agreement

with human explanations [35, 36]. Nevertheless, it is noteworthy that black box models (such as

DL) might be extremely complex and have an internal state composed of millions of interdependent

values, and therefore the decision-making process might be impossible to completely understand

[33].

SHAP is a local method, which means that it focuses on the effects of each feature on individual

predictions, and this is the interesting point in our study, since we can analyse each spectral band

as an individual feature. SHAP uses the expected value over the analysed dataset as the base

value (predicted value if no feature is known), and the effects of each feature are then subsequently

added. The sum of these effects adds up to the predicted value. SHAP generates a simple linear

model (Equation 5.1) as the explanation of the trained model, which approximates the decision of
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the original model in the neighbourhood of the point of interest.

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (5.1)

where g is the approximation of the original model, M is the number of features, φi ∈ R

represents the feature attribution values of feature i, and z′i ∈ {0, 1} is the studied feature.

5.2.8 PLSR as a reference model

PLSR is a popular statistical method used in the analysis of hyperspectral images [60, 61, 76], since

it is a versatile tool that can be used with large datasets for which standard regression methods are

not useful [84].

PLS methods in general relate two groups of data that describe the same set of observations,

deriving optimal linear combinations of the variables of a group of data, and when the goal is to

predict one group from the other, the technique is called a regression (PLSR) [84].

For this chapter, we have implemented PLSR as a reference to compare the results of the

proposed DL models. In order to optimize the hyperparameters of the PLSR model, we used a

grid search with a 5-fold cross-validation. The tuned hyperparameters were the maximum number

of iterations (100, 500, 1000), the number of components to keep (2, 5, 10, 15), and the tolerance

used as convergence criteria (1e-5, 1e-6, 1e-7). We used the best hyperparameters (that were tuned

for canola and wheat separately) to train a new model and we used this retrained model in order

to obtain the final predictions. As in the case of all other experiments, the results were averaged

per plot, and they are presented in Table 5.4.

5.3 Calculation

The models described in Section 5.2 have some hyperparameters that can be tuned in order to

minimize the error of the predictions. Tables 5.2 and 5.3 show the values that were tested for each

of these parameters. The ones that produced the lowest MSE for the validation test were used for

each case. In bold are the final hyperparameters used to train the model that was then used to

generate the predictions shown in Section 5.4.

With the aforementioned hyperparameters, we have trained each of the models over each of the

datasets described in Table 5.1. The initial predictions over the validation set were used to adjust

an ensemble of models with a weighted addition of the predictions for each sample, as shown in

Equation (5.2), where ŷ corresponds to the predictions and w to the weights. These models and

the final ensembles were used afterwards for generating predictions on the test set.

ŷensemble = wspatial × ŷspatial + wspectral × ŷspectral (5.2)
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Table 5.2: Hyperparameters tested for the spectral model. The ones producing the best
metrics are in bold

Hyperparameter Tested values

Neurons in layer 10 20 40 -

Number of layers 1 2 3 4

Optimizer RMSprop Adam Adadelta -

Pixels per sample 50 100 200 -

Table 5.3: Hyperparameters tested for the spatial model. The ones producing the best
metrics are in bold

Hyperparameter Tested values

Optimizer RMSprop Adam Adadelta -

Box size 10 x 10 20 x 20 30 x 30 -

Output layer block1 pool block2 pool block3 pool block4 pool

where the optimal values for wspatial and wspectral are 0.1 and 0.9 for the canola dataset, and

0.2 and 0.8 for the wheat dataset, respectively. These weights were found through an exhaustive

search that minimized the MSE of the weighted average of the predictions of the two models, on

steps of 5% for each case.

Since our proposed model is an ensemble, it is useful to compare its ablation variants [70]. For

this, we have considered our three possible combinations: (i) spatial model, (ii) spectral model, and

(iii) ensemble of the two. Results are shown in Table 5.4. MAE and MSE were the metrics used

to train and tune the models, and we also used the coefficient of determination R2, which is often

used to judge the quality of the prediction of a regression model and it should not be less than 0.5

for a valid model [75].

Table 5.4: Evaluation metrics for the test datasets, where * indicates predictions averaged
per HSI plot

Crop Canola Wheat

Metric / Model Spatial Spectral Ensemble Spatial Spectral Ensemble

MAE 5.823 3.094 3.272 2.453 2.062 1.928

MSE 62.772 16.893 20.750 9.405 7.019 5.954

R2 0.559 0.826 0.854 0.623 0.698 0.761

MAE * 4.438 3.446 2.709 1.801 2.100 1.704

MSE * 38.352 21.767 13.904 4.635 7.203 4.450

R2 * 0.767 0.868 0.916 0.810 0.705 0.818
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5.4 Results and Discussion

5.4.1 Results of moisture content prediction

The results show that both averaging the predictions per plot and using the ensemble of models

improve the moisture content predictions for canola and wheat datasets. We averaged the predic-

tions per plot since the target value (moisture) was collected per plot. Thus, even though different

pixels could generate different results in the regression process, the value per plot should be unique.

Results shown in Table 5.4 are difficult to compare to other works, but as a matter of reference,

they were generated with a slightly higher number of samples than [35] that uses 485 samples and

uses also SHAP for soil mapping, or [72] that used 72 samples with cross-validation. We have better

results than [60], one of the most similar papers in literature, that uses PLSR for the analysis of

HS soybean data during drying, achieving a Root Mean Square Error (RMSE) of 5.105 %, which

squared would be 26.061, higher than the values obtained with our models (13.904 and 4.450 for

canola and wheat respectively).

Predictions compared to a vegetation index

Since the 1970s, scientists have used RS-based spectral measurements of vegetation to characterise

the environment. Vegetation indexes are the traditional tool for this analysis, and one of the most

common indexes used is the NDVI, defined in Equation (5.3) [26].

NDV I =
NIR− V IS
NIR+ V IS

, (5.3)

where NIR and VIS are reflectances in near-infrared and visible bands respectively. The most

commonly used bands to calculate NDVI are NIR=800 nm and VIS=670 or 675 nm [25]. We have

used 800 and 670 nm, respectively.

RS methods based on spectral vegetation indexes are very popular [25]. For example [59] used

NDVI as a base method for image segmentation and [78] used various indexes finding that NDVI

produces a higher correlation with water content (> 0.87), similar to PSNDb (Pigment Specific

Normalized Difference b).

In this Section, we evaluate the possibility of using the NDVI vegetation index to predict

moisture content. To compare our prediction results to this common baseline method, Fig. 5.6

shows the correlation between NDVI and moisture content for our analysed datasets. The plots show

that there is a relatively high correlation (R = 0.720 and 0.610 for canola and wheat respectively),

but this relationship is not linear, as we can see when the R2 values are also calculated and negative

results are obtained. Sometimes, the NDVI is used as a logarithmic relationship which in our case

does not improve the general correlation (R = 0.827 and 0.587 respectively).
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These results imply that we need to establish a more complex relationship than the vegetation

index in order to find a moisture prediction tool from the spectral information, otherwise, we would

have ambiguous correspondences between moisture content and NDVI values. Fig. 5.6 (a) is a clear

example of this ambiguity.
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Figure 5.6: Representation of the correlation between NDVI and the moisture content.
Top: canola (a). Bottom: wheat (b). Linear relationships

In literature, there are also customized indexes for particular tasks, such as the Canola-Pod-

Maturity Index (CPMI) proposed by [76], that uses three spectral bands to predict the degree

of maturity of the canola pods by using the moisture content. This index is given by Equation

5.4, where authors define R466, R721, and R813 as the reflectance values at 466.10 nm, 720.99 nm,

and 812.59 nm, and the amplification factor Af = 2.5, c1 = 2 (constant that adjusts the red-edge
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influence), and c2 = 1 (constant that minimizes the background signals on canopy spectra).

CPMI = Af ×
[

R813 −R721

R813 + (c1×R721)−R466 + c2

]
(5.4)

We have used the CPMI index as a reference value to compare the performance of our model

for predicting moisture content in canola, which results are included in Table 5.4.

In order to summarise the results and to compare the performance of our proposed model to

other methods or works, we put together the most relevant metrics in Table 5.5, for which we have

also calculated the regression coefficient (R) of the predictions using our proposed model. Although

comparison is complicated in these studies, we can see that our model performs better than the

alternatives.

Table 5.5: Results of our model compared to other methods or works (best values are in
bold)

Metric

Crop / Method R R2 MSE

Soybean [60] - - 26.061

Canola CPMI [76] 0.771 - -

NDVI -linear 0.720 - -

Canola NDVI -log 0.827 - -

PLSR 0.937 0.854 24.099

Proposed DL model 0.963 0.916 13.904

NDVI -linear 0.610 - -

Wheat NDVI -log 0.587 - -

PLSR 0.915 0.816 4.479

Proposed DL model 0.936 0.818 4.450

5.4.2 Feature selection with SHAP

SHAP analysis allows the study of individual predictions of a model. Unlike other approaches

like PCA in which the information is extracted with disregard of the application or specific need,

using the proposed approach, we can generate explanations of the trained model, focused on a

target (moisture content), a feature (spectral or spatial), or a subset of the HSI. If we need a

comprehensive explanation, the per-pixel contributions can be aggregated into a single SHAP value

per covariate, due to its additive property [35]. This approach is the most important contribution

of this chapter because it could lead to the design and implementation of more tailored software

and hardware for the analysis of spectral information.

62



Spatial and spectral representations are shown in Fig. 5.7 and 5.8, respectively. In the first

case, we can see two 20× 20 windows (subplots) in grey (left) as a monochromatic representation

of the HSI image in a given part of the field. On the right side, we have the representation of the

pixels that spatially contribute to explain the final predicted value. Red and blue pixels represent

the values that contribute to increase or decrease the final predicted value for that sample (φ values

in SHAP analysis), or the most important areas of the plot in order to generate a prediction. This

result could be used to analyse parts of the plot on which a farmer or breeder should focus on.

On the other hand, Fig. 5.8 is showing on the top part, all the spectral signatures collected on

a single plot (each of the spectral representations corresponds to one sample or subplot in the 150

bands). In the lower part, we have the spectral bands that contribute the most to a predicted value.

For each of the samples on the top part, we have the correspondent SHAP values on the bottom

(red and blue for the bands that increase or decrease the predicted value, respectively). Each part

of the plot has its own spectral signature and also its own explanation, but we can see that there

is a trend in the most important bands for this prediction. For representation and comparison

purposes, here we have chosen to aggregate the spectral features in this case.

Figure 5.7: Examples of the spatial contribution to moisture predictions in canola crops
(Left: greyscale portions of the plot. Right: SHAP values for those portions of the plot)

From the spectral and spatial analysis, the spectral part is the most relevant for our study. To
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Figure 5.8: SHAP values per plot for the canola test samples. Top: Spectral signatures of
the subplots. Bottom: SHAP values with respect to the spectral signatures above

validate our results, we have chosen 10 % of the top contributing bands in the aggregate (i.e. 15,

which is similar to what [60] and [76] presented, where 12 and 16 bands were selected, respectively),

which are shown in Fig. 5.9, where we can see that all of them are located in the NIR part of the

spectrum, both for canola and wheat. The figure also includes the 15 bands that contribute the

most to the first components after performing a PCA analysis, used as a sanity check, because

analysing the whole spectra with PCA can also be helpful for band selection [72]. In this case, we

see that only a few of the bands fall in the red-edge portion of the spectrum while all the others

are located in the NIR.

These results validate the idea that using SHAP actually obtains the spectral bands that are

important for this task, since they are similar to PCA, and they fall on the NIR part of the

spectrum. It makes sense because water has several strong absorption wavelengths in the NIR, so

NIR spectroscopy is widely used in moisture measurement of agricultural products [60]. It is also
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known that the range from 700 to 1100 nm is useful for vegetation analysis [26]. Moreover, it has

been found that the NIR part of the spectrum contributes to plant phenotyping more than the

RGB part [85]. Finally, one of the characteristics of SHAP is the consistency with human intuition

[33, 36]. Fig. 5.9 shows that the mean value of those 15 bands is 832.5 nm and they are distributed

on the NIR and red-edge spectrum.
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Figure 5.9: Position of the 15 most relevant bands obtained with SHAP values and PCA,
plotted over a sample spectrum

5.5 Conclusion

As for the first goal of our study, we have demonstrated that the final ensemble models generated

here obtained good results, even better than what we have found in literature. We mentioned that

our models with an MSE of 13.904 (canola) and 4.450 (wheat) are better than results obtained by

[60], with an MSE of 26.061 in a similar task. The use of our DL model is also better than reference

methods such as PLSR and the NDVI vegetation index.

However, the relevance of the DL models is not only in the numerical results, but also in the

architectural design of the network. We have implemented a spatial-feature model that uses a
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pointwise convolution to convert the 150 bands of the HSI into 3, that would correspond to the

RGB channels used in everyday images; feeding this information into a pre-trained VGG-16 network

that extracts the spatial features. Data fusion and DL methods for joint spectral-spatial generation

of features are two main trends in recent literature [80].

As for the assessment of spectral bands, in this chapter we proposed the use of a model inter-

pretability approach that by explaining the predictions of an AI model (such as the ones we have

trained), it can point out the spectral bands (and areas of the plot) that contribute to generate such

prediction. SHAP analysis allows us to study the individual predictions of a model, and this is one

of the most important contributions of this study because this approach could lead to the design

and implementation of more tailored software and hardware for the analysis of spectral informa-

tion, and maybe the development of new vegetation indexes [76]. To the best of our knowledge,

this game theory approach has not been used for supervised band selection in a regression model

that uses HSI and DL.

The results of our analysis, when compared to PCA, validate the idea that using SHAP obtains

the spectral bands that are important for this task. In both cases, the most relevant features

are located on the NIR part of the spectrum, which is widely used in moisture measurement of

agricultural products and vegetation analysis. Moreover, unlike other approaches such as PCA

in which the information is extracted with disregard of the application or specific need, using

the proposed approach, we can generate explanations of the trained model, focused on a target

(moisture content), a feature (spectral or spatial), or a subset of the HSI.
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Part IV

Model Optimization and Edge

Intelligence
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6 Interpretability of Artificial Intelligence Models

that use Data Fusion to Predict Yield in

Aeroponics5

This chapter elaborates on the previous ones; first, it extends the use of DL models for sensor-

data, also applying data fusion, and second, it introduces the use of salient features selected by

SHAP for model optimization. In the particular case of this chapter, optimization refers to gen-

erating smaller models by using only the most relevant features in the dataset, while keeping a

performance similar to the predictions by the models that use all the features. This is the first

step towards the implementation of these DL models in embedded devices. Assuming that different

features contribute equally to the predictions of a model might be problematic in many applications

because they have different discriminative capabilities. Thus, trying to understand the predictions

of those models is important to gain information about the contribution of individual features,

instead of assuming or using pure empirical knowledge. Therefore, this chapters is the only one

that explores the ideas of model interpretability.

This chapter also explores the ideas of model interpretability, by not only finding that there

are features that impact the predictions more that others (mainly reservoir temperature and room

CO2), but also by finding insight on how they do it. For example, results indicate that there is

positive correlation between days in tower and yield and that reservoir TDS has a positive impact

in the final yield. Moreover, higher reservoir temperatures have little or no effect on the model

outputs and lower temperatures do; or for room CO2, the relationship is the opposite. Importantly,

these results are concordant with current literature in the sense that for example, the effect of CO2

in plant growth is known and also the impact of the temperature of the roots has been studied

before. Nonetheless, it would be important to further study these results, possibly designing new

experiments for this particular case.

There is an increasing demand for healthy and fresh foods, and predicting yield effectively is

important to improve production, especially in methods like aeroponics. This chapter has two main

5The content of this chapter is originally published in the Journal of Ambient Intelligence and Humanized Com-

puting [11]. The manuscript has been reformatted for inclusion in this thesis.

Julio Torres-Tello: Conceptualization, Methodology, Software, Validation, Data Curation, Writing - Original Draft,

Visualization. Seok-Bum Ko: Resources, Writing - Review & Editing, Supervision, Project administration.
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goals: (i) use data fusion to improve yield prediction in aeroponics, and (ii) find which features are

more relevant for yield prediction of six different crops. To reach these goals, a number of artificial

intelligence models and an interpretability analysis based on SHAP have been implemented. The

models were trained using 200 samples that were collected in a nine-month period, including infor-

mation from different air and water quality sensors in addition to manually recorded data, reaching

in the end a coefficient of determination value R2 = 0.752 for the validation dataset in the best case

(CNN-based model). As a result, two main features were identified in the dataset: Room CO2 and

Reservoir Temperature, along with other useful insights of how these features influence predictions.

SHAP values also provided important information for feature selection. These results could be the

first steps towards the full automation of an aeroponics crop production system.

6.1 Introduction

There is an increasing global demand for healthy and fresh foods. Methods like hydroponics and

aeroponics allow for year-round harvest, protection from weather, portability, cultivation of diverse

crops and disease-free farming. Among these alternatives, aeroponics is a promising and efficient

technique. [42] showed that compared to traditional farming, aeroponics increases yield from 7 to

65% based on the type of crop. Along with faster crop cycles, aeroponics also improves water,

pesticide and fertilizer usage. Nevertheless, improving yields in plant factories (fully controlled

environments) is a major research problem [86].

Aeroponic systems are soilless growing methods using a mix of water and nutrient compounds

to nourish plants. Unlike traditional field agriculture, air and water quality can be measured and

controlled, while allowing for more dense farming since plants grow in a stacked tower structure.

Data was collected from a sustainable and organic aeroponic farming device called AeroPod (Fig.

6.1) from Farm Boys Design, a corporation based in Saskatchewan, Canada.

The outcome of a harvest is hard to predict, time consuming, and prone to error. Recently,

AI has become an important tool for predictions in different fields such as medicine [87, 88, 89,

90], robotics, and climatology, and the use of AI for yield prediction in agriculture should be no

exception. Furthermore, yield prediction could be the basis of fully automated control systems

in which yield could be maximized by setting the variables under control (e.g., light conditions,

nutrients, temperature) [16].

Current literature includes some works that try to automate hydroponic or aeroponic produc-

tion, some of which use AI for this task. For example, [91] developed an aeroponic system based on

IoT, [92] implemented a fuzzy-logic based system for the control action in aeroponics, and [93] went

one step further by using Deep Neural Networks for the control system in hydroponics, achieving

an accuracy of around 88%. Other works used ML for generating recommendations or managing
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Figure 6.1: Left: Aeroponics container (a). Right: One of the towers in AeroPod (b) [5]

what they consider the most important variables in the system, such as the paper presented by [94]

that focused on irrigation or [86] that considered temperature as the most important.

This study elaborates on a conference paper [5] (presented in Chapter 3) that uses three tradi-

tional ML techniques to create a yield prediction model. For this extended version, two new DL

models based on LSTM and CNN have been included. The reason for using these DL models is that

unlike the previous approaches, LSTM and CNN networks would be able to use all the data being

gathered by the sensors in the AeroPod. The first goal of the chapter is to find AI models that

could use the data as taken by the sensors to improve yield prediction in the aeroponics system.

Eventually, this could be used for automating the production process.

Despite being able to make accurate predictions, ML and DL techniques generate complex

models that lack the interpretability that is desired in many applications. This issue is particularly

evident in disciplines like medicine [95] and finance [96], where the understanding of the features

that cause a certain prediction is essential for the adoption of AI models. Likewise, with aeroponics,

it is relevant to understand the features that could influence the final yield of a crop.

Assuming that different features contribute equally to the predictions of a model is problematic

in many applications because they have different discriminative capabilities [97]. Thus, trying to

understand the predictions of those models is important to gain information about the contribution

of individual features to yield prediction. This would allow producers and researchers to learn, using

statistical values, what variables they should act upon if they want to maximize yield, instead of

assuming or using pure empirical knowledge [86, 94]. Therefore, the second goal of this chapter is

to find which features are more relevant for yield prediction of six different crops. For this purpose,

a technique known as SHAP [36] has been used.

This chapter is organized as follows: Section 6.2, Materials and Methods, describes data collec-
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Figure 6.2: Screenshot of the data acquisition platform

tion methods, implementation and training process of the AI models, along with interpretability

concepts. Section 6.3, Results and Discussion, presents the results achieved by our models and

comments on their meaning. Finally, Section 6.4 presents the conclusions of the chapter.

6.2 Materials and Methods

6.2.1 Growing Method and Data Collection

Our experiments, conducted during production stages, included six different crops: garlic chives,

basil, red chard, rainbow chard, arugula and mint. In all cases, seeds were sown in mineral wool

in a tray, until they germinated and attained early stages of growth. Then, they were transplanted

to stacked towers in the AeroPod. Each layer in a tower (Fig. 6.1b) consists of a few spots that

can accommodate a mineral wool cube. In the AeroPod, nutrient mixture comes in contact with

mineral wool cubes at constant intervals, thereby nourishing the roots. Plants were harvested and

yield was measured as weight per spot (oz/spot then converted to g/spot for this study).

The data acquisition platform is implemented as part of the AeroPod and is used in the daily

operations of this system. However, the data presented here, which is available online [98], was

assembled for this study. Part of this data was used in Chapter 3 but the complete dataset has

only been used for this study.

As shown in Fig. 6.2, air and water quality sensors implemented in AeroPod record hourly

values of room carbon-di-oxide (CO2) levels [ppm], room relative humidity [%], room light level

[lux], room temperature [◦F ], room VPD [mbar], reservoir water pH, water TDS [ppm] and reservoir

temperature [◦F ]. Manually collected data include number of days in tray, number of days in tower,

harvest number (how many times the plant has been harvested since first transplanted to AeroPod)

and grow number (how many times a plant has been transplanted into that spot). The target value

that the AI models use is the crop yield (g/spot). For this study, 200 samples have been collected

between November 2018 and August 2019.
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Regarding the time series data, the samples were taken once per hour, as an average value

during the last hour, for all the registered variables. We obtained the log files (raw information)

for all these sensor readings during the months the experiments took place. From there, and using

the transplant and harvest dates for each of the 200 spots, we constructed a dataset that included

the readings from the sensors for the time of interest in each case. In the end, we had between 209

and 4431 data points per feature per sample. This difference in the length of the vectors happens

mainly because not all the plants stay in the tower for the same amount of time (11 to 191 days)

and also because there was some downtime in the data collection system, which values are not

included.

6.2.2 Data preprocessing

The data was used to construct two different datasets. The first is a tabular dataset in which the

values read by the sensors were averaged, similar to what is presented by [94]. The averages were

calculated for the period in which each crop has been in the AeroPod, as described previously (see

Sect. 6.2.1), so that each sensor contributed with one scalar feature per data point. This dataset

was used to train the traditional ML models in a previous study [5], as well as in this chapter.

The second dataset is a mixed dataset in which the tabular data corresponding to manually

acquired values (number of days in tray, number of days in tower, harvest number, and grow

number) were kept unchanged, and in which each sensor contributed with a vector containing the

time series response per data point. This dataset corresponds to the actual information gathered

by the sensors (Fig. 6.2), combined with the manual readings, and it was used to train the DL

models.

The only preprocessing on both datasets was performed on the tabular features. We standard-

ized the features of the tabular dataset and normalized the tabular features of the mixed dataset.

We used different approaches on these datasets considering that they do not have the same features.

The tabular dataset contains average values of the sensors readings. The time series data was fed

to the models with no preprocessing. In this case, we only used zero-padding to make the vectors

fed to the DL models have the same length.

6.2.3 Regression models

A regression model f is the one that estimates the relationship between independent variables

(features) x and a dependent variable (target) y. The goal of the AI models is to find an f(x,w)

such that:

ŷ = f(x,w) ≈ y (6.1)
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Where ŷ is an approximate value of the original dependent variable y, and w are the so-called

weights that the model learns to fulfill Eq. 6.1.

6.2.4 Performance metrics

The validity of a regression model is given by how similar y and ŷ are. To accomplish this task,

there are some performance metrics that can be used. This chapter implements three of them:

MAE, MSE, and coefficient of determination (R2). These metrics are given by Eq. 6.2, 6.3, and

6.4, respectively, where n is the number of samples in the dataset.

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| (6.2)

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)2 (6.3)

R2(y, ŷ) = 1−
∑n−1

i=0 (yi − ŷi)2∑n−1
i=0 (yi − ȳi)2

(6.4)

As seen in the previous equations, MAE is just an average estimate of the error between real

and predicted values, and MSE is useful in the sense that it is more sensitive to large errors (due to

the square function). R2 represents the proportion of variance that has been explained by a model,

and is, therefore, a measure of how well the predicted values ŷ fit the real ones y. In the case of

MAE and MSE, values closer to 0 are better, and in the case of R2, the best possible value would

be 1.

6.2.5 Implementing and Training the AI Models

Traditional ML Models - Averaged Data

These models were already presented in Chapter 3 and they have been re-trained for this Chapter.

Original and new results are presented in Section 6.3. These models constitute the baseline for the

models that use data fusion.

The training process of these algorithms involved repeated k-fold cross validation (k=2), a

commonly used procedure to evaluate ML/DL models on datasets of limited size. This resampling

technique without replacement is applied to obtain an error rate as independent as possible of the

train-validation split of the dataset, because each sample is part of the training and validation

sets only once. Given the small sample size, we performed repeated (5 times) cross-validation

experiments to reduce variance in the results.

The same models and network architecture presented in the aforementioned paper were used

here, but different regularization hyperparameters were chosen via nested cross validation within

each fold. Specifically, we used a 5-fold split in this case.
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To summarize, the 200 samples in our dataset were split in two groups (outer loop) for the

cross-validation procedure. Each of these two groups was split into 5 groups (inner loop) in order

to tune the hyperparameters used in the outer loop. This process was repeated 5 times. The results

presented in Section 6.3 correspond to the mean values of this process.

Support Vector Regression [7] describes SVM as widely used learning algorithms, that have

the optimization objective of maximizing the margin, which is the hyperplane that separates the

training samples that are closest to it. These samples are called support vectors. A parameter

ε defines the epsilon-tube inside of which no penalty is associated in the training loss function.

There is also a regularization parameter C that controls the misclassification penalty. To deal with

non-linear data, SVM implements the so-called kernel trick that transforms the data into a higher

dimensional feature space via a mapping function. The kernel trick has a γ parameter associated

to it, that indicates how soft the decision boundary would be.

Although SVM is initially defined for classification, it can be applied to regression problems as

well. In this case we try to define how much error is acceptable and the model finds a hyperplane

to fit the data. SVR provides an estimate of the output as a non-linear function of the inputs.

The kernel function plays a crucial role in transforming inputs into a higher dimensional space

and we used the non-linear RBF kernel. After applying nested cross-validation, we found that the

best parameters for our model were: γ = 1, C = 1000, and ε = 1.

Random Forest RF is an effective classification and regression method that involves ensemble

learning of multiple decision trees. A decision tree is a simple concept in which the model learns a

series of questions that define cut-off values for the different features in the dataset. It starts at the

root and splits the data on the feature that generates the largest information gain, in an iterative

process that finishes when the leaves are pure or at a predefined depth [7]. 50 trees with maximum

depth of 20 were found to be the best hyperparameters after the tuning process.

Artificial Neural Network ANN is a concept roughly based upon the understanding of how the

human brain works, and it was first introduced in the 1940’s [7]. Its basic element is a processing

unit called neuron that connects to other neurons and can be arranged in layers in order to fit

complex functions. The connections between neurons have weights associated to them, which are

the learnable parameters. These weights are updated simultaneously every pass of the training set,

or epoch, and this is performed by an optimization algorithm that calculates the gradient of a loss

function. The final goal is to minimize the loss function.

An ANN with three hidden layers (48, 48, and 24 neurons) was implemented [5]. In this study,

we used dropout regularization, which randomly drops units and their connections from the neural

network during training. After nested cross-validation, the dropout used to train the final model
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is 10%. Some important training parameters are the optimizer and loss function (Adam and MSE,

respectively). The model was trained for 1000 epochs per fold, using a batch size of 20.

DL Models - Data Fusion

An important aspect of learning is diversity. For example, [99] demonstrates that their method for

cross-modal learning improves robustness to outliers and generalization capabilities. In our study,

to use all the data captured by the sensors, data fusion was implemented by means of two-headed

models. One of these heads uses the tabular data while the other uses the sequential time-series

data. Every sample or data point is constituted by those two components and the network produces

a unique prediction for that given sample.

The sequential data contains more information (features) compared to the number of samples,

and it is also dimensionally incompatible with the tabular part; therefore, it had to be processed

by a different model capable of extracting the useful information.

Two similar versions of the two-headed model were tested: CNN- and LSTM-based. Both

models use an architecture similar to the ANN network implemented for the averaged data, without

reusing the weights, and this constitutes the first head. The other head is different for each model

and is based on a previous paper [14], where CNN and LSTM networks show good results on time

series data.

The training process of these algorithms was similar to the ML case, since it involved repeated

k-fold cross validation, although in this case k=10 and the process was repeated 5 times. We did

not use any regularization technique and no hyperparameters were tuned, so we did not use nested

cross-validation in this case.

CNN-based Model A common DL model is the CNN, which is a kind of neural network that

uses the convolution operation in place of general matrix multiplication in at least one layer, and

is specialized in the processing of data that contains grid-like patterns, such as in the case of time

series (1-D grid) [8].

A CNN is usually implemented as a stacked architecture with some convolutional and pooling

layers interchanged. Fig. 6.3 shows the two-headed CNN-based model in which the left side is a

two-layer one-dimensional CNN and the right side is the ANN based on the traditional ML model

already used. In the lower part of the figure, there is a fully connected regressor that generates the

final predictions based on the information extracted by the two upper branches.

The CNN branch (including the regressor) is based on the popular LeNet-5 architecture orig-

inally introduced by [29], and it has two layers with a depth of 20 and 30, with kernels of size 3

and 2, similar to what is implemented by [14]. From the reference architecture, we tried to keep

things as unchanged as possible, so only the dimensions (from 2 to 1) and the final layer (multiclass

75



Figure 6.3: Architecture of the CNN-based two-headed network implemented to train the
mixed dataset (data fusion)

classification to regression) were modified. The complete model was trained for 15,000 epochs per

fold, with a batch size of 20, and Adadelta was used as optimizer.

LSTM-based Model RNN are a kind of network for processing sequential data, mainly because

they are able to scale to much longer sequences than other networks [8]. They are able to achieve

this task by keeping information from the past. LSTM is a common implementation of RNN, and it

controls this flow of information by means of three gates: forget, input, and output. One downside

of this network is that it involves more operations and therefore demands more computational

resources.

In the LSTM implementation, the main difference with respect to the CNN model is that we

replace the convolutional-pooling blocks by LSTM layers with 20 and 30 units to process the time-

series data. This model was trained for 1500 epochs per fold and Adam was used as optimizer.

All models were implemented in Python 3.7, using Scikit Learn 0.22 for SVR and RF, and

Tensorflow 2.0 for the other models. They were trained on a dedicated server with 64 Intel(R)

Xeon(R) Gold 6130 CPU’s at 2.10GHz, 1.6 TB of RAM, and a Nvidia Tesla V100-PCIE-16GB
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Figure 6.4: Example of how SHAP values make the output go from the expected (E[f(z)])
to the predicted (f(x)) value, related to the features in our dataset

GPU.

6.2.6 Model Interpretability

Physical models are based on known relationships between inputs and outputs, thus interpretability

is inherent to them. On the other hand, statistical models (including AI) result from the observed

data and learned weights. To authors in [34], this means that the relationship between inputs and

outputs is unknown and, in most cases, impossible to interpret, so that they are usually referred to

as black box models. While some ML models such as RF are interpretable, more complex models

(such as the two-headed models in this chapter) are more challenging when their predictions need

to give meaningful interpretations; therefore, researchers have tried to generate prediction models

that can handle a wide variety of AI models.

For this work, interpretability is relevant to understand the features that affect the final yield

of a crop. To accomplish this task, the SHAP approach was used. This is a game theory technique

originally introduced in [36] that treats each feature as a player in a game, where that player

(feature) contributes to increase or decrease the predicted value.

SHAP uses the expected value over the analyzed dataset as the base value (predicted value if

no feature is known), and the effects of each feature are then subsequently added. The sum of

these effects adds up to the predicted value. Fig. 6.4 shows an example of the representation of

SHAP values for a randomly chosen example in our dataset that indicates how these add up to the

predicted value. Fig. 6.4 is also an example of how SHAP values produce interesting visualizations,

first introduced in [95].

The original model is a function of the training dataset; therefore, according to [34], SHAP

values fully depend on it and they can be applied to the training or validation sets. This work

uses the entire dataset. After finding the best hyperparameters for our models, we have retrained

them using all the 200 samples in the dataset. These retrained models are the ones used for

interpretability, although their prediction results are not reported because they would likely overfit

the training set, and therefore would be over optimistic.

SHAP belongs to the additive feature attribution methods, which assign an individual effect
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to each feature and sum the effects of all feature attributions to approximate the output of the

original model [36]. In the case of our sequential dataset, we obtain a SHAP value for each of the

time steps in our data, which corresponds to the effect that each of those time steps has in the

final prediction. Using SHAP, it is possible to obtain a global interpretation based on aggregations

of SHAP values [96]; thus, we sum all the feature attributions for each one of our data samples to

find an aggregate SHAP value for each of our features, per data point.

The SHAP feature importance is defined as the mean of the absolute SHAP values across the

data [96, 34], and that is used in this chapter to obtain the features that contribute the most to

yield prediction. Additionally, since we can aggregate SHAP values to obtain global interpretations,

we construct the crop type feature that includes the effects of the six crop types, to simplify the

information described by the individual features, and that is presented in Tables 6.3 and 6.4, and

Fig. 6.5.

SHAP is implemented in different versions depending on the kind of original model that is used

for generating the approximation. In the case of our work, we have used the Tree Explainer for

the RF model, the Kernel Explainer for the SVR and ANN models, the Deep explainer for the

CNN-based and the Gradient Explainer for the LSTM-based models.

6.3 Results and Discussion

There are four main results of this work: (i) AI models for yield prediction, (ii) interpretation of

the predictions, (iii) optimization of the models, and (iv) impact of the features in yield prediction.

6.3.1 Yield Prediction

Results of the regression process are summarized in Tables 6.1 and 6.2 (models that use all features).

Table 6.1 focuses on the traditional ML models and includes the results presented in Chapter 3,

and as in the case of that Chapter, RF and ANN models show good performance. However, RF

shows better generalization capabilities due to its best scores in the validation dataset. These

tables also include the time that it took to train the final model in each case, in the server with the

specifications mentioned in Section 6.2.5.

Table 6.2 shows the results of the CNN- and LSTM-based models that use the mixed dataset,

with the CNN-based being the best performing model when measuring both the error metrics, MAE

and MSE, and the coefficient of determination R2, for the training and validation datasets. It is

also worth noticing the difference in training times between the ML and DL models. Although the

time to train the final model is in the order of seconds (or fractions of a second) for the traditional

ML models (Table 6.1), the better performance of DL models justify the time it takes to train a

single model that is in the order of one or two hours (Table 6.2).
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Table 6.1: Performance metrics for the training and validation sets, for averaged data (best
metrics are in bold)

ML model MSE MAE R2 Training time -

train val train val train val final model

SVRa N/A N/A N/A N/A 0.86 0.45 N/A

SVRb 81.536 219.938 3.832 8.401 0.799 0.493 0:00:00.003

SVRc 98.301 214.011 4.540 8.361 0.766 0.507 0:00:00.003

RF a N/A N/A N/A N/A 0.9 0.62 N/A

RF b 53.872 148.435 4.200 7.309 0.869 0.661 0:00:00.125

RF c 52.573 141.366 4.051 6.924 0.873 0.678 0:00:00.053

ANN a N/A N/A N/A N/A 0.91 0.67 N/A

ANN b 50.578 174.299 4.038 7.266 0.879 0.604 0:00:43.397

ANN c 60.371 177.270 4.298 7.273 0.853 0.609 0:00:43.680
a Results presented in Chapter 3.
b Model trained using all features.
c Model trained using a reduced number of features (selected by SHAP).

Table 6.2: Performance metrics for the training and validation sets, for mixed data (best
metrics are in bold)

ML model MSE MAE R2 Training time -

train val train val train val final model

CNN a 38.847 62.441 3.181 4.537 0.909 0.752 0:49:15.973

CNN b 39.825 65.672 3.279 4.713 0.907 0.742 2:15:33.616

LSTM a 50.557 72.815 3.933 4.853 0.881 0.735 1:18:07.740

LSTM b 48.517 72.141 3.887 4.874 0.886 0.738 1:33:30.207
a Model trained using all features.
b Model trained using a reduced number of features (selected by SHAP).

These results confirm our hypothesis that ML/DL models can extract the useful information

required to predict yield in our aeroponic system, and that using the data fusion process improves

this prediction. Therefore, it is possible and even useful to feed the DL models with the data that

comes from the sensors without averaging as we did with the traditional ML models.

6.3.2 Interpreting Predictions

One of the main goals of this chapter is to find which features are more relevant for yield prediction.

Fig. 6.5 shows the plots of the most contributing features in the best models for both cases: RF

and CNN.

Note the change in contributions of the sequential data, which have relative smaller average
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Table 6.3: Most important 5 features found by SHAP for the models trained on the averaged
dataset

SVR RF ANN Selected features

1 Days in tower Days in tower Days in tower Days in tower

2 Harvest number Reservoir temperature Reservoir pH Harvest number

3 Reservoir TDS Room CO2 Room CO2 Reservoir pH

4 Room light level Harvest number Room humidity Room CO2

5 Reservoir pH Room humidity Reservoir temperature Reservoir temperature

6 Room CO2 Reservoir pH Harvest number

7 Reservoir temperature Room VPD Days in tray

8 Room temperature Room temperature Room light level

9 Days in tray Reservoir TDS Room temperature

10 Room VPD Room light level Room VPD

11 Room humidity Days in tray Grow number

12 Grow number Grow number Reservoir TDS

impact on Fig. 6.5a compared to Fig. 6.5b. This indicates that DL models extract more information

from the sequential data than the pure average used in the tabular dataset.

6.3.3 Optimizing the Models

The models were retrained with the top five contributing features for each case. Tables 6.3 and 6.4

show these features for the two datasets. The same architectures and training procedure as in the

original models were used, to make a fair comparison.

The results of training the models with reduced features are shown in Tables 6.1 and 6.2 (reduced

features), showing similar or better performance metrics for both cases, especially for the validation

sets. This is evidence of the relevance of those features for our problem.

Analyzing Tables 6.3 and 6.4 together, it is evident the importance of two features: Room CO2

and Reservoir Temperature. SHAP values for these variables rate them as the most important for

both datasets, so they should be considered as highly relevant in case of automating the production

process.

6.3.4 Impact of Features on Yield Prediction

SHAP values give useful insights on how the features influence yield predictions. Fig. 6.6a, resulting

from the RF model trained with the selected features, shows a positive impact of days in tower in

the model output because low values in this feature (blue dots) cause lower predicted SHAP values

(left side of the SHAP value scale), while reservoir temperature and room CO2 (the most relevant
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Figure 6.5: Contributions of individual features to yield prediction using the best model
for each case. Top: Averaged data (a). Bottom: Mixed data (b)
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Table 6.4: Most important 5 features found by SHAP for the models trained on the mixed
dataset (if relevant for both datasets, selected features are in bold)

CNN LSTM Selected features

1 Room humidity Reservoir TDS Room humidity

2 Room VPD Room CO2 Room VPD

3 Reservoir TDS Room VPD Reservoir TDS

4 Harvest number Room humidity Room CO2

5 Room CO2 Reservoir temperature Reservoir temperature

6 Reservoir temperature Room temperature

7 Reservoir pH Reservoir pH

8 Room light level Room light level

9 Room temperature Days in tower

10 Days in tower Grow number

11 Days in tray Harvest number

12 Grow number Days in tray

features in Tables 6.3 and 6.4) have the opposite effect. Furthermore, Fig. 6.6b, the result of the

CNN model, shows that reservoir TDS has a positive impact in the final predictions (i.e. higher

feature values imply higher SHAP values), while reservoir temperature and room CO2 show more

complex relationships. In the first case, higher reservoir temperatures have little or no effect on the

model outputs and lower temperatures impact the model either increasing or decreasing the SHAP

values. For room CO2, the relationship is the opposite.

The impact that these two features have on the model output should be further explored. While

the effect of CO2 in plant growth is known in general [100], and also the impact of the temperature

of the roots has been studied before [101]; it would be important to further study these results,

possibly designing new experiments for this particular case.

Besides SHAP, there are other recently proposed methods for analyzing the interpretability of

a model, such as LORE [102], which is only defined for tabular data, or LEFTIST [103], for time

series data. Therefore, these models would not fit in our work due to the mixed nature of our

dataset, but they are nonetheless worth evaluating for future works. It would also be interesting

to explore dimensionality reduction approaches such as clustering [97, 104], although they might

not provide information regarding the individual features and their impact on model output, as it

is the case of this chapter.

Also, with the development of precision farming, sensor analytics will be more relevant in

agricultural applications. Authors in [105] expect that in the near future farms will integrate

wireless sensor networks (WSN) and intelligent systems to increase and improve production. These
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Figure 6.6: Impact of each feature in the final predictions using the best reduced model
for each case. Top: Averaged data - RF model (a). Bottom: Mixed data - CNN model (b)
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data could also be used by decision makers to manage agriculture in higher levels, according to

[106]. This means that AI analysis tools, concepts and procedures will become even more relevant

in the near future.

6.4 Conclusions

This interdisciplinary work presented a number of yield prediction models for aeroponic crops in a

controlled environment, based on the environmental variables measured in the production system.

200 samples covering 6 different crops were used, and the presented models reached a coefficient of

determination value R2=0.752 for the validation dataset in the best case (CNN-based model).

The contribution of this chapter is twofold; first, results indicate that the use of data fusion is

possible and even improves yield prediction in aeroponics, allowing the use of the data gathered

by the sensors for the AI models, without the need for a complex preprocessing scheme. Second,

the SHAP approach has found which features are more relevant for yield prediction of six different

crops.

Two versions of the dataset were implemented and tested. First, a purely tabular (averaged

values) set for which the best performing model is the RF. Second, a mixed dataset that includes

the full sequential time-series data acquired by the sensors. In this case, the CNN-based model

shows better results.

SHAP analysis was applied to the trained models, which identified two main features in our data:

Room CO2 and Reservoir Temperature. SHAP values also provided important information for re-

training the models with reduced features, producing similar or better performance metrics, which

is evidence of their relevance. SHAP values also give useful insights of how these features influence

the predictions. Results indicate that there is positive correlation between days in tower and yield,

and that reservoir TDS has a positive impact in the final yield, while reservoir temperature and

room CO2 present more complex impacts.

Results also show the potential for implementing a yield prediction model as the first step

towards the full automation of an aeroponic crop production system that would require less human

intervention with a higher profit margin. For future works, it would be interesting to evaluate

other recently proposed methods for model interpretability, such as LORE or LEFTIST, especially

considering the development of precision farming where sensor analytics and intelligent systems

will be used to increase and improve production.
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7 Improving the Detection of Explosives in a MOX

Chemical Sensors Array with LSTM Networks6

This chapter continues to explore the idea of selecting relevant features for model optimization.

In this particular case, it deals with taking only the initial time-steps of a sequence in order to

make a prediction. Different ML and DL models are implemented and tested. In the end, a light-

weight model, that could speed up the classification task, is implemented into an embedded device.

By using only the initial part of the sequences, the number of trainable parameters (weights) is

reduced in one order of magnitude when using 30 seconds instead of 300, for the LSTM-based

model. This model was implemented and tested on a Raspberry Pi 3 board, which could be used

as an on-site processing element directly connected to the data acquisition card, which would be

an important part of an accurate, portable, fast and low cost e-nose device for the detection of

explosives. Thus, this chapter constitutes an example of the whole proposed process, starting

with the implementation of customized AI models, going through model optimization, and finally

arriving to the implementation on an edge device.

Entities throughout the world face the problem of detecting hidden explosives, where human

and canine inspection might not be a viable solution. Therefore, it is important to develop fast,

reliable, and portable integrated inspection systems by means of automated methods, such as

electronic noses. The goal of the work presented here is to develop an accurate, fast and light-

weight machine/deep learning classification model to be used in a MOX chemical sensors array

(electronic nose), in order to identify explosive substances.

For this chapter, 140 samples were taken, combining TNT or gunpowder with either soap or

toothpaste, or acquiring raw samples of those substances in amounts ranging from 0.1 g to 2 g. For

the classification problem, among the different options in machine learning techniques, five models

were evaluated. The implemented LSTM version of a LeNet-5 based network, classifies accurately

the compounds in 100% of the cases when using only 30 seconds from the 360 obtained by the

sensor array per each sample. The results of this work indicate that the proposed LSTM-based

6The content of this chapter is originally published in IEEE Sensors Journal [14]. The manuscript has been

reformatted for inclusion in this thesis.

Julio Torres-Tello: Conceptualization, Methodology, Software, Validation, Data Curation, Writing - Original Draft,

Visualization. Ana V. Guaman: Validation, Investigation, Data Curation, Resources, Writing - Review & Editing.

Seok-Bum Ko: Resources, Writing - Review & Editing, Supervision, Project administration.
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deep learning model could be easily implemented into an embedded system.

7.1 Introduction

There have been many terrorist activities in past years around the world, in such different places like

Brussels, Abuja, Boston, London, Madrid, Moscow, Mumbai, etc. [107] which have had impacts on

how security is managed worldwide. Therefore, illegal trafficking of explosives is a real challenge to

civil security, and law enforcement entities throughout the world face the problem of detecting them

where human and canine inspection is at least difficult and expensive [108]. Explosive substances

are often mixed with other compounds, so that they can be transported and marketed.

There are well known accurate techniques for the detection of chemical substances, such as gas

chromatography-mass spectrometry (GC-MS), ion-mobility spectrometry (IMS) [109, 110, 111],

arrays of high-selective sensors; however, e-noses are usually cheaper, smaller, and convenient for

rapid detection [18, 108, 112, 113]. Works in literature use metal oxide (MOX or MOS) sensors for

e-nose implementations or at least as a reference technique [18, 19, 112, 113, 114, 115], and in some

cases specifically for explosive detection [116, 117, 118, 119], and [120] for example, used PCA to

discriminate 1g of different explosives (TNT, RDX and PETN).

Chemical sensing is challenging because it tries to emulate the complex biological olfactory

system, which is composed by hundreds of receptors and neurons [121]. The substances that

generate volatile organic compounds (VOC) can be identified by humans and animals from past

odor experiences because data remain into their memory as synaptic weights [122].

One of the important points when analyzing data in order to detect an explosive, is the devel-

opment of a model that is accurate and fast. Currently, the development of new techniques open

new possibilities for the development of such models. DL is emerging as an important solution for

many classification problems. As a simple example, a search for the terms deep learning and clas-

sification in the IEEE Xplore database provides 12,344 results since 1996; however, its application

in electronic noses (e-nose) is just starting (we obtained only two results [19, 123] published on

journals out of the 3,662 e-nose / chemical-sensor-array related works in that database), and the

search for deep learning and electronic noses gave only 6 results in the Scopus database. In any

case, DL is starting to be adopted as a solution for some problems that are common in e-noses,

such as accurate classification [6, 122, 30, 113, 114, 115, 124, 125], sensor drift correction [126], fast

detection [127, 128], navigation [112], and even trying to replace dogs as explosive seekers [108].

Furthermore we look for a light-weight model that could be eventually implemented into an

embedded device, so our algorithms try to keep a low number of layers (and parameters), in

contrast to deeper and more complex models found in literature, such as [30] that implements a

CNN network with 38 layers. However, we have found that [6] implements a gas identification
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algorithm based in the popular CNN architecture known as LeNet-5 [29], which is one of the first

successful implementations of DL. The aforementioned work is used as the reference model for our

implementation.

The work described in this chapter elaborates over an e-nose presented on [121, 129, 130].

Researchers in [121, 129] used the e-nose for the detection of dinitrotoluene, vinegar, ethanol,

trinitrotoluene, gunpowder in double base and alcohol, for which they used simple ML models such

as PCA, Linear Discriminant Analysis (LDA), and kNN, obtaining 86.66% discrimination accuracy.

Similar results are reported in [130].

In this work, we develop not only an accurate classifier for the detection of substances containing

explosives, but also one that could speed up the classification task. As it will be explained in the

data collection procedure, each sample in our dataset consists of the response of six chemical sensors

during six minutes, and that is the time length that we try to reduce.

Therefore, in this chapter we evaluate the possibility of using a ML/DL algorithm that could

give accurate results in less time, which would be important in order to design future experiments

with limited data-collection times. The main purpose of the work presented here is to develop

an accurate, fast and light-weight classification model to be used in an e-nose in order to identify

explosive substances (Gunpowder and trinitrotoluene in raw state or mixed with other substances).

The algorithms used in this study will be described in Section 7.2, along with the e-nose proto-

type. Section 7.3 discusses the results obtained, and section 7.4 presents some conclusions.

7.2 Materials and Methods

7.2.1 The Electronic Nose Prototype

The e-nose is an analytical device for sensing VOC, attempting to mimic the biological olfactory

system. It is composed by three functional blocks as shown in Fig. 7.1.

The sensing block is made up of a sampling system, a sensing chamber, and a pneumatic

system. The pneumatic system is composed of an air pump of 3 lpm (litres per minute), three

electrovalves of 12VDC with a maximum caudal of 31 lpm, and pipes with a diameter of 4mm.

The whole system caudal is limited to 1.1 lpm, mainly in order to guarantee a proper sweep of the

VOC explosive through the vials where the samples are placed. The electrovalves allow switching

from two scenarios: (i) pumping VOC through the sampling system into the sensing chamber and

(ii) cleaning the system by allowing clean air to pass through the whole system eliminating VOC

content.

The sampling system is based on a headspace methodology to foster the VOC generation, and

it mainly has an air pump and two vials: one with 2 ml of ethanol and one with the explosive at

different weights. In essence, the pump makes air flow through the first vial in order to push the
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VOC of ethanol into the second vial, where it gets mixed with the VOC of the explosive substance.

This mixture of ethanol and explosives is what activates the sensors.

An array of six MOX chemical sensors from the FIGARO family (two of them are T-GS2610,

two T-GS822, and the others are T-GS825 and T-GS826) composes the sensing chamber. MOX

gas sensors such as the ones used in this work contain dense packs of granular material of N-type

metal oxide (tin oxide (SnO2), zinc oxide (ZnO), etc.), or P-type metal oxide (copper oxide (CuO),

chromium oxide (Cr2O3)). The gas sensing mechanism is based on the oxidation-reduction reaction

[131]. A voltage divider is used as a signal conditioning circuit where the load resistance was set

up to maximize sensitive sensor response.

The sensor chamber has a volume of 0.5 l, and a PID temperature controller was set up to

avoid external environmental changes that might affect the behavior of the sensors. The reference

temperature was set to 29℃ during the whole experiments, with 0.05% steady-state error, and

the sensing chamber temperature was kept for 12 minutes before any data-collection experiment

took place. The data collection algorithm sampled the output of the sensors at 1 Hz, and it was

implemented on an Arduino UNO board.

Figure 7.1: Block diagram of an Electronic Nose prototype used in this work.

7.2.2 Data collection

Each data-collection experiment lasted 360 seconds, of which VOC was pumped from the sampling

system to the sensing chamber during the first minute, and the cleaning system was activated for

the remaining five. The data files were finally bounded to five minutes (300 s) for practical purposes

because some experiments finished the cleaning process earlier.

Raw TNT and gunpowder measurements were taken in amounts of 0g, 0.1g, 0.2g, 0.3g, 0.4g,

0.5g, 0.7g, 1g, 1.5g, 2g. Besides, TNT and gunpowder were mixed with 1g of soap and 1g of

toothpaste for testing the device under real scenarios, considering that these items could be used

by criminals to camouflage the explosives. For the collection of each of these samples, we used 2

ml of ethanol, using headspace methodology as it was previously explained. Also, we used ethanol

only as blank of the system. Random experimentation was carried out to avoid any memory effect

that could influence the results.

The obtained database consists of 140 experiments where 44 come from TNT, 37 are gunpowder,

while 6 of them were only soap and 6 only toothpaste, and 47 measurements were blanks. Table 7.1
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Table 7.1: General description of the database created for this work.

Substance Number of experiments Label

TNT 32

44

Explosive

TNT + soap 6

TNT + toothpaste 6

Gunpowder 29

37Gunpowder + soap 4

Gunpowder + toothpaste 4

Soap 6

59 Non-explosiveToothpaste 6

Ethanol (blank of the system) 47

shows a detailed explanation of the database, but notice that in the end the classification problem

is reduced to identify explosive and nonexplosive samples.

7.2.3 Data Pre-processing

Data augmentation

A small number of samples is usually avoided in order not to overfit the data [6, 115]. Since only

140 samples were obtained, mainly due to the difficulty of acquiring larger amounts of explosives,

we implemented data augmentation techniques. As a first step, we noticed that the important

information contained in the response curves of the sensors was in the low frequency range; therefore,

a moving average (k = 5, and k = 10 window sizes) filtering process was performed in order to

obtain new (augmented) samples. This process resulted in the generation of a dataset with 420

samples (three times the size of the original dataset).

The next step was based on the data augmentation process described in [6], in which translation

of the feature matrices is performed. We rotated the vectors containing the response of each of the

sensors, as shown in Fig. 7.2. This procedure increased the number of samples by six, giving us

a total of 2,520 samples to work with. This data augmentation technique considers that there is

no useful correlation between the order of the vectors and the physical distribution of the sensors,

and this procedure will even allow the model to generalize better in the sense that it will be robust

against the specific response of a sensor in a given physical location.
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Figure 7.2: Translation of the features, in this case by rotating the vectors containing the
response of each of the six chemical sensors.

Mean normalization and feature scaling

A randomly selected sample is shown in Fig. 7.3, where we can see the lack of a common baseline for

the different sensors and the difference in amplitude among signals. Therefore, signals went through

a pre-processing phase consisting of feature scaling and mean normalization in such a way that all

features would be in the same scale and have approximately zero mean, obtaining signals similar

to the ones shown in Fig. 7.4. This figure is also useful to see the responses of only one sensor to

different stimuli (pure substances as an example). This, along with the literature that supports the

use of MOX sensors for the detection/classification of gasses [18, 19, 112, 113, 114, 115, 116, 117,

118, 119, 120], was used as evidence that classification between explosives and non-explosives was

possible for our case.

It is important to mention that this pre-processing scheme was performed on the already time-

reduced samples (it will be clearly explained in the following sections), in order to keep the idea of

speeding up the explosive detection.

7.2.4 The Machine Learning Algorithms

After reviewing the literature and analyzing our options, five different algorithms were implemented

and evaluated in this work: A kNN, an SVM, an RF, a CNN, and an LSTM network. The three

former algorithms correspond to classical ML techniques and were tested in order to constitute a

baseline for the two DL models (CNN and LSTM based), which are the real focus of this work.

There are other implementations of neural networks having application in sensor data, such as

fully connected networks [114] and auto-encoders [18, 113]; each one being used for different tasks;

however, we believe CNN and LSTM better fulfill our requirements.
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Figure 7.3: Plot of the response of the six chemical sensors in a randomly selected sample.

k Nearest Neighbors

kNN was chosen for the classification task because it was implemented in the works [121, 129, 130]

that used the previous version of this e-nose. This is a simple algorithm that chooses the class of

the sample we want to classify, among the k nearest neighbors (samples), by majority vote. One

downside of this method is that the model needs to memorize the whole training set in order to be

able to make a decision, which makes it poorly scalable.

Support Vector Machine

This algorithm is widely used for classification tasks [7], due to its good performance in terms of

training speed and unique solution. In our literature review we found that this is a popular model

for detection and classification of substances in e-noses. For example, [126] uses an SVM with RBF

kernel as baseline model, and it is mentioned and/or used as a reference model for other works as

well [30, 113, 122, 124, 127, 128].

Random Forest

This is another algorithm popular in similar tasks. For example [20] uses RF for the identification

of liquors, [132] uses it for the optimization of a gas sensor array, and [127] implements it as a

baseline model in their gas recognition system.

RF is an ensemble model that combines decision trees in order to generate a strong learner,
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Figure 7.4: Normalized and scaled response of one sensor after preprocessing, for different
substances.

finally classifying by majority vote. A decision tree is a classifier that learns questions (thresholds)

that separate classes in an iterative process.

Convolutional Neural Network

A very popular algorithm in DL is CNN, given the good results it provides in many areas. The main

idea behind a CNN is the implementation of multiple layers of feature detectors, that automatically

identify patterns within the data. In order to learn those patterns, convolutional layers use a sliding

filter (kernel) that covers the whole sample (input feature map) and generates an output feature

map that captures the important characteristics that are finally used by a fully connected classifier.

CNNs have been designed for processing visual data [30], which requires two dimensional kernels;

however, they can have any number of dimensions [4]. One dimensional kernels are suitable for

gas recognition problems [125]. In the case of our study, we consider that this will capture the

independent response of each sensor to the stimuli; therefore, we have adopted 1D kernels for the

implementation of our CNN.

Many architectures of CNNs have been proposed and used in the last years, and the first

successful implementation was the so called LeNet-5 [29], that was used to classify handwritten

digits. LeNet-5 has been used as the basis for the gas classification structure proposed in [6], which

is in turn the basis for the classifier presented in this work.

The CNN architecture presented in [6] got 98.67% accuracy in its implemented task, which
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Figure 7.5: Implemented 1D LeNet-5 CNN, taking [6] as reference.

corresponded to a three-class gas identification using an e-nose constituted by 12 chemical sensors

acquiring data during 8 minutes. We can see that the general task is similar to the one being

addressed in our study, since we have a six-sensor e-nose that acquires samples during six minutes,

and outputs two classes. The general architecture of the network in [6] has two conv layers of

dimensions 10x10x20 and 4x4x30, with kernels of size 3x3 and 2x2 respectively, intercalated with

two max-pooling layers of dimensions 5x5x20 and 2x2x30 with kernels of size 2x2. Finally, it has

two dense layers of size 120 and 84.

Fig. 7.5 shows the CNN implemented in this chapter. We have tried to keep as many char-

acteristics as possible from our reference model, such as the number and depth of the layers and

the kernels; however, due to the differences in the dataset, the dimensions of width and height are

different. Understanding of the dimensions and shape of datasets corresponding to gas sensors is

often the cause for new proposed network architectures, such as the reference model [6], or the one

in [115], or ultimately the one proposed here.

We have chosen to implement 1D convolutions, so we have one less axis in our tensors. The

use of 1D convolutions means that the network uses the same filter for each of the individual six

channels at its input, but the output is just the class (explosive or not) to which each sample

belongs. Also, we use 300 seconds of data per sample (in the initial implementation), and this

caused that instead of having 10x10x20 as dimensions of the first layer, we would have 300x20, and

therefore the following layers will also be different given that they come as result of pooling-conv

operations.

Just like in the reference model implemented in [6], some of the parameters used are the kernel

size for the conv layers set to 3 and 2 (layers 1 and 3 respectively), pooling kernel of size 2, the

activation function is ReLU for all layers except the last one which is a sigmoid function because it

is a binary classifier, and no padding. Here it is worth noticing that in our first trials we kept the

same vector size of the kernels as in the reference model (i.e. 3x3=9, and 2x2=4), but keeping the

size of the single dimension (3 and 2 respectively) gave more consistent results.
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Long Short Term Memory

LSTM has emerged as an effective and scalable model for several learning problems related to

sequential data. Previous methods for addressing these problems have either been specifically de-

signed towards a particular case or did not scale well [32]. In literature, there are some publications

that validate the general idea of LSTM networks for their use in e-noses but only a few implemented

cases. [124] mentions that their proposed LSTM prediction model has a strong applicability and

high accuracy in the concentration identification of gas mixtures. [127] also introduces the idea of

including one LSTM layer as a component of their model used for fast gas recognition, although

details of the implementation, architecture and results are limited.

RNNs, such as LSTM, are special neural networks in which memory effect takes an important

role. In these networks a state of what the network has seen so far is kept and used during the

learning process [1]. This memory of the past is what is important in time-series datasets such

as ours. LSTM is a special implementation of the general RNNs, that deals with the vanishing

gradient problem, by means of three gates: forget, input, and output; which are described by

equations (7.1), (7.2), and (7.3) [8].

The forget gate controls the self-loop weights, and a unit f
(t)
i for the time step t and cell i, is

defined by (7.1).
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where bf , Uf , and W f are the biases, input weights, and recurrent weights for those forget

gates, in that order; and xt and ht are the current input and hidden layer vectors, respectively.

Note that the final value of the gate is set to be between 0 and 1, due to the sigmoid activation

function. Accordingly, the input g
(t)
i and output q

(t)
i gates are defined in a similar fashion, but with

their own parameters.
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In this work, we have taken the model shown in Fig. 7.5 and we have modified it by replacing

each conv-pooling block by an LSTM layer of the same depth, as shown in Fig. 7.6. The resulting

network architecture has two LSTM layers (one per conv-pooling block), and the two dense layers

from the original model. The idea behind replacing the convolutional operation with LSTM cells is

that the later would be more effective in capturing the time-series behavior of the response of the

chemical sensors (given their dependence on t, as shown in equations (7.1), (7.2), and (7.3)), and
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therefore it was expected that this architecture would provide a better accuracy when dealing with

limited time-related data.The activation functions used are the same as for the CNN version.

Figure 7.6: Conv-max pooling blocks being replaced by LSTM layers with the same depth.
LSTM cells are the basic component of these layers, instead of being single neurons.

7.2.5 The training process

In order to tune the hyperparameters of the different models used in this work, and to obtain a true

error rate, we have implemented a nested cross-validation process for our algorithm selections [7].

Fig. 7.7 shows the 5x2 nested cross-validation process, in which the inner loop is used for hyperpa-

rameter tuning, and when the best parameters have been found they are used for training/testing

the model in a 5-fold cross validation fashion, which is a resampling technique without replacement

in which each sample in the dataset is part of the training and testing set only once.

kNN, SVM and RF

Due to the nature of these three ML models, the vectors containing the response of the sensors had

to be first concatenated one after the other, in order to be fed into the models. No other additional

processing (dimensionality reduction, feature extraction, etc.) was performed, in order to make a

fair comparison with the DL models.

The kNN algorithm was implemented and tested using the previously mentioned process. During

the grid search the number of neighbors was chosen among 5, 7 and 9.

We implemented and tested an SVM model with the same criteria, but the hyperparameters

tested during the grid search were the regularization ones C (1, 10) and gamma (0.01, 1). Regu-
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Figure 7.7: The 5x2 nested cross validation process used for this work.

larization is important in order to find a model that does not overfit, or fails to generalize over the

test set. Our SVM model used an RBF kernel.

Finally, we implemented a RF algorithm, in which the tuned hyperparameters where the number

of trees (10, 20, 30) and the depth (5, 10). One important difference between RF and the previous

two ML models is that the former does not require data normalization, given the nature of the

algorithm [7].

These three ML models were implemented using Scikit Learn on Python.

CNN

The general structure of this neural network is shown in Fig. 7.5. During the training process L2

regularization was implemented in the conv layers, and dropout set at 10% for the conv and dense

layers to avoid overfitting. Adam was used as the optimization algorithm with a decay rate of 1e-7,

and binary cross entropy as the loss function because it is a binary classifier. A batch size of 50

was chosen, and the model was trained for at most 500 epochs each fold.

For the grid search process the tuned hyperparameters were learning rate (1e-4, 3e-3) and L2

regularization (0.005, 0.01).

LSTM

Fig. 7.6 shows the structure of this network. In order to avoid overfitting and to create a robust

model, a dropout of 10% is used for every dense layer. Adadelta was used as the optimization

algorithm and binary cross entropy was used as the loss function. A batch size of 50 was chosen,

and the model was trained for at most 500 epochs each fold.
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Regarding the grid search process, the recurrent dropout rate in the LSTM layers was the only

hyperparameter being tuned, between 20 and 30%.

Both CNN and LSTM networks were implemented using the Keras framework with TensorFlow

backend. The training process took place on an Nvidia Tesla V100-PCIE-16GB GPU.

7.2.6 Speeding up classification

As it was already explained in the experimental procedure, each sample in our dataset consists of

the response of six chemical sensors during 300 seconds. For the fast classification approach, we

consider matrices of Nx6 elements, where N is the time-length of our samples and it varies from

300 down to 20. This process also allowed us to have smaller models for smaller sizes of the inputs,

which leads to a lighter model that is easier to implement in an embedded system.

The idea of the fast classification is that we may not need to collect the whole response of the

chemical sensors (six minutes), but that an accurate classification could be achieved with less time-

related data. For this purpose, data has been restricted to five minutes, then four, three, and so on.

There are some works in literature that try to make a fast detection of substances [21, 127, 128, 133]

that implement a similar concept for e-noses using CNN or mixed networks; however, they do not

show results for other kind of networks or algorithms, or any other comparison. In any case, the

results of the speeding-up process are also dependent on the dataset, and a comparison between

our results and the ones of those papers would not be fair.

7.3 Tests and Results

In order to evaluate the results of this work, we have divided this section into three parts: one

dedicated to the classifiers when using the dataset with all the time-related values (N = 300), one

that focuses on the iterative restrictions in time (N = 240, 180, ... ), and finally the results of

implementing the best performing model into a low-cost portable computer.

As a point of reference for all those results, we introduce Table 7.2, which contains the accuracy

and the mean AUC (area under the curve). Initially we considered presenting also true and false

positive rates in order to make clear the evaluation of unbalanced classes, but due to the high

accuracy obtained with the two DL models, we have omitted this part.

7.3.1 Classification at 300 seconds

The results of evaluating all the classifiers using the whole dataset are shown in the first row of

Table 7.2. There we find the accuracy for the five models when using the 300 seconds response data

from the six chemical sensors. Results correspond to the test datasets in a 5-fold testing fashion.
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Table 7.2: Classification results for the five implemented models, for different time-
restricted data (5 down to 1 minute for all models, and 30 and 20 seconds for the LSTM-based
implementation, due to its good accuracy with less data than other models).

Model kNN SVM RF LeNet-CNN LeNet-LSTM

N[s] Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC

300 57.34 0.60 63.69 0.67 60.16 0.61 100 0.99 100 0.99

240 57.70 0.59 65.75 0.69 59.33 0.59 99.84 0.99 100 0.99

180 59.64 0.58 61.83 0.66 59.17 0.60 98.53 0.99 100 0.99

120 56.94 0.56 60.44 0.58 57.78 0.56 77.94 0.85 100 0.99

60 59.33 0.56 57.62 0.57 57.38 0.55 60.24 0.55 100 0.99

30 - - - - - - - - 100 0.99

20 - - - - - - - - 72.94 0.77

Table 7.2 shows that all the ML models (kNN, SVM and RF) fail to classify the samples, even

when using the whole dataset. Among these three models, SVM achieves the better accuracy with

almost 64%.

In the aforementioned table, we can see that the two DL models classify accurately the com-

pounds containing explosives in 100% of the cases; therefore the receiver operating characteristic

(ROC) curves have not been plotted.

7.3.2 Performance of the models with less time-related data

While data was being reduced, the algorithms were modified accordingly, but we tried to keep them

as close as possible to the original implementation. Of course, the dimensions of the dataset and

therefore of the hidden layers (of the DL models) had to be changed, and a training process was

performed independently for each case.

The only important modification involves the shape of the input data. The size of the samples

(Nx6) needs to be changed for each chosen N. As a result, the number of training parameters

changed for every N (Table 7.3), generating each time lighter versions of the DL models. The

direct consequence of this modification is the reduction of the number of weights that need to be

trained. This is important if we want to deploy the resulting solution in a device with limited

resources.

Table 7.2 shows the restriction steps followed in our work, one minute at a time (and 30 and 20

seconds at the end for the LSTM-based model).The LSTM-based model is the one that keeps its

good accuracy by much longer than the other models; in our experiments it proved to work well

with only 30 seconds, and that is the main result of this work.
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Table 7.3: Number of training parameters of the DL models, varying according to the
restriction in the data length.

Number of training parameters

N[s] LeNet-CNN LeNet-LSTM

300 278,379 1,098,649

180 170,379 666,649

60 62,379 234,649

30 - 126,649

Another important result presented in Table 7.3, is that both DL models show similar number

of trainable parameters at the point in which they still have a good accuracy (180 s for CNN and

30 s for LSTM). Also, the number of trainable parameters (weights) is reduced in one order of

magnitude when using 30 seconds instead of 300, for the LSTM-based model.

7.3.3 Inference on an embedded system

In order to validate the hypothesis that the model was small enough to be implemented into

a portable device, the LSTM model obtained for the 30-second classification problem was imple-

mented and tested on a Raspberry Pi 3 board, which could be used as an on-site processing element

directly connected to the Arduino UNO acquisition card. For this purpose, TensorFlow and Keras

were installed in this device and we run the inference model over the 140 original samples.

The results of this experiment showed that the inference model was run for all the 140 samples

in 2.017 seconds, which means it would take 14.4 ms per sample. If we consider that in order to

detect an explosive we need 30 to 60 s for the cleaning process of the e-nose as mentioned in section

II, and 30 s of data acquisition, the whole process could take up to 90 s, plus the aforementioned

inference time which would be negligible for our case. This is a real improvement if we consider

that the original situation required of around 6 minutes.

As a first step, we implemented these classification models to see whether or not the collected

data would be enough to detect the explosives, and the results of our experiments support this

idea. Our results also indicate that the proposed DL model could be easily implemented into an

embedded system, becoming a key component of an accurate, portable, fast, and low cost e-nose

device for the detection of explosives.
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7.4 Conclusion

This work presents a testing procedure to determine the accuracy of an e-nose consisting of an array

of six chemical sensors, when detecting explosive substances in a challenging situation, and when

the available time related data is being restricted. Five algorithms were implemented: kNN, SVM,

RF, CNN and LSTM. The two DL models resulted in an accuracy of 100% when using 5-minute

data, and kept an accuracy of at least 98% with as little as 180 s. However, with less time-related

data, the LSTM classifier kept that accuracy with only 30 s. The implemented models tried to be

relatively small, and the final LSTM model has only ∼127,000 training parameters.

These results indicate that the proposed DL model could be easily implemented into an embed-

ded system, which would be an important part of an accurate, portable, fast and low cost e-nose

device for the detection of explosives. However, by enhancing the prototype characteristics in both

hardware and software, better results could be achieved, which could lead to the implementation

of a prototype with real application in security systems, such as automated airport scanning.

We believe that the time series nature of our dataset, which is the main target of recurrent

networks such as LSTM, allows this model to get the best results when time becomes restricted, as

in our experiments. That trait might become less relevant when more time-related data is available

and so we have that CNN performs great under those circumstances. On favour of SVM we must

say that it shows a better performance than the other two ML models, and so it becomes a worth

implementing model in similar applications at least as a baseline

For future works, it would be interesting to test the LSTM classifier in a real time operation,

and also calibrate the model with more samples and in higher concentrations. This implementation

could also use optimized techniques for fast sampling, such as the ones mentioned in [21] and

[133]. These future works should be designed in such a way that the whole experiment involves

reduced data-collection times in order to discard any hardware limitations that might have been

not perceptible here, and if they achieve good results, a final model capable of on-line learning

should be deployed.
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8 Optimizing a Multispectral-Images-Based DL

Model, Through Feature Selection, Pruning and

Quantization7

This chapter elaborates on the previous ones, continuing with the implementation of DL models

for specific applications, and selecting the features that contribute the most to the predictions

in order to create smaller and faster models. It also includes pruning and quantization, which

are model optimization techniques that further improve the task of creating models for embedded

applications. To build edge computing solutions, we need real-time, portable systems, which can

be embedded in low-performance hardware. Thus, the main goal of this chapter is to demonstrate

that after applying some optimization techniques, a DL model can be implemented on a Raspberry

Pi 4 board, which could in turn be mounted on or near a data gathering devices (such as a drone),

which could become a tool in the implementation of efficient food production strategies.

The inclusion of technology in agriculture is highly relevant given the increasing global demand

for food and our growing population. This chapter focuses on an application for the analysis of

multispectral images of wheat fields, and how they could be used to predict yield in a way that is

resource-efficient and time convenient. Thus, our main goal is to optimize a deep learning model

already proposed in the literature, through feature selection, pruning, and quantization, to be

efficient enough that it could be deployed on a computer with limited resources. The main results

of this work show that the size of the model was reduced by almost 94%, its inference time was

almost 73% faster compared to the original model, while reducing its performance by 19% (still

better than what was found in literature). This could be an important step towards the deployment

of edge intelligence for plant phenotyping.

7The content of this chapter is currently accepted for publication in ISCAS 2022 [12]. The manuscript has been

reformatted for inclusion in this thesis.

Julio Torres-Tello: Conceptualization, Methodology, Software, Validation, Data Curation, Writing - Original Draft,

Visualization. Seok-Bum Ko: Resources, Writing - Review & Editing, Supervision, Project administration.
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8.1 Introduction

With the increasing global demand for healthy and fresh foods [11], and the growing human pop-

ulation and urbanization [134], the inclusion of technology in agriculture is of utmost importance

[13]. So far, we mainly rely upon experienced agronomists and farmers, whose decisions are based

on empirical experience [134]. The use of new kinds of sensors, data, and tools could improve their

decisions (e.g., when and where to use nutrients and water) and therefore the food production.

The main technologies used in this study are RS, DL, and edge computing. RS tries to alleviate

issues related to conventional data collection techniques, which are usually costly, time-consuming,

labour-intensive, and invasive [13, 134]. DL is widely employed in RS in fields like agriculture,

especially due to the growing amount of drone and satellite images being collected [10, 13], reducing

labour costs [22]. Edge computing refers to the analysis of data on low-power devices, which allows

to reduce data transmission and ensure distributed intelligence [134].

UAVs are a common phenotyping platform in RS because they facilitate a fast, high-throughput,

and high-quality image collection process of large fields at different crop stages [10], or as it is the

case of this work, MSI, which provide additional information regarding the reflectance spectrum of

an object [10]. Furthermore, UAVs or drones exemplify the notion of mobile edge computing [135],

with low-performance devices that can provide real-time results.

One of the most common DL models is the CNN, which uses the convolution operation in place

of general matrix multiplication in at least one layer, and is specialized in the processing of data

that contains patterns, such as images, and it is usually implemented as a stacked architecture

with some convolutional and pooling layers interchanged [11]. Although they have achieved great

progress in terms of prediction capabilities, their disadvantage is their large number of parameters,

slow inference speed, and large memory footprints, which make them difficult to be deployed on

farms, in remote areas, or edge devices [136]. Thus, one aspect of current CNN design focuses on

miniaturization and compression, intending to produce small networks that achieve the effect of

large ones [39].

Edge computing refers to the deployment of computation closer to data sources (edge), such as

mobile phones, wearable devices and IoT nodes. This approach is useful to alleviate issues with

high costs, latency, energy consumption, privacy, and scalability [38, 137]. To build edge comput-

ing solutions, we need real-time, portable systems, which can be embedded in low-performance

hardware [138], and to make these edge devices more intelligent, it is necessary to consider DL

[38, 139], what is sometimes referred to as edge intelligence [14, 135, 137]. A common edge device

[14, 22, 38, 39, 135, 137, 138, 139] that is used to implement DL solutions is the Raspberry Pi,

which is the one we use in this study.

CNNs rely on a large number of multiplications, making their use expensive in terms of compu-
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tational complexity and hardware [140], but there are some ways to optimize (reduce) the size of a

DL model, such as feature selection, pruning and quantization. Feature selection is an important

process in the analysis of high dimensional data [13], and it basically refers to the use of only some

of the features in the data, which should speed up the training process and should generate DL

models of smaller size, with minimum reduction in performance. In this chapter, we implement the

results of [10] (Chapter 4), for feature selection, to test if the use of only the features identified in

that paper are enough for yield prediction in wheat crops.

Feature selection is only the first step in our optimization workflow. The other two steps,

commonly found in the literature, are pruning and quantization [22, 38, 39, 135, 136, 137, 138,

140, 141]. The aim of pruning is to delete redundant parameters [139] to find equivalent sparse

models, either by compressing a pre-trained model or by inducing sparsity during training [135].

While pruning focuses on reducing the number of non-zero parameters, it can be used along with

other techniques, such as quantization [141]. Parameter quantization is a conversion technique to

reduce the size of a model with minimal degradation in its performance [38], reducing the number

of bits that represent a number while maintaining the highest possible precision. A typical example

is to transform a 32-bit floating point arithmetic number (float32) to an integer format, such as

int32, but usually to an 8-bit number (int8) [136, 138]. In general, model compression offers the

benefit of reducing the total number of energy-intensive memory accesses, at the time that improves

the inference time through an effectively higher memory bandwidth for fetching model parameters

[141].

Therefore, the main goal of this chapter is to optimize a DL model designed to predict wheat

yield from MSI, through feature selection, pruning, and quantization, in order to be efficient enough

that it could be deployed on a computer with low resources. This would be an important step

towards the implementation of edge intelligence for plant phenotyping.

This chapter is organized as follows: Section 8.2 describes the dataset, the implementation, and

the training process of the DL models, along with the optimization steps and implementation on

the Raspberry Pi. Section 8.3 presents the results achieved by our models and comments on their

meaning. Finally, Section 8.4 presents the conclusions of the chapter.

8.2 Material and Methods

This section describes the steps that we have followed in order to implement and test the proposed

model. All the code that implements these steps is publicly available on GitHuba.

ahttps://github.com/juliotorrest/MSI DL optimization
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8.2.1 Description of the dataset and reference model

As it was previously mentioned, this study re-implements the solution presented in Chapter 4 [10],

so we have used the same dataset and the VGG16-based model as our reference. Despite being

an older CNN architecture, VGG is still used and implemented as part of many recent studies

[10, 22, 136, 139, 140], mainly due to its straightforward implementation, which makes it simple to

modify and analyze.

Regarding the dataset [10], it comprises a collection of 192 MSI, each containing information

of 12 dates and 5 spectral bands, and their respective target value, which is the yield of the wheat

crops. The MSI correspond to 4 fields that contain 48 images (plots) each, distributed into 3

replicates, as shown in Fig. 8.1.

Figure 8.1: Distribution of the MSI samples in the dataset.

As for the DL model (Fig. 8.2), we took the model presented in Chapter 4 as our reference and

re-implemented it using more filters in the CNN. The original model uses 5 in the first layer, and

this study uses 64.

8.2.2 Training the DL model

The first step for training and optimizing our models was the train/test separation. Following what

is done in Chapter 4, here we implemented a 3-fold cross-validation process, in which each fold uses

1 replicate for testing and the other 2 for training the model. This is clearly shown in Fig. 8.1,
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where we can also see that the replicates used for training first go through a data augmentation

process in which all the images are rotated 180 degrees [10, 136]. In the end, the dataset had 256

samples for training (used for train and validation) and 64 for testing, per fold.

Once we had our dataset ready, we implemented the neural network shown in Fig. 8.2. This

network, as well as the upcoming optimized versions, were all implemented using Tensorflow 2.4.1

(Tensorflow 1 is used in Chapter 4) on Python 3.7.7, and trained and tested on a Tesla V100 Nvidia

GPU, with the only exception of the tests on the Raspberry Pi.

Figure 8.2: VGG-based architecture implemented as the initial model.

Since we have used the general architecture presented in [10], for this work, we only tuned the

dropout hyperparameter. For this, we used a grid search process with 10, 25, and 33% as our

options, using a 3-fold cross-validation scheme. Each fold was trained for 1000 epochs, using a

batch size of 8, Adadelta as the optimizer, and MAPE as the loss function.

8.2.3 Feature Selection

One of the main results of Chapter 4 is the identification of salient features that are proposed as

either the best dates to fly the drone that collects the MSI, or the most relevant spectral bands

that might be used for data analysis. In this work, we propose the use of those features for the

optimization of the DL model. Optimization, in this case means the implementation of a smaller

DL model as a result of using fewer features in the dataset, while keeping an acceptable performance
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(at least similar to the reference model).

The aforementioned features correspond to dates 5, 7, 11, and 12, and red and red-edge bands.

Therefore, we have extracted only those 4 and 2 features from the 12 and 5 originally included

in the dataset. We tried to train the DL model shown in Fig. 8.2 with this new dataset, but

due to the reduced dimensions we had to either pad the images with zeros, or as in the case of the

implemented model, reduce the number of convolutional-pooling blocks. The DL model for reduced

features is presented in Fig. 8.3, where we have discarded two blocks, which in itself represents less

parameters in the network.

Figure 8.3: DL model that uses only the selected features.

As for the implementation and training process, we followed exactly the same steps and using

the same resources that were described in the case of the model that uses all the features.

8.2.4 Pruning

The main idea behind pruning is that weights below a threshold are removed from the network [37],

in which the sparsity is gradually increased for a number of pruning steps [141]. For this process,

we used only one model and one replicate for testing. We have chosen the model and replicate that

yielded the best metrics (replicate 2 as will be explained in Section 8.3). In this case, we defined the

initial and final sparsities as 10 and 40%, respectively. Finally, the neural network was re-trained

because the neural network obtained after pruning has changed [37, 136, 139].

8.2.5 Quantization

As the final optimization step, we needed to compress the model to reduce its size through quan-

tization, which reduces the precision of the numbers and works well on pruned networks [37]. For
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this, we used the TFLiteConverter optimization tool included in Tensorflow. This generates a

.tflite model of reduced size that could be implemented on embedded devices, for inference pur-

poses [22, 38, 39]. The Raspberry Pi is a good candidate for this study due to its good community

support and its ability to handle TensorFlow and TensorFlow Lite frameworks [38], which is useful

for our experiments.

8.2.6 Implementation on a Raspberry Pi 4

The Raspberry Pi 4 Model B is the latest model of its range of computers. Its key features include

a 64-bit quad-core ARMv8 processor, 8 GB of RAM, wired and wireless connectivity, implemented

on an 85x56 mm board that requires a 5V/3A DC input source [142].

The main challenge here was running Tensorflow 2.4.1 on this computer, since only version 1

is officially supported. For this, first, we had to install a 64-bit Operating System (by default the

Raspberry comes with a 32-bit OS), then Python 3 and a compatible C++ compiler. These tools

were needed for the installation of Tensorflow from an appropriate wheelb.

When the required software was working properly, we could load the models (original and

optimized) and compare their performance on this device.

8.3 Results

The main results of this work are summarized in Table 8.1. In this table we have used the coefficient

of determination (R2) as the metric to evaluate the performance of our models, and to be able to

compare to Chapter 4. To compare the reduction in size we have used the size of the model file

and the number of trainable parameters. Finally, we have used the time it would take to generate

the predictions over one test dataset (64 samples), in order to evaluate the latency that this step

would add to any real-life solution that would use the DL model presented here.

For the R2 values is important to mention that since we used cross-validation, the first row

in Table 8.1 presents the average value for those 3 folds, while the second row presents only the

performance of the best fold among the 3 (fold 2 in our case). We have chosen to do so, to compare

the results of this work with Chapter 4, but also because we just needed one DL model for the

optimization step. Arguably, we could have retrained another DL model with all the data for this

second step (using the best hyperparameter), but that would have made difficult to compare our

results with the reference work, Chapter 4 [10].

Table 8.2 reports the metrics obtained for each one of the 3 folds, using the original model (Fig.

8.2). From this table, we can see that when using replicate 2 for testing (1 and 3 for training) is

bhttps://github.com/Qengineering/TensorFlow-Raspberry-Pi 64-bit
chttps://github.com/tensorflow/tensorflow/issues/46569
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Table 8.1: Comparison of the metrics for the reference, trained, and optimized models.

Metric/ Reference work Using all After feature After pruning

Model [10] features selection and quantization

R2 average 0.676 0.922 0.789 NA

R2 best model NA 0.965 0.82 0.779

Model size [MB] 122.5 643.9 299.3 40.5

Parameters[M] 10 53 25 25a

Inference time [MM:SS] NA 07:43.03 NA 02:05.56

a Approximate value according to Tensorflow documentation c

when we obtain the lowest MAE and MSE, as well as the highest R2. Thus, we use this replicate

as our reference for the optimization processes.

Table 8.2: Results per fold and average, obtained with the original model.

Rep 1 Rep 2 Rep 3 Average

MAE 154.441 118.772 228.262 167.158

MSE 50116.111 26169.805 89120.239 55135.385

R2 0.925 0.965 0.875 0.922

The same process was followed for the dataset with reduced features, and the resulting metrics

are reported in Table 8.3. Once again, we see that the best results are obtained with replicate 2.

Table 8.3: Results per fold and average, obtained with the model that uses the selected
features.

Rep 1 Rep 2 Rep 3 Average

MAE 305.001 271.301 276.818 284.373

MSE 161998.089 135891.118 148181.174 148690.127

R2 0.756 0.820 0.792 0.789

The model trained with reduced features was re-trained for pruning purposes. Finally, this

model was compressed using quantization. We can now compare the performance of this model

against the original and the one with reduced features. We can see that a 40% pruning reduced the

performance of the model, but it is still in acceptable values. Table 8.1 shows that the R2 metric

went down from 0.965 to 0.779 (a decrease of 19%) when applying this optimization process, which
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is still better than the 0.676 presented in Chapter 4. Fig. 8.4 shows the final predictions of the

optimized model over the rep 2 test set.

Figure 8.4: Results of the predictions made by the final model, for the test dataset.

On the other hand, we have that the size of the model went down from 643.9 to 40.5 MB,

a decrease of 93.7%, and around 3 times smaller than the model in [10]. Also, the number of

parameters was reduced by 52.8%, from 53 to 25 million.

Finally, when performing the inference tests on the Raspberry Pi, the time it took to go through

all the samples in the replicate 2 test set (64 images) was 72.88% faster when using the optimized

model, at an average of 1.96 seconds per MSI.

8.4 Conclusions

In this chapter, we have presented a complete optimization workflow for a DL model that predicts

wheat yield for MSI. The main conclusion is that such a model could be implemented on a portable

device to provide a drone with edge intelligence capabilities.

The results here obtained are aligned to the ones found in literature that show the important

reduction in size and inference times of DL models when using pruning and quantization, while

maintaining good performance [22, 38, 141].

On the feature selection side, here we have only used the results of Chapter 4, but there are

other recently proposed techniques, such as SHAP (Chapters 5 and 6) that are worth exploring and

that could lead to better outcomes. From the results of this work, we can see that this is the step in

which most of the prediction capabilities were affected, with fewer gains in terms of optimization.

Another future work would be the implementation and comparison of these models on field-

programmable gate arrays (FPGAs), and deploying them in real farm environments [136].
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The results presented here show that it is possible to add intelligence to edge devices, which

could become a tool in the implementation of efficient food production strategies towards the goal

of feeding millions of people with limited resources.
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Part V

Conclusion
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9 Conclusions and Future Research

9.1 Summary and Conclusions

The main focus and motivation of this thesis have been the opportunities for inclusion of new

technologies (such as AI) in agriculture, which still presents a lot of opportunities and needs for

innovation. Therefore, this thesis studies a way to use different data sources mainly obtained

from agricultural sites, to implement custom AI models able to predict some variables of interest.

Then, it explores a number of mechanisms to optimize the AI models for deployment of intelligent

algorithms closer to the edge, where data is being generated. Furthermore, this approach also

contributes to the understanding of which features are more relevant for the predictions generated

by the DL models.

Based on the concepts discussed throughout this thesis, some solutions are provided in order to

first implement custom models for the particular tasks being addressed, and then for the optimiza-

tion of some of those models. This optimization is mainly based on a feature selection approach, but

finally complemented with pruning and quantization. The implementation of some of these models

on an edge-like device, demonstrates the feasibility of this approach. Thus, the main contributions

of this thesis are on the general workflow for custom model optimization, as well as in the proposed

scheme for feature selection based on a model interpretability approach.

Table 9.1 presents a brief summary regarding the contribution of each chapter to the specific

goals of this work. The main objective of proposing a scheme (Fig. 1.1) to develop, implement,

and optimize custom AI models for their deployment on edge devices is fulfilled by all chapters in

one way or another, so it has not been included on the table.

In order to construct the final scheme, this thesis introduces new concepts progressively in

each chapter, in such a way that they elaborate onto the previous ones. Chapter 3 presents a

yield prediction model for aeroponic crops in a controlled environment, based on the environmental

variables that can be controlled and/or measured in the production system, that are used to train

different ML/DL models, whose results are improved by means of an ensemble of the two best models

(DNN and RF). Therefore, this is a first approach for using AI in the application of interest.

As a next step, Chapter 4 shows that a DL model is capable of finding useful features within

a MSI dataset for yield prediction purposes, using the SBS approach. Also this analysis found the

best timing for wheat yield prediction. This chapter proposes the utilization of optimal features as
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Table 9.1: Contribution of each chapter to the specific objectives of this thesis.

SPECIFIC OBJECTIVES

Validate that AI Propose and Demonstrate

generates models implement tools implementation

for studied for model on edge-like

PARTS AND CHAPTERS applications. optimization. devices.

Part II Ch. 3

Custom ML Ensemble Learning X

Models in Aeroponics

Ch. 4

Part III Identifying Useful X X

Feature Features in MSI

Selection Ch. 5

in DL A Novel Approach to X X

Identify Spectral Bands

Ch. 6

Part IV Interpretability of AI X X

Model Models in Aeroponics

Optimization Ch. 7

& Improving Detection X X X

Edge with LSTM

Intelligence Ch. 8

Feature Selection, X X

Pruning & Quantization

a methodology to improve yield prediction.

Elaborating on the previous results and ideas, Chapter 5 focuses on two key aspects: (i) finding

an accurate DL model for the prediction of moisture content of canola and wheat crops, based on

HSI; and (ii) rating the importance of spectral bands in those predictions, using a novel approach

based on model explainability/interpretability analysis. As for the first goal, the final ensemble

model (that as a novelty, uses a pointwise convolution to convert the 150 bands of HSI into 3,

easier for the use of pre-trained models) obtained better results than what was found in literature,

and reference methods such as PLSR and the NDVI vegetation index. Regarding the assessment

of spectral bands, this chapter proposes for the first time, the use of a model interpretability

approach that by explaining the predictions of an AI model, it can point out the spectral bands

that contribute to generate predictions. So far, in literature, this approach has not been used for
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supervised band selection in a regression model that uses HSI and DL. Importantly, these results,

when compared to PCA, validate the idea that using SHAP obtains the spectral bands that are

important for this task. In both cases, the most relevant features are located on the NIR part of the

spectrum, which is widely used in moisture measurement of agricultural products and vegetation

analysis. Moreover, unlike other approaches such as PCA, in which the information is extracted

with disregard of the application or specific need, the proposed approach generates explanations of

the trained model, focused on a target, a feature, or a subset of the HSI dataset.

Building mainly on Chapters 3 and 5, Chapter 6 presents yield prediction models for aeroponics,

with two main contributions: (i) the use of data fusion, which improves predictions, allowing the

use of data gathered by the sensors for AI models, without the need for complex pre-processing;

and (ii) the use of SHAP values to find which features are more relevant for yield prediction in

aeroponics. For this, two versions of the dataset were implemented and tested, a purely tabular and

a mixed dataset that includes the full sequential time-series data acquired by the sensors. A CNN-

based model produced the best results. As a second step, SHAP analysis was applied to the trained

models, which identified the salient features. SHAP values also provided important information

for re-training the models with reduced features, producing similar or better performance metrics,

which is evidence of their relevance. This implementation validates the idea of using SHAP for

model optimization. In the interpretability side, SHAP values also give useful insights of how these

features influence the predictions.

Finally arriving to the implementation of optimized models into edge-like devices, Chapter

7 presents a testing procedure to determine the accuracy of an e-nose consisting of an array of

six chemical sensors, for which a number of ML/DL algorithms were implemented (kNN, SVM,

RF, CNN and LSTM), trying to keep a relatively small number of parameters. The best results

are obtained with an LSTM model, which is finally implemented and tested on a Raspberry Pi

3 board. Complementing this work, Chapter 8 presents a complete optimization workflow that

includes feature selection, pruning, and quantization, for a DL model that predicts wheat yield for

MSI. The final model is implemented on a portable device (Raspberry Pi 4), which could provide

a drone or other mobile device with edge intelligence capabilities.

The results presented here show that it is possible to add intelligence to edge devices.

9.2 Limitations

It is important to acknowledge that this work has some limitations that set some boundaries to the

results that have been achieved, and provided that they could be overcome, this might represent a

variety of opportunities to propose and develop future research and applications.

The main limitations of this thesis, as it has been mentioned along the document, are in the data
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collection process. In general, data collected from agricultural settings tend to be slow to acquire

and highly dependent on variables that cannot be controlled (such as the weather, or mobility

restrictions). Thus, this work could be improved by the inclusion of data from other geographic

regions as well as new seasons. Data generated by satellites is another opportunity for inclusion

of new datasets, that has not been explored in this work. The use of satellite imagery would

require a previous agreement with farmers that would be willing to share the yield information from

their farms. However, such scheme for data collection could imply the continuous improvement of

predictions, that could foster the adoption of AI solutions in farms.

9.3 Future Research

Although this thesis tries to be a self-contained work, encompassing all the aspects required to go

from AI model design to implementation on an edge device, there are some aspects that could be

further studied, analyzed, and improved. Furthermore, it is almost impossible to keep the pace with

all the new developments in the fields of AI, IoT, edge computing, hardware and software tools,

etc., which opens the field for new discussions and proposals. This work tries to fill some gaps and

to propose some ideas that hopefully will be useful for future researchers in the development of new

technologies and solutions. This subsection proposes some future works.

The work described in Chapter 3 draws the main path to be followed in order to have a yield

prediction tool that would eventually require less human intervention. However, in order to have

a robust model that can be deployed in a production stage, more data should be collected and

organized in such a way that it does not present the issues addressed in this work. This would

allow to generate more accurate and self-explanatory results, that could be easily implemented

in a final control system. Importantly, the collection of more data is recommended for all the

works described in this thesis, since it has been limited in all cases. Even though solutions like

data augmentation and the use of pre-trained models have been used to diminish the effects of the

limited number of samples, new strategies could be explored, not only collecting more data, but

also possibly integrating other datasets.

Moving forward to the feature selection stages, the findings about some spectral bands as salient

features could provide a direction to utilize and develop new vegetation indices for canola and wheat

phenotyping. The research presented in Chapters 4 and 5 proved that using less spectral bands

would also allow the use software tools designed to handle only three channels; for example, a

pre-trained VGG network using green, red and red-edge. However, despite some initial proposals

like the use of pointwise convolutions to adapt the number of channels, we believe that there is still

room for improvement on those approaches which could be matter of a future work, and they could

be very beneficial for many fields in which non-standard samples are being acquired. These works
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also give us guidance relative to data collection, and could be used for implementing more efficient

data collection strategies and in the design of sensors tailored for a specific application that would

acquire images with only the useful spectral bands.

Considering the model explainability/interpretability approach, for future works, it would be

interesting to evaluate other recently proposed methods, especially considering the development

of precision farming where sensor analytics and intelligent systems will be used to increase and

improve production. Furthermore, since this thesis proposes the use of local explanation models,

the evaluation of global models should be further studied as well.

Finally, regarding to the edge intelligence applications, the results of this thesis indicate that

the proposed models can be easily implemented into embedded systems, which would be an im-

portant part of an accurate, portable, fast and low cost device for data collection. However, the

characteristics of the implementation in both hardware and software can be improved, and thus

better results could be achieved. This could lead to the implementation and real-life evaluation of

prototypes with application in security systems, aeroponic farms, and HSI collection units.

In general, those future works should be designed in such a way that the whole experiment

involves the collection of samples with only the desired characteristics, so that the whole process

can be evaluated, in order to discard any hardware limitations that might have been not perceptible

here, and if they achieve good results, a final model capable of on-line learning should be deployed.
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[3] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems, 2nd ed. Beijing, China; Sebastopol, CA:
O’Reilly Media, Oct. 2019.

[4] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”
arXiv:1603.07285 [cs, stat], Mar. 2016.

[5] J. Torres-Tello, S. Venkatachalam, L. Moreno, and S.-B. Ko, “Ensemble Learning for Improv-
ing Generalization in Aeroponics Yield Prediction,” in 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), Spain, Oct. 2020, pp. 1–5.

[6] G. Wei, G. Li, J. Zhao, and A. He, “Development of a LeNet-5 Gas Identification CNN
Structure for Electronic Noses,” Sensors, vol. 19, no. 1, p. 217, Jan. 2019.

[7] S. Raschka, Python Machine Learning, 1st Edition. Birmingham Mumbai: Packt Publishing,
Sep. 2015.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, Massachusetts: The
MIT Press, Nov. 2016.

[9] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural Net-
works: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,
Dec. 2017.

[10] J. Torres-Tello and S.-B. Ko, “Identifying Useful Features in Multispectral Images with Deep
Learning for Optimizing Wheat Yield Prediction,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2021, pp. 1–5.

[11] J. Torres-Tello and S.-B. Ko, “Interpretability of Artificial Intelligence models that use data
fusion to predict yield in Aeroponics,” Journal of Ambient Intelligence and Humanized Com-
puting, Sep. 2021.

[12] J. Torres-Tello and S.-B. Ko, “Optimizing a Multispectral-Images-Based DL model, through
feature selection, pruning and quantization,” in 2022 IEEE International Symposium on
Circuits and Systems (ISCAS), 2022, In press.

[13] J. W. Torres-Tello, S. Ko, K. D. Singh, and S. J. Shirtliffe, “A novel approach to identify the
spectral bands that predict moisture content in canola and wheat,” Biosystems Engineering,
vol. 210, pp. 91–103, Oct. 2021.

[14] J. Torres-Tello, A. V. Guamán, and S.-B. Ko, “Improving the detection of explosives in a
MOX chemical sensors array with LSTM networks,” IEEE Sensors Journal, vol. 20, no. 23,
pp. 14 302–14 309, 2020.

117

https://resources.nvidia.com/en_us_fleet_command/en-us-fleet-command/increating-intelligence-edge-ai?lb-mode=preview
https://resources.nvidia.com/en_us_fleet_command/en-us-fleet-command/increating-intelligence-edge-ai?lb-mode=preview


[15] Z. Khan, V. Rahimi-Eichi, S. Haefele, T. Garnett, and S. J. Miklavcic, “Estimation of vegeta-
tion indices for high-throughput phenotyping of wheat using aerial imaging,” Plant Methods,
vol. 14, no. 1, p. 20, Mar. 2018.

[16] I. A. Lakhiar, G. Jianmin, T. N. Syed, F. A. Chandio, N. A. Buttar, and W. A. Qureshi,
“Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A
Review of the Aeroponic System,” 2018.

[17] Agriculture and Agri-Food Canada, “Canada: Outlook for Princi-
pal Field Crops, 2020-07-17,” Jul. 2020. [Online]. Available: https:
//www.agr.gc.ca/eng/crops/reports-and-statistics-data-for-canadian-principal-field-crops/
canada-outlook-for-principal-field-crops-2020-07-17/?id=1595253011859

[18] P. Zhu, Y. Zhang, Y. Chou, and Y. Gu, “Recognition of the storage life of mitten crab by a
machine olfactory system with deep learning,” Journal of Food Process Engineering, vol. 42,
no. 7, p. e13095, 2019.

[19] G.-J. Jong, Hendrick, Z.-H. Wang, K.-S. Hsieh, and G.-J. Horng, “A Novel Feature Extraction
Method an Electronic Nose for Aroma Classification,” IEEE Sensors Journal, vol. 19, no. 22,
pp. 10 796–10 803, Nov. 2019.

[20] Q. Li, Y. Gu, and N. Wang, “Application of Random Forest Classifier by Means of a QCM-
Based E-Nose in the Identification of Chinese Liquor Flavors,” IEEE Sensors Journal, vol. 17,
no. 6, pp. 1788–1794, Mar. 2017.

[21] P. Qi, Q. Meng, Y. Jing, Y. Liu, and M. Zeng, “A Bio-Inspired Breathing Sampling Electronic
Nose for Rapid Detection of Chinese Liquors,” IEEE Sensors Journal, vol. 17, no. 15, pp.
4689–4698, Aug. 2017.

[22] X. Chen and J. Sheng, “The Design of Detector to Illegal Ingredients of Kitchen Waste Based
on Embedded Device,” Journal of Physics: Conference Series, vol. 1802, no. 3, p. 032009,
Mar. 2021.

[23] N. Corporation, “Top Considerations for Deploying AI at the Edge,”
NVIDIA Corporation, USA, Technical Overview, Jun. 2021. [On-
line]. Available: https://resources.nvidia.com/en us fleet command/en-us-fleet-command/
considerations-for-deploying-ai-at-the-edge-technical-overview?lb-mode=preview

[24] R. Pallas, Sensores y Acondicionadores de Señal, 4th ed. Spain: Alfaomega - Marcombo,
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[32] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber, “LSTM:
A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[33] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining Explanations in AI,” in Proceedings
of the Conference on Fairness, Accountability, and Transparency, ser. FAT* ’19. New York,
NY, USA: Association for Computing Machinery, Jan. 2019, pp. 279–288.

[34] L. S. Carlsson, P. B. Samuelsson, and P. G. Jönsson, “Interpretable Machine Learning—Tools
to Interpret the Predictions of a Machine Learning Model Predicting the Electrical Energy
Consumption of an Electric Arc Furnace,” Steel Research International, 2020.

[35] J. Padarian, A. B. McBratney, and B. Minasny, “Game theory interpretation of digital soil
mapping convolutional neural networks,” SOIL, vol. 6, no. 2, pp. 389–397, Aug. 2020.

[36] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in
Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 4765–4774.

[37] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural Network
with Pruning, Trained Quantization and Huffman Coding,” in 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[38] I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Optimising Deep Learning at the Edge
for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21, no. 4, p. 1064, Jan. 2021.

[39] Q. Wang and Z. Wang, “Research on Deploying the Deeplearning Models with Embedded
Devices,” in 2019 IEEE 9th Annual International Conference on CYBER Technology in Au-
tomation, Control, and Intelligent Systems (CYBER), Jul. 2019, pp. 1337–1341.

[40] M. K. van Ittersum, K. G. Cassman, P. Grassini, J. Wolf, P. Tittonell, and Z. Hochman,
“Yield gap analysis with local to global relevance—A review,” Field Crops Research, vol.
143, pp. 4–17, Mar. 2013.

[41] I. A. Lakhiar, J. Gao, T. N. Syed, F. A. Chandio, and N. A. Buttar, “Modern plant cultivation
technologies in agriculture under controlled environment: A review on aeroponics,” Journal
of Plant Interactions, vol. 13, no. 1, pp. 338–352, Jan. 2018.

[42] S. Chandra, S. Khan, B. Avula, H. Lata, M. H. Yang, M. A. Elsohly, and I. A. Khan, “As-
sessment of total phenolic and flavonoid content, antioxidant properties, and yield of aero-
ponically and conventionally grown leafy vegetables and fruit crops: A comparative study,”
Evidence-Based Complementary and Alternative Medicine: eCAM, vol. 2014, 2014.

[43] National Aeronautics and Space Administration, “Innovative Partnerships Program Spinoff,”
2006. [Online]. Available: https://www.nasa.gov/pdf/164449main spinoff 06.pdf

[44] A. X. Wang, C. Tran, N. Desai, D. B. Lobell, and S. Ermon, “Deep Transfer Learning for
Crop Yield Prediction with Remote Sensing Data,” in COMPASS ’18, 2018.

119

https://www.nasa.gov/pdf/164449main_spinoff_06.pdf


[45] M. Guerif, M. Launay, and C. Duke, “Remote sensing as a tool enabling the spatial use of crop
models for crop diagnosis and yield prediction,” in IGARSS 2000. IEEE 2000 International
Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of
Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), vol. 4,
Jul. 2000, pp. 1477–1479 vol.4.

[46] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[47] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural Networks,
vol. 61, pp. 85–117, Jan. 2015.

[48] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001.

[49] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed., ser. Information Science and
Statistics. New York: Springer-Verlag, 2000.

[50] R. M. Bilder, F. W. Sabb, T. D. Cannon, E. D. London, J. D. Jentsch, D. S. Parker, R. A.
Poldrack, C. Evans, and N. B. Freimer, “Phenomics: The systematic study of phenotypes on
a genome-wide scale,” Neuroscience, vol. 164, no. 1, pp. 30–42, Nov. 2009.
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