Classifying lentil testa (seedcoat) phenotypes using unsupervised learning

Amanda Ewen

BACKGROUND: Lentils have different seed coat colours and patterns. Accurate classification of lentils by testa patterns helps plant scientists understand the genetics of seed coats in lentils. Computers can be used for this analysis.

METHODS

- Segment images around lentil seed
- Extract information/features using:
- Image processing methods
- Machine learning methods
- Hybrid methods
- Deep neural networks
- Cluster using K-means
- Get numerical score and visually inspect each grouping from different methods to compare
- Repeat feature extraction on dataset of new lentils and compare results

RESULTS

- Features extracted using hybrid methods get best visual clustering result
- Convolutional Neural Networks get high scores but group by size and position
- Patterns are confused based on how much of lentil is covered

Combining image processing and machine learning algorithms improves classification of lentil seedcoat patterns

Figure 1: Feature extraction using image processing and machine learning algorithms

Feature

Image pro PCA or

LBP featu

Features f methods fed

> Region simple

Region CNN auto

Region CNN auto

Amanda Ewen, Samuel Horovatin Keyhan Najafian, Dr. Kirstin Bett, Derek Wright, Dr. Ian Stavness, Dr. Lingling Jin

Results				
Feature Extraction Method	K-value	Silhouette Score		
ocessing methods with PCA on original images	16	0.17751		
ocessing methods with PCA on regions of interest	16	0.23380		
ocessing methods with PCA on regions of interest	8	0.29237		
eatures only from regions of interest	8	0.41582		
es from image processing methods on ons of interest fed into autoencoder	8	0.45718		
ons of interest given to simple CNN autoencdoer	8	0.53255		
of interest given to CNN autoencoder with VGG16	8	0.40439		
of interest given to CNN autoencoder with VGG19	8	0.73681		

Comparison of Results on Original and New Dataset				
e Extraction Method	Silhouette Score on Dataset of Aged Lentils	Silhouette Score on Dataset of New Lentils (after fine tuning)	Completeness Score	
ocessing methods with n regions of interest	0.29237	0.34007	0.43888	
ures only from regions of interest	0.41582	0.41979	0.43728	
rom image processing on regions of interest into autoencoder	0.45718	0.56415	0.36878	
s of interest given to CNN autoencdoer	0.53255	0.19368	0.31337	
s of interest given to pencoder with VGG16	0.40439	0.56177	0.37887	
s of interest given to pencoder with VGG19	0.73681	0.54517	0.36976	

Future Work

• Include K-means clustering as evaluation step of model development

• Try advanced autoencoders (i.e. a masked autoencoder) • Develop a self-supervised model to classify images

