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Abstract

Dementia has emerged as one of today's biggest healthcare challenges due to the increasing demand for

medical, social, and institutional care. Moreover, the COVID-19 pandemic has had a unique impact on

people with dementia. Those with dementia are also at an increased risk of contracting COVID-19, as well

as having more severe symptoms and disease consequences. This highlights the importance of focusing on

the issues of people living with dementia.

Modern technologies including social media can help psychologists to analyze people's experiences and

take necessary measures. However, one of the principal problems for psychologists is that they must process

huge amounts of data, but not all of the data can be analyzed due to a lot of irrelevant information in

the data. Therefore, the data need to be labeled manually either by one or several researchers, which is a

tedious and time-consuming task and may be costly due to the human e�ort involved. Thus, improvements

to existing methodologies are needed to enable psychologists to make better use of the data and understand

the impacts of COVID-19 on people with dementia.

Nowadays, one of the modern and reasonable ways perform a task (e.g., automatic labeling) is to use

Machine Learning (ML) algorithms to save time and energy. To this end, this study compares various ML

algorithms to classify tweets relevant to dementia and COVID-19 in order to help psychologist examine the

COVID-19 impacts on people living with dementia.

In this case, three di�erent datasets are used: (i) a dataset comprised of 5,058 tweets extracted from

Twitter on COVID-19 and dementia from February 15 to September 7, 2020 to train, evaluate, and compare

di�erent models, (ii) a dataset comprised of 6,240 tweets from September 8, 2020 to December 8, 2021 to

test the best model, and (iii) a dataset comprised of 1,289 tweets related to Canada's Alzheimer's Awareness

Month from January 1 to January 31, 2022 to retrain and test the best model.

In the �rst step, to choose the best machine learning model, several classi�cation models, including logis-

tic regression, Gaussian naïve Bayes classi�er, multinomial naïve Bayes classi�er, support vector classi�er,

decision tree classi�er, K-nearest neighbor classi�er, random forest classi�er, AdaBoost classi�er, XGBoost

classi�er, BERT classi�er, and ALBERT classi�er are trained and compared in terms of classi�cation per-

formance. According to the classi�cation results, the ALBERT model outperformed all other models in the

comparison and achieved the least over-�tting problem and the highest accuracy, AUC, and F1-score com-

pared to the other explored models. In the second step, the ALBERT model is tested on the second dataset

(a completely unseen dataset) and achieved an accuracy of 80% in classifying relevant and irrelevant tweets

for people impacted by dementia and COVID-19. Finally, to show that the ALBERT model can be used for

future studies in the context of people impacted by dementia and COVID-19 in an e�cient way, the model

is trained on 10% of the third dataset and tested using 90% of the rest and reached an accuracy of 88%.
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1 Introduction

In the 21st century, dementia has become one of the biggest healthcare challenges due to the high demand

for medical care, social care, and institutional care [46]. The term dementia refers to a variety of progressive

syndromes that a�ect the brain, often impairing high-level cognitive functions such as memory, language, and

thinking. It is also accompanied by a decline in everyday functioning and impairment in social interactions.

There are an estimated 50 million people worldwide a�ected by dementia [48] [70]. Dementia support has

thus become a key priority of national and international health policies. The COVID-19 pandemic has had a

unique impact on people with dementia. As well as being at increased risk of contracting COVID-19, older

adults with dementia are also more likely to have more severe symptoms and disease consequences than

those without dementia. Almost two-thirds of all COVID-19 related deaths in Canada have been people with

dementia. The majority of COVID-19 related deaths in care homes (49.5%) in the United Kingdom occurred

in individuals living with dementia [4].

Due to the unprecedented situation and concerns regarding the impact of COVID-19 on people with

dementia, the need to focus on people living with dementia has been heightened. As a result of COVID-19,

universities have been unable to conduct timely or collaborative research, because recruitment and in-person

studies have been suspended. In this case, modern technologies including social media can help health care

researchers to analyze people's experiences and take necessary measures. Social media have rapidly shaped

the social environment in recent years. The largest social media networks include Facebook, Instagram,

Twitter, YouTube, and TikTok.

With the advent of Twitter in 2006, social networking has become popular, enabling its 330 million

users to post comments and status updates. Tweets are often treated as an information source and cited

in traditional news outlets [53]. However, despite the availability of this large dataset and some existing

methodological tools for data scraping, the use of these data by health care researchers has tended to lag

behind other disciplines � and this is especially true in social studies. One of the problems for the health

care researchers is the unstructured nature of the data scraped from Twitter, from which extracting insights

can be a challenging task. Accordingly, pre-processing methods should be applied on the data in order to

analyze, understand, organize, and sort useful data.

Moreover, another problems is not only the huge amount of data to be processed but also the fact that

not all of the data can be used for further analysis because they contain a lot of irrelevant information.

Generally, the data need to be labeled manually. Manual labeling, which is a part of thematic analysis, is

tedious, time-consuming, and daunting. Thus, improvements to existing methodologies are needed to enable
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health care researchers to make better use of the data and understand the impacts of COVID-19 on people

with dementia.

Nowadays, one of the modern and reasonable ways to perform a task (e.g., automatic labeling) is to use

Machine Learning (ML) algorithms. Supervised Learning is one of the techniques in ML that is used for

classi�cation tasks based on labeled datasets. The goal of this study is to build an ML model that is able

to help health care researchers and social scientists to detect irrelevant tweets without going through all the

tweets manually.

1.1 Contributions of the thesis

In order to build an ML model that can help health care researchers to detect irrelevant tweets, we used

three di�erent datasets: (i) a dataset comprised of 5,058 tweets extracted from Twitter on COVID-19 and

dementia from February 15 to September 7, 2020 to train, evaluate, and compare di�erent models, (ii) a

dataset comprised of 6,240 tweets from September 8, 2020 to December 8, 2021 to test the best model, and

(iii) a dataset comprised of 1,289 tweets related to Canada's Alzheimer's Awareness Month from January 1

to January 31, 2022 to retrain and test the best model.

We used natural language processing in order to pre-process the tweets. To �nd the best ML model for

irrelevant tweet detection, we trained eleven ML classi�ers known as the Logistic Regression (LR) classi�er,

Naïve Bayes (NB) classi�er, Multinomial Naïve Bayes (MNB) classi�er, K-Nearest Neighbors (KNN) classi-

�er, Support Vector Machine (SVM) classi�er, Decision Tree (DT) classi�er, Random Forest (RF) classi�er,

AdaBoost classi�er, XGBoost classi�er, BERT classi�er, and ALBERT classi�er using the �rst dataset and

compared them in terms of their performance. Then, the best model from these classi�ers is selected and

applied to the second (completely unseen) dataset and reached the accuracy of 80% in classifying relevant

and irrelevant tweets for people impacted by dementia and COVID-19.

Finally, to prove that the ALBERT model can be used for future studies in the context of people impacted

by Alzheimer's disease/Dementia, we trained our model with 10% of the third dataset and tested it using

90% of the rest. Consequently, the model reached the accuracy of 88% in classifying relevant and irrelevant

tweets, showing that the ALBERT model can be trained on a small sample of a labeled dataset and used to

predict the rest of the unlabeled data e�ciently. Thus, health care researchers can focus on the main goal of

the study rather than manual labeling the data.

1.2 Outline

The thesis contains the research methods used and the results obtained when using the eleven ML models on

three datasets to build an ML model that is able to detect irrelevant tweets e�ciently. This thesis is organized

as follows. Chapter 2 gives a summary of important aspects of this study such as thematic analysis, natural

language processing, and ML techniques. Chapter 3 gives a description of the ML methods used. Chapter 4

2



gives a detailed description of the datasets used, the methodology, results, and discussion. Chapter 5 gives

some conclusions and possible future research directions.
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2 Literature Review

This section introduces concepts and background information associated with the main topics permeating

this thesis. Section 2.1 provides information about thematic analysis. Section 2.2 describes the concept of

natural language processing and its applications. Section 2.3 discusses machine learning as a whole and how

it has been used for natural language processing. Section 2.4 provides general information about Ensemble

Learning. Section 2.5 discusses transfer learning and some of the applications of BERT models.

2.1 Thematic Analysis

Thematic analysis is a method for identifying, analyzing, and reporting themes (patterns) within data. It

is described as a descriptive method that organizes and describes datasets in detail. Thematic analysis is

used commonly because of the wide variety of research questions and topics that can be addressed with this

method of data analysis [12].

There are two primary ways to �nd the themes in thematic analysis: 1. Inductive 2. Deductive [10]. In

the inductive or `bottom up' approach, the process of coding the data is applied without trying to �t the

data into a pre-existing coding frame. Therefore, the themes are linked to the data themselves. On the other

hand, the deductive or `theoretical' approach is usually driven by the researcher's theoretical or analytical

interests. As a result, this form of thematic analysis tends to focus more on analyzing some aspect of the

data rather than describing the entire data in detail.

2.2 Natural Language Processing

A language can be de�ned as a set of symbols controlled by a set of rules that are used for communication [9].

The term natural in natural language is used to distinguish human speech and writing from more formal

languages like mathematical notations or programming languages that have a limited vocabularies and syn-

taxes. Natural Language Processing (NLP) can be de�ned as a set of computational techniques for analyzing

and understanding human languages for a variety of tasks and applications [36]. Research in NLP can be

classi�ed into two broad categories: core areas and applications.

However, it is sometimes di�cult to distinguish clearly to which areas a given issue belongs [54]. All

these core areas solve the fundamental issues such as language modeling, which tries to �nd the relationships

between naturally occurring words and helps to predict which word is more likely to appear next in the
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sentence; morphological processing, which is the process of determining the morphemes used to construct a

given word; syntactic processing or parsing, which checks the text for its logical meaning based on the rules

of formal grammatical structure; and semantic processing, which attempts to understand meaning of signs,

words, and phrases in the text. The application areas includes topics such as extraction of key information,

translation of text between languages, summarization of written works, automatic questions-answering by

inferring answers, and classi�cation and clustering of documents [54].

2.3 Machine Learning

Learning as a generic process entails acquiring new behaviours, beliefs, information, abilities, or preferences, or

adjusting current ones. The theories of personal learning, i.e., how humans learn, are de�ned by Behaviorism,

Cognitivism, Constructivism, Experientialism, and Social Learning [2]. Machines rely on data for their

learning. Machine learning (ML) is a type of arti�cial intelligence that enables computers to learn on their

own and modify their actions to enhance their accuracy, with accuracy being de�ned as the number of times

the chosen actions result in the right behaviors/decisions [2]. The term was coined by Arthur Samuel in 1959,

who de�ned ML as a �eld of study that enables computers to learn without being explicitly programmed

[63]. More recently, Tom Mitchell gave a de�nition that is more useful for scienti�c research: "A computer

program is said to learn from experience E with respect to some task T and some performance measure P, if

its performance on T, as measured by P, improves with experience E" [49].

ML is applied in a wide range of �elds, e.g., automatic product recommendation [32], robotics, virtual

personal assistants (like Google), computer games, pattern recognition, natural language processing, data

mining, tra�c prediction, market prediction, medical diagnosis, online fraud prediction, agriculture advisory,

search engine result re�ning (e.g., Google search engine), bots (chatbots for online customer support), e-mail

spam �ltering, and crime prediction through video surveillance system [59].

ML contains multiple branches ranging from supervised learning and unsupervised learning to ensemble

learning and transfer learning. Supervised learning consists of learning a function to map input data to

known targets/labels based on a set of training data (often annotated by humans), whereas in unsupervised

learning, algorithms try to �nd the structures in the input data without the help of any labels [2]. Supervised

learning can be categorized into two types of problems: regression and classi�cation.

In the regression problem, the models deal with continuous data, but in the classi�cation problem, the

data values are discrete or categorical [8]. Figure 2.1 shows an example of classi�cation of objects with

two features in supervised learning. Many algorithms attempt to �nd the best separating hyperplane by

imposing di�erent conditions with a same goal: reducing the number of misclassi�cations and increasing the

noise-robustness. For example, consider the triangle point that is closest to the plane (its coordinates are

about (5.1,3.0)). If the magnitude of the second feature were a�ected by noise and so the value was much

smaller than 3.0, a slightly higher hyperplane could incorrectly classify it. Common classi�cation algorithms

5



in supervised learning include: Decision Tree (DT), Support Vector Machine (SVM), K-nearest neighbors

(KNN), Naive Bayes (NB). These algorithm have many application such as spam detection, cancer detection,

sarcasm recognition in text data, etc.

Figure 2.1: Example of linear classi�cation in supervised learning [8]

One such example of using supervised algorithms is to detect depression in Twitter using content and

activity features [1]. The activity features consist of the number of followers, number of following, total

number of posts, time of posts, number of mentions, and number of retweets for each Twitter user that are

categorized into four types (low, below average, average, and high), and they are de�ned using percentile

values from the quartile distribution (Q1, Q2, Q3, and Q4). In [1], a dataset consisting of more than 1M

tweets of 500 users is constructed. Tweets were sampled manually by two psychologists, and 334 of the Twitter

users were labeled as depressed. For the pre-processing phase, tokenization and normalization (turning all

the words into lowercase, removing punctuation, retweets, mentions, emojis, links, and stemming) are applied

to the dataset. Then, the term frequency-inverse document frequency (TF-IDF) method is used to measure

the words weights. The following three ML classi�ers were evaluated using 10-fold cross-validation: NB, DT,

and SVM using linear and radial kernel. The linear SVM algorithm proved to have the highest accuracy of

82.5% and recall of 0.85 for detecting depression in Twitter users.

In [19], �ve di�erent ML classi�ers are applied to categorize suicide-related tweets. The goal of this

study was to compare the classi�cation performance of four popular ML models with the Prism algorithm.

The Prism algorithm is known to be simple and easy to understand, even though it is less popular than

other machine learning algorithms. The Prism algorithm is based on the separate-and-conquer learning

principle: a rule is learned that accurately predicts the value of the target attribute (the conquer stage)

followed by removing the previously covered instances (the separate stage) and repeating the process until

all instances are covered [19]. In this case, a dataset of 2,000 tweets was manually classi�ed into seven
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suicide-related categories by two human annotators. Two di�erent approaches were carried out in this study:

binary classi�cation (Suicide and Flippant) and multi-classi�cation (Suicide, Campaign, Flippant, Support,

Memorial, Reports, and Other). For data pre-processing, the Bag of Words (BoW) technique was used to

measure the words weights. The BoW is one of the popular techniques for feature extraction in data pre-

processing that extracts the frequency of each word in the text documents known as the one-hot representation

for classi�cation [14]. Then, the following �ve ML classi�ers were evaluated using 10-fold cross-validation:

Prism, DT, NB, SVM, and Random Forest (RF). The results showed that the Prism algorithm had the highest

F1-Score value of 0.85 for the binary classi�cation and the RF algorithm reached the highest F1-Score of 0.69

for multi-classi�cation.

A problem in Southeast Asia is methamphetamine addiction. In [14], two di�erent techniques are used

for data pre-processing to increase the accuracy in the classi�cation of methamphetamine-related tweets.

Although BoW is one of the popular techniques for feature extraction, it may result in a large feature

dimension containing many null values resulting in sparse vectors in large documents; models thus face the

challenge of extracting little information in such a large representational space [35]. The study aims to

reduce the weakness of BoW by proposing a two-steps approach containing BoW and WordtoVec feature

selection (BWF). The �rst step is to create the text representation, and the second step is to involve a

domain-based feature selection. Data comprising 2,899 tweets are retrieved from Twitter using keywords

related to methamphetamine consisting of the common name, slang name, and street name for Southeast

Asia and are manually labeled by one expert into two classes: abuse or non-abuse. Then, stop words are

removed, and stemming is used to reduce the number of features. Three di�erent techniques, BoW, BWF,

and TF-IDF, are used for feature extraction, and three classi�ers including SVM, NB, and DT are evaluated

on each approach using 10-fold cross-validation. The combination of BWF and DT classi�er proved to have

the highest accuracy and F1-Score of 81.5% and 0.818, respectively.

In [77], an automatic classi�er is developed using SVM, NB, and RF algorithms to study public discourse

and sentiment regarding older adults and COVID-19 on Twitter. The proposed system contains four stages:

pre-processing, classi�cation, sentiment analysis, and topic modeling. In the pre-processing stage, 8,453

random tweets (10.2%) from 82,893 scraped tweets are manually labeled by two researchers into four classes:

informative, personal experiences, personal opinions, and jokes/ridicule. To identify ageist content, each

tweet is rated by yes/no answers to three questions (referred to as attributes). Then, the text is converted

to lowercase, and TF-IDF is used for feature extraction. Each of the ML algorithms is trained on each of

the datasets, and the one that reached the highest accuracy of 79% is used to label the rest of the datasets.

Latent Dirichlet Allocation (LDA) and the NRC Lexicon [77] are used to extract underlying themes and the

dominant emotion for ease of interpretation of each tweet in di�erent classes. The results show that 16.4%

of the tweets in the dataset have ageist content, with most of them hinting at the element of senicide.

Sarcasm is the art of expressing an opposite suggestion from what is literally being suggested by the

words in the context. It is commonly used on social media such as Twitter, Facebook, Instagram, and others.
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Sarcasm is rich with features related to various expressional values that are widely used for the classi�cation

using di�erent algorithms [66]. In [67], the detection of sarcasm on Twitter is examined using four di�erent

ML classi�ers. In this case, a dataset containing 1,984 tweets that were manually labeled into two classes of 0

or 1 is pre-processed by removing stop words and symbols, turning to lowercase, lemmatization, tokenization,

and vectorization using the TF-IDF method. Four ML classi�ers including SVM, DT, Multinomial Naive

Bayes (MNB), and Logistic Regression (LR) are trained using 70% of the data and are tested using the rest

of the data (30%). The results present that the LR algorithm reached the highest accuracy of 97%, the

precision of 0.97, recall of 0.97, and F1-Score of 0.97, and the SVM algorithm has the least accuracy of 42%

in sarcasm detection of the tweets.

Bots, short for robots and also called internet bots, are one of the social media features that are mainly

categorized into two groups: good and bad. Good bots are automatic programs that simulate human behavior

and control the account without human intervention. For example, good bots act as players in multi-player

online games to make them more entertaining. However, bad bots are malicious bots that assist hackers in

breaching data. Bots appear to behave like humans; thus it is di�cult to spot bad bots. In a study done by

[57], four di�erent ML classi�ers are used to detect bots on Twitter. The behavior of non-bots (real social

media users) and bots di�ers in that bots have far more followers on their pro�les than friends, whereas

non-bots have an equitable distribution of friends and followers [57]. In this case, users that have more than

10,000 followers or have more than 16,000 tweets are considered bots. Binary-class datasets (bots/non-bots)

comprising 3,368 tweets containing several attributes such as URL, description, number of friends, number

of followers, a screen name (used to communicate online), location, id, veri�ed (if the user is authenticated),

favorite (used for liked tweets), and the listed count are used. The closest values for the features nearing

true positives are checked for all of the features using a Spearman correlation confusion matrix, and it was

demonstrated that there is a strong correlation between veri�ed, listed-count, friends-count, followers-count,

and the target label. Then a new method named bag of bots words is proposed that adds a new column

called status-binary consisting of words commonly used by bots to the data. Four ML classi�ers including

DT, KNN, LR, and NB are trained using all the features with and without using the bag of bots words

method on training data containing 80% of the datasets and then tested on the rest of the data (20%). The

proposed method showed that using bag of bots words and DT classi�er has the highest test accuracy of

99.2% compared to other classi�ers.

2.4 Ensemble Learning

Ensemble learning is usually referred to as the machine learning interpretation for the wisdom of the crowd,

where multiple learning algorithms (individual models) are trained to solve a problem to improve classi�-

cation and testing performance [52]. Ensemble methods can be categorized into two main frameworks: the

independent framework and the dependent framework. In the independent framework, each model is built
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independently from other models. There are multiple techniques based on an independent framework includ-

ing Max Voting, Averaging, Weighted Averaging, Stacking, Bagging (e.g., RF algorithm), and Blending [62].

Figure 2.2 shows the basic idea of an ensemble classi�cation model that generates classi�cation results using

multiple models and then, integrates multiple results into a consistency function to get the �nal result with

voting schemes [23].

Figure 2.2: Example of independent framework in ensemble learning [23]

In the dependent framework, the output of each model a�ects the construction of the next model and the

knowledge gained in previous iterations guides the learning in the next iteration. One such popular method of

the dependent framework is Boosting comprises di�erent algorithms such as Adaptive Boosting (AdaBoost),

Gradient Boosting (GBM), and Extreme Gradient Boosting (XGBoost) [17]. Figure 2.3 shows the general

framework of the Boosting method. Multiple sequential models are created, each correcting the errors from

the previous model by assigning weights to the outputs/results that are incorrectly classi�ed.

Figure 2.3: General framework of Boosting in ensemble learning [23]

Ensemble learning is extremely extensible to use for di�erent types of tasks such as detecting fake news. In

[52], the Synthetic Minority Over-Sampling Technique (SMOTE) and the classi�er vote ensemble are proposed
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to detect COVID-19 infodemic tweets on Twitter and protect the public from inaccurate and information

overload. In this case, four di�erent datasets are collected for Pre-lockdown, Post-lockdown, concatenation of

pre/post-lockdown, and the subset of pre/post-lockdown with a total number of 176,877 tweets. Then a data

pre-processing comprising stop word removing, stemming, and tokenization is applied to the data. These four

datasets contain imbalanced classes. Therefore, in order to solve the problem of imbalanced data and bias

factors, the SMOTE algorithm tries to resample datasets against challenges posed by imbalanced output class

by oversampling instances with smaller class representation through the creation of fresh synthetic instances

[52]. Then, the BoW and TF-IDF techniques are used for the feature extraction. Finally, �ve di�erent base

algorithms including NB, function-sequential minimal optimization, voted perceptron, KNN, and RF are

used to form the ensemble classi�er. The results show that both KNN and RF reached the highest accuracy

of 99.66% compared to other algorithms.

In [53], the Bagging technique is used to detect Alzheimer's Disease (AD) stigma on Twitter. A total of

31,150 tweets are collected using nine AD-related keywords. Then, 311 random tweets are coded manually

by two researchers according to 6 dimensions (metaphorical, personal experience, informative, joke, ridicule,

and individual/organization) and used to train the Bagging algorithm and automatically code the remaining

tweets. In order to examine the parameter space of the algorithm, the grid search method is applied using

3-fold cross-validation. The results are as follows: (1) the manual coding shows that 43.41% of all tweets

are informative, 23.79% are joke, 21.22% are metaphorical, 19.29% are organization, 18.33% are personal

experience, and 24.50% are ridicule, (2) the accuracy of the algorithm ranged from 95.15% (informative)

to 86.38% (organization), and (3) the automated coding shows that 21.13% of all tweets used AD-related

keywords in a stigmatizing fashion.

In [18], the classi�cation of suicide-related tweets is examined using �ve di�erent ML classi�ers. The

goal of this study was to compare the classi�cation performance of four popular ML models with ensemble

learning on binary-class, three-class, and seven-class datasets [18]. In this case, a dataset of 2,000 tweets is

manually classi�ed into seven suicide-related categories (Suicide, Campaign, Flippant, Support, Memorial,

Reports, and Other) by four human annotators. For data pre-processing, stop words, punctuation, URLs,

and non-ASCII characters are removed, and Part-of-speech tagging and stemming are applied. The BoW

technique is used to extract features. Then, the following four ML classi�ers are evaluated separately using

10-fold cross-validation: DT, NB, SVM, and RF. For ensemble learning, majority voting is applied using two

di�erent approaches: (1) a combination of DT, NB, and SVM algorithms, and (2) a combination of DT and

SVM algorithms. The results show that for individual classi�ers on the binary-class dataset, the achieved

F1-Score is in the range of 0.411 to 0.776 using di�erent ML classi�ers, with the SVM having the highest

F1-Score of 0.80 for the suicide class. Moreover, the SVM algorithm also has the best performance on the

three-class and seven-class datasets. Finally, the results of the ensemble learning show that combining the

DT, NB, and SVM algorithms achieved a higher performance on all three datasets than combining DT and

SVM algorithms.
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2.5 Transfer Learning: BERT Model

As part of natural language processing, text representation is a key element of converting natural language

inputs into machine-readable data that can also be considered as a computer encoding of the text. The use of

representations that re�ect the internal content and conceptual structure of the text is suitable for machine

learning problems [65]. Currently, the most advanced text models use transformers in Transfer Learning that

deal with a text representation. Transfer Learning is de�ned as reuse of a pre-trained model as the starting

point for a model on a new task to leverage the retrieved knowledge [83]. Transformers are a type of neural

network in transfer learning that deal with sequence transduction problems, that is, such problems that both

the input and output information is a sequence [22].

In late 2018, scientists from the Google AI Language laboratory proposed a new linguistic model called

the Bidirectional Encoder Representations from Transformers (BERT). BERT is a deep bidirectional trans-

former architecture that supports multilingual universal language representation of 104 languages [22]. Two

main sources that helped to pre-train the BERT model to obtain contextual embeddings are as follows:

(1) unlabeled Wikipedia (2,500M words), and (2) Book corpus (800M words). BERT uses what is called a

WordPiece tokenizer that splits words either into the full forms (i.e., one word becomes one token) or into

word pieces (i.e., one word can be broken into multiple tokens). Figure 2.4 represents the architecture of

the BERT model, comprising the BERT tokenizer, embedding layers, attention layers, fully connected, and

softmax layer (all the layers are fully described in Chapter 3).

BERT consists of two steps: pre-training and �ne-tuning. In pre-training, an unlabeled set of data is

used to train the model across di�erent pre-training tasks. Fine-tuning involves initializing the BERT model

with pre-trained parameters and then �ne-tuning them all using labeled data [79]. So far, based on di�erent

NLP tasks, multiple variants of the BERT model are proposed including ALBERT, DeBERTa, RoBERTa,

ELECTRA, BERTSUM, and BART [65].

The BERT model has a lot of applications in text analysis including sentiment classi�cation. The tra-

ditional sentiment algorithms proved to have multiple limitations such as complex feature engineering and

the requirement of massive linguistic resources that are time-consuming and error-prone [27]. In [27], three

variants of the target-dependent BERT model are proposed to overcome the issues with the traditional senti-

ment algorithms and examine whether the context-aware representation of BERT model can achieve similar

performance improvement in aspect-based sentiment analysis. A target-dependent sentiment classi�cation

task predicts the sentiment polarity of a tuple consisting of a sentence and a target with the aim of deter-

mining the sentiment polarity of sentence towards the target [27]. For example, the sentence �great food

but the service was dreadful� is positive for �food� and negative for �service�. The three proposed target-

dependent variants of BERT are as follows: TD-BERT, TD-BERT-QA-MUL, and TD-BERT-QA-CON. In

TD-BERT, a max-pooling layer is used before data are fed to the fully connected layer to get output from

the target items. The TD-BERT-QA-MUL and TD-BERT-QA-CON variants use element-wise multiplication
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Figure 2.4: Architecture of the BERT model [22]
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and concatenation for features extracted from the TD-BERT model. Three datasets of reviews in di�erent

domains such as laptops, restaurants, and Twitter (celebrities, products, and companies) having four labels

of positive, negative, neutral, and con�ict are collected and split into training and testing data. According

to the experiment, the incorporation of target information proved to be a key factor in BERT's performance

improvement. Moreover, the TD-BERT reached the highest accuracy of 78.87% on laptop data, TD-BERT-

QA-MUL achieved the highest accuracy of 85.27% on restaurants data, and �nally, TD-BERT-QA-CON had

the highest accuracy of 77.31% on Twitter data.

In [69], the RoBERTa model is used to improve the detection of rumors on Twitter. In this study, a rumor

on social media is de�ned as "information that is presented in a manner that attracts the reader's attention

and incites them to share it, although its content is unveri�ed and its true value can be questioned" [69].

Four di�erent datasets of previous related works containing two labels of rumor/non-rumor are used. For

data pre-processing, stop words, hashtags, links, and �four-letter words� are removed, and emojis are replaced

with their corresponding words. Moreover, to remedy the issue of imbalanced classes in the datasets, the

data augmentation method is used, that is, a technique to generate new samples based on the datasets that

vary from the original ones. Both, the BERT and RoBERTa models are �ne-tuned using all the datasets

in �ve epochs to provide rumor-sensitive word embedding/representation for tweets. These representations

are then fed to the three ML classi�ers (RF, SVM, and DT) to evaluate the proposed approach using 5-

fold cross-validation. The results show that RoBERTa outperformed the BERT model on unseen datasets

with an average of a 3% increase in F1-score. Moreover, to evaluate the impact of data augmentation, the

performance of RoBERTa is examined using augmented and non-augmented datasets, and the result shows

that on average the performance of RoBERTa was increased by 3% in terms of F1-score when using the

augmented dataset.

13



3 Methodology

This chapter discusses the data pre-processing and feature extraction techniques in NLP, ML, and transfer

learning models that are applied to the data of this study to give a better understanding of how they are

built and used. The metrics for evaluating the models are also described.

3.1 Data Pre-processing in NLP

An important part of NLP and its applications is data pre-processing, which is the �rst step in the text

mining process. Data pre-processing is a method that converts the raw data containing noise into useful data

for analysis. By data pre-processing, the quality of the data and the performance of the classi�ers increase

[47]. In general, some of the pre-processing steps for online datasets such as Twitter are removing emojis,

punctuation, and possessive pronouns, �ltering out non-English language tweets, @tweets (replies), duplicate

tweets, and tweets with a permalink, and turning to lowercase [24][47]. In this chapter, we discuss the other

key steps of data pre-processing in NLP.

3.1.1 Word Tokenization

Tokenization is the process of breaking a phrase, sentence, paragraph, or even an entire text document into

individual words, characters, or subwords (parts of words) called tokens that help in understanding the

context or developing the model for the NLP [75]. The most common way of forming tokens is based on

white spaces [16]. Assuming space as a delimiter in the following sentence: �This is a cat.� The tokenization

of the sentence results in 4 tokens: "This", "is", "a", and "cat". This is an example of word tokenization

where each token is a word.

3.1.2 Stop Word Removal

Articles, prepositions, pronouns, etc., are the most commonly used words in text documents without any

helpful information. Such words are called stop words [74]. Stop words are parts of natural language that

should be eliminated from a text. They make the text look heavier, less important, and have more noise for

analysts [16] [74]. Examples of stop words are: the, in, a, an, with, etc. Removing these commonly used

words from the text can help the models focus on the important words instead [24]. Figure 3.1 shows an

example of tokenization followed by stop word removal.
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Figure 3.1: A sample process of tokenization and stop words removal [16]

3.1.3 Lemmatization

Lemmatization is a technique to remove in�ectional parts in a word or convert the word into its base form

[67]. The purpose of lemmatization is to reduce surface words to their canonical form; this latter is the base

or familiar dictionary form of the word, which is known as the lemma [81]. The lemma relates di�erent word

forms that have the same meaning, for instance, the lemma of best and better is good. Lemmatization is found

to be e�cient, in particular, for feature extraction and information retrieval that depend on the frequency of

the words to create better models [16].

3.2 NLP Feature Extraction: Vectorization

Vectorization in NLP is a technique to convert textual data into list of numbers/vectors to create machine-

readable data for performing NLP tasks [68] [20]. To be more precise, vectorization applies a statistical

measure to assign a weight to each token in textual data and produces feature representations. The features

are ranked by weight. Features whose weights are greater than a prede�ned threshold are selected to be

kept for classi�cation, and the rest are removed from the feature space [2][13]. Examples of some feature

extraction methods include the BoW, document frequency, Term Frequency-Inverse Document Frequency,

known as TF-IDF, WordtoVec, GloVe, etc. [68].

3.2.1 TF-IDF Vectorization

TF-IDF is the most commonly used method for converting text documents into vectors, known as features

for text classi�cation or other NLP tasks [82][68]. The TF-IDF calculates the relative frequency of words in

a speci�c document compared to the inverse proportion of that word over the entire text document. This

calculation determines the importance of a given word in a document. Accordingly, words frequently used in a

single document or a small set of documents have higher TF-IDF numbers/weights and are regarded as more
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representative and kept. Moreover, words common to many documents, such as articles and prepositions have

lower TF-IDF weights and are considered as less representative and disregarded [82] [58]. Given a document

collection D, a word t, and an individual document d ∈ D, the TF-IDF can be de�ned as:

ωt,d = TF × IDF

= tft,d × log

(
D

dft

)
,

(3.1)

where tft,d is the frequency of word t in the document d, D is the total number of documents in the collection,

and dft is the number of documents where word t occurs in [82]. For example, considering the below two text

documents, the TF-IDF for the words �it� and �lion� are as follows:

Table 3.1: Document 1 (D1) [71]

Table 3.2: Document 2 (D2) [71]

TF-IDF for the word �lion�:

TF (�lion�, D1) = 2/7 = 0.29

IDF(�lion�, D) = log(2/1) = 0.3

TF-IDF (�lion�, D1) = TF(�lion�, D1) × IDF(�lion�, D) = 0.29 × 0.3 = 0.087

TF-IDF for the word "it":

TF (�it�, D1) = 3/7 = 0.43
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TF(�it�, D2) = 3/6 = 0.5

IDF(�it�, D) = log(2/2) = 0

TF-IDF (�it�, D1) = TF(�it�, D1) × IDF(�it�, D) = 0.43 × 0 = 0

TF-IDF (�it�, D2) = TF(�it�, D1) × IDF(�it�, D) = 0.5 × 0 = 0

The calculations show that the TF-IDF for the word �lion� is 0.087 and can be used as a feature. However,

the TF-IDF for the word �it� is 0, which implies that the word �it� is not so in�uential in the whole document

and can be ignored for further processes.

3.3 Traditional Machine Learning Classi�er

Machine learning involves assigning speci�c tasks to a computer program. Generally, a machine is considered

to learn from its experience if its measurable performance on these tasks improves as it gains more and

more experience. Thus, based on data, the machine makes predictions/forecasts. The three main types

of machine learning problems are classi�cation, regression, and clustering [59]. To apply the appropriate

machine learning algorithm, one can choose from the multiple branches of supervised learning, unsupervised

learning, ensemble learning, and transfer learning based on the availability of types and labels of training

data. Because this study aims at predicting discrete values with labeled datasets, it only focuses on the

classi�cation in the three main branches of supervised learning, ensemble learning, and transfer learning. In

the next few sections, all of the algorithms used are discussed in detail.

3.3.1 Logistic Regression Classi�er

Logistic Regression (LR) is a machine learning algorithm within the supervised-learning approach for clas-

si�cation. In LR, probabilistic concepts are used to analyze and classify data. The hypothesis for logistic

regression is to limit the output of the algorithm between 0 and 1 [67]. The equation for the logistic regression

can be de�ned as:

P (Z) =
exp(Z)

1 + exp(Z)
, (3.2)

where P is the probability of a binary outcome, and Z = α + βX, with X the weight of a text document;

α is a constant value that determines the intersection of the line on the X-axis with β being its slope.

Figure 3.2 shows the sigmoid curve traced by the logistic function. P behaves like the distribution function

of a symmetrical density, with midpoint zero and rises monotonically between 0 and 1 as Z moves on the

real number axis [21] [7].

3.3.2 Naïve Bayes Classi�er

Naïve Bayes (NB) is a probabilistic classi�er that is based on the Bayes rule. It uses the assumptions of

strong independence between variables to construct a simple and fast algorithm [30]. The Bayes rule for two
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Figure 3.2: The logistic curve P (Z) [21]

events of A and B is de�ned as:

P (A|B) =
P (B|A)P (A)

P (B)
, (3.3)

where P (A|B) is the posterior probability, P (B|A) is the likelihood, P (A) is the prior, and P (B) is the

evidence. A major advantage of NB is its ability to e�ciently combine evidence from various features

[1]. Consider a set of training instances where each instance in the set is speci�ed by a set of attribute

values/weights [x1, x2, ..., xn] and a target/label. Let Y be a set of categories [y1, y2, ..., yj ] de�ning the

target function. Based on the attribute values for a text instances X, NB assigns the text instances to the

category that scores the highest probability [13]. The probability that the text instances X belongs to a

speci�c category yj can be estimated as follows:

P (yj |X) =
P (X|yj)P (yj)

P (X)
, (3.4)

where P (yj |X) is the posterior probability of class yj given a set of text instances X. On the basis of

the Bayesian hypothesis that features are conditionally independent, the probability of category yj can be

reformed as

P (yj |X) = P (yj)

n∏
i=1

P (xi|yj), (3.5)

where n indicates the number of features xi that construct the training instances. The category of the given

test instance X is found by NB classi�er as

VNB = argmax
yj∈Y

P (yj)

n∏
i=1

P (xi|yj), (3.6)

where VNB is the output of NB model and gives the category of the given test instance.

3.3.3 Multinomial Naïve Bayes Classi�er

In order to solve text classi�cation problems, a large number of naïve Bayes text classi�ers are proposed,

of which multinomial naïve Bayes (MNB) is widely used due to its simplicity, e�ciency, and e�ectiveness
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[33][38]. Given a test document X, represented by a word vector x1, x2, ..., xn, MNB uses the equation 3.7

to classify the document X.

y(X) = argmax
y∈Y

P (y)

n∏
i=1

P (xi|y)fi , (3.7)

where y(X) is the class label predicted by MNB, Y is the set of all possible class labels y, n is the vocabulary

size in the text collection (the number of di�erent words in all of the documents), xi(i = 1, 2, ..., n) is word

i that occurs in the document X, fi is the frequency count of the word xi in the document X, P (y) is the

probability that the document X occurs in the class y, and P (xi|y) is the conditional probability that the

word xi occurs given the class y, which can be calculated by the following equations:

P (y) =

∑n
j=1 δ(yj , y) + 1

n+ s
, (3.8)

P (xi|y) =
∑n

j=1 fjiδ(yj , y) + 1∑m
i=1

∑n
j=1 fjiδ(yj , y) +m

, (3.9)

where n is the number of training documents, s is the number of classes, yj is the class label of the training

document j, fji is the frequency count of the word xi in the training document j, and δ(yj , y), known as

Kronecker delta, is a binary function,

δ(yj , y) =

1 if yj = y,

0 if yj ̸= y,

(3.10)

which is one if its two classes are identical and zero otherwise.

3.3.4 K-Nearest Neighbors Classi�er

The K-Nearest Neighbors (KNN) is a non-parametric classi�cation algorithm, known for its simplicity and

e�ectiveness. KNN classi�es data based on closest or neighboring training examples in a given region [72].

Figure 3.3 shows a simple KNN structure. For a new input (blue point), KNN performs two operations.

First, it analyzes the K points (nearest neighbors) closest to the new data input. Second, using the neighbor

classes, KNN determines to which class the new data belongs.

Hence, the distances need to be calculated between the test sample and the speci�ed training samples.

KNN has three di�erent approaches to calculate the distances: Euclidean, Manhattan, and Hamming. Eu-

clidean distance and Manhattan distance are more common when the data are numerical with Euclidean

distance being more popular. Hamming distance is used to measure the distance between categorical vari-

ables. The KNN algorithm assumes that it is possible to describe documents in a Euclidean space as points

[76]. The distance between two points in the plane with coordinates p1 = (x1, y1) and p2 = (x1, y1) can be

calculated by the following equation:

d(p1,p2) = d(p2,p1) =
√
(x2 − x1)2 + (y2 − y1)2 (3.11)
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Figure 3.3: A simple KNN structure [72]

Figure 3.4 shows documents in Euclidean space for K = 1 (i.e., considering one nearest neighbor) and

K = 3 (i.e., considering three nearest neighbors). The Euclidean space for K = 1 shows that the blue point

can be similar to red square. However, the Euclidean space for K = 3 represents the blue point as being a

green triangle.

Figure 3.4: Euclidean space for K = 1 and K = 3 [72]

20



3.3.5 Support Vector Machine Classi�er

Another ML classi�er is the Support Vector Machine (SVM) with the idea of �nding a hyperplane that

best divides the data for a binary class problem. A hyperplane is a linear polynomial with n variables

that separates and classi�es data sets from the two classes, where n > 1 [1]. James et al. (2013) describe

the SVM as a natural approach for classifying linearly separable datasets in �nite-dimensional spaces [31].

However, some datasets are not linearly separable. In this case, another approach, known as kernel trick, is

applied to the SVM [29]. Using the kernel trick approach, the SVM maps the vectors (data points) into a

higher-dimensional space, then uses a linear classi�er within the new space.

The best hyperplane is the one that creates the maximum margin from both classes. The margin is the

distance between the hyperplane and the nearest vectors from either class. The nearest vectors are known

as support vectors. The support vectors are the only vectors such that their movement directly a�ects the

maximal margin hyperplane. The movement of other vectors has no e�ect on the maximal margin hyperplane.

Figure 3.5 illustrates an SVM applied to the dataset with two classes. The optimal hyperplane and the

margins are visually described in the �gure with solid and dashed lines, respectively. Vectors on the margins

are the support vectors.

Figure 3.5: Optimal hyperplane with maximum margin for an SVM trained with a two-class dataset
[1]

Here are the steps to �nd the optimal hyperplane for a linearly separable dataset as shown in Figure 3.5:

1. De�ne the hyperplane H0 such that

H0 : ωTx+ b = 0, (3.12)

where ω is the vector of weights for each feature and x is the input vector.

2. By considering one class labeled as positive and the other class labeled as negative, two parallel
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hyperplanes H1 and H2 that de�ne the margins are described as

H1 : ωTx+ b = 1,

H2 : ωTx+ b = −1,
(3.13)

where any vector on or above H1 is related to the positive class and any vector on or below H2 is related to

the negative class. The vectors can be represented as

ωTxi + b ≥ +1 when yi = +1,

ωTxi + b ≤ −1 when yi = −1.
(3.14)

where xi is the input vector i in the document and yi is the corresponding class label. Equations (3.14) can

be combined into one equation as:

yi(ω
Txi + b) ≥ 1 (3.15)

3. By recalling the distance between a point(x0, y0) and a line Ax+By + C = 0,

|Ax0 +By0 + C|√
(A2 +B2)

, (3.16)

the distance between H1 and H0 leads to

|ωTx+ b|
||ω||

=
1

||ω||
. (3.17)

As a result, the margin, which is the total distance between H1 and H2, can be represented as

2

||ω||
(3.18)

In order to maximize the margin, ||ω|| should be minimized.

3.3.6 Decision Tree Classi�er

The Decision Tree (DT) Classi�er is designed to solve classi�cation problems by learning a hierarchy of if/else

questions and answers and creating a tree representation that results in a decision [50]. The goal of the DT

classi�er is to get the right classi�cation result by asking the least number of if/else questions. These series

of questions can be illustrated as a decision tree.

In the �rst step, the algorithm starts with the whole training set and chooses the most informative feature

about the target as the root node based on using di�erent criteria. The root node is located on the top of the

DT [15]. Each internal node contains either a question, which is called test, or a classi�cation result (decision

taken after computing all features), which is called leaf [59]. Moreover, the answer to a test is connected to

the next test through edges. In the second step, the algorithm splits the set into internal nodes (sub-nodes)

with the same feature value based on the test in the root. For each node, the two steps are repeated until all

the edges lead to a leaf [56]. The length of the longest path from the root to a leaf is called the depth.

Table 3.3 shows a small data set, known as Saturday morning, for the weather condition and the possibility

to do some activities that are not planned in advance. Each object's value of each attribute is shown together
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with the class of the object (here, class P means the weather condition is suitable for activities that are not

planned in advance and class N means the weather condition is not suitable.)[55].

Table 3.3: A small training set [55]

A simple DT that classi�es each object in the training set is given in Figure 3.6. Also, a complex DT for

the data in Table 3.3 is shown in Figure 3.7.

Figure 3.6: A simple DT[55]

Essentially, a suitable DT is constructed in a way that can be able to correctly classify not only objects

from the training set but also unseen objects. Therefore, a DT must be able to capture some meaningful

relationship between an object's class and the value of each of its attributes. Considering two decision trees,

each of which is correct over the training set, it seems wise to select the simpler one. This is because the
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Figure 3.7: A complex DT[55]

simpler DT is more likely to capture the structure of the problem and would therefore be expected to correctly

classify more unseen objects with less over�tting (over�tting will be discussed in the following sections) [55].

Depending on which feature is the most informative, the DT can use various criteria to decide how to

split the data and order features. The two most popular criteria of DT are Entropy and Gini index. These

two criteria measure how much information a feature provides about a class [56].

3.3.6.1 Splitting Criteria in DT: Entropy

Entropy is a common way of measuring the degree of impurity in a set of features [40]. For a set of features,

X, the entropy calculation for a given feature, xi, is

S(xi) = −
N∑
j=1

pij log pij , (3.19)

where N is the number of classes in feature xi, and pij is the proportion of instances belonging to class j

considering feature xi.

For a binary classi�cation problem, if all examples from the data are from only one class, the entropy

yields 0. If half of the records are of one class and half are of the other class, then entropy yields 1.

24



3.3.6.2 Splitting Criteria in DT: Gini Index

The Gini index is a metric to measure how often a randomly chosen element would be incorrectly identi�ed

[40] [15]. This means a feature with lower Gini index should be preferred. For a set of features, X, the Gini

index for a given feature, xi, is

G(xi) =

N∑
j=1

pij(1− pij)

= 1−
N∑
j=1

pij
2,

(3.20)

where N is the number of classes in feature xi and pij is the proportion of instances of feature xi that belong

to class j.

3.4 Ensemble Learning Classi�er

Ensemble classi�ers combine multiple base classi�ers to increase the accuracy of the �nal classi�cation. Each

base classi�er can be any kind of supervised classi�cation such as DT, neural networks, or SVMs. Using

DT as a base classi�er is more common than other ML classi�ers [15]. Although a single DT can be an

excellent classi�er, increased accuracy often can be achieved by combining the results of a collection of DTs.

Ensembles of DTs are sometimes among the best-performing types of classi�ers [40]. The two main categories

of ensemble learning are Bagging and Boosting. The next three sections discuss three di�erent variants of

the Bagging and Boosting methods in detail.

3.4.1 Bagging: Random Forests Classi�er

One of the earliest ensemble algorithms is Bootstrap aggregation, also known as Bagging. Bootstrapping is a

sampling technique in which multiple subsets of training sets (bags) are created from the initial training set

with replacement [11]. As Figure 3.8 shows, each base classi�er (a DT or any other classi�er) is trained on a

subset of the training set. A new instance is classi�ed using a simple max (majority) voting scheme, whereby

each classi�er assigns a classi�cation to the instance, and the �nal classi�cation is the class with the highest

number of votes [11] [15].

Random Forests (RF) is a variant of bagging algorithms that uses DTs as the base classi�ers. As Figure 3.9

shows, RF randomly selects a set of features which are used to decide the best split at each node of the DT.

Finally, to use the constructed RF for prediction on new data, the RF �rst predicts the target using each

DT in the forest. Then, it uses the majority vote of all the DTs prediction and assigns the target with the

highest probability to the new data [15] [40].

In the RF, there are di�erent hyperparameters that a�ect the accuracy of the model, such as the number

of DTs, depth, splitting criteria, and how random the data are chosen for the DTs [50]. Using a larger number
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Figure 3.8: General framework of Bagging in ensemble learning

Figure 3.9: General framework in RF [43]. The dark gray circles are the features that RF considered
to train each tree. The outputs for each tree are (k1, k2, ..., kt), and k is the �nal output based on max
voting scheme.
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of DTs creates a more robust model by reducing over�tting problem. However, having more DTs in the forest

requires more time and memory to train the model.

3.4.2 Boosting: AdaBoost Classi�er

Unlike the bagging technique, where classi�ers are independent and work in parallel, boosting is a sequential

process that adaptively changes the distribution of the training set based on the performance of previous

classi�ers [43]. In practice, boosting is often applied to combine decision trees [40]. Boosting uses multiple

steps to do the classi�cation [15]:

1. A subset is created from the original dataset in which all data points are given equal weights.

2. A base classi�er is created on this subset and used to make predictions on the whole dataset.

3. Errors are calculated using the actual values and predicted values. The datapoints that are incorrectly

predicted are given higher weights, whereas the weights of the datapoints that are correctly classi�ed remain

the same. (Based on Figure 3.10, the three misclassi�ed blue-plus points will be given higher weights.)

Figure 3.10: The binary classi�cation result from the �rst base classi�er. Three blue-plus points have
been classi�ed incorrectly. Therefore, they will be given a higher weight for the subsequent classi�er.

4. Another classi�er is created, and predictions are made on the dataset. This classi�er tries to correct

the errors from the previous classi�er.

Figure 3.11: The binary classi�cation result from the second base classi�er using the weighted
dataset. Three blue-plus points that were misclassi�ed in the previous model have been given higher
weight.

5. Similarly, multiple classi�ers are created, each correcting the errors of the previous classi�er. The �nal

classi�er (strong learner) is the weighted mean of all the classi�ers.
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Figure 3.12: The �nal classi�er

Thus, the boosting algorithm combines a number of weak classi�ers to form a strong classi�er. The

individual classi�ers would not perform well on the entire dataset, but they work well for some part of the

dataset. Thus, each classi�er is said to boost the performance of the ensemble.

Adaptive boosting, known as AdaBoost, is one of the simplest boosting algorithms, in which DTs are mostly

used as the base classi�er. [15] [43]. The Adaboost algorithm comprises of di�erent hyperparameters that

a�ect the performance of the model, such as the type of the base classi�er, the number of base classi�ers,

depth, and how random the data are chosen for the base classi�ers.

In the AdaBoost algorithm, a training set (x1, y1), ..., (xm, ym) is taken as input where each xi belongs to

some instance space/vector X, and each label yi is in some label set Y , assuming Y = {−1,+1} for a binary

classi�cation [64]. AdaBoost calls a given base classi�er repeatedly in a series of rounds t = 1, 2, ..., T . The

main idea of the algorithm is to maintain a weight or set of weights over the training set. The weight of the

training example xi on round t is denoted wt(xi). Initially, all weights are set equally, but on each round,

the weights of incorrectly classi�ed examples are increased so that the base classi�er is forced to focus on

the misclassi�ed examples in the training set. The base classi�er's job is to be trained appropriately for the

weight wt and then minimizing the error:

ϵt = P [ŷi(xi) ̸= yi] , (3.21)

where ŷi is the output of the base classi�er for input xi. AdaBoost chooses a parameter α that intuitively

measures the importance/weight that it assigns to ŷi(xi). For the binary classi�cation

αt =
1

2
ln

(
1− ϵt
ϵt

)
. (3.22)

After base classi�er is trained, the weight wt is updated using

wt+1(xi) =
wt(xi) exp(−αtyiŷi(xi))

Zt
, (3.23)
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where Zt is a normalization factor. Finally, The combined classi�er H is a weighted majority vote of the T

base classi�ers where αt is the weight assigned to ŷi.

H(x) = sign

(
T∑

t=1

αtŷ(x)

)
. (3.24)

3.4.3 Boosting: XGBoost Classi�er

The gradient boosting classi�er is another boosting algorithm in which the target outcomes are set based on

the gradient of the error to the prediction. A new model is developed in each training set that minimizes

prediction error. Extreme Gradient Boosting, known as XGBoost, is a distributed boosting algorithm that

uses regression trees as a base classi�er. XGBoost has high predictive power and is almost 10 times faster

than the other boosting techniques as a result of parallel and distributed computing [17]. Moreover, XGBoost

is designed to perform well on sparse features [80] and it uses more accurate approximations to �nd the best

tree model. It also includes an automatic feature selection and a variety of regularizations (built-in L1 and

L2 regularization), which reduces over�tting and improves overall performance. Hence it is also known as

regularized boosting technique.

Like other algorithms, the XGBoost method has some hyperparameters that should be tuned to increase

the performance and at the same time decrease the over�tting problem. These hyperparameters are the

number of base classi�ers, depth, the number of cores used for parallel processing, the number of leaves in a

tree, and gamma, which is the minimum loss reduction required to make a split.

3.5 Transfer Learning Classi�er

Transfer learning refers to transferring knowledge from di�erent but related source domains to the target

model in target domains in order to improve the performance of the target model. As a result, a target

model can be constructed without having to rely on a large number of domain data [83]. The wide application

prospects of transfer learning have made it one of the most popular and promising areas of machine learning

and deep learning. Most recent deep learning approaches rely on transfer learning and pretrained models.

3.5.1 BERT Classi�er

In Bidirectional Encoder Representations from Transformers (BERT), transfer learning and bidirectional

transformers are combined in order to produce state-of-the-art models for a wide range of NLP tasks [39].

Bidirectional means the BERT model learns information from both the left and the right side of a token's

context (the whole text passage) during the training phase to understand the meaning of each token. More-

over, Encoding means extracting features by reading and converting the input into numerical representations

[65].

29



The BERT model comprises two stages: pre-training and �ne-tuning. Two large corpora of unlabeled

text including the entire Wikipedia and Book Corpus are used to train the model during pre-training. For

�ne-tuning, the model is initialized with the pre-trained parameters, and all the parameters are �ne-tuned

using labeled data for speci�c tasks [28]. Fine-tuning needs fewer data and results in quicker development

and better results compared to traditional ML classi�ers or implementing custom architectures from scratch

[22].

The architecture of BERT models is based on the encoder-decoder framework, where the encoder is re-

sponsible for reading text input, processing, and extracting features. The decoder is responsible for producing

a �nal output/prediction and solving the task [65]. In BERT models, the input representations are computed

as follows: each word in the input is �rst tokenized into word-pieces, and then three embedding layers (token,

position, and segment) are combined to transform words into vector representations of �xed dimension. In

studies of BERT, the term embedding refers to the output of a transformer layer.

Figure 3.13 shows how the embeddings are brought together to make the �nal input token. This process

is called Embedding/Encoding, where after transforming all the tokens into vector representations, in token

embedding, a special token [CLS] is used at the beginning of the �rst sentence for classi�cation predictions,

and [SEP] is added to the end of every sentence that separates input segments from each other [61][37]. Then

the model creates segment embeddings by adding a segment `A' or `B' to distinguish between the sentences.

It also adds the position of each token in the sequence to get position embeddings. The sum of the three

embeddings is the �nal input to the BERT encoder.

Figure 3.13: BERT input representation. The input embeddings are the sum of the token embed-
dings, the segmentation embeddings, and the position embeddings [37].

Then, each sentence will be padded or truncated to have a �xed length. Padding is done with a special

[PAD] token, which is at index 0 in the BERT vocabulary [22]. The main reason for converting the words

to embeddings is to make them easy for the model to work with. When the words are converted into

embeddings, the model can understand the semantic importance of a word in numeric form, and thus it can

perform mathematical operations on it.

The encoder-decoder framework performs e�ciently on a variety of tasks, e.g., machine translation. How-

ever, because all information is stored in a list of feature vectors, the framework may not be able to understand
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long and complex inputs. One approach to overcome this limitation is the attention mechanism [65]. The

main idea is similar to the way humans perceive and understand their environment. Not all information

has the same in�uence on the output. For example, in padding, the attention mechanism explicitly di�er-

entiates real tokens from padding tokens. The core idea of attention is calculating and assigning weights to

annotations that further determines their amount of in�uence on the output.

The two pre-trained models of BERT are BERTbase (Layers=12, Attention Heads=12, Total Parame-

ters=110M) and BERTlarge (Layers=24, Attention Heads=16, Total Parameters=340M). Finally, in �ne-

tuning, one or more fully connected layers are typically added on top of the �nal encoder layer (Fig-

ure 3.14)[61].

Figure 3.14: Architecture of the BERT model [22]

31



3.5.2 ALBERT Classi�er

"A lite version of BERT", known as ALBERT, was proposed recently to enhance the training and results

of the BERT architecture by using parameter sharing and factorizing techniques [44]. There are millions of

parameters in the BERT model, which makes it di�cult to train. Furthermore, having too many parameters

a�ects the computation speed. To overcome such challenges ALBERT was introduced for its fewer parameters

compared to BERT.

ALBERT uses two parameter reduction techniques [65][44]: The �rst technique is cross-layer parameter

sharing, which is used to reduce the number of parameters in BERT. For example, BERTbase has 12 encoder

layers, and during training, the parameters are learned across all encoder layers. However, when it comes to

cross-layer, instead of learning parameters across all encoder layers, the parameter of the �rst encoder layer

is shared with all the other encoder layers. This technique prevents the parameter from growing with the

depth of the network.

The second technique is factorized embedding parameterization. In this case, the model decomposes the

large vocabulary embedding matrix into two smaller ones, separating the hidden layers from the vocabulary

embedding. This separation makes it easier to grow the hidden size without signi�cantly increasing the

parameter size of the vocabulary embeddings. Both techniques have the bene�t of reducing the number of

parameters for BERT and also improving parameter e�ciency and performance.

ALBERT has four di�erent variants [44]. In our study, the ALBERTbase is used that comprises 12

encoding layers and 12M parameters.

3.6 Optimization: Grid Search

Hyperparameters are characteristics of a model that are external to the model and whose value are not

determined directly from the data. The value of a hyperparameter has to be set before the learning process

begins. For example, c in SVM, k in KNN, and the number of hidden layers in Neural Networks.

In order to increase the performance of the model, all the hyperparameters should be optimized. Grid

search is the most popular hyperparameter optimization method, in which a �nite set of values for each

hyperparameter is speci�ed, and grid search evaluates the model on the Cartesian product of these sets [26].

Grid search can often easily be parallelized because the hyperparameter values that the algorithm works with

are usually independent of each other [45].

3.7 Model Validation: Simple Split

Di�erent methods can be used to validate a predictive model. This study uses a method called simple split.

In the simple split method, the original data are randomized and split into two sets called training and testing

sets. The samples are selected with a uniform distribution, e.g., each sample has the same probability of
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being selected [60] [25].

The prediction error of model is calculated by comparing the predicted value ŷ and the actual value y.

Hence, the prediction error becomes

ϵ =
the number of misclassi�cations

the total number of test cases

=

∑N
i=1 δ(ŷ, y)

N
,

where ϵ is the prediction error and N is the total number of test cases.

3.8 Model Performance Evaluation

3.8.1 Confusion Matrix

Intuitively, after training a model, it is important to know how strongly we should trust that the model's

results are correct. In other words, we should determine how e�ective the model is in terms of its performance

on a test set [34]. Di�erent metrics are used to evaluate the performance of a model. Every sample in a

testing process has a True label and a Predicted label. The true label indicates the class to which the sample

belongs. The predicted label is the output of the predictor. Let xi (i = 1, 2, ..., n) be one of n samples, yi

the true label of xi and ŷi the prediction result of xi. Usually, in a binary predictor, +1 is used as the label

of a positive sample and −1 as the label of a negative sample. The number of True Positives (TP), False

Positives (FP), True Negatives (TN), and False Negatives (FN) can be de�ned as the follows:

TP = |{xi|yi = +1, ŷi = +1}|,

TN = |{xi|yi = −1, ŷi = −1}|,

FP = |{xi|yi = −1, ŷi = +1}|,

FN = |{xi|yi = +1, ŷi = −1}|,

(3.25)

A confusion matrix, also known as an error matrix, is a 2-by-2 contingency table used to summarize the

performance of a classi�cation model on the test data [34]. Confusion matrices are useful because they give

direct comparisons of True Positives, False Positives, True Negatives, and False Negatives [50]. Confusion

matrices are used to visualize important predictive analytics like speci�city, accuracy, and precision [42].

A confusion matrix has two dimensions, labeled as actual and predicted, with a set of classes on both

dimensions. Figure 3.15 presents an example of a confusion matrix for a binary classi�cation model with the

classes of positive and negative. In the table, values on the diagonal of the matrix show the number of correct

predictions for classes positive and negative, whereas o�-diagonal values show the number of misclassi�cations

for those classes.
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Figure 3.15: Confusion matrix for a binary classi�cation model [34]

3.8.2 Accuracy

Accuracy is the number of correct predictions made by the model over the total number of predictions [14].

Using the four counts described in the previous section, the accuracy can be calculated by,

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.26)

3.8.3 Precision

Precision or positive predictive value shows the number of correct predictions among the samples that are

predicted to be positive and is calculated by [50],

Precision =
TP

TP + FP
. (3.27)

3.8.4 Sensitivity

Sensitivity or true positive rate (TPR) is the frequency of correctly predicted positive samples among all real

positive samples. It measures the ability of a model in identifying positive samples and is de�ned by [34],

Sensitivity =
TP

TP + FN
. (3.28)
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3.8.5 Speci�city

Speci�city or true negative rate (TNR) measures the ability of a predictor in identifying negative samples

and is calculated by [34],

Specificity =
TN

FP + TN
. (3.29)

Having sensitivity and speci�city, false negative rate (FNR) and false positive rate (FPR) become

FNR = 1− Sensitivity,

FPR = 1− Speci�city.
(3.30)

3.8.6 F1-Score

The F1-Score is a middle ground between precision and sensitivity [50]. It combines precision and sensitivity

by taking the harmonic mean of precision and sensitivity. The F1-Score is calculated by

F1-Score = 2× Precision× Sensitivity

Precision + Sensitivity
. (3.31)

3.8.7 Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is commonly used to illustrate the performance of a binary

classi�er [34]. The ROC curve is a two-dimensional curve representing the TPR and FPR on its vertical and

horizontal axes, respectively. The performance of a binary classi�er based on its ROC curve is evaluated by

a single number that de�nes the area under the curve (AUC) or the area between the curve and the FPR

axis. The AUC can also be used to compare the performance of multiple classi�ers. Figure 3.16 depicts the

ROC curve for a classi�er. The diagonal in Figure 3.16 separates the square between (0,0) and (1,1) into two

parts. This diagonal is called the line of no-discrimination.

The AUC can be calculated by [14],

AUC =
1 + TPR− FPR

2
. (3.32)
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Figure 3.16: An ROC curve for a classi�er [34]. The horizontal axis is the FPR and the vertical axis
is TPR. The solid curve is the ROC curve. The dashed diagonal is called the line of no-discrimination.
The closer the curve to the top left corner, the better performance the classi�er has.
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3.9 Over�tting and Under�tting

Over�tting and under�tting are two important issues in training the ML classi�ers. Over�tting occurs when

a model performs extremely well on the training set while �tting poorly on the testing set. In other words,

the model does not generalize well from observed data to unseen data [78] [51]. In over�tting, models tend

to re�ect all the data, including unavoidable noise on the training set, instead of learning the relationships

between inputs and outputs from training data [41].

The converse problem to over�tting is under�tting, where an algorithm lacks su�cient training data to

fully learn the true relationship [6]. An under�t model will have low training and testing accuracy while an

over�t model will have high training accuracy and a relatively low testing accuracy.
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4 Methodology and Results

The purpose of this chapter is to describe the structure of the provided data �les and the methodology used

to clean the data and train eleven ML algorithms. Furthermore, the performance of the six ML algorithms

LR, NB, MNB, KNN, SVM, and DTC and three ensemble learning algorithms RF, AdaBoost, and XGBoost,

and two transfer learning methods BERT and ALBERT classi�ers are compared to see whether any can be

used to satisfactorily the predictive performance in the relevant tweet detection within the context of people

impacted by dementia and COVID-19.

4.1 Tweet Extraction and Twitter Data Structure

The term social media refers to a type of computer-based technology that enables the sharing of ideas,

thoughts, and information through the creation of virtual networks and communities. The largest social

media networks include Twitter, Facebook, Instagram, YouTube, and TikTok. With over 330 million monthly

users and an average of 500 million tweets daily, the microblogging and social networking website Twitter

presents an innovative opportunity for people to share their COVID-19 experiences [4].

For the �rst dataset, known as First wave dataset, 5,063 dementia-related tweets from [4] were used,

which were collected from Twitter during the period from February 15 to September 7, 2020. They used

the following search terms: Dementia OR Alzheimer used in combination with COVID-19, OR COVID,

OR Corona. Consequently, the dataset consists of experiences of people impacted by Alzheimer/dementia

and COVID-19. The dataset was labeled manually into twelve categories by seven authors using thematic

analysis(see Table 4.1). The First wave dataset was used to train di�erent ML, ensemble learning, and

transfer learning models. In [4], all the labels from 1 to 9 were relevant and used for the study, and the rest

were neglected. Thus, to have a binary classi�cation in this study, all the labels from 1 to 9 and 98 to 100

are merged and labeled as 1 (relevant) and 0 (irrelevant), respectively (see Table 4.2).

Because the existing Twitter study has already explored the early stages of the pandemic on people with

dementia [4], for the second dataset, our study focused on the later stages of the pandemic (i.e., September

8, 2020 to December 8, 2021) [5] with the same search terms. As a result, a dataset, known as Longitudinal

dataset, comprising 110,528 tweets was collected in CSV format using Twint, an advanced scraping tool that

enables users to scrape tweets without the use of Twitter's application programming interface. Twint enables

scraping tweets without certain restrictions such as the number of tweets scraped, the frequency and time

period of scrapes, and the requirement of a Twitter account [73].
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Table 4.1: The First wave data structure used in [4]

Table 4.2: The First wave data structure used in this study

Moreover, to examine the Twitter discourse on dementia during Alzheimer's Awareness Month in Canada,

we collected a third dataset known as Alzheimer's Awareness Month dataset [3] comprising 1289 tweets dur-

ing the period from January 1 to January 31, 2022. The search terms used in this study consisted of various

phrases of Alzheimer's Awareness Month (i.e., #AlzheimersAwarenessMonth, #AlzAwareness, #dementi-

awareness, dementia month, dementia awareness month, Alzheimer's awareness month, Alzheimer's month,

January is Alzheimer's Awareness month) or tweets using a combination of either Canada and dementia or

Alzheimer's. Other tweets scraped were from Canada's national and provincial Alzheimer's organizations

(i.e., @alzCanada, @AlzheimerOnt, @AlzheimerSK, @DementiaAB_NT, @AlzheimerNS, @AlzheimerNB,

@AlzheimerPEI, @alzheimerMB, @AlzheimerBC, @asnl2, and @FqsaAlzh).

4.2 Data Pre-processing

Tweets include many misspelled words, irrelevant characters, emoticons, and unconventional syntax, all of

which are considered noise. Moreover, not all the columns in data �les are relevant to our study. Figure 4.1

shows a sample of what information a raw CSV �le of tweet collections include. Accordingly, to have consistent
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data pre-processing with the research analyzing Twitter data in [4], all the pre-processing steps mentioned

in the study are applied to the Longitudinal dataset.

Figure 4.1: CSV �le of raw tweet collections containing some of the columns

Here are all the steps to remove noise and obtain an appropriate dataset for analysis:

1. Remove either empty or irrelevant columns (e.g., id, conversation_id, time, timezone, user_id, user-

name, name, etc.),

2. Filter out non-English language tweets,

3. Filter out duplicate tweets,

4. Filter out advertising tweets containing a permalink,

5. Filter out unrelated or political tweets about Donald Trump or Joe Biden or Tom Seaver, the major

league baseball player who was reported to have died on August 31, 2020, due to COVID-19 and dementia,

6. Filter out reply tweets as they often were missing information and only contained half of the conver-

sation,

7. Filter out tweets that did not contain synonyms for familial relationships or friends or acquaintances

in order to improve the likelihood of scraping tweets that described personal experiences of dementia during

the COVID-19 pandemic. Table 4.3 shows the familial/friend keywords used in this study. Figure 4.2 shows

the number of tweets left after each �ltering step. Figure 4.3 shows the �ltered data after passing through

all the aforementioned steps.

8. Remove emojis,

After the �ltering steps, the remaining 6,243 tweets were divided among 11 coders in a research team

for manual labeling using thematic analysis based on the codebook used in [4]. Inter-coder reliability was

managed by the team leader, who reviewed 25% of all labeling on a random basis. The average inter-coder

reliability was 83.4%. Again, the labels are merged and categorized into two classes of relevant (1) and
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Figure 4.2: The �owchart of �ltering steps containing the number of remaining tweets in each step.
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Table 4.3: The keywords used to �lter out tweets not containing synonyms for familial/friend rela-
tionships

Figure 4.3: A sample of the �ltered data after passing through multiple steps.

irrelevant (0). Table 4.4 shows the �nal structure of the labeled dataset. All the steps were repeated for the

Alzheimer's Awareness Month dataset except the fourth, �fth, and the seventh steps. Table 4.5 shows the

�nal structure of the Alzheimer's Awareness Month dataset. Figure 4.4 shows a sample of the �ltered tweet

from the previous steps.

In order to prepare the datasets to train and test the ML classi�ers, a few more steps were applied to all

datasets.

9. Tokenization (see Figure 4.5),

10. Turn to lowercase (see Figure 4.6),

11. Remove punctuation and possessive pronouns (see Figure 4.7),

12. Lemmatization (see Figure 4.8),
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Figure 4.4: A sample of the �ltered tweet from the previous steps

Figure 4.5: A sample of the �ltered tweet after tokenization

Figure 4.6: A sample of the �ltered tweet after turning to lowercase

Figure 4.7: A sample of the �ltered tweet after removing punctuation and possessive pronouns

Figure 4.8: A sample of the �ltered tweet after lemmatization
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Table 4.4: The Longitudinal data structure used in this study

Table 4.5: The Alzheimer's Awareness Month data structure used in this study

13. Remove stop words (see Figure 4.9),

Figure 4.9: A sample of the �ltered tweet after removing stop words

14. TF-IDF vectorization (see Figure 4.10). TD-IDF has an important hyperparameter, called max-

features, which is a cuto� value or threshold that determines the number of the most representative words

that should be considered for the rest of analysis. Setting this threshold is based on experience or looking

at the scores of di�erent models [82]. Here, a threshold of 1250 is used based on experiments and scores

of di�erent ML classi�ers. In other words, considering 1250 most representative words leads to the highest

performance.
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Figure 4.10: A sample of vectors/weights for the �ltered tweet after the TF-IDF vectorization

4.3 Classi�er Selection

In this study, the goal of building a model from the dataset is to provide health care researchers with a

tool that helps them identify relevant tweets without having to go through all the tweets manually. In

this case, eleven ML classi�ers were tuned, trained using the First wave dataset, and compared in terms of

their performances. In subsection 4.3.1, the result of hyperparameter tuning for each classi�er is discussed.

Moreover, in subsection 4.3.2, the results for all the ML classi�ers have been measured according to accuracy,

precision, sensitivity, speci�city, AUC, FNR, FPR, and F1-score. All results reported were obtained using the

Python programming language version 3.8.5 on an AMD A10-5750M APU with Radeon(tm) HD Graphics

personal computer with 16GB RAM and Nvidia K80 GPU within Google Colab.

4.3.1 Tuning Classi�ers

In this section, the result of tuning the hyperparameters of each classi�er is discussed. Using grid search on

the training set, the optimal hyperparameters for the studied classi�ers are found. Table 4.6 shows all the

values of the hyperparameters used in grid search for each classi�er. The optimal values selected are shown

in bold-face. It should be mentioned that some of the classi�ers used in this study do not have any signi�cant

hyperparameter (e.g., NB and MNB classi�ers).

4.3.2 Comparison of the Classi�ers

In this section, the results of ML classi�ers are discussed. The First wave dataset is split up into two groups,

90% training and 10% testing. This puts 5, 554 data points in the training set and 509 in the testing set. The

results are obtained by applying the LR, NB, MNB, KNN, SVM, DTC, RF, AdaBoost, XGBoost, BERT,

and ALBERT classi�ers on the split data set. Table 4.7 shows the validity scores for the eleven studied

classi�ers. The best values are shown in bold-face.

The results from Table 4.7 show that for the training set, the SVM classi�er obtained the highest accuracy,

precision, sensitivity, speci�city, AUC, and F1-score compared to the other classi�ers. The RF classi�er

followed the SVM classi�er and scored second in accuracy, precision, speci�city, AUC, and F1-score. For the
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Table 4.6: All the values of the hyperparameters used in grid search for each classi�er.

testing set, the ALBERT classi�er reached the highest accuracy, AUC, and F1-score. Figure 4.11 shows the

ROC curves and AUC values for the worst, medium, and best classi�ers.

According to the results and the fact that the ALBERT model had the least over�tting problem compared

to all other classi�ers, it is then applied to the Longitudinal dataset and reached the accuracy of 80% in

classifying relevant and irrelevant tweets.

Finally, the ALBERT model is applied to the Alzheimer's Awareness Month dataset and reached an

accuracy of 30% due to the di�erences existing in the Alzheimer's Awareness Month dataset compared to

the �rst and the second datasets. Accordingly, this model is then retrained using 10% of the tweets in the

Alzheimer's Awareness Month dataset and tested on 90% of the rest. The result was an accuracy of 88%

for the classi�cation of relevant and irrelevant tweets showing that this model is an agile and �exible model,

which can be applied to the other related datasets.
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Figure 4.11: Comparison of the ROC curves and AUC values for the worst, medium, and best
classi�ers.
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Table 4.7: Comparison of the eleven ML classi�ers using various performance metrics
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4.4 Discussion

Looking at Table 4.7, in order to detect future tweets for people impacted by dementia during the COVID-19

pandemic, a model with high sensitivity should be considered, which refers to percentage of tweets which

were correctly identi�ed as being relevant. As far as the sensitivity is concerned, the NB classi�er with 99%

could be the clear winner followed by the ALBERT classi�er with 86%. However, the NB classi�er su�ers

from over�tting.

Similarly, in order to detect irrelevant tweets, a model with high speci�city should be considered. Although

the RF classi�er had the highest speci�city and correctly classi�ed 90% of the actual irrelevant tweets, it

su�ers from over�tting. In order to have a balanced predictive power that is good for detecting relevant tweets

but also careful in not incorrectly labeling tweets as being relevant, the F1-score can be used as a general

metric of the predictive performances. Doing so, the ALBERT classi�er provided the best performance (82%),

with the BERT model following at 81%.

Moreover, according to the Figure 4.11 and Table 4.7, the ALBERT classi�er had the highest AUC value

compared to all other classi�ers. A model with a higher AUC value has better performance in distinguishing

between the positive and negative classes. In other words, the ALBERT model is able to separate the two

relevant and irrelevant classes better than the rest of the classi�ers.

Considering the over�tting problem, the results for the training set and testing set showed that the LR,

NB, MNB, KNN, SVM, DT, and RF classi�ers su�er from over�tting because they performed poorly on the

testing set compared to the training set. For example the SVM classi�er reached the accuracy of 94% on

the training set. However, on the testing set, it obtained 76%. When the training accuracy is high, but

the test accuracy is not as high, then the classi�er likely has an over�tting problem, and instead of �tting

the relationship between the input and output, it �ts the details and noise in the training data such that it

negatively a�ects the performance of the model on test data. Accordingly, the classi�er does not obtain the

proper output for each unseen input in the testing set.

Moreover, the AdaBoost and XGBoost classi�ers su�er from under�tting due the fact that the values in

the performance metrics for both training and testing sets were low. Also, some performance metrics such as

accuracy, precision, sensitivity, and F1-score in the training set were less than the testing set. For instance,

the AdaBoost classi�er reached the accuracy of 74% and 75% on the training set and testing set suggesting

that the classi�er may lack su�cient training. In some classi�ers, inadequate training data lead to poor

training and under�tting.

BERT and ALBERT classi�ers had the least over�tting problem compared to the other classi�ers, and the

ALBERT classi�er beat the BERT classi�er with better results in most of the performance metrics. Moreover,

the ALBERT classi�er, which had the least amount of over�tting compared to all other classi�ers, is applied

to the Longitudinal dataset (completely unseen dataset) and reached the accuracy of 80% in classifying

relevant and irrelevant tweets for people impacted by dementia and COVID-19.
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Finally, the ALBERT model was trained using 10% of the Alzheimer's Awareness Month dataset and

reached an accuracy of 88% on the rest in classifying relevant and irrelevant tweets. It can be concluded that,

in the context of people impacted by Alzheimer's/Dementia, the ALBERT model can be trained on a small

sample of a labeled dataset and used to predict the rest of the unlabeled data e�ciently in order to save

time for health care researchers and help them focus on the main goal of the project rather than manually

labeling the data.
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5 Conclusion and Future Work

5.1 Conclusion

Research in health care has lagged behind other disciplines despite the availability of large datasets from social

media networks such as Twitter. One of the problems for the health care researchers is the unstructured nature

of the data scraped from Twitter, from which extracting insights can be a challenging task. Accordingly,

pre-processing methods should be applied on the data in order to analyze, understand, organize, and sort

useful data.

In addition, the problem is not only the large amount of data to be processed, but also the fact that some

of the data contains a lot of irrelevant information, which restricts their use for further analysis. Generally,

the data need to be labeled manually. Manual labeling, which is a part of thematic analysis, is a tedious,

time-consuming, and daunting task. Thus, health care researchers and social scientists would be helped

by an automated tool that is able to detect irrelevant tweets. This research performs a comparison of ML

techniques within the speci�c context of people impacted by dementia and COVID-19 in order to construct

a tool to be available for health care researchers to detect relevant and irrelevant tweets e�ciently.

The First wave dataset was the one used in [4], and the Longitudinal and Alzheimer's Awareness Month

datasets were scraped from Twitter and were cleaned and organized to be used for the purpose of this research.

A number of ML classi�ers known as the Logistic Regression (LR) classi�er, Naïve Bayes (NB) classi�er,

Multinomial Naïve Bayes (MNB) classi�er, K-Nearest Neighbors (KNN) classi�er, Support Vector Machine

(SVM) classi�er, Decision Tree (DT) classi�er, Random Forest (RF) classi�er, AdaBoost classi�er, XGBoost

classi�er, BERT classi�er, and ALBERT classi�er were trained and tested using the First wave dataset and

compared in terms of their performance at classifying the relevant and irrelevant tweets. The ALBERT model

is chosen as the best model because it provides the least amount of over�tting and the highest accuracy, AUC,

and F1-score on the testing set.

In the second part of this thesis, the ALBERT model is applied to the Longitudinal and Alzheimer's

Awareness Month datasets. The results show that the ALBERT model is successful in classifying the relevant

and irrelevant tweets within the context of people impacted by dementia and COVID-19 with an accuracy

of 80% for the Longitudinal dataset. Moreover, the ALBERT model trained on 10% of the Alzheimer's

Awareness Month dataset reached an accuracy of 88% in classifying the relevant and irrelevant tweets related

to dementia discourse during Canada's Alzheimer's Awareness Month.

This study showed that the ALBERT model that is tuned and trained on a dataset related to people
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impacted by dementia and COVID-19 can be used for future studies with large volumes of data and slightly

di�erent features. Accordingly, this model can be trained on a small sample of the labeled dataset and used

to predict the label for the rest of the data. This is an e�cient way to save time for health care researchers

and enable them to focus on the main goal of the project rather than manual labeling.

As a result, this study concludes that choosing the best algorithm for constructing a model depends on

the properties of the available data, such as the number of features and the type of input values, whereas

choosing the best model from the constructed ones depends on the desired goal. Generally, it is a good idea

to start with a simple model, such as the LR classi�er, NB classi�er, or the DT classi�er, and assess the

results. After observing and comparing the results, one can use more complex models, such as the RF, the

BERT, or the ALBERT classi�er, and focus on improving the performance of the model and decreasing the

over�tting and under�tting by tuning its parameters.

5.2 Future Work

For future extension of this study, the following research directions are suggested:

• The ALBERT model used in this study was tested using two di�erent datasets. However, we hope that

health care researchers use this model in future studies to show the validity and reliability of the trained

model.

• It is suggested to use a larger volume of data to reach better performance in classi�cation. Using a greater

amount of data can remedy the under�tting and over�tting problem for most of the ML classi�ers.

• This study did not explore all possible techniques in terms of classifying relevant and irrelevant tweets for

people impacted by dementia and COVID-19. Transfer learning techniques are mainly used for NLP

tasks. Therefore, it is of interest to investigate the performance of the other transfer learning algorithms

on the same datasets.

• Social media have become an important source of information; however, these online spaces come with

types of downsides not present in face-to-face environments. One of the main downsides is the harms of

bad bots/inauthentic responses. It is suggested to consider inauthentic responses and try remove them

in future studies, which may have a positive impact on the model's performance.

• The purpose of this study was to help health care researchers and social scientists analyze the experiences

of people impacted by dementia and COVID-19. The same procedure can be used to analyze social

media discourse for future diseases.
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