
Optimized hardware implementations of
cryptography algorithms for resource-constraint

IoT devices and high-speed applications

A thesis submitted to the
College of Graduate and Postdoctoral Studies (CGPS)
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical &

Computer Engineering
University of Saskatchewan
Saskatoon, Canada

By

Karim Shahbazi

© Copyright Karim Shahbazi, July 2022. All rights reserved. Unless otherwise noted,

copyright of the material in this thesis belongs to the author.

Permission to Use

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Post-

graduate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission for

copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis/dissertation work

or, in their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of this

thesis/dissertation or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis/dissertation.

i

Disclaimer

Reference in this thesis to any specific commercial products,process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement,

recommendation, or favoring by the University of Saskatchewan. The views and opinions of

the author expressed herein do not state or reflect those of the University of Saskatchewan,

and shall not be used for advertising or product endorsement purposes

Request for permission to copy or to make any other use of material in this thesis in

whole or in part should be addressed to:

Head of the Division of Biomedical Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

ii

Acknowledgements

I would like to express my deepest gratitude toward my supervisor, Prof. Seok-Bum

Ko, for his invaluable support, guidance, and giving me the freedom I needed through

my research program at the University of Saskatchewan. It has indeed been an honor

and rewarding experience to work under his supervision and at his Lab. I have learned

important lessons on the skills and values of conducting research. Special thanks to all of

my lab mates and friends. I had a fantastic experience in our lab 2C60.2 at the University

of Saskatchewan. My special thanks to my committee members for their valuable feedback

and comments. I would also like to extend my gratitude to my loving wife, my dearest

parents, and my caring sisters who have paved this way for me to continue my studies with

their endless support and encouragement. I would like to dedicate my Ph.D. thesis to my

family members.

iii

Abstract

The advent of technologies, including the Internet and smartphones, has made people’s

lives easier. Nowadays, people get used to digital applications for e-business, communicat-

ing with others, and sending or receiving sensitive messages. Sending secure data across

the private network or the Internet is an open concern for every person. Cryptography plays

an important role in privacy, security, and confidentiality against adversaries. Public-key

cryptography (PKC) is one of the cryptography techniques that provides security over a

large network, such as the Internet of Things (IoT).

The classical PKCs, such as Elliptic Curve Cryptography (ECC) and Rivest-Shamir-

Adleman (RSA), are based on the hardness of certain number theoretic problems. According

to Shor’s algorithm, these algorithms can be solved very efficiently on a quantum computer,

and cryptography algorithms will be insecure and weak as quantum computers increase

in number. Based on NIST, Lattice-based cryptography (LBC) is one of the accepted

quantum-resistant public-key cryptography. Different variants of LBC include Learning

With Error (LWE), Ring Learning With Error (Ring-LWE), Binary Ring Learning with

Error (Ring-Bin LWE), and etc. AES is also one of the secure cryptography algorithm

that has been widely used in different applications and platforms. Also, AES-256 is secure

against quantum attack.

It is very important to design a crypto-system based on the need and application. In

general, each network has three different layers; cloud, edge, and end-node. The cloud

and edge layer require to have a high-speed crypto-system, as it is used in high traffic

application to encrypt and decrypt data. Unfortunately, most of the end-node devices are

resource-constraint and do not have enough area for security guard. Providing end-to-end

security is vital for every network. To mitigate this issue, designing and implementing a

lightweight cryto-system for resource-constraint devices is necessary.

In this thesis, a high-throughput FPGA implementation of AES algorithm for high-

traffic edge applications is introduced. To achieve this goal, some part of the algorithm

iv

has been modified to balance the latency. Inner and outer pipelining techniques and loop-

unrolling have been employed. The proposed high-speed implementation of AES achieves a

throughput of 79.7Gbps, FPGA efficiency of 13.3Mbps/slice, and frequency of 622.4MHz.

Compared to the state-of-the-art work, the proposed design has improved data throughput

by 8.02% and FPGA-Eff by 22.63%.

Moreover, a lightweight architecture of AES for resource-constraint devices is designed

and implemented on FPGA and ASIC. Each module of the architecture is specified in which

occupied less area; and some units are shared among different phases. To reduce the power

consumption clock gating technique is applied. Application specific integrated circuit

(ASIC) implementation results show a respective improvement in the area over the previous

similar works from 35% to 2.4%. Based on the results and NIST report, the proposed design

is a suitable crypto-system for tiny devices and can be supplied by low-power devices.

Furthermore, two lightweight crypto-systems based on Binary Ring-LWE are presented

for IoT end-node devices. For one of them, a novel column-based multiplication is intro-

duced. To execute the column-based multiplication only one register is employed to store

the intermediate results. The multiplication unit for the other Binary Ring-LWE design is

optimized in which the multiplication is executed in less clock cycles. Moreover, to in-

crease the security for end-node devices, the fault resiliency architecture has been designed

and applied to the architecture of Binary Ring-LWE. Based on the implementation results

and NIST report, the proposed Binary Ring-LWE designs is a suitable crypto-system for

resource-constraint devices.

v

Table of Contents

Permission to Use i

Acknowledgements iii

Abstract iv

Table of Contents vi

List of Abbreviations x

List of Tables xii

List of Figures xiii

I Preface 1

1 Introduction 2

1.1 Motivation of Research Works . 3

1.2 Contributions . 6

1.3 Outline . 7

2 Background 10

2.1 Introduction to Algorithms . 10

2.1.1 AES Algorithm . 10

2.1.2 Lattice-based Cryptography . 12

2.1.3 Ring Learning With Error . 13

2.1.4 Binary Ring Learning With Error 15

2.2 Related Works . 17

vi

2.2.1 AES Implementation . 17

2.2.2 Binary Ring-LWE implementation 18

II AES Implementations 20

3 High Throughput and area-efficient AES implementation 21

3.1 Introduction . 22

3.2 Cryptography Mode . 25

3.3 AES Functions Implementation . 26

3.3.1 Mix-Columns . 26

3.3.2 Sub-Bytes . 30

3.4 Proposed Architecture and Security Analysis 35

3.4.1 Modified AES algorithm . 36

3.4.2 Proposed hardware structure . 36

3.4.3 Security analysis of the proposed crypto-system 40

3.5 Implementation results, simulation, and comparison 41

4 Area-Efficient Nano-AES Implementations 46

4.1 Introduction . 47

4.2 8-Bit nano-AES data path accelerator . 49

4.2.1 Sub-Bytes Optimization . 52

4.2.2 8-bit Mix-Columns Optimization 58

4.2.3 Key Expansion . 60

4.2.4 Control Unit . 66

vii

4.3 Implementation Results and Analysis . 67

III Binary Ring-LWE implementations 75

5 Lightweight Design of Binary Ring-LWE 76

5.1 Introduction . 77

5.2 The proposed design . 79

5.2.1 In-place modular Reduction and anti-circular Rotation Column-

based Multiplication . 80

5.2.2 The Proposed Lightweight Design 83

5.2.3 Security Analysis . 89

5.3 Implementation Results, Simulation, and Comparison 90

5.3.1 ASIC implementation results and comparison 91

5.3.2 FPGA implementation results and comparison 93

6 Fault Resilient Implementation of Binary Ring-LWE 96

6.1 Introduction . 96

6.2 The Proposed Design . 99

6.3 Implementation Results, Simulation, and Comparison 103

7 An Optimized Implementation of Modular Multiplication for Binary Ring-

LWE 106

7.1 Introduction . 107

7.2 Optimized Column-Based Multiplication 108

7.3 The Proposed Design . 112

viii

7.4 Implementation Results, Simulation, and Comparison 116

IV Summary and Future Work 119

8 Conclusion 120

8.1 Summary and Conclusion . 120

8.2 Future Research . 123

ix

List of Abbreviations

ADP Area-Delay-Product

AES Advanced Encryption Standard

Af Affine transformation

ARK Add-RoundKey

ASIC Application Specific Integrated Circuit

BRAM Block random access memories

CBC Cipher block chaining

CFB Cipher feedback

CTR Counter

ECB Electronic codebook

ECC Elliptic curve cryptography

ENS Equivalent Number of Slices

FFT Fast Fourier transform

FPGA Field-programmable gate array

FPGA-Eff FPGA efficiency

IDEA International Data Encryption Algorithm

IoT Internet of Things

LBC Lattice-based cryptography

x

LOF List of Figures

LOT List of Tables

LUT Look-up Table

LWE Learning with Error

NIST National Institute of Standards and Technology

NTRU N-th degree Truncated polynomial Ring Units

NTT Number Theoretic Transform

OFB Output Feedback

PCBC Propagating cipher block chaining

PKC Public-key cryptography

Ring-BinLWE Binary Ring Learning With Error

Ring-LWE Ring Learning With Error

RSA Rivest-Shamir-Adleman

S-box Substitution box

SoC system-on-a-chip

SoPs Sum of products

VHDL Very high-speed integrated circuit Hardware Description Language

xi

List of Tables

3.1 Multiplicative inverse over 𝐺𝐹 (24) . 35

3.2 Implementation results and comparison 42

4.1 The content of State-Register during different operations for the first round . 53

4.2 The description of control signal for Key-Register 63

4.3 Results and Comparison for lightweight implementation on TSMC-65𝑛𝑚 . 74

5.1 The list of abbreviations, parameters, and the contents of registers 86

5.2 Results and Comparison for cryptosystem implementation on TSMC-65𝑛𝑚 94

5.3 Results and comparison for cryptosystem implementation on FPGA 95

6.1 The FPGA implementation results and comparison 104

7.1 The multiplication result of two consecutive coefficients 112

7.2 The content of Column-Based matrix A that has 𝑛 × 𝑛 cycles to execute the

multiplication by 𝑏𝑘 . The bold coefficients are rotated coefficients 112

7.3 The content of optimized Column-Based matrixA that requires 𝑛× 𝑛2 cycles

to execute the multiplication by 𝛽𝑘 . 113

7.4 FPGA Implementation Results and Comparison 118

xii

List of Figures

1.1 Architecture of IoT network and available hardware resources in each layer [1] 3

2.1 Block diagram of AES-128 encryption . 11

2.2 A two-dimensional lattice and two possible bases [2] 13

3.1 An illustration of the relationship between priorities when designing a high-

speed crypto-system and the design factors that affect them 24

3.2 Different dependent cryptography modes (a) CBC, (b) PCBC, (c) CFB, (d)

OFB (IV stands for initialisation vector) 27

3.3 Independent cryptography modes (a) ECB, (b) CTR 27

3.4 The difference between encryption of an image using CTR and ECBmodes

(a) Main image, (b) Encrypted image in CTR, (c) Encrypted image in ECB 28

3.5 The proposed Mix-Columns-1 with Shift, NOT, and Mix 2 × 1 30

3.6 Implementation of Sub-Bytes using composite field with the combination

of Af and 𝛿−1 . 34

3.7 Implementations of inversion in 𝐺𝐹 (24) by square and multiplication ap-

proach . 35

3.8 The process of modifying the AES algorithm based on the proposed design 37

3.9 The proposed block diagram of AES with pipeline and loop unrolled tech-

nique (a) Loop unrolled and outer pipelined stages, (b) Inner pipelined

stages . 38

xiii

3.10 Pipeline stage through the multiplication operation (a) Multiplication oper-

ation in 𝐺𝐹 (24), (b) Multiplication operation in 𝐺𝐹 (22) 39

3.11 Execution of Mix-Columns in two stages 40

3.12 Encryption, decryption, and histogram of coloured images with different

size by using the proposed crypto-system (a) Main images, (b) Histograms

of main images, (c) Encrypted images, (d) Histograms of encrypted images 45

4.1 The architecture of the proposed nano-AES design 49

4.2 The structure of the proposed State-Register with Shift-Rows, control cir-

cuitry, and clock gating technique . 50

4.3 The optimized structure of combination of inverse isomorphic with Affine

Transformation . 57

4.4 (a) The modified architecture of Sub-Bytes [3] with combination of inverse

isomorphic with Affine Transformation (𝛾) and bypass circuit (b) The mul-

tiplication operation in 𝐺𝐹 (24) (c) The multiplication operation in 𝐺𝐹 (22) 58

4.5 The proposed architecture ofMix-Columns with clock gating technique and

bypass circuit . 59

4.6 The timing diagram of the proposed Mix-Columns 60

4.7 The proposed RCON block of the proposed design 62

4.8 The structure of the proposed Key-Register 64

xiv

4.9 The movement of Key-Register’s values for executing one round of key

expansion. (a) The initial values of Key-Register. (b) The shift operation

of the fourth column. (c) (d) (e) (f) (h) The first element of the first and

fourth columns are fed to the design and the result is stored in Key-Register

(g) The shift operation of the third column. (i) The Key-Register with the

expanded key. 65

4.10 The finite state machine for the proposed design 66

4.11 The timing diagram with clock gating technique of different blocks of the

proposed design . 67

4.12 Layout of the proposed 8-bit AES core using 65𝑛𝑚 technology 68

4.13 The percentage of occupied area and power consumption of different blocks

of the proposed design on 65𝑛𝑚. 69

4.14 Power-delay curve with and without clock gating technique of the proposed

design at 1.1V and 25◦C. 72

5.1 Two methods of doing multiplication for Ring-BinLWE (a) The conven-

tional row-basedmultiplication forRing-BinLWE. (b)The proposed column-

based of multiplication for Ring-BinLWE. (1) The multiplicand (𝑏𝑖) should

be shifted to left. (2) Multiplier (𝑎𝑖) should be started from the last coef-

ficient (𝑎𝑛−1). The anti-circular rotation occurs at yellow coefficients. IS

stands for intermediate sum. 81

5.2 The hardware design of the proposed multiplication with the related co-

efficients of the first column. Note: as 𝑏𝑖 is a binary vector, to do the

multiplication, each bit of 𝑏𝑖 should be extended to 𝑘-bit. 84

xv

5.3 The proposed cryptosystem design. The green line contains REG_1 in the

design. The red line is the modified architecture to make a comparison

with [1] and does not contain REG_1. 85

5.4 The finite state machine for the proposed Design 88

5.5 The timing diagram for activating registers and modular reduction and

anti-circular rotation of decryption phase period 89

5.6 Area-delay curve and Power-delay curve of the proposed design 91

6.1 The hardware design of the proposed fault resilient Ring-Bin LWE 100

7.1 The hardware design of the proposed Binary Ring-LWE architecture 114

7.2 The proposed counters architecture of the proposed design 115

xvi

Part I

Preface

1

1. Introduction

Cryptography is one of the ancient science that has been used for more than 2000

years ago [4]. Cryptography is the science of using mathematics to encrypt and decrypt

data in order to provide a secure transmission across insecure networks so that the data

cannot be read by anyone expect the intended recipient. As a result, cryptography plays an

important role in each network. To provide the security, cryptography algorithms should be

implemented on hardware or software platforms. Each of them has several advantages and

disadvantages. For example, execution of cryptography algorithms on software is slower

than its hardware implementation.

Hardware implementation includes implementation on Application Specific Integrated

Circuit (ASIC) or Field Programmable Gate Array (FPGA). This implementation is called

crypto-system and used with other part of a design to encrypt and decrypt the data. By

employing the hardware resources in FPGA and ASIC, the crypto-system can be designed

based on the need and limitations. In general, hardware implementation provides more

security against software implementation by accessing the physical layer. Also, by em-

ploying the entire hardware resources of FPGA and ASIC, high-speed implementation of

crypto-system is achievable (compared to software implementation that is implemented on

Graphics Processing Units (GPU) or Central Processing Unit (CPU)).

Most networks include three major layers: cloud; edge devices; and end-nodes devices.

Figure 1.1 presents the overall architecture of current advanced IoT networks that are

constructed from three major layers [1]. Cloud and some of the edge devices require

high-performance and high-speed implementation, such as 64-bit processors and FPGAs.

2

Figure 1.1: Architecture of IoT network and available hardware resources in each layer [1]

Moreover, the end-nodes devices have constrained resources. Most of the end-node devices

do not have enough resources for security guard. For each network, providing end-to-end

security is vital. The practical solution for resource-constrained devices is lightweight

implementation of the crypo-system. The crypto-systems should be designed based on the

layer of the network. As cloud and edge layers are high-traffic, they require high-speed

crypto-systems. End-node devices are resource-constraint devices; thus, it is necessary to

design lightweight crypto-systems for these devices. This motivates the research works to

be presented in this thesis that are to design and implement the crypto-system architectures

for resource-constraint devices and high-speed applications.

This chapter presents the need and advantage of using cryptography. The motivation of

the research works is presented in Section 1.1. The contributions of the research works are

summarized in Section 1.2. The overview of the thesis is presented in section 1.3.

1.1 Motivation of Research Works

Internet of Things (IoT) is a vast network in which myriad devices and applications are

connected to transmit data. This information could be parts of a smart environment, such

as e-health, public transportation, and smart city. These devices could be part of a high-

tech network, from sensing technology, communication technology, and data processing

to cloud computing and artificial intelligence. As the number of connected devices to IoT

has been exponentially increased, providing security for all the transmitted information

3

in most scenarios is not easy. Moreover, most of the IoT end-node devices are resource-

constrained and do not have encryption safeguards. As crypto-systems are used in different

applications and platforms, designing an optimized architecture based on the application

is very important. Some networks require lightweight crypto-system for their end-node

devices to provide end-to-end security. In addition to the security of data transmission in

many high-traffic applications, such as high-traffic servers that transfer a huge amount of

data, fast encryption/decryption and transmission are also required.

Thus, cryptography plays a vital role in keeping the security in IoT and other transmitting

networks. Cryptography algorithms are divided into two different categories, symmetric

and asymmetric (public-key cryptography). Asymmetric cryptography algorithms use two

keys for encryption and decryption data, such as elliptic curve cryptography (ECC) and

Rivest–Shamir–Adleman (RSA). Compared with asymmetric cryptography algorithms, the

symmetric cryptography algorithms use the same keys for encryption and decryption data,

have less computation, and occupy fewer areas, making them very hardware friendly. The

security of RSA relies on the hardness of factoring large integer numbers; ECC is based

on an elliptic curve discrete logarithm problem. Shor’s algorithm [5] can solve these

problems very efficiently in a polynomial time using a quantum computer. By emerging

quantum computers, most of the traditional crypto-systems will not be secure; thus, there

is a tendency to design crypto-systems by quantum-resistance cryptography algorithms.

The advanced encryption standard (AES) is one of the most secure, fast, and most

used symmetric algorithms that have a good performance in both software and hardware

platforms. AES-256 is secure against quantumcomputers [6]. Comparedwith software plat-

forms, hardware implementation of cryptography algorithms, such as application-specific

integrated circuit (ASIC) and field-programmable gate arrays (FPGAs), provides higher

security and throughput. FPGA implementation has some advantages over ASIC imple-

mentation, such as reconfigurability and low design cost. AES is used in broad applications,

and different security networks, such as Wi-Fi protected access 2 system, secure sockets

layer, automated teller machines, IoT, and digital video recorders.

4

According to NIST [7], lattice-based cryptography (LBC) is one of the accepted

quantum-resistant public-key cryptography that LBC has received much attention in these

years and has been selected as a great candidate for post-quantum cryptography system. A

lattice 𝐿 ∈ 𝑍𝑛is the set of all integer linear combinations of 𝑛 independent basis vectors 𝑏𝑖.

Among the different varieties of LBC techniques, such as N-th degree Truncated polynomial

Ring Units (NTRU) and learning with errors (LWE), Ring-LWE [8] is more practical and

efficient in hardware and, compared to LWE, has a smaller key size [9] [10]. LBC algo-

rithms, such as Ring-LWE, require a lot of multiplications to encrypt data; thus, modular

multiplication is the main module of most of the LBC in terms of occupied area and latency.

The Binary Ring-LWE (Ring-Bin LWE) is a variant of Ring-LWE and was introduced in

2016 by [11]. In Binary Ring-LWE, the errors are sampled with binary coefficients. The

multiplication is done by shifting and adding operations that make Binary Ring-LWE a

suitable crypto-system for resource-constrained devices. Based on the aforementioned, the

motivations of the thesis are summarized as:

• Each network includes three layers. To provide end-to-end security, it is vital to design

a suitable crypto-system based on each layer of the network. Edge and cloud layers

have high-traffic, and require high-speed crypto-system to encrypt/decrypt and send

the data. End-node devices are resource-constraint devices, and require lightweight

crypto-systems.

• With the advent of quantum computers, most of the current crypto-systems are endan-

gered. It is vital to design new architecture of crypto-systems that are resistant against

quantum attacks. LBC is one of the promising method of post-quantum cryptography

(PQC). AES is secure against quantum attacks that has been widely used in different

applications platforms, and also is used as a random number generator (RNG) for

other crypto-systems.

5

1.2 Contributions

Efficient crypto-systems for IoT applications will be proposed by considering all the

requirements mentioned in Section 1.1 for a high-speed and lightweight design. This thesis

contains a high-speed design for high-traffic applications, an area-efficient nano-AES for

end-node resource-constrained devices, an area and power-efficient crypto-system based on

Binary Ring-LWE for IoT resource-constrained devices, and implementation of an efficient

and optimized multiplication for Binary Ring-LWE. Moreover in order to increase the

security of Binary Ring-LWE, the fault resilient architecture is designed and applied to the

Binary Ring-LWE. The main contributions of the proposed research are:

• A lightweight AES architecture for IoT resource-constrained devices is designed.

To reduce the required logic, the Shift-Rows is embedded inside the State-Register.

An optimized Sub-Bytes block is designed and shared with the key expansion and

encryption phases to reduce the area. An optimized 8-bit block forMix-Columns with

8-bit input and output is designed. To reduce the power, the clock gating technique is

applied to the design.

• A high-throughput AES for high-traffic applications is designed. The AES algorithm

is modified in which Sub-Bytes and Shift-Rows are exchanged for the first nine

rounds; Add-Round-Key and Shift-Rows are merged into one stage. The Sub-Bytes

is optimized in which inverse isomorphic and the affine transformation (Af) are

combined together. The delay of Sub-Bytes is reduced by inserting registers in

optimal places. Also, full loop unrolling, inner (inserting registers between rounds)

and outer (inserting registers among functions) pipeline stages are used.

• A lightweight architecture for Binary Ring-LWE is designed. A novel multiplication

technique is proposed for the design. The proposed multiplication is column-based,

that all coefficients of multiplier and multiplicand are involved in the multiplication

in each cycle. Moreover, in the proposed multiplication, the modular reduction and

anti-circular rotation are executed one time in each multiplication cycle.

6

• Fault resiliency is evaluated for three phases of Binary Ring-LWE, key generation,

encryption, and decryption. For Binary Ring-LWE, randomization fault does not

have any impact over key generation and encryption phases. Skipping is avoiding to

run certain operations in the algorithm, such as addition and multiplication. Zeroing

contains setting some parts or the entire value of a coefficient to zero. Skipping and

zeroing attacks have a high impact on Binary Ring-LWE. As a result, a fault resiliency

architecture is designed and applied to the Binary Ring-LWE.

• The multiplication of Binary Ring-LWE is optimized. The location of each coeffi-

cient of polynomials in the multiplication in Binary Ring-LWE is evaluated, and an

optimized column-based multiplication is introduced. The proposed multiplication

method optimizes the column-based multiplication and rotation that requires 𝑛2 × 𝑛

cycles to execute the multiplication. The values of two consecutive coefficients of

matrix are fed to the design. The proposed architecture is designed efficiently based

on the proposed method. The register bank of the design for storing the coefficients

contains two sub-register banks for better controlling the multiplication and rotation.

1.3 Outline

In this thesis, several new hardware cryptography architectures are designed and imple-

mented. For each of the proposed design, the hardware implementation merits, including

execution time, occupied area, and etc. are analyzed in detail. The proposed designs

are also compared with related designs available in the literature to show their advantages

and improvements. The architecture of crypto-systems are beased on the requirement for

lightweight and high-speed applications. The entire thesis is composed of four parts with

eight chapters described as follow:

• Part I includes two chapters. Chapter 1 (Introduction) presents the importance of the

works, motivation and contributions of the research works. Chapter 2 (Background)

introduces the background of cryptography for the proposed research works and the

related works.

7

• Part II includes two chapters. In this part, two hardware implementations of AES

are presented. In chapter 3, a high-speed implementation of AES for high-traffic

application is introduced. Chapter 4 presents a lightweight implementation of AES

for resource-constraint devices. As AES algorithm also uses as the random number

generator (RNG) for other crypto-systems, the lightweight design of AES is used as

RNG for Binary Ring-LWE.

• Part III includes three chapters. This part presents the optimized architectures

of Binary Ring-LWE. Binary Ring-LWE require a RNG unit. The lightweight AES

design of chapter 4 is used as a RNG for Binary Ring-LWE. A lightweight architecture

for Binary Ring-LWE is designed in chapter 5. In this chapter, a novel column-based

multiplication is introduced. The execution of the design of chapter 5 requires more

clock cycles. To reduce the number of clock cycles, the multiplication unit of Binary

Ring-LWE of chapter 5 is re-designed. Chapter 7 presents the new architecture of

Binary Ring-LWE. To increase the security against the fault injection attack, fault

resiliency is evaluated for three phases of Binary Ring-LWE. Then in chapter 6, fault

resilient is applied to the design of Binary Ring-LWE.

• Part IV contains chapter 8 that includes the summary and conclusion of the thesis

and future work.

Below is the list of publications, arranged according to the order of appearance in this

thesis:

• Chapter 3: High Throughput and area-efficient AES implementation

- K. Shahbazi and S. -B. Ko, “High throughput and area-efficient FPGA imple-

mentation of AES for high-traffic applications,” in IET Computers & Digital

Techniques, vol. 14, no. 6, pp. 344-352, Nov. 2020, doi: 10.1049/iet-

cdt.2019.0179.

• Chapter 4: Area-Efficient Nano-AES Implementation

8

- K. Shahbazi and S. -B. Ko, “Area-Efficient Nano-AES Implementation for

Internet-of-Things Devices,” in IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 29, no. 1, pp. 136-148, Jan. 2021, doi:

10.1109/TVLSI.2020.3033928.

• Chapter 5: Lightweight design of Binary Ring-LWE

- K. Shahbazi, and Seok-Bum Ko “Area and power efficient post-quantum cryp-

tosystem for IoT resource-constrained devices.” Microprocessors andMicrosys-

tems. Vol. 84, PP 104280, July 2021, doi: 10.1016/j.micpro.2021.104280.

• Chapter 6: Fault resilient implementation of Binary Ring-LWE

- K. Shahbazi, and Seok-Bum Ko “Lightweight and CCA2-Secure Hardware

Implementation of Binary Ring-LWE.” 2022 IEEE International Symposium

on Circuits and Systems (ISCAS).

• Chapter 7: An Optimized Implementation of Modular Multiplication for Binary Ring-

LWE

- K. Shahbazi, and Seok-Bum Ko “An Optimized Hardware Implementation of

Modular Multiplication of Binary Ring LWE.” under review at IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems.

• Other publications that are not included in this thesis:

- Y. Wang, K. Shahbazi, H. Zhang, K.-Il Oh, J.-J. Lee, S.-B. Ko, “Efficient

spiking neural network training and inference with reduced precision memory

and computing," IET Computers & Digital Techniques, vol. 13, 2019.

9

2. Background

AES is one of the secure algorithms that has been used in a variety of applications

and platforms. The hardware implementation of AES contains a lightweight design for

resource-constraint devices and high-throughput implementation. Section 2.1.1 presents

the background and a brief explanation of AES, and the previous works related to AES

implementation are in Section 2.2.1. On another side, more research has focused on

LBC. Binary Ring-LWE does not have complicated and large functions; thus, it can be

implemented efficiently on end-node devices. Ring-LWE and its operations are explained

in Section 2.1.3. In Section 2.1.4, Binary Ring-LWE will be discussed. Section 2.2.2

presents some hardware implementation of Binary Ring-LWE.

2.1 Introduction to Algorithms

2.1.1 AES Algorithm

AES is a symmetric encryption/decryption algorithm established by the U.S. National

Institute of Standards and Technology (NIST) in 2001 [12]. The length of the input data

and cipher keys can be 128, 192, or 256 bits. Both encryption and decryption procedures

perform several rounds, indicating by 𝑁𝑟 , due to the size of input/cipher key blocks that 𝑁𝑟
can be 10, 12, and 14 for key sizes 128, 192, and 256, respectively. Each block of data is

also called a ‘state’ that consists of four rows of bytes. Figure 2.1 shows the AES encrypting

steps. AES algorithm has four main functions, Add Round Key, Shift Rows, Sub Bytes, and

Mix Columns. All four functions are used in every round except the first and the last ones.

The first round consists of only Add Round Key, and the last round does not include Mix

10

A.R.Key

Sub Bytes

Shift Rows

Shift Rows

A.R.Key

Mix
Columns

Sub Bytes

A.R.Key

i=1

i:=i+1

i ?

Round
Key [0]

Round
Key [i]

Round
Key [10]

i < 9

i = 9

Figure 2.1: Block diagram of AES-128 encryption

Columns. The main functions are briefly described as:

Add Round Key

This function is the addition of input and keys by using bitwise XOR.

Shift Rows

This is a conversion that operates on the rows of a state. The bytes of the state are shifted

cyclically to the left. The first row remains untouched. The second, third, and fourth rows

are shifted by one, two, and three, respectively.

Substitute Bytes

This function is one of the most critical parts of the AES design regarding power, area,

and latency. It performs a byte-by-byte substitution of the blocks to produce a new byte

value. The most straightforward way of implementing is using the lookup table (LUT), such

as [13] [14], or employing the Boolean simplification map (by using truth table in order to

make a direct relation between the parameter of the Sub-Bytes [15] [16]), these twomethods

occupy more area and are not suitable for area-restricted devices. Decode–Switch–Encode

11

(DSE), which is employed by [17] [18], is another method for implementing Sub-Bytes that

is a good option for low-power architecture; however, it occupies a larger area. The efficient

way of implementing Sub-Bytes is to use composite field arithmetic, such as [19] [20] [21].

Sub-Bytes contains calculating the multiplicative inverse of 𝑓 (𝑥) that is 𝑔(𝑥), in which

𝑓 (𝑥) ·𝑔(𝑥) mod (𝑥8+𝑥4+𝑥3+𝑥+1) = 1 followed by affine transformation (𝐴𝑇). Calculating

the multiplicative inverse in 𝐺𝐹 (28) is complicated, in which employing the composite

field arithmetic reduces the complexity.

Mix Columns

The Mix Columns transformation operates on the State, column by column with some

fixed values. The Mix Columns multiplication is written in equation (2.1). As the Mix

Columns has fixed values, one way is to pre-calculate values and store them as a LUT. This

method, however, is not suitable because of high area consumption and high latency and is

not efficient for area-limited applications. In the equation (2.1), the ‘.’ is a multiplication

modulo the irreducible polynomial 𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1, and ‘+’ is XOR.

𝑎
′

𝑏
′

𝑐
′

𝑑
′

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

×

𝑎

𝑏

𝑐

𝑑

→

𝑎
′
= 2.𝑎 + 3.𝑏 + 𝑐 + 𝑑

𝑏
′
= 𝑎 + 2.𝑏 + 3.𝑐 + 𝑑

𝑐
′
= 𝑎 + 𝑏 + 2.𝑐 + 3.𝑑

𝑑
′
= 3.𝑎 + 𝑏 + 𝑐 + 2.𝑑

(2.1)

2.1.2 Lattice-based Cryptography

In general, a lattice is a set of points in 𝑛-dimensional space with a periodic structure.

This 𝑛-D space is generated by all combination of independent vectors 𝑏1, ..., 𝑏𝑛, these

vectors known as a basis of the lattice. Figure 2.2 shows a 2-D lattice that is generated

by using 𝑏1 and 𝑏2 vectors. In terms of hardware implementation, the size of a computer

memory is finite but the lattices is a collection of infinite large objects. Therefore, the term

basis of lattice is used to solve the memory limitation issue by representing finite lattices

in a concise way. A basis of lattice is a collection of small vectors that can be used to

12

Figure 2.2: A two-dimensional lattice and two possible bases [2]

reconstruct a grid of points that forms a lattice. The number of vectors used in a basis is

defined as the rank of lattices [2]. The hardness of Lattice-based cryptography is based on

the shortest vector problem (SVP) and the closed vector problem (CVP). In SVP, the main

goal is to find the shortest nonzero vector in lattice. The CVP tries to find the closest point

to closest to the given nonlattice vector.

2.1.3 Ring Learning With Error

The Ring Learning With Error (Ring-LWE) based crypto-systems operate in a polyno-

mial ring 𝑅𝑞 = 𝑍𝑞 [𝑥]/ 𝑓 (𝑥), where one typically chooses 𝑓 (𝑥) = 𝑥𝑛 + 1 with 𝑛 a power of

two, and 𝑞 a prime with 𝑞 ≡ 1 mod 2𝑛. The procedures for key generation, encryption, and

decryption of this crypto-system are described as follows:

Key generation

This phase generates a public key (𝑎 and 𝑝) by 𝑝 ← 𝑟1 − 𝑎 × 𝑟2 from a private key (𝑟2)

and 𝑎; 𝑟1 and 𝑟2 are two polynomials that are sampled from Gaussian distribution 𝜒𝛿. The

polynomial 𝑎 is generated uniformly at random by a trusted source or the user.

13

Encryption

In this phase, the input message 𝑚 is encrypted to two cipher-texts (𝐶1 and 𝐶2). First,

the input message should be encoded into a polynomial 𝑚 in which 𝑚 is calculated by

𝑚 = ⌊(𝑞/2)⌋ 𝑚 ∈ 𝑅𝑞. Then 𝐶1 = 𝑎 × 𝑒1 + 𝑒2 and 𝐶2 = 𝑝 × 𝑒1 + 𝑒3 +𝑚 are calculated based

on the public key (𝑎, 𝑝); 𝑒1, 𝑒2, and 𝑒3 are sampled from the Gaussian distribution.

Decryption

This phase calculates 𝑚 by using 𝑚 = 𝐶1 × 𝑟2 + 𝐶2. The original message 𝑚 is gained

by pre-decoding the polynomial 𝑚 into {0, 1}𝑛 by using a decoder. The 𝑖-th coefficient

of the message 𝑚 is converted to 1 if and only if its corresponding value 𝑚 satisfies the

condition 𝑚 [𝑖] ∈ ⌊𝑞/4, 3𝑞/4⌋; otherwise, it is converted to 0. As it is obvious, polynomial

multiplication is the main module for Ring-LWE.

Number Theoretic Transform (NTT)

Polynomial multiplication is the fundamental module for LBC.Polynomial multiplica-

tion is the operation that requires the most processing time and occupied area. NTT is an

efficient method of polynomial multiplications among the different ways (School-book,

Karatsuba-Ofman). Schoolbook algorithm has a computational complexity of 𝑂 (𝑛2);

The Karatsuba and NTT algorithms have a computational complexity of 𝑂 (𝑛𝑙𝑜𝑔3) and

𝑂 (𝑛𝑙𝑜𝑔(𝑛)), respectively [22]. The NTT is the FFT defined in a finite field in which

the NTT does not use floating-point numbers and complex arithmetic. The NTT can be

designed by implementing the butterfly diagram obtained from a radix-𝑟 algorithm based

on the decimation-in-time (DIT), or decimation-in-frequency (DIF) approaches, where 𝑟 is

a power of two. By using NTT, each polynomial converts into the NTT domain in which

polynomial multiplication is transmitted to a coefficient-wise multiplication. The 𝑁𝑇𝑇𝜔 (𝑎)

and 𝐼𝑁𝑇𝑇−1
𝜔 (𝐴) are defined as:

14

𝐴𝑖 =

𝑛−1∑︁
𝑗=0
𝑎 𝑗𝜔

𝑖 𝑗 𝑚𝑜𝑑 𝑞

𝑎𝑖 = 𝑛
−1

𝑛−1∑︁
𝑗=0

𝐴 𝑗𝜔
−𝑖 𝑗 𝑚𝑜𝑑 𝑞

𝑊ℎ𝑒𝑟𝑒 𝑖 = 0, 1, ..., 𝑛 − 1

(2.2)

For most of the post-quantum cryptography algorithms, the arithmetic operations are

performed in 𝑅𝑞 = 𝑍𝑞 [𝑥]/ 𝑓 (𝑥). To speed up polynomial multiplication, it is necessary

to use the negative wrapped convolution for multiplication. Let 𝜔 be a primitive 𝑛-th

root of unity in 𝑍𝑞 in which 𝜔𝑛 ≡ 1 𝑚𝑜𝑑 𝑞 and 𝜓2 ≡ 𝜔 𝑚𝑜𝑑 𝑞; 𝑎 = (𝑎0, ..., 𝑎𝑛−1) and

𝑏 = (𝑏0, ..., 𝑏𝑛−1); 𝑐 = (𝑐0, ..., 𝑐𝑛−1) be the negative wrapped convolution of 𝑎 and 𝑏 that

each element is in 𝑍𝑞. Also, 𝑎
′, 𝑏 ′, and 𝑐′ are defined as 𝑎 ′ = (𝜓0𝑎0,𝜓1𝑎1, ...,𝜓𝑛−1𝑎𝑛−1),

𝑏
′
= (𝜓0𝑏0,𝜓1𝑏1, ...,𝜓𝑛−1𝑏𝑛−1), and 𝑐

′
= (𝜓0𝑐0,𝜓1𝑐1, ...,𝜓𝑛−1𝑐𝑛−1), respectively. Then 𝑐

′

can be calculated by the bellow equation. As each coefficient is multiplied by 𝜓, the final

result should be multiplied by powers of 𝜓 ′.

c′ = 𝑁𝑇𝑇−1
𝜔 (𝑁𝑇𝑇𝜔 (𝑎

′) ◦ 𝑁𝑇𝑇𝜔 (𝑏
′))

(2.3)

2.1.4 Binary Ring Learning With Error

The Binary Ring-LWE (Ring-BinLWE) was introduced in 2016 by Buchmann [11].

There are two main differences between Ring-BinLWE and Ring-LWE. In Ring-BinLWE,

the errors are sampled with binary coefficients, and thus Ring-BinLWE does not require

Gaussian distribution and NTT; also, the key size is smaller. These differences make

the execution of Ring-BinLWE more efficient on hardware platforms and suitable for IoT

resource-constrained devices. An optimized variant of Ring-BinLWE was published in

2019 [1], where the range of coefficients has been changed to (− ⌊𝑞/2⌋ , ⌊𝑞/2⌋ − 1). The

main advantage of changing the range is that the modular reduction is performed easily in

hardware by overflow and underflow since the new range is matched to 2’s-complement.

15

The key generation, encryption, and decryption of the Ring-BinLWE are introduced as [1]:

Key Generation

In this phase, the public-key is calculated by 𝑝 = 𝑟1 − 𝑎.𝑟2 ∈ 𝑅𝑞 (𝑝 has 𝑛 × 𝑘 bits and

𝑘 = 𝑙𝑜𝑔
𝑞

2), where 𝑎 ∈ 𝑅𝑞 is a publicly known polynomial, 𝑟2 is the private-key, and 𝑟1 is just

used for one time and after calculation can be discarded. Also, 𝑟1, 𝑟2 ∈ {0, 1}𝑛 are binary

vectors, which are chosen at random, and can be mapped to polynomial in 𝑅𝑞.

Encryption

This phase is used to encrypt the message 𝑚 ∈ {0, 1}𝑛. First, the message should

be encoded to a unique polynomial 𝑚 in 𝑅𝑞 according to equation (2.4). After that two

ciphertexts should be calculated by 𝐶1 = 𝑎.𝑒1 + 𝑒2 and 𝐶2 = 𝑝.𝑒1 + 𝑒3 + 𝑚 (𝐶1 and 𝐶2 are

𝑛 × 𝑘-bit). Also, 𝑒1, 𝑒2, and 𝑒3 ∈ {0, 1}𝑛 are errors that are randomly chosen.

𝐸𝑁𝐶𝑂𝐷𝐸 : {0, 1}𝑛 → 𝑅𝑞

(𝑚0, ...,𝑚𝑛−1) → 𝑚 =

𝑛−1∑︁
𝑖=0

𝑚𝑖 (−
𝑞

2
)𝑥𝑖

(2.4)

Decryption

By using the private-key (𝑟2), 𝐶1, and 𝐶2, the message will be decrypted by 𝑚 =

𝐶1.𝑟2 + 𝐶2 ∈ 𝑅𝑞. To obtain the message, the 𝑚 should be decoded as follow:

𝐷𝐸𝐶𝑂𝐷𝐸 : 𝑅𝑞 → {0, 1}𝑛

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 → (𝑚0, ...,𝑚𝑛−1),

𝑚𝑖 =

0,

��𝑎𝑖 − 𝑖 − ⌊
𝑛−3

2
⌉�� > 𝑞

4

1, 𝑒𝑙𝑠𝑒

(2.5)

16

2.2 Related Works

2.2.1 AES Implementation

During the past years, many hardware implementations on ASIC and FPGAs were

published in the literature for AES algorithm. Based on the utilized applications, there

are different methods for implementing AES. For high-traffic applications that require

high-speed, pipeline and loop-unrolling can be employed to achieve high throughput and

frequency. It is worth mentioning that most of the high-throughput implementations occupy

more area and resources. The other implementation of AES is the lightweight implementa-

tion for IoT edge devices that do not have enough resources for the cryptography part. Most

of the lightweight designs contain series implementations, which have low throughput and

occupy few areas.

[23] has a 32-bit data path with one shared Sub-Bytes. Their design included a big

20-to-1 8-bit MUX and four 32-bit registers for storing the plain-text and intermediate

results, and each 32-bit register has four 8-bit outputs and three 32-bit and one 8-bit input,

and one 128-bit register for storing keys. The main goal of [20] was to design a low-power

AES architecture. They considered two Sub-Bytes and one specific block for Shift-Rows,

LUT for storing RCON, and two more registers for storing the intermediate results; also,

their Mix-Columns block was 32 bit, which contained eight modules to calculate 2 · 𝑎 and

3 · 𝑎.

The design of [19] transmitted Sub-Bytes and Mix-columns to their native functions.

Also, their design included two native Sub-Bytes, which expanded the key simultaneously.

This native design, followed by two Sub-Bytes, increased the area by adding more blocks

to the design. [24] also considered a specific block for Shift-Rows that contained eight 8-bit

registers. They designed two different architectures with one Sub-Bytes and two Sub-Bytes

with different values of data-path. Their architecture included more registers for storing

keys, data, and intermediate results. There were a big 32 × 8-bit RAM and one internal

register to store the intermediate results in [25]. [21] did not explain more details about

17

their architecture. However, their architecture had an 8-bit data path that contained two

Sub-Bytes, a Mix-Columns block with two 8-bit outputs, a parallel-to-serial converter, and

a byte permutation unit.

[26] designed a nano-AES on 22𝑛𝑚 CMOS technology. They used one Sub-Bytes

among Shift-Rows and a Mix-Columns block, which included 8-bit input and 32-bit output

that encrypted data in 336 clock cycles. Also, they employed three register banks (each

containing sixteen 8-bit registers) to store keys, plain text, and intermediate results. The

design of their RCON included an 8-bit shift register followed by four control signals, one

8-bit AND gate, and one 4-bit NOR gate. The design of [27] used two blocks for Sub-Bytes

and 32-bit data-path for Mix-Columns that enabled the parallel operation of data encryption

along with on-the-fly key generation, which led to encrypting data in 160 clock cycles.

2.2.2 Binary Ring-LWE implementation

As it was mentioned in section 2.1.4, Ring-BinLWE is a variant of Ring-LWE that does

not require Gaussian sampler and NTT multiplication. Thus, it occupies less area and re-

sources compared to Rin-LWE. [11] introduced the Ring-BinLWE scheme and implemented

on an 8-bit Atmel AVR implementation. They discussed the hardness of Ring-BinLWE

based on different parameter sets and evaluated the security of Ring-BinLWE on different

platforms. [28] implemented a hardware architecture on FPGA for decryption part of Ring-

BinLWE with 𝑛 = 256 𝑞 = 256. They discussed the vulnerability of Ring-BinLWE against

physical attacks. To increase the security against differential power analysis (DPA), they

added a power side-channel countermeasure to their design. Their design had an in-place

modular reduction and required 𝑛 × 𝑛 cycles to execute multiplication. The architecture

of [28] had a maximum frequency of 135MHz, occupied 19 slices on Spartan-6, and 65𝑘

clock cycles for execution.

In [1], two hardware implementations, high-speed and lightweight architectures, of

Ring-BinLWE on ASIC and FPGA were presented for resource-constrained end-node de-

vices, containing three phases: encryption, decryption, and key generation. They selected

18

the parameter set of 𝑛 = 256 𝑞 = 256 and 𝑛 = 512 𝑞 = 256 for their implementations. The

authors used a 2’s-complement notation range for each coefficient that results in no need

for modular reduction. The high-speed architecture of [1] contained the parallel adders of

𝑎𝑥 + 𝑏 and needed 𝑛 clock cycles to complete the multiplication including adders, MUXex,

and 𝑛 8-bit registers. This design had a frequency of 10MHz and occupied 46000`𝑚2

on 65𝑛𝑚 technology. Their lightweight design serially executed the multiplication and

included two 𝑛-to1 8-bit MUXes and two big registers. The area and maximum frequency

of the lightweight architecture of [1] are 33.3MHz and 6000`𝑚2 on 65𝑛𝑚 technology,

respectively.

In [29], the authors implemented the architecture of [1] on AVR ATxmega128A1. To

increase the security against fault attacks, they applied chosen cipher-text attacks (CCA2)

[30] to their design. The generated errors and input message were encrypted by AES and

sent with the cipher-text in the encryption part. In the decryption part, first, the message

and errors were decrypted, and then the message was encrypted again based on decryption

errors. Finally, the results were compared to each other. If the result was the same, there

was no fault attack on the crypto-system. The execution time were 80.2𝑚𝑠 and 120.3𝑚𝑠 for

encryption and decryption, respectively.

19

Part II

AES Implementations

20

3. High Throughput and area-efficient AES
implementation

This chapter presents a high throughput FPGA implementation of AES-128. AES is a

well-known symmetric key encryption algorithmwith high security against different attacks

that is widely used in different applications. The main goal of this chapter is to design a high

throughput and FPGA efficiency (FPGA-Eff) crypto-system for high-traffic applications. In

order to achieve high throughput, loop-unrolling, inner and outer pipelining techniques are

employed. In AES, Sub-Bytes is one of the costly functions that occupies a large amount

of resources and has a large delay. In order to reduce the area of Sub-Bytes, New-Affine-

transformation, which is the combination of inverse isomorphic and affine transformation,

is proposed and employed. Besides that, AES has been modified according to the proposed

architecture. For the first nine rounds, Shift-Rows and Sub-Bytes have been exchanged, and

Shift-Rows is merged with Add-Round-Key. In order to make an equal latency between

stages, Mix-Columns is divided into two different stages. AES is implemented in CTR

mode on Xilinx Virtex-5 using VHDL. Section 3.1 presents cryptography modes. AES

functions’ implementations and hardware implementation of the AES are in sections 4 and

5; the implementation results and comparison are explained in sections 6; and finally the

conclusion will be in section 3.4.

The content of this chapter is originally published in: K. Shahbazi and S. -B. Ko, “High throughput

and area-efficient FPGA implementation of AES for high-traffic applications,” in IET Computers & Digital

Techniques, vol. 14, no. 6, pp. 344-352, Nov. 2020, doi: 10.1049/iet-cdt.2019.0179. The manuscript has

been reformatted for inclusion in this thesis.

21

3.1 Introduction

The advent of technologies including the internet and smartphones has made people’s

lives easier. Nowadays, people get used to digital applications for e-business, communicat-

ing with others, and sending or receiving sensitive messages. Sending secure data across the

private network or the internet is an open concern for every person. Cryptography plays an

important role in privacy, security, and confidentiality against adversaries. Cryptography al-

gorithms are divided into two different categories, symmetric and asymmetric. Asymmetric

cryptography algorithms, such as elliptic curve cryptography and Rivest–Shamir–Adleman,

use two different keys for encryption and decryption data. In comparison with the asym-

metric cryptography algorithms, the symmetric cryptography algorithms using the same

keys for encryption and decryption data and have less computation and occupy a fewer area

that makes them very hardware friendly. The advanced encryption standard (AES) is one

of the most secure, fast, and most used symmetric algorithms that have a good performance

in both software and hardware platforms. In comparison with software platforms, hard-

ware implementation of cryptography algorithms, which are application-specific integrated

circuit (ASIC) and field programmable gate arrays (FPGAs), provides higher security and

throughput. FPGA implementation has some advantages over ASIC implementation, such

as the re-configurability and low design cost. AES is used in broad applications and different

security networks, such as Wi-Fi protected access 2 system, secure sockets layer, automated

teller machines, internet of things, and digital video recorders. In addition to the security

of data transmission in many high-traffic applications that transfer a huge amount of data,

fast encryption/decryption and transmission are also required, such as high-traffic servers.

In this work, a highspeed crypto-system for high-traffic application is presented.

When designing a high-speed crypto-system, there is a relationship between security

of the design, speed that is determined by throughput, and cost in terms of area and

fabrication, which is shown in Figure 3.1. It is worth to mention that for high-speed crypto-

systems, the high priority is security and speed. In terms of security, the cryptographic

algorithm and architecture play an important role. Three important factors that affect the

22

security of an algorithm are key length, number of rounds, and the degree of confusion and

diffusion. More rounds and longer key lengths provide a safer algorithm. Confusion and

diffusion make a complex relation between plaintext, keys, and cipher. By employing the

diffusion and confusion, changing one bit of the plaintext will completely change the cipher-

text, which the attacker cannot pre-calculate what the plaintext is. In AES, an excellent

confusion and diffusion, Mix-Columns and substitution bytes (Sub-Bytes) are employed

and repeated in several rounds that make AES secure against different attacks. The speed of

the crypto-system is mainly determined by throughput. For a pipeline design, throughput

is measured by frequency and number of proceed bits in every clock cycle, and for a serial

architecture, the total number of clock cycles has a high impact on throughput. A pipeline

architecture, compared to serial one, with a loop-unrolling technique, boosts speed. Finally,

the cost of a crypto-system is directly related to the security and the speed of the design.

For instance, AES-256 provides more security than AES-128 that needs more rounds for

encryption plaintext that leads to an increase in the cost of the design. Also, the serial

designs occupy fewer gates than parallel and pipeline ones. Needless to say, stronger and

faster crypto-systems would require more costs.

Cryptography algorithms are implemented by different types of modes. There are two

different cryptographymodes, in which each cryptography algorithm is executed in different

modes. In general, the cryptography modes are divided into two categories: independent

and dependent. The main difference between them is a dependency of the previous cipher-

text; for encrypting the block ‘𝑛’ in the dependent mode, the cipher-text block ‘𝑛 − 1’

should be available. On the other hand, there is no relation for encrypting blocks in the

independent mode, which includes counter (CTR) mode and electronic codebook (ECB).

Thus, this mode is suitable for a high throughput pipeline design. Between these two

independence modes, CTR and ECB, which are used for high-speed design, CTR is more

secure than ECB and is recommended for employing in various applications.

There are various methods and ways to implement AES. In general, the works on

the AES algorithm contain fast and high throughput implementation, optimisation of the

23

Figure 3.1: An illustration of the relationship between priorities when designing a high-

speed crypto-system and the design factors that affect them

hardware design, low area, and low-power implementation. The main function of the

AES algorithm in both area occupation and latency is the Sub-Bytes function that uses

an 8-bit substitution box (S-box). There are different ways to implement the Sub-Bytes

function. One of the straightforward ways for implementing Sub-Bytes is to use look-up

table (LUT) [31] [32] [14]. Since LUT is an easy way, it has a high delay and requires an

enormous amount of memory that is not suitable for high throughput design. The other

way is to simplify the S-box table by using techniques such as sum of products (SoPs).

In [16], the Sub-Bytes has 16 modules that are derived by using Boolean simplification

based on the Karnaugh map with a 16 to 1 multiplexer. The first 4-bit input is the input

of the modules, and another 4-bit is the selection input of the multiplexer. Since 16

to 1 multiplexer is big, the Sub-Bytes suffers a high and unbreakable delay. In [15],

instead of using a 16 to 1 multiplexer, five 4 to 1 multiplexers were used. Another way

for calculating Sub-Bytes is to use composite field arithmetic [33] [34] [35]. Besides

that, there are various architecture designs for AES. AESs based on co-processor and

24

specific processor are implemented [13] [36] [37] [38]. The authors of [39] described

pipelined implementations of AES and International Data Encryption Algorithm (IDEA),

the other symmetric cryptography algorithm, with CTR mode and LUT for Sub-Bytes on

FPGA. In [15], different pipelined AES implementations in ECB and CTR mode by using

combinational logic circuits and the simplified of the S-box were presented. Some other

pipelined designs are available in [40] [41] [42].

The main goal of this chapter is to design and implement a high throughput AES-

128 algorithm for high-traffic applications. The following methods and techniques are

considered to achieve the aforementioned goal:

• The AES algorithm is modified in which Sub-Bytes and ShiftRows are exchanged for

the first nine rounds; Add-Round-Key and Shift-Rows are merged into one stage.

• The Sub-Bytes is optimised in which inverse isomorphic and affine transformation

(Af) are combined together, and new affine-transformation, hereafter referred to as

New-Aff, is proposed.

• The critical path of the composite field arithmetic for multiplicative inverters in

𝐺𝐹 (28) is considered; and the delay of Sub-Bytes is reduced by inserting registers in

optimal places.

• Mix-Columns are implemented based on logic gates and into two different stages. To

make an equal delay between these two stages, the first stage is added to Sub-Bytes.

• Full loop unrolling, inner (inserting registers between rounds) and outer (inserting

registers among functions) pipeline stages are used.

3.2 Cryptography Mode

To process the data and encrypt them, there are different cryptography modes. In gen-

eral, the cryptography modes can be divided into two different categories: independent and

dependent modes. The dependent mode contains cipher block chaining (CBC), propagating

25

CBC (PCBC), cipher feedback (CFB), and output feedback (OFB). In the dependent cryp-

tography modes, the current block depends on the previous cipher-text. In some cases, the

previous cipher-text is used as the input of the current block or one simple operation, most

of the time XOR should be executed with the current plaintext and the previous cipher-text.

Figure 3.2 shows the dependent cryptography modes. For increasing the security, CFB and

OFB use an initial vector as input.

On the other hand, the independent cryptography modes contain CTR mode and ECB.

Figure 3.3 shows the CTR and ECB configuration. These two cryptography modes are

very suitable for pipelines and high throughput design [43]. ECB is the easiest way to

use because every plaintext is encrypted without any need for previous data. However,

ECB does not have enough security in comparison with other cryptography modes and is

not suitable for sequential data blocks. The CTR mode, instead of using a constant initial

vector, uses a sequence vector as input for each block that is increased by one for every

block. Using a different initial value for each plaintext increases the security of the design.

One advantage of the CTR mode is that the encryption and decryption can be performed

by the same structure. The difference between using CTR and ECB modes for image

encryption is shown in Figure 3.4. As is observed in Figure 3.4, the edge of the encrypted

image in ECB can be easily detected; and by doing that the main features of the plain-image

are distinguishable. In comparison with ECB, the encrypted image in CTR is uniform and

indistinguishable.

3.3 AES Functions Implementation

This section describes efficient techniques for implementation of the Mix-Columns and

Sub-Bytes, and express the employed method in the proposed design.

3.3.1 Mix-Columns

There are different ways and methods for calculating the Mix-Columns. As the Mix-

Columns has fixed values, one way is to pre-calculate values and store them as a LUT. This

26

((a)) ((b))

((c)) ((d))

Figure 3.2: Different dependent cryptography modes (a) CBC, (b) PCBC, (c) CFB, (d) OFB

(IV stands for initialisation vector)

((a)) ((b))

Figure 3.3: Independent cryptography modes (a) ECB, (b) CTR

27

((a)) ((b)) ((c))

Figure 3.4: The difference between encryption of an image using CTR and ECB modes (a)

Main image, (b) Encrypted image in CTR, (c) Encrypted image in ECB

method, however, is not suitable because of high area consumption and high latency and

is not efficient for area limited applications. As the Mix-Columns calculation is not very

complicated, it is possible to calculate the values by incoming data according to equation

(3.1).

©«

𝑎′

𝑏′

𝑐′

𝑑′

ª®®®®®®®¬
=

©«

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

ª®®®®®®®¬
×

©«

𝑎

𝑏

𝑐

𝑑

ª®®®®®®®¬
→

𝑎′ = 2.𝑎 + 3.𝑏 + 𝑐 + 𝑑

𝑏′ = 𝑎 + 2.𝑏 + 3.𝑐 + 𝑑

𝑐′ = 𝑎 + 𝑏 + 2.𝑐 + 3.𝑑

𝑑′ = 3.𝑎 + 𝑏 + 𝑐 + 2.𝑑

→

𝑎′ = 2.𝑎 + (2.𝑏 + 𝑏) + 𝑐 + 𝑑

𝑏′ = 𝑎 + 2.𝑏 + (2.𝑐 + 𝑐) + 𝑑

𝑐′ = 𝑎 + 𝑏 + 2.𝑐 + (2.𝑑 + 𝑑)

𝑑′ = (2.𝑎 + 𝑎) + 𝑏 + 𝑐 + 2.𝑑

(3.1)

In equation (3.1), ‘.’ is a multiplication modulo, the irreducible polynomial 𝑚(𝑥) =

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1), and ‘+’ is XOR. By simplifying 3𝑎 to 2.𝑎 + 𝑎, the goal is to calculate

the multiplication with 2. Here there are two different ways to calculate the 2.𝑎. The

multiplication by 2 can be written by:

28

(2.𝑎)𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 𝑎7𝑎6𝑎5𝑎4𝑎3𝑎2𝑎1𝑎0−→{
(𝑎7𝑥

7 + 𝑎6𝑥
6 + 𝑎5𝑥

5 + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥

1 + 𝑎0) × (𝑥1)
}

𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) →{
𝑎7𝑥

8 + 𝑎6𝑥
7 + 𝑎5𝑥

6 + 𝑎4𝑥
5 + 𝑎3𝑥

4 + 𝑎2𝑥
3 + 𝑎1𝑥

2 + 𝑎0𝑥
1}

𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1)

(3.2)

Now, the reduction over the module 𝑚(𝑥) should be calculated. As the element of the

𝑥8 is 𝑎7, 𝑚(𝑥) is multiplied by 𝑎7 so:

(𝑎7𝑥
8 + 𝑎6𝑥

7 + 𝑎5𝑥
6 + 𝑎4𝑥

5 + 𝑎3𝑥
4 + 𝑎2𝑥

3 + 𝑎1𝑥
2 + 𝑎0𝑥

1)

+ 𝑎7(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) →

(𝑎7 + 𝑎7)𝑥8 + 𝑎6𝑥
7 + 𝑎5𝑥

6 + 𝑎4𝑥
5 + (𝑎3 + 𝑎7)𝑥4 + (𝑎2 + 𝑎7)𝑥3

+ 𝑎1𝑥
2 + (𝑎0 + 𝑎7)𝑥1 + 𝑎7 →

𝑎6𝑥
7 + 𝑎5𝑥

6 + 𝑎4𝑥
5 + (𝑎3 + 𝑎7)𝑥4 + (𝑎2 + 𝑎7)𝑥3 + 𝑎1𝑥

2 + (𝑎0 + 𝑎7)𝑥1 + 𝑎7

(3.3)

Thus, 2.𝑎 can be calculated by:

𝑥 = (2.𝑎)𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) →

𝑥7 = 𝑎6

𝑥6 = 𝑎5

𝑥5 = 𝑎4

𝑥4 = 𝑎7 ⊕ 𝑎3

𝑥3 = 𝑎7 ⊕ 𝑎2

𝑥2 = 𝑎1

𝑥1 = 𝑎7 ⊕ 𝑎0

𝑥0 = 𝑎7

(3.4)

As 2.𝑎 is a shift bit to left, the other way to calculate 2.𝑎 using one-bit shift to left, one

Mux 2×1, and a NOT logic gate. In equation (3.4), when 𝑎7 = 0, 2.𝑎 is equal to the one-bit

29

Figure 3.5: The proposed Mix-Columns-1 with Shift, NOT, and Mix 2 × 1

shift to the left of 𝑎, and when 𝑎7 = 1, 2.𝑎 is calculated by one-bit shift to the left of 𝑎

XOR by (𝑥4 + 𝑥3 + 𝑥 + 1), which is equal to ‘1𝑏’ in hex. As ‘1𝑏‘ is fixed, the result can be

transferred to NOT gate. The diagram of calculating 2.𝑎 by Mux, Shift, and NOT is shown

in Figure 3.5. In the proposed design, the Mix-Columns is executed in two different stages:

in one stage, which is called ‘Mix-Columns-1’, 2.𝑎 is calculated; in another stage, which is

called ‘Mix-Columns-2’, the final values of equation (3.1) is computed.

3.3.2 Sub-Bytes

Sub-Bytes is the most costly transformation in AES, in both time and area aspects. The

first step for finding the values of this function is to calculate the multiplicative inverse of

inputs over 𝐺𝐹 (28). The multiplicative inverse of 𝑓 (𝑥) is 𝑔(𝑥) that 𝑓 (𝑥).𝑔(𝑥)𝑚𝑜𝑑 (𝑥8 +

𝑥4 + 𝑥3 + 𝑥 + 1) = 1. The second step is computation over an Af. The important effect of

applying an invertible Af before and after the Sub-Bytes is that the resistance of S-boxes

against most attacks remains unchanged [44]. Equation (3.5) is the Af, which 𝑔(𝑥) =

(𝑎′7𝑎
′
6𝑎
′
5𝑎
′
4𝑎
′
3𝑎
′
2𝑎
′
1𝑎
′
0) is the multiplicative inverse of 𝑓 (𝑥), and 𝑌 is the Sub-Bytes of the

𝑓 (𝑥).

30

𝑌 = 𝐴 𝑓 (𝑔(𝑥)) +Φ =

©«

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®¬

×

©«

𝑎′7

𝑎′6

𝑎′5

𝑎′4

𝑎′3

𝑎′2

𝑎′1

𝑎′0

ª®®®®®®®®®®®®®®®®®®®¬

⊕

©«

0

1

1

0

0

0

1

1

ª®®®®®®®®®®®®®®®®®®®¬

(3.5)

There are different hardware implementations of Sub-Bytes function. Direct calculation

of the multiplicative inverse is not easy. As all of the values are available, one of the

straightforward implementations of the S-box is pre-calculating the values and storing them

in a LUT read only memory. The most significant part of the input determines the row of

the table and the least significant part determines the column of the table. The read and

write from the LUT to registers need high latency and more areas. Thus, LUT is not an

efficient method for high-speed application and pipeline design.

The other way is the Boolean simplification map for the pre-calculation of Sub-Bytes

using truth table based on the Karnaughmap tomake a direct relation between the parameter

of the Sub-Bytes function. The simplification of the whole S-box table is not an easy way.

The authors of [16] divided the S-box table into 16 tables and for each sub-table the SoP

is calculated as a module logic function. The 16 to 1 multiplexer was used to achieve the

output. The most significant 4-bit are the inputs of the modules and the least significant

4-bit are used as the selector of the multiplexer. Although this method reduces the latency

of the S-box by LUT, it needs a large area too.

Instead of working with the S-box, the multiplicative inverse is calculated by composite

field arithmetic and followed by the Af. The composite field arithmetic is based on𝐺𝐹 (21),

𝐺𝐹 (22), and 𝐺𝐹 ((22)2). As a result, the element that is on 𝐺𝐹 (28) should be mapped to

its composite field representation. The isomorphic function, ‘𝛿’, and its inverse, ‘𝛿−1’ are

31

used to transfer between𝐺𝐹 (28) and its composite field and vice versa (equations (3.6) and

(3.7)). After mapping to the composite field, the elements in 𝐺𝐹 (28) are decomposed to

the lower order fields of 𝐺𝐹 ((22)2), 𝐺𝐹 (22), and 𝐺𝐹 (21) by the irreducible polynomials

equation (3.8).

𝛿 × 𝑥 =

©«

1 0 1 0 0 0 0 0

1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 1 0

0 1 0 0 0 0 1 1

ª®®®®®®®®®®®®®®®®®®®¬

×

©«

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

ª®®®®®®®®®®®®®®®®®®®¬

(3.6)

𝛿−1 × 𝑥 =

©«

1 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 0 0 0 1 0

0 1 1 1 0 1 1 0

0 0 1 1 1 1 1 0

1 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0

0 1 1 1 0 1 0 1

ª®®®®®®®®®®®®®®®®®®®¬

×

©«

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

ª®®®®®®®®®®®®®®®®®®®¬

(3.7)

𝐺𝐹 (22) → 𝐺𝐹 (2)

𝐺𝐹 ((22)2) → 𝐺𝐹 (22)

𝐺𝐹 (((22)2)2) → 𝐺𝐹 ((2)2)

→

𝑃0(𝑥) : 𝑥2 + 𝑥 + 1

𝑃1(𝑥) : 𝑥2 + 𝑥 + 𝜙, 𝑤ℎ𝑒𝑟𝑒 𝜙 = {10}2
𝑃2(𝑥) : 𝑥2 + 𝑥 + _, 𝑤ℎ𝑒𝑟𝑒 _ = {1100}2

(3.8)

One of the advantages of using the composite field arithmetic is to reduce the area

of Sub-Bytes as well as it is an efficient method for pipeline design, while the hardware

32

complexity is its disadvantage. As it is mentioned, the Sub-Bytes consists of two steps: in

the first step, the multiplicative inverse in 𝐺𝐹 (28) is calculated; the second step is to apply

the Af. Let ‘Mul’ and ‘S’ define as multiplicative inverse and Sub-Bytes. Thus, Sub-Bytes

can be written as follows:

𝑆(𝑓 (𝑥)) = 𝐴 𝑓 (𝑔(𝑥)) +Φ

𝑆(𝑓 (𝑥)) = 𝐴 𝑓 (𝛿−1(𝑀𝑢𝑙 (𝛿. 𝑓 (𝑥)))) +Φ

𝑆(𝑓 (𝑥)) = 𝐴 𝑓 .𝛿−1(𝑀𝑢𝑙 (𝛿. 𝑓 (𝑥))) +Φ

𝑆(𝑓 (𝑥)) = 𝛾(𝑀𝑢𝑙 (𝛿. 𝑓 (𝑥))) +Φ

(3.9)

The ‘𝛾’ is calculated by: ‘𝛾 = 𝐴 𝑓 .𝛿−1’; thus, instead of using two different matrices

in two different stages, one matrix is used in the design. 𝛾 is called New-Aff. New-Aff is

written as:

𝛾 = 𝐴 𝑓 .𝛿−1 =

©«

1 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0

1 0 0 1 0 0 1 1

0 0 0 0 0 1 1 1

0 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1

1 1 0 0 0 1 1 1

ª®®®®®®®®®®®®®®®®®®®¬

×

©«

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

ª®®®®®®®®®®®®®®®®®®®¬

(3.10)

Figure 3.6 shows the employed multiplicative inverse 𝐺𝐹 (28) in the proposed architec-

ture. In Figure 3.6, ‘𝛿’ is the isomorphic mapping to composite fields, ‘𝑥2’ is the squarer in

𝐺𝐹 (24), ‘_’ is the multiplication with constant ‘_’ in the𝐺𝐹 (24), ‘𝑥−1’ is the multiplicative

inversion in 𝐺𝐹 (24), and ‘𝑋’ is the multiplication operation in 𝐺𝐹 (24).

In Figure 3.6, _𝑥2 is squarer in 𝐺𝐹 (24) followed by multiplication with constant _ in

𝐺𝐹 (24). Every binary number in the Galois field ‘𝑞’ can be represented by 𝑏𝑥 + 𝑐, where

33

Figure 3.6: Implementation of Sub-Bytes using composite field with the combination of Af

and 𝛿−1

‘𝑏’ is the upper half-term (‘𝑞𝐻’) and ‘𝑐’ is the lower half-term (‘𝑞𝐿’). By considering this

idea and equation (3.8), parameters in Figure 3.6 can be derived. For example, to compute

the squaring in 𝐺𝐹 (24), 𝐴 = 𝐵2, which ‘𝐴’ and ‘𝐵’ are elements in 𝐺𝐹 (24), is equal to the

(𝐴𝐻𝑥 + 𝐴𝐿) = (𝐵𝐻𝑥 + 𝐵𝐿)2, and by computation equation (3.11) is achieved.

𝐴3 = 𝐵3

𝐴2 = 𝐵3 ⊕ 𝐵2

𝐴1 = 𝐵2 ⊕ 𝐵1

𝐴0 = 𝐵3 ⊕ 𝐵1 ⊕ 𝐵0

(3.11)

Multiplication with constant _ can be performed by the same way as squarer. By using

the achieved equations for multiplication and squarer, the parameter _𝑥2 is simplified and

calculated by

𝑦 = _𝑥2 →

𝑦3 = 𝑥0 + 𝑥1 + 𝑥2

𝑦2 = 𝑥0 + 𝑥3

𝑦1 = 𝑥3

𝑦0 = 𝑥2 + 𝑥3

(3.12)

Similar to themultiplication inverse in𝐺𝐹 (28), there are different ways of implementing

34

Figure 3.7: Implementations of inversion in 𝐺𝐹 (24) by square and multiplication approach

Table 3.1: Multiplicative inverse over 𝐺𝐹 (24)

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑥−1 0 1 3 2 f c 9 b a 6 8 7 5 e d 4

the multiplication inverse for 𝐺𝐹 (24). In a Galois field, each non-zero element ‘𝑥’ in

𝐺𝐹 (𝑞𝑚) can be represented by 𝑥 = 𝑔𝑛, where ‘𝑔’ is a primitive element and ‘𝑛’ is a unique

number with 0 ≤ 𝑛 ≤ 𝑞𝑚−2. Furthermore, 𝑔𝑞𝑚−1 is equal to {01}. For the two elements

𝑎 = 𝑔𝛼 and 𝑏 = 𝑔𝛽, 𝑎.𝑏 is equal to 𝑔𝛼+𝛽. The multiplicative inversion in 𝐺𝐹 (24) for ‘𝑥’ is

𝑥−1 that 𝑥.𝑥−1 = 𝑥15 → 𝑥−1 = 𝑥14. Also, 𝑥14 can be written by ((𝑥2)2)2.(𝑥2)2.𝑥2. Thus, the

inversion in 𝐺𝐹 (24) is achieved by using the square of ‘𝑥’ and multiplication. Figure 3.7

shows the circuit for multiplicative inverse in 𝐺𝐹 (24).

The other way to compute 𝑥−1 over 𝐺𝐹 (24) is by decomposing the 𝐺𝐹 (24) to the lower

order fields, such as 𝐺𝐹 (28), of 𝐺𝐹 (22) and 𝐺𝐹 (21) by the irreducible polynomials. The

third way is to pre-calculate the elements and store them. In comparison with 𝐺𝐹 (28),

𝐺𝐹 (24) has only 16 elements and does not occupy a lot of resources, which is used for the

design. The pre-calculation results of 𝐺𝐹 (24) are shown in Table 3.1.

3.4 Proposed Architecture and Security Analysis

In the previous section, the methods of the hardware implementation of the Sub-Bytes

andMix-Columns are explained. In this part, the modified AES algorithm, the employed ar-

35

chitecture, and security analysis are discussed. For the proposed architecture, the CTRmode

is employed, which increases security and is the best option for the pipeline implementation

of sequential data blocks.

3.4.1 Modified AES algorithm

According to Figure 2.1, theAES algorithmhas: Add-Round-key, followed by iteratively

Sub-Bytes, Shift-Rows, Mix-Columns, and Add-Round-Key in sequence and execute for

nine rounds, and finally, Sub-Bytes, Shift-Rows, and Add-Round-key are executed (Figure

3.8a). Since Shift-Rows and Sub-Bytes are executed on each byte of the input, these two

functions can be exchanged without any effect on final results (Figure 3.8b). By moving

Shift-Rows to the previous round, the new design of the AES algorithm is obtained. In

the modified version, which is shown in Figure 3.8c, Add-RoundKey and Shift-Rows are

merged to one block, which is called ARK/Shift, for the first nine rounds; and the last round

does not have Shift-Rows function. The advantages of performing this modification are as

follows:

• Considering the Shift-Rows and Add-Round-Keys in a separate pipeline stage occu-

pies more area, by merging these two functions into one block, the number of pipeline

stages and occupied area have been reduced.

• In comparison with Mix-Columns and Sub-Bytes, Add-roundKey and Shift-Rows are

low latency functions of the algorithm, and also merging these two functions does

not have any effect on the critical path of the design.

• One part of Mix-Columns, Mix-Columns-1, can be transferred to Sub-Bytes. By

doing that the latency of the Mix-Columns is reduced.

3.4.2 Proposed hardware structure

Themain contribution of this design is achieving high throughput and efficient hardware

implementation. To achieve this goal, loop unrolling, inner pipelining, and outer pipelining

36

Figure 3.8: The process of modifying the AES algorithm based on the proposed design

are employed. The main idea of loop unrolling is to iterate the design in a number of times.

For the loop unrolling, the loop unrolling factor, ‘𝑟’, is the number of loops that are unrolled

to implement the design, and ‘𝑇’ is the total number of iterations (i.e. for AES-128, the

number of rounds is 10). Thus, the number of rounds that need to be iterated to encrypt

one block of data is ‘𝑅 = 𝑇
𝑟
’. If ‘𝑅 = 1’, the design is a full loop unrolling; if ‘𝑅 > 1’, it is a

partial loop unrolling [45].

The proposed architecture is a full loop unrolling design (‘𝑟 = 𝑇 = 10’). Two advantages

of using loop unrolling technique are: first, it mitigates and modifies the critical path by

removing all rounds and loops in the design; second, the implementation can easily be

extended to outer-round pipelining. The loop unrolling technique converts the design to the

pipeline one by inserting registers between the unrolled rounds. The pipeline design is a

high performance hardware implementation and a wise way to implement high throughput

and fast architecture. In comparison with the non-pipeline design, such as serial, that the

plaintext should feed to the design after getting the previous plaintext, the pipeline design

37

Figure 3.9: The proposed block diagram of AES with pipeline and loop unrolled technique

(a) Loop unrolled and outer pipelined stages, (b) Inner pipelined stages

feeds by plaintext in each clock cycle. Thus, the rate of encryption will be increased.

Besides that, the pipeline design increases the security against classical cryptanalysis such

as differential power analysis [46]. The block diagram of AES with loop unrolled, outer

pipelined, and inner pipelined is shown in Figure 3.9.

Besides the outer pipeline, the inner pipeline is used for each round of the algorithm,

which decreases the latency of the design. The diagram for one round of the inner pipelined

AES implementation is shown in Figure 3.9(b). The inner pipeline is used in inside Sub-

Bytes and Mix-Columns. As is mentioned, Mix-Columns and Sub-Bytes have high latency

for the design. To achieve the low latency and high frequency of the design, these two

functions are divided into some sub-stages with approximately equal delay.

Ever since using the composite field for Sub-Bytes, the Sub-Bytes function has been a

high critical path; thus, this unit may need to be divided into more sub-pipeline stages to

achieve low latency. The critical path for Sub-Bytes is multiplication operation in 𝐺𝐹 (24).

38

Figure 3.10: Pipeline stage through themultiplication operation (a)Multiplication operation

in 𝐺𝐹 (24), (b) Multiplication operation in 𝐺𝐹 (22)

The multiplication operation in 𝐺𝐹 (24) is shown in Figure 3.10(a) (‘×’ in Figure 3.10(a) is

the multiplication operation in 𝐺𝐹 (22)). The multiplication operation in 𝐺𝐹 (22) is shown

in Figure 3.10(b).

Execution of the Mix-Columns in one clock has a high latency. As is explained in the

previous section, the Mix-Columns contains two parts, in one part 2.𝑎 is calculated and then

the inputs are XORed to each other according to the Mix-Columns matrix. To reduce the

delay, Mix-Columns, which is shown in Figure 3.11, is executed into two different stages:

in one stage 2.𝑎 of each byte of the state is calculated by equation (3.4), in the other stage,

the output is computed according to equation (3.1). Mix-Columns-1 is transferred to the

last stage of Sub-Bytes.

In AES-128, the keys are 128-bit (such as input state, keys have 16 bytes for each round),

which is expanded for the next rounds. AES-128 is executed ten times that need 4×10 = 44

columns of keys. In the proposed design, keys are expanded before running the algorithm

and are stored into registers.

39

Figure 3.11: Execution of Mix-Columns in two stages

3.4.3 Security analysis of the proposed crypto-system

The security of a crypto-system contains two parts: the algorithm and the implemen-

tation. In the proposed architecture, AES is implemented without any alteration on the

algorithm’s functions. Since the content of AES has not been changed, it is expected the

design keeps the same level of confidentiality and security.

In the implementation side, there are some attacks and threats that depend on the

implementation design. A side-channel attack is implementation-dependent. The target

of side-channel attacks is exploiting the relationship between physical attributes, such as

power consumption and timing behaviour, and the manipulated data. Loop unrolling is

a recommended technique for increasing the security against side-channel attacks [47].

Loop unrolling, inner-round pipelining, and outer-round pipelining are used for the design,

which guarantees reasonable protection from side-channel attacks. Also, the proposed

architecture is secure against timing attacks because (𝑖) there is no conditional branches

and dependency between the inputs and cipher-text; (𝑖𝑖) for encrypting each plaintext, the

proposed architecture executes in a constant number of clock cycles; and (𝑖𝑖𝑖) the critical

40

path delay of the proposed architecture is constant during the execution [48].

3.5 Implementation results, simulation, and comparison

The results of the implementation are reported in this section. The target FPGA isXilinix

Vertix-5 (XC5VLX85-FF676-3) by using ISE 14.7 and ISim 14.7 for synthesis, simulation,

and post-placement timing results with VHDL. In the pipelined AES implementations,

plaintext blocks are accepted in each clock cycle. As the design is pipelined, the throughput

is calculated by the number of processed bits per cycle, which is 128-bit for the design,

multiplied by the frequency. Thanks to the pipelined implementation, reducing the latency

of the design by inserting the pipeline stage in optimised placement, and exchanging and

merging some part of the AES, the achieved clock cycle is 1.607𝑛𝑠 and the frequency is

622.4 MHz. The throughput of the design is 79.7 Gbps. Moreover, the FPGA efficiency

(FPGA-Eff) is a parameter to consider the hardware resources of a design and it is calculated

by the design’s throughput divided by the number of slices (in Mb/s per slice). However,

different articles calculated FPGA-Eff by a different number of slices that contains number of

slices LUT and number of occupied slices (the detail of implementation results are written

in Table 3.2), in which the total number in Vertix-5 (XC5VLX85) is 51840 and 12960,

respectively. Table 3.2 shows the result of the proposed work and some other comparable

FPGA implementations. The first five implementations, including the proposed work, are

on the same platform.

The experiments performed in [15] [39] [49] are in CTR mode. In [15], four 128-bit

AES cores are executed in parallel; as the authors of [15] havementioned that the throughput

of a single core is a quarter of their four designs, the throughput for one core is equal to

44.7 Gbps. The authors of [15] did not mention which number of slices they had used for

calculation FPGA-Eff. Since the reported slice number in [15] is closed to the total number

of Slices-LUT in FPGA, it is assumed that the reported number would be the number of

Slices-LUT. The encryption part of the AES algorithmwas designed by Farashahi et al. [51]

that included a feedback loop and iterative architecture, which occupied fewer areas and

41

Ta
bl
e
3.
2:
Im
pl
em
en
ta
tio
n
re
su
lts
an
d
co
m
pa
ris
on

Re
fe
re
nc
es

D
ev
ic
e

Fr
eq
ue
nc
y,

(M
H
z)

Re
gi
ste
r
LU
T
O
cc
up
ie
d
Sl
ic
es
B
R
A
M
Th
ro
ug
hp
ut

(G
bp
s)

FP
G
A
-E
ff
(M
bp
s/
sl
ic
e)

LU
T

O
cc
up
ie
d

Th
is
w
or
k
V
irt
ex
-5
X
C
5V
LX
85

62
2.
4

19
,1
23
14
96
6

59
74

0
79
.7

5.
3

13
.3

[1
5]

1
V
irt
ex
-5
X
C
5V
LX
85

34
8.
8

30
80
6

0
17
8.
62

5.
8

[4
9]

V
irt
ex
-5
X
C
5V
LX
85

57
6.
0

-
22
99
4

-
0

73
.7

3.
2

-

[5
0]

V
irt
ex
-5
xc
5v
fx
70
t

46
0.
0

-
-

97
56

0
60
.0

-
6.
12

[5
1]

V
irt
ex
-5
X
C
5V
LX
85

52
80
4

-
35
57

-
-

67
.6

19
.0

-

[3
9]

X
C
2V
60
00
-6

19
4.
7

-
-

37
20

28
24
.9

-
6.
7

[5
2]

V
irt
ex
-5
X
C
5V
FX
70
T

91
.6

-
20
30

-
28

0.
9

0.
5

-

[5
3]

V
irt
ex
-5
X
C
5V
LX
85

42
5.
0

92
2

56
4

30
3

10
1.
3

2.
32

4.
4

[5
4]

V
irt
ex
-5
X
C
5V
LX
85

24
2.
2

-
52
56

17
45

0
3.
1

0.
62

1.
82

[5
5]

V
irt
ex
-5
X
C
5V
LX
85

33
9.
1

-
13
38

39
9

0
4.
3

3.
22

10
.8

2

[5
6]

V
irt
ex
-5
X
C
5V
LX
11
0T

25
0.
0

-
-

-
0

31
.2

-
-

1
It
ha
sf
ou
rc
or
es
;t
o
m
ak
e
a
fa
ir
co
m
pa
ris
on
an
d
ac
co
rd
in
g
to
[1
5]
,t
he
th
ro
ug
hp
ut
sh
ou
ld
be
di
vi
de
d
by
fo
ur
.T
he
th
ro
ug
hp
ut

fo
ra
si
ng
le
co
re
is

17
8.

62 4
=

44
.7
G
bp
s.

2
M
an
ua
lly
ca
lc
ul
at
ed

42

required more clock cycles. To make a fair comparison with [51], AT=area × time has been

calculated, which is a common and wide measurement in literature, including [1]. As the

proposed crypto-system has been tested by 688 × 576 pixels images, the encryption time

in [51] has been manually calculated, and it is equal to 507`𝑠 (for the proposed design

it is equal to 40`𝑠). Then, AT is 1.8 and 0.6𝑠× slices for [51] and the proposed design,

respectively, which has 66% improvement through encryption over the same task. As a

result, although the design in [51] occupied a few LUTs, it is not suitable for encrypting

sequential and dependent large data, such as images. Although the method proposed in [39]

was implemented in different FPGAs, it is pipelined with CTR mode, which is very similar

to the proposed design. As is observed from Table 3.2, the proposed design has the highest

throughput, 79.7 Gbps. The throughput of the proposed design is improved by 8.02%,

compared with the best previous work [49], for implementing on the mentioned FPGA and

same cryptography mode. By considering the number of occupied slices, the proposed

design’s FPGA-Eff is 13.3Mbps/slice by 22.63% improvement over [55].

The proposed crypto-system can encrypt and decrypt different plaintexts and plaint-

images. Owing to two reasons, the proposed design is tested on some medical images: first,

images have sequential and dependent data blocks; second, the transmission of medical

images over the network has been increased rapidly. To show the independency of inputs,

however, coloured images with different sizes have been tested by the proposed crypto-

system. Block random access memories (BRAM) are used to store image data when testing

encryption or decryption using the proposed design. Afterwards, the data is sent to the

crypto-system, and the en/decrypted results are then sent back to the host PC. Table 3.2 lists

the results of the proposed AES crypto-system and offers a direct comparison to related

works.

Histogram of an image is a statistical feature that represents the total distribution of

pixel values in a digital image. A secure and effective crypto-system should produce a

uniform cipher histogram distribution, which guarantees the resistance against statistical

attacks. Figure 3.12 depicts the main tested images, the encryption (in noiseless status) of

43

images, and the histogram of the images and their corresponding ciphers.

The histogram of a coloured image is produced by taking the histograms over each of its

three channels (red, green, and blue). As can be seen in Figure 3.12, the histograms of the

encrypted images by the proposed crypto-system are uniform for every encrypted image and

different from the input images. The proposed crypto-system encrypts a grey-scale image

with 688 × 576 pixels in 40`𝑠. Every coloured image has three channels (red, green, and

blue); and to encrypt (or decrypt) a coloured image, every channel should be encrypted (or

decrypted) independently and finally merged together. A coloured image with 688×576×3

pixels is encrypted in 120`𝑠.

44

(a)

(b)

(c)

(d)

Figure 3.12: Encryption, decryption, and histogram of coloured images with different size

by using the proposed crypto-system (a) Main images, (b) Histograms of main images, (c)

Encrypted images, (d) Histograms of encrypted images

45

4. Area-Efficient Nano-AES Implementations

Due to the fast-growing number of connected tiny devices to the Internet of Things

(IoT), providing end-to-end security is vital. Therefore, it is essential to design the crypto-

system based on the requirement of resource-constrained IoT devices. This chapter presents

a lightweight AES, a high-secure symmetric cryptography algorithm, implementation on

FPGA and 65𝑛𝑚 technology for resource-constrained IoT devices. The proposed archi-

tecture includes 8-bit data-path and five main blocks. We design two specified register

banks, Key-Register and State-Register, for storing the plain-text, keys, and intermediate

data. To reduce the area, Shift-Rows is embedded inside the State-Register. To adapt the

Mix-Column to 8-bit data-path, an optimized 8-bit block for Mix-Columns with four inter-

nal registers is designed, which accept 8-bit and send back 8-bit. Also, a shared optimized

Sub-Bytes is employed for the key expansion phase and encryption phase. To optimize Sub-

Bytes, we merge and simplify some parts of the Sub-Bytes. To reduce power consumption,

we apply the clock gating technique to the design. Section 4.1 presents the motivation and

introduction of the design; the proposed 8-bit data-path AES architecture and its blocks

are presented in Section 4.2; section 4.3 presents the implementation results, analysis, and

comparison with other similar works;

The content of this chapter is originally published in: K. Shahbazi and S. -B. Ko, “Area-Efficient Nano-

AES Implementation for Internet-of-Things Devices,” in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 29, no. 1, pp. 136-148, Jan. 2021, doi: 10.1109/TVLSI.2020.3033928. Themanuscript

has been reformatted for inclusion in this thesis.

46

4.1 Introduction

Internet of things (IoT) is a wide network that a myriad of tiny devices are connected

to each other and transmitted data. This information could be part of a smart environment,

such as e-health, public transportation, and so on; these tiny devices could be part of a

high-tech network from sensing technology, communication technology, data processing,

to cloud computing, and artificial intelligence. As the number of connected devices has

been exponentially increased, providing security for all the transmitted information in most

scenarios is not an easy task. Themain reason is thatmost of the end-node tiny devices do not

have enough resources for the cryptography part. Due to a fast-growing IoT environment,

designing low-cost cryptography architecture is an important research area. Lightweight

cryptography architectures are particularly interesting for battery-powered devices, which

are widely used in IoT end node devices.

Advanced Encryption Standard (AES) is one of the secure symmetric cryptography

algorithms that is widely used in different networks and is the main security part in various

applications, platforms, and networks, such as IoT, LoraWan [57], and in other Internet

standards. According to the length of the key, AES provides different security levels.

Based on [6], the AES algorithm with a 256-bit key is secure enough in the quantum era,

which means this algorithm can provide the security requirement of different levels of IoT

applications and protocols. Some of the disadvantages of the software implementation

of AES are the high latency for processing the data and transmission and consumption

of more power [17]. As a result, the tendency of hardware implementation has been

increased for high-performance applications and resource-constrained devices. The AES

implementations for resource-constrained devices contain a serial architecture with 8, 16,

or 32-bit data-path, which leads to low throughput.

In this work, we propose a 8-bit data-path architecture for resource-constrained devices

or mobile SoCs. In comparison to 32-bit data-path, 8-bit data-path occupies fewer internal

wires. We try to reduce the number of blocks, employ the low area design, and try to

merge functions to reduce the size of the design. Among the other blocks, the proposed

47

design includes two specified register banks, State-Register and Key-Register, that are based

on shift-register memory and used for storing keys, plain-text, and intermediate results.

These two registers have a major role during the key expansion and encryption phase.

We implement the proposed architecture on FPGA and ASIC 65𝑛𝑚 technology. Based

on the NIST lightweight cryptography [58], the ASIC implementation of the proposed

architecture is proper for crypto-systems in resource-constrained IoT devices. The hardware

implementation results appear to be better than previous works. Our proposed design

improves the area and Area-Delay-Product (ADP) for chip design by 2.4% and 71.7%,

respectively; and improves the core area with power rings by 22.1% on 65𝑛𝑚 technology

compared with state-of-the-art works.

The main contribution of this chapter is to design a lightweight AES architecture for

IoT resource-constrained devices. To achieve this goal, some of the best implementation

techniques and design specified blocks according to the mentioned goals are employed as

follows:

• In order to reduce the required logic, the Shift-Rows is embedded inside the State-

Register.

• We optimize Sub-Bytes block and share it with key expansion phase and encryption

phase, which results in 15.5% area reduction.

• Although Mix-Columns for executing requires 32-bit at the same time, we design

an optimized 8-bit block for Mix-Columns with 8-bit input and output that is based

on the structure of 8-bit data-path, which is followed by Add-Round-Key. Thus, the

results send to Add-Round-Key byte-by-byte. In comparison to 32-bit Mix-columns,

it is not necessary to store the results in the registers or increase the data-path for

Key-Register to 32-bit.

• To reduce the power consumption of the design, the clock gating technique is applied

in different parts of the design, which leads to reduce the power consumption by

18.9% on 65𝑛𝑚 technology.

48

4.2 8-Bit nano-AES data path accelerator

Out 1

Out 2

CNTL
0

1

0

1

Input-Key

Input-Plaintext

Key-Register

State-Register Sub-Bytes Mix-Columns

RCON

0

1
Output

Control
Unit

Figure 4.1: The architecture of the proposed nano-AES design

In this section, we explain the architecture of the proposed 8-bit data-path nano-AES.

Our proposed architecture is presented in Figure 4.1. The design includes one Sub-Bytes

for both key expansion and encryption, one 8-bit Mix-columns, two register banks for

storing keys (called Key-Register) and plain-text (called State-Register), which also act as

temporary registers for storing the intermediate results, RCON block, and control unit.

Furthermore, a bypass circuit is employed in the Mix-Columns and Sub-Bytes to avoid

unnecessary operations. In order to store intermediate results into register banks, the design

has two feedback paths: one in the key expansion and return the key into the key bank, and

the other one in the encryption path.

Figure 4.2 shows the structure of the proposed State-Register. The State-Register

consists of sixteen 8-bit registers, each register contains 8 flip-flops. State-Register is based

on a shift-register memory topology, which in each cycle one 8-bit is fed to the design and

one 8-bit is stored in the State-Register if needed. To reduce the area, we do not design a

specific block for Shift-Rows. Since Shift-Rows and Sub-Bytes are executed on each byte

of the input, these two functions can be exchanged without any effect on final results. We

calculated the final results after Shift-Rows function, and applied it to the State-Register.

One of the State-Register’s duty is to execute Shift-Rows. Each register of State-Register

contains one or two inputs that requires a multiplexer to select from two inputs. One input

49

RS0

RS1

RS2

RS3

RS4

RS5

RS6

RS7

RS8

RS9

RS10

RS11

RS12

RS13

RS14

RS15

CS0

CS1

CS2

CS3

Clock

Input

Figure 4.2: The structure of the proposed State-Register with Shift-Rows, control circuitry,

and clock gating technique

receives the data from the previous register to execute the encryption phase and pass the data

between internal registers (The vertical interconnections among registers in each column in

Figure 4.2). The other one includes some interconnections between different units of the

State-Register to execute Shift-Rows (horizontal interconnections among registers in each

row in Figure 4.2). Thus, Shift-Rows is done by wiring; and this completely removes the

logic for Shift-Rows step, based on [59].

[60] designed a specific block for executing Shift-Rows that required twelve registers. A

specific block for executing Shift-Rows occupiesmore area and is not suitable for lightweight

design. Compared to the proposed embedded Shift-Rows inside the State-Register, if we

apply the Shift-Rows of [60] into the proposed State-Register, the Shift-Rows is executed

in more clock cycles (150 more clock cycles for execution the crypto-system) and has a

complicated Control-Unit for activating signals. [19] borrowed the design of Shift-Rows

from [60]. The Shift-Register of [19] contained three 2-1 MUXs and one 4-1 MUX;

the proposed design contains twelve 2-1 MUXs. In [19], each MUX and some of the

50

registers has its own control signal that makes the control unit complicated. As a result,

it causes increasing the switching factor followed by increasing power consumption (the

power consumption is available in Table 4.3).

Shift-Rows andMix-Columns are permutation operation on the rows and on the columns,

respectively. Mix-Columns needs the data of one column for execution. As there is a specific

8-bit block for executing theMix-Columns, the way of storing and feeding data to the design

from the State-Register is column-based; moreover, after four clock cycles, one column of

the State-Register is fed to the Mix-Columns block. Then the results are sent back to the

store register in four clock cycles. To access the registers in each operation, the State-

Register has four control signals (𝐶𝑆3, 𝐶𝑆2, 𝐶𝑆1, and 𝐶𝑆0). 𝐶𝑆0 is MUXs selection; 𝐶𝑆1

is an activation signal for registers in the first row; 𝐶𝑆2 is an activation signal for 𝑅𝑆1, 𝑅𝑆2,

𝑅𝑆3, 𝑅𝑆5, 𝑅𝑆6, 𝑅𝑆7, 𝑅𝑆9, 𝑅𝑆10, and 𝑅𝑆11; 𝐶𝑆3 is an activation signal for 𝑅𝑆13, 𝑅𝑆14, and

𝑅𝑆15; the AND result of 𝐶𝑆0 and 𝐶𝑆3 is an activation signal for 𝑅𝑆12. The State-Register

has five main operations:

1. Storing the main plain-text. To store the main plain-text into the State-Register, all of

the internal registers should be activated; thus, all of the control signals should be set

to ‘1’. In each clock cycle, one 8-bit data is fed to the design and stored in 𝑅𝑆15 (in

Figure 4.2). Based on the shift-register memory and interconnection between units,

when a new 8-bit data comes, the stored data is transmitted from 𝑅𝑆15 to 𝑅𝑆0.

2. Executing Shift-Rows. As it is mentioned, there are internal intersections between

registers; and Shift-Rows is done by wiring over the internal registers and intercon-

nection. To execute Shift-Rows, the registers in the second, third, and fourth columns

of the State-Register should be activated. Thus, 𝐶𝑆0 and 𝐶𝑆1 should be ‘0’; and 𝐶𝑆2

and 𝐶𝑆3 should be ‘1’.

3. Feeding the design by one 8-bit and storing the data at the same time based on shift-

register memory for the first Add-Round-Key and the last round, which do not include

Mix-Columns. In this operation, all of the internal registers should be activated.

51

4. Feeding the design by the saved data in the first column of the State-Register (from

𝑅𝑆0 to 𝑅𝑆3) by one 8-bit, for four clock cycles, and shift the register’s data in order

to execute Mix-columns (all of the control signals should be set to ‘1’). After four

clock cycles, the data is shifted in which the fourth column is ready to store the result

of Mix-Columns.

5. Storing the data that comes from Mix-Columns only in the last column. As it is

explained in section 4.2.2, storing the calculated results of Mix-Columns into State-

Register requires four clock cycles; and data should be stored in the last column

of the State-Register. As a result, only data in the last column is shifted to store

the coming data from Mix-Columns block; and data in the other columns is not

transmitted. During this operation, the connection of the fourth and third columns of

State-Register will be cut off by deactivating the internal registers in the first, second,

and third columns (𝐶𝑆3𝐶𝑆2𝐶𝑆1𝐶𝑆0 will be set to ‘1001’).

The data movement of State-Register for the Add-Round-Key and the first round is

available in Table 4.1; the value of registers will be repeated for the other rounds.

4.2.1 Sub-Bytes Optimization

Sub-Bytes is one of the most critical parts of the AES design in terms of power, area, and

latency. Our design contains one Sub-Bytes, which reduces the required silicon resources.

The single Sub-Bytes is used for both the encryption phase and for key expansion. There are

different methods of implementation of this block. Although the most straightforward way

of implementing is using look-up-table (LUT), such as [13] [14], or employing the Boolean

simplificationmap (by using truth table in order tomake a direct relation between the param-

eter of the Sub-Bytes) [15] [16], these twomethods occupymore area and are not suitable for

area-restricted devices. Decode–Switch–Encode (DSE), which is employed by [17] [18], is

another method for implementation Sub-Bytes that is a good option for low power architec-

ture; however, it occupies a larger area. The efficient way of implementing Sub-Bytes is to

use composite field arithmetic, such as [19] [20] [21]. Sub-Bytes contains calculating the

52

Ta
bl
e
4.
1:
Th
e
co
nt
en
to
fS
ta
te
-R
eg
ist
er
du
rin
g
di
ffe
re
nt
op
er
at
io
ns
fo
rt
he
fir
st
ro
un
d

t
𝑅
𝑆

15
𝑅
𝑆

14
𝑅
𝑆

13
𝑅
𝑆

12
𝑅
𝑆

11
𝑅
𝑆

10
𝑅
𝑆

9
𝑅
𝑆

8
𝑅
𝑆

7
𝑅
𝑆

6
𝑅
𝑆

5
𝑅
𝑆

4
𝑅
𝑆

3
𝑅
𝑆

2
𝑅
𝑆

1
𝑅
𝑆

0
O
pe
ra
tio
n

𝑎
15

𝑎
14

𝑎
13

𝑎
12

𝑎
11

𝑎
10

𝑎
9

𝑎
8

𝑎
7

𝑎
6

𝑎
5

𝑎
4

𝑎
3

𝑎
2

𝑎
1

𝑎
0
In
iti
al
va
lu
e

0
𝑎
′ 0

𝑎
15

𝑎
14

𝑎
13

𝑎
12

𝑎
11

𝑎
10

𝑎
9

𝑎
8

𝑎
7

𝑎
6

𝑎
5

𝑎
4

𝑎
3

𝑎
2

𝑎
1
𝑅
𝑆

15
←
A
R
K
(𝑎

0)

1
𝑎
′ 1

𝑎
′ 0

𝑎
15

𝑎
14

𝑎
13

𝑎
12

𝑎
11

𝑎
10

𝑎
9

𝑎
8

𝑎
7

𝑎
6

𝑎
5

𝑎
4

𝑎
3

𝑎
2
𝑅
𝑆

15
←
A
R
K
(𝑎

1)
. . .

15
𝑎
′ 15

𝑎
′ 14

𝑎
′ 13

𝑎
′ 12

𝑎
′ 11

𝑎
′ 10

𝑎
′ 9

𝑎
′ 8

𝑎
′ 7

𝑎
′ 6

𝑎
′ 5

𝑎
′ 4

𝑎
′ 3

𝑎
′ 2

𝑎
′ 1

𝑎
′ 0
𝑅
𝑆

15
←
A
R
K
(𝑎

15
)

16
𝑎
′ 11

𝑎
′ 6

𝑎
′ 1

𝑎
′ 12

𝑎
′ 7

𝑎
′ 2

𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑎
′ 15

𝑎
′ 10

𝑎
′ 5

𝑎
′ 0
Sh
ift
-R
ow
s

17
𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1

𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑎
′ 15

𝑎
′ 10

𝑎
′ 5
𝑅
𝑀

0
←
Su
b-
B
yt
es
(𝑎
′ 0)

18
𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1

𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑎
′ 15

𝑎
′ 10
𝑅
𝑀

0
←
Su
b-
B
yt
es
(𝑎
′ 5)

19
𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1

𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑎
′ 15
𝑅
𝑀

0
←
Su
b-
B
yt
es
(𝑎
′ 10
)

20
𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑅
𝑀

0
←
Su
b-
B
yt
es
(𝑎
′ 15
)

21
𝑏

0
𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑏

0
←
A
R
K
(𝑅
𝑀

3)

22
𝑏

1
𝑏

0
𝑎
′ 11

𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑏

1
←
A
R
K
(𝑅
𝑀

3)

23
𝑏

2
𝑏

1
𝑏

0
𝑎
′ 11

𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑏

2
←
A
R
K
(𝑅
𝑀

3)

24
𝑏

3
𝑏

2
𝑏

1
𝑏

0
𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9

𝑎
′ 4
𝑏

3
←
A
R
K
(𝑅
𝑀

3)

25
𝑏

3
𝑏

3
𝑏

2
𝑏

1
𝑏

0
𝑎
′ 11

𝑎
′ 6

𝑎
′ 1
𝑎
′ 12

𝑎
′ 7

𝑎
′ 2
𝑎
′ 13

𝑎
′ 8

𝑎
′ 3
𝑎
′ 14

𝑎
′ 9
𝑅
𝑀

0
←
Su
b-
B
yt
es
(𝑎
′ 4)

. . .

48
𝑏

15
𝑏

14
𝑏

13
𝑏

12
𝑏

11
𝑏

10
𝑏

9
𝑏

8
𝑏

7
𝑏

6
𝑏

5
𝑏

4
𝑏

3
𝑏

2
𝑏

1
𝑏

0
Th
e
la
st
va
lu
e

R
Ss
ar
e
in
te
rn
al
re
gi
ste
rs
of
St
at
e-
Re
gi
ste
r.

R
M
sa
re
in
te
rn
al
re
gi
ste
rs
of
M
ix
-C
ol
um
ns
.T
he
m
ov
em
en
to
fi
nt
er
na
lr
eg
ist
er
so
fM
ix
-C
ol
um
ns

is
sh
ow
n
in
Fi
gu
re
4.
6.

A
R
K
sta
nd
sf
or
A
dd
-R
ou
nd
-K
ey
op
er
at
io
n,
w
hi
ch
is
XO
R
w
ith
ke
ys
.

53

multiplicative inverse of 𝑓 (𝑥) that is 𝑔(𝑥) in which 𝑓 (𝑥) · 𝑔(𝑥)𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) = 1

followed by Affine Transformation (AT). Calculating the multiplicative inverse in 𝐺𝐹 (28)

is complicated in which employing the composite field arithmetic reduces the complexity.

By using composite field, the multiplicative inverse is calculated by decomposing 𝐺𝐹 (28)

to the lower fields.

In the proposed design, composite field arithmetic is optimized and used followed by

the Affine Transformation of [3], which is an efficient method for area-restricted devices.

Based on the previous work [3], we select the irreducible polynomials based on equation

(4.1) that decomposed 𝐺𝐹 (28) to the lower fields 𝐺𝐹 (21), 𝐺𝐹 (22), and 𝐺𝐹 ((22)2). As

the Sub-Byte design of [3] was one of the efficient designs, we borrow their parameters.

In equation (4.1), _ = {1100}2 in the 𝐺𝐹 (24) and 𝜑 = {10}2 in the 𝐺𝐹 (22). By mapping

𝐺𝐹 (28) to its lower field, each element ‘𝐴’ can be represented by 𝐴ℎ𝑥 + 𝐴𝑙 , where 𝐴ℎ is the

most significant part, and 𝐴𝑙 is the least significant part based on the irreducible polynomial

𝑥2 + 𝑥 + _. By selecting the irreducible polynomial (equation (4.1)), the multiplicative

inverse is calculated by equation (4.2) [3].

𝐺𝐹 (22) → 𝐺𝐹 (2) : 𝑥2 + 𝑥 + 1

𝐺𝐹 ((22)2) → 𝐺𝐹 (22) : 𝑥2 + 𝑥 + 𝜑

𝐺𝐹 (((22)2)2) → 𝐺𝐹 ((22)2) : 𝑥2 + 𝑥 + _

(4.1)

(𝐴ℎ𝑥 + 𝐴𝑙)−1 = 𝐴ℎ (𝐴2
ℎ_ + 𝐴𝑙 (𝐴ℎ + 𝐴𝑙))−1𝑥+

(𝐴ℎ + 𝐴𝑙) (𝐴2
ℎ_ + 𝐴𝑙 (𝐴ℎ + 𝐴𝑙))−1

(4.2)

A straightforward method for generating a transformation matrix to map elements of

𝐺𝐹 (28) to 𝐺𝐹 ((24)2) is explained in details in [61]. The isomorphic function, ‘𝛿’ is used
to transfer between𝐺𝐹 (28) to its composite field; and the inverse isomorphic, ‘𝛿−1’, is used

to transfer from composite field to its value in 𝐺𝐹 (28). ‘𝛿’ is a 8 × 8 binary matrix that is

calculated by the field polynomials of𝐺𝐹 (28) and its composite fields. Similar to [3], [62],
and [63], by selecting 𝑃(𝑥) = 𝑥8+𝑥4+𝑥3+𝑥+1 and using the sub-field of equation (4.1), the

isomorphic function can be calculated as equation (4.3). The inverse isomorphic function

54

‘𝛿−1’, which is written as equation (4.4), is constructed by inverting the 8 × 8 matrix ‘𝛿’.

𝛿(𝑥) =

1 0 1 0 0 0 0 0

1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 1 0

0 1 0 0 0 0 1 1

×

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

(4.3)

𝛿−1(𝑥) =

1 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 0 0 0 1 0

0 1 1 1 0 1 1 0

0 0 1 1 1 1 1 0

1 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0

0 1 1 1 0 1 0 1

×

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

(4.4)

After calculating the multiplication inverse followed by inverse isomorphic function

(𝛿−1), the Affine Transformation (𝐴𝑇) is applied to achieve the final result. In equation

(4.5), 𝐴𝑇 is Affine Transformation, 𝑓 (𝑥) is the result from the multiplication inverse

followed by inverse isomorphic function, 𝜙 is a constant number (based on [64] 𝜙 is equal

to {63}8), and 𝑔(𝑥) is the final result of Sub-Bytes block.

55

𝑔(𝑥) = 𝐴𝑇 (𝑓 (𝑥)) + 𝜙 =

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

×

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0

⊕

0

1

1

0

0

0

1

1

(4.5)

The Sub-Bytes of 𝑓 (𝑥) is 𝑔(𝑥) and is calculated by equation (4.6). In this equation,

𝐼𝑀𝑈𝐿 is the multiplicative inverse. We defined (𝐴𝑇 × 𝛿−1) ⊕ 𝜙 as 𝛾 and rewrote the

equation.

𝑔(𝑥) = 𝑆𝑢𝑏(𝑓 (𝑥))

= (𝐼𝑀𝑈𝐿 (𝛿 × 𝑓 (𝑥)) × 𝛿−1) × 𝐴𝑇 ⊕ 𝜙

= (𝐼𝑀𝑈𝐿 (𝛿 × 𝑓 (𝑥))) × (𝛿−1 × 𝐴𝑇 ⊕ 𝜙)

= (𝐼𝑀𝑈𝐿 (𝛿 × 𝑓 (𝑥))) × 𝛾

(4.6)

Thus, the combination of inverse isomorphic (equation (4.4)) and Affine Transforma-

tion (equation (4.5)) is used in the proposed architecture of Sub-Bytes. After doing the

multiplication of 𝛿−1 by 𝐴𝑇 followed by 𝜙, 𝛾 obtained, which is written in equation (4.7).

56

The optimized architecture of 𝛾 is drawn in Figure 4.3. The proposed architecture of 𝛾 is

implemented by twelve XOR gates, three XNOR gates, and one NOT gate. This module

of the proposed Sub-Bytes reduced the area by 6.1% and 19% compared to [20] and [3],

respectively (based on gate equivalent estimation on 65𝑛𝑚 [65]).

𝛾7 = 𝑥7 ⊕ 𝑥3 ⊕ 𝑥2

𝛾6 = 𝑥7 ⊕ 𝑥6 ⊕ 𝑥5 ⊕ 𝑥4

𝛾5 = 𝑥7 ⊕ 𝑥2

𝛾4 = 𝑥7 ⊕ 𝑥4 ⊕ 𝑥1 ⊕ 𝑥0

𝛾3 = 𝑥2 ⊕ 𝑥1 ⊕ 𝑥0

𝛾2 = 𝑥6 ⊕ 𝑥5 ⊕ 𝑥4 ⊕ 𝑥3 ⊕ 𝑥2 ⊕ 𝑥0

𝛾1 = 𝑥7 ⊕ 𝑥0

𝛾0 = 𝑥7 ⊕ 𝑥6 ⊕ 𝑥2 ⊕ 𝑥1 ⊕ 𝑥0

(4.7)

γ0

γ1

γ2

γ3

γ4

γ5

γ6

γ7

x0

x1

x2

x3

x4

x5

x6

x7

Figure 4.3: The optimized structure of combination of inverse isomorphic with Affine

Transformation

Figure 4.4 shows the architecture of the proposed Sub-Bytes that includes the isomorphic

function, ‘𝛾’ is the combination of inverse isomorphic and affine transformation, multiplica-

57

δ
From Key-Register

From State-Register 2xλ

1-x γ

0

1

φ

4

4

2

4

2

2

2

2

2

2

2

2

(b)

(c)

(a)

Figure 4.4: (a) The modified architecture of Sub-Bytes [3] with combination of inverse iso-

morphic with Affine Transformation (𝛾) and bypass circuit (b) The multiplication operation

in 𝐺𝐹 (24) (c) The multiplication operation in 𝐺𝐹 (22)

tive inverse based on composite field arithmetic. The proposed Sub-Bytes includes a bypass

circuit to avoid the execution of this function for some phases.

4.2.2 8-bit Mix-Columns Optimization

As it was explained, the Mix-Columns is an 8-bit block, in which we employ four

internal registers for storing the intermediate value of Mix-Columns. Each of the registers

comprises an eight flip-flops with one or two inputs. For each column, the Mix-Columns is

58

Clock

RM1

RM2

RM3

8 8

RM0

0

1

0

1

CM1

Gated Clock

α

2α
3α

Reset

CM2

Figure 4.5: The proposed architecture of Mix-Columns with clock gating technique and

bypass circuit

calculated by equation (4.8).

𝑎′0 = 2.𝑎0 + 3.𝑎1 + 𝑎2 + 𝑎3

𝑎′1 = 𝑎0 + 2.𝑎1 + 3.𝑎2 + 𝑎3

𝑎′2 = 𝑎0 + 𝑎1 + 2.𝑎2 + 3.𝑎3

𝑎′3 = 3.𝑎0 + 𝑎1 + 𝑎2 + 2.𝑎3

(4.8)

For calculating the Mix-Columns using only one block, each element should be multi-

plied by 2 and 3 that 3.𝑎 can be calculated by 2.𝑎+𝑎. In equation (4.8), ‘.’ is a multiplication

modulo with the irreducible polynomial 𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1. By considering 2.𝑎

and 𝑚(𝑥), 2.𝑎 is calculated as [66]:

(2.𝑎)𝑚𝑜𝑑 (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) =

𝑥7 = 𝑎6

𝑥6 = 𝑎5

𝑥5 = 𝑎4

𝑥4 = 𝑎7 ⊕ 𝑎3

𝑥3 = 𝑎7 ⊕ 𝑎2

𝑥2 = 𝑎1

𝑥1 = 𝑎7 ⊕ 𝑎0

𝑥0 = 𝑎7

(4.9)

59

2a0 2a1+a0 2a2+a1+a0 2a3+a2+a1+3a0

3a0 3a1+2a0 3a2+2a1+a0 3a3+2a2+a1+a0

a0 a1+3a0 a2+3a1+2a0 a3+3a2+2a1+a0

a0 a1+a0 a2+a1+3a0 a3+a2+3a1+2a0

R3

R2

R1

R0

Gated clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Figure 4.6: The timing diagram of the proposed Mix-Columns

Based on equation (4.9), to calculate 2.𝑎, three XORs are needed. Figure 4.5 shows

the proposed Mix-Columns block. As it is told, the Mix-Columns block includes a bypass

circuit that is active for the first Add-Round-Key and the last round. For calculating Mix-

Columns of each column of the state, 𝑎, 2.𝑎, and 3.𝑎 should be available (according to

equation (4.8)). Thus, the input data will be multiplied by 2, based on equation (4.9),

followed by calculating 3.𝑎. Then, 𝑎, 2.𝑎, and 3.𝑎 are stored into internal registers of

Mix-Columns (𝐶𝑀2 should be ‘1’). After finishing the calculation of Mix-Columns for

each column, the values of registers are sent one by one to the output bus followed by

shifting vertically of the registers (from 𝑅𝑀0 to 𝑅𝑀3) by setting 𝐶𝑀2 to ‘0’. And finally,

the internal registers will be set to zero to calculate Mix-Columns of the next column.

We depict the timing diagram for storing the data into internal registers of Mix-Columns

in Figure 4.6. It takes four clock cycles to calculate one column of the State-Register and

takes another four clock cycles to send from Mix-Columns’ internal registers to State-

Register. A complete Mix-Columns operation takes 32 clock cycles to transform the entire

state. Unlike to the previous works, such as [27], the proposed Mix-Columns has a data

path of 8-bit input and 8-bit output and only uses one block for calculating 2.𝑎 and 3.𝑎 that

results to occupy less area.

4.2.3 Key Expansion

For each round of the algorithm, one 128-bit key is needed. The key in each round is

generated from the previous round-key. Storing all of the keys in the design requires a huge

memory, which is not a proper method for resource-constrained devices. On-the-fly key

60

expansion is a wise way that only requires one 128-bit register. The key expansion phase

contains the shift of the last column of Key-Register, Sub-Bytes, RCON, and XOR. The key

expansion phase is written in equation (4.10).

𝑆ℎ𝑖 𝑓 𝑡 (𝐶𝑜𝑙4)

𝐶𝑜𝑙
′

1 = 𝑆𝑢𝑏(𝐶𝑜𝑙4) ⊕ 𝑅𝐶𝑂𝑁 ⊕ 𝐶𝑜𝑙1

𝐶𝑜𝑙
′

2 = 𝐶𝑜𝑙
′

1 ⊕ 𝐶𝑜𝑙2

𝐶𝑜𝑙
′

3 = 𝐶𝑜𝑙
′

2 ⊕ 𝐶𝑜𝑙3

𝐶𝑜𝑙
′

4 = 𝐶𝑜𝑙
′

3 ⊕ 𝐶𝑜𝑙4

(4.10)

RCON is a block that provides constants values needed for the key expansion, which

is related to the number of rounds and applied to the first element of the fourth column.

As RCON includes constant values (these values are {01} 8, {02} 8, {04} 8 , {08} 8, {10} 8,

{20} 8, {40} 8, {80} 8, {1𝐵} 8, and {36} 8), the straightforward implementation way is to

use a LUT. The advantage of LUT implementation is to reduce power consumption and

minimize the clock network [17]; however, it occupies more area and is not suitable for the

proposed design. Previous works such as [20] used LUT for their RCON. [21] optimized

RCON block by using the simple Karnaugh optimization. [27] implemented RCONby using

the round counter and combinational logic.

Instead of {1𝐵} 8 and {36} 8, the other numbers are gained by rotating a single ‘1’ in

an 8-bit shift register. Implementing {1𝐵} 8 and {36} 8 requires additional logic gates. [26]

implemented RCON by rotating a single ‘1’ in an 8-bit shift register followed by four

control signals, one 8-bit AND, one 4-bit NOR. We optimized the RCON design of [26] by

a circular left shift register followed by OR gates and a control signal. The RCON block is

shown in Figure 4.7.

The architecture of the proposed Key-Register is shown in Figure 4.8. We specify the

Key-Register based on the proposed design. Key-Register includes sixteen 8-bit registers,

which each register contains of 8 flip-flops with one or two input(s) and a 2-1 MUX, to store

the keys. It also contains one 8-bit input and two 8-bit outputs. The reason that we design

61

100 0 0 0 0 0

CNTL

8

1

Figure 4.7: The proposed RCON block of the proposed design

the Key-Register with two outputs is that (according to the equation (4.10)) to expand the

keys, two columns of the previous keys are required at the same time. Key-Register includes

five main operations: first, store the initial keys in the Key-Register; second, feed the design

by one 8-bit for encryption phase (from Out 1 in Figure 4.1 and Figure 4.10) and store

the same key again in the same cycle, thus after sixteen clock cycles the keys are stored in

the same position before encryption phase; third, shift the fourth column; fourth, feed the

design by the data that is stored in the first and fourth column and store the result at the

same time; fifth, shift the third column. The third, fourth, and fifth operations are used for

the key expansion phase.

The control part of Key-Register contains a Clear signal to set the registers into zero

(this signal is not shown in Figure 4.8), and a 3-bit, 𝐶𝐾2𝐶𝐾1𝐶𝐾0, signal to execute the

operations based on the phase of the design. 𝐶𝐾1 and 𝐶𝐾2 are used for activating the

internal registers; 𝐶𝐾0 is control signal for Muxs. The description of control signal is

available in Table 4.2. It is worth mentioning that the other values of control signals will not

occur. The movement of Key-Register’s values for executing one round of key expansion is

depicted in Figure 4.9. In Figure 4.9, the values with apostrophe are expanded key’s values.

Based on equation (4.10) and the operations of Key-Register, which is explained before, the

key expansion is executed by (the initial value of keys is shown in Figure 4.9 (a)):

62

Table 4.2: The description of control signal for Key-Register

𝐶𝐾2𝐶𝐾1𝐶𝐾0 Description

111 All of the internal registers are activated;

and all MUXs are set to ‘1’.

100 The internal registers of the fourth column of

the Key-Register is activated to execute shift.

010 The internal registers of the third column of

the Key-Register is activated to execute shift.

The other value of control signals will not occur

1. The fourth column is shifted (Figure 4.9 (b)).

2. The control signal of the RCON is activated. The first element of the first column

(‘𝑅𝐾0’ in Figure 4.8) is fed to the design. The first element of the fourth column

goes to the Sub-Bytes block (𝑅𝐾12 in Figure 4.8). Then, the result is sent back to

the Key-Register to store in ‘𝑅𝐾15’, and all other elements are shifted by one element

(from ‘𝑅𝐾15’ to ‘𝑅𝐾0’), based on shift-register memory topology. This step is shown

in Figure 4.9 (c).

3. The control signal of RCON is de-activated; the other three elements of the first

and the fourth columns are fed to the design, and the results are stored in the fourth

column. The execution of this step is shown in Figure 4.9 (d) to Figure 4.9 (f).

4. Thus, the first column of the new expanded key is stored in the fourth column, and the

fourth column of the old keys is transmitted to the third column. The third column is

shifted to put the element of the fourth column of the old keys in its correct position

(this operation is done by the bi-directional data movement of the third column of

Key-Register in Figure 4.9 (g)).

5. In each cycle, one element of the first and fourth columns are fed to the design, and

63

RK4

RK2

RK3

RK5RK1

RK6

RK7

RK8

RK9

RK10

RK11

RK12

RK13

RK14

RK15

Out 1 Out 2

RK0

CK1

CK0

CK2

Input8

Figure 4.8: The structure of the proposed Key-Register

the result is sent back to the Key-Register. This step is continued over other columns

of the Key-Register Figure 4.9 (h) to Figure 4.9 (i).

Only the last column of Key-Register needs Sub-Bytes. To minimize area overheads,

Sub-Bytes is shared between key generation phase and data encryption phase, resulting

in 15.5% area reduction on 65𝑛𝑚 technology. It is worth mentioning that the structure

of Key-Register is independent of other parts of the main architecture; and for expanding

keys no more registers are needed. However, the effect of a shared data-path between

key expansion and data encryption is increasing the latency as these two phases cannot be

executed simultaneously. Compared to [27] that used two Sub-Bytes, the proposed design

only use one Sub-Bytes. Also, the key expansion block of [27] had two inputs and three

outputs; however, the proposed Key-Register has only one input and two outputs. Besides

that, [27] used onemore 8-bit register to store the intermediate results, which in the proposed

design it is not necessary. As a result, these differences have a high impact on reducing the

area over [27].

64

a4

a2

a3

a5a1

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0 a4

a2

a3

a5a1

a6

a7

a8

a9

a10

a11

a13

a14

a15

a12

Out 1 Out 2

a0 a5

a3

a4

a6a2

a7

a8

a9

a10

a11

a13

a14

a15

a12

Out 1 Out 2

a1

a’0

a6

a4

a5

a7a3

a8

a9

a10

a11

a13

a14

a15

a12

Out 1 Out 2

a2

a’1

a’0

a7

a5

a6

a8a4

a9

a10

a11

a13

a14

a15

a12

Out 1 Out 2

a3

a’2

a’1

a’0

a8

a6

a7

a9a5

a10

a11

a13

a14

a15

a12

Out 1 Out 2

a4

a’3

a’2

a’1

a’0

a8

a6

a7

a9a5

a10

a11

a12

a13

a14

a15

a4

a’3

a’2

a’1

a’0

Out 1 Out 2

a9

a7

a8

a10a6

a11

a12

a13

a14

a15

a5

a’4

a’3

a’2

a’1

Out 1 Out 2

a’0 a’15

a’14

a’13

a’12

a’11

a’10

a’9

a’8

a’7

a’6

a’5

a’4

a’3

a’2

a’1

a’0

(a) (b) (c)

(f) (e) (d)

(g) (h) (i)

Figure 4.9: The movement of Key-Register’s values for executing one round of key expan-

sion. (a) The initial values of Key-Register. (b) The shift operation of the fourth column.

(c) (d) (e) (f) (h) The first element of the first and fourth columns are fed to the design

and the result is stored in Key-Register (g) The shift operation of the third column. (i) The

Key-Register with the expanded key.

65

Figure 4.10: The finite state machine for the proposed design

4.2.4 Control Unit

The finite state machine (FSM) of the proposed nano-AES accelerator is drawn in Figure

4.10. The initial key and plain-text are stored in Key-Register and State-Register at the same

time. The first Add-Round-Key is executed by activating the bypass signals for Sub-Bytes

and Mix-Columns blocks. After the first Add-Round-key and execution each round, the key

is expanded in Key-EXP. Shift-Rows executes in one clock cycle inside the State-Register.

In ENC-0, one column of State-Register goes through Sub-Bytes and Mix-Columns and

stores in the Mix-Columns registers that takes four clock cycles for execution Mix-Columns

over one column. In ENC-1, the stored data in Mix-Columns’ registers are sent back to

State-Register followed by XORingwith keys in another four clock cycles. The execution of

one round takes 32 clock cycles. After nine times of running Key-EXP, Shift, ENC-0, and

ENC-1, the state of control unit goes to ENC-2 that the bypass signal for Mix-Columns is

active, and the data are sent to output signals. The control unit includes one 4-bit and 2-bit

counters. As we explained before, during the data encryption, the Key-Register and State-

Register put one element in data-path and store one element according to the shift-register

topology. The total latency of the design is 527 clock cycles.

In the different parts of the design, we apply the clock gating technique to reduce the

dynamic power consumption. The clock gating is separately applied on State-Register,

the internal registers of Mix-Columns, Key-Register, and RCON. For instance, the most

power consumption is saved during the key expansion phase; the clock of State-Register

66

and Mix-Columns are disabled to save power because these two blocks are not used in the

key expansion phase. The timing diagram of the proposed design with the clock gating

technique is drawn in Figure 4.11. The effect of applying the clock gating technique for

reducing the dynamic power of the design is 18.9%.

State-Register

Key-Register

Mix-Columns

RCON

Clock

Store Add-Key Key-Exp E
N

C
-R

0

E
N

C
-R

1

E
N

C
-R

0

E
N

C
-R

1

E
N

C
-R

0

E
N

C
-R

1

E
N

C
-R

0

E
N

C
-R

1Shift

ENC-R2

First Round

Figure 4.11: The timing diagram with clock gating technique of different blocks of the

proposed design

4.3 Implementation Results and Analysis

In this section, the implementation results of the proposed architecture and its analysis

are discussed. We implement the proposed nano-AES accelerator on both ASIC and

FPGA platforms with VHDL. We use the test vector sets from NIST [64] to make the

functional tests of the design. Also, different test vectors are generated using Python

language. These test vectors are used to simulate the proposed design in ISim and used

to validate the output of the proposed architecture on FPGA and ASIC implementation

and estimate the power consumption on ASIC implementation. The proposed design is

implemented on FPGA (Virtex-5). After that, by doing some minor changes on control

unit and signals, the proposed design is synthesized in Synopsys Design Compiler using

TSMC-65𝑛𝑚 technology by the standard library cells with typical case parameters 1.1V

and 25◦C to generate timing, area, and power metrics. The proposed design is synthesized

67

Figure 4.12: Layout of the proposed 8-bit AES core using 65𝑛𝑚 technology

under different timing constraints (10, 20, 30, 40, 50, 100, 1000, and 10000𝑛𝑠) with a 10%

input/output delay margin. The reason that we use clock frequency of 1MHz and 100KHz

is that these frequencies are widely used operating for RFID applications. The maximum

frequency of the design at 1.1V is 500MHz.

The layout of proposed 8-bit AES core is depicted in Figure 4.12. The area of the design

contains 5448.59`𝑚2, 7783.77`𝑚2, and 11713.57`𝑚2, on core without power rings, core

with power rings, and chip area on 65𝑛𝑚, respectively. Figure 4.13 depicts the percentage

of the occupied area and power consumption for various building blocks. Approximately

58.4% of the design is occupied by the Key-Register and State-Register; and the Sub-Bytes

and Mix-Columns consumes 25.7% of the area. As it can be observed, the area summation

of Sub-Bytes and Mix-Columns is not dominant in nano-AES design; the register banks

for storing plain-text and keys take up the largest portion of the total area because typically

flip-flops are used, which require high area.

The detailed ASIC results and comparison with other similar works are written in Table

4.3. As it is obvious from Table 4.3, the proposed design occupies less area in comparison

to similar works on the same technology. [23] has a 32-bit data-path with one shared Sub-

Bytes. Their design included a big 20-to-1 8-bit MUX, and four 32-bit registers for storing

68

Sta
te-
Re
gis
ter

Su
b-B
yte
s

Co
ntr
ol
Un
it

Ot
he
rs

0

10

20

30

40

Pe
rc
en
ta
ge
(%
)

Occupied area
Power consumption

Figure 4.13: The percentage of occupied area and power consumption of different blocks

of the proposed design on 65𝑛𝑚.

the plain-text and intermediate results, each 32-bit register has four 8-bit outputs and three

32-bit and one 8-bit input, and one 128-bit register for storing keys that occupy more area.

The main goal of [20] was to design a low power AES architecture. They considered two

Sub-Bytes and one specific block for Shift-Rows, LUT for storing RCON, and two more

registers for storing the intermediate results; also, their Mix-Columns block was 32-bit,

which contained eight modules to calculate 2.𝑎 and 3.𝑎. Their work used more areas and

resources than the proposed design.

The design of [19] transmitted Sub-Bytes and Mix-columns to their native functions.

Also, their design included two native Sub-Bytes, which expanded key simultaneously. This

native design, followed by two Sub-Bytes, led to an increase in the area by adding more

blocks to the design. The authors of [24] also considered a specific block for Shift-Rows

that contained eight 8-bit registers. They designed two different architectures with one Sub-

Bytes and two Sub-Bytes with different values of data-path. Their architecture included

more registers for storing keys, data, and intermediate results. There were a big 32 × 8-bit

RAM and one internal register to store the intermediate results in [25]. [21] did not explain

more details about their architecture. However, their architecture had a 8-bit data-path that

69

contained two Sub-Bytes, a Mix-Columns block with two 8-bit outputs, a parallel to serial

converter, and a byte permutation unit. They did not report the frequency of their design

for their simulated results.

In comparison to the previous similar works, we reduce the size of the internal memories

(which is used to store the plain-text, keys, and intermediate results) and the number of

blocks of the design. Also, we design an advanced register for Key-Register and State-

Register in which some tasks can be done by these two registers, such as Shift-Rows in the

State-Register. Furthermore, the data-path of the proposed design is 8-bit, which has a high

impact on reducing the occupied area. According to the data-path of the architecture, we

design an 8-bit Mix-columns. In comparison to other designs that were implemented on the

same technology, the proposed design improves the area by 22.1% over [23] (core area with

power rings) and 2.4% over [19] (chip area). Also, we calculated the Area-Delay-Product

(ADP) of the proposed design and [19]. ADP is a common metric for evaluating the effect

of executing time over occupied area on ASIC implementation. The ADP of the proposed

design at 100MHz is 61.73×103`𝑠×`𝑚2. The ADP of [19] is equal to 218.2×103`𝑠×`𝑚2.

The proposed design improved the ADP by 71.7% over [19].

To show the superiority of the proposed design against other similar works that were

implemented on different technology, we also compare the proposed design with [26].

They designed a nano-AES on 22𝑛𝑚 CMOS technology. They used one Sub-Bytes among

Shift-Rows and a Mix-Columns block, which included 8-bit input and 32-bit output, that

encrypted data in 336 clock cycles. Also, they employed three register banks (each contained

sixteen 8-bit registers) for storing keys, plain-text, and intermediate results. The design of

their RCON included an 8-bit shift register followed by four control signals, one 8-bit AND

gate, and one 4-bit NOR gate, which compared to the proposed design occupied more area

and made the control unit more complicated. Compared to the proposed design that the

result of Mix-Columns is sent back to the State-Register, in [26], however, the result of

Mix-Columns is sent to the intermediate registers; after that Shift-Rows is applied and data

is stored into another register bank. Similar to the proposed design, the key expansion

70

of [26] should be done in a separate phase. That is why adding the intermediate register

does not reduce the number of clock cycles significantly in [26] (compared to [27] that

executed in 160 clock cycles). As they used different technology and in order to make a

fair comparison, we borrow their normalized results that were calculated by [23]. Their

normalized area was 19000`𝑚2 on 65𝑛𝑚 technology that the proposed design reduces the

area by 59%.

Although low power design was not the main goal of this work, we calculate and report

the power consumption of the proposed architecture. To calculate the power, we perform all

simulations by using ISim; and then, SAIF files are generated from these simulations. After

that, we simulate the proposed design using the SAIF files by the synthesis tool to calculate

the average power consumption. We implement the proposed design with the clock gating

technique and without the clock gating technique to see its impact on power consumption.

The power-delay curve with and without the clock gating technique of the proposed design

is drawn in Figure 4.14. By applying the clock gating technique, the dynamic power of the

design is reduced by 18.9%. Figure 4.13 shows the average power consumption of each

block by applying the clock gating technique. Key-Register is almost active in all cycles in

the design; it, thus, consumes a high percentage of the total power. The power consumption

of the embedded Shift-Rows function is approximately 4.96`𝑊 at 100MHz.

The power consumption for some RFID tag implementations is in the range of 1–10`𝑊

with an operational frequency range of 0.1–1MHz [67] [68]. The power consumption of

the proposed design is 3.32`𝑊 and 0.245`𝑊 for 1MHz and 0.1MHz. Thus, the proposed

nano-AES accelerator can also be used as a crypto-system for RFID tags. Also, the energy

consumption of the proposed crypto-system at 33.3MHz is equal to 1.3𝑛 𝑗 . According to

NIST report criteria [58], moreover, the proposed design can be supplied by low-power

energy harvesting devices, such as Vibration Piezo or EM.

It is worthmentioning that power consumption for different standard cell libraries cannot

be compared in a fair manner. However, we compare the proposed design with other similar

works that were implemented on 65𝑛𝑚 technology. The power consumption of a design

71

0.01 0.1 1 10 100
0

100

200

300

Clock period (𝑛𝑠)

Po
w
er
(`
𝑊
)

With clock gating
Without clock gating

Figure 4.14: Power-delay curve with and without clock gating technique of the proposed

design at 1.1V and 25◦C.

is calculated by 𝑃 = 𝐶𝑉2 𝑓 . As it is obvious, the load capacitance, supply voltage, and

clock frequency have a high impact on power consumption. The load capacitance is one of

the features of each technology and based on the area and the number of used gates on the

die. The straightforward way for reducing the power consumption is to reduce the voltage

and clock frequency of the design. As other previous works used different frequencies and

different voltages, we normalized their power by using equation (4.11). In this equation, the

letters with subscript ‘2’ index are the new value that we want to consider, and the letters

with subscript ‘1’ index are the current values.

𝑃2 = 𝑃1 × (𝑉2/𝑉1)2 × (𝑓2/ 𝑓1) (4.11)

The power of the proposed architecture is smaller than other works instead of [20]. The

main goal of [20] was to design a low power AES crypto-system. Thus, they employed

low power blocks and techniques, such as using LUT for RCON and low power Sub-Bytes,

which some of the employed techniques were not area efficient. As the area was not their

priority, their design occupied more than 45%, compared to the proposed design.

The design of [27] used two blocks for Sub-Bytes and 32-bit data path for Mix-Columns

72

that enabled parallel operation of data encryption along with on-the-fly key generation,

which led to encrypting data in 160 clock cycles. Even though [27] executed in less

clock cycles, as the delay of their design was high, the execution time for encrypting

data of the proposed design and their design are approximately the same at the maximum

frequency. The maximum frequency is 500MHz and 152MHz for the proposed design and

the lightweight design of [27], respectively (the execution time is equal to 1.054`𝑠 and

1.052`𝑠, respectively). The power consumption of the proposed architecture is 1.35𝑚𝑊 at

500MHz. Furthermore, the proposed design improved the power consumption by 58.7%

over the normalized power of [27], which is 3.27𝑚𝑊 at the maximum frequency (130MHz)

of their low power design.

As it is explained, AES is a secure cryptography algorithm that is widely used in different

platforms and applications. To make a comprehensive view for implementing on FPGA,

we report the result of implementation on FPGA-Virtex-5. The total number of occupied

slices is 191, and the maximum frequency is 147MHz.

73

Ta
bl
e
4.
3:
Re
su
lts
an
d
C
om
pa
ris
on
fo
rl
ig
ht
w
ei
gh
ti
m
pl
em
en
ta
tio
n
on
TS
M
C
-6

5𝑛
𝑚

D
es
ig
n

D
at
a
pa
th

#S
ub
-B
yt
es
#C
lo
ck

C
yc
le
s

Fr
eq
ue
nc
y

(M
H
z)

A
re
a

(×
10

3 `
𝑚

2)

Po
w
er

(`
𝑊
)

N
or
m
al
iz
ed

Po
w
er
(`
𝑊
)

Th
is
de
si
gn

1∗
8-
bi
t

1
52
7

10
0

11
.7

24
5.
60
@
1.
1
V

24
5.
6

[2
3]

2
32
-b
it

1
24
2

20
0

10
34
60
@
1.
2V

14
53
.6

[2
0]

3
8,
32
-b
it

2
18
6

10
>
10

10
.0
1
@
0.
9
V

14
9.
53

[1
9]

1
8-
bi
t

2
N
/A

11
12

14
.6
@
0.
5
V

64
2.
4

[2
4]

1
8,
16
,3
2,
64
-b
it

1
21
0

12
7.
2

13
97
.9
@
0.
55
V

30
7.
86
2

[2
5]

1
8-
bi
t

1
11
42

0.
32
2

18
0.
85
@
0.
4
V

19
96
.3
1

[2
1]

2
8-
bi
t

2
16
0

N
/A

14
.4

0.
38
`
𝑊
/𝑀

𝐻
𝑧

N
/A

1
Th
e
re
po
rte
d
ar
ea
is
ch
ip
ar
ea
.2
Th
e
re
po
rte
d
ar
ea
is
co
re
w
ith
po
w
er
rin
gs

3
Th
e
re
po
rte
d
ar
ea

is
co
re
w
ith
ou
tp
ow
er
rin
gs
.

∗
Th
e
ar
ea
of
th
e
pr
op
os
ed
de
si
gn
co
nt
ai
ns

5.
4
×

10
3 `
𝑚

2
an
d

7.
7
×

10
3 `
𝑚

2
fo
rc
or
e
w
ith
ou
tp
ow
er

rin
gs
an
d
co
re
w
ith
po
w
er
rin
gs
,r
es
pe
ct
iv
el
y.

74

Part III

Binary Ring-LWE implementations

75

5. Lightweight Design of Binary Ring-LWE

Internet of Things (IoT) connects a myriad of small devices over a huge network,

encompassingmany different and varied applications and environments. As the IoT network

continues to grow, providing end-to-end security over IoT is becoming a paramount issue.

To mitigate existing and future security risks within IoT, two important factors should be

considered. First, some resource-constrained edge devices have an insufficient area to

contain the security part. Second, the advent of quantum computers threatens the security

of current public-key cryptography algorithms. In response to these challenges, lattice-

based cryptography (LBC) has emerged as a promising technique for IoT security in the

quantum era. The feasibility of LBC integration onto resource-constrained devices has

been demonstrated in previous research. Multiplication is the main operation in Ring-

BinLWE, a type of LBC. In this chapter, a new multiplication method is proposed, which is

called In-place modular Reduction and anti-circular Rotation Column-based Multiplication

(In-place Rot-Col-Mul), and new Ring-BinLWE architecture is designed. In-place Rot-

Col-Mul performs a column-based multiplication in which one rotation is executed per

cycle. The introduction of this chapter is in section 5.1. The proposed design, method,

and implementations of Ring-BinLWE are described in Section 5.2. The implementation

results and comparison are explained in Sections 5.3.

The content of this chapter is originally published in: K. Shahbazi, and Seok-Bum Ko “Area and

power efficient post-quantum cryptosystem for IoT resource-constrained devices.” Microprocessors and

Microsystems. Vol. 84, PP 104280, July 2021, doi: 10.1016/j.micpro.2021.104280. The manuscript has

been reformatted for inclusion in this thesis.

76

5.1 Introduction

Internet of things (IoT) is recognized as the future of an internet that contains billions of

connected devices, in different applications and environments in which they are exchanging

information. These applications and environments could include smart transportation, e-

health, smart energy management, industrial control, or smart ecosystem management, and

every day, the number of connected devices has been exponentially increasing. Providing

end to end security in IoT is not an easy task as some resource-constrained devices do not

have encryption safeguards. Because of that, they are at significant risk of eavesdropping.

Designing very low power and low area hardware cryptography circuits is a growing topic of

IoT for resource-constrained devices and mobile SoCs. One of the main issues and concerns

in IoT is providing security against different attacks. Among different kinds of attacks, the

cyberattack is one of the significant threats to a wide range of Internet services [69]. As a

result, a reliable security system plays an essential role on the Internet.

Among different cryptography techniques, public-key cryptography (PKC), compared

to private-key cryptography, provides more security over a large network, such as the IoT.

One of the advantages of public-key over private-key is key management can be achieved

effectively in wide-area networks. However, the current PKCs, such as Rivest-Shamir-

Adleman (RSA) [70] and elliptic curve cryptography (ECC) [71], are not suitable for IoT

nodes for two main reasons. The first is that they have more complex computations, which

makes it hard to efficiently implement PKCs on IoT devices [69] [58]. Second, they are

still vulnerable to quantum attacks [72]. The main reason for the latter is that the security

of traditional PKC is based on the hardness of certain number theoretic problems (RSA is

based on large integer factorization, and ECC is based on the discrete logarithm problem).

According to Shor’s algorithm [5], these problems can be solved very efficiently on a

quantum computer; and cryptography algorithms will be insecure and weak as quantum

computers increase in number. Therefore, it is critical to IoT security to design alternative

crypto accelerators that are secure in the quantum era and provide long-term security.

According to NIST [7], lattice-based cryptography (LBC) is one of the accepted

77

quantum-resistant public-key cryptography, which no known quantum algorithms can solve

the lattice problems [73]. In comparison to other post-quantum cryptography schemes,

such as isogeny [74], LBC has relatively faster operations. As a result, LBC has received

much attention in these years and has been selected as a great candidate for post-quantum

cryptography system. It is worth mentioning that the post-quantum cryptosystems are

hardware-independent.

Among the different varieties of LBC techniques, such asNTRU and learningwith errors

(LWE), Ring-LWE [8] ismore practical and efficient in hardware and, compared to LWE, has

a smaller key size [9] [10]. In recent years, many articles have been published; and research

projects have been executed by employing Ring-LWE in different IoT-based applications

and environments, such as healthcare networks, intelligent transportation systems, financial

systems, insurance systems, and so on. Some works [75] utilized Ring-LWE for Fingerprint

Authentication System, and [76] designed a low latency cryptosystem for Biomedical

Images. Some hardware implementations for LWE and Ring-LWE have been proposed

in [9] [10] [77] [78] [79].

A new variant of the ideal-lattice based encryption scheme was introduced in [11] that

has a binary distribution and is called Ring-BinLWE. The security analysis and hardness

of Ring-BinLWE were published by [11] and [80]. The implementation results showed

that this optimized scheme is very suitable for resource-restricted devices. In [28], the low

area and high-performance decryption phase of Ring-BinLWE was implemented on FPGA.

An optimized variant of Ring-BinLWE for hardware implementation has been introduced

in [1]. They designed two different architectures: high-speed and lightweight on FPGA and

ASIC platforms for three phases of the scheme.

The main goal of this chapter is to design and implement a post-quantum crypto acceler-

ator for IoT resource-constrained devices based on Ring-BinLWE. The design contains three

phases: encryption, decryption, and key generation. The polynomial multiplication is the

main operation in Ring-LWE and Ring-BinLWE. By employing the optimized version [1]

of Ring-BinLWE, the modular reduction can be easily implemented in hardware platforms.

78

The main contributions of this chapter are summarized as follows:

• A novel multiplication technique is proposed for the design. The proposedmultiplica-

tion is column-based that in each cycle, all coefficients of multiplier and multiplicand

are involved in the multiplication.

• In the previous works [28] [1] [29], for every coefficient of each row, the modular re-

duction and anti-circular rotation should be executed. In the proposed multiplication,

however, the modular reduction and anti-circular rotation are executed one time in

each cycle of multiplication. Compared to the state-of-the-art design [1], this method

reduces one 2-to-1 Mux and one NOT gate and causes the modular reduction and

anti-circular rotation to be handled efficiently.

• The multiplication is executed by shift registers, which has a high impact on reducing

the area and power. ASIC implementation of the proposed design has 57.8% and

48.42% improvement in terms of area and power, respectively, over the state-of-the-art

design [1].

The proposed design and method have been implemented on ASIC-Tech 65𝑛𝑚 and

FPGA. According to the NIST lightweight cryptography [58], the ASIC implementation of

the design is suitable for cryptosystems in IoT resource-restricted devices. The ASIC and

FPGA frequency and area results appear to be better than previous works.

5.2 The proposed design

In this section, the proposed architecture is discussed. The main goal of this chapter is

to design a cryptosystem for resource-constrained IoT devices so that the required security

level is 80-bit [28] [81]. The parameters of Ring-BinLWE and Ring-LWE determine the

security level of the design. By selecting the parameters of Ring-BinLWE to 𝑛 = 256 and

𝑞 = 256, the cryptosystem provide a security level of 84-bit (according to [80]), 88-bit

(according to [82]) of conventional computers, and 73-bit [80] of quantum computers.

79

These parameters are smaller than Ring-LWE settings but are still suitable for lightweight

applications [28] [1] [29]. This section is divided into two parts: in the first part, the method

of In-place anti-circular rotation and modular reduction for column-based multiplication is

introduced; later, the lightweight hardware architecture for small devices will be explained

in detail.

5.2.1 In-place modular Reduction and anti-circular Rotation Column-
based Multiplication

As previously mentioned, Ring-BinLWE does not use time and area consuming NTT-

based polynomial multiplication. Instead, the polynomial multiplication in Ring-BinLWE is

a sequence of additions that can be executed by shift and add operations. The multiplication

is the main operation that is common in key generation, encryption, and decryption. One

of the main characteristics of Ring-BinLWE using 𝑓 (𝑥) = 𝑥𝑛 + 1 is an anti-circular rotation

that should be implemented in a multiplication operation. The straightforward method

of multiplication for Ring-BinLWE is the row of multiplication followed by anti-circular

rotation and modular reduction, as shown in Figure 5.1(a). This method is explained as

follow:

1. Each single coefficient of multiplier (𝑎𝑖) is multiplied by all coefficients of multipli-

cand (𝑏𝑖) to generate partial products.

2. The anti-circular rotation occurs in each row for partial products (the yellow coeffi-

cients Figure 5.1(a)).

3. Partial products are added into the intermediate sum (IS), followed by the modular

reduction.

4. The final result of the polynomial multiplication is computed by accumulating the

intermediate sum, followed by modular reduction.

In this work, a novel method of computing the polynomial multiplication is presented.

In the proposed technique, the coefficient multiplication is performed in a column-wise

80

an-2b1

an-1b0 an-1bn-1 an-1bn-2 ...

an-2bn-1

an-1b2 an-1b1

an-2b0 an-2bn-2 ... an-2b2

...a3bn-2a3bn-1a3b0a3b1a3b2

a2bn-2a2bn-1a2b0a2b1a2b2...

a1bn-1a1b0a1b1a1b2...a1bn-2

...a0bn-2a0bn-1 a0b2 a0b1 a0b0

a0a1a2...an-2an-1

b0b1b2...bn-2bn-1

c0c1c2...cn-2cn-1

ISISIS...ISIS

ISISIS...IS IS

ISISIS... ISIS

...ISISISIS

ISIS ...ISISIS

IS

a1bn-1

a2bn-2a2bn-1

...a3bn-2a3bn-1

an-2bn-1 an-2bn-2 ... an-2b2

an-1bn-1 an-1bn-2 ... an-1b2 an-1b1

((a))

an-2b1

an-1b0 an-1bn-1 an-1bn-2 ...

an-2bn-1

an-1b2 an-1b1

an-2b0 an-2bn-2 ... an-2b2

...a3bn-2a3bn-1a3b0a3b1a3b2

a2bn-2a2bn-1a2b0a2b1a2b2...

a1bn-1a1b0a1b1a1b2...a1bn-2

...a0bn-2a0bn-1 a0b2 a0b1 a0b0

a0 a1 a2 ... an-2 an-1

b0 b1b2...bn-2bn-1

c0c1c2...cn-2cn-1

ISISISIS...IS

ISISISIS... IS

...ISISIS ISIS

IS...ISISIS

IS... ISISISIS

IS

a0a1a2...an-2an-1

b0b1b2...bn-2bn-1

(I)

(II)

((b))

Figure 5.1: Two methods of doing multiplication for Ring-BinLWE (a) The conventional

row-based multiplication for Ring-BinLWE. (b) The proposed column-based of multiplica-

tion for Ring-BinLWE. (1) The multiplicand (𝑏𝑖) should be shifted to left. (2) Multiplier

(𝑎𝑖) should be started from the last coefficient (𝑎𝑛−1). The anti-circular rotation occurs at

yellow coefficients. IS stands for intermediate sum.

manner, which is followed by in-place modular reduction and anti-circular rotation; and

thus, the proposed is termed In-place Rot-Col-Mul. In each cycle of the In-place Rot-Col-

Mul, all multiplier coefficients (𝑎𝑖) are utilized simultaneously to produce partial products.

In each column, the corresponding multiplier is multiplied by multiplicand (𝑏𝑖). The main

difference between this method of multiplication and the conventional approach is that: (1)

in each cycle, all of the multiplicands and multipliers are getting involved to calculate the

final result; (2) the multiplication is column-based; (3) the multiplication starts from the

last coefficient of the multiplier (𝑎𝑛−1).

The main advantage of In-place Rot-Col-Mul over the conventional technique is the

use of only one anti-circular rotation in each cycle. Since the final result is added to all

of the coefficients in each column, this method is useful for lightweight implementation

since it does not require registers for storing these additional partial products. It is worth

81

mentioning that as the range of 𝑞 is determined by (− ⌊𝑞/2⌋ , ⌊𝑞/2⌋ − 1), the range of each

coefficient matches the 2’s-complement since the modular reduction is handled by normal

overflow and underflow [1]. This method is illustrated in Figure 5.1(b). In this figure, the

anti-circular rotation occurs in the yellow block of intermediate sum in each column. As

it is obvious from Figure 5.1(b), in each column the position of every 𝑎𝑖 is fixed and starts

from 𝑎𝑛−1 to 𝑎0, and 𝑏𝑖 should be shifted in each column. Also, by increasing the number

of columns, the position of doing the anti-circular rotation is changed by one unit. Each

iteration of the In-place Rot-Col-Mul involves the following steps:

1. Apply a circular left-shift to the multiplicand register (𝑏𝑖). This part is shown is

Figure 5.1(b) (1).

2. The multiplication starts from the last coefficient of multiplier (𝑎𝑛−1). To better

understand of doing multiplication, we depicted 𝑎𝑖 from the last coefficient (𝑎𝑛−1) to

the first coefficient (𝑎0) in Figure 5.1(b) (2). In each cycle, the multiplier (𝑎𝑖) and the

multiplicand (𝑏𝑖) should be shifted.

3. As all of the coefficients are in 2’s-complement, the modular reduction is not required.

The anti-circular rotation occurs one time in each column by changing the sign of the

intermediate sum at the yellow coefficient in each column.

4. After doing the anti-circular rotation, the multiplication continues with the rest of the

coefficients.

5. The position of doing the anti-circular rotation will be changed by one unit.

6. It will be repeated for the next columns.

To better understand the way of doing multiplication, the hardware design of the multi-

plication is shown in Figure 5.2 that the coefficients (𝑎𝑖 and 𝑏𝑖) are related to the first column.

This process is the same as the other columns of the multiplication. The differences are

that the position of doing anti-circular rotation will be transferred (based on the control

82

signals, the yellow box should move to the right in Figure 5.2) after finishing each column,

by setting EN to ’1’ or ’0’. At the end of each column, a circular left-shift should be applied

to the multiplicand register (𝑏𝑖).

As previously explained, the multiplication starts from the last coefficient of the multi-

plier (𝑎𝑛−1); and the multiplicand (𝑏𝑖) should have one circular left-shift (Mul.0 in Figure

5.2). As the multiplicand is a binary vector, to do the multiplication, each bit of multipli-

cand should be extended to k-bit, where k is equal to 𝑙𝑜𝑔𝑞2 . Then the multiplication will be

done for all of the coefficients until the position of anti-circular rotation (the yellow box in

Figure 5.2). The anti-circular rotation occurs by one time activating EN=1. After that, the

multiplication continues to finish all of the other coefficients for each column. For the next

columns, the position of activating control signal EN=1 is changed by one unit to the right.

The intermediate sums are stored in REG. As it is explained in Section 5.2.2, the position

of anti-circular rotation is controlled by counters.

5.2.2 The Proposed Lightweight Design

In this section, the proposed lightweight architecture will be discussed. While the

functionality of some IoT end-devices is limited to passing data forward in which they

only need to encrypt or decrypt the data, the proposed architecture contains all three main

phases of the Ring-BinLWE (key generation, encryption, and decryption). The proposed

architecture is shown in Figure 5.3.

The maximum data flow of the design is 𝑘-bit (𝑘 is equal to 8). REG_0 is a 𝑘-bit shift

register for storing the plain-text (which is 𝑚 in equations (2.4) and (2.5)). The M_Code

is designed for coding the plaintext (according to equation (2.4) to calculate 𝑚), which has

1-bit input and 𝑘-bit output. REG_3, REG_4, REG_5, and REG_6 are 𝑘-bit. Based on the

control signals and the phase of the design, 𝑚 and 𝐶2 are stored in REG_4, 𝑟1 is stored in

REG_3 to do the Add operation of the algorithm. The partial products and intermediate

sums are stored in REG_5. The multiplicand and multiplier are stored in the shift registers

REG_1 and REG_2, respectively (according to the phase of the design, 𝑎, 𝑝, and 𝐶1 are

83

bn-1 b0b1bn-2 ... b2

an-2 a0an-1 ... a2 a1

b0 b1b2bn-1 ... b3

an-2an-1 a0... a2 a1

b1 b2b3b0 ... b4

an-3an-2 an-1... a1 a0

bn-1 b0b1bn-2 ... b2

an-1a0 a1... a3 a2

b0 b1b2bn-1 ... b3

an-2an-1 a0... a2 a1

bn-2 bn-1b0bn-3 ... b1

a0a1 a2... a4 a3

Mul.0

...

REG

EN=0

Mul.1

REG

EN=0

REG

EN=0

REG

EN=1

kk k k

k kkk

Figure 5.2: The hardware design of the proposed multiplication with the related coefficients

of the first column. Note: as 𝑏𝑖 is a binary vector, to do the multiplication, each bit of 𝑏𝑖
should be extended to 𝑘-bit.

stored in REG_1 and 𝑟2 and 𝑒1 are stored in REG_2). REG_out contains one shift register,

and a 𝑘-bit register for storing the output result. The contents of registers are available in

Table 5.1.

It should be mentioned that there are several ways to generate the required random

numbers. Most of the similar works employed AES counter mode for generating random

numbers, such as [11] [29] [83] [84]. In the proposed design, the same method as previous

works by employing the AES design of [85] is applied. Based on the phase of the design,

the random numbers are stored in REG_2 and REG_3.

The purpose of Control signals 𝑅𝑜𝑡_𝐶𝑇𝐿 and 𝐸𝑁 is to change the function to the

In_place Rot-Col-Mul and subtract when needed. The multiplication operation contains 𝑛

rows and 𝑛 columns. The design includes two counters for counting the number of row

84

R
E

G
-1R

E
G

-2

R
E

G
-3

R
E

G
-4

R
E

G
-0

M-code

Shift-REG

8888

REG-5

REG-Store

REG_6

1

8

REG-out

Rot_CTR

EN

1

IN0IN1IN2IN3

Out

8

0

0

0

0
0

1

1

1

1

1

Col_Counter

Row_Counter

Rot_Counter

Control Unit
ENCNT0

ENCNT1

ENCNT2

Clear0

Clear1

Clear2

ResetClock

Figure 5.3: The proposed cryptosystem design. The green line contains REG_1 in the

design. The red line is the modified architecture to make a comparison with [1] and does

not contain REG_1.

85

Ta
bl
e
5.
1:
Th
e
lis
to
fa
bb
re
vi
at
io
ns
,p
ar
am
et
er
s,
an
d
th
e
co
nt
en
ts
of
re
gi
ste
rs

A
bb

re
vi

at
io

n
D

es
cr

ip
tio

n

In
-p
la
ce
Ro
t-C
ol
-M
ul

In
-p
la
ce
m
od
ul
ar
re
du
ct
io
n
an
d
an
ti-
ci
rc
ul
ar
ro
ta
tio
n

R
EG

Re
gi
ste
r

Ro
t

A
nt
i-c
irc
ul
ar
ro
ta
tio
n

EN
En
ab
le

Pr
e

Pr
ep
ar
at
io
n

M
ul

M
ul
tip
lic
at
io
n

D
ec

D
ec
is
io
n

A
dd

A
dd
iti
on

Fi
n

Fi
ni
sh

R
EG
_0

C
on
ta
in
in
g
𝑘
-b
it
sh
ift
re
gi
ste
rf
or
sto
rin
g
th
e
pl
ai
nt
ex
t

R
EG
_1

St
or
in
g
𝑎
,𝑝
,a
nd
𝐶

1
ba
se
d
on
th
e
ph
as
e
of
th
e
de
si
gn

R
EG
_2

St
or
in
g
𝑟 2
an
d
𝑒

1

R
EG
_3

St
or
in
g
𝑟 1

R
EG
_4

St
or
in
g
𝑚
an
d
𝐶

2,
ba
se
d
on
th
e
ph
as
e
of
th
e
de
si
gn

R
EG
_5

St
or
in
g
th
e
in
te
rm
ed
ia
te
re
su
lts

R
EG
_o
ut

C
on
ta
in
in
g
on
e
sh
ift
re
gi
ste
r,
an
d
a
𝑘
-b
it
re
gi
ste
r(
R
EG
_6
)f
or
sto
rin
g
th
e
ou
tp
ut
re
su
lt

86

Pseudo-code 1: The functionality of counters for executing the multiplication

Set the counters to initial values: Rot_Counter: ‘𝑛 − 2’, Row_Counter: ‘0’, and Col_Counter: ‘0’

Result: EN and Rot_CTR

for Col_Counter : ‘0’ to ‘𝑛 − 1’ do
EN = ‘0’

Rot_CTR = ‘0’

for Row_Counter : ‘0’ to ‘𝑛 − 1’ do

if Rot_Counter == Row_Counter then
EN = ‘1’

Rot_CTR =‘1’
end

Return EN and Rot_CTR
end

Rot_Counter −−
end

(Row_Counter) and column (Col_Counter), and one down counter to determine the position

of doing anti-circular rotation (Rot_Counter). The initial value of Rot_Counter is set to

‘𝑛 − 2’. As it was explained before, the multiplication starts from the last coefficient of the

multiplier. For the first column, the anti-circular rotation occurs between the row number

‘𝑛 − 2’ and ‘𝑛 − 1’. When the Row_Counter is equal to Rot_Counter, the Control_Unit

activates the related signals for applying the anti-circular rotation and reduces Rot_Counter

by one for the next column, this process will be done until Rot_Counter will be equal to ‘0’.

The functionality of counters is written in Pseudo-code 1.

The finite state machine of the architecture is shown in Figure 5.4. The multiplication

is the common function among three phases: key generation, encryption, and decryption.

According to the explained equations in section 2.1.4, key generation and decryption need

onemultiplication and one addition (one stage for getting the result); encryption requires two

multiplications and three additions (two steps for getting the results). During the encryption

and decryption, the message should be encoded and decoded, respectively. The calculation

of encryption requires two stages: one for generating 𝐶1 = 𝑎𝑒1 + 𝑒2 and the other one for

𝐶2 = 𝑝𝑒1 + 𝑒3 + 𝑚.

The finite state machine of the design has seven states. At a high level of abstraction,

87

Start

Mode

Pre

Mul.0
Mul.1 Dec

Add.1

Add.0

Fin

n times

n times

n times

Figure 5.4: The finite state machine for the proposed Design

“Start” is the idle of the design and generates the signals for different modules based on the

phase of the design, which are according to the input control signals (Mode). “Pre” stores

the data in the registers (REG_1 and REG_2), which requires 𝑛 clock cycles for storing

the data in REG_1. “Mul.0” is the pre-process for multiplication that prepares the registers

for multiplication by performing one circular left shift of REG_1. “Mul.1” executes the

multiplication and anti-circular rotation in each column which is executed 𝑛 = 256 times.

The position of the anti-circular rotation is decided based on the counters. The execution of

“Mul.0” and “Mul.1” was shown in Figure 5.2. The list of abbreviations is written in Table

5.1.

After finishing each column, the design’s state goes to “Dec" that prepares the design for

addition based on the phase of the design and stores the required data for addition operation

in the registers. If the phase of the design is decryption, key generation, or encryption (that

is calculating 𝐶1), the next state is “Fin” and the result is ready; if the phase of the design

is encryption for generating 𝐶2, the next state will be “Pre”, and “Add.1” will be executed

after “Add.0” to add 𝑚 to the stored value in REG_5. This process will be executed 𝑛 times.

The final result of the decryption phase is a polynomial in 𝑅𝑞 and must be decoded to a

binary vector. The decode function is written in equation (2.5); and the method from [28]

and [1] is borrowed to implement the decode function, which is implemented by XORing

88

the most significant two bits of each coefficient of the result.

According to the above description, the cryptosystem executes in constant clock cycles,

where decryption and key generation require (𝑛+1)+𝑛×(𝑛+3) clock cycles, and encryption

requires (2𝑛 + 1) + 𝑛 × (2𝑛 + 7) clock cycles. The timing diagram based on activating the

registers and modular reduction and anti-circular rotation for the decryption phase is shown

in Figure 5.5.

REG 1

REG 2

REG 3

EN & Rot_CTR

Clock

Pre

Start

 n times

REG 5

Mul 0

Mul 1

Dec
Add 0

Mul 0

Mul 1

Dec
Add 0

Mul 0 Dec
Add 0

Mul 0

Mul 1

Dec
Add 0

Fin

 n times n times n times n times

 n/k

 n-2 n-3

Figure 5.5: The timing diagram for activating registers and modular reduction and anti-

circular rotation of decryption phase period

5.2.3 Security Analysis

The security of a cryptosystemcontains twoparts: the algorithmand the implementation.

In the proposed architecture, the operations and functions of Ring-BinLWE have not been

altered. Thus, it is expected the design keeps the same level of confidentiality, hardness,

and security, according to [11] [80]. There are some attacks and threats, such as side-

channel, that depends on the implementation design. The main goal of side-channel attacks

is exploiting the secret key by achieving the relationship between physical attributes of

the design, such as power consumption and timing behavior. Because of three reasons,

89

the proposed design is secure against timing attacks; 1) there is no conditional branches

and dependency between the inputs and cipher-text; 2) for decryption of each cipher-text,

the proposed design executes in a constant number of clock cycles (also clock cycles for

encryption and key generation are constant); and 3) the critical path delay of the proposed

design is constant for all three phases [29] [48] [66].

In the row-based multiplication, in each cycle of multiplication one coefficient of the

private key (multiplicand) gets involved on multiplication with the entire coefficients of

multiplier (𝑎𝑖). If 𝑟2(𝑖) (private key) is equal to ‘0’, the switching activity is reduced

because addition and internal registers update will not occur by default, and it can be

recognized since this is done through the entire multiplier (𝑎𝑖). An SPA attack can thus

extract the secret key with a few measurements by interpreting differences in power traces

caused by these operations. However, in the proposed design, the power activity has been

normalized as: I) the multiplication is column-based that in each cycle of multiplication

all of the multiplicand (𝑏𝑖) and multiplier (𝑎𝑖) participate followed by in-palace reduction

and anti-circular reduction. II) In each clock cycle, addition and register read and write are

executed. Therefore, regardless of the value of 𝑟2(𝑖), in each clock cycle, there is always

an execution of an addition and a register read and write that provide the resistance against

exploring the private key by SPA caused by inactivity. To increase the security against

differential power analysis (DPA), it is possible to apply the DPA countermeasures, such as

the hardware design used in [28] [86], or modify the design based on the method of [29]

to the proposed design. However, as DPA countermeasure is a supplementary module

that is added to the main architecture and occupies more area, it is not common to use

resource-consuming DPA countermeasure for IoT constrained-resource devices [1].

5.3 Implementation Results, Simulation, and Comparison

In this section, the implementation results of the proposed method and architecture are

reported. The proposed architecture has been implemented on both ASIC and FPGA plat-

forms with Very-high-speed-integrated-circuit Hardware Description Language (VHDL).

90

0 10 20 30
0

2

4

6

8

10

Clock Period (𝑛𝑠)

Po
w
er
(𝑚
𝑊
)

power

244.8001

244.8201

244.8401

244.8601

244.8801

244.9001

244.9201

244.9401

244.9601

244.9801

A
re
a
×1

02
(`
𝑚

2)

power
area

Figure 5.6: Area-delay curve and Power-delay curve of the proposed design

To verify the proposed architecture and method, different test vectors were generated using

Python and used to simulate the design in ISim 14.7.

5.3.1 ASIC implementation results and comparison

The proposed design is synthesized in Synopsys Design Compiler using TSMC-65𝑛𝑚

technology with typical case parameters 1.00V and 25◦𝐶. The design’s timing, area, and

power metrics are generated. To find the trade-off between delay and area, and delay and

power, the proposed design is synthesized under different timing constraints (5, 10, 15, 20,

25, and 30𝑛𝑠) with a 10% input/output delay margin. The worst delay of the design is 2𝑛𝑠

that the total power consumption (the addition of static power and dynamic power) and area

of the design are 10.1952𝑚𝑊 and 24499.08`𝑚2, respectively. The area-delay curve and

power-delay curve are drawn in Figure 5.6. The minimum power and area occur at 30𝑛𝑠

that are 1.1321𝑚𝑊 and 24483.240`𝑚2. The detailed ASIC results and comparison with

other similar works have been written in Table 5.2.

Among the other works, the lightweight design of [1] is a similar one to this work, which

is implemented the same algorithm (with the same parameters) in the same technology.

91

The advantage of the design of [1] is that the reductions can be handled easily in hardware

implementation by using 2’s complement range. There are three main differences between

the proposed design and the design of [1]. First, the anti-circular rotation was performed at

every coefficient in [1]. In the proposed design, however, the modular reduction and anti-

circular rotation occur for one time in each column. Second, for executing the anti-circular

rotation, two Muxs, two Not gates, and one Adder are used, which made the Control_Unit

be complicated, the delay was increased, and also their design occupied more area. In

comparison to [1], by employing the In-place Rot-Col-Mul only oneMux, one Not gate, and

one Adder are used for handling the anti-circular rotation. And third, in their design, they

considered multiplicand (𝑏𝑖) and addition vector as input (without storing in any register) of

their design into two bigmultiplexers (𝑛 to 1 Mux). These twoMuxs imposed an unbreakable

delay and occupied more area. To make a fair comparison with [1], some changes have been

made in the proposed design. These changes are: the modified design does not include

REG_1, and the value of multiplicand (𝑏𝑖) is considered as the input of the design that feeds

to the design in each clock cycle (similar to [1]); some control signals have been changed

according to the modified design. In Figure 5.3, the red line is the modified version of the

proposed design to compare with [1] (the control signals are not drawn).

The finite state machine of the modified cryptosystem is the same as the main design.

Themain difference is on ‘Pre’ that is run for 𝑛
𝑘
clock cycles for storing the value ofmultiplier

(𝑎𝑖) in ‘REG_2’. In themodified design, the number of clock cycles for executing decryption

and key generation is 𝑛×(𝑛+3) + (𝑛
𝑘
) +1, and for encryption is 𝑛×(2×𝑛+7) +2×(𝑛

𝑘
) +1. As

the maximum frequency of [1] is 33.3MHz, the results in the timing constraint 30𝑛𝑠 were

generated. In this timing constraint, the proposed design occupied an area of 4637.51`𝑚2

and average power consumption of 0.196𝑚𝑊 . Compared to the [1], the proposed design

has improved the area by 57.8% and power by 48.42%. As the worst delay of the design

is 2𝑛𝑠, the execution time for encryption and decryption are 265.986`𝑠 and 132.674`𝑠,

respectively, which is very faster than the state-of-the-art design [1].

92

5.3.2 FPGA implementation results and comparison

Althoughmost of the resource-constrained devices are implemented on ASIC platforms,

the proposed design is also implemented on FPGA platforms. The target FPGAs are Xilinx

Virtex-7 and Spartan-6, which are the most used FPGA in previous articles, by using

ISE 14.7 and ISim 14.7 for synthesis, simulation, and post-placement timing result. The

hardware design merits of timing, resources on FPGA of this work and other similar

implementations are written in Table 5.3. For a fair comparison of our proposed Ring-

BinLWE design, we should have selected other Ring-BinLWE; however, we also considered

other Ring-LWE. Since the different designs used different FPGA resources, we normalized

the occupied area by calculating the Equivalent Number of Slices (ENS), based on [87].

Furthermore, we employed Area × Time metric (AT) as a measurement for comparing

the effect of execution time over the occupied area, which is a common and widely used

measurement in previous work [1].

The FPGA implementation results of the proposed design and some other lightweight

cryptosystems are reported in Table 5.3. The throughput of the proposed design is

26.12𝑘𝑏𝑝𝑠 and 52.64𝑘𝑏𝑝𝑠 for encryption and decryption on Virtex-7, respectively. Also,

the FPGA efficiency (FPGA-Eff), which is throughput per slice, is 0.158𝑘𝑏𝑝𝑠/𝑠𝑙𝑖𝑐𝑒 and

0.319𝑘𝑏𝑝𝑠/𝑠𝑙𝑖𝑐𝑒 for encryption and decryption, respectively.

It is worth mentioning that the implementation of all of the Ring-BinLWE and some

of Ring-LWE works contain the main architecture, and do not contain the occupied area

consumption for uniform polynomial 𝑎, random number generation, or Gaussian sampler.

The work [28] implemented the decryption phase of the Ring-BinLWE scheme on Xilinx

Spartan-6 with the same parameters as the proposed design (𝑛 = 256 and 𝑞 = 256), and

with different range for q that reduction is mandatory after each operation. Also, for storing

the coefficients, they used two BRAMs in their design. As doing the multiplication requires

𝑛× 𝑛 clock cycles, the number of clock cycles is almost equal between different designs. In

comparison to [28], the proposed design improves the execution time and AT measurement

by 50% and 45.3% on the same platform, respectively.

93

Ta
bl
e
5.
2:
Re
su
lts
an
d
C
om
pa
ris
on
fo
rc
ry
pt
os
ys
te
m
im
pl
em
en
ta
tio
n
on
TS
M
C
-6

5𝑛
𝑚

Re
fe
re
nc
e

Fr
eq
ue
nc
y

A
re
a

#C
lo
ck
C
yc
le
s

Ti
m
e
(`
𝑠)

Po
w
er

En
er
gy
(𝑛
𝑗)

(M
H
z)

`
𝑚

2
G
E

En
c.

D
ec
.

En
c.

D
ec
.

(𝑚
𝑊
)

En
c.

D
ec
.

50
01

24
49
9.
08

17
k
13
33
77

66
56
1
26
6.
75
4
13
3.
12
2
10
.1
95
2
27
19
.6
1
13
57
.2
0

Th
is
w
or
k

33
.3

32
24
48
3.
24

17
k
13
33
77

66
56
1
40
01
.3
1
19
96
.8
3
1.
13
21

45
29
.8
8
22
60
.6
1

33
.3

33
46
37
.5
1
3.
2k

13
29
29

66
33
7
39
87
.8
7
19
90
.1
1

0.
19
6

78
1.
62
2
39
0.
06

Li
gh
tw
ei
gh
to
f[
1]

33
.3
3

11
k

7.
9k

13
18
40

65
79
2

3.
8k

1.
9k

0.
38

1.
4k

72
2

H
ig
h-
Sp
ee
d
of
[1
]

10
46
k

32
k

51
5

25
7

51
26

1.
30

66
33

1
Th
e
im
pl
em
en
ta
tio
n
re
su
lts
of
th
e
co
m
pl
et
e
de
si
gn
at
th
e
m
ax
im
um
fr
eq
ue
nc
y
(th
e
gr
ee
n
lin
e
de
si
gn
in
Fi
gu
re
5.
3)

2
Th
e
im
pl
em
en
ta
tio
n
re
su
lts
of
th
e
co
m
pl
et
e
de
si
gn
at

30
𝑛
𝑠
(th
e
gr
ee
n
lin
e
de
si
gn
in
Fi
gu
re
5.
3)

3
Th
e
m
od
ifi
ed
ar
ch
ite
ct
ur
e
(th
e
re
d
lin
e
de
si
gn
in
Fi
gu
re
5.
3)
of
th
e
pr
op
os
ed
de
si
gn
in
th
e
tim
in
g
co
ns
tra
in

30
𝑛
𝑠

in
or
de
rt
o
co
m
pa
re
w
ith
[1
]

94

Ta
bl
e
5.
3:
Re
su
lts
an
d
co
m
pa
ris
on
fo
rc
ry
pt
os
ys
te
m
im
pl
em
en
ta
tio
n
on
FP
G
A

Re
fe
re
nc
e
Sc
he
m
e
B
it
Se
c.

D
ev
ic
e

Ty
pe

Fr
eq
.
LU
T/
FF
/S
lic
e

D
SP

#C
C

2
Ti
m
e
(`
𝑠)

EN
S3

A
T4

Q
tm
/C
ls
c1

(M
H
z)

/B
R
A
M

En
c.
/D
ec
.

En
c.
/D
ec
.

En
c.
/D
ec
.

Th
is
w
or
k
R-
B
LW
E

73
/8
4

V
irt
ex
-7
En
c.
/D
ec
.
43
4.
32

38
0/
64
0/
16
5

0
13
3k
/6
6k

30
7.
94
/1
53
.6
7
16
5
50
.8
1k
/2
5.
35
k

Sp
ar
ta
n-
6
En
c.
/D
ec
.
27
9.
64

44
4/
64
2/
14
6

0
47
7.
98
/2
38
.9
3
14
6
69
.7
8k
/3
4.
88
k

[1
]

R-
B
LW
E

73
/8
4

V
irt
ex
-7
En
c.
/D
ec
.5
40
/5
60

2k
/2
k/
65
2

0
51
2/
25
6

0.
95
/0
.4
6

65
2
61
9.
4/
29
9.
92

[2
8]

R-
B
LW
E

73
/8
4
Sp
ar
ta
n-
6

D
ec
.

-/1
35

57
/3
0/
19

0/
2

-/6
5.
79
k

-/4
87
.4

13
1

-/6
3.
84
k

[1
0]

R-
LW
E

80
/1
06

V
irt
ex
-6
En
c.
/D
ec
.
31
3

13
49
/8
60
/-

1/
2(
18
k)

6.
3k
/2
.8
k

20
.1
/9
.1

-
-

[8
8]

R-
LW
E

80
/1
06

Sp
ar
ta
n-
6

En
c.

80
13
07
/8
89
/4
06
0/
1(
18
k)
,3
(8
k)

36
0.
5k

45
00

69
0.
2

31
05
.9
k

D
ec
.

80
13
07
/8
89
/4
06

0/
1(
8k
)

72
k

90
0

46
2

41
5.
8k

[8
7]

R-
LW
E

80
/1
06

K
in
te
x-
7

En
c.

30
4.
69

89
8/
81
5/
30
3

1/
3(
8k
)

69
.6
k

22
9

57
3.
4

13
1.
3k

D
ec
.

30
3.
40

63
5/
19
0/
19
4

1/
1(
8k
)

34
.4
k

11
4

35
2.
4

40
.1
7k

[8
9]

R-
LW
E

-
K
in
te
x-
7
En
c.
/D
ec
.
27
5
13
81
/1
17
9/
47
9

2/
2(
8k
)

35
.4
5k
/1
7.
73
k

12
9/
64

79
5.
8
10
2.
65
k/
50
.9
3k

1
Q
tm
an
d
C
ls
c
sta
nd
fo
rq
ua
nt
um
an
d
cl
as
si
c
bi
ts
ec
ur
ity
,r
es
pe
ct
iv
el
y.
Th
e
bi
ts
ec
ur
ity
an
al
ys
es
ar
e
ba
se
d
on
[1
1]
an
d
[1
].

2
#C
C
sta
nd
sf
or
th
e
nu
m
be
ro
fc
lo
ck
cy
cl
es
.

3
EN

S
sta
nd
sf
or
Eq
ui
va
le
nt
N
um
be
ro
fS
lic
es
.B
as
ed
on
[8
7]
,O
ne
D
SP
eq
ui
va
le
nt
to
10
2.
4
Sl
ic
es
,o
ne
8k
B
R
A
M
eq
ui
va
le
nt

to
56
Sl
ic
es
,a
nd
on
e
18
k
B
R
A
M
eq
ui
va
le
nt
to
11
6.
2.

4
AT
=
nu
m
be
ro
fS
lic
es
×
Ti
m
e
in
m
ic
ro
se
co
nd
(𝑆
𝑙𝑖
𝑐
𝑒
𝑠
×
`
𝑠𝑒
𝑐
).

95

6. Fault Resilient Implementation of Binary Ring-LWE

Due to increasing the number of connected devices to IoT network, providing end-to-end

security is essential. Lattice-based cryptography (LBC) is a promising method for IoT by

providing the reasonable security against classic and quantum attacks. Binary Ring-LWE is

a type of LBC that is suitable for IoT devices. However, a reliable crypto-system should also

be secure against different side-channel attacks, such as power analysis or fault injection

ones. In this chapter, a fault resilient hardware implementation for an optimized hardware

design of Ring Binary LWE for resource-constraint IoT devices is presented. The design

was implemented on the FPGA platform. This chapter is organized as follows. Section 6.1

provides a brief introduction to motivation and fault injection attack. The proposed design,

method, and implementation of CCA2-Secure Ring-Bin LWE are described in Section 6.2.

The implementation results and comparison are explained in Sections 6.3.

6.1 Introduction

As the Internet of Things (IoT) has been growing and the number of connected devices

has been exponentially increased, providing end-to-end security becomes vital for a large

network. In general, cryptography algorithms are divided into public key cryptography

(PKC) and private key cryptography. Compared to private key, public key cryptography

The content of this chapter is originally accepted in: K. Shahbazi, and Seok-Bum Ko “Lightweight

and CCA2-Secure Hardware Implementation of Binary Ring-LWE.” 2022 IEEE International Symposium on

Circuits and Systems (ISCAS). The manuscript has been reformatted for inclusion in this thesis.

96

provides more security for a large network, such as IoT. The other advantage of using PKC

is that key management can be effectively done in a large network. Most of the current

PKC, such as ECC and RSA, can be solved very efficiently on a quantum computer by

using Shor’s algorithm [5]. As a result, they are vulnerable and insecure when quantum

computers increase in number; and it is essential to design reliable cryptosystems.

Lattice-based cryptography (LBC) is one of the quantum-resistant PKC,which is accept-

able by NIST [7]. Until now there is no known quantum algorithms that can solve the lattice

problems [73] that makes LBC a great candidate for post-quantum cryptosystems. Ring

Learning With Errors (Ring-LWE) [8] is the efficient and practical type of LBC in hard-

ware and requires a smaller key size. Modular multiplication by number theory transform

(NTT) and discrete Gaussian sampler to generate errors are two main units in Ring-LWE.

These two units occupy more area and have more latency on hardware designs. Binary

Ring-LWE (Ring-Bin LWE) is a new variant of the LBC and was introduced in [11]. The

security and hardness of Ring-Bin LWE were analyzed by [11] and [80]. The main features

of Ring-Bin LWE are using a binary distribution, instead of Gaussian distribution; and

the modular multiplication is based on shift-and-add, instead of NTT multiplication. This

causes implementation of Ring-Bin LWE be a suitable cryptosystem for resource-restricted

devices.

In recent years, many research projects have been done and published by employing

Ring-LWE and Ring-Bin LWE in different IoT-based applications and environments. Some

hardware implementations for LWE and Ring-LWE have been proposed in [9] [77] [78]

[79] [75] [76]. An optimized variant of Ring-Bin LWE for hardware implementation has

been introduced in [1]. [90] presented an optimized hardware implementation of Ring-

Bin LWE on ASIC and FPGA for end-node IoT devices by introducing a column-based

multiplication. In [28], the low area and high-performance decryption phase of Ring-Bin

LWE was implemented on FPGA.

In fault injection attacks, the data can bemanipulated by injecting an error into amemory

or a signal to obtain the faulty execution of the system and try to extract message or private

97

key by evaluating the results. Skipping, zeroing, and randomization are different fault

attacks that an adversary can execute over a cryptosystem. In randomization, some part of

memory is set to random values. For Ring-Bin LWE, randomization fault does not have

any impact over key generation and encryption phases. Skipping is avoiding to run certain

operations in the algorithm, such as addition and multiplication. Zeroing contains setting

some parts or the entire value of a coefficient to zero. Skipping and zeroing attacks have a

high impact on Ring-Bin LWE.

Beside the security of cryptography algorithms, the hardware implementation of a

crypto-system should be evaluated and be secure against different side channel attacks.

Because of the distributed nature of the IoT network, the crypto-systems should be secured

and analyzed against fault injection [91] [30]. The main goal of the fault injection is

to extract the secret key and plain-text by injecting errors into signals. Among the fault

attacks, Chosen Ciphertext Attacks (CCA and CCA2) are the main threat on Ring-Bin

LWE [91] [30] [29]. It is worth mentioning that most of the previous implementations

are vulnerable against fault attacks due to the fact that no fault attack countermeasures had

been applied in their implementations. Very few works were done on fault detection of

post-quantum cryptography (PQC). Previous works [30] [92] [29], added the fault-resilient

architecture to Ring-LWE and Ring-Bin LWE designs. [29] proposed the fault resilient

software implementation of the Ring-Bin LWE design of [1].

[90] introduced a novel method of multiplication and implemented Ring-Bin LWE on

both FPGA and ASIC for IoT resource-constraint devices. In this paper, we design and

apply the fault attack countermeasure to the hardware implementation of the optimized

Ring-Bin LWE architecture of [90]. Compared to the similar hardware implementation of

Ring-Bin LWE, [90] occupied less area and is more suitable for resource-constraint devices.

The main contributions of this work are as follows:

• Fault resiliency is evaluated for three phases of Ring-Bin LWE, key generation,

encryption, and decryption. Then a fault resiliency architecture is introduced for

98

Ring-Bin LWE.

• The fault resilient of Ring-Bin LWE is implemented on FPGAVirtex-7. The proposed

fault resilient implementation of Ring-Bin LWE occupies only 1% of total available

slices and executes in an acceptable number of clock cycles, based on IoT criteria.

6.2 The Proposed Design

In this section, the detailed information related to the implementation of the fault resilient

Ring-Bin LWE is discussed. The parameter sets of the proposed design are 𝑛 = 256 and

𝑞 = 256 that provide the security level of 73/84 bits for quantum/classical computers.

The selected parameter sets and the security level are suitable for lightweight applications

and resource-constraint devices. The CCA2-Secure is applied to the architecture of [90],

which is an optimized implementation of Ring-Bin LWE by using a column-based novel

multiplication method. Since some of fault attacks on decryption phase to gain secret keys

and the plain-text, it is important to provide resistance against fault attacks on decryption

phase by employing CCA2-secure implementation [91] [30] [29] [93]. Based on the Ring-

Bin LWE algorithm, the message is decoded based on:

𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝐶1𝑟2 + 𝐶2) →

𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑟2(𝑎𝑒1 + 𝑒2) + 𝑒1(𝑟1 − 𝑎𝑟2) + 𝑒3 + �̄�) →

𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑟2𝑎𝑒1 + 𝑟2𝑒2 + 𝑒1𝑟1 − 𝑒1𝑎𝑟2 + 𝑒3 + �̄�) →

𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑟2𝑒2 + 𝑒1𝑟1 + 𝑒3 + �̄�)

(6.1)

According to equation (6.1) and [11], the noise polynomial is equal to 𝑁 = 𝑒1𝑟1+𝑒2𝑟2+𝑒3

and 𝐸 (𝑒 𝑗𝑟 𝑗) = (−𝑛+2𝑖 +2)/4, which 𝑗 ∈ {1, 2} and 𝑖 ∈ {0, ..., 𝑛 − 1}. As it was mentioned

before, the main goal of fault attacks is to recover secret key or plain-text by manipulating

the input data. Also, fault attacks on Ring-Bin LWE can be done by skipping and zeroing

on key generation, encryption, and decryption phases. Key is generated by 𝑝 = 𝑟1 − 𝑎.𝑟2;

skipping and zeroing fault can be done by setting 𝑎, 𝑟1, or 𝑟2 to zero which results producing

weak public key, recovering the secret key and plain-text. When 𝑎 or 𝑟2 set to zero, the weak

99

Ring-BinLWE

AES-Core

G

HH

RNG

Seed
e1
e2
e3
v
HH(v)Key
G(v)

C3
m

r2

C2

p/a/C1

Out

C4

C3/ m

C4

Com.

Figure 6.1: The hardware design of the proposed fault resilient Ring-Bin LWE

public key is 𝑝 = 𝑟1, which results two weak cipher-texts 𝐶1 = 𝑒2 and 𝐶2 = 𝑟1𝑒1 + 𝑒3 + �̄�.

As 𝑟1𝑒1 + 𝑒3 < 𝑁 , the message could be recovered. When 𝑟1 is equal to zero, 𝑝 = −𝑎𝑟2 and

secret key can be recovered by evaluating the result of public key from 𝑎.

The adversary can recover the plain-text from the faulty data by zeroing 𝑒1 or skipping

the multiplication. By doing that the results of cipher-texts are 𝐶1 = 𝑒2 and 𝐶2 = 𝑒3 + �̄�.

Thus, the message is decoded by 𝑒2𝑟2 + 𝑒3 + �̄�. There is not 𝑎 in the message’s equation and

since 𝑟2 is a binary vector, for each random selected of 𝑟2, (𝑒2𝑟2 + 𝑒3) < 𝑁 and the message

could be recovered. The cipher-text is decrypted by �̄� = 𝐶2 + 𝐶1.𝑟2. In the decryption

phase, the secret key can be extracted by calculating the differentiating between correct and

faulty decryption results by setting 𝐶2 to zero. The proposed design of fault resilient is

presented in Figure 6.1.

[30] pointed that three random oracles are necessary for the transformation of quantum

security to provide classic and quantum attack resistance. Random number generators

(RNGs) and oracles are necessary to resist fault attacks. These random oracles are 𝐻 :

{0, 1}2𝑛 → {0, 1}𝑛, 𝐺 : {0, 1}𝑛 → {0, 1}𝑛, and 𝐻𝐻 : {0, 1}𝑛 → {0, 1}𝑛. The Ring-Bin

100

LWE core in Figure 6.1 is borrowed from the the design of [90]. In Figure 6.1, 𝐺 and 𝐻𝐻

provide the security check in which will be used during the decryption phase. RNG of the

design is implemented based on [11] [29] [83] in which runs the AES in counter mode and

encrypts successive values of an incrementing counter.

In the architecture, we used the design of AES [85]. The AES design of [85] is an

optimized lightweight AES implementation with 8-bit datapath for IoT resource-constraint

devices and requires 527 clock cycles. The datapath of the proposed design is 8-bit and

is suitable with the modulo 256 of the algorithm. Random oracles are implemented with

different vectors. Similar to [29], the inputs are used as encryption key and the encrypted

outputs are used as the returned value of random oracles. The pseudo-code of the proposed

CCA2-Secure cryptosystems is written in Pseudo-code 1.

In Pseudo-code 1, 𝐻𝐻 and 𝐺 are random oracles that 𝐻𝐻 and 𝐺 are implemented as

constant numbers (different for each random oracle) that are input key for AES. 𝐻 (𝑎, 𝑏) is a

function that 𝑎 is the plain-text and 𝑏 is the key for AES algorithm. The required errors are

generated separately and fed to the Ring-Bin LWE. At first, the random vector 𝑣 is generated

by RNG and AES core; as RNG is executed over a counter mode AES, the value of 𝑣 is

unique for each execution. Then random 𝑠𝑒𝑒𝑑 is produced from message 𝑚 (as the key for

AES core) and the random vector 𝑣 (as the plain-text for AES core). Errors (𝑒1, 𝑒2, and 𝑒3)

are generated by random 𝑠𝑒𝑒𝑑 and oracle 𝐻𝐻. To reduce the area, only one AES core is

used that results a recursive structure. In Figure 6.1, Mux-0 and InvMux-1 are employed to

return back data to the AES core for generating the remaining values.

To verify that the fault injection has not occurred (beside𝐶1 and𝐶2)𝐶3 and𝐶4 should be

calculated by oracles in encryption phase, and will be used in decryption phase for verifying

that fault has not been happened. As a result, fault injection attacks on cipher-texts can be

detected during decryption phase.

The decryption phase should contain the followings: first, calculating the decryption

result of Ring-Bin LWE to get the value of 𝑣, based on the inputs (𝐶1 and 𝐶2); second,

101

Pseudo-code 1: The proposed CCA2-Secure Ring-Bin LWE
A: The proposed Ring-Bin LWE Encryption with CCA2-Secure
Data: 𝑟2, 𝑎, 𝑚
Output: 𝑐1, 𝑐2, 𝑐3, 𝑐4
begin
𝑣 ← 𝑅𝑁𝐺
𝑠𝑒𝑒𝑑 ← 𝐻 (𝑣,𝑚)
𝑒1 ← 𝐻𝐻 (𝑠𝑒𝑒𝑑)
𝑒2 = 𝐻𝐻 (𝑒1)
𝑒3 = 𝐻𝐻 (𝑒2)
𝑐1 = 𝑎.𝑒1 + 𝑒2, 𝑐2 = 𝑝.𝑒1 + 𝑒3 + 𝑣
𝑐3 = 𝐺 (𝑣)

⊕
𝑚, 𝑐4 = 𝐻𝐻 (𝑣)

end

B: The proposed Ring-Bin LWE Decryption with CCA2-Secure
Data: 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑎, 𝑟2

Output: 𝑚
begin
𝑣 = 𝑐1.𝑟2 + 𝑐2, 𝑣 = 𝑑𝑒𝑐𝑜𝑑𝑒(𝑣)
𝑚 = 𝐺 (𝑣)

⊕
𝑐3

𝑠𝑒𝑒𝑑 ← 𝐻 (𝑣,𝑚)
𝑒1 ← 𝐻𝐻 (𝑠𝑒𝑒𝑑)
𝑒2 = 𝐻𝐻 (𝑒1)
𝑒3 = 𝐻𝐻 (𝑒2)
𝑐
′

1 = 𝑎.𝑒1 + 𝑒2, 𝑐
′

2 = 𝑝.𝑒1 + 𝑒3 + 𝑣, 𝑐′4 = 𝐻𝐻 (𝑣)
if 𝑐′1 == 𝑐1 and 𝑐

′

2 == 𝑐2 and 𝑐
′

4==𝑐4 then
| return 𝑚
end
end

message is recovered by oracle and 𝐶3; then errors are generated by the 𝑠𝑒𝑒𝑑, which is

generated from 𝑣 and 𝑚; after that, the calculated results came back to the Ring-Bin LWE

core to produce the encrypted results; and finally, the encrypted results and the input results

are compared to make sure that the fault has not been happened. The comparison unit in

Figure 6.1 is designed by XOR in which when the result is 1 fault has been injected. If 𝐶3

and 𝐶4 have been injected by fault, it is recognized during the decryption phase. It is worth

mentioning that the proposed design is resistance against timing attacks since it is executed

in constant number of clock cycles; the critical path delay of the proposed architecture

is constant during the execution of different phases; there is no conditional branches and

dependency between the inputs and cipher-text [66].

102

6.3 Implementation Results, Simulation, and Comparison

In this section, the implementation results of the CCA2-Secure and comparison with

similar works are reported. The architecture has been implemented on FPGA platformswith

Very-high-speed-integrated-circuit Hardware Description Language (VHDL). To verify the

design and method, different test vectors were generated and used to simulate the design

in ISim 14.7. The target FPGA is Xilinx Virtex-7 that is mostly used FPGA in previous

articles. The synthesis, simulation, and post-placement timing result are obtained by ISE

14.7. The hardware design merits of timing, resources on FPGA of this work are written

in Table 6.1. The achieved frequency for the design after the place and route for Virtex-7 is

210.5MHz, and the number of occupied slices is 423 out of 51000. It is obvious from the

results that the proposed fault resilient Ring-Bin LWE consumes very low area on FPGA

(only 1% on Virtext-7 that has 51000 Slices) can be used as a crypto accelerator on FPGA.

The fault resilience of our implementations requires 655`𝑠 and 969`𝑠 for encryption

and decryption on Virtex-7, respectively. Adding fault resilient causes increasing more

resources and latency due to having more cipher-texts (𝐶3 and 𝐶4). Furthermore, the

proposed design contains error generation parts that results occupation more area compared

to the other works. It is worth mentioning that most of the previous Ring-Bin LWE, such

as [90], reported the results for the main architecture of the algorithm that do not contain

the occupied area consumption for error generation module.

The design of CCA2-Secure implementation of Ring-Bin LWE has 53% and 84% slower

compared to [90] in encryption and decryption operations on Virtex-7, respectively. The

main reason for increasing the latency of the design, compared to [90], is that the latency

of AES module is dominant, which the maximum frequency is 147MHz on Virtex-5 [85].

Compared to [90], the proposed design of CCA2-Secure requires more clock cycles for

decyption phase since to validate the final results, the process of encryption and generating

the errors should be executed again to make sure fault has not been injected to the signals.

As the main goal is to occupy less area on FPGA, only one AES core has been used, which

results executing on more clock cycles for generating errors and verifying the decryption.

103

Table 6.1: The FPGA implementation results and comparison

References This Work [92]1 [29] [90]2

Platform Virtex-7 Virtex-7 AVR/ARM Virtex-7

Frequency (MHz) 210.5 - - 434.32

LUT 1206 1234 - 380

FF 1241 792 - 640

Slices 423 - - 165

Clock Cycles Enc 138𝑘 - 2691𝑘 133𝑘

Dec 204𝑘 - 4037𝑘 66𝑘

Time (`𝑠) Enc 655.60 21.67 80200 307.94

Dec 969.12 - 120300 153.67

AT (𝑆𝑙𝑖𝑐𝑒𝑠 × `𝑆𝑒𝑐) Enc 277.31𝑘 - - 50.81𝑘

Dec 409.93𝑘 - - 25.35𝑘

1 The result of this design is only for encryption phase

2 This design does not contain fault resilient

It should be mentioned that the fault attacks are applicable in previous similar FPGA

implementation as fault attack countermeasures were not applied in their designs. One of

the similar work that applied fault resilient on Ring-Bin LWE is [29], which added fault

resilient to [1] and was implemented in AVR and ARM. As the implemented platforms are

not the same, making a fair comparison is difficult. However, the number of clock cycles of

104

the proposed CCA2-secure Ring-Bin LWE is much fewer than [29] (which is 2691 × 1000

and 4037 × 1000 for encryption and decryption, respectively); and required 80.2𝑚𝑠 and

120.3𝑚𝑠 for execution of encryption and decryption, respectively. The proposed design

improved the execution time by 99% over [29] on encryption and decryption. Furthermore,

as the implementation results of [90] is better than [1], the proposed design would occupy

less area than [29] in the same platform.

[92] presented three different architectures for three phases of Ring-Bin LWE (key

generation, encryption, and decryption), compared to our work which is all-in-one archi-

tecture. In Table 6.1, the results of encryption architecture of [92] are written. Their design

contained the main structure of Ring-Bin LWE and did not have the error generation mod-

ule. Thus, it required less number of clock cycles for execution. Although the proposed

architecture contains three phases and error generation, [92] occupied more look-up tables

(LUT) than our proposed one.

105

7. An Optimized Implementation of Modular
Multiplication for Binary Ring-LWE

Providing end-to-end security is vital for most of the networks. By emerging quantum

computers, it is necessary to design crypto-systems that are secure against quantum attacks.

Binary Ring Learning With Error (Ring-Bin LWE) is a Lattice-based cryptography which

is hard to solve by quantum computers. Also, this algorithm does not have costly operations

in terms of area in which make Ring-Bin LWE a suitable algorithm for resource-constraint

devices. This chapter presents a lightweight hardware implementation of Ring-Bin LWE.

In the proposed design, a new multiplication method and design for Ring-Bin LWE is

introduced which results in latency reduction by factor of two. The multiplication is

based on the column-based multiplication and in each cycle two consecutive coefficients

are processed. The architecture is designed based on the proposed multiplication and

contains one specific register bank with two sub-bank registers. The design is implemented

on the FPGA platform. The implementation results show an impressive improvement in

execution time and Area-Time metrics over the previous similar works. This chapter is as

follows: Section 7.1 provides an introduction to motivation and main idea of this work. The

novel multiplication method is introduced in Section 7.2. The proposed architecture and

implementation are described in Section 7.3. The implementation results and comparison

are explained in Sections 7.4.

The content of this chapter is originally submitted in: K. Shahbazi, and Seok-Bum Ko “An Optimized

Hardware Implementation ofModularMultiplication of Binary Ring LWE.” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems. The manuscript has been reformatted for inclusion in this thesis.

106

7.1 Introduction

Cryptography is an essential part of every network to keep the security and confidential-

ity. Providing end-to-end security is vital for most networks, as there is not enough area for

security part for most of the end-node devices. Furthermore, there is a lack of lightweight

designs and implementations. In these years, designing lightweight hardware cryptography

circuits is a hot growing topic. Among the different ways of cryptography, Lattice-based

cryptography (LBC) is one of the most promising types of cryptography. LBC is one of

the secure methods against quantum attacks due to its small implementation and strong

security.

Learning with Errors (LWE) [94] is a public key cryptography based on LBC. LWE

occupies more area and resources on hardware platforms. Ring-LWE [8] is a variant of

LWE that uses the polynomials over the ring 𝑅𝑞 = 𝑍𝑞/(𝑥𝑛+1). Using 𝑓 (𝑥) = (𝑥𝑛+1) makes

Ring-LWE practical on hardware platforms. Ring-LWE requires Gaussian distribution for

generating errors and modular multiplication by Number Theoretic Transform (NTT). This

algorithm is not suitable for resource-constraint devices since Gaussian distribution and

NTT multiplication occupy more area and need more clock cycles. In 2016, a new variant

of Ring-LWE was introduced by [11] which is called Binary Ring LWE (Ring-Bin LWE).

In this algorithm, the errors are binary; thus, it does not require Gaussian distribution. The

other advantage of Ring-Bin LWE is that multiplication does not require NTTmultiplication

as the errors are binary values. As a result, Ring-Bin LWE needs less key size and values

and can be implemented on less area, makes this algorithm suitable for resource-constraint

devices. In this work, we optimize the multiplication to reduce the number of clock cycles.

The architecture is designed based on the optimized multiplication and implemented on

FPGA platform. The contribution of the paper is summarized as:

• The location of each coefficient of polynomials in the multiplication in Ring-Bin

LWE is evaluated, and an optimized column-based multiplication is introduced. The

proposed multiplication method optimizes the column-based multiplication and rota-

tion that requires 𝑛2 × 𝑛 cycles to execute the multiplication. This optimization results

107

almost 50% improvement over the previous similar works.

• Compared to the other similar works that used AND gate for multiplication, a 4-1

Mux is used for multiplication. The values of two consecutive coefficients of matrix

A and 𝐵 are fed to the design.

• The proposed architecture is designed efficiently based on the proposed method. The

register bank of the design for storing A contains two sub-register banks for better

controlling the multiplication and rotation.

• The proposed method and architecture is implemented on FPGA platform. The

proposed method and architecture improved the Area-Time metrics by 41% and 97%

over [90] and [95], respectively.

7.2 Optimized Column-Based Multiplication

As it was explained in the previous section, the Ring-Bin LWE contains two main

operations. Based on the phases of the algorithm, 𝑊 = 𝐴𝐵 mod 𝑓 (𝑥) + 𝐶 is the main

equation of Ring-Bin LWE that contains modular addition and polynomial multiplication.

Where 𝑊 , 𝐴, 𝐵, and 𝐶 are polynomials and defined as 𝑊 =
∑𝑛−1
𝑖=0 𝑤𝑖𝑥

𝑖, 𝐴 =
∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑖,

𝐶 =
∑𝑛−1
𝑖=0 𝑐𝑖𝑥

𝑖, and 𝑓 (𝑥) = 𝑥𝑛 + 1 in which 𝑤𝑖, 𝑎𝑖, and 𝑐𝑖 are 𝑙𝑜𝑔𝑞2 -bit integers in 𝑍𝑞; and

𝐵 =
∑𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 in which 𝑏𝑖 ∈ {0, 1}.

The multiplication in Ring-LWE and Ring-Bin LWE contains a 𝑛 × 𝑛 matrix and 𝑛 × 1

matrix (that is the polynomial 𝐵). The 𝑛 × 𝑛 matrix (which is defined as A) is generated

by expanding the polynomial 𝐴 (which could be one of the 𝑎, 𝑝, and 𝐶1). The first row

of matrix A is the coefficients of polynomial 𝐴, and the remaining rows are generated by

multiplying the previous polynomial by 𝑥 in module 𝑥𝑛 + 1. As it was mentioned before,

selecting 𝑥𝑛 + 1 provides the anti-circular rotation since 𝑥𝑛 ≡ −1. That is the cyclically

shifted of the previous polynomial and changing the sign of the shifted coefficients. Based

on that, each row and column of matrix A is connected to each other. Common method

of multiplications requires 𝑛 × 𝑛 registers to store the intermediate results. To implement

108

the Ring-Bin LWE on resource-constraint devices, we propose and optimize the column-

based multiplication in which requires only one register to store the intermediate results

and execute in half number of clock cycles.

We define each element of matrix A as A𝑖
𝑗
that 𝑖 and 𝑗 are 0 ⩽ 𝑖 < 𝑛, 0 ⩽ 𝑗 < 𝑛 in

which 𝑖 is the number of the column and 𝑗 is the number of row for A. The first row (𝑗 = 0)

of A is equal to 𝐴, and the remaining rows of generated from the first row. We have:

A0 = 𝐴

= 𝑎0𝑥
0 + 𝑎1𝑥

1 + ... + 𝑎𝑛−1𝑥
𝑛−1

(7.1)

The row number 1 of matrix A is A1 = A0 × 𝑥 mod (𝑥𝑛 + 1). Thus, the last coefficient is

𝑎𝑛−1 × 𝑥𝑛; since 𝑥𝑛 ≡ −1, the sign of this coefficient should be changed and rotated. Thus,

A1 is:

A1 = (A0 × 𝑥)𝑚𝑜𝑑 (𝑥𝑛 + 1)

= (𝑎0𝑥
1 + ... + 𝑎𝑛−2𝑥

𝑛−1 + 𝑎𝑛−1𝑥
𝑛)𝑚𝑜𝑑 (𝑥𝑛 + 1)

𝑥𝑛≡−1−−−−−→

= −𝑎𝑛−1𝑥
0 + 𝑎0𝑥

1 + ... + 𝑎𝑛−2𝑥
𝑛−1

(7.2)

The other rows of matrix A are calculated similar to equations (7.1) (7.2) and the

aforementioned explanation by A𝑘 = A𝑘−1 × 𝑥 mod (𝑥𝑛 + 1) and considering 𝑥𝑛 ≡ −1. It is

obvious that the number of rotated coefficients are equal to the number of row ofA (starting

from 0 to 𝑛−1). By doing the rotation at each row, the coefficients in each column of matrix

A are unique. The coefficient in each column of A𝑖 is the coefficient A 𝑗 with having the

factor of 𝑥𝑖. Also, the number of rotated coefficients in each column is equal to 𝑛 − 1 − 𝑖.
The polynomial of column number 𝑖 of A is calculated by:

A𝑖 =

𝑛−1∑︁
𝑗=0
((A 𝑗𝑥

𝑖)𝑥 𝑗) (7.3)

109

Based on the above equation, the value of columns are:

A0 =

𝑛−1∑︁
𝑗=0
((A 𝑗𝑥

0)𝑥 𝑗)

= 𝑎0𝑥
0 − 𝑎𝑛−1𝑥

1 − ... − 𝑎2𝑥
𝑛−2 − 𝑎1𝑥

𝑛−1

A1 = 𝑎1𝑥
0 + 𝑎0𝑥

1 − 𝑎𝑛−1𝑥
2 − ... − 𝑎3𝑥

𝑛−2 − 𝑎2𝑥
𝑛−1

.

.

.

A𝑛−2 = 𝑎𝑛−2𝑥
0 + 𝑎𝑛−3𝑥

1 + ... + 𝑎0𝑥
𝑛−2 − 𝑎𝑛−1𝑥

𝑛−1

A𝑛−1 = 𝑎𝑛−1𝑥
0 + 𝑎𝑛−2𝑥

1 + ... + 𝑎1𝑥
𝑛−2 + 𝑎0𝑥

𝑛−1

(7.4)

From equation (7.4), each column of matrixA𝑘 is gained byA𝑘 = A𝑘−1×𝑥 mod (𝑥𝑛+1).

To better understand, the value of matrix A is written in Table 7.2. Executing the column-

based multiplication, according to equation (7.4), requires at least 𝑛 × 𝑛 clock cycles. To
efficiently execute the column-based multiplication on hardware platforms, we rewrite A𝑖

as follows:

A0 = 𝑎0𝑥
0 − 𝑎𝑛−1𝑥

1 − (𝑎𝑛−2𝑥
2... + 𝑎2𝑥

𝑛−2 + 𝑎1𝑥
𝑛−1)

A1 = 𝑎1𝑥
0 + 𝑎0𝑥

1 − (𝑎𝑛−1𝑥
2 + ... + 𝑎3𝑥

𝑛−2 + 𝑎2𝑥
𝑛−1)

.

.

.

A𝑛−2 = 𝑎𝑛−2𝑥
0 + 𝑎𝑛−3𝑥

1 + ... + 𝑎0𝑥
𝑛−2 − 𝑎𝑛−1𝑥

𝑛−1

A𝑛−1 = 𝑎𝑛−1𝑥
0 + 𝑎𝑛−2𝑥

1 + ... + 𝑎1𝑥
𝑛−2 + 𝑎0𝑥

𝑛−1

(7.5)

Equation (7.5) require 𝑛× 𝑛2 clock cycles to generate the entire ofA. To reduce the number
of clock cycles, we rewrite the equation (7.5) by considering processing two coefficients at

the same time. By defining 𝜎(𝑘 ,𝑘−1)𝑥
𝑙
2 = 𝑎𝑘𝑥

𝑙 + 𝑎𝑘−1𝑥
𝑙+1 and �̄�(𝑘 ,𝑘−1)𝑥

𝑙
2 = 𝑎𝑘𝑥

𝑙 − 𝑎𝑘−1𝑥
𝑙+1,

110

we rewrite equation (7.5):

A0 = �̄�(0,𝑛−1)𝑥
0 − (𝜎(𝑛−2,𝑛−3)𝑥

1 + ... + 𝜎(2,1)𝑥
𝑛
2 −1)

A1 = 𝜎(1,0)𝑥
0 − (𝜎(𝑛−1,𝑛−2)𝑥

1 + ... + 𝜎(3,2)𝑥
𝑛
2 −1)

.

.

.

A𝑛−2 = 𝜎(𝑛−2,𝑛−3)𝑥
0 + 𝜎(𝑛−4,𝑛−5)𝑥

1 + ... + �̄�(0,𝑛−1)𝑥
𝑛
2 −1

A𝑛−1 = 𝜎(𝑛−1,𝑛−2)𝑥
0 + 𝜎(𝑛−3,𝑛−4)𝑥

1 + ... + 𝜎(1,0)𝑥
𝑛
2 −1

(7.6)

The multiplication and generating A based on equation (7.6) can be done in 𝑛 × 𝑛
2 clock

cycles, which has an impressive optimization. Thus, in each clock cycle, one odd and

one even coefficients can be processed. The value of the optimized matrix A is written in

Table 7.3. It is obvious from Table 7.3 and equation (7.6) that �̄� exists in columns with

even numbers. Also, after summation of all of the 𝜎(𝑘 ,𝑘−1) , the rotation occurs at the bold

coefficients in Table 7.3. We borrowed the column-based multiplication method from [90]

in which in each columns, all coefficients of 𝑏 𝑗 are participated and are unique. We rewrite

𝑉 = 𝐴 × 𝐵 mod (𝑥𝑛 + 1) based on column-based multiplication as:

𝑉 𝑗 =

{
𝑛−1∑︁
𝑖=0
(A 𝑗

𝑖
× 𝐵𝑖)

}
𝑚𝑜𝑑 (𝑥𝑛 + 1)𝑥 𝑗 , 0 ⩽ 𝑗 < 𝑛 (7.7)

All of the previous works used AND gate for multiplication of 𝐴×𝐵. The multiplication

can be calculated by a chain of two consecutive coefficients of A and 𝐵 as 𝑣𝑘 = 𝑎𝑚𝑏𝑘𝑥𝑘 +

𝑎𝑚−1𝑏𝑘+1𝑥𝑘+1. Since 𝐵 includes binary numbers, the summation of multiplications of two

coefficients is determined by 𝛽𝑘 (which is two bits and includes 𝑏2𝑘𝑏2𝑘+1). By considering𝜎,

�̄�, and 𝛽𝑘 , themultiplication can be calculated by 𝑣𝑘 = 𝜎(𝑚,𝑚−1)×𝛽𝑘 and 𝑣𝑘 = �̄�(𝑚,𝑚−1)×𝛽𝑘 .

It is worth mentioning that 𝑣𝑘 = �̄�(𝑚,𝑚−1) × 𝛽𝑘 is needed only one time on even columns

of matrix A. The result of multiplication is written is Table 7.1. Based on Table 7.1 and

aforementioned explanation, the multiplication can be executed by one 4-1Mux. Compared

to multiplication by AND gate, the proposed multiplication is run half number of clock

cycles. When 𝛽𝑘 is equal to ‘11’, the result is 𝜎 or �̄�.

111

Table 7.1: The multiplication result of two consecutive coefficients

𝛽𝑘 𝑣𝑘

00 0

01 𝑎𝑚−1

10 𝑎𝑚

11 𝑎𝑚 ± 𝑎𝑚−1

Table 7.2: The content of Column-Based matrix A that has 𝑛 × 𝑛 cycles to execute the

multiplication by 𝑏𝑘 . The bold coefficients are rotated coefficients

𝑗 A𝑛−1
𝑗

A𝑛−2
𝑗

A𝑛−3
𝑗

A𝑛−4
𝑗

... A3
𝑗
A2
𝑗

A1
𝑗

A0
𝑗
×𝑏𝑘

0 𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎3 𝑎2 𝑎1 𝑎0 𝑏0

1 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 𝑎2 𝑎1 𝑎0 −𝑎𝑛−1 𝑏1

2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 𝑎𝑛−6 𝑎1 𝑎0 −𝑎𝑛−1 −𝑎𝑛−2 𝑏2

3 𝑎𝑛−4 𝑎𝑛−5 𝑎𝑛−6 𝑎𝑛−7 . 𝑎0 −𝑎𝑛−1 −𝑎𝑛−2 −𝑎𝑛−3 𝑏3

...

𝑛 − 4 𝑎3 𝑎2 𝑎1 𝑎0 . −𝑎7 −𝑎6 −𝑎5 −𝑎4 𝑏𝑛−4

𝑛 − 3 𝑎2 𝑎1 𝑎0 −𝑎𝑛−1 −𝑎6 −𝑎5 −𝑎4 −𝑎3 𝑏𝑛−3

𝑛 − 2 𝑎1 𝑎0 −𝑎𝑛−1 −𝑎𝑛−2 −𝑎5 −𝑎4 −𝑎3 −𝑎2 𝑏𝑛−2

𝑛 − 1 𝑎0 −𝑎𝑛−1 −𝑎𝑛−2 −𝑎𝑛−3 −𝑎4 −𝑎3 −𝑎2 −𝑎1 𝑏𝑛−1

The architecture of the proposed multiplication is shown in the Fig. 7.1. As it is obvious

from Fig. 7.1, the proposed multiplication contains one 4-1 Mux, one 2-1 Mux, one NOT

gate, and one Adder. The functionality of the multiplication part of the proposed design is

executing the rotation and calculating �̄� and 𝜎 over the even columns by signal Rot-1.

7.3 The Proposed Design

In this section, the hardware architecture of the optimized multiplication is discussed.

The proposed architecture is shown in Fig. 7.1. As 𝑙𝑜𝑔𝑞2 is equal to 8, the dataflow of

112

Table 7.3: The content of optimized Column-Based matrix A that requires 𝑛 × 𝑛
2 cycles to

execute the multiplication by 𝛽𝑘

𝑗 A𝑛−1
𝑗

A𝑛−2
𝑗

A𝑛−3
𝑗

... A2
𝑗

A1
𝑗

A0
𝑗

×𝛽𝑘

0 𝜎(𝑛−1,𝑛−2) 𝜎(𝑛−2,𝑛−3) 𝜎(𝑛−3,𝑛−4) 𝜎(2,1) 𝜎(1,0) �̄�(0,𝑛−1) 𝛽0

1 𝜎(𝑛−3,𝑛−4) 𝜎(𝑛−4,𝑛−5) 𝜎(𝑛−5,𝑛−6) �̄�(0,𝑛−1) 𝜎(𝑛−1,𝑛−2) 𝜎(𝑛−2,𝑛−3) 𝛽1

2 𝜎(𝑛−5,𝑛−6) 𝜎(𝑛−6,𝑛−7) 𝜎(𝑛−7,𝑛−8) . 𝜎(𝑛−2,𝑛−3) 𝜎(𝑛−3,𝑛−4) 𝜎(𝑛−4,𝑛−5) 𝛽2

...
𝑛
2 − 3 𝜎(5,4) 𝜎(4,3) 𝜎(3,2) . 𝜎(8,7) 𝜎(7,6) 𝜎(6,5) 𝛽 𝑛

2−3

𝑛
2 − 2 𝜎(3,2) 𝜎(2,1) 𝜎(1,0) 𝜎(6,5) 𝜎(5,4) 𝜎(4,3) 𝛽 𝑛

2−2

𝑛
2 − 1 𝜎(1,0) �̄�(0,𝑛−1) 𝜎(𝑛−1,𝑛−2) 𝜎(4,3) 𝜎(3,2) 𝜎(2,1) 𝛽 𝑛

2−1

the design is selected to 8-bit. Three phases of the algorithm can be executed by the

design. Based on the phases of the algorithm (encryption, decryption, or key generation),

the architecture executes𝑊 = A×𝐵mod 𝑓 (𝑥) +𝐶+𝐷 to generate the ciphertexts, secret key,

and decrypt the data. Based on the phase of the algorithm, 𝐶 and 𝐷 are fed to the design.

The coefficients of 𝐴 are stored in Reg-0 and act as the column ofA; Reg-0 is a register bank

includes two sub-bank registers of 128 units (𝑛2) of 8-bit register, one for storing the even

and the other one for storing the odd coefficients of A. Each sub-bank register has a shift

signal (Shift-even and Shift-odd signals for even and odd sub-bank register) that only one

of them is applied for one clock cycle based on the number of column of A. The value of 𝐵

is stored in Reg-1. The output of Reg-1 is 𝛽𝑘 that is the selector for the Mux-0. After each

cycle, Reg-1 is cyclically shifted. As the value of coefficients are in 2’s complement, the

two most significant bits of �̄� determine the range of the coefficient. Thus, the decryption

can be done by Xor gate.

To execute one time rotation in each column, similar to [90], we execute the multipli-

cation from the last coefficients of A𝑖 (from 𝑗 = 𝑛
2 − 1) and 𝛽 𝑛

2−1. The proposed design

includes two adders. The duty of Adder-1 is calculating either 𝜎 or �̄� by controlling the

signal Rot-1. The result of multiplication (the output of Mux-0 and Mux-1 in Fig. 7.1)

113

REG-0

Com
1

0

REG_2

1

0

REG-1
Rot_1

Rot_1

Rot_0

Rot_0

REG_3

REG_4

1

0

input B

input A

input C

input D

output

decryption
 output

M
u

x_
0

Adder_0

Adder_1 M
u

x_
1

2

1

0

1

0

Multiplication

Figure 7.1: The hardware design of the proposed Binary Ring-LWE architecture

is added to the previous results by Adder-0 and then stored in Reg-2. Based on equation

(7.6), each polynomial of column of matrix A contains one negative polynomial with the

summation of 𝜎, one polynomial of 𝜎, and one coefficient with �̄� for even columns. The

rotation is executed by controlling the signals Rot-0 and Rot-1. After the summation of

all coefficients of the negative part of A, the rotation is executed by activating the control

signal Rot-0. When control signal Rot-1 is active, the result of multiplication is equal to �̄�

(based on the value of 𝛽𝑘). Rot-1 is active on even columns and when Rot-0 is equal to ‘1’.

The control unit of the proposed design contains three counters to control the proposed

multiplication. Two 7-bit (𝑙𝑜𝑔𝑛2 − 1 bit) counters for controlling the number of row (Count-

Row) and the time for executing the rotation (Count-Rot). Count-Rot is a down-counter

which is set to the rotation’s position of the first column. One 8-bit (𝑙𝑜𝑔𝑛2 bit) counter

determines the number of column (Count-Col). When the value of Count-Rot is equal to

Count-Row, Rot-0 would be activated for one clock cycle. Then, when Rot-0 is activated

and the least significant bit of Count-Col is ‘0’ (the number of column is an even number),

Rot-1 would be activated for one clock cycle. The multiplication finishes when the value of

Count-Row and Count-Col are equal to 𝑛2 − 1 and 𝑛− 1, respectively. At this time, Fin-Flag

will equal to ‘1’. The functionality of counters to generate the control signals Rot-0 and

Rot-1 are shown in Fig. 7.2. Three control signals (flag-Rot, flag-Row, and flag-Col) handle

114

Fin-Flag

Rot-1

Rot-0

Count-Rot

Count-Row

Count-Col

Clock

flag-Col

flag-Row

flag-Rot

Shift-CNT

Shift-even

Shift-odd

Figure 7.2: The proposed counters architecture of the proposed design

the value of the counters. The duty of Shift-CNT is applying the shift on the sub-bank

registers of Reg-0, based on being odd or even of the number of column. The proposed

design requires 𝑛 clock cycles to store the coefficients intoReg-0 andReg-1. Since after each

column of multiplication one shift should be applied to the sub-bank registers, the novel

multiplication takes 𝑛2 × 𝑛 + 𝑛 clock cycles. Also, each addition to 𝐶 and 𝐷 polynomials

need another 𝑛 clock cycles. Thus, the proposed crypto-system can execute encryption in

7𝑛 + 𝑛2 clock cycles. The decryption and key generation take 𝑛2 × 𝑛 + 3𝑛 clock cycles.

As it is obvious, the proposed architecture executes in a constant number of clock cycles,

and there is no conditional branches and dependency between the inputs and ciphertext.

Also, the latency of the design is the same for executing of the three phases of the algorithm.

Based on [48] [66] [85], the design is secure against timing attacks. Furthermore, the

proposed crypto-system is resistance against exploring the secret key by SPA [90]. The

multiplication is column-based and two coefficients are processed at each clock cycle, and

the entire coefficients of multiplier and multiplicand are participated in each cycle of the

multiplication. Also, at least one operation including read or write and addition is executed.

115

7.4 Implementation Results, Simulation, and Comparison

The implementation results of the proposed architecture and comparison with similar

works are presented in this section. The proposed architecture has been implemented and

tested on FPGAVertix-7 platform, which is the mostly used FPGA in previous articles, with

VHDL. The synthesis, simulation, and post-placement timing result are obtained by using

ISE 14.7 and ISim 14.7. The results of the proposed design and similar works are written

in Table 7.4. The proposed design requires 67.5k and 33.5k clock cycles for encryption and

decryption phases, respectively, with consideration the storing time in registers, which are

less than most of the previous lightweight designs.

The hardware designs are mainly implemented on Xilinx FPGAs or Intel FPGAs. As

the architecture of these two platforms are different, having a fair comparison between

them is difficult. To make a fair comparison with other similar works, we normalized the

occupation area by calculating the Equivalent Number of Slices (ENS). [87] converted the

DSP blocks and BRAMs into ENS. Also, based on the empirical benchmark data of [96],

one adaptive logic module (ALM) in Intel FPGA is equivalent to 1.3 Slices in Xilinx FPGA.

As it is obvious from Table 7.4, ENS of the proposed design is better than most of the

previous works. [90] used add and shift column-based multiplication that requires more

clock cycles and less area. The main reason that the architecture of [28] occupied less area,

compared to our design, is that this work only executed the decryption phase. The structure

of [97] and [92] included parallel architectures that can process more coefficients in a cycle

and were designed for high-speed applications. [1] implemented a lightweight architecture

for Ring-Bin LWE on ASIC platforms. The proposed architecture and method improved

the number of clock cycles by 46.6% and 37% over [1] for encryption and decryption,

respectively.

For better comparison between different implementations, we evaluated AT metric to

consider the effect of execution time over the occupied area that is calculated 𝐴𝑟𝑒𝑎 × 𝑇𝑖𝑚𝑒.

Compared to the previous similar works, the proposed multiplication and architecture

116

improved the AT by 41% and 97% over [90] and [95], respectively.

117

Ta
bl
e
7.
4:
FP
G
A
Im
pl
em
en
ta
tio
n
Re
su
lts
an
d
C
om
pa
ris
on

Re
fe
re
nc
e

D
ev
ic
e

Ty
pe

Fr
eq
(M
H
z)
LU
T/
FF
/S
lic
e

D
SP

/B
R
A
M

#C
lo
ck
cy
cl
es

Ti
m
e
(`
𝑠)

EN
S

A
T

En
c.
/D
ec

Th
is
w
or
k

V
irt
ex
-7

En
c.
/D
ec
.

42
7.
09
5

34
4/
60
4/
18
9

0
67
.5
k/
33
.5
k

15
8.
24
/7
8.
52

18
9

29
.9
k/
14
.8
4k

[9
0]

V
irt
ex
-7

En
c.
/D
ec
.

43
4.
32

38
0/
64
0/
16
5

0
13
3k
/6
6k

30
7.
94
/1
53
.6
7

16
5

50
.8
1k
/2
5.
35
k

[1
]1

A
SI
C

65
𝑛
𝑚
En
c.
/D
ec
.

33
.3

7.
6k

2
-

12
6.
54
k/
53
.2
8k

3.
8k
/1
.9
k

-
-

[2
8]

Sp
ar
ta
n-

6
D
ec
.

-/1
35

57
/3
0/
19

0/
2

-/6
5.
79
k

-/4
87
.4

13
1

-/6
3.
84
k

[9
5]

St
ra
ix
V

En
c.
/D
ec

31
6.
96

18
64

3
0

13
1k
/6
5k

41
4/
20
7

24
23
.2
10
03
.2
k/
50
1.
6k

1,
2
Th
is
de
si
gn
w
as
im
pl
em
en
te
d
on
A
SI
C
pl
at
fo
rm
,a
nd
th
e
re
po
rte
d
nu
m
be
ri
st
he
nu
m
be
ro
fg
at
es
in
A
SI
C

65
𝑛
𝑚
.

3
Th
is
is
th
e
nu
m
be
ro
fa
da
pt
iv
e
lo
gi
c
m
od
ul
e
(A
LM
)f
or
In
te
lF
PG
A
.

118

Part IV

Summary and Future Work

119

8. Conclusion

8.1 Summary and Conclusion

Cryptography plays an important role in every network to keep the privacy and con-

fidentiality. Every network has three layers; cloud, edge, and end-node. The number of

connected devices to the IoT is increasing day by day. Needless to say, security is an essential

part of every communication network. Each layer of IoT requires a specific crypto-system

to maintain the security. As most of the connected devices to IoT are tiny devices with

limited resources, providing end-to-end security is very important. As a result, designing

a lightweight crypto-system for resource-constraint devices is important. Meanwhile, with

the Advent of quantum computers, most of the current crypto-systems are endangered; and

they should be replaced by post-quantum cryptography (PCQ). AES is a secure symmetric

cryptography algorithm with a high level of security, which is widely used in many appli-

cations and networks. Moreover, AES-256 is secure against quantum attacks. Also, AES is

used as a random number generator for other crypto-systems. Lattice-based cryptography

is a secure method against quantum attacks. Binary Ring-LWE is a LBC technique for

providing the security for IoT devices.

In chapter 3, a high throughput and high FPGA efficiency (FPGA-Eff) implementation

of AES-128 algorithm in counter (CTR) mode for high-traffic applications has been pre-

sented. In this design, loop unrolling, inner pipelining, and outer pipelining techniques

are employed. Using the pipeline and loop unrolling techniques have increased the se-

curity against hardware-dependent attack. The main important factors for achieving the

high throughput and efficiency are: reducing the design’s delay by exchanging and merg-

120

ing AES functions; optimising the Sub-Bytes, by employing New-Aff, and Mix-Columns;

and reducing the critical path of the composite field arithmetic. To achieve the low de-

lay followed by a high frequency of the design, the efforts have been devoted to make

an approximate equal delay between different sub-pipeline stages. The target FPGA was

Vertix-5 (XC5VLX85-FF676-3) and the achieved frequency, throughput, and FPGA-Eff

were 622.4MHz, 79.7Gbps, and 13.3Mbps/slice, respectively. In comparison with oth-

ers, the results show that this implementation of AES in terms of throughput, maximum

frequency, and efficiency provides the best performance.

In chapter 4, a lightweight AES architecture for resource-constrained IoT devices was

designed. The design had 8-bit data-path and included two specified register banks for

storing plain-text, keys, and intermediate results. To reduce the required logic, Shift-Rows

was run inside of the State-Register. Also, the design had an optimized Sub-Bytes that

was shared with encryption and the key expansion phase, which led to reduce the area by

15.5% on 65𝑛𝑚 technology. Furthermore, Mix-columns with 8-bit input and output was

designed, which is a proper block for low-area design. To reduce the power consumption,

the clock gating technique in different blocks of the design was applied, which led to reduce

the power consumption by 18.9%.

To verify the architecture, the design was implemented on Virtex-5 FPGA. After that,

the proposed design was implemented and verified on 65𝑛𝑚 technology on different timing

constraints. The core area without power rings, core area with power rings, and chip

area are 5448.59`𝑚2, 7783.77`𝑚2, and 11713.57`𝑚2, respectively. The proposed design

improved the area and Area-Delay-Product (ADP) for chip design over the state-of-the-art

work by 2.4% and 71.7%, respectively. Also, the core area with power rings was improved

by 22.1% over the best similar implementation. The power consumption of the design was

simulated in different timing constraints. To make a fair comparison with other similar

works, the normalized power of previous works was calculated. The power consumption

of the proposed design was better than most of the previous works. According to the result

and NIST report, the proposed lightweight AES design is suitable for resource-constrained

121

devices and can be supplied by low power devices.

In chapter 5, an optimized architecture for all three phases of Binary Ring-LWE has

been designed. This architecture is suitable for resource-constrained IoT devices and tiny

end-nodes. The proposed method of performing multiplication, In-place Rot-Col-Mul, is

a column-based multiplication followed by in-place modular reduction and anti-circular

rotation. Instead of using each multiplier coefficient in each cycle, all multipliers are

employed for calculating the result. The main advantage of this multiplication method is

that only one anti-circular rotation is performed in each column that reduces latency and

area of the design. So that, one Mux, one Not gate, one Adder, and one shift register are

sufficient for anti-circular rotation and multiplication.

The design has been implemented on TSMC-65𝑛𝑚 and FPGA technology. ASIC

implementation results show that the proposed lightweight design is a feasible crypto-

system for the area- and power-constrained edge IoT devices, as it can be implemented by

only 3.2k gates and consumes 0.196𝑚𝑊 . The ASIC implementation achieved a maximum

frequency of 500MHz, and improvement of power and area over the state-of-the-art design

(using similar time constraints) by 48.42% and 57.8%, respectively. Furthermore, the

design has been implemented on FPGAs and the number of occupied slices is 165 and 146

for Virtex-7 and Spartan-6, respectively. Compared to similar works, the FPGA results

show that the proposed design and method has less latency and fewer resources.

In chapter 6, in order to increase the security and resistance against fault attack, fault

resilient countermeasure is added to the optimized implementation of Binary Ring-LWE.

Because of the distributed nature of IoT network, fault attack is one major threat to end-node

IoT devices. The adversary tries to gain the plain-text and secret key by manipulating the

data. Zeroing and skipping faults are the main attacks over the crypto-systems. The fault

resiliency design has been implemented on FPGA technology. The FPGA implementation

achieved a maximum frequency of 210.5MHz on Virtex-7 and occupied 423 Slices, which

is only 1% of total available slices. The proposed fault resilient occupied very low area on

Virtex-7 and can be used as a crypto accelerator for other FPGA implementation designs.

122

In chapter 7, a low latency and lightweight Binary Ring-LWE architecture for resource-

constraint devices was designed. To reduce the number of clock cycles, a novel modular

multiplication was designed. The proposed multiplication was done by a 4-1 Mux, one 2-1

Mux, oneNot gate, and one adder that executed themultiplication in 𝑛× 𝑛2 clock cycles. Thus,

the proposed method improved the latency by factor of two. Also, the hardware architecture

was designed based on the proposed multiplication. The architecture included a specific

register bank that contained two sub-bank registers; one for storing the odd coefficients

and the other one for storing the even coefficients. The control unit had three counters

to handle the multiplication and reduction. The proposed architecture is implemented on

Xilinx FPGA platform. The implementation results showed the supremacy of the proposed

design and method over the previous similar works. To make a fair comparison, hardware

resources of FPGA implementation were normalized. The 𝐴𝑟𝑒𝑎 × 𝑇𝑖𝑚𝑒 and the number

of clock cycles for the proposed design are 29.9k/ 14.84k and 67.5k/ 33.5k, for encryption

and decryption respectively. Compared to the previous similar works, the proposed design

improved the AT (Area × Time) by 41% and 97% over [90] and [95], respectively.

8.2 Future Research

Needless to say, it is necessary to re-design and implement the crypto-systems that

are secure against quantum attack. In these years, most research projects have been done

and most articles have been published in the area of post-quantum cryptography. Ring-

LWE and Binary Ring-LWE are two examples of these cryto-systems. As post-quantum

cryptography is at its first step, there are different aspect of hardware implementation that

can be considered. Even though this thesis tried to reduce the execution time for Binary

Ring-LWE, the latency of the proposed multiplication for Binary Ring-LWE is not best

optimized. As a result, there will be a potential research to reduce the number of clock

cycles forBiraryRing-LWE.Designing an architecture formultiplication by four coefficients

will reduce the number of clock cycles efficiently.

Recently, NIST announced the list of candidates for post-quantum cryptography. As

123

there are few hardware implementation for NIST candidate, future research work will focus

on NIST candidates and evaluate the hardware implementations on different platforms. For

example, multiplication is one of the main operations of LBC. Designing and implementing

an optimized multiplication unit for PQC has a high impact on execution time and occupied

area. Moreover, different layers of the network require a specific crypto-system; thus,

designing and implementing a specific crypto-system based on the application and layer of

the network is important.

Even though the PQCs are secure against quantum attacks, evaluating the different

physical attacks against the crypto-system is very important that should be evaluated for

different hardware implementation. Timing, fault injection, and power attacks are some

examples of physical attacks. A reliable crypto-system should be secure against these kind

of attacks. Thus, designing a countermeasure or fault resilient for crypto-systems based on

LBC should be considered.

124

References

[1] S. Ebrahimi, S. Bayat-Sarmadi, andH.Mosanaei-Boorani, “Post-QuantumCryptopro-

cessors Optimized for Edge and Resource-Constrained Devices in IoT,” IEEE Internet

of Things Journal, 2019.

[2] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-quantum cryptog-

raphy. Springer, 2009, pp. 147–191.

[3] X. Zhang and K. K. Parhi, “High-speed VLSI architectures for the AES algorithm,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9, pp.

957–967, 2004.

[4] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryp-

tography. CRC press, 2018.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[6] Z. Liu, K.-K. R. Choo, and J. Grossschadl, “Securing Edge Devices in the Post-

Quantum Internet of Things Using Lattice-Based Cryptography,” IEEE Communica-

tions Magazine, vol. 56, no. 2, pp. 158–162, 2018.

[7] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and

D. Smith-Tone, Report on Post-Quantum Cryptography. US Department of Com-

merce, National Institute of Standards and Technology, 2016, vol. 12.

[8] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with Er-

rors over Rings,” in Annual International Conference on the Theory and Applications

of Cryptographic Techniques. Springer, 2010, pp. 1–23.

[9] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the Design of

Hardware Building Blocks for Modern Lattice-Based Encryption Schemes,” in Inter-

125

national Workshop on Cryptographic Hardware and Embedded Systems. Springer,

2012, pp. 512–529.

[10] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact

ring-LWE cryptoprocessor,” in International workshop on cryptographic hardware

and embedded systems. Springer, 2014, pp. 371–391.

[11] J. Buchmann, F.Göpfert, T.Güneysu, T.Oder, andT. Pöppelmann, “High-Performance

and Lightweight Lattice-Based Public-Key Encryption,” in Proceedings of the 2nd

ACM International Workshop on IoT Privacy, Trust, and Security. ACM, 2016, pp.

2–9.

[12] P. FIPS, “197: Advanced encryption standard (AES),” National Institute of Standards

and Technology, vol. 26, 2001.

[13] K. Shahbazi, M. Eshghi, and R. F. Mirzaee, “Design and implementation of an ASIP-

based cryptography processor for AES, IDEA, and MD5,” Engineering science and

technology, an international journal, vol. 20, no. 4, pp. 1308–1317, 2017.

[14] L. Ali, I. Aris, F. S. Hossain, and N. Roy, “Design of an ultra high speed AES processor

for next generation IT security,” Computers & Electrical Engineering, vol. 37, no. 6,

pp. 1160–1170, 2011.

[15] A. Soltani and S. Sharifian, “An ultra-high throughput and fully pipelined implemen-

tation of AES algorithm on FPGA,”Microprocessors and Microsystems, vol. 39, no. 7,

pp. 480–493, 2015.

[16] N. Ahmad, R. Hasan, and W. M. Jubadi, “Design of AES S-Box using combinational

logic optimization,” in IEEE Symposium on Industrial Electronics and Applications

(ISIEA). IEEE, 2010, pp. 696–699.

[17] D.-H. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X.-T. Tran, “AES Datapath

Optimization Strategies for Low-Power Low-Energy Multisecurity-Level Internet-of-

126

Things Applications,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 12, pp. 3281–3290, 2017.

[18] S. Banik, A. Bogdanov, and F. Regazzoni, “Exploring Energy Efficiency of

Lightweight Block Ciphers,” in International Conference on Selected Areas in Cryp-

tography. Springer, 2015, pp. 178–194.

[19] W. Zhao, Y. Ha, and M. Alioto, “AES architectures for minimum-energy operation

and silicon demonstration in 65nm with lowest energy per encryption,” in IEEE

International Symposium on Circuits and Systems (ISCAS). IEEE, 2015, pp. 2349–

2352.

[20] H. K. Kim andM. H. Sunwoo, “Low Power AES Using 8-Bit and 32-Bit Datapath Op-

timization for Small Internet-of-Things (IoT),” Journal of Signal Processing Systems,

vol. 91, no. 11-12, pp. 1283–1289, 2019.

[21] Van-Phuc, V.-L. Dao, and C.-K. Pham, “An ultra-low power AES encryption core

in 65nm SOTB CMOS process,” in International SoC Design Conference (ISOCC).

IEEE, 2016, pp. 89–90.

[22] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba Algorithm for Effi-

cient Implementations,” IACR Cryptol. ePrint Arch., vol. 2006, pp. 1–17, 2006.

[23] A. Shreedhar, K.-S. Chong, N. Lwin, N. Kyaw, L. Nalangilli, W. Shu, J. Chang, and B.-

H. Gwee, “Low Gate-Count Ultra-Small Area Nano Advanced Encryption Standard

(AES) Design,” in IEEE International Symposium on Circuits and Systems (ISCAS).

IEEE, 2019, pp. 1–5.

[24] V.-P. Hoang, V.-L. Dao, and C.-K. Pham, “Design of ultra-low power AES encryp-

tion cores with silicon demonstration in SOTB CMOS process,” Electronics Letters,

vol. 53, no. 23, pp. 1512–1514, 2017.

[25] C. Hocquet, D. Kamel, F. Regazzoni, J.-D. Legat, D. Flandre, D. Bol, and F.-X.

Standaert, “Harvesting the potential of nano-CMOS for lightweight cryptography:

127

an ultra-low-voltage 65 nm AES coprocessor for passive RFID tags,” Journal of

Cryptographic Engineering, vol. 1, no. 1, pp. 79–86, 2011.

[26] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu, G. Chen,

and R. Krishnamurthy, “340 mV–1.1 V, 289 Gbps/W, 2090-Gate NanoAES Hardware

Accelerator With Area-Optimized Encrypt/Decrypt GF(24)2 Polynomials in 22 nm

Tri-Gate CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1048–1058,

2015.

[27] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design and Im-

plementation of Low-Area and Low-Power AES Encryption Hardware Core,” in 9th

EUROMICRO conference on digital system design (DSD’06). IEEE, 2006, pp.

577–583.

[28] A. Aysu, M. Orshansky, andM. Tiwari, “Binary Ring-LWE hardware with power side-

channel countermeasures,” in 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 2018, pp. 1253–1258.

[29] S. Ebrahimi and S. Bayat-Sarmadi, “Lightweight and Fault Resilient Implementations

of Binary Ring-LWE for IoT Devices,” IEEE Internet of Things Journal, vol. 7, no. 8,

pp. 6970–6978, 2020.

[30] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, “Practical CCA2-Secure and

Masked Ring-LWE Implementation,” IACR Transactions on Cryptographic Hardware

and Embedded Systems, pp. 142–174, 2018.

[31] J. M. Granado-Criado, M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and J. A. Gómez-

Pulido, “A new methodology to implement the AES algorithm using partial and

dynamic reconfiguration,” Integration, vol. 43, no. 1, pp. 72–80, 2010.

[32] K. Shahbazi and M. Eshghi, “Design of a specific instructions set processor for AES

algorithm,” International Journal of Computer Applications, vol. 93, no. 4, 2014.

128

[33] S. Oukili, S. Bri, and A. S. Kumar, “High speed efficient FPGA implementation of

pipelined AES S-Box,” in 2016 4th IEEE International Colloquium on Information

Science and Technology (CiSt). IEEE, 2016, pp. 901–905.

[34] R. R. Rachh, B. Anami, and P. A. Mohan, “Efficient implementations of S-box and in-

verse S-box for AES algorithm,” in TENCON 2009-2009 IEEE Region 10 Conference.

IEEE, 2009, pp. 1–6.

[35] P. Shastry, A. Agnihotri, D. Kachhwaha, J. Singh, and M. Sutaone, “A combinational

logic implementation of S-box of AES,” in 2011 IEEE 54th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2011, pp. 1–4.

[36] M. I. Soliman and G. Y. Abozaid, “FPGA implementation and performance evalu-

ation of a high throughput crypto coprocessor,” Journal of Parallel and Distributed

Computing, vol. 71, no. 8, pp. 1075–1084, 2011.

[37] Z.-r. Li, Y.-q. Zhuang, C. Zhang, and J. Gang, “Low-power and area-optimized VLSI

implementation of AES coprocessor for Zigbee system,” The Journal of China Uni-

versities of Posts and Telecommunications, vol. 16, no. 3, pp. 89–94, 2009.

[38] H. Anwar, M. Daneshtalab, M. Ebrahimi, J. Plosila, and H. Tenhunen, “FPGA imple-

mentation of AES-based crypto processor,” in 2013 IEEE 20th International Confer-

ence on Electronics, Circuits, and Systems (ICECS). IEEE, 2013, pp. 369–372.

[39] J. M. Granado-Criado and M. A. Vega-Rodríguez, “Hardware coprocessors for high-

performance symmetric cryptography,” The Journal of Supercomputing, vol. 73, no. 6,

pp. 2456–2482, 2017.

[40] S.-M. Yoo, D. Kotturi, D. Pan, and J. Blizzard, “An AES crypto chip using a high-

speed parallel pipelined architecture,” Microprocessors and Microsystems, vol. 29,

no. 7, pp. 317–326, 2005.

[41] Z.Guo, G. Li, andY.Liu, “Dynamic reconfigurable implementations ofAES algorithm

129

based on pipeline and parallel structure,” in 2010 The 2nd International Conference on

Computer and Automation Engineering (ICCAE), vol. 3. IEEE, 2010, pp. 257–260.

[42] C. Wang and H. M. Heys, “Using a pipelined S-box in compact AES hardware

implementations,” in Proceedings of the 8th IEEE International NEWCAS Conference

2010. IEEE, 2010, pp. 101–104.

[43] D. Canright, “A very compact S-box for AES,” in International Workshop on Crypto-

graphic Hardware and Embedded Systems. Springer, 2005, pp. 441–455.

[44] S. S. M. Aldabbagh and I. F. T. Al Shaikhli, “Security of PRESENT S-box,” in 2012

International Conference on Advanced Computer Science Applications and Technolo-

gies (ACSAT). IEEE, 2012, pp. 219–222.

[45] S. Abed, R. Jaffal, B. J. Mohd, M. Alshayeji et al., “FPGA modeling and optimization

of a Simon lightweight block cipher,” Sensors, vol. 19, no. 4, p. 913, 2019.

[46] B. Mazumdar, S. S. Ali, and O. Sinanoglu, “A compact implementation of Salsa20

and its power analysis vulnerabilities,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 22, no. 1, pp. 1–26, 2016.

[47] S. Bhasin, T. Graba, J.-L. Danger, and Z. Najm, “A look into SIMON from a side-

channel perspective,” in 2014 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST). IEEE, 2014, pp. 56–59.

[48] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems,” in Annual International Cryptology Conference. Springer, 1996, pp.

104–113.

[49] S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian, “High throughput, pipelined implementa-

tion of AES on FPGA,” in 2009 International Symposium on Information Engineering

and Electronic Commerce. IEEE, 2009, pp. 542–545.

130

[50] H. Kouzehzar, M. N. Moghadam, and P. Torkzadeh, “A high data rate pipelined

architecture of AES encryption/decryption in storage area networks,” in Electrical

Engineering (ICEE), Iranian Conference on. IEEE, 2018, pp. 23–28.

[51] R. R. Farashahi, B. Rashidi, and S. M. Sayedi, “FPGA based fast and high-throughput

2-slow retiming 128-bit AES encryption algorithm,”Microelectronics journal, vol. 45,

no. 8, pp. 1014–1025, 2014.

[52] H. Li, J. Ding, and Y. Pan, “Cell array reconfigurable architecture for high-efficiency

AES system,” Microelectronics Reliability, vol. 52, no. 11, pp. 2829–2836, 2012.

[53] M. El Maraghy, S. Hesham, and M. A. Abd El Ghany, “Real-time efficient FPGA

implementation of AES algorithm,” in 2013 IEEE International SOC Conference.

IEEE, 2013, pp. 203–208.

[54] M. H. Rais and S. M. Qasim, “FPGA implementation of Rijndael algorithm using re-

duced residue of prime numbers,” in 2009 4th International Design and Test Workshop

(IDT). IEEE, 2009, pp. 1–4.

[55] M. Rais and S. M. Qasim, “Efficient hardware realization of advanced encryption

standard algorithm using Virtex-5 FPGA,” International Journal of Computer Science

and Network Security, vol. 9, no. 9, pp. 59–63, 2009.

[56] J. S. Banu, M. Vanitha, J. Vaideeswaran, and S. Subha, “Loop parallelization and

pipelining implementation of AES algorithm using OpenMP and FPGA,” in 2013

IEEE International Conference ON Emerging Trends in Computing, Communication

and Nanotechnology (ICECCN). IEEE, 2013, pp. 481–485.

[57] L. Alliance, “LoRaWAN specification,” LoRa Alliance, pp. 1–82, 2015.

[58] C. Patrick and P. Schaumont, “The Role of Energy in the Lightweight Cryptographic

Profile,” in NIST Lightweight Cryptography Workshop, 2016, pp. 1–16.

[59] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the Limits: A

Very Compact and a Threshold Implementation of AES,” in Annual International

131

Conference on the Theory and Applications of Cryptographic Techniques. Springer,

2011, pp. 69–88.

[60] T. Järvinen, P. Salmela, P. Hämäläinen, and J. Takala, “Efficient byte permutation

realizations for compact AES implementations,” in 13th European Signal Processing

Conference. IEEE, 2005, pp. 1–4.

[61] C. Paar, “Efficient VLSI architectures for bit-parallel computation in Galois fields,”

PhD Thesis, Inst. for Experimental Math., Univ. of Essen, 1994.

[62] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael Hardware

Architecturewith S-BoxOptimization,” in International Conference on the Theory and

Application of Cryptology and Information Security. Springer, 2001, pp. 239–254.

[63] E. N. Mui, R. Custom, and D. Engineer, “Practical Implementation of Rijndael S-Box

Using Combinational Logic,” Custom R&D Engineer Texco Enterprise Pvt. Ltd, 2007.

[64] A. E. Standard, “Federal information processing standards publication 197,” FIPS

PUB, pp. 1–51, 2001.

[65] A. Reyhani-Masoleh,M. Taha, andD.Ashmawy, “NewAreaRecord for theAESCom-

bined S-Box/Inverse S-Box,” in 25th Symposium on Computer Arithmetic (ARITH).

IEEE, 2018, pp. 145–152.

[66] K. Shahbazi and S.-B. Ko, “High throughput and area-efficient FPGA implementation

of AES for high-traffic applications,” IET Computers & Digital Techniques, vol. 14,

no. 6, pp. 344–352, 2020.

[67] N. Cho, S.-J. Song, S. Kim, S. Kim, and H.-J. Yoo, “A 5.1-/spl mu/W UHF RFID tag

chip integrated with sensors for wireless environmental monitoring,” in Proceedings

of the 31st European Solid-State Circuits Conference (ESSCIRC). IEEE, 2005, pp.

279–282.

[68] Y. Hong, C. F. Chan, J. Guo, Y. S. Ng, W. Shi, L. K. Leung, K. N. Leung, C. S. Choy,

and K. P. Pun, “Design of passive UHF RFID tag in 130nm CMOS technology,” in

132

APCCAS IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2008, pp.

1371–1374.

[69] R. Chaudhary, G. S. Aujla, N. Kumar, and S. Zeadally, “Lattice-Based Public Key

Cryptosystem for Internet of Things Environment: Challenges and Solutions,” IEEE

Internet of Things Journal, vol. 6, no. 3, pp. 4897–4909, 2019.

[70] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.

120–126, 1978.

[71] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48, no.

177, pp. 203–209, 1987.

[72] R. A. Perlner and D. A. Cooper, “Quantum resistant public key cryptography: a

survey,” in Proceedings of the 8th Symposium on Identity and Trust on the Internet.

ACM, 2009, pp. 85–93.

[73] R. O. Micciancio D., “Lattice-based Cryptography,” In: Bernstein D.J., Buchmann

J., Dahmen E. (eds) Post-Quantum Cryptography, pp. 147–191, 2009.

[74] D. Jao andL.DeFeo, “TowardsQuantum-Resistant Cryptosystems fromSupersingular

Elliptic Curve Isogenies,” in International Workshop on Post-Quantum Cryptography.

Springer, 2011, pp. 19–34.

[75] T. N. Tan and H. Lee, “High-Secure Fingerprint Authentication System Using Ring-

LWE Cryptography,” IEEE Access, vol. 7, pp. 23 379–23 387, 2019.

[76] T. Tan and H. Lee, “High-Secure Low-Latency Ring-LWE Cryptography Scheme for

Biomedical Images Storing and Transmitting,” in 2018 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–4.

[77] T. Nguyen Tan andH. Lee, “Efficient-Scheduling ParallelMultiplier-Based Ring-LWE

Cryptoprocessors,” Electronics, vol. 8, no. 4, p. 413, 2019.

133

[78] C. P. Rentería-Mejía and J. Velasco-Medina, “High-Throughput Ring-LWE Cryp-

toprocessors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 25, no. 8, pp. 2332–2345, 2017.

[79] T. Pöppelmann and T. Güneysu, “Towards Practical Lattice-Based Public-Key Encryp-

tion on Reconfigurable Hardware,” in International Conference on Selected Areas in

Cryptography. Springer, 2013, pp. 68–85.

[80] F. Göpfert, C. van Vredendaal, and T. Wunderer, “A Hybrid Lattice Basis Reduction

and Quantum Search Attack on LWE,” in International Workshop on Post-Quantum

Cryptography. Springer, 2017, pp. 184–202.

[81] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,

Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Cipher,” in

International workshop on cryptographic hardware and embedded systems. Springer,

2007, pp. 450–466.

[82] T. Wunderer, “Revisiting the Hybrid Attack: Improved Analysis and Refined Security

Estimates,” IACR Cryptology ePrint Archive, vol. 2016, p. 733, 2016.

[83] Z. Liu, H. Seo, S. Sinha Roy, J. Großschädl, H. Kim, and I. Verbauwhede, “Effi-

cient Ring-LWE encryption on 8-bit AVR processors,” in International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 2015, pp. 663–682.

[84] T. Prescott, Random Number Generation Using AES, available:

http://ww1.microchip.com/downloads/en/Devic eDoc/article_random_number.pdf.

[85] K. Shahbazi and S.-B. Ko, “Area efficient nano-AES implementation for Internet of

Things devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 29, no. 1, pp. 136–148, 2020.

[86] T. Schneider, A. Moradi, and T. Güneysu, “ParTI-Towards Combined Hardware Coun-

termeasures Against Side-Channel and Fault-Injection Attacks,” in Annual Interna-

tional Cryptology Conference. Springer, 2016, pp. 302–332.

134

[87] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized Schoolbook

Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 10, pp.

2459–2463, 2019.

[88] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A Resource-Efficient and Side-

Channel Secure Hardware Implementation of Ring-LWE Cryptographic Processor,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp.

1474–1483, 2019.

[89] Y. Zhang, C. Wang, D. E. S. Kundi, A. Khalid, M. O’Neill, and W. Liu, “An Efficient

and Parallel R-LWE Cryptoprocessor,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 67, no. 5, pp. 886–890, 2020.

[90] K. Shahbazi and S.-B. Ko, “Area and power efficient post-quantum cryptosystem for

IoT resource-constrained devices,” Microprocessors and Microsystems, p. 104280,

2021.

[91] N. Bindel, J. Buchmann, and J. Krämer, “Lattice-based signature schemes and their

sensitivity to fault attacks,” in 2016 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC). IEEE, 2016, pp. 63–77.

[92] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Fault Detection Architectures for

Inverted Binary Ring-LWEConstruction Benchmarked on FPGA,” IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1403–1407, April 2021.

[93] F. Valencia, T. Oder, T. Güneysu, and F. Regazzoni, “Exploring the Vulnerability

of R-LWE Encryption to Fault Attacks,” in Proceedings of the Fifth Workshop on

Cryptography and Security in Computing Systems, 2018, pp. 7–12.

[94] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”

Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

135

[95] P. He, U. Guin, and J. Xie, “Novel Low-Complexity Polynomial Multiplication Over

Hybrid Fields for Efficient Implementation of Binary Ring-LWE Post-Quantum Cryp-

tography,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 11, no. 2, pp. 383–394, 2021.

[96] “White Paper Stratix II vs. Virtex-4 Density Comparison,” Augest 2005.

[97] J. Xie, P. He, X. M. Wang, and J. L. Imana, “Efficient Hardware Implementation of

Finite Field Arithmetic AB+C over Hybrid Fields for Post-Quantum Cryptography,”

IEEE Transactions on Emerging Topics in Computing, pp. 1–6, 2021.

136

