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Abstract 

    Plant phenotyping plays an important role for the thorough assessment of plant traits such 

as growth, development, resistance, physiology, etc. Assessing the nutrients and water contents 

by obtaining the spectroscopy data is essential for plant characterization, and photosynthesis. 

The conventional optical methods like visible/near-infrared spectroscopy, hyperspectral or 

multispectral imaging, and optical tomography have been developed and studied for the 

assessment of plant nutrition status and water stress. Although there are several advantages of 

these methods, they have some limitations as to their environmental sensitivity and 

confounding factors (i.e., light intensity, and color). These methods require large data storage 

capacity which makes the system expensive, and heavier in weight. In addition, most of these 

methods are not useful for in situ and rapid measurements. To overcome these limitations a 

multifrequency electrical measurement method such as electrical impedance spectroscopy 

(EIS) has been investigated which is found less sensitive to the environmental variables.  

    The physical and chemical changes of the plants can be accurately described by EIS 

parameters like impedance, resistance, or capacitance. The measurement using EIS is found 

non-destructive, inexpensive, in situ, and rapid which could be an attractive alternative to the 

optical methods. An accurate impedance spectroscopy modeling for the characterization of the 

plants using a multifunctional spectroscopy system is still desired which can overcome the 

shortcomings of the existing methods. This research work deals with the development of a 

multifunctional EIS system to increase the robustness in applications for assessing the leaf 

nitrogen status, leaf water stress, root growth, and root biomass of the plants, and detecting the 

plant-like organisms such as algae species by measuring impedances in multiple frequencies.  

    The overall research work is divided into three phases. In the first phase, we developed new 

EIS models for the determination of plant leaf nitrogen concentrations by measuring leaf 

impedances in the vegetative growth stage. The models were evaluated by the regression 

analysis in multiple frequencies. EIS sensor is found highly accurate in determining the plant 

leaf nitrogen status compared to soil plant analysis development (SPAD), and the method using 

EIS sensor is found cost-effective. In addition, we developed other new EIS models for 

determining the leaf water contents under different water stress conditions of the plants rapidly 

and efficiently. Regression analysis was performed, and the models were optimized and 

evaluated with the measured leaf impedances in multiple frequencies. The EIS sensor is found 

a low-cost and effective tool in determining the crop leaf water status compared to the other 

conventional approaches. 
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    In the second phase, we investigated whether the EIS sensor can be used to determine the 

algae species in water. The photosynthetic pigments like Chlorophyll-a concentrations were 

estimated by measuring impedances of the algae species and the corresponding EIS 

characteristics were obtained to detect the species. New EIS models were developed and 

validated with less error by performing regression analysis in multiple frequencies. The models 

were found accurate, and suitable for the estimation performance. A rapid performance of the 

sensor is found for measuring Chlorophyll-a as an alternative to the conventional approaches.  

    In the third phase, we investigated whether the developed EIS system can be used for 

obtaining three-dimensional (3D) images of plant roots. An in situ and rapid electrical 

impedance tomography (EIT) data acquisition system was developed based on EIS for the 

further experiments in imaging and assessing the growth of the plant roots. Multifrequency 

impedance imaging technique was utilized, and the samples were reconstructed with finite 

element method (FEM) modeling which was carried out using electrical impedance and diffuse 

optical tomography reconstruction software (EIDORS) in MATLAB. At first, a low-cost, and 

high-precision EIT system was developed by designing a portable sensor with two layers of 

electrode array in a cylindrical domain. Different edible plant slices of carrot, radish, and potato 

along with multiple plant roots were taken in the EIT domain to assess and calibrate the system 

and their images were reconstructed by mapping conductivity in two-dimensional (2D) and 

three-dimensional (3D) planes. Later, a novel, dynamic, and adjustable EIT sensor system with 

three layers of electrode array was designed for developing a portable, cost-effective, and high-

speed EIT data acquisition system. A non-invasive 3D imaging of multiple plant roots was 

made in both water and soil media. A non-destructive evaluation of biomass estimation of tap 

roots was carried out by measuring impedances using the designed EIT sensor system. A good 

correlation was found between the biomass and measured impedances of tap roots, and the 

estimated models for biomass were validated with less error. The developed EIT system is 

found suitable for in situ measurements and capable of monitoring the growth and estimating 

the biomass of plant roots.   

    In overall, the estimated results from the measurements using the developed EIS/EIT system 

were found highly correlated with the ground truth measurements. Therefore, the developed 

multifunctional EIS system can be used as a low-cost, and effective tool for rapid and in-situ 

measurements for the characterization in plant phenotyping. 
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Chapter 1: Introduction      

1.1. Plant Phenotyping and Characterization 

    The process of measuring and analyzing the observable plant characteristics is called plant 

phenotyping. It helps to better understand the functioning of the crops. Plant phenotyping plays 

an important role in contributing food demand, security, and sustainability to feed the increased 

population over the worlds. The characterization in phenotyping refers to qualitative and 

quantitative descriptions of the plant’s biological properties such as morphological, 

physiological, and biochemical characteristics. Improving in plant characterization by the 

engineering research in agriculture is one of the potential ways to solve the global food security.    

    Three different biological characteristics of the plants are described as follows: 

    (i) Morphological Characteristics: In plant biology the study of morphological 

characteristics like size, shape, and structure of the plants and plant-like organisms and their 

features is very essential and useful in identification visually. Morphology describes the 

external structure of the plant’s leaf, stem, and roots, and this is usually considered distinct 

from plant anatomy, which is the study of the internal structure of the plant body.  

    (ii) Physiological Characteristics: Physiology and anatomy are tightly correlated. Plant 

physiology is the study of plant function and behaviour of different structures in addition with 

the dynamic processes of growth, development, reproduction, and metabolism with the events 

of photosynthesis, respiration, mineral nutrition, and transportation, respectively. The plant 

growth depends on the photosynthesis [1]. Photosynthesis is a process used by the plants and 

other organisms to convert light energy into chemical energy that, through cellular respiration, 

can later be released to fuel the organism's activities [1]. Respiration is the opposite of 

photosynthesis. The physiological understanding of crop plants provides the fundamental 

scientific base on metabolic process and pathways in plant which is immensely important for 

crop improvement in agriculture.  

    (iii) Biochemical Characteristics: Plant biochemistry deals with biochemical processes of 

plant metabolism. The biochemical properties of the plants include the study of the chemical 

processes within and relating to the organisms which is usually studied in cellular and 

molecular level of the plant body. Quantifying the chemical properties of the plants such as 

water, and macro/micronutrients such as nitrogen, phosphorus, potassium, calcium, sodium, 

iron, etc. are very important in biological study of the plant characteristics. Mineral nutrition is 

essential for the proper functioning of plant body. Adequate provision of nutrients impacts 

greatly on sustainable growth and yield of the plants [1]. Minerals are taken up by plant roots 



 

2 

from the soil solution in ionic form which is mediated by specific transport proteins. Among 

the nutrients, nitrogen, and phosphorous elements are the major limiting factors of plant growth 

and development because they are often present in small quantities locally or are present in a 

form that cannot be used by the plant. 

    The assessment like sensing and quantifying the complex plant traits such as growth, 

development, architecture, tolerance, resistance, physiology, ecology, and productivity of the 

plants non-destructively is essential for an efficient phenotyping. The assessment can be made 

in multiple organizational levels like canopy, whole plant, leaf-level, cellular-level, and root-

level of the plants. Leaf number, shape, thickness, area, and expansion rate are the key 

considerations in leaf-level study of the plants. On the other hand, root architecture, density, 

growth, development, and distributions are considered as key parameters in root-level study of 

the plants.   

    Today, rapid developments are taking place in the field of non-destructive, image-analysis -

based phenotyping that allow for the characterization of plant traits in efficient manner. The 

assessment of the complex plant traits depends on the available amount of nutrients and water 

contents. Leaf nitrogen concentrations and water contents provide the valuable information 

about the physiological status of plants which is directly linked to the photosynthetic potential 

and primary production [1-5].   

    An accurate and early detection of plant nutrition before the emergence of visible symptoms 

is very important to guide fertilization and save production. Nitrogen is the most required 

mineral nutrient of the plant and its concentration in plant is the highest of all mineral nutrients 

[2,3]. Nitrogen is considered the most important component for supporting plant 

growth. Without enough nitrogen, plant growth is affected negatively. Monitoring crop 

nitrogen status continuously is very important because nitrogen deficiency significantly 

reduces the photosynthetic yield of crops [1-3]. On the other hand, the overfertilized nitrogen 

is harmful for human consumption and that causes environmental pollution. There is a limited 

quantity of nitrogen present in soil which plant compete for their uptake. Plants take up nitrogen 

compounds through their roots [1]. Nitrogen makes up part of the chlorophyll in plants which 

is the green part of leaves and stems and is involved in creating food for the plant through 

photosynthesis.   

    Crop water stress is a deficiency in plants in water supply when the transpiration rate 

becomes higher than the water absorption capacity. It occurs when the water demand exceeds 

the available moisture during a certain period. Water stress reduces the efficiency of 

photosynthesis and limits crop productivity [1,4,5]. Since plant growth, development, and 
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productivity are adversely affected by water stress, it is important to measure the plant water 

status in real time and non-destructively for proper decision on irrigation management. The 

stress may be detected by a reduction in soil water content, or by the change in physiological 

properties of the crop. The leaf water content (LWC) is commonly used to assess the water 

status of plants, which is one of the indicators of crop water stress. 

    The nutrient and water status of the plant can be indicated by leaf, stem, and root or the 

whole canopy. Among all of these, the leaf analysis is the most important tool for evaluating 

the nutrient and water status, which aids in fertilization and irrigation. In addition, root plays 

an important role in plant characterization. The root system is complex as it provides water and 

nutrients to the plant stems and leaves by absorbing from soil which are required for 

photosynthesis. An investigation on crop root traits, and the corresponding growth, 

development, and biomass of the root are very important in plant phenotyping. Monitoring the 

root health is possible by imaging and assessing the growth rate. The assessment can be made 

by estimating root biomass which is one of the most commonly investigated root parameters 

in studies of plant response to environmental change as it is closely linked to the energy 

investment of plants in their root systems. 

    Other than plant the growth, and development of the plant-like organisms such as algae 

species are dependent on the nutritional components like carbon, nitrogen, phosphorus, and 

micronutrients. Algae are a significant component of a biological monitoring program in an 

aquatic ecosystem. They are ideally suited for water quality assessments because of their 

nutrient requirements, and rapid reproduction rate. The amount of algae can be estimated by 

the Chlorophyll-a concentrations of the species which is the photosynthetic pigment that causes 

the green color in plants and plant-like organisms.  

1.2. Measurement Tools 

    Crop phenotyping aims at a quantification of plant traits and quality of the plants using a 

broad variety of sensors and analysis procedures. Several destructive: chemical and non-

destructive: spectroscopy or imaging methods were utilized for obtaining the plant nutrients 

and water contents. The destructive methods are time consuming. On the other hand, the non-

destructive measurements offer a safe, fast, and reliable way of inspecting samples without any 

damage, and these require less operating time. Technological advancements are required 

considering robust, inexpensive, and portable tools for the non-destructive measurements of 

the plants. In addition, imaging or non-imaging methods can be utilized for non-invasive 

measurements efficiently. 
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    Over the decades, the water and nutrients of different plants have been determined and 

studied using conventional optical methods like visible or near-infrared spectroscopy, 

tomography, and multispectral or hyperspectral imaging [2-5]. The environmental sensitivity, 

requirement of large data storage, and noise attenuation are the main challenges of the optical 

methods. Although having several advantages of the optical methods, most of them are not 

suitable for in situ and rapid measurements. To overcome these limitations a rapid, non-

destructive, cost-effective, and in situ electrical impedance spectroscopy (EIS) method is 

studied as an alternative approach and considered for the characterization in plant phenotyping 

[6-11].  

    Different existing tools for the measurement of plants and plant-like organisms are presented 

as follows:     

    (i) Measuring Plant Leaf Nutrients: Hyperspectral data, fluorescence, near-infrared 

spectroscopy detected via digital cameras and satellite-mounted sensors, spectroradiometers, 

and soil plant analysis development (SPAD) have been developed and utilized for the detection 

of the nutritional status in crop leaves including the chlorophyll index and leaf nitrogen 

[2,3,12,13]. Image technology can be well characterized the leaf appearance change causing 

by nutrition stress, it can be hardly applied to the detection and diagnosis of nutrition level until 

apparent symptoms appear. Fast computers, sensitive detectors, and large data storage 

capacities are needed to analyze hyperspectral and spectroscopy data. In addition, the 

measurement using SPAD is indirect, costly, and not linear. The estimation of leaf nitrogen 

using SPAD is also impacted by environmental factors [13]. Compared with reflectance 

spectroscopy, image technology, and SPAD, impedance spectroscopy method has the potential 

to obtain the earlier information and realize the early-stage and rapid diagnosis of crop nutrition 

level [14]. Impedance spectroscopy technique had been used in agriculture to determine the 

physiological aspects in the plant [7,11]. Several researchers have reported methodologies 

based on electrical impedance measurements using EIS tool like impedance analyzer/LCR 

meter to determine nitrogen nutrition stress in tomato leaves [8,14], and nitrogen status in 

lettuce [15], respectively. These methods are highly accurate but require expensive 

instruments. A cost-effective EIS tool is still demanding for measuring the plant nutrients. 

    (ii) Measuring Plant Leaf Water Contents: Several techniques, like visible or near-infrared 

spectroscopy, use of pressure bomb, and use of terahertz quantum cascade lasers have been 

applied in the past years for predicting the leaf water content [4,5,16,17]. All these methods 

are time consuming and require expensive instruments. Recently, electrical measurement of 

agricultural materials has been explored by several researchers for non-destructive and real-
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time applications [18]. These findings showed that electrical properties of leaves, such as 

impedance, resistance, capacitance, and dielectric constant can be used to determine the plant 

water status. The EIS method was found more accurate, non-destructive, cost-effective, and 

faster compared to the available optical methods [18-20]. In different experiments, the 

impedance analyzer/LCR meter has been used to determine the water status of plant [21], 

moisture content of carrot slices [22], and soil moisture content [6]. The methods are found 

accurate but require expensive instrumentation. Hence, a low-cost EIS tool is still needed for 

measuring the plant water contents.  

    (iii) Measuring Chlorophyll-a of Plant-like Organisms- Algae Species: In the past years, 

several direct and indirect methods were used to determine the Chlorophyll-a of plant-like 

organisms such as algae species. These methods like dry weight, spectrophotometry, 

fluorometry, high-pressure liquid chromatography (HPLC), and hemocytometry (cell 

counting) are accurate but they are time consuming and require expensive instruments [23-28]. 

The hyperspectral systems and multi-wavelength optical sensors are also required a large data 

storage, which makes the system heavier in weight, and more expensive [29-32]. The EIS 

method was also found suitable for in situ measurements of the algae species as an alternative 

to the optical spectroscopy methods. In recent years, electrical characteristics of algae species 

have been analyzed using impedance spectroscopy for several applications, such as monitoring 

microalgal cell health [33], the extraction of algae as a corrosion inhibitor [34], quantification 

of microalgal biomolecule content [34-36], and biosensing of algal toxins [35,36]. A rapid, and 

low-cost EIS tool is still demanding for the further investigation on algae species.  

    (iv) Measuring Plant Root Biomass and Imaging of the Roots: The sensing method using 

EIS technique is also explored in imaging for the plant roots. It is found that the method is not 

limited to two or four electrodes only, a multifrequency impedance imaging technique named 

electrical impedance tomography (EIT) is considered using multi-electrode array (eight or 

more electrodes) for obtaining the more useful information of the sample. A good conductivity 

distribution of the sample can be mapped in the domain under test by measuring the electrical 

impedances through the multiple electrodes at various frequencies. The EIS method is applied 

in an electrode array system and the reconstructed images are presented in multiple frequencies 

by the phantom experiments [37-40]. Therefore, EIT is a non-invasive, and non-destructive 

impedance imaging technique.   

    EIT sensing technology is radiation free, in situ, rapid, and cost-effective alternative to the 

other imaging methods like magnetic resonance imaging (MRI), positron emission tomography 

(PET), and computed tomography (CT). Due to its unique advantages, EIT has enormous 
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applications in imaging. The estimation performance can be potentially improved by 

considering multispectral impedance imaging technique using an EIT system [41,42]. An 

efficient multi-task structure for multi-frequency EIT [37], anomaly detection [43,44], cell 

imaging [45], and brain imaging [46] using EIT were studied previously. EIT was also used 

for crop root systems in agriculture but in a limited capacity [47-49].  

    The investigation on root characteristics was made by varying the electrical parameters like, 

capacitance, resistance, or impedance. Analysis of root growth [50], recovery of the root body 

of a plant system in water [51], and estimation of root biomass [52] were made previously by 

measuring the electrical capacitance. Newill et al. imaged the water distribution in the root 

zone using capacitively coupled impedance measurement technique using a Hewlett Packard 

4192A impedance analyzer [53]. Weigand and Kemna utilized a multifrequency EIT system in 

laboratory for characterizing, monitoring, and imaging oilseed root system in a water-filled 

rhizotron [47,48]. All these methods recovered 2D information only of the root systems and 

required expensive instruments for the measurements. On the other hand, Corona‑Lopez et al. 

visualized the developing root system of oilseed rape plants in compost-filled container using 

EIT [49]. A few 3D information of the root system was recovered but in a limited capacity and 

no information was found about the high spectral performance. 

    A new non-invasive, cost-effective, and high spectral ranges 3D EIT system along with the 

existing measurement methods is still a constant requirement to the field of root study. The 

suitability of EIT system to characterize the root in both water and soil media, and at the 

laboratory and field scale non-invasive imaging using 3D, monitoring growth, and estimating 

the root biomass are still demanding. EIT using a portable multiple electrode array seems to be 

a promising method to fulfill the scope of further research on plant root tomography.   

1.3. Electrical Impedance Spectroscopy 

    EIS is a technique that is used to determine the biological properties of a sample by 

measuring the impedances at various frequencies [9-11]. The concept of EIS was first 

introduced by Oliver Heaviside in the 1880s. The technique began to establish itself through 

the work of Heaviside and now has become an establish technique to analyze the properties of 

a sample. The electrical properties of the sample can be represented by a simplified electrical 

model consisting of a parallel circuit in combination of capacitor and resistor [9,10]. At high 

frequencies, the current flows through the capacitive component of the sample, and thus 

decreases the overall impedance. The computation using EIS is complex, but it is model-

dependent, and it works in a wide range of frequencies. The method of EIS is non-invasive, 
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and possible for on-board implementation. In addition, EIS is less sensitive to the 

environmental variables than other non-invasive methods. The EIS sensor offers high accuracy 

and versatility for a well-fitted model, which makes it suitable for electrochemical analysis, 

corrosion monitoring, automotive sensors, proximity sensing, and bio-impedance 

measurements.  

    The EIS method can be utilized in plant phenotyping for investigating the biological 

properties of the plants in leaf-level, and root-level, respectively. The leaf or root characteristics 

of the plants can be described by measuring the electrical impedances at different frequencies 

considering two or multi-electrode sensor in the measurement system. The biological 

characteristics of the plant-like organisms such as algae species can also be described by 

measuring the electrical impedances at different frequencies using the sensor system. The 

frequencies are controlled by a measurement tool. It is important to obtain the sample 

characteristics in both low and high frequencies which provide the more useful information of 

the plants and plat-like organisms. 

    The EIS method can be described by a measurement system and the functionality of the 

measurement tool as follows: 

    (i) EIS Measurement System: A multifunctional EIS system for measuring the sample 

impedances is presented as shown in Figure 1.1. The measurement system consists of a portable 

sensor that represents by an EIS tool (EVAL-AD5933EBZ) connected to two 

electrocardiograms (ECG) electrodes. The signal from AD5933 is generated at a particular 

frequency, 𝑓 = 𝜔/2𝜋 which is used to measure the unknown impedance of the sample. The 

sample impedances are measured for different frequencies and the normalized spectroscopy 

results are presented by interfacing with a data storage. Consider an excitation voltage, V() is 

applied to the sample of impedance, Z placed in a medium under test. A sinusoidal current, 

I() passes through the sample connected to the ECG probe that is contributed to the 

calculation of electrical impedance of the sample as shown in Equation (1.1). 

                                                  𝑍(𝜔) =
𝑉(𝜔)

𝐼(𝜔)
= 𝑅 + 𝑗𝑋(𝜔)                                                    (1.1) 

where the sample reactive (X) and resistive (R) components are calculated as 𝑋 = 𝑍 sin 𝜃 and 

𝑅 = 𝑍 cos 𝜃, here, 𝜃 = tan−1 (
𝑋

𝑅
).  

    A pair of ECG electrodes with d cm apart connected to the EIS tool is used to measure the 

impedance of the sample non-invasively. The capacitive reactance varies with the variation of 

distance between two electrodes by changing capacitance, C of the sample and in turn the 

sample impedance changes as shown in Equation (1.2).    
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                                                       𝑍 = (
1

2𝜋𝑓𝐶
)/𝑠𝑖𝑛𝜃                                                              (1.2) 

where the sample capacitive reactance, 𝑋 = 1/2𝜋𝑓𝐶, and sample capacitance, 𝐶 = 휀𝐴/𝑑, A is 

the cross-sectional area with respect to the position of the electrodes during measurement, and 

ε is the medium constant. Silver or copper electrodes can be chosen and an optimized distance 

between two electrodes can be set by the subsequent measurements with a good correlation 

along with good accuracy of the results. The length and diameter of the electrodes play an 

important role on measuring impedances and the dimensions can be optimized by a set of the 

measurements to obtain the satisfactory results. In addition, the detail qualitative and 

quantitative information of the sample can be obtained by the non-destructive impedance 

measurements in two-dimensional (2D) and three-dimensional (3D) planes considering 

multiple electrodes of the sensor in the measurement system.   

 

Figure 1.1. A multifunctional EIS system for measuring sample impedances. An EIS tool (EVAL-AD5933EBZ) 

is interfaced with a data storage and the information of the sample is obtained by the normalized impedance 

spectroscopy. 

    (ii) Functionality of EIS Tool- AD5933: The EIS measurement can be carried out by 

utilizing an EIS tool (EVAL-AD5933EBZ from Analog Devices Inc.) as shown in Figure 1.2, 

which is a high precision impedance converter system. It has programmable graphic user 

interface with frequency sweep capability and serial I2C interface. It operates from 2.7V to 

5.5V supply, and it can be used from 1kHz to 100kHz. During measurement an AC signal 

injected into the sample which is generated by a built-in function generator of the tool. It 

combines a frequency generator with a 12-bit, 1 mega sample per second (MSPS) analog-to-

digital converter (ADC), and an internal temperature sensor. The frequency generator allows 

an external complex impedance to be excited with a known frequency.  

    The AD5933 has a flexible internal direct digital synthesizer (DDS) core and a digital-to-

analog converter (DAC) that together generate the excitation signal at a particular frequency. 
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The output excitation can be varied from 0.2Vp-p to 2Vp-p. Both the excitation signal and 

response signal are sampled by the on-board ADC. An on-board digital signal processor (DSP) 

engine processes the discreate Fourier transform (DFT) at each excitation frequency. The DFT 

real (R) and imaginary (I) outputs can be utilized for measuring the sample impedances. In 

different frequency points the output numbers are varied in register addresses and dominated 

in the calculation of DFT magnitude as √𝑅2 + 𝐼2 [54]. The Frequency Codes are varied by 

varying system physical frequency (f) and the corresponding real and imaginary numbers are 

registered accordingly. Here, the physical frequency, 𝑓 = 𝑓𝑐𝑙𝑘 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐶𝑜𝑑𝑒/229, where 

fclk is the master clock frequency of 16.776 MHz for the internal oscillation [54]. The electrical 

impedance (Z) of the sample measured by the EIS tool is related to the DFT magnitude and 

gain factor as follows: 

                                     𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) =
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟×√𝑅2+𝐼2
                                      (1.3) 

where the gain factor can be calibrated by a known resistance, and it varies with the variation 

of the output excitation and physical frequency for a given sample. 

 

                         (a) 

 

(b) 

Figure 1.2. EIS measurement tool using (a) AD5933EBZ, and (b) graphic user interface. 

1.4. Research Objectives 

    In order to make in situ and rapid measurements and to fulfill the scope of further research 

a multifunctional spectroscopy system is still desired which can overcome the shortcomings of 

the existing methods by increasing the robustness in applications for plant phenotyping. To 

achieve the research goal the following objectives have been set: 

    (i) to develop a multifunctional electrical impedance spectroscopy (EIS) system for 

operating in a wide range of frequencies from 1kHz to 100kHz, and to explore the potential 
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use of the impedance as an indicator for plant characterization and to develop more robust 

models.    

    (ii) to investigate whether EIS can be used for the determination of plant leaf nitrogen 

concentrations, and to assess the performance of the EIS sensor in comparison with SPAD for 

the estimation of plant leaf nitrogen status. 

    (iii) to investigate whether EIS can be used to determine the leaf water contents under 

different water stress conditions of the plants rapidly and efficiently with less errors. 

    (iv) to investigate whether EIS can be made more useful other than plant such as plant-like 

organisms: algae species in order to show the applicability and can be used to detect and 

categorize the algae species by estimating Chlorophyll-a concentrations. 

    (v) to examine whether EIS can be used for 3D imaging of plant roots, and to develop a cost-

effective, and automated multifrequency EIT data acquisition system for assessing the growth 

and development of the plant roots using impedance imaging technique.  

    (vi) to design portable 3D EIT sensor systems for examining the root architectures and 

estimating the biomass of the plant roots in multiple frequencies with high accuracy.     

1.5. Organization of the Thesis 

    This thesis is organized with the following chapters:  

    Chapter 1 represents the detail of plant phenotyping and characterization, and their 

measurement tools. The background and literature review are included in this chapter. The 

existing technologies along with EIS and recent advances on plant phenotyping are described 

in detail.  

    Chapter 2 describes the determination of plant leaf nitrogen concentrations using EIS. This 

chapter represents the new EIS models which are developed for estimating leaf nitrogen of 

multiple crops. 

    Chapter 3 describes the determination of relative water contents of plant leaves using EIS. 

A new set of EIS models are developed and presented in this chapter for estimating leaf water 

contents of multiple crops. 

    Chapter 4 represents the estimation of Chlorophyll-a concentrations of algae species using 

EIS. New EIS models for the Chlorophyll-a of multiple algae species are extracted and 

presented in this chapter. 

    Chapter 5 describes the development of a multifrequency EIT data acquisition system for 

plant phenotyping. 3D reconstructions of multiple plant roots along with 2D reconstructions of 

different edible plant slices are examined and presented in this chapter.  
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    Chapter 6 represents the biomass estimation of plant roots using a portable and in situ EIT 

sensor system. The obtained tomography results for multiple tap roots and the extracted new 

EIS models for estimating root biomass are presented in this chapter.  

    Chapter 7 concludes the findings of this research work and provides the suggestions for 

further investigations on utilizations and improvements to the designed EIS/EIT sensor 

systems. 
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Chapter 2: Determination of Leaf Nitrogen Concentrations Using Electrical 

Impedance Spectroscopy in Multiple Crops 

    The physiological information of the plant depends on the available amount of the nutrients 

in the plant body. It is needed to estimate the nutrient concentrations in the leaf-level accurately 

for the characterization and thorough assessment of plant traits. An early detection of the plant 

nutrients is very essential for the fertilization and proper crop management. Among all the 

mineral nutrients, nitrogen is the most required nutrient which contributed highly to the 

photosynthesis of the plant. In this work, a portable and cost-effective EIS sensor is utilized for 

the determination of leaf nitrogen concentrations which is non-invasive as are other available 

nondestructive methods, such as hyperspectral imaging, near-infrared spectroscopy, and soil-

plant analysis development (SPAD). The prediction of leaf nitrogen is made by measuring leaf 

impedances in vegetative growth stage of the plants and a strong correlation is found between 

leaf nitrogen concentrations and the measured impedances. The method is found rapid and 

suitable for in situ measurements. The detail on modeling for the estimation of plant leaf 

nitrogen concentrations is presented in this chapter.     

    The nitrogen concentrations for a total of 111 leaf samples of multiple crops were determined 

by measuring impedances using EIS where canola was 26, wheat 36, soybeans 21, and corn 

28, respectively. The plants were fertilized with different nitrogen levels of 0, 6, 12, and 20 

g/liter with a constant water regime. New EIS models were developed for four different crop 

species for the estimation of leaf nitrogen concentrations by measuring leaf impedances in 5 to 

15 kHz. EIS sensor is found highly accurate and effective tool for measuring the leaf nitrogen 

compared to SPAD. The proposed models based on the EIS measurements are significantly 

sensitive to the nitrogen concentrations of the plant leaves. The obtained models have 

frequency dependency and performs well in obtaining the leaf nitrogen concentrations at a 

large scale of low to high frequencies.  

    The detail analysis and findings of this chapter is available in the following published 

manuscript. R.B. (first author) performed the experiments, analyzed the data, and wrote the 

draft of the manuscript; K.W. and A.D. suggested the experiments and data analysis, helped 

edit the draft, and provided critical comments to improve the paper. 

    Basak, R.; Wahid, K.; Dinh, A. Determination of Leaf Nitrogen Concentrations Using Electrical Impedance 

Spectroscopy in Multiple Crops. Remote Sens. 2020, 12, 566.  
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Abstract: In this work, crop leaf nitrogen concentration (LNC) is predicted by leaf impedance 

measurements made by electrical impedance spectroscopy (EIS). This method uses portable 

equipment and is noninvasive, as are other available nondestructive methods, such as 

hyperspectral imaging, near-infrared spectroscopy, and soil-plant analyses development 

(SPAD). An EVAL-AD5933EBZ evaluation board is used to measure the impedances of four 

different crop leaves, i.e., canola, wheat, soybeans, and corn, in the frequency range of 5 to 15 

kHz. Multiple linear regression using the least square method is employed to obtain a 

correlation between leaf nitrogen concentrations and leaf impedances. A strong correlation is 

found between nitrogen concentrations and measured impedances for multiple features using 

EIS. The results are obtained by PrimaXL Data Analysis ToolPak and validated by analysis of 

variance (ANOVA) tests. Optimized regression models are determined by selecting features 

using the backward elimination method. After a comparative analysis among the four different 

crops, the best multiple regression results are found for canola with an overall correlation 

coefficient (R) of 0.99, a coefficient of determination (R2) of 0.98, and root mean square 

(RMSE) of 0.54% in the frequency range of 8.7–12 kHz. The performance of EIS is also 

compared with an available SPAD reading which is moderately correlated with LNC. A high 

correlation coefficient of 0.94, a coefficient of determination of 0.89, and RMSE of 1.12% are 

obtained using EIS, whereas a maximum correlation coefficient of 0.72, a coefficient of 

determination of 0.53, and RMSE of 1.52% are obtained using SPAD for the same number of 

combined observations. The proposed multiple linear regression models based on EIS 

measurements sensitive to LNC can be used on a very local scale to develop a simple, rapid, 

inexpensive, and effective instrument for determining the leaf nitrogen concentrations in crops. 

Keywords: leaf nitrogen concentration; EIS; correlation coefficient; coefficient of 

determination; ANOVA; SPAD 
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2.1. Introduction 

    Nitrogen is the most required mineral nutrient of a crop due to its importance in several plant 

cell components; its concentration in plant tissue is the highest of all mineral nutrients. Leaf 

nitrogen concentration (LNC) provides valuable information about the physiological status of 

plants which is directly linked to photosynthetic potential and primary production [1–3]. 

Precise timing and the rate of nitrogen fertilizer application play a major role in plant nutrition. 

Nitrogen deficiency significantly reduces the photosynthetic yield of crops while excessive 

application of nitrogen fertilizer causes stress to the crop and environmental pollution. 

Therefore, the prediction of nitrogen requirements is necessary for efficient utilization of 

nitrogen fertilizers [1]. Soil tests or tissue tests are possible ways to predict the nitrogen in 

plants, but these are expensive, laborious, and time-consuming. Applications of handheld 

chlorophyll meters, for example, soil-plant analyses development (SPAD), near-infrared 

spectroscopy, and hyperspectral imaging are mostly desirable as rapid, nondestructive, and 

noninvasive methods for predicting nitrogen in the leaves [4–6]. Leaf chlorophyll content is a 

key indicator of plant physiological status. It is correlated with leaf nitrogen concentration, 

although the correlation depends on soil condition, plant species, and the stage of growth [7–

12]. The nitrogen status in the leaves can also be determined by analyzing the distribution of 

the color components of an image of a single leaf or group of plants. 

    In one study, leaf nitrogen status was determined by hyperspectral indices which were based 

on various algorithms [4]. In other studies, hyperspectral remote sensing images and spectral 

indices were used to assess the leaf nitrogen status and reflectance spectra of a wheat and reed 

canopy, as shown by the variation in wavelengths [13–15]. Hyperspectral data, fluorescence, 

and near-infrared spectroscopy, detected via digital cameras and satellite-mounted 

hyperspectral sensors, have been developed and studied for the detection of the nutritional 

status in crop fields. In addition, plant nitrogen status can also be correlated with laser-induced 

chlorophyll fluorescence. 

    Noninvasive methods involving leaf or canopy reflectance properties have been studied and 

applied mostly to determine crop N status. Canopy-level sensors are capable of measuring crop 

N status in larger areas by analyzing different reflectance spectra. The normalized differential 

vegetation index (NDVI) calculated using near-infrared (NIR) canopy reflectance has been 

studied to determine crop N requirements [13–15]. Plant-based N measurements and modeling 

approaches have been reported in various studies. The chlorophyll index and leaf nitrogen of 

canola have been evaluated under a wide range of soil moisture using SPAD [16]. The area- 
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and mass-based leaf nitrogen of wheat have been estimated using continuous wavelet analysis 

[17]. The leaf nitrogen and chlorophyll of soybean plants have been measured using SPAD 

[18]. The leaf nitrogen of corn has been assessed from digital images using the dark green color 

index (DGCI) [19]. Although there are many advantages of these noninvasive methods, they 

have some limitations as to their environmental sensitivity and confounding factors (i.e., soil 

condition, light intensity, canopy shape, and color). Hyperspectral imaging creates images 

using hundreds of thousands of narrow bands. Although complete field imaging and estimation 

are done very rapidly using hyperspectral imaging, in most cases, the primary disadvantages 

are cost and complexity. Fast computers, sensitive detectors, and large data storage capacities 

are needed to analyze hyperspectral data. However, SPAD has limitations in the measurement 

of leaf nitrogen concentrations because the measurement is indirect and not linear, and the 

device is not cost effective. SPAD-based leaf nitrogen estimation is affected by environmental 

factors and the characteristics of individual crop species [20]. 

    Several researchers have reported methodologies based on electrical impedance 

measurements to determine plant physiological status, such as nitrogen nutrition stress in 

tomato leaves [21], N status estimation in lettuce [22], citrus fruit acidity (pH measurement) 

[23], tea leaf growth [24], and other biological analyses [25]. The impedance measurement is 

done using electrical impedance spectroscopy (EIS), which is less sensitive to environmental 

variables than other available noninvasive methods. The nutrition status of trifolium 

subterraneum and tomato plants was also determined by electrical measurements using EIS 

[26,27]. EIS is a fast, nondestructive, easily implemented, and inexpensive method which could 

be an attractive alternative to optical spectroscopy for applications in plant science [28–30]. 

Impedance is very sensitive to the variation of frequencies set by the EIS tool, which is both 

convenient and easy to implement, but the computation is complex and model dependent. EIS 

works in a large range of frequencies operated by an electrical source and is easier to control 

than other noninvasive methods. EIS is proposed in this work to collect in situ data locally and 

directly on the leaf, which, then, is used for the prediction and validation of N status. 

    Therefore, the objectives of this study are the following: (i) To find the correlations between 

leaf nitrogen concentrations and leaf impedances of canola, wheat, soybeans, and corn, using 

simple and multiple regression analysis; (ii) to predict or determine the leaf nitrogen 

concentrations of the four different plant species using EIS with the help of multiple regression 

analysis; and (iii) to compare the performance of EIS with the SPAD measurement for the 

determination of leaf nitrogen concentrations. 
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2.2. Materials and Methods 

    The EVAL-AD5933EBZ evaluation board (Analog Devices Inc.) is a high-precision 

impedance converter system that combines an on-board frequency generator with a 12-bit, 1 

mega sample per second (MSPS) analog-to-digital converter (ADC), and an internal 

temperature sensor. The schematic diagram of the board is shown in Figure 2.1a [28]. Both the 

excitation signal and response signal are sampled by the ADC. The frequency range of the 

board is from 5 to 100 kHz without external components. Frequencies lower than 5 kHz are 

achievable using an external divider. The device has a master clock of 16.77 MHz. Although 

the device is model dependent, it offers high accuracy and versatility for a well-fitted model, 

which makes it suitable for electrochemical analysis, corrosion monitoring, automotive 

sensors, proximity sensing, and bio-impedance measurements. 

    The experiments were carried out at the greenhouse of the Agriculture and Agri-Food 

Canada (AAFC), Research and Development Centre, Saskatoon, Saskatchewan, Canada, as 

shown in Figure 2.1b. The experimental setup of the EIS data acquisition system, as shown in 

Figure 2.1c, was connected to a graphical user interface of the supporting software. For 

impedance spectroscopy measurements, a 2Vp-p generator voltage was used. The AC signal 

injected into the sample was generated by a built-in function generator of the evaluation board. 

The frequency generator allows an external complex impedance to be excited with a known 

frequency. This portable impedance converter network analyzer was used in EIS for measuring 

the impedances of the four different plant leaves (e.g., canola, wheat, soybeans, and corn) by 

varying the frequency in a range of 5 to 15 kHz. A pair of electrodes for an electrocardiogram 

(ECG) were connected to the evaluation board and used to measure the impedance of the leaf 

samples noninvasively. A separation of 3 cm between the two electrodes was maintained for 

all the measurements. Although the EIS method is time-consuming for large crops, the test 

duration is short because of on-board implementation which enables measurements at 

particular frequencies. 

    The leaf impedance measurement was done on a selected number of observations or samples 

(n) of the four different plant species. The plants were fertilized with different nitrogen levels 

of 0, 6, 12, and 20 g/liter with a constant water regime. A total of 111 samples were selected 

as follows: canola 26, wheat 36, soybeans 21, and corn 28. The experiments were carried out 

with the available number of samples of each plant species at the AAFC greenhouse 5 to 6 

weeks after sowing. The measurements were performed in the vegetative growth stage of the 

crops. The impedance (Z) of a leaf sample was measured at 100 Hz intervals within the 5 to 15 
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kHz frequency range. A total of 101 features (k) were selected at different frequency points: 

f1, f2, f3, …, f101. The impedance at each frequency point is considered a feature. Therefore, 

the whole dataset of a particular plant species consisted of 101 features for the given samples. 

  

(a) (b) 

 
 

(c) (d) 

Figure 2.1. (a) Schematic diagram of EVAL-AD5933EBZ evaluation board [28]; (b) plants in the Agriculture 

and Agri-Food Canada (AAFC) greenhouse; (c) impedance measurement of plant leaves using electrical 

impedance spectroscopy (EIS); and (d) boxplots of actual nitrogen concentrations, measured by the laboratory 

experiments, for four different plant species. 

    The impedance is related to the gain factor as follows: 

                                   𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) =
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟×𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
                             (2.1) 

    The magnitude of the impedance can be calculated as 

                                               𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝑅2 + 𝑋2                                                 (2.2)  
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where R is the resistance (real) and X is the reactance (imaginary), and the gain factor is 

determined by the calibration using a known resistance of 7.5 kΩ [31]. 

    After the impedances were measured, the samples with nitrogen concentrations were dried 

in a 60 °C incubator for 2 days. Then, the dry samples were weighted and made into powder. 

The actual percentages of nitrogen concentration (i.e., (nitrogen mg/mass) × 100) were 

measured from the powdered samples with the help of laboratory experiments using a LECO 

TruMac nitrogen analyzer, where nitrogen mg = ((area × calibration) – blank) × drift × 

sensitivity factor. The obtained results for the different plant species are represented by the 

boxplots, as shown in Figure 2.1d. It was determined that the nitrogen concentrations are 

different in the different plant species. The size and area of the leaf samples vary with the 

different plant species, as well as their physiological properties. In the example, as shown in 

Figure 2.1d, canola has high nitrogen concentrations as compared with the other plant species. 

    The examination of two or three leaf samples from individual plants of each species shows 

the average impedance profiles of the samples at varying frequencies for different nitrogen 

fertilization levels (see Figure 2.2). It was determined that the leaf impedance of the plants 

decreases with an increase of frequency. Leaf impedance also decreases with an increase of 

nitrogen levels in the plants. The average impedance profile varies from 6 to 10 kohm with the 

variation of nitrogen fertilization levels from 0 to 20 gm/liter for a frequency range of 5 to 15 

kHz. A high impedance profile is obtained for canola and corn as compared with soybeans and 

wheat. The measured impedances were examined to obtain correlations with the leaf nitrogen 

concentrations. 

    In this work, simple and multiple linear regressions using the least square method were 

applied to determine any correlations between plant leaf nitrogen concentrations and leaf 

impedances. The results were obtained by XLMiner and PrimaXL Analysis ToolPaks and 

validated by analysis of variance (ANOVA) tests. In multiple regression, the number of 

features was considered along with the observations in a given frequency range. In order to 

obtain optimized regression models, either the feature selection or dimensionality reduction 

(DR) method can be applied to reduce the number of features in a dataset. The feature selection 

method using backward elimination was selected and applied in this work. For different 

observations of the plant species, the nitrogen concentrations are predicted accordingly. The 

correlation coefficient (R) between leaf impedance and nitrogen concentration was determined. 

The corresponding coefficient of determination (R2), adjusted R2, and root mean square error 

(RMSE) were also determined along with the ANOVA F-test and T-test, using multiple linear 

regression. In this work, the training and tests were performed with the same dataset, using 
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statistical analysis. After taking the whole dataset, the features within the highest p-value (i.e., 

greater than 0.05) were removed. The prediction was confirmed for all the trained datasets by 

the obtained p-values less than or equal to 0.05 in both the F-test and T-test. After a few 

iterations, the multiple regression models were obtained for the selected features of different 

crops. 

  

(a) (b) 

  

(c) (d) 

Figure 2.2. Plots of frequency versus leaf impedance. (a) canola; (b) wheat; (c) soybeans; and (d) corn at different 

nitrogen fertilization levels. The impedance profile for a few samples of wheat and soybeans could not be taken 

because of the effects of high nitrogen fertilization. 

2.3. Results 

    First, with the use of simple regression analysis, the maximum correlations between leaf 

impedance (Z) and LNC for a single feature were found for canola, wheat, soybeans, and corn, 

as shown in Figure 2.3.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2.3. Correlations between leaf impedance and leaf nitrogen concentration (LNC) for four different plant 

species. The coefficient of determination (R2) is extracted for canola (a) linear 0.03; (b) polynomial 0.03; for 

wheat (c) linear 0.13; (d) polynomial 0.15; for soybeans (e) linear 0.08; (f) polynomial 0.11; and for corn (g) 

linear 0.18; (h) polynomial 0.19. 
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A positive correlation for canola was obtained at 11.4 kHz, a negative correlation for wheat at 

5.6 kHz, a positive correlation for soybeans at 7.7 kHz, and a positive correlation for corn at 

11.9 kHz. The results are shown in Table 2.1. 

    Linear and polynomial (order 2) curve fitting methods and simple regression models were 

used for the different plant species at the highest correlation point. A better correlation was 

found for polynomial curve fitting as compared with linear in different frequencies of simple 

regression of the plant species. A maximum correlation coefficient (R) of 0.44 was obtained 

for corn, 0.39 for wheat, 0.34 for soybeans, and 0.19 for canola. On the one hand, based on a 

single feature, a moderate correlation was found for corn and wheat, on the other hand, the 

correlation was weak for soybeans and canola. Overall, the correlation results for different 

plant species are not satisfactory with simple regression analysis. 

Table 2.1. Correlations between leaf nitrogen concentration (LNC) and leaf impedance (Z) for different plant 

species. 

Plant Species 

Correlation Coefficient (R), Coefficient of Determination (R2)  

and Simple Regression Model 

Linear Polynomial (order 2) 

Canola 
R = 0.19, R2 = 0.03 at 11.4 kHz  

𝐿𝑁𝐶 = 5𝐸−05𝑍 + 8.9604 

R = 0.19, R2 = 0.03 at 11.4 kHz  

𝐿𝑁𝐶 = −3𝐸−10𝑍2 + 7𝐸−05𝑍+8.8636 

Wheat 
R = -0.37, R2 = 0.13 at 5.6 kHz  

𝐿𝑁𝐶 = −0.0003𝑍 + 7.9957 

R = –0.39, R2 = 0.15 at 5.6 kHz  

𝐿𝑁𝐶 = −4𝐸−08𝑍2 + 0.0003𝑍 + 5.8849 

Soybeans 
R = 0.29, R2 = 0.08 at 7.7 kHz  

𝐿𝑁𝐶 = 7𝐸−05𝑍 + 6.3237 

R = 0.34, R2 = 0.11 at 7.7 kHz  

𝐿𝑁𝐶 = 1𝐸−08𝑍2 − 0.0001𝑍 +7.2717 

Corn 
R = 0.42, R2 = 0.18 at 11.9 kHz  

𝐿𝑁𝐶 = 0.0002𝑍 + 2.9853 

R = 0.44, R2 = 0.19 at 11.9 kHz  

𝐿𝑁𝐶 = −2𝐸−08𝑍2 + 0.0005𝑍 + 1.7835 

    Next, multiple regression analysis was used to obtain better correlation results. Principal 

component analysis (PCA) is a popular dimensionality reduction (DR) approach of multiple 

regression and mostly applicable in hyperspectral image analysis, but it works extremely well 

for variables that are strongly correlated [32]. PCA is very useful in data analysis using machine 

learning. Since the correlations are poor between the variables, according to the above results 

of simple regression analysis, PCA would not perform well to reduce the features in a dataset. 

Hence, the feature selection approach using the backward elimination method was tried in order 

to obtain a good correlation with multiple regression. Initially, the number of features was 

selected from all the features, based on the number of observations (n) and number of features 

(k = n − 2), from the best correlation results obtained and validated by XLMiner Analysis 

ToolPak. For the given observations, the number of features was selected accordingly, using 

the standard backward elimination method to obtain the best correlation and regression results. 

The importance of the features was checked sequentially with the help of ANOVA F/T tests 
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for obtaining the best multiple regression model. An optimization was done, and the best 

multiple regression results for the different plant species with nitrogen concentrations are 

summarized in the following section. 

    With multiple regression analysis, employing the least square method, the residuals were 

obtained for multiple observations with selected features using Residual value = actual value – 

predicted value. A random pattern of residuals supports a linear model. The sum of the residuals 

is always zero, whether the dataset is linear or nonlinear. The residuals for different 

observations and the corresponding best regression line between actual versus predicted 

nitrogen concentrations for the four different plant species are presented in Figures 2.4 and 2.5, 

respectively. 

    The coefficient of determination is calculated using the following: 

                                         𝑅2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=

𝑆𝑆𝑅

𝑆𝑆𝑇
                                      (2.3) 

    The adjusted R2 is calculated as 

                                                     𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝑅/(𝑛−𝑘−1)

𝑆𝑆𝑇/(𝑛−1)
                                                      (2.4) 

    and the root mean square error (RMSE) is calculated as follows: 

                                                       𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝐸

𝑛−𝑘−1
                                                              (2.5) 

    Here,       

                                       Sum of Square Regression, 𝑆𝑆𝑅 = ∑ (�̂�𝑖 − �̅�)2𝑛
𝑖=1                            (2.6) 

                                       Sum of Square Residual, 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1                            (2.7) 

                                 and Sum of Square Total, 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1                                   (2.8) 

where y is the actual LNC obtained by the experiment of laboratory measurement, �̅� is the 

mean value of the actual LNC, and �̂� is the predicted LNC obtained by multiple regression 

analysis using the least square method [33–36]. 
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(a) (b) 

  

(c) (d) 

Figure 2.4. Residuals in different number of observations for (a) canola; (b) wheat; (c) soybeans; and (d) corn 

with nitrogen concentrations. 
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(a) (b) 

  

(c) (d) 

Figure 2.5. Multiple regression analysis for (a) canola; (b) wheat; (c) soybeans; and (d) corn. The extracted 

coefficient of determination (R2) is for canola 0.98, for wheat 0.95, for soybeans 0.75, and for corn 0.68. 

    The predicted leaf nitrogen concentrations were validated by comparison with the actual leaf 

nitrogen concentrations. The overall multiple linear regression analysis results for different 

plant species are shown in Table 2.2. Overall, high correlation results were obtained using 

multiple regression analysis. The number of features was further reduced to avoid overfitting, 

and the regression results for different plant species are also included in Table 2.2. It was found 

that the correlation coefficient, the coefficient of determination, and adjusted R2 decreased with 

the decrease of the features, and that the corresponding RMSE increased. The feature selection 

was done by positive ANOVA tests using p-value less than or equal to 0.05. 

Canola:

R² = 0.98 (n=26, k=22) 

(p=0.014, 8.7-12 kHz)

4

5

6

7

8

9

10

11

12

13

14

4 6 8 10 12 14

P
re

d
ic

te
d

 L
N

C
 (

%
)

Actual LNC (%)

Wheat:

R² = 0.95 (n=36, k=28) 

(p=0.018, 5.1-14.9 kHz)

4

4.5

5

5.5

6

6.5

7

7.5

8

4 5 6 7 8

P
re

d
ic

te
d

 L
N

C
 (

%
)

Actual LNC (%)

Soybeans:

R² = 0.75 (n=21, k=7) 

(p=0.003, 7.6-9.4 kHz)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

6 6.5 7 7.5 8

P
re

d
ic

te
d

 L
N

C
 (

%
)

Actual LNC (%)

Corn:

R² = 0.68 (n=28, k=7)

(p=0.0006, 10.7-13.5 kHz)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

2 4 6 8

P
re

d
ic

te
d

 L
N

C
 (

%
)

Actual LNC (%)



 

27 

Table 2.2. Multiple linear regression analysis for four different plant species with nitrogen concentrations 

considering probability, p ≤ 0.05 (probability of rejection of null hypothesis). 

Plant Species 

 

Overall 

Correlation 

Coefficient,  

R 

Overall 

Coefficient of 

determination,  

R2 

Adjust

ed R2 

 

RMSE 

(%) 

ANOVA 

T-test/F-test 

Canola 

(n = 26) 

 

k = 22 

(8.7–12 kHz) 

0.99 

 

0.98 

 

0.94 

 

0.54 

 

Positive 

p = 0.014 

k = 10 

(8.8–11.5 kHz) 
0.85 0.72 0.54 1.56 

Positive 

p = 0.008 

k = 9 

(8.9–11.5 kHz) 
0.78 0.60 0.40 1.78 

Positive 

p = 0.029 

Wheat 

(n = 36) 

 

k = 28 

(5.1–14.9 kHz) 

0.97 

 

0.95 

 

0.75 

 

0.47 

 

Positive 

p = 0.018 

k = 17 

(5.2–14.9 kHz) 
0.86 0.74 0.50 0.67 

Positive 

p = 0.011 

k = 11 

(5.5–14.9 kHz) 
0.75 0.56 0.37 0.75 

Positive 

p = 0.013 

Soybeans 

(n = 21) 

 

k = 7 

(7.6–9.4 kHz) 

0.86 

 

0.75 

 
0.62 0.33 

Positive 

p = 0.003 

k = 5 

(7.7–9.4 kHz) 
0.75 0.56 0.42 0.40 

Positive 

p = 0.016 

k = 4 

(7.7–9.4 kHz) 
0.70 0.49 0.37 0.42 

Positive 

p = 0.018 

Corn 

(n = 28) 

 

k = 7 

(10.7–13.5 

kHz) 

0.82 

 

0.68 

 

0.57 

 

0.76 

 

Positive 

p = 0.0006 

k = 4 

(10.8–13.5 

kHz) 

0.73 0.53 0.46 0.85 
Positive 

p = 0.0008 

k = 3 

(10.8–11.9 

kHz) 

0.64 0.41 0.33 0.94 
Positive 

p = 0.004 

    A maximum correlation coefficient of 0.99 is obtained for canola, using multiple features 

ranging from 8.7 to 12 kHz. The maximum coefficient of determination for canola is 0.98, the 

adjusted R2 is 0.94, RMSE is 0.54%, and the ANOVA tests are positive; here, SSR = 133.58, 

SSE = 0.87, SST = 134.46, and p-value = 0.014 (F-test). From 101 features, only 22 were 

selected to obtain the best correlation and regression results using ANOVA tests. Overfitting 

was reduced by the backward elimination of features with p-values greater than the threshold. 

The chances of overfitting could also be reduced by minimizing the features to 10 or nine, 

which would also reduce the corresponding correlation coefficient to 0.85 or 0.78, respectively. 

On the basis of the maximum correlation, the proposed model for the predicted nitrogen 

concentrations in canola for multiple features is extracted as: 
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�̂� = 16.164 − 0.0087𝑋𝑓38 + 0.03614𝑋𝑓39 + 0.02706𝑋𝑓40 − 0.0794𝑋𝑓41 + 0.02173𝑋𝑓42

− 0.034𝑋𝑓54 + 0.05424𝑋𝑓56 − 0.0276𝑋𝑓57 − 0.036𝑋𝑓58 + 0.03908𝑋𝑓59

+ 0.0122𝑋𝑓60 + 0.0339𝑋𝑓61 − 0.0216𝑋𝑓62 − 0.0128𝑋𝑓63 + 0.04425𝑋𝑓64

− 0.0908𝑋𝑓65 + 0.0483𝑋𝑓66 + 0.02437𝑋𝑓67 − 0.0398𝑋𝑓68 + 0.01023𝑋𝑓69

+ 0.01485𝑋𝑓70 − 0.0162𝑋𝑓71 

(2.9) 

where the 11th feature of 10.9 kHz, 13th feature of 11.1 kHz, 14th feature of 11.2 kHz, and the 

20th feature of 11.8 kHz with p-values of 0.014, 0.02, 0.02, and 0.027, respectively, in the T-

test contributed less to the model than the other features. 

    A maximum correlation coefficient of 0.97 is obtained for wheat, using multiple features 

ranging from 5.1 to 14.9 kHz. The maximum coefficient of determination for wheat is 0.95, 

the adjusted R2 is 0.75, RMSE is 0.47%, and the ANOVA tests are positive; here, SSR = 30.67, 

SSE = 1.56, SST = 32.23, and p-value = 0.018 (F-test). From 101 features, only 28 were selected 

to obtain the best correlation and regression results using ANOVA tests. Overfitting was 

reduced by the backward elimination of features with p-values greater than the threshold. The 

chances of overfitting could also be reduced by minimizing the features to 17 or 11, which 

would also reduce the corresponding correlation coefficient to 0.86 or 0.75, respectively. On 

the basis of maximum correlation, the proposed model for the predicted nitrogen concentrations 

in wheat for multiple features is extracted as: 

Ŷ = −2.5493 − 0.0071𝑋𝑓2 − 0.0027𝑋𝑓3 + 0.01242𝑋𝑓4 + 0.0225𝑋𝑓6 − 0.0392𝑋𝑓7

+ 0.01188𝑋𝑓8 − 0.0108𝑋𝑓9 + 0.01941𝑋𝑓10 + 0.00297𝑋𝑓12 − 0.0258𝑋𝑓13

+ 0.03884𝑋𝑓14 − 0.0218𝑋𝑓15 + 0.01109𝑋𝑓22 − 0.0049𝑋𝑓23 + 0.00981𝑋𝑓25

− 0.0299𝑋𝑓26 + 0.00611𝑋𝑓27 + 0.02869𝑋𝑓28 − 0.0145𝑋𝑓29 − 0.0212𝑋𝑓30

+ 0.01165𝑋𝑓31 + 0.02851𝑋𝑓32 − 0.0352𝑋𝑓33 − 0.0178𝑋𝑓34 + 0.03033𝑋𝑓35

− 0.0018𝑋𝑓40 − 0.0072𝑋𝑓99 + 0.00675𝑋𝑓100 

(2.10) 

where the 2nd feature of 5.2 kHz, 7th feature of 5.8 kHz, 9th feature of 6.1 kHz, 14th feature of 

7.2 kHz, 15th feature of 7.4 kHz, 17th feature of 7.6 kHz, 21st feature of 8 kHz, 24th feature of 

8.3 kHz, and the 26th feature of 8.9 kHz with p-values of 0.021, 0.011, 0.024, 0.01, 0.015, 

0.041, 0.028, 0.013, and 0.016, respectively, in the T-test contributed less to the model than the 

other features. 

    A maximum correlation coefficient of 0.86 is obtained for soybeans, using multiple features 

ranging from 7.6 to 9.4 kHz. The maximum coefficient of determination for soybeans is 0.75, 
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the adjusted R2 is 0.62, RMSE is 0.33%, and the ANOVA tests are positive; here, SSR = 4.41, 

SSE = 1.44, SST = 5.85, and p-value = 0.003 (F-test). From 101 features, only seven were 

selected to obtain the best correlation and regression results using ANOVA tests. Overfitting 

was reduced by the backward elimination of features with p-values greater than the threshold. 

The chances of overfitting could also be reduced by minimizing the features to five or four, 

which would also reduce the corresponding correlation coefficient to 0.75 or 0.70, respectively. 

On the basis of the maximum correlation, the proposed model for the predicted nitrogen 

concentrations in soybeans for multiple features is extracted as: 

Ŷ = 6.521914 − 0.00164𝑋𝑓27 + 0.002375𝑋𝑓28 + 0.000735𝑋𝑓37 − 0.00245𝑋𝑓40

+ 0.002303𝑋𝑓42 + 0.00118𝑋𝑓44 − 0.0025𝑋𝑓45 

(2.11) 

where the 3rd feature of 8.6 kHz with a p-value of 0.033 in the T-test contributed less to the 

model than the other features. 

    A maximum correlation coefficient of 0.82 is obtained for corn, using multiple features 

ranging from 10.7 to 13.5 kHz. The maximum coefficient of determination for corn is 0.68, the 

adjusted R2 is 0.57, RMSE is 0.76%, and the ANOVA tests are positive; here, SSR = 25.04, 

SSE = 11.63, SST = 36.68, and p-value = 0.0006 (F-test). From 101 features, only seven were 

selected to obtain the best correlation and regression results using ANOVA tests. Overfitting 

was reduced by the backward elimination of features with p-values greater than the threshold. 

The chances of overfitting could also be reduced by minimizing the features to four or three, 

which would also reduce the corresponding correlation coefficient to 0.73 or 0.64, respectively. 

On the basis of the maximum correlation, the proposed model for the predicted nitrogen 

concentrations in corn for multiple features is extracted as: 

Ŷ = 3.32115 − 0.00251𝑋𝑓58 + 0.006203𝑋𝑓59 − 0.00341𝑋𝑓60 + 0.001031𝑋𝑓70

− 0.00106𝑋𝑓76 + 0.001628𝑋𝑓82 − 0.00166𝑋𝑓86 

(2.12) 

where the 1st feature of 10.7 kHz and the 6th feature of 13.1 kHz with p-values of 0.037 and 

0.027, respectively, in the T-test contributed less to the model than the other features. 

    The proposed models using EIS are accurate and global for the individual plant species only. 

For each crop, different features were selected in the model based on the positive ANOVA 

tests because of different physiological properties. For canola and wheat, the individual 

features contribute less to the correlation, and thus a higher number of features are required as 

compared with soybeans and corn. The computation is complex in EIS, and it is model 
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dependent. For different plant species, datasets are different, and different models are required 

for the estimation. Appropriate fitting of the models shows the accuracy of the measurement 

using an EIS board. 

    Next, all the observations of different plant species were combined, and the multiple 

regression analysis was done using PrimaXL Analysis ToolPak. For multiple regression, a 

linear regression line was found between actual leaf nitrogen concentration and the predicted 

leaf nitrogen concentration for canola + wheat + soybeans + corn, using EIS, as shown in Figure 

2.6. The coefficient of determination is 0.89 and the overall correlation coefficient is 0.94. 

  

(a) (b) 

Figure 2.6. Plots of (a) number of observations versus value of residuals; and (b) actual versus predicted LNC 

for canola + wheat + soybeans + corn using EIS. The extracted coefficient of determination (R2) is 0.89 and the 

corresponding overall correlation coefficient (R) is 0.94. 

    The SPAD leaf chlorophyll meter is a handheld, self-calibrating, and convenient device for 

a rapid and nondestructive assessment of leaf chlorophyll content in different crops. The leaf 

chlorophyll content is correlated to the leaf nitrogen concentration depending on the variety of 

plant species, locations, and growth stages [9,10,37]. For this, the measurement of leaf nitrogen 

concentration is possible using SPAD, and the relationship is curvilinear. SPAD measures the 

transmittance of red (650 nm) and infrared (940 nm) radiation through the leaf using two silicon 

photodiode detectors and has gained in popularity for its ease of use, although it is not as 

accurate as the destructive method. It utilizes the light attenuation difference between these two 

wavelengths to determine leaf greenness. Green color intensity of a crop leaf is directly related 

to the leaf nitrogen concentration and depending on the position of measurement on a leaf 
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surface and area of the leaf, SPAD can have utility in predicting leaf nitrogen concentration 

[37]. For the combined observations, the performance of EIS as compared with SPAD readings 

is presented in Figure 2.7, and the summarized results are shown in Table 2.3. 

 
 

(a) (b) 

 

(c) 

Figure 2.7. Plots of (a) soil-plant analyses development (SPAD) reading versus LNC; (b) number of observations 

versus value of residuals; and (c) actual LNC versus predicted LNC for canola+wheat+soybeans+corn using 

SPAD. The extracted coefficient of determination (R2) is 0.53 and the corresponding overall correlation coefficient 

(R) is 0.72. 
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Table 2.3. Comparative regression results between EIS and SPAD for the plant species with nitrogen 

concentrations using combined observations. 

 
Canola + Wheat + Soybeans + 

Corn 

Overall 

Correlation 

Coefficient 

(R) 

Overall 

Coefficient of 

determinatio

n (R2) 

Adjuste

d R2 

RMSE 

(%) 

ANOVA 

T-test/ 

F-test 

EIS 

Observations, n: 111 

Features, k: 63 (5.2–14.8 kHz) 
0.94 0.89 0.74 1.12 

Positive 

p = 1.2e-

09 

Observations, n: 111 

Features, k: 33 (5.3–14.8 kHz) 
0.81 0.66 0.52 1.53 

Positive 

p = 1.7e-

08 

SPAD 
Observations, n: 111 

Features, k: 1 
0.72 0.53 0.52 1.52 

Positive 

p = 1.3e-

19 

    Using EIS, an overall maximum correlation coefficient of 0.94 and a coefficient of 

determination of 0.89 are obtained for the combined 111 observations of the plant species with 

nitrogen concentrations, where 63 features from 5.2 to 14.8 kHz were selected, and the RMSE 

is 1.12%. Overfitting is reduced by the backward elimination of features with p-values greater 

than the threshold. The chances of overfitting could also be reduced by minimizing the features 

from 63 to 33, which would also reduce the maximum correlation coefficient to 0.81. However, 

for the same number of observations using SPAD, a maximum correlation coefficient of 0.72 

is obtained, where the coefficient of determination is 0.53 and the RMSE is 1.52%. Thus, EIS 

performs well as a good alternative to optical spectroscopy and to other nondestructive 

methods, such as SPAD, for the determination of leaf nitrogen concentrations. 

2.4. Summary and Discussion 

    In EIS measurement, it was determined that impedance varies with the variation of frequency 

for the four different crop leaves. The leaf impedance decreases with an increase of frequency 

and also with an increase of the nitrogen fertilization level. The actual nitrogen concentrations 

in the leaves were measured by a nitrogen analyzer, the samples were trained, and the nitrogen 

concentrations for all of them were predicted by regression analysis. 

    The correlation between actual nitrogen concentrations and the measured impedances of the 

leaves was found with simple regression analysis, but the obtained correlation with a single 

feature was not satisfactory. Therefore, multiple linear regression was also utilized to obtain 

better correlation results with the help of PrimaXL Toolpak. The selection of the number of 

features was challenging, but, along with the observations, played an important role in 

regression analysis. Removal of features using backward elimination had to be done very 

carefully, otherwise, the wrong selection may have affected the correlation and regression 
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results. The overall correlation coefficient (R), coefficient of determination (R2) and its adjusted 

value, and RMSE were calculated for the four different crops using Equations (2.3) to (2.8). 

After various experiments, it was found that the correlation coefficient and the coefficient of 

determination increased with an increase in the number of features for a given number of 

observations, and the corresponding RMSE decreased. The optimized selected features create 

a suitable model for good predictions. 

    The residuals were obtained from the difference between actual and predicted nitrogen 

concentrations. The lower residuals helped to achieve a good regression model for different 

observations. Multiple linear regression results, presented in Table 2.2, show that the highest 

correlation coefficient of 0.99 is obtained for canola, while 0.97 is obtained for wheat, 0.86 for 

soybeans, and 0.82 for corn. The corresponding RMSE values are 0.54%, 0.47%, 0.33%, and 

0.76%, respectively. After training, the predicted results were tested and validated with the 

resulting positive ANOVA F-test and T-test, using p-values less than or equal to 0.05. The 

obtained results are satisfactory in comparison with previously published works [16–19]. The 

proposed models show that a large number of features are required for canola and wheat 

because the individual feature correlation is not very strong, a few features in the models 

contributed less to the correlation. The proposed models for soybeans and corn required a lower 

number of features because of strong individual feature correlation. However, a few features 

still contributed less to the correlation. 

    The performance of EIS was also compared with the SPAD measurement. A maximum 

correlation coefficient of 0.94 is obtained with a minimum RMSE of 1.12%, using EIS 

measurements for 111 observations, whereas, for the same observations and using SPAD, a 

maximum correlation coefficient of 0.72 is obtained, and the RMSE is 1.52%. Overall, 

satisfactory results are presented in this work in comparison with previously published works 

on optical spectroscopy [4,7], and on electrical impedance spectroscopy [21,22]. A strong 

correlation was found between nitrogen concentrations and impedances of the crop leaves 

measured by EIS with multiple features, and the nitrogen concentrations of the leaves were 

also determined accurately with the best multiple regression results. 

2.5. Conclusions 

    In this work, a simple, inexpensive, rapid, and noninvasive EIS method is proposed for the 

prediction of the leaf nitrogen concentrations of canola, wheat, soybeans, and corn. The 

impedances of the plant leaves were measured with a variation of frequency from 5 to 15 kHz, 

using the EVAL-AD5933EBZ evaluation board. A correlation between leaf nitrogen 
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concentrations and leaf impedances was found with the help of simple and multiple linear 

regression using the least square method. A comparative analysis among the four different 

crops was done, and the optimized regression results were obtained using ANOVA tests. With 

the use of multiple linear regression, of all the crops, the highest correlation of 0.99 is obtained 

for canola between 8.7 and 12 kHz, the corresponding coefficient of determination is 0.98, and 

the RMSE is 0.54%. New multiple linear regression models are proposed in this work for the 

determination of leaf nitrogen concentrations of the four crops. The overall prediction of 

nitrogen concentrations based on all the observations of the crops is better using EIS as 

compared with SPAD. The obtained correlation coefficient using EIS is 0.94 and the 

corresponding RMSE is 1.12%, whereas a maximum correlation coefficient of 0.72 and 

corresponding RMSE of 1.52% are obtained using SPAD for the same number of combined 

observations. The proposed models based on the portable EIS measurements are significantly 

sensitive to the nitrogen concentrations of the plant leaves. 
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Chapter 3: Rapid and Efficient Determination of Relative Water Contents 

of Crop Leaves Using Electrical Impedance Spectroscopy in Vegetative 

Growth Stage 

    The plant physiology can be determined by the characterization and thorough assessment of 

plant traits. The photosynthesis, growth, and development of the plant depend on the available 

amount of water in a plant body. The crop water stress is determined by the changes in 

physiological properties of the crops. In addition, the crop productivity depends on the varying 

water stress. The assessment is very essential in the leaf-level and the water status can be 

assessed by estimating the leaf water contents of the plants accurately. In this work, the 

assessment of leaf relative water contents is made in vegetative growth stage of multiple crops 

by non-invasive measurements using EIS tool. A non-destructive impedance measurement 

method is applied by varying frequencies and a strong correlation is found between the 

measured impedances and relative water contents of the crop leaves. A rapid and efficient 

determination is made by the developed low-cost and effective EIS tool. The EIS method is 

found as an attractive alternative to the optical spectroscopy. The detail on modeling for the 

estimation of relative water contents of plant leaves is presented in this chapter.   

    The experiment was conducted on a total of 64 plants considering 16 plants/pots of a 

commercial canola, wheat, soybeans, and corn. A total of 186 leaf samples were selected: 48 

each for canola and wheat, and 45 each for soybeans and corn. Each crop was watered with 50, 

100, 150, and 200 mL, respectively with appropriate fertilization (15-30-15 N-P-K at 4 

gram/liter rate), in every 24 hours. New EIS models were developed for the estimation of leaf 

water contents of the individual crops by measuring leaf impedances in 5 to 15 kHz. The 

proposed EIS models are found robust and significantly sensitive to the water contents of crop 

leaves in multiple frequencies.   

    The detail analysis and findings of this chapter is available in the following published 

manuscript. R.B. (first author) performed the experiments, analyzed the data, and wrote the 

draft of the manuscript. K.W. and A.D. suggested the experiments and data analysis, helped 

edit the draft, and provided critical comments to improve the paper. R.S. facilitated the setup 

of the greenhouse experiment and helped edit the draft. R.F. and A.S.M. helped edit the draft 

and provided critical comments to improve the paper. 

    Basak, R.; Wahid, K.A.; Dinh, A.; Soolanayakanahally, R.; Fotouhi, R.; Mehr, A.S. Rapid and Efficient 

Determination of Relative Water Contents of Crop Leaves Using Electrical Impedance Spectroscopy in 

Vegetative Growth Stage. Remote Sens. 2020, 12, 1753.  
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Abstract: Crop water stress is a deficiency in plants in water supply when the transpiration 

rate becomes higher than the water absorption capacity. The stress may be detected by a 

reduction in soil water content, or by the change in physiological properties of the crop. The 

leaf water content (LWC) is commonly used to assess the water status of plants, which is one 

of the indicators of crop water stress. In this work, the leaf relative water contents of four 

different crops: canola, wheat, soybeans, and corn—all in vegetative growth stage—were 

determined by a noninvasive tool called, electrical impedance spectroscopy (EIS). Using a 

frequency range of 5–15 kHz, a strong correlation between leaf water contents and leaf 

impedances was obtained using multiple linear regression. The trained dataset was validated 

by analysis of variance tests. Regression results were obtained using the least square method. 

The optimized regression model coefficients for different crops were proposed by selecting 

features using the wrapper backward elimination method. Multi-collinearity among the 

features was considered and individual T-tests were made in the feature selection. A maximum 

correlation coefficient (R) of 0.99 was obtained for canola compared to the other crops; the 

corresponding coefficient of determination (R2) of 0.98, an adjusted R2 of 0.93, and root mean 

square error (rmse) of 0.30% were obtained for 36 features. Therefore, the results show that 

the proposed technique using EIS can be used to develop a low-cost and effective tool for 

determining the leaf water contents rapidly and efficiently in multiple crops. 

Keywords: electrical impedance spectroscopy; correlation coefficient; coefficient of 

determination; relative water content; analysis of variance 
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3.1. Introduction 

    Water is essential for crop production. Water stress reduces the efficiency of photosynthesis 

and limits crop productivity [1,2]. It occurs when the water demand exceeds the available 

moisture during a certain period. Since plant growth and productivity are adversely affected by 

water stress, it is important to accurately determine the water status in plants to make timely 

irrigation decisions [1–3]. Water status of plant can be indicated by different tissues (such as 

root, stem, and leaf or the whole canopy). Compared with the other plant tissues, leaf analysis 

is the most important tool for evaluating nutrient and water status of a plant, which aids in 

fertilization and irrigation [4–7]. Therefore, the leaf water content (LWC) is an important 

indicator of plant water status. 

    Some previous studies determined water stress using an environment parameter, like soil 

moisture content (SMC). However, it is determined that irrigation decision based on plant water 

status (like relative water content (RWC) or leaf water potential (LWP)) is more reliable than 

SMC [7]. Photosynthesis decreases with the reduction in the RWC and LWP [2]. Leaf RWC 

reflects the balance between water supply to the leaf tissue and transpiration rate [5–7]. The 

LWP indicates the demand for water within a plant, the resistance to water movement within 

the plant, and the demands for transpiration imposed by the environment. However, 

determining these measurements is destructive and time consuming; therefore, measuring plant 

water status in real time is critical for irrigation scheduling. 

    Several techniques, like visible or near-infrared spectroscopy, use of pressure bomb, and use 

of terahertz quantum cascade lasers have been applied in the past years for predicting LWC 

[7–10]. Applications of hyperspectral sensors and stimulated light output of the lasers give 

reflectance spectra of the leaves in the visible or near infrared wavelengths, which helps 

determine the LWC non-destructively [7,8]. Recently, electrical measurement of agricultural 

materials has been explored by several researchers for non-destructive and real-time 

applications [11–14]. These findings showed that electrical properties of leaves, such as 

impedance, resistance, capacitance, and dielectric constant can be used to determine the plant 

water status [12,15,16]. 

    Plant electrical properties can be represented by a simplified electrical model consisting of 

a parallel circuit of capacitor and a resistor. In this sense, impedance spectroscopy allows the 

analysis of material properties through the application of alternate electric signals (voltage or 

current) of different frequencies, and the measuring of the corresponding electrical output 

signals (voltage or current). At high frequencies, the current flows through the capacitive 

component, and thus decreases the overall impedance. As a result, impedance spectroscopy 
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technique had been used in agriculture to determine the physical and physiological aspects in 

the plant [17–19]. 

    Several past studies have reported methodologies using electrical impedance measurements 

to determine the physiological status of biological tissues [20–22]. The impedance 

measurement by electrical impedance spectroscopy (EIS) is a fast, non-destructive, non-

invasive, easily implemented, and inexpensive compared to the other available methods 

[11,23–25]. Although the computation is complex and model dependent, EIS works in a wide 

frequency range, and is less sensitive to environmental variables than other non-invasive 

methods. The EIS method has been used to determine nitrogen status [12,16,26], water status 

or moisture content [11,14], root biomass or root growth [13,19], phosphorus and potassium 

status [20], plant tissue differentiation [17], leaf growth [23], citrus fruit acidity (pH 

measurement) [15], and soil moisture content [18]. In a recent work [26], leaf nitrogen 

concentration in multiple crops were determined using EIS, which was proposed as an 

attractive alternative to optical spectroscopy. Multiple regression analysis was employed to 

perform the statistical analysis [27–29]. In this paper, we proposed that EIS collect in situ data 

directly on the leaf for the determination of water status in multiple crops. The measurement 

was done by varying the signal frequency, and the correlation between leaf impedances and 

leaf water contents was obtained for multiple crops using a multiple regression analysis. 

Therefore, the main objective of this work was to obtain the correlations between leaf 

impedances and relative water contents of four crops—canola, wheat, soybeans, and corn—all 

in vegetative growth stage and under varying water stress conditions. 

3.2. Materials and Methods 

3.2.1. Experimental Setup 

    The experiment was carried out in a greenhouse at the Agriculture and Agri-Food Canada 

(AAFC), Saskatoon, Saskatchewan, Canada. The EIS measurement was done by an evaluation 

board (EVAL-AD5933EBZ from Analog Devices Inc.), which is a high precision impedance 

converter system with a master clock of 16.77 MHz and the operating frequency of 5–100 kHz. 

The AC signal injected into the sample was generated by a built-in function generator of the 

board. The board combines a frequency generator with a 12-bit, 1 mega sample per second 

(MSPS) analog-to-digital converter (ADC), and an internal temperature sensor. The frequency 

generator allows an external complex impedance to be excited with a known frequency. 

    The experimental setup of the data acquisition system was connected to a graphical user 

interface (GUI) as shown in Figure 3.1. For impedance spectroscopy measurements, a 2Vp-p 
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generator voltage was used. A pair of electrocardiograms (ECG) electrodes connected to the 

evaluation board was used to measure the impedance of the leaf samples non-invasively. A 

separation of 3 cm between the two electrodes were maintained for all the measurements. The 

measurement at particular frequencies with on-board implementation is possible using EIS. 

Hence, the test duration is short, though the method is time-consuming for a large number of 

crops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Impedance measurement of soybeans leaves using the electrical impedance spectroscopy (EIS) data 

acquisition system. 

    A portable impedance converter network analyzer was used in EIS for measuring the leaf 

impedances of canola, wheat, soybeans, and corn by varying the frequency in a range of 5–15 

kHz with 100 Hz intervals. A total of 186 samples (n) were selected: 48 each for canola and 

wheat, and 45 each for soybeans and corn. The selected crops are chosen based on the 

applications and extensive use. A low frequency range was considered because of obtained 

high impedance profiles for the selected crops in different experiments. 
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    The seeds were sown on February 8, 2019 in the greenhouse environment which was 

maintained temperature of 23–30 degrees Celsius during daytime and 18–22 degrees Celsius 

at night; the environment was controlled at 45%–55% relative humidity. The experiment was 

conducted on a total of 64 plants. Individually, 16 plants/pots of a commercial canola, wheat, 

soybeans, and corn were chosen. After sowing the seeds, all pots were watered with 200 mL in 

the first three weeks till March 4, 2019. In the next two weeks, until the measurement of every 

4 plants/pots, each crop was watered with 50 mL,100 mL,150 mL, and 200 mL, respectively, 

in every 24 hours. The different water volumes were selected to observe the variations in leaf 

impedance profiles of the crops in various water stress. The plants were fertilized with 15-30-

15 N-P-K (15% nitrogen, 30% phosphorus, and 15% potassium) fertilizer at 4 gram/liter rate. 

The leaf impedance measurements were performed using EIS on vegetative tissue during 

March 14–15, 2019 (i.e., 5 weeks after sowing). 

    The impedance (Z) of the leaf samples was measured at 100 Hz intervals within the selected 

frequency range by using a calibration of 7.5 kΩ resistance [26]. The impedance magnitude 

was controlled by the calibrated gain factor and the corresponding frequency as well. The 

impedance at each frequency point is considered as a feature (k). Therefore, a total of 101 

features were selected initially for each crop considering frequencies of f1, f2, …, f101, 

respectively. For each sample of the crops the measured dataset consisted 101 impedance 

values and the total impedance values were taken in a dataset based on the given number of 

samples of each crop (canola and wheat: 48×101, soybeans and corn: 45×101). 

3.2.2 Relative Water Content (RWC) Measurement 

    Next, the crop leaves were cut, and the fresh weight of the leaf samples was measured using 

a weight scale; the leaves were then oven dried at 60 0C for 48 hours. Later, the dry weight of 

the samples was taken on March 18–19, 2019. Using the previous works [5–7], the relative 

water content (RWC) of the leaf samples for different crops was calculated as follows: 

                               RWC= ((Fresh weight‒Dry weight)/Fresh weight)×100%                        (3.1) 

The calculated RWCs for the different samples of canola varied from 84.5%–89.6%, for wheat 

72.4%–85.6%, for soybean 60.4%–80.6%, and for corn 80.4%–88.7%. 

3.2.3. Statistical Analysis 

    The correlation coefficient (R) between the leaf impedance (Z) and relative water content 

(RWC) was determined for single and multiple regressions using the least square method. The 

results were obtained and validated by analysis of variance (ANOVA) T-test/F-test with the 
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help of PrimaXL Data Analysis ToolPak. The corresponding coefficient of determination (R2), 

adjusted R2, and root mean square error (rmse) were also determined using the expressions 

below: 

                                                             𝑅2 =
∑ (�̂�𝑖−�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                                          (3.2) 

                                                     𝑅𝑎𝑑𝑗
2 = 1 −

∑ (�̂�𝑖−�̅�)2𝑛
𝑖=1 /(𝑛−𝑘−1)

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1 /(𝑛−1)

                                                (3.3) 

                                                           𝑟𝑚𝑠𝑒 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛−𝑘−1
                                                   (3.4) 

where, y is the actual relative water content, �̂� is the predicted relative water content, �̅� is the 

mean of the actual relative water contents, n is the number of observations of different crops, 

and k is the number of features in the given frequency range [27–32]. 

    Initially, the leaf impedance profiles of the crops were observed by varying frequency at 

different water levels. The RWC was calculated for different applied amount of water to the 

samples of any individual crop. The correlation between leaf impedance and RWC for different 

crops was obtained at 101 frequency points using XLMiner Analysis ToolPak. A single 

regression analysis was made between actual and predicted RWC for the frequency with 

maximum correlation point. No strong correlation among the leaf impedance and RWC was 

found at single feature, and therefore, a multiple regression analysis was considered to obtain 

better correlation results using an increased number of features. From all the features in a 

dataset, the number of features was selected as k=n-2 considering the maximum correlation 

points between RWC and leaf impedance for the given observations (n) of any crop. 

    Principal component analysis (PCA) is a popular dimensionality reduction (DR) approach 

of multiple regression, and mostly applicable for feature selection in hyperspectral image 

analysis, but it works well for the variables that are strongly correlated [33]. Multi-collinearity 

among multiple features were examined, and most of the highly correlated features with 

correlation of 95% or above, and the corresponding variance inflation factor (VIF) of 10 or 

above, were removed. In this work, instead of using PCA, the number of features in a dataset 

was selected accordingly using the wrapper backward elimination method to perform the 

multiple regression analysis with the ANOVA tests. From the dataset for each crop, important 

features were checked sequentially with the threshold probability of rejection of null 

hypothesis, p≤0.05 using individual T-test. The probability might be affected with highly 

correlated features in the model for high values of VIF. The features with the large p-value 

(i.e., greater than 0.05) were removed from the regression of the dataset, and the features with 

p-values less than or equal to 0.05 were considered for the prediction. After a few iterations, 
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the training and validations were performed using overall F-test (p≤0.05), and the optimized 

multiple regression results were obtained for different crops. 

3.3. Results 

3.3.1. Crop Leaf Impedance Measurement 

    Three leaves from individual plants of each species were sampled for measuring impedance 

as shown in Figure 3.2. Figure 3.3 shows the average impedance profiles of the leaf samples at 

varying frequency for the different watering regimes. The leaf impedance profiles were 

examined at different water status to obtain the correlations with the leaf water contents. It is 

observed that the leaf impedance decreases with the increase of frequency from 5 to 15 kHz, 

and with the increase of plant water levels from 50 to 200 mL. The average leaf impedance 

varies from 6000–10000 ohm for all the crops in the given frequency range. The impedance 

profile is high for soybeans and corn compared to canola and wheat in the different watering 

regimes. 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 3.2. Leaf samples of (a) canola, (b) wheat, (c) soybeans, and (d) corn, at 50mL water level. 
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     (a)  

      (b) 

 
     (c) 

 
     (d) 

Figure 3.3. Plots of frequency versus leaf impedance for (a) canola, (b) wheat, (c) soybeans, and (d) corn, at 

different water levels. Leaf impedance decreased with the increase of frequency and also with the increase of 

water level in the crops. A good impedance profile was observed for canola compared to the other crops with the 

equal distribution of water level. 

3.3.2. Single Regression Analysis 

    At first, with the use of single regression analysis, the correlations between leaf impedance, 

Z, and RWC for a single feature, were found for canola, wheat, soybeans, and corn as shown 

in Figure 3.4. The maximum correlation coefficients (R) of the crops were obtained at 6.3 kHz, 

7 kHz, 12.8 kHz, and 5.8 kHz, respectively. The correlation was positive for canola and corn, 

where the RWC index increased with the increase of leaf impedance. On the other hand, a 

negative correlation was found for wheat and soybeans, where the RWC index decreased with 

the increase of leaf impedance. A moderate correlation was obtained for canola and wheat with 

coefficients of R = 0.50 (linear), 0.55 (polynomial) and R = -0.38 (linear), -0.47 (polynomial), 

respectively. Although the correlation was poor for soybeans and corn with coefficients of R = 

-0.25 (linear), -0.26 (polynomial), and R = 0.20 (linear), 0.48 (polynomial), respectively. 
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(a) 

 
(c) 

 
(e) 

 
(g) 

 
(b) 

 
(d) 

 
(f) 

 
(h) 

Figure 3.4. Linear and polynomial correlations for canola with (a) R=0.50 and (b) R=0.55 at 6.3 kHz, for wheat 

with (c) R=-0.38 and (d) R=-0.47 at 7 kHz, for soybeans with (e) R=-0.25 and (f) R=-0.26 at 12.8 kHz, and for 

corn with (g) R=0.20 and (h) R=0.48 at 5.8 kHz. 
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    The predicted RWC index was obtained for the selected features of the crops using single 

linear regression and the result was compared with the actual RWC index as shown in Figure 

3.5. The coefficient of determination (R2) for canola was obtained as 0.25 at 6.3 kHz, where 

p=0.0002 (T-test), and for wheat was 0.15 at 7 kHz, where p=0.006 (T-test). On the other hand, 

the coefficient of determination for soybeans was obtained as 0.06 at 12.8 kHz, where p=0.09 

(T-test) and for corn was 0.04 at 5.8 kHz, where p=0.16 (T-test). The close approximation 

results were found for soybeans and corn. A good prediction was determined for canola 

compared to the other crops considering a single feature in the model. 

 
       (a) 

 
        (c) 

 
        (b) 

   
         (d)            

Figure 3.5. Single linear regression for (a) canola with R2 = 0.25 at 6.3 kHz, (b) wheat with R2 = 0.15 at 7 kHz, 

(c) soybeans with R2 = 0.06 at 12.8 kHz, and (d) corn with R2 = 0.04 at 5.8 kHz. 

    The obtained correlation and single regression results of all the selected crops are presented 

in Table 3.1. The regression models represented the correlation between the leaf relative water 

contents and measured leaf impedances for a particular feature. The maximum correlation 

coefficient (R) of 0.50 (linear) and coefficient of determination (R2) of 0.25 (linear) were 

obtained for canola at 6.3 kHz compared to the other crops. A high accuracy was found in the 
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model presented for canola with single linear regression, and above 85% RWC was predicted 

for the measured leaf impedance in the selected feature. On the other hand, less than 85% RWC 

was predicted for wheat at 7 kHz. Additionally, less than 80% RWC was predicted for soybeans 

at 12.8 kHz and more than 84% RWC was predicted for corn at 5.8 kHz from the obtained 

single linear regression models. Overall, the correlations were not strong enough with single 

regression analysis for the selected crops. 

Table 3.1. Maximum correlations and single regression models for different crops (considering the probability of 

rejection of null hypothesis, p≤0.05 with positive ANOVA tests). 

Canola Wheat 

Linear: R=0.50 at 6.3 kHz 

𝑅𝑊𝐶 = 0.0004𝑍 + 84.92 

 Polynomial (order 2): R=0.55 at 6.3 kHz  

𝑅𝑊𝐶 = −4𝐸−08𝑍2 + 0.0011𝑍 + 82.30 

Linear: R=-0.38 at 7 kHz 

𝑅𝑊𝐶 = −0.0006𝑍 + 85.88 

Polynomial (order 2): R=-0.47 at 7 kHz 

𝑅𝑊𝐶 = −1𝐸−07𝑍2 + 0.0012𝑍 + 78.93 

 

Soybeans Corn 

Linear: R=-0.25 at 12.8 kHz 

𝑅𝑊𝐶 = −0.0016𝑍 + 87.544 

Polynomial (order 2): R=-0.26 at 12.8 kHz 

𝑅𝑊𝐶 = 3𝐸−07𝑍2 − 0.0069𝑍 + 108.25 

 

Linear: R=0.20 at 5.8 kHz 

𝑅𝑊𝐶 = 0.0003𝑍 + 83.146 

Polynomial (order 2): R=0.48 at 5.8 kHz 

𝑅𝑊𝐶 = −2𝐸−07𝑍2 + 0.0043𝑍 + 66.99 

 

3.3.3. Multiple Regression Analysis 

    In multiple regression, all features were taken along with the response variable in the dataset. 

Correlations were analyzed, not only between dependent and independent variables, but also 

between all independent variables. The number of features were removed where the 

independent variables were highly correlated. Multi-collinearity was tested with the calculation 

of variance inflation factor (VIF), which identified the correlation between independent 

variables and the strength of that correlation. A high value of VIF (equal or greater than 10) or 

low value of tolerance (=1/VIF) indicated multi-collinearity among the multiple features, 

where the correlation between independent variables was 95% or above. The features that were 

affected with the multi-collinearity problem were removed from the dataset. The final dataset 

was prepared for multiple regression by the backward elimination of features with individual 

T-test. 

    The predicted RWC values were obtained for different observations of each crop using 

multiple linear regression and the residuals were calculated by comparing with the actual values 

as shown in Figure 3.6. Canola was with lower residuals of -0.33 to 0.34, and those were 

contributing a better prediction of leaf water contents compared to the other crops. On the other 

hand, soybeans were with higher residual values of -8.16 to 7.8, and in turn a moderate 
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prediction was obtained. The residuals for wheat and corn were also obtained from -2.4 to 1.5 

and -4.5 to 2.47, respectively. 

 

 
(a) 

 
(b) 

 
  

(c) 

 
 

(d) 

Figure 3.6. Plots of number of observations versus value of residuals for (a) canola, (b) wheat, (c) soybeans, and 

(d) corn with water contents. The residuals for canola were very low compared to the other crops. 

    The actual versus predicted RWC for four different crops in multiple regression was obtained 

as shown in Figure 3.7. The lower value of residuals of canola and wheat helped in achieving 

a high value of coefficient of determination (R2) compared to soybeans and corn. A strong 

correlation between RWC and leaf impedance was obtained for all the crops, and the optimized 

multiple regression results with the overall F-test are summarized in Table 3.2. 

    The correlation coefficients (R) of 0.99, 0.96, 0.79, and 0.78 were obtained for canola, wheat, 

soybeans, and corn with the corresponding rmse values of 0.3%, 1.44%, 3.36%, and 1.8%, 

respectively. The optimized features were selected as 36 (f1 to f55) for canola, 31 (f1 to f85) for 

wheat, 10 (f14 to f82) for soybeans, and 20 (f3 to f101) for corn. The required number of features 

was high for canola and wheat to achieve satisfactory regression performance, which 

contributed in achieving very strong correlation between leaf impedance and relative water 
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contents. A better regression performance was obtained for canola compared to the other crops 

because of its lower rmse value. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.7. Plots of actual versus predicted relative water content (RWC) using multiple linear regression for (a) 

canola with R2 = 0.98, (b) wheat with R2 = 0.92, (c) soybeans with R2 = 0.63, and (d) corn with R2 = 0.62. The 

best predicted results were obtained for canola and wheat by performing the multiple regression. 

Table 3.2. Multiple linear regression analysis for four different crops with water contents (considering the 

probability of rejection of null hypothesis, p≤0.05 with positive ANOVA tests). 

Canola Wheat Soybeans Corn 

f=5-10.4 kHz  

(n=48, k=36) 

f=5-13.4 kHz  

(n=48, k=31) 

f=6.3-13.1 kHz  

(n=45, k=10) 

f=5.2-15 kHz  

(n=45, k=20) 

R=0.99, R2=0.98, adjusted 

R2=0.93, rmse=0.30%, 

p=4.8e-06 

(F-test) 

R=0.96, R2=0.92, 

adjusted R2=0.77,  

rmse=1.44%, 

p=0.0001 

(F-test) 

R=0.79, R2=0.63, adjusted 

R2=0.51, rmse=3.36%, 

p=5.3e-05 

(F-test) 

R=0.78, R2=0.62, 

adjusted R2=0.31, 

rmse=1.80%, p=0.05 

(F-test) 
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    The proposed coefficients of multiple linear regression models for the prediction of RWC of 

the four different crops are presented in Table 3.3. The overfitting was reduced in the model 

by the backward elimination of features with p-values greater than the threshold. The individual 

coefficients were multiplied with the measured leaf impedances of selected features and the 

summation of the results added to the coefficient of intercept to obtain the predicted RWC for 

the crops. 

Table 3.3. Proposed coefficients of multiple linear regression models for the prediction of RWC of four different 

crops (considering the probability of rejection of null hypothesis, p≤0.05 with positive ANOVA tests, and the 

selected features ranging frequencies from f1 to f101). 

Canola Wheat 

87.08 (intercept), 0.0012 (f1), 0.0050 (f2), -0.0074 

(f4), -0.0036 (f5), 0.0009 (f7), 0.0137 (f8), -0.0156 

(f9), 0.0042 (f10), -0.0037 (f11), -0.0024 (f12), 0.0023 

(f13), 0.0042 (f14), 0.0042 (f15), 0.0034 (f16), -0.0074 

(f17), -0.0058 (f18), 0.0019 (f19), 0.0080 (f20), -0.0095 

(f22), 0.0040 (f23), 0.0031 (f24), -0.0023 (f25), 0.0072 

(f26), -0.0077 (f27), -0.0093 (f28), 0.0089 (f29), 0.0090 

(f30), -0.0097 (f32), -0.0057 (f34), 0.0072 (f35), 0.0074 

(f36), -0.0091 (f39), 0.0025 (f40), 0.0030 (f42), -0.0044 

(f45), 0.0022 (f55)  

 

80.03 (intercept), 0.0068 (f1), -0.0250 (f4), 0.0196 

(f5), 0.0253 (f6), -0.0254 (f7), -0.0193 (f9), 0.0309 

(f10), -0.0167 (f11), -0.0354 (f13), 0.0523 (f14), -

0.0438 (f16), 0.0222 (f17), 0.0332 (f18), 0.0132 (f19), -

0.0670 (f20), 0.0216 (f21), 0.0116 (f22), -0.0144 (f24), 

-0.016 (f25), 0.0700 (f26), -0.0412 (f27), -0.0294 (f31), 

0.0341 (f32), -0.0063 (f34), 0.0173 (f77), -0.0197 (f78), 

0.0175 (f80), -0.0725 (f81), 0.0914 (f82), -0.0414 (f83), 

0.0069 (f85) 

Soybeans Corn 

70.18 (intercept), -0.0145 (f14), 0.0245 (f17), -0.0133 

(f21), 0.0072 (f22), -0.0087 (f23), 0.0053 (f27), -0.0158 

(f63), 0.0166 (f64), -0.0093 (f79), 0.0088 (f82) 

78.63 (intercept), -0.0052 (f3), 0.02053 (f5), -0.0182 

(f6), 0.00327 (f9), -0.003 (f72), 0.00766 (f77), -0.0156 

(f79), 0.01044 (f80), -0.0074 (f83), 0.00784 (f84), -

0.0123 (f87), 0.02107 (f88), 0.00919 (f89), -0.0282 

(f90), 0.02423 (f92), -0.0156 (f93), -0.0104 (f94), 

0.01106 (f97), 0.00884 (f98), -0.007 (f101) 

 

 

    Next, the multiple regression analysis was performed for a total of 186 combined 

observations of all the crops with the selection of features in frequency ranges 5–15 kHz. The 

residuals were obtained from -10.8 to 10.02 for different observations from the difference 

between actual and predicted RWC as shown in Figure 3.8. The overall multiple regression 

results are summarized in Table 3.4. A maximum correlation coefficient (R) of 0.70 was 

obtained with rmse of 4.3% for 37 features ranging 5–14.8 kHz. The obtained coefficients were 

proposed to predict the leaf RWC in combined observations of the crops. 
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(a) 

 
(b) 

Figure 3.8. (a) Residuals, and (b) multiple linear regression for canola + wheat + soybeans + corn combined 

observations. The overall coefficient of determination (R2) was extracted as 0.50. 

Table 3.4. Multiple regression analysis for the combined observations of the crops with water contents 

(considering the probability of rejection of null hypothesis, p≤0.05 with positive ANOVA tests, and the selected 

features ranging frequencies from f1 to f101). 

Canola + Wheat + Soybeans + Corn 

f=5-14.8 kHz (n=186, k=37) 

R2=0.50, R=0.70, 

adjusted R2=0.37, 

rmse=4.3%, p=7.7e-

10 

(F-test) 

86.72 (intercept), 0.0029 (f1), -0.0076 (f2), 0.0095 (f3), -0.0064 (f4), 0.0054 (f10), -

0.0067 (f11), 0.0047 (f12), -0.0042 (f16), 0.0043 (f19),-0.0018 (f22), -0.0031 (f25), 

0.0042 (f28), -0.0028 (f31), 0.0058 (f35), -0.0053 (f36), 0.0047 (f39), -0.0089 (f41), 

0.0095 (f44), -0.0098 (f45), 0.0064 (f48), -0.0080 (f52), 0.0107 (f54), 0.0055 (f55), -

0.0193 (f57), 0.0079 (f58), 0.0095 (f64), -0.0216 (f65), 0.0141 (f66), 0.0039 (f77), -

0.0103 (f80), 0.0229 (f81), -0.0162 (f82), -0.0108 (f86), 0.0137 (f87), -0.0097 (f97), 

0.0168 (f98), -0.0094 (f99) 

3.4. Discussion 

    The regression analysis was performed for the validation of the predicted leaf water contents 

by comparing the actual water contents. At first, single regression results were found for all the 

crops and the corresponding regression models were extracted using a single feature. The RWC 

was related to the measured leaf impedance according to the extracted models. Canola showed 

a maximum correlation coefficient of 0.50 (linear) between leaf impedances and water contents 

compared to the other crops, but the overall outcome using single regression was not 

satisfactory. Important features at frequencies of 6.3 kHz, 7 kHz, 12.8 kHz, and 5.8 kHz were 

extracted considering single regression to predict the leaf water contents of canola, wheat, 

soybeans, and corn, respectively. The obtained coefficient of determination (R2) was too small 

for all the crops, especially for soybeans and corn, where the results were not satisfactory for a 

single feature. 
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    Later, multiple regression analysis was employed by increasing the number of features in 

the given frequency range of 5–15 kHz. The predicted water contents were obtained using 

multiple regression analysis, and the corresponding residuals were found from the difference 

between the actual and predicted water contents. Highly predictive results were obtained for 

the lower residuals considering multiple features. It was found that the correlation coefficient 

and the coefficient of determination increase with the increase of the number of features for the 

taken samples of the crops. The improved results were found with the help of positive ANOVA 

tests. The important multiple features at frequencies of 5–10.4 kHz, 5–13.4 kHz, 6.3–13.1 kHz 

and 5.2–15 kHz were extracted with individual T-test by employing multiple regression to 

predict the relative water contents of canola, wheat, soybeans, and corn leaves, respectively. A 

very high correlation was obtained for canola (R = 0.99) and wheat (R = 0.96) compared to that 

of soybeans (R = 0.79) and corn (R = 0.78), because of lower rmse values. The coefficient of 

determinations (R2) of the crops were obtained as 0.98, 0.92, 0.63, and 0.62 with the rmse 

values of 0.3%, 1.44%, 3.36%, and 1.8%, respectively for p≤0.05. Lower rmse of canola 

contributed in achieving better prediction of leaf water contents compared to that of the other 

crops. The obtained results in this study were satisfactory in comparison with the previous 

works [5–10]. In those works, leaf water contents of different crops were determined using 

optical spectroscopy. More than 400 samples were considered for 11 different species and the 

coefficient of determination of 0.93–0.96 with 7.1% rmse was obtained by Arshad et al. [5]. 

Different sensitive wavelengths of 11–1041 nm for 624 miscanthus samples were proposed by 

Jin et al. [6]. The coefficient of determination of 0.92 with 0.73% rmse for 75 samples of 

epipremnum aureum was obtained by Zhang et al. [7]. The leaf water content in soybeans was 

also accessed by Kovar et al. [8], and a correlation coefficient of 0.786 with 12.8% rmse was 

obtained using hyperspectral or infrared spectroscopy. Leaf water contents were also measured 

using terahertz laser optical spectroscopy by Baldacci et al. [9], and the correlation coefficient 

of 0.81 with 4.4% rmse for 40 wheat leaf samples was obtained by Li et al. [10]. Soil moisture 

contents by Umar et al. [18] and carrot moisture contents by Kertész et al. [14] were also 

determined by employing EIS. This study was limited to four different crop species with a total 

of 186 samples in vegetative growth stage only, but very strong correlations were found for the 

individual crop species, especially for canola (48 samples) and wheat (48 samples) with lower 

rmse values of 0.3% and 1.44%, respectively for p≤0.05. The proposed EIS device is cheaper 

than the optical spectroscopy methods. The overall manufacturing cost including labor and 

overhead in this study is approximately $150 USD (EIS board and components: $100, labor 

and overhead: $50), which is much less than optical spectroscopy methods. The leaf water 
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content of corn was determined using a sensor based on the Four-Electrode method by Zheng 

et al. in 2015, as reported by Jo´csa´k et al. [11]. A detector was developed to find a correlation 

between leaf electrical property and relative water content, and the highest negative correlation 

was obtained in the seedling stage. The moisture content of carrot slices during drying was 

determined using LCR meter by Kertész et al. [14]. A good correlation between carrot 

impedance and moisture content was obtained for different slices by varying drying time. 

Although, in this study, a pair of ECG electrodes connected to the AD5933 evaluation board 

was used to determine the leaf water content of canola, wheat, soybeans, and corn. A strong 

correlation between leaf impedance and RWC was found considering multiple features under 

varying water stress in vegetative growth stage. 

    In order to generalize the EIS model for the prediction of leaf water contents, the combined 

observations of the crops were considered and employed multiple regression for a dataset of 

186×101 impedance values. A strong correlation of R = 0.7 and coefficient of determination 

(R2) of 0.5 were obtained with 4.3% rmse. The overall correlation was decreased with the 

increase of rmse in combination with the samples of multiple crops. The physiological 

properties were different for different crops. It was found in the analysis that the EIS technique 

is model-dependent, and the optimized models worked better for the individual dataset of any 

particular crop. The accuracy of the models might be varied with the variation of growth stages 

of the crops because of different water stress and different physiological properties. For each 

crop, different features were selected with the model coefficients based on the positive 

ANOVA tests. In canola and wheat, the additional individual features contributed less in 

correlation and hence, higher number of features were required compared to soybeans and corn. 

Appropriate fitting of the models shows the accuracy of the measurements using the EIS 

evaluation board. The reduction of overfitting in the model is a challenging issue. To ensure 

appropriate feature selection, considering p-value as lower than or equal to the threshold is 

essential. Multi-collinearity among multiple features was considered during the feature 

selection in a dataset for evaluating appropriate regression models using ANOVA T-tests. 

Highly correlated features were removed by calculating VIF, and also with the help of the 

wrapper backward elimination method to obtain the optimized regression model. Therefore, a 

good correlation was found between leaf impedances and leaf water contents for each crop 

using multiple features. 
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3.5. Conclusions 

    The proposed study shows that precise measurement of leaf impedance allows the estimation 

of water content in crops under different water stress conditions. The measurements were 

carried out in vegetative growth stage. A strong correlation between leaf water contents and 

leaf impedances was found considering multiple features in the regression model. Multi-

collinearity among the features was considered during feature selection using the wrapper 

backward elimination method. The optimized regression model coefficients were proposed for 

canola, wheat, soybeans, and corn to determine the leaf water contents rapidly and efficiently 

using a portable and non-invasive EIS method. A comparative statistical analysis among the 

four different crops was performed, and the maximum correlation coefficient (R) of 0.99, the 

coefficient of determination (R2) of 0.98, and rmse of 0.30% were obtained for canola in the 

frequency range of 5–10.4 kHz. The proposed model coefficients were sensitive to the leaf 

water contents of different crops. The study indicated that non-destructive analysis of 

impedance measurement using the EIS device could be successfully used for the efficient 

determination of leaf water contents in multiple crops. The effectiveness of this EIS method 

can be considered in multiple growth stages of the crops in the future. 
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Chapter 4: Estimation of the Chlorophyll-A Concentration of Algae Species 

Using Electrical Impedance Spectroscopy 

    The monitoring and assessment of the water quality are dependent on the nutrient 

availability, algae compositions, and temporal variations in water. The high amount of algae 

has a significant impact on water quality. Hence, the determination of algae species and 

controlling on growing the excessive amount of the species are very essential for a good water 

quality. The available amount of algae species in a water body can be determined by estimating 

the Chlorophyll-a concentrations of the species. In this work, a non-destructive EIS method is 

applied, and the estimation of algae Chlorophyll-a is made by measuring electrical impedances 

at different frequencies. A strong correlation is found between Chlorophyll-a concentrations 

and the measured impedances for multiple algae species. The method is found rapid, cost-

effective, and suitable for in situ measurements compared to the other available non-destructive 

methods, such as spectrophotometry, fluorometry, hemocytometry, and hyperspectral or 

multispectral imaging. The detail on modeling for the estimation of Chlorophyll-a 

concentrations of multiple algae species is presented in this chapter. 

    The algae species (Spirulina, Chlorella) were grown in a controlled environment at room 

temperature (20 °C). A total of 116 samples of the species were prepared (Spirulina: 49, 

Chlorella: 41, and mixed algae: 26) with different densities of 6.25-100%. The algae species 

were detected by obtaining EIS results. New EIS models were developed and validated for the 

estimation of Chlorophyll-a of multiple algae species by measuring impedances in 1 to 3.5 

kHz. The sensor performed well with high accuracy of the extracted models. The performance 

of the sensor was also evaluated by the study of selectivity in the experiments considering 

multiple other soluble and insoluble matters along with the algae species in water. The method 

of EIS is found selective to the Chlorophyll-a concentrations of algae species. A robustness 

and good sensitivity of the EIS sensor is found by the multifrequency measurements.   

    The detail analysis and findings of this chapter is available in the following published 

manuscript. R.B. (first author) performed the experiments, analyzed the data, and wrote the 

draft of the manuscript. K.A.W. and A.D. suggested for the experiments and data analysis and 

edited the draft. K.A.W. secured funding for this work. 

    Basak, R.; Wahid, K.A.; Dinh, A. Estimation of the Chlorophyll-A Concentration of Algae Species Using 

Electrical Impedance Spectroscopy. Water 2021, 13, 1223.  
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Abstract: Algae are a significant component of a biological monitoring program in an aquatic 

ecosystem. They are ideally suited for water quality assessments because of their nutrient 

requirements, rapid reproduction rate, and very short life cycle. Algae composition and 

temporal variation in abundances are important in determining the trophic level of lakes, and 

those can be estimated by the Chlorophyll-a (Chl-a) concentration of the species. In this work, 

a non-destructive method was employed to estimate the Chlorophyll-a concentration of 

multiple algae species using electrical impedance spectroscopy (EIS). The proposed EIS 

method is rapid, cheaper, and suitable for in situ measurements compared with the other 

available non-destructive methods, such as spectrophotometry and hyperspectral or 

multispectral imaging. The electrical impedances in different frequencies ranging from 1 to 

100 kHz were observed using an impedance converter system. Significant observations were 

identified within 3.5 kHz for multiple algae species and therefore reported in the results. A 

positive correlation was found between the Chlorophyll-a and the measured impedance of algae 

species at different frequencies. Later, EIS models were developed for the species in 1–3.5 

kHz. A correlation of 90% was found by employing a least squares method and multiple linear 

regression. The corresponding coefficients of determination were obtained as 0.9, 0.885, and 

0.915, respectively for 49 samples of Spirulina, 41 samples of Chlorella, and 26 samples of 

mixed algae species. The models were later validated using a new and separate set of samples 

of algae species. 

 

Keywords: electrical impedance spectroscopy; chlorophyll-a concentration; algae density; 

coefficient of determination 

 

4.1. Introduction 

    Algae are a diverse group of aquatic organisms that can conduct photosynthesis. The algae 

species in water are classified with the colors or pigments. The Arthrospira Platensis Spirulina 

is a blue-green algae culture that is well-known as Cyanobacteria. Spirulina is 0.5 mm in length 

and rod- or disk-shaped. It is mostly found in mineral-rich alkaline lakes, rivers, and ponds. It 
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is multicellular and the main photosynthetic pigment is phycocyanin, which makes it blue in 

color [1–3]. On the other hand, Chlorella Vulgaris is a genus of single-celled green algae 

belonging to the division Chlorophyta. It is mostly found in small polytrophic inland water 

bodies. It is spherical in shape, about 2–10 micrometers in diameter, and is without flagella [4–

6]. 

    Spirulina contains proteins (up to 70%), fatty or amino acids, minerals, vitamins (B12), 

antioxidant pigments, and Chlorophyll-a (Chl-a) [2,3,7]. Spirulina habitat with alkali water and 

require 27–32 degrees Celsius for growth. Nitrate is the main factor influencing both 

Chlorophyll and protein contents in Spirulina [3,7,8]. On the other hand, Chlorella contains 

green photosynthetic pigments, Chl-a and -b in its chloroplast, and small amounts of 

magnesium, zinc, copper, potassium, folic acid, and other B vitamins (1, 3, 8) [4,5]. Chlorella 

habitat with fresh water and require 25–27 degrees Celsius for growth [5,6,9]. 

    Eutrophication is a very common phenomenon in dam reservoirs. It happens because of the 

enhancement of nutrients in the water. This has negative impacts on the water quality of an 

aquatic system. The production of algae and aquatic plants is increased, and as a result algal 

blooms are formed [10]. Chl-a and transparency (Secchi depth) are the indicators of 

eutrophication and turbidity in aquatic ecosystems [10–13]. Prediction of these indicators helps 

us to know the trophic state of the reservoirs. The trophic levels can be managed efficiently by 

incorporating key environmental variables such as water temperature, nutrients, biological 

oxygen demand, and total suspended solids [13–15]. In addition, Secchi depth provides an 

estimate of the volume of the habitat of phytoplankton, which plays an important role in 

regulating the energy available to higher trophic level consumers in aquatic ecosystems. A 

rapid increase in phytoplankton biomass often results in nuisance algal blooms [16]. Chl-a is 

used as a proxy of phytoplankton biomass and is an important indicator in assessing the trophic 

status of freshwater ecosystems [11,12]. 

    In addition, the nutritional components, such as carbon, nitrogen, phosphorus, and 

micronutrients, directly affect the algal growth, especially under high-density conditions [17–

21]. Chlorophyll as a group of pigments is involved in all phototrophic organisms, including 

algae and some species of bacteria. The surface waters that show high Chl-a concentrations 

simultaneously contain high levels of nutrients, such as phosphorus and nitrogen. Therefore, 

Chl-a can be utilized as an indirect indicator of nutrient levels. Chl-a is the photosynthetic 

pigment that causes the green color in algae and plants [12,13]. Therefore, through the 

determination of Chl-a in water, the water quality status and the amount of algae in water can 

be known [14,15,22]. The overall algal biomass in a water body can be known by measuring 
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Chl-a, which is extensively used as an indirect measurement. Thus, the existence of algae is 

indicated by Chl-a and turbidity, which in turn characterize the water quality [13,14,23]. The 

Chl-a concentrations are dependent upon many factors, such as water temperature, light level, 

nutrients, and the algal biomass and growth rate [13,24]. 

    There are several direct and indirect methods of measuring Chl-a in water. In a direct 

method, dry weight measurements are usually performed after collecting water samples and 

the algal biomass is estimated [25,26]. Although the method is cost-effective, it is time 

consuming and destructive. On the other hand, optical characteristics of water samples are 

analyzed using different indirect and non-destructive lab-based methods such as 

spectrophotometry, fluorometry, high-pressure liquid chromatography (HPLC), and flow 

cytometry or hemocytometry (cell counting) [27–31]. Compared with fluorometry, 

spectrophotometry has a much higher detection limit (lower sensitivity). Spectrophotometry is 

widely used as an analytical method and preferable for monitoring microalgae culture systems 

[27,28]. A good estimation is also found using fluorometry, HPLC, and hemocytometry for 

water quality monitoring [29–31]. Although these methods have high accuracy, they are time 

consuming and require expensive instruments. 

    Previously, the Chl-a concentrations of algae species were determined using portable 

hyperspectral systems and multi-wavelength optical sensors with the help of several promising 

tools such as multiple linear regression (MLR), support vector machine (SVM), and artificial 

neural network (ANN) [22–24,32,33]. Principle Component Analysis (PCA) was utilized to 

reveal the relationship between Chl-a and its associated parameters [10]. Several portable 

sensors were utilized for remote sensing applications to estimate Chl-a using 

multispectral/hyperspectral imaging; however, those required extra circuitry for large data 

storage, which makes the system complex, heavier, and more expensive [34–36]. Although in 

situ measurements are possible using these imaging methods, they are not highly accurate like 

the other optical methods. 

    In recent years, electrical characteristics of algae species in water samples have been 

analyzed using impedance spectroscopy for different applications, such as monitoring 

microalgal cell health, the extraction of algae as a corrosion inhibitor, quantification of 

microalgal biomolecule content, and biosensing of algal toxins in water. The method of 

electrical impedance spectroscopy (EIS) was found to be non-destructive and suitable for algal 

research by the impedance measurement of a water sample. The electrochemical impedance of 

electrode material silica obtained from sea water diatom algae was studied using EIS [37]. 

Microalgal cell health was studied, and the corresponding phenotypes were identified by 
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measuring electrical impedance [38]. The electrical impedances of algae species were 

measured at different frequencies and the cell properties were studied. It was found that in a 

low-frequency range, cell size dominates the impedance. A large cell size exhibits a large 

impedance response at a lower frequency. The flow of current is obstructed when the cell size 

is closer to the dimensions of the sensing region, resulting in impedance changes on a large 

scale [38]. Hence, the current between two electrodes decreases and in turn the impedance 

increases. Extraction of Spirulina and red algae as a corrosion inhibitor of carbon steel was 

studied using impedance spectroscopy [39–41]. The properties of biomolecules in microalga 

cells were studied using a faster EIS method compared with conventional techniques. Algal 

toxin detection in water based on a biosensing technique using EIS was also studied [42,43]. 

The method was found to be suitable for repeatability and applicable for in situ measurements. 

A multichannel EIS analyzer was also considered for measuring the impedance of microfluidic 

cells and the proposed sensor was sensitive to differential measurements of small particles [44]. 

Hence, the EIS method can be used as an alternative to optical spectroscopy for water quality 

monitoring. Furthermore, the estimation performance can be potentially improved by 

considering multispectral impedance imaging using an electrical impedance tomography (EIT) 

system. An efficient multi-task structure for multi-frequency EIT and anomaly detection based 

on real and imaginary images was studied previously [45,46]. 

    Furthermore, the EIS method has been widely applied in determining soil moisture content 

[47], plant nitrogen status [48,49], plant moisture content [50], and root biomass [51], in 

biological analysis [52], and in pH measurement [53]. Recently, EIS was used for the 

determination of leaf nitrogen concentrations and relative water contents for multiple crops 

[54,55]. The computation using EIS is complex, but it is model-dependent with high accuracy, 

and it works in a wide range of frequencies. The method of EIS is cost effective, fast, non-

invasive, in situ, and makes possible on-board implementation and real-time monitoring 

compared with other non-destructive methods. The EIS sensor is less sensitive to 

environmental variables than other non-invasive tools. A suitable EIS sensor was chosen in 

this work for the impedance measurement of algae species in water samples with the target of 

determination of the amount of algae by estimating Chl-a, which is required for continuous 

assessment in water quality monitoring. The two most prominent algae species, Spirulina and 

Chlorella, are the sources of most of the nutrients in lakes. Hence, a method using an EIS sensor 

to estimate the Chl-a concentration of multiple algae species (Spirulina, Chlorella, and a mix 

of algae) is presented in this work. 
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4.2. Materials and Methods 

4.2.1. Growing of Algae Species 

    In our study, we grew all algae species (Spirulina and Chlorella) in a controlled environment 

at room temperature (20 °C). The culture kits for the species were ordered from Algae Research 

Supply, CA, USA [56]. Each kit included a 50 mL volume culture flask with a breathable cap, 

1 mL of dense culture inoculum equivalent to approx. 0.1 gm/L dry weight, f/2 nutrients with 

sodium nitrate (NaNO3) and sodium phosphate (NaPO4), and salts for growing algae species. 

The salts are a combination of sodium bicarbonate (NaHCO3), sodium chloride (NaCl), 

magnesium sulfate (MgSO4), and calcium chloride (CaCl2) and provide a needed carbon source 

for algae [20]. The experiment was carried out during June–August 2020. At first, a volume of 

500 mL of culture media was prepared by adding salt and nutrients with half a liter of drinking 

water. The Spirulina were in higher pH media than the Chlorella. Algae species were grown in 

culture flasks by adding the culture inoculum with culture media. The stock solution was 

prepared by adding the culture media on different days of the growing stage of algae species. 

For the growing of algae, sunlight was used during the daytime, and at night a LED grow panel 

and a fluorescent light were used as light sources. A temperature of 25–32 degrees Celsius with 

external heating and a 16:8 light:dark condition were maintained [17–19]. Approximately four 

weeks were required to grow the species, and the stock solution of algae culture was ready for 

further experiments. 

4.2.2. Sample Preparation and Extracting Chlorophyll-a 

    The algae culture (stock solution) was diluted using the same water media and 15 mL 

samples of both algae species (Spirulina and Chlorella) with different densities (6.25–100%) 

were prepared as shown in Figure 4.1. Then, the stock solutions of both species were mixed in 

an equal ratio, and the stock was diluted to prepare 15 mL mixed algae samples of different 

densities. Different samples of high to low concentrations were prepared by varying the 

densities of the species. A total of 116 samples of the species were prepared (Spirulina, 49 

samples; Chlorella, 41 samples; mixed algae, 26 samples). The amount of algae in the prepared 

samples was estimated by Secchi Disk Depth (SDD) measurements. The depth at which the 

disk is no longer visible is known as the Secchi depth and is related to water turbidity [12–15]. 

The SDD has been widely used to describe the variations in water properties, which are linked 

to the variations in algal biomass [12]. The SDD is still regularly used in lakes or reservoirs for 

the measurement of water clarity because the Secchi Disk is cheaper, portable, easier to use, 

and the results from model predictions are in good agreement compared with the other available 
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tools [12–15,56,57]. It was found that the SDD index increases with the decrease in density of 

algae species. The Chlorophyll-a concentration of algae species is related to the SDD as 

follows: 

                                                    
1

𝑆𝐷𝐷
= 𝑘𝑤 + 𝑘𝑐𝐶ℎ𝑙𝑎                                                    (4.1) 

                                                  𝐶ℎ𝑙𝑎 = 𝑒(2.997−1.47𝑙𝑛(𝑆𝐷𝐷))                                          (4.2) 

where kw is the light attenuation of all components other than Chlorophyll-a, and kc is the 

attenuation of light by Chlorophyll-a [12,58,59]. A modified relation was used to calculate the 

Chl-a concentration for all of the samples of algae species using [11,12] as follows: 

 

Figure 4.1. Spirulina and Chlorella samples at different densities (6.25–100%). 

    The SDD index for different concentrations of algae samples was recorded from 2.1 to 60.5 

mm. The true Chl-a values of those were calculated as Spirulina, 1.65–114 mg/L; Chlorella, 

1.24–12.2 mg/L; and mixed algae, 10.47–174 mg/L. The Spirulina samples were more highly 

concentrated than the Chlorella samples. 

4.2.3. Experimental Setup 

    The electrical impedance spectroscopy (EIS) measurements of the algae samples were 

carried out using a portable impedance sensor (part # EVAL-AD5933EBZ) by varying the 

frequency from 1 to 3.5 kHz with 50 Hz intervals as shown in Figure 4.2. The EIS sensor used 

in the work has an accuracy of 0.5% and the sensor has a frequency sweep capability within 

the frequency range of 1–100 kHz. Initially, the impedance profiles of the samples were 

observed over the whole frequency band up to 100 kHz, and we found an insignificant effect 

of the presence of salt, nutrients, and algae species in the water above 10 kHz. High impedance 

profiles and significant changes in impedance for different samples were observed within 3.5 

kHz, and therefore considered for the models accordingly. In addition, it was found that the 

impedance of the samples decreased with an increase in the frequency. 
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    The experimental setup is presented in Figure 4.2a and the calculated Chlorophyll-a for 

different densities of Spirulina was recorded as shown in Figure 4.2b. At a lower density, the 

Chlorophyll-a of a sample was low because of the higher SDD and in turn the corresponding 

impedance was low as shown in Figure 4.2c. The impedance profiles were varied for different 

densities (6.25–100%) of Spirulina, and the corresponding phase angles are presented in Figure 

4.2d. At a high density of algae species, the flow of current was obstructed, which caused the 

impedance to increase. A maximum impedance of 9.53 kOhm was obtained at 1.75 kHz for the 

algae density of 100% and with the decrease in density to 6.25% the corresponding maximum 

impedance was also decreased to 8.2 kOhm. The phase values were also decreased with the 

decrease in algae density. 

  

(a) (b) 

 
 

(c) (d) 

Figure 4.2. (a) EIS measurement setup for algae samples, (b) Chlorophyll-a for Spirulina samples, (c) the 

corresponding impedance profiles, and (d) the phase angles at different densities of Spirulina. The variation in 

algae density changes the impedance because of the different Chlorophyll-a concentrations of the species. 

    The system voltage gain of AD5933 was calibrated with the output excitation voltage, 

feedback resistor, and programmable gain amplifier (PGA) gain. The gain through the system 

is given by 

             𝐺𝑎𝑖𝑛 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ×
𝐺𝑎𝑖𝑛 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑅𝑒𝑠𝑖𝑠𝑡𝑜𝑟

 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 (𝑍)
× 𝑃𝐺𝐴 𝐺𝑎𝑖𝑛          (4.3) 

    The sensor board has a flexible internal direct digital synthesizer (DDS) core and a digital-

to-analog converter (DAC) that together generate the excitation signal used to measure the 

unknown impedance (Z). The output excitation voltage was 0.2V p–p. The small potential avoids 

the major current flow and maintains the technique as non-destructive. The PGA was set to 
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times one (×1) and according to [54,55] the impedance was obtained for different magnitudes 

by calibrating the analyzer gain factor with a known resistance of 7.5 kOhm as: 

                                                   𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) ∝
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
                                         (4.4) 

    A high impedance of the sample was obtained for a low value of gain factor, which was 

adjusted by varying the frequency. The gain factor was obtained accordingly from 1 × 10–07 to 

9.9 × 10–09. In this work, we considered the magnitude of impedance only with the target of 

knowing the amount of algae in samples by the estimated Chlorophyll-a concentrations; phase 

was not taken into account. It is worth mentioning that the phase angle presents in detail the 

properties of biological matters, especially algal cell properties, cell strength, and cell size. 

However, only the magnitude of the impedance was used to develop the models, which reduced 

the computational complexity [45,60]. 

    A pair of electrocardiograms (ECG) electrodes, connected to the sensor board with a 

separation of 1 cm, was used to measure the impedance of the algae samples non-invasively. 

At first, the distance between two electrodes was varied for the measurement of impedances at 

1–3.5 kHz. For example, the impedance profiles of a Chlorella sample (C4) were obtained by 

varying the distance from 0.6 cm to 1.25 cm as shown in Figure 4.3. It was found that the 

overall impedance of the sample increased with the increase in separation of the electrodes. 

The capacitance between the two electrodes was decreased with the increase in distance and, 

hence, the impedance was increased with the increase in reactance. A good correlation was 

found at 1 cm for the measured impedances, and, for this, all the measurements were taken in 

this work by keeping the separation of the electrodes at 1 cm. For the dipping electrodes, the 

effective area between electrode and solution was considered, which was varied by varying the 

length and diameter of the electrodes. The effective area was increased with the increase in 

either the effective length or the diameter of the electrodes. Hence, the capacitance was 

increased, resulting in the impedance of the sample being decreased [61]. By the subsequent 

experiments during the impedance measurements, the effective length of 2 cm and the diameter 

of 0.03 inches for the electrodes were chosen at the good correlation point. 

 



 

65 

 
Figure 4.3. EIS measurements of a Chlorella sample (C4) by varying the distance between two electrodes from 

0.6 to 1.25 cm. The impedance increases with the increase in the separation of the electrodes and the optimized 

distance was set to 1 cm. 

    The impedance at each frequency point was considered as a feature (k). Therefore, a total of 

51 features were selected for each sample considering frequencies of f1, f2, and f51, respectively. 

A total of 49 samples (n) of Spirulina, 41 samples (n) of Chlorella, and 26 samples (n) of mixed 

algae species were taken. For each sample, the measured dataset consisted of 51 impedance 

values; therefore, the datasets were taken as 49 × 51, 41 × 51, and 26 × 51, respectively. At 

first, the impedances of different samples of the species along with the corresponding culture 

media were measured at 1–3.5 kHz considering negligibly small impedances of crocodile clip 

wires or electrodes. The impedance of the culture media was then subtracted from the measured 

readings of the samples to obtain the impedance of individual algae species and the effect of 

clips and electrodes was therefore eliminated. The dimensional dependencies of the electrodes 

and the corresponding effect on impedance for the sample under analysis were taken into 

account as discussed earlier. Any additional effect of the culture media components that can 

affect the algae impedance was cancelled out automatically. As a result, the actual impedance 

response of the algae species was obtained. It was then normalized to between 0 and 1 to avoid 

the negative values, if any. After normalization, the minimum and maximum values in the 

dataset were transformed into 0 and 1, respectively. A selectivity study was carried out to 

understand the effect of the presence of organic and inorganic matters in the impedance 

response. The chemical aspect between the water and the matters was also taken into account. 

The error was minimized by multiple measurements in a period for each sample in the 

controlled environment at room temperature and we maintained the measurement accuracy by 

checking the mean of those readings. 
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4.2.4. Work Flow  

    A machine learning approach was utilized for the development of EIS models of multiple 

algae species. Multiple regression using the least squares method was employed with the help 

of PrimaXL ToolPak. The correlation (R) between the normalized algae impedance (Zn) and 

the Chlorophyll-a concentration was determined using the XLMiner Analysis ToolPak. The 

regression models were obtained and validated by analysis of variance (ANOVA) T/F-tests. 

The coefficient of determination (R2), adjusted R2, and root mean square error (rmse) were 

evaluated as performance parameters as follows: 

                                                            𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (�̂�𝑖−�̅�)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                                   (4.5) 

                                         𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝑅/(𝑛−𝑘−1)

𝑆𝑆𝑇/(𝑛−1)
= 1 −

∑ (�̂�𝑖−�̅�)2𝑛
𝑖=1 /(𝑛−𝑘−1)

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1 /(𝑛−1)

                      (4.6) 

                                                      𝑟𝑚𝑠𝑒 = √
𝑆𝑆𝐸

(𝑛−𝑘−1)
= √

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

(𝑛−𝑘−1)
                                    (4.7) 

where SSR is the sum of the square regression, SST is the sum of the square total, SSE is the 

sum of the square residual, y is the actual value, �̂� is the predicted value, �̅� is the mean of the 

actual value for n samples of algae species, and k is the number of features in a given frequency 

range [54,55]. 

    Multi-collinearity among multiple features was examined for multiple regression. Most of 

the highly correlated features with a correlation of 95% or above, and the corresponding 

variance inflation factor (VIF) of 10 or above, were removed. The number of features in a 

dataset was selected accordingly using a wrapper backward elimination method. The 

importance of features was checked sequentially with the threshold probability of rejection of 

the null hypothesis p ≤ 0.05 using an individual T-test. The features with a large p-value (i.e., 

greater than 0.05) were removed and the features with p-values less than or equal to 0.05 were 

considered for the prediction. The null hypothesis states the exact opposite of what an 

experimenter predicts. It indicates strong evidence against the null hypothesis, as there is less 

than a 5% probability that the null hypothesis is correct. Therefore, we reject the null 

hypothesis, and accept the alternative hypothesis. After a few iterations, the training and 

validations were performed using the least squares method considering the overall F-test (p ≤ 

0.05), and the optimized multiple regression results were obtained for the algae species. The 

overall workflow of this work is presented in Figure 4.4. The predicted model of Chlorophyll-

a using EIS was expressed with the help of multiple regression results for k features as follows: 

                                𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑎 = 𝛽0 + 𝛽𝑖𝑍𝑖, where, i = 1, 2, 3… k                                  (4.8) 

    Here, β0 is the intercept and βi is the coefficient for k features. 
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Figure 4.4. Workflow for the estimation of the Chlorophyll-a of multiple algae species using an EIS sensor 

system. 

4.3. Model Development and Result Analysis 

4.3.1. Development of EIS Models 

    The impedances of Spirulina and Chlorella species for different samples were measured 

using an EIS sensor and those were correlated with the obtained Chlorophyll-a concentrations 

of the samples as shown in Figures 4.5 and 4.6, respectively. Overall, a positive correlation 

between impedance and Chlorophyll-a was found for both algae species at various frequencies. 

A high impedance was found for the high Chlorophyll-a concentration of Spirulina and the 

maximum impedance was obtained at 114 mg/L Chl-a at 1.7 kHz. When the concentration of 

Chlorophyll-a was decreased from 114 mg/L to 40.1 mg/L for five samples, the impedances 

also decreased accordingly as shown in Figure 4.5b. The correlation was 98% (R2 = 0.96) at 

1.7 kHz as shown in Figure 4.5c. Multiple regression was employed at frequencies of 1–3.5 

kHz for 49 samples of Spirulina, and 12 features were selected with positive ANOVA tests (p 

≤ 0.05). The overall correlation was found to be 95% (R2 = 0.9) with an rmse of 7.7 mg/L and 

an adjusted R2 of 0.86 as shown in Figure 4.5d. On the other hand, the overall impedances for 

seven samples of Chlorella were decreased with the decrease in Chlorophyll-a from 6.37 mg/L 

to 1.84 mg/L as shown in Figure 4.6b. The correlation was obtained as 94.3% (R2 = 0.89) at 

3.05 kHz as shown in Figure 4.6c. For the 41 samples of Chlorella, the overall correlation was 

94% (R2 = 0.885) when employing multiple regression at frequencies of 1–3.5 kHz as shown 

in Figure 4.6d, 13 features were selected with positive ANOVA tests (p ≤ 0.05), and the 

obtained rmse and adjusted R2 were 1.13 mg/L and of 0.83, respectively. 
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(a) (b) 

  
(c) (d) 

Figure 4.5. EIS measurements and performance analysis of Spirulina considering multiple regression: (a) 

measurement by the electrodes, (b) normalized impedance spectra, (c) correlation at 1.7 kHz, and (d) multiple 

regression at 1-3.5 kHz. Overall, a 95% correlation was found by the EIS measurements for 49 samples of 

Spirulina. 

  
(a) (b) 

  
(c) (d) 

Figure 4.6. EIS measurements and performance analysis of Chlorella considering multiple regression: (a) 

measurement by the electrodes, (b) normalized impedance spectra, (c) correlation at 3.05 kHz, and (d) multiple 

regression at 1-3.5 kHz. Overall, a 94% correlation was found by the EIS measurements for 41 samples of 

Chlorella. 
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    As a result, a good estimation of Chlorophyll-a was found and the corresponding EIS models 

for both Spirulina and Chlorella were extracted as given in Equations (4.9) and (4.10), 

respectively. 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑎(𝑆𝑝𝑖𝑟𝑢𝑙𝑖𝑛𝑎)

= 293 − 3109𝑍𝑛1.1 𝑘𝐻𝑧 + 3814𝑍𝑛1.15 𝑘𝐻𝑧 − 1682𝑍𝑛1.2 𝑘𝐻𝑧 + 2779𝑍𝑛1.55 𝑘𝐻𝑧

− 5205𝑍𝑛1.85 𝑘𝐻𝑧 + 11674𝑍𝑛2.4 𝑘𝐻𝑧 − 9466𝑍𝑛2.6 𝑘𝐻𝑧 + 3827𝑍𝑛2.9 𝑘𝐻𝑧

+ 11923𝑍𝑛3 𝑘𝐻𝑧 + 27289𝑍𝑛3.1 𝑘𝐻𝑧 − 35146𝑍𝑛3.15 𝑘𝐻𝑧 − 7736𝑍𝑛3.25 𝑘𝐻𝑧 

(4.9) 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑎(𝐶ℎ𝑙𝑜𝑟𝑒𝑙𝑙𝑎)

= 5.5 − 441𝑍𝑛1.05 𝑘𝐻𝑧 + 1098𝑍𝑛1.15 𝑘𝐻𝑧 − 550𝑍𝑛1.2 𝑘𝐻𝑧 − 251𝑍𝑛1.35 𝑘𝐻𝑧

+ 510𝑍𝑛1.45 𝑘𝐻𝑧 − 325𝑍𝑛1.5 𝑘𝐻𝑧 + 413𝑍𝑛1.9 𝑘𝐻𝑧 − 478𝑍𝑛1.95 𝑘𝐻𝑧

+ 119𝑍𝑛2 𝑘𝐻𝑧 + 719𝑍𝑛2.4 𝑘𝐻𝑧 − 677𝑍𝑛2.45 𝑘𝐻𝑧 − 459𝑍𝑛2.65 𝑘𝐻𝑧

+ 322𝑍𝑛2.85 𝑘𝐻𝑧 

(4.10) 

    In another experiment, the sensor was tested by measuring the impedances of mixed algae 

species and the measurement data were correlated with the Chlorophyll-a values as shown in 

Figure 4.7. Multiple regression was employed and considered for the same frequencies of 1–

3.5 kHz. The concentration of Chlorophyll-a was predicted for 26 samples of mixed algae 

species by selecting 15 features; the correlation achieved was 96% (R2 = 0.915) with positive 

ANOVA tests (p ≤ 0.05) for a rmse of 14.28 mg/L and an adjusted R2 of 0.79. The predicted 

EIS model for the estimation of the Chlorophyll-a of mixed algae species was extracted as 

given in Equation (4.11). 

 

 
(a) 

 
(b) 

Figure 4.7. EIS measurements and performance analysis of mixed algae considering multiple regression: (a) 

measurement by the electrodes, and (b) multiple regression at 1-3.5 kHz. The overall correlation obtained was 

96% for 26 samples of mixed algae species. 
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𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑎(𝑚𝑖𝑥 𝑎𝑙𝑔𝑎𝑒)

= −3249 + 2205𝑍𝑛1.1 𝑘𝐻𝑧 − 2489𝑍𝑛1.2 𝑘𝐻𝑧 + 2071𝑍𝑛1.4 𝑘𝐻𝑧

+ 1341𝑍𝑛1.45 𝑘𝐻𝑧 − 2507𝑍𝑛1.5 𝑘𝐻𝑧 − 10098𝑍𝑛2.25 𝑘𝐻𝑧 + 13085𝑍𝑛2.3 𝑘𝐻𝑧

− 2128𝑍𝑛2.35 𝑘𝐻𝑧 − 9834𝑍𝑛2.4 𝑘𝐻𝑧 + 12348𝑍𝑛2.45 𝑘𝐻𝑧 + 4326𝑍𝑛2.55 𝑘𝐻𝑧

− 9267𝑍𝑛2.7 𝑘𝐻𝑧 + 42522𝑍𝑛2.8 𝑘𝐻𝑧 − 26386𝑍𝑛2.85 𝑘𝐻𝑧 − 10615𝑍𝑛2.9 𝑘𝐻𝑧 

(4.11) 

4.3.2. Validation of EIS Models  

    The extracted EIS models were validated by measuring the impedances for three new test 

samples of Spirulina, Chlorella, and mixed algae species. The true Chlorophyll-a 

concentrations of these three 15 mL samples of species were calculated using Equation (4.2) 

and the corresponding EIS measurements were carried out in the frequency range of 1–3.5 kHz. 

The culture media impedances were subtracted from the impedances of the samples and the 

corresponding impedances of three different algae species were obtained. The extracted EIS 

models of Equations (4.9)–(4.11) of the species were fitted with the measured impedances at 

selected frequencies for the validation. The estimated Chlorophyll-a concentrations of the three 

different algae species found using the above EIS models were verified by comparing them 

with the true Chlorophyll-a values. The absolute error and the percentage accuracy were 

calculated and are shown in Table 4.1. The accuracy for Spirulina, Chlorella, and the mixed 

algae species was calculated as 85.7%, 84.4%, and 94.1%, respectively. The results show that 

the proposed EIS models performed well with high accuracy. 

 

Table 4.1. Chlorophyll-a for the new test samples of algae species and validation of the EIS models. 

Test Samples of 

Algae Species 

True Chlorophyll-a 

Using Equation (4.2) 

Estimated 

Chlorophyll-a 

Using EIS 

Absolute Error = 

|𝑻𝒓𝒖𝒆 𝑽𝒂𝒍𝒖𝒆 −
𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑽𝒂𝒍𝒖𝒆| 

Percentage 

Accuracy 

Spirulina 22.3 mg/L 25.5 mg/L 3.2 mg/L 85.7% 

Chlorella 3.2 mg/L 3.7 mg/L 0.5 mg/L 84.4% 

Mix Algae 61.5 mg/L 57.9 mg/L 3.6 mg/L 94.1% 

 

4.3.3. Performance Evaluation of the Sensor  

    The performance of the EIS sensor was evaluated by the repeatability and sensitivity of the 

measurements. The measurements of the sensor were tested by taking the impedance readings 

of the same sample at least 10 times in half an hour in a controlled environment at room 

temperature. The accuracy of the measurements was found by obtaining similar readings and 

the mean of those was calculated as a final measurement, which reflected the repeatability of 

the EIS sensor. The impedances of algae species were measured, and the sensitivity of the 
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sensor was calculated by the variation in Chlorophyll-a in the samples. The sensitivity is the 

slope of the output characteristic, which was measured at a particular frequency. A good 

sensitivity performance of the sensor was found for a wide range of Chlorophyll-a 

concentrations (1.24–174 mg/L) of the samples. At 1.7 kHz, the lowest sensitivity was 

calculated as 5.3 ohm per mg/L Chl-a (Figure 4.5c). A good prediction of Chlorophyll-a for 

different samples was found by the measured readings using the sensor and the error was 

checked by comparing them with the true values of those. The mean absolute error (MAE) for 

the extracted regression models of 49 samples of Spirulina, 41 samples of Chlorella, and 26 

samples of mixed algae species was calculated as 5.23, 0.75, and 7.7 mg/L, respectively. 

Further, the error can be minimized by removing the anomalous data on the individual species. 

    The sensor was tested for distilled, spring, and tap water media and the electrical 

conductivity was studied with the variation in water salinity along with different matters in 

water. The presence of chemical and physical components in water may affect the sample 

impedance. The distilled water was mineral free, and we found higher impedance because of 

the low number of electrolytes compared with the others. On the other hand, tap water and 

spring water contain a significant amount of minerals, resulting in a higher number of 

electrolytes. The natural spring water was found to be suitable for the growing of algae species 

and the algae culture was also diluted accordingly. A natural water system may contain several 

types of soluble, partially soluble, or insoluble matter along with algae species. An experiment 

of selectivity using the EIS sensor was conducted considering organic and inorganic matters in 

water. Beet powder, clay, spinach, and vinegar samples were taken along with algae based on 

the available minerals and Chlorophyll-a concentrations as shown in Figure 4.8. Algae of 

different sizes and colors may be present in lake water along with other soluble or insoluble 

matters. Spirulina contains a higher amount of minerals, such as calcium, potassium, and 

magnesium, than Chlorella and we found their impedance response at different frequencies. 

Other minerals, such as sodium, bicarbonate, phosphorus, and chloride, may also be present in 

the matters and the turbidity of the water sample may vary accordingly. 

 

 
(a) Beet 

 
(b) Clay 

 
(c) Spinach 

 
(d) Algae 

 
(e) Vinegar 

Figure 4.8. Samples of insoluble and soluble matters considered in the experiments: (a) beet powder, (b) clay, (c) 

spinach, (d) algae, and (e) vinegar, respectively. 
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    The solubility and the corresponding electrolytes vary with respect to the available minerals, 

age, size, activity level, and water consumption of the matters. When the minerals dissolve in 

the water (partially or fully), they provide electrolytes with positive or negative ions, and the 

impedance of the corresponding sample can be found with the applied output excitation 

voltage. Among the selected matters, vinegar provides less electrolytes because it does not 

dissolve in water but makes a homogenous solution. A high level of minerals is available in 

beet powder. Although it is not soluble in water, its red pigment is soluble. It is possible to 

have some red algae in water and, hence, the sample of beet powder was taken in the 

measurement. Clay is insoluble in water and its small particles absorb water slowly. Spinach 

provides a high number of electrolytes and is a very good source of Chlorophyll-a. Different 

turbid samples were prepared to resemble lake or river water samples. 

    The method of determination of a matter without any interference from other ingredients in 

a sample is called selectivity. The sensing of any molecular substances of the matter depends 

on the structure of the molecule and the temperature may affect the performance. The 

selectivity decreases with the increase in temperature. The molecular structure varies 

depending on the available minerals of soluble or insoluble matters. The selectivity was tested 

by measuring the impedances of the samples of different insoluble and soluble matters 

individually and comparing the readings with the measured impedance of the algae sample. 

Matters equivalent to 5 mg were added to the 15 mL of water media individually and the 

resulting impedances of all the samples were obtained as shown in Figure 4.9a. Spinach is 

soluble in water and three leaves were taken to prepare a sample. In addition, 5 mL of vinegar 

was taken in the measurements. The experiment was conducted at room temperature in a 

controlled environment. The response of the sensor was varied based on the selected matters 

in the samples. The sensor responded highly to the impedance response of the algae species 

(Spirulina) compared with the others. The corresponding phase values were also observed, and 

the samples were separated by the selective frequencies as shown in Figure 4.9b. The phase of 

the impedance changes because of the variation in the dimensions of the matters. The reactance 

varies, and in turn the impedance changes and responds to the different frequencies. 
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(a) (b) 

Figure 4.9. The EIS sensor’s selectivity for the measurement of algae species in water: (a) the impedance response 

of the matters at different frequencies (Spirulina, 1.75 kHz; Spinach, 1.85 kHz; Beet, 1.9 kHz; Clay, 1.95 kHz; 

and Vinegar, 2 kHz), and (b) the corresponding phase of the impedance of the matters. 

    The clay particle was around 2 µm in diameter, which is close to some lower-sized algae 

species and the sensor responded at 1.95 kHz for a sample. On the other hand, the beet powder 

particle had a larger diameter (approx. 3–4 µm) than the clay particle, which responded at 1.9 

kHz. Spirulina is around 8 µm in diameter and responded at 1.75 kHz. In addition, the response 

for the samples with higher and lower numbers of electrolytes, i.e., spinach and vinegar, was 

found at 1.85 kHz and 2 kHz, respectively. Thus, the impedance response may vary depending 

on the size of the available species in a sample and it was found that the response of the sensor 

for larger-sized particles in the sample shifts to the lower frequency [38]. The impedance 

response may also vary with the concentration of the species and was studied for all the 

individual matters accordingly. A frequency shift was observed because of the change in the 

reactance with the size and amount of the matters in water. The phase was also varied and 

shifted accordingly (Figure 4.9b). The flow of current was obstructed because of the larger cell 

size of algae species compared with the others and a high impedance was found as shown in 

Figure 4.9a. Even when the algae sample was diluted, the response was identified and 

discriminated from that of the other matters by taking the exact concentration. As the other 

matters in a sample can be sensed by the EIS sensor (although it is not designed to do so), EIS 

is selective to algae (Chl-a) but not specific to it. 

    In addition, the robustness of the method was also tested as shown in Figure 4.10. Three 

different insoluble and soluble matters (beet powder, clay, and salt (NaCl) equivalent to 5 mg 

of the individual matters) were added to the 15 mL algae sample separately. A diluted algae 

sample and approximately similar matters to those in a lake sample were taken in the 

measurements. The impedances were measured before and after adding the matters to the algae 
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sample as shown in Figure 4.10. A maximum impedance response of the algae ample was 

found at 1.8 kHz. No significant change in impedance was observed after adding the insoluble 

matters to the algae sample because of their smaller-sized particles compared with the algae 

species. The method was found to be selective as the sensor was able to measure the impedance 

of algae species for the given concentration in the presence of other ingredients in the sample. 

The addition of a high amount of matters may affect the performance on selectivity. On the 

other hand, the impedance of the algae sample decreased with the addition of NaCl (salt). Salt 

is soluble, and the conductivity increased in the mixed sample because of the higher number 

of electrolytes, which decreases the overall impedance. In addition, the response was shifted to 

1.7 kHz. Overall, the method of using the EIS sensor was found to be robust and reliable for 

multiple unknown species. 

 

 
Figure 4.10. Robustness of the EIS sensor selectivity method in the presence of other ingredients in the sample. 

4.4. Discussion 

    A non-destructive EIS method was used to estimate the Chlorophyll-a concentrations of 

Spirulina, Chlorella, and mixed algae species at frequencies of 1–3.5 kHz. ANOVA tests were 

performed, and EIS models were developed by selecting 12 features for Spirulina, 13 features 

for Chlorella, and 15 features for the mixed algae species. We considered the probability of 

rejection of the null hypothesis to be 𝑝 ≤ 0.05 in T/F tests using the wrapper backward 

elimination method [54,55]. Overall, a positive correlation was found between algae 

impedance and Chlorophyll-a concentration at different frequencies. 

    The extracted Chlorophyll-a for different densities of the species indicated the presence and 

growth of algae [22,23,62]. Turbidity and trophic state are indicators used to monitor water 

quality in lakes or ponds [12]. Chlorophyll-a is a good candidate to study these two phenomena 

[12,13,15]. A high trophic state index (TSI) value of water indicates a high concentration of 
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algae and poor lake water quality [12]. In addition, a high concentration of Chlorophyll-a 

indicates a high degree of turbidity and a high trophic state in a water body. The increase in 

biomass in a water body can be estimated using [11,12,58,59] with the calculation of TSI as: 

                                                  𝑇𝑆𝐼 = 9.81 ln(𝐶ℎ𝑙𝑎) + 30.6                                                  (4.12) 

    Algae species dominate in a lake if the TSI ranges from 60 to 100 or above, and the 

corresponding water quality varies (fair or poor) based on the concentrations of algae species 

[12]. Highly concentrated algae samples were taken in this work, which indicated a high trophic 

state because of the high Chlorophyll-a concentration of 1.24 mg/L or above. A lake consisting 

of these values of Chl-a with a high TSI may be considered as having poor water quality in the 

class of hypereutrophic. Samples with a maximum SDD of 60.5 mm were taken in this work 

based on the available volume of stock solutions of grown algae species. The method using the 

EIS sensor can also be used to identify low concentrations of algae with Chlorophyll-a of less 

than 1.24 mg/L according to another study [61]. The rapid growth of algae can be identified by 

taking EIS measurements on a daily basis and the obtained data may help to develop warning 

indicators of algal blooms. TSI changes in a lake based on the suspended solids in the water 

body and the value deceases with the increase in the SDD [12]. Chl-a concentrations of algae 

can be extracted by obtaining the SDD from the surface to any depth of the lake. Usually, Chl-

a is high near the top of the lake because the nutrient concentrations may be higher in this 

position than those deeper in the lake [12]. The over-enrichment of nutrients in water bodies 

may lead to an algal bloom because of a high amount of algae [12]. Moving towards the bottom 

of the lake, the SDD increases, and the corresponding Chl-a concentration decreases because 

of the lower amount of algae species. 

    Several suspended solids, such as silt, sediment, bacteria, clay, and algae species, are 

available in the lake water. Algae species are photosynthetic organisms whose most important 

and major pigment is Chlorophyll-a that causes a green color in water [12,13,63]. The 

concentration of Chlorophyll-a present in the water is directly related to the amount of algae 

living in the water [12]. Hence, Chlorophyll-a is responsible mostly for the variation in 

impedance for different concentrations of algae species in water. A successful estimation of 

algae species was possible by this indirect measurement of Chlorophyll-a. The EIS method is 

model-dependent and reliable for the multiple algae species available in water. By obtaining 

the impedance spectrum and the peak intensities in a range of frequencies, a specific algae 

species can be identified. However, in this work, we considered pure and mixed cultures of two 

algae species (Spirulina and Chlorella) only. However, other algae species, such as diatoms 
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and red algae species, may be available in lake water. From the measurements, a high 

impedance of Spirulina was found between 1 and 2 kHz (Figure 4.5b) and a high impedance 

of Chlorella was found between 2 and 3.5 kHz (Figure 4.6b). The cell size of Spirulina is larger 

than that of Chlorella and, hence, at a low frequency the flow of current was obstructed, and a 

high impedance of Spirulina was observed. The obtained results are in good agreement with 

the previous research [38]. The method of EIS was found to be reliable because the models 

were tested, and we found a good accuracy of higher than 84%. Other algae species can be 

studied in a similar manner. 

    A comparative study of EIS with the other methods for the estimation of Chl-a of algae 

species is presented in Table 4.2. It can be seen that the EIS technique is a good candidate and 

a cheaper (approx. $150 USD) alternative to other available non-destructive methods. 

  

Table 4.2. Comparative study of EIS with other non-destructive methods for the estimation of Chlorophyll-a in 

algae species. 

 
Excitation 

Source 
Response Detector Cost 

Operating 

Time 

Accuracy 

(Affecting 

Factors) 

Spectrophot-

ometry [27,28] 

LED/Laser 

(lower 

sensitivity) 

absorbance photodiode expensive  
approx. 2–3 

min (lab) 

accurate 

(optical 

distortion) 

Fluorometry 

[29] 

LED/Laser 

(higher 

sensitivity than 

spectro) 

fluorescence photodiode 
more than 

spectro 

approx. 5–6 

min (lab) 

more accurate 

than spectro 

HPLC [30] 

Laser  

(highly 

sensitive) 

fluorescence  photodiode 
highly 

expensive 

approx. 15–20 

min (lab) 

highly 

accurate 

Hemocytom-

etry [31] 

LED  

(sensitive to 

cell counts) 

no. of cells 
counting 

chamber 

higher than 

EIS  

approx. 5–10 

min (lab) 

accurate 

(miscounts 

large cells) 

Multispectral 

Imaging [34–

36] 

LED  

(wavelength 

sensitivity) 

reflectance sensor probes 
higher than 

EIS 

approx. 1–2 

min (in situ) 

Accurate 

(data losses)  

EIS (This 

Work) 

voltage 

(frequency 

sensitivity) 

Impedance electrodes 

 

low cost 

 

approx. 1 min 

(in situ) 

Accurate 

(model-

dependent)  

 

4.5. Conclusions 

    In this work, a rapid, portable, and non-invasive method using electrical impedance 

spectroscopy (EIS) is proposed to estimate the Chlorophyll-a concentration of multiple algae 

species. The measurements were carried out at the end of the fourth week of the growth stage 

of all algae species, and a good correlation with Chlorophyll-a in the species was obtained by 

measuring the impedances in different frequencies ranging from 1 to 3.5 kHz. More than a 90% 

correlation with a high coefficient of determination (0.885 or above) was obtained considering 
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multiple regression. The developed EIS models of the species were later validated using a new 

set of samples of Spirulina, Chlorella, and mixed algae species. The obtained accuracy for the 

models of the algae species ranges from 84% to 94%. Therefore, the proposed sensor 

performed well with high accuracy and offers itself as a useful candidate for water quality 

monitoring. 
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Chapter 5: A Rapid, Low-Cost, and High-Precision Multifrequency  

Electrical Impedance Tomography Data Acquisition System  

for Plant Phenotyping 

      Reconstruction of the inhomogeneity image is very important to characterize and detect the 

multiple object geometries for several applications in imaging. The assessment of plant traits 

is very essential for the characterization in plant phenotyping with the target of achieving 

higher crop yields by the proper crop management. The changes in plant inhomogeneity can 

be assessed by obtaining the reconstructed images. In this work, a multifrequency EIT data 

acquisition system is developed using a portable sensor for obtaining two-dimensional 

(2D)/three-dimensional (3D) images of the plant inhomogeneities. The images of the samples 

are reconstructed using electrical impedance and diffuse optical tomography reconstruction 

software (EIDORS) by mapping conductivity in 2D/3D planes. The developed EIT system is 

found rapid in measurements compared to the other existing systems. The detail on imaging of 

multiple plant slices and plant roots is presented in this chapter. 

   A cylindrical EIT multielectrode sensor system was designed, and non-destructive and in situ 

measurements were carried out using the sensor in multiple frequencies from 1kHz to 100kHz. 

In an experiment, three different edible plant slices of carrot, radish, and potato were taken, 

and their reconstructed results were obtained non-invasively using impedance imaging 

technique in 2D plane. Potato was found more conductive at low frequency and a good 

conductivity distribution of carrot was found at the high frequencies. Multiple samples were 

identified and differentiated successfully using the designed EIT sensor system. In another 

experiment, the architectures of several plant roots were examined, and the 3D imaging of the 

roots was carried out by measuring the impedances in 3D planes. A portable, lightweight, and 

low-cost EIS tool is proposed in this work for developing an automated, reliable, and high 

precision with good accuracy EIT data acquisition system applicable for plant phenotyping.  

    The detail analysis and findings of this chapter is available in the following published 

manuscript. R.B. (first author) performed the experiments, analyzed the data, and wrote the 

draft of the manuscript. K.A.W. suggested for the experiments and data analysis and edited the 

draft. K.A.W. secured funding for this work. 

    Basak, R.; Wahid, K.A. A Rapid, Low-Cost, and High-Precision Multifrequency Electrical Impedance 

Tomography Data Acquisition System for Plant Phenotyping. Remote Sens. 2022, 14, 3214. 
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Abstract: Plant phenotyping plays an important role for the thorough assessment of plant traits 

such as growth, development, and physiological processes with the target of achieving higher 

crop yields by the proper crop management. The assessment can be done by utilizing two- and 

three-dimensional image reconstructions of the inhomogeneities. The quality of the 

reconstructed image is required to maintain a high accuracy and a good resolution, and it is 

desirable to reconstruct the images with the lowest possible noise. In this work, an electrical 

impedance tomography (EIT) data acquisition system is developed for the reconstruction and 

evaluation of the inhomogeneities by utilizing a non-destructive method. A high-precision EIT 

system is developed by designing an electrode array sensor using a cylindrical domain for the 

measurements in different planes. Different edible plant slices along with multiple plant roots 

are taken in the EIT domain to assess and calibrate the system, and their reconstructed results 

are evaluated by utilizing an impedance imaging technique. A non-invasive imaging is carried 

out in multiple frequencies by utilizing a difference method of reconstruction. The performance 

and accuracy of the EIT system are evaluated by measuring impedances between 1 and 100 

kHz using a low-cost and rapid electrical impedance spectroscopy (EIS) tool connected to the 

sensor. A finite element method (FEM) modeling is utilized for image reconstruction, which is 

carried out using electrical impedance and diffuse optical tomography reconstruction software 

(EIDORS). The reconstruction is made successfully with the optimized results obtained using 

Gauss–Newton (GN) algorithms. 

Keywords: electrical impedance tomography; multifrequency; image reconstruction; plant 

phenotyping 

 

5.1. Introduction 

EIT is an imaging method that can estimate the electrical impedance distribution inside an 

object. The EIT sensor system consists of an electrode array with a single or multiple layers, 

and the current density is distributed inside the medium based on the stimulated current through 
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the electrodes [1–3]. A small current is injected into the object’s surface through a pair of 

electrodes and then the impedance distribution and the corresponding conductivity are 

estimated. Electrical resistivity or conductivity images of any closed domain under test can be 

reconstructed using the boundary potentials [1,2]. The data obtained by measuring all possible 

impedances are used to reconstruct an image, which may provide qualitative and quantitative 

information.  

EIT could provide a cost-effective alternative to the established imaging methods across a 

wide range of applications. EIT has a high temporal resolution, but it has a poor spatial 

resolution, so this technique is sensitive to noise. Although the spatial resolution of EIT is less 

than magnetic resonance imaging (MRI), EIT is easy to use and its cost is much less than the 

cost of MRI, which can make EIT a useful screening tool for imaging. The spatial resolution 

can be improved by increasing the number of electrodes in the EIT system and by choosing the 

correct drive pattern upon the selection of electrode pairs for current and voltage stimulation 

[4,5]. Due to its unique advantages, EIT has enormous applications in biomedical imaging, 

plant physiology, biotechnology, nanotechnology, and material engineering. EIT is becoming 

popular in research, offering exceptionally good benefits of non-invasive, non-ionizing, fast 

imaging speed, and low-cost monitoring. From the images of EIT, the physiological 

information of the matter can be obtained that can be used for real-time applications [5,6]. 

Multifrequency EIT (MFEIT) systems give more useful information about biological 

matters because the electrical voltage appearing across the matter is frequency dependent [7–

10]. Significant information about the matters can be obtained by injecting currents in multiple 

frequencies and measuring the impedances at different electrode positions. A good 

conductivity distribution of an object can be mapped in the domain under test by measuring 

the electrical impedances through the multiple electrodes at various frequencies. The image of 

an object can be reconstructed by calculating the boundary voltages in homogeneous and 

inhomogeneous conditions of the domain under test and with the help of finite element method 

(FEM) modeling [2,8]. In EIT, the FEM technique is used to derive the forward model from 

the governing equation, which is described by Laplace’s equation [1,2,5]. In forward solve, the 

boundary potentials are calculated by the injected current and known conductivity distribution 

inside the EIT domain. On the other hand, the unknown conductivity changes are calculated in 

the inverse solve by knowing the differences in boundary potentials of two different media for 

the given stimulation current in the domain.  

A multifrequency impedance imaging technique can be utilized considering a multi-

electrode array with eight or more electrodes in a domain for obtaining the more useful 
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information of an inhomogeneity. The EIS method was applied in the electrode array system, 

and the reconstructed images were presented in multiple frequencies by the phantom 

experiments [11]. Therefore, EIT is a non-invasive, and non-destructive impedance imaging 

technique. It is a radiation-free, rapid, and cost-effective alternative to other laboratory-based 

imaging methods such as MRI, computed tomography (CT), and positron emission 

tomography (PET). The estimation performance can be potentially improved by considering a 

multispectral impedance imaging technique using an EIT system [7,9]. Due to its unique 

advantages, EIT has enormous applications in cell imaging [6], brain imaging [12], anomaly 

detection [13,14], and crop root imaging [15–18], respectively.  

Previously, EIT image reconstruction was made considering different algorithms in 

multiple works [8,19–22]. An FPGA-based data acquisition system at 1–190 kHz was 

developed considering 16 electrodes for two-dimensional (2D) brain imaging by Shi et al. [12]. 

Two-dimensional imaging, characterization, and monitoring of oilseed plant root systems were 

made at frequencies of 0.46 Hz–45 kHz considering an array of 38 electrodes by Weigand and 

Kemna [15,16]. A rapid estimation of wheat plant root biomass by measuring capacitance up 

to 20 kHz using a handheld LCR meter was proposed by Postic et al. [17]. The development 

of oilseed plant root was visualized using a data acquisition system in three-dimensions (3D) 

at frequencies of 5–10 kHz considering an array of 32 electrodes by Corona-Lopez et al. [18]. 

The methods of all these works required expensive instrumentations and most of them were 

found as laboratory-based and not suitable for in situ measurements. In addition, several data 

acquisition systems based on EIT were developed for industrial and medical applications and 

those were utilized for different previous research works on clinical imaging [10], health 

monitoring [23], and diagnosis of human body diseases with anomaly detection [24]. The 

outputs of these EIT systems were limited to 2D imaging. Hence, a portable and high-speed 

multifrequency 3D EIT data acquisition system for in situ applications in plant phenotyping is 

still a constant requirement.  

The characterization in phenotyping refers to qualitative and quantitative descriptions of 

the plant’s biological characteristics, such as morphological, physiological, and biochemical. 

Identifying the size, shape, and structure of the roots or other bodies of the plant, growth, and 

development with the event of photosynthesis, and quantifying the chemical properties such as 

water and nutrients are very important in biological study of the plant characteristics. The root 

system of a plant plays an important role in photosynthesis by which the water and nutrients 

are transferred to the plant stems and leaves by absorbing from soil. The flowering plants are 

classified as vascular (reproduced by seeds/vegetative parts), which contain a specialized 
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xylem and phloem tissues for the transportation of water and nutrients, while the non-flowering 

plants are classified as non-vascular (reproduced by spores), which do not contain specialized 

vascular tissues for transport.  

An investigation on growth, development, and biomass of the root is very important for 

characterization in plant phenotyping. The investigation can be made by varying the electrical 

parameters such as, capacitance, resistance, or impedance. In several experiments, the 

dependency of electrical impedance on plant characteristics was found and evaluated at 

different frequencies [11,15,16,18]. An imaging method was utilized to characterize the root 

by measuring the electrical parameters. Previously, based on the electrical parameters, the root 

biomass was estimated by Postic et al. [17], analysis on root growth was made by Ozier-

Lafontaine et al. [25], and the root body of a plant in water was recovered by Liao et al. [26]. 

The imaging of water distribution in the root zone was made in a laboratory-scale rhizotron 

container in a soil media and recovered 2D information only by Newill et al. [27]. More 

information on root structure, density, and distributions can be obtained by utilizing a 3D 

imaging system, which is advantageous over 2D. Spectral variations on root characteristics can 

be made using a 3D imaging system. The growth and development of the root can be monitored 

precisely by knowing the electrical characteristics in multiple frequencies obtained using a 3D 

EIT system. Presently, Weigand and Kemna utilized a multifrequency EIT system in a 

laboratory for root characterization and imaging in a water-filled rhizotron considering 

polarization effects and recovered 2D information only [15,16], Corona-Lopez et al. visualized 

the developing root system in a compost-filled container using multifrequency EIT and 

recovered some 3D information of the root at a low frequency of 5 kHz; no information was 

found about the high spectral performance [18]. 

In addition, the changes on root characteristics during growth can be evaluated by 

employing the measurements considering frequency-difference and time-difference EIT 

[7,8,14,28]. Image reconstruction using difference data at two injecting frequencies at a 

particular time, or the data obtained for single frequency measurements over a time duration 

can be made successfully using a 3D imaging system. A new cost-effective and high spectral 

range 3D EIT system along with the existing measurement methods is still a constant 

requirement in the field of root study. Non-invasive imaging using 3D, monitoring growth, and 

estimating biomass at the laboratory and field scale are still demanding. EIT using a portable 

multiple electrode array with capability of 3D imaging seems to be a promising method to 

fulfill the scope of further research on plant phenotyping. 
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In this work, a rapid, low-cost, and high-precision EIT data acquisition system is 

developed with the target of applications in plant phenotyping for the non-destructive 

evaluation of the inhomogeneities considering a non-invasive impedance imaging technique in 

multiple frequencies. 

5.2. Materials and Methods 

5.2.1. Design of EIT Electrode Array Sensor System 

A cylindrical plastic domain of 4.5-inch diameter, 3-inch height, and 0.0625-inch thickness 

was taken. An EIT electrode array of sixteen metal electrodes was designed and the electrodes 

were configured in two layers (eight electrodes each) of the domain as shown in Figure 5.1b. 

The electrodes were with one-half inch diameter, one inch per arm length (L shaped electrodes 

with two arms), and 0.0625-inch thickness. The electrode arrangement in the layers is aligned. 

The bottom layer consisted of eight electrodes that were placed equally 1.25 inches apart and 

at a 1.25-inch top from the bottom position by keeping 0.25-inch separation of the electrodes 

from the base of the domain as shown in Figure 5.1a. Another eight electrodes of same size are 

placed similarly in another layer at a 0.75-inch top position from the bottom layer as shown in 

Figure 5.1b.  

The size of the domain, number, and location of electrodes in a layer, and type and 

dimensions of the electrodes were optimized by conducting several experiments considering 

previous research works [10,29,30]. Steel electrodes were chosen, which were found 

comparatively less expensive than the other electrodes made by highly conductive materials 

such as silver, copper, or aluminium. The chosen electrodes were silver-colored electroplates 

made of zinc-plated steel material. The electrodes were found suitable with good current 

carrying capability and with a good correlation between the measured impedances and 

dimensions (length and diameter) of the electrodes. The electrodes were numbered sequentially 

in the domain of EIT sensor system. After designing, the sensor was tested and characterized 

by the injected current. The measurements were carried out considering 8 metal electrodes for 

2D and 16 metal electrodes for 3D. A good conductivity distribution was found with the 

optimized dimensions of the electrodes and the electrode array system was found suitable for 

3D EIT imaging by the measurements considering a planar-aligned electrode placement 

configuration [30]. The electrodes were placed vertically in the same line of the domain and 

found an optimal design as shown in Figure 5.1b. A low-cost EIT sensor was able to be 

designed and the measurement method with this arrangement was found robust in obtaining 

tomography of a sample with less noise and less error. 
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(a) (b) 

Figure 5.1. An electrode array sensor with (a) 8 electrodes (bottom layer) for 2D EIT, and (b) 16 electrodes (top 

and bottom layers) designed in a cylindrical domain for 3D EIT measurements. 

5.2.2. Development of EIT Data Acquisition System 

An automated EIT data acquisition system is developed for the measurements considering 

2D and 3D operations, as shown in Figure 5.2. An EIS tool EVAL-AD5933EBZ was interfaced 

with Arduino Uno (ATmega328P), EIS data storage (PuTTY), and electrode switching 

multiplexers (CD74HC4067). AD5933 is a high-precision impedance converter system that 

combines an on-board frequency generator; it has programmable graphic user interface with 

frequency sweep capability and serial I2C interface [31–33]. The EIT sensor is connected to 

the EIS tool through multiplexers. Two multiplexers were connected with EIT electrode array 

system for 2D or 3D operations by injecting currents and capturing boundary voltages. The 

impedance of an object in the domain was measured by the current injected through the 

electrodes with an automated and appropriate EIS measurement settings using Arduino Uno 

programming. The measured impedances for all the electrodes in a 2D/3D system were stored 

by varying frequencies and output excitations controlled by the EIS tool (AD5933). In addition, 

a 15 MHz DDS signal generator (JDS6600) was used to obtain the current carrying capability 

of the electrodes. The current is injected in different frequencies through the driving electrodes 

and the AC sensing voltages were measured for different current levels by the sensing 

electrodes using a multimeter. The data were stored using the acquisition systems and analyzed 

for EIT image reconstruction in MATLAB using an open-source software, EIDORS 

[2,10,11,23]. 
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Figure 5.2. A developed EIT data acquisition system for 2D and 3D imaging. 

5.2.3. Calculating Conductivity 

The physical relationship between the conductivity and the boundary voltages in the 

domain is governed by a partial differential equation that is derived from Maxwell’s equations. 

To obtain the conductivity, the EIT inverse solution is required and, hence, the forward problem 

is solved at first. The boundary voltage is calculated for the given conductivity distribution and 

the injected current. In this work, a complete electrode model is used and EIT problems are 

solved numerically by utilizing FEM modeling. 

In the EIT experiment, a small mA current is injected through an electrode array with L = 

8 or 16 electrodes at frequencies 1–100 kHz, and the boundary voltages are measured. When 

current Il is injected through electrode el on the surface 𝛿𝛺 and the conductivity distribution 𝜎 

is known, the electric potential V in the domain 𝛺 can be solved from the governing equation 

with the boundary conditions for the complete electrode model.  

According to KCL, in the absence of independent electric charges, the summation of the 

outward and inward current at any point of a closed surface inside the domain 𝛺 is zero, 

                                                             ∇. 𝐽 = 0                                                             (5.1) 

According to Ohm’s law, the relation between the current density (𝐽) and the electric field 

(�⃗⃗�) is  

                                                            𝐽 = 𝜎�⃗⃗�                                                               (5.2) 

With quasi-static assumption, the electric field can be written in the form of a gradient of 

a scalar potential (V) as 

                                                          �⃗⃗� = −∇𝑉                                                             (5.3) 

In the continuum electrode model, there are no electrodes facing the boundary of an object. 

The model assumes that the current density is a continuous function on the entire boundary of 

the object. Comparing the Equations (5.1)–(5.3), the sensing field (EIT governing equation) 

can be described by Laplace’s equation (derived from Maxwell’s equation) [1,2,5] as follows: 
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                                               ∇. (𝜎∇𝑉) = 0    in domain 𝛺                                          (5.4) 

The gap model assumes the discrete electrodes on the surface of an object, and the shunting 

effect of the electrodes and contact impedance is ignored. Consider, the current is injected in 

the boundary through discrete electrodes, thus, the current density Jl is injected through the l-

th electrode is given in [1,5] by 

                                                    𝐽𝑙 = −𝐽. �̂� = 𝜎∇𝑉. �̂� = 𝜎
𝜕𝑉

𝜕�̂�
                                      (5.5) 

This must be satisfied in the 𝛿𝛺 boundary, where �̂� =
�⃗⃗�

|𝑛|
 is considered as the outward unit 

normal vector. 

The shunt model refines the gap model by taking into account the shunting effect of the 

electrode. The current is injected in the boundary through the electrodes and calculated using 

Neumann boundary condition [1,5] as 

                                   𝐼𝑙 = ∫ 𝜎
𝜕𝑉

𝜕�̂�𝑒𝑙
𝑑𝑠      on el, l= 1, 2, 3, …, L                                    (5.6) 

The complete electrode model is a refinement of the shunt electrode model in which the 

shunting effect and contact impedance between the electrodes and the object in the medium is 

taken into account. The measured voltage on electrode el is 𝑉𝑙, which is given by the Dirichlet 

boundary condition [1,5] as 

                                  𝑉𝑙 = 𝑉 + 𝑍𝑙𝜎
𝜕𝑉

𝜕�̂�
     on el, l= 1, 2, 3, …, L                                    (5.7) 

where Zl is the effective contact impedance between the electrode and the object in the medium. 

The injected current and the measured voltages are also satisfied as ∑ 𝐼𝑙
𝐿
𝑙=1 = 0, and 

∑ 𝑉𝑙
𝐿
𝑙=1 = 0. The optimum conductivity distribution is calculated by the voltage difference, 

∆𝑉 = 𝑉𝑖 − 𝑉ℎ, where Vh and Vi are the measured voltages in homogeneous and inhomogeneous 

media. The conductivity map of the inhomogeneity in a single step can be calculated using 

[1,5,12] as follows: 

                                     ∆𝜎 = (𝐽𝑇𝑊𝐽 + 𝜆2𝑅)−1𝐽𝑇𝑊∆𝑉                                                (5.8) 

where J is the Jacobian, which is a determinant for the measurement of voltage sensitivity, W 

is the inverse of the covariance of measurements, R is an estimation of the inverse of the noise 

covariance, and λ is the hyperparameter that controls the trade-off between resolution and noise 

attenuation in the reconstructed image.  

5.2.4. FEM Modeling 

EIT problems were solved numerically with the help of finite element method (FEM) 

modeling. An EIT ‘distmesh’ model of ‘d2d4c’ with 8 electrodes using the 

‘mk_common_model’ was optimized for the designed electrode array system in the 2D domain 
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as shown in Figure 5.3a. The model consisted of 2507 numbers of nodes, 4757 numbers of 

elements, and 255 numbers of boundaries. On the other hand, a ‘Netgen’ cylindrical model 

using ‘ng_mk_cyl_models’ was optimized for modeling in the 3D domain with 16 electrodes 

distributed in two layers (8 electrodes in each layer), as shown in Figure 5.3b. The model 

consisted of 3247 numbers of nodes, 13,963 numbers of elements, and 3264 numbers of 

boundaries, respectively. The effects of variations of nodes, elements, and boundary numbers 

on the reconstruction results were examined thoroughly. An optimization was made by 

employing different boundary conditions and a satisfactory result was obtained using the 

selected models. 

  
(a) (b)  

Figure 5.3. FEM Models for (a) d2d4c: 2D (circular) with 8 electrodes, and (b) Netgen: 3D (cylindrical) with 16 

electrodes EIT. 

The FEM modeling was carried out using EIDORS, whose operation was made with the 

help of MATLAB for the reconstruction using the EIT measurements. EIS data were stored 

using an open-source software PuTTY (interfaced with Arduino Uno COM3 port) and a 

statistical analysis was performed. The flowchart of the EIDORS operation is presented in 

Figure 5.4. The sensing methods were applied, and the conductivity of the inhomogeneous 

object was mapped with the following steps: (i) 2D/3D FEM model selection, (ii) stimulation, 

(iii) forward solve: homogeneous and inhomogeneous data loading, and (iv) inverse solve: 

reconstruction of the inhomogeneity by the conductivity calculations using one-step Gauss–

Newton (GN) algorithms such as prior NOSER, Gaussian HPF, Laplacian, and Tikhonov 

regularization. The optimized controlling parameters such as the size of the domain, the 

inhomogeneity position and size, the stimulation current/voltage (I/V), the frequency (f), and 
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the hyperparameter value (λ) were set for the measurements and stimulation, and the overall 

reconstruction performance was made accordingly. 

The common EIT inverse algorithms for FEM modeling are Gauss–Newton (GN), 

Shefield back-projection (BP), and total variation (TV), respectively [10,19,34]. The GN 

method is an iterative algorithm to solve nonlinear least squares problems, BP is a linear 

reconstruction algorithm, and TV is a regularization-based algorithm. Electrical impedance 

imaging is a highly nonlinear and ill posed inverse problem in which a minimization algorithm 

is used to obtain its approximate solution [10,19].  

The objective function can be minimized by taking the difference between the 

experimental measured data and the predicted data. If Vm is the measured voltage matrix and 

Vc is the calculated voltage matrix, then the Gauss–Newton (GN) algorithm gives a least square 

solution of the minimized object function s(σ) [2], which is defined as 

                                      𝑠(𝜎) =
1

2
‖(𝑉𝑚 − 𝑉𝑐‖2 =

1

2
(𝑉𝑚 − 𝑉𝑐)𝑇(𝑉𝑚 − 𝑉𝑐)                     (5.9) 

Back-projection (BP) is capable of producing images of changes in conductivity. The 

images produced by BP have some clear artifacts because of the inherent character of the 

asteroid trace and the conductivity is given by 

                                               𝛿𝜎 =
1

𝐿
∑ 𝑉𝑚(𝑝𝑖)(2𝐽(𝑝𝑖) − 1)𝐿

𝑖=1                                   (5.10) 

where L is the number of electrodes, Vm is the measured voltage, p is the position of electrodes, 

and J is the current density function. 

The back-projection algorithm is known to blur image contrasts. Reconstruction using a 

total variation (TV) functional helps to preserve discontinuities in reconstructed profiles, which 

are smoothened by traditional reconstruction algorithms such as Newton’s algorithm. Edge-

preserving algorithms such as those using TV are more complex to implement in addition to 

the high computational cost. The TV of a conductivity image is defined as 

                                                      𝑇𝑉(𝜃) = ∫|∇𝜃| dΩ                                                (5.11) 

where Ω is the region to be imaged. Since the conductivity is constant over each FEM element, 

∇𝜃 is non-zero only on the edges between elements. For the i-th edge, shared by the FEM 

elements m(i) and n(i), the jump in conductivity is: |(𝜃𝑚(𝑖) − 𝜃𝑛(𝑖))|. The variation over the 

complete image can be found by integrating the jump over all the edges of the mesh as 

                                                𝑇𝑉(𝜃) = ∑ 𝑙𝑖|(𝜃𝑚(𝑖) − 𝜃𝑛(𝑖))|𝑖                                            (5.12) 

where li is the length of i-th edge in the mesh, and the index i covers all the edges. 

Several machine learning algorithms such as an artificial neural network (ANN), a least 

angle regression (LARS), and an elastic net were also studied previously for EIT inverse 
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solution [35–37]. A classic deterministic Gauss–Newton with Laplacian regularization method 

were compared with the machine learning algorithms [35]. A good reconstruction was made 

using the modified ANN compared to the modified LARS and elastic net. ANN suffers from 

long training and reconstruction times; LARS and elastic net seem to be less accurate for real 

time data but much faster than ANN [35]. Most of the algorithms have some limitations in 

obtaining 3D images, among these the Gause–Newton method was found faster in training and 

computation and suitable for 3D image reconstruction with high accuracy. 

 

Figure 5.4. Flowchart of EIDORS operation. 

5.2.5. Experimental Setup and Sensor Characterization 

An EIT experimental setup for the data acquisition is presented as shown in Figure 5.5. 

The sensing methods applied to the EIT sensor were optimized and utilized based on the 

requirements considering homogeneous and inhomogeneous conditions. The results were 

validated, and the methods were found suitable in obtaining good reconstruction performance. 

An automated and high-speed data acquisition for multiple samples such as edible plant slices, 

and plant roots in the domain was possible in a short duration by utilizing the AD5933 EIS 

tool. Finally, a difference method was applied for the obtained datasets and the reconstructed 

results of the inhomogeneities were obtained by varying the stimulation current in 2D and 3D 

planes.  
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Figure 5.5. An EIT experimental setup for image reconstruction of the inhomogeneities. The data were stored by 

the measurements using EIS tool and DDS signal generator. For example, a carrot slice was placed at the centre 

of the domain and that was reconstructed using EIDORS. 

Initially, the EIS sensor using AD5933 was characterized, and the functionality of the tool 

was tested by measuring impedances of a carrot slice of height 1/5-inch and diameter, D = 25.4 

mm to utilize in the EIT data acquisition system. The EIS measurements of the sample were 

carried out using two-pole method by varying the output excitation (Vout) and spacing between 

two electrodes. A pair of electrocardiograms (ECG) electrodes connected to AD5933 was 

separated by d distance and the reactance, Xc of a sample was calculated as 𝑋𝑐 = 1/2𝜋𝑓𝐶, and 

sample capacitance, 𝐶 = 휀𝐴/𝑑, where A is the cross-sectional area and ε is the medium 

constant. The electrical impedance (Z) of a sample measured by the EIS tool (AD5933EBZ) is 

related to the DFT magnitude of √𝑟𝑒2 + 𝑖𝑚2 and gain factor [32,33] as follows: 

                             𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) =
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟×√𝑟𝑒2+𝑖𝑚2
                               (5.13) 

where the gain factor is calibrated by a known resistance of 7.5 kΩ. The gain factor varies 

with the variation of output excitation and physical frequency (f) for a given sample. Here, re 

and im are the DFT real and imaginary outputs registered at different frequency codes 

generated by the physical frequency, 𝑓 = 𝑓𝑐𝑙𝑘 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐶𝑜𝑑𝑒/229, where fclk is the master 

clock frequency of 16.776 MHz for the internal oscillation [32].  

The sample reactive (X) and resistive (R) components are calculated as 𝑋 = 𝑍 sin 𝜃 and 

𝑅 = 𝑍 cos 𝜃, where phase of the electrical impedance, 𝜃 = tan−1 (
𝑋

𝑅
), and Z is the magnitude 

of the impedance. The influence of impedance magnitude in determining the sample 

characteristics was found much higher than the phase. Hence, the impedance magnitude 

obtained from AD5933 was taken for a different analysis of the experiments. The sample 

characteristics can be determined by obtaining the impedance spectroscopy in a wide range of 
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frequencies. The EIS characteristics of the samples were obtained by varying frequencies up 

to 100 kHz controlled by the EIS tool.  

To study the EIS characteristics, the output excitation was varied from 0.4 to 2 Vpp and 

the spacing between two electrodes was varied from 0.3 to 1.5 cm, as shown in Figure 5.6. As 

a result, the impedance was decreased with the increase in excitation, on the other hand, the 

impedance was increased with the increase in the separation of the electrodes. More than a 95% 

correlation was found, and the impedance profile indicated a good conductivity distribution 

with the optimized output excitation of 2 Vpp and 1 cm spacing of the electrodes. 

  
(a) (b) 

  
(c) (d) 

Figure 5.6. EIS measurements of a carrot slice using two-electrode method (a) by varying output excitation, and 

(b) the corresponding correlation. EIS measurements (c) by varying separation of the electrodes, and (d) the 

corresponding correlation. A good correlation with more than 95% coefficient was found for the measurements 

using 2 Vpp excitation and 1 cm spacing of the electrodes. 

In this work, two approaches were taken for the measurements in homogeneous and 

inhomogeneous media of the EIT domain. The EIT domain was filled with water to create the 

homogeneous media. A continuous signal of 2 Vpp excitation was applied to the EIT sensor 

system, and the measurements were carried out. At first, a two-pole method was applied, and 

EIS measurements were carried out using an EVAL-AD5933EBZ impedance analyzer. The 

impedances for different layers of electrodes in the domain were obtained for different 
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frequencies of 1–100 kHz. A total of 64 measurements (1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, and 1-

8 with respect to electrode 1; 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, and 2-8 with respect to electrode 

2, and so on) were taken from the eight-electrode system in one layer for 2D. In addition, the 

measurements were taken in other layers of the sensor electrode array for 3D. A constant 

current source of 1 mA sinusoidal current with varying frequency was found suitable for EIT 

[10,11,23]. The current is injected through the electrodes of the array and the obtained 

boundary voltages for a single layer of the EIT sensor are depicted in Figure 5.7.  

 

Figure 5.7. The boundary voltages for a homogeneous media (water) at 5 kHz, and 1 mA signal considering two-

pole measurements in one layer of EIT domain. 

In addition, a four-pole method was utilized for obtaining the reconstruction results at 

multiple frequencies up to 100 kHz considering a 1 mA or above sinusoidal current. The current 

was injected through the driving electrodes using a 15 MHz DDS signal generator at different 

frequencies and the voltages were measured through the sensing electrodes. The signal 

responses for 5 kHz and 1 mA are depicted as shown in Figure 5.8. In the 1st projection, the 

current (I) was applied through neighboring electrodes 1-2 and five differential voltages (V1, 

V2, V3, V4, and V5) were measured between 3-4, 4-5, 5-6, 6-7, and 7-8 electrode pairs. In the 

2nd projection, the current was injected through 2-3 electrodes and the differential voltages 

(V1–V5) were collected from 4-5, 5-6, 6-7, 7-8, and 8-1 electrode pairs. Thus, for the eight 

current projections a total of L(L-3) = 8 × 5 = 40 voltage measurements were taken from a L = 

8 electrode EIT system. The highest current density was found in the driving electrodes and 

that decreases with the distance. Hence, the voltage was low at the opposite sensing electrodes 

position from the current-driven electrodes. The variation of the voltages was observed 

sinusoid as shown in Figure 5.8a.  
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In another approach using the four-pole method, the current through neighboring 

electrodes 1–2 and five differential voltages (V1-V5) were measured between 3-4, 3-5, 3-6, 3-

7, and 3-8 electrode pairs. Next, the current was driven through 2-3 electrodes and the voltages 

(V1-V5) were measured between 4-5, 4-6, 4-7, 4-8, and 4-1 electrode pairs. In the similar way 

40 voltage measurements were taken for the eight electrode EIT system. The measured voltage 

in the sensing electrodes was increased with the increase in distance when moving towards 

clockwise, and the results are presented in Figure 5.8b.  

  
(a) (b) 

Figure 5.8. The sensing voltages for a homogeneous media (water) at 5 kHz and 1 mA signal considering four-

pole measurements with (a) 1st approach, and (b) 2nd approach in one layer of EIT domain. 

The carrot sample was then placed in the EIT domain filled with water. The impedances 

of the inhomogeneous media (water + carrot) were measured by the designed electrode system 

in the bottom layer of the array by varying the output excitation from 0.4 to 2 Vpp at 5, and 80 

kHz, respectively. A two-pole method was applied for the measurements using the designed 

multi-electrode sensor. The impedance was decreased by increasing frequency and output 

excitation as well as shown in Figure 5.9. The effect of output excitation may vary based on 

the size of the electrodes, electrodes spacing, signal frequency, and type of the samples placed 

in the domain. A large oscillation with high impedance was observed for a low output 

excitation of 0.4 Vpp, where the gain and DFT outputs oscillated highly for a given frequency. 

The results were found stable at a 2 Vpp excitation where a good conductivity of the sample 

was found, and all the experiments were made accordingly with this high excitation. The 

suitability of the electrode system was found by the sensor characterization using AD5933. In 

a similar way, the other samples were taken in the measurements. Later, the boundary potentials 

were calculated using forward solve and a good reconstruction was made by the calculated 

conductivity. 
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The boundary voltages were calculated for different stimulation currents by measuring 

impedances in homogeneous (water) and inhomogeneous (water with sample) media, and the 

difference of those was used to map the conductivity of the sample in the domain. The voltages 

were normalized to obtain the conductivity of the sample. The effects of impedances of 

electrodes and wires/clips were minimized accordingly, and a good tomographic result of the 

sample was obtained. The voltage distributions using two-pole sensing method was found more 

stable and uniform. The measured boundary data played an important role in obtaining 

tomography and using the two-pole method the impedances of the electrodes were found very 

sensitive to the measurements for the taken objects in the EIT domain.  

  
(a) (b) 

Figure 5.9. EIS measurements for an inhomogeneous media (water + carrot) in the domain consisting of eight 

electrodes by varying output excitation at (a) 5 kHz, and (b) 80 kHz, respectively. 

5.3. Results 

The designed electrode array system was tested considering multiple inhomogeneities in 

the domain and the reconstruction was made in 2D and 3D planes in different experiments. The 

dimensional and frequency dependency of different plant roots were examined considering 3D 

image reconstruction. 

5.3.1. Image Reconstruction in 2D Plane 

Experiment 1: In an experiment, the impedances were measured for a carrot slice (height, 

h = 1/5-inch, and diameter, D = 25.4 mm) in a cylindrical domain using an EIT electrode array 

system. The impedances were varied for different frequencies of 5–100 kHz with the output 

excitation of 2 Vpp. A good conductivity distribution was found, and the image reconstruction 

was carried out by placing the carrot slice at different positions (pos: centre, 1, 4, and 7) in the 

domain. The results were reconstructed successfully using a ‘d2d4c’ FEM model for 80 kHz 

and a 1 mA stimulation current considering GN: Laplace (λ = 0.57) in the inverse model as 

0

20000

40000

60000

80000

0 8 16 24 32 40 48 56 64

Im
p

ed
an

ce
 (

Z
) 

in
 O

h
m

Number of Measurements

Water+Carrot_5 kHz_2Vpp

Water+Carrot_5 kHz_1Vpp

Water+Carrot_5 kHz_0.4Vpp

0

10000

20000

30000

40000

0 8 16 24 32 40 48 56 64

Im
p

ed
an

ce
 (

Z
) 

in
 O

h
m

Number of Measurements

Water+Carrot_80 kHz_2Vpp
Water+Carrot_80 kHz_1Vpp
Water+Carrot_80 kHz_0.4Vpp



 

97 

shown in Figure 5.10. The maximum change of conductivity was found higher (0.725 S/m or 

above) at the side wall than the centre (0.61 S/m) of the domain because the maximum current 

passes through the side wall. 

    
(a)  (b) (c) (d) 

    

(e)  (f)  (g)  (h)  

Figure 5.10. A carrot slice at different positions of (a) pos: centre, (b) pos: 1, (c) pos: 4, and (d) pos: 7 in the EIT 

domain. (e–h) The corresponding reconstructed images for 80 kHz, 1 mA, and Laplace (λ = 0.57). The obtained 

conductivity is high at the side wall, and it is low at the centre. 

Further, the stimulation current was varied for a domain with a carrot slice at position 1 

and the new reconstructed results were obtained as shown in Figure 5.11. The conductivity was 

increased from 0.77 to 0.85 S/m with the increase in current from 0.5 to 2 mA for a constant 

hyperparameter value of λ = 0.57. The reconstructed results were also obtained by varying 

hyperparameter values of 0.97, 0.57, and 0.17, respectively, at 1 mA for a domain with a carrot 

slice at position 7 as shown in Figure 5.12. The conductivity was increased from 0.71 to 0.9 

S/m with the decrease in the hyperparameter value. 

    
(a) (b)  (c)  (d)  

Figure 5.11. A carrot slice at (a) pos: 1, and the reconstructed images for the stimulation current of (b) 0.5 mA, 

(c) 1 mA, and (d) 2 mA at 80 kHz considering GN: Laplace (λ = 0.57). The shape of the inhomogeneity changes 

with the increase in current (a slight change is observed). The conductivity is increased, and the obtained 

maximum conductivity values are 0.77, 0.79, and 0.85 S/m, respectively. 
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(a) (b)  (c)  (d)  

Figure 5.12. A carrot slice at (a) pos: 7, and the reconstructed images for the hyperparameter value (λ) of (b) 0.97, 

(c) 0.57, and (d) 0.17 at 80 kHz and 1 mA considering Laplace algorithm. The shape of the inhomogeneity changes 

with the decrease in hyperparameter value. The conductivity is increased, and the obtained maximum conductivity 

values are 0.71, 0.73, and 0.9 S/m, respectively. 

Experiment 2: In another experiment, three different edible plant slices of carrot, radish, 

and potato of a 1/3-inch height with a diameter, D = 25.4 mm of each were taken in the EIT 

domain and their reconstructed results were obtained using the impedance imaging technique 

in the 2D plane (using ‘d2d4c’), as shown in Figure 5.13. In this case, the overall size of all the 

plant slices were taken same. EIS measurements of the samples were carried out from 5 to 100 

kHz. A total of 64 measurements were taken for both homogeneous and inhomogeneous 

conditions using 2 Vpp output excitation, and the difference was taken for the reconstruction 

of each plant slice for 1 mA stimulation current considering the GN: GHPF algorithm. Potato 

was found more conductive at a low frequency of 5 kHz and a good conductivity distribution 

of carrot was found at the high frequencies. At 5 kHz, the conductivity of the samples was 

obtained as 0.9, 1.1, and 3.6 S/m, respectively, considering the hyperparameter value of λ = 

0.17. The sensing voltage increases with the increase in frequency and dimension as well and 

more useful information can be obtained from the sample. At 80 kHz, the conductivity of the 

carrot was increased to 2.8 S/m. An improved conductivity of carrot slice was found by 

increasing the height from 1/5-inch to 1/3-inch. The conductivity of the carrot was further 

increased to 9.1 S/m by increasing the stimulation current from 1 to 2 mA. Thus, the frequency, 

dimensions, and stimulation current played an important role in achieving a good conductivity 

distribution and in obtaining clear reconstructed images.  
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Figure 5.13. (a–c) Different edible plant slices (carrot, radish, and potato) placed in bottom layer of electrodes of 

a cylindrical domain, (d–f) the corresponding reconstructed images, and (g,h) their impedance spectroscopy 

results. GHPF algorithm is utilized, and potato is found more conductive at 5 kHz, 1 mA, and 2 Vpp output 

excitation. In addition, the carrot sample has good conductivity distribution at the high frequencies. 

Experiment 3: Later, multi-target anomalies such as bio-, conductive-, and non-conductive 

targets were considered in the designed EIT domain and simultaneous imaging was carried out 

using the different measurement techniques. The boundary voltages for multiple 

inhomogeneities such as metal, plastic, metal + plastic, and plastic + carrot in the domain were 

calculated by measuring impedances at different frequencies up to 100 kHz. A good 

reconstruction was made considering GN: GHPF with the optimized hyperparameter values 

for 5 kHz and 1 mA current and the results are presented as shown in Figure 5.14.  

The conductivity level varies depending on the position and type of inhomogeneity in the 

domain, and by varying the other controlling parameters. A good reconstruction was made 

using a ‘distmesh’ generator ‘d2d4c’ for a circular model. The inhomogeneities were identified 

successfully in the domain and the simultaneous two-dimensional imaging with a good 

accuracy was possible using the designed electrode array system. The metal and carrot are 

conductive, and the plastic is resistive. The metal has a higher conductivity than the carrot. The 

overall conductivity of the carrot was increased by decreasing the hyperparameter value (λ) 

and a clear reconstructed image was obtained. The multiple inhomogeneities with different 

electrical properties in the domain were able to distinguish using the developed EIT system. 

 
(a) Carrot (D=25.4 mm) 

 
(b) Radish (D=25.4 mm) 

 
(c) Potato (D=25.4 mm) 

 
(d) Carrot: GHPF  

(5 kHz, 1 mA, λ=0.17) 

 
(e) Radish: GHPF  

(5 kHz, 1 mA, λ=0.17) 

 
(f) Potato: GHPF  

(5 kHz, 1 mA, λ=0.17) 

 
(g) 

 
(h) 
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(a) (b) (c) (d) 

    
(e)  (f)  (g) (h) 

Figure 5.14. (a) Metal, (b) Plastic, (c) Metal + Plastic, and (d) Plastic + Carrot inhomogeneities at the centre of 

the EIT domain. The corresponding reconstructed images are presented at 5 kHz and 1 mA considering GHPF 

and the hyperparameter value (λ) of (e) 0.17, (f) 0.17, (g) 0.17, and (h) 0.017, respectively. The type of 

inhomogeneity from the mixed is identified successfully with the optimized hyperparameter value.   

5.3.2. Image Reconstruction in 3D Plane 

Experiment 1: At first, the EIS measurements for a homogenous media considering water 

in a cylindrical domain was carried out at different frequencies of 5–100 kHz using the 

designed multi electrode sensor system. The measurements were also carried out for an 

inhomogeneous media considering water and a carrot (length: L = 3 inch, and diameter: D = 

31.75 mm) with a biomass weight of W = 54 g in the given area of the domain. The carrot was 

considered as a sample of a tap root system. A total of 64 measurements were taken from the 

eight-electrode array system in the top layer. The variation of impedances was observed 

sinusoid for the measurements at different electrode positions. The impedance was decreased 

by increasing the frequency for a constant output voltage excitation of 2 Vpp and the results 

are presented for a homogeneous media, as shown in Figure 5.15a. The impedance distribution 

in the top layer considering an inhomogeneous media (water + carrot) is presented for 80 kHz 

and 2 Vpp excitation, as shown in Figure 5.15b. 
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(a) (b) 

Figure 5.15. Impedance spectroscopy for (a) homogeneous (water), and (b) inhomogeneous (water + carrot) 

media in the top layer of the cylindrical domain at 2 Vpp output excitation. Impedance is decreased in different 

electrodes position by increasing frequency. 

In addition, the EIS measurements were taken in the top to bottom and bottom layers of 

the electrode array in the domain by using an experimental set up as shown in Figure 5.16. The 

boundary voltages were calculated with impedance data obtained from homogeneous and 

inhomogeneous media of the EIT domain and those were normalized. A 3D reconstruction of 

the carrot (L = 3-inch, W = 54 g) was made by calculating the changes of conductivity from 

the difference of normalized voltages at an 80 kHz, 1 mA, and 2 Vpp output excitation as 

shown in Figure 5.16c. The prior NOSER algorithm performed well compared to the other 

inverse algorithms for 3D imaging and considered with the optimized hyperparameter value of 

λ = 2.17. The conductivity of the carrot was obtained considering the layers of electrodes at z 

= 1, and z = 0.3, respectively, with a virtual layer at z = 0.65 in the cylindrical FEM mesh. It 

was found that day wise (day 1 to 3) the biomass weight of the carrot sample was decreased 

from W = 54 g (L = 3 inch) to W = 34 g (L = 2.5 inch) at room temperature (20 °C) and the 

average impedance was increased at different frequencies, as shown in Figure 5.16b. The 

moisture level was reduced along with the dimension of the carrot and the corresponding 

tomography was distorted by decreasing the conductivity of the sample with time as shown in 

Figure 5.16d. 
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Figure 5.16. (a) A 3D EIT experimental setup for obtaining impedance tomography of a carrot sample (tap root) 

in a cylindrical domain. (b) Average impedance profile of the sample by varying frequency in different days (day 

1 and day 3). The reconstructed images of the sample obtained in (c) day 1, and (d) day 3 at 80 kHz, 1 mA, and 2 

Vpp excitation considering GN: NOSER (λ = 2.17). The average impedance of the carrot is decreased with the 

increase in frequency and the impedance is increased at different frequencies with time. The maximum 

conductivity of the sample is decreased from 0.033 to 0.02 by reducing the biomass weight and dimension with 

time. It is found that biomass of a carrot has dimensional dependency. 

Later, four different carrot samples of various biomass weights (W = 54, 88, 52, and 46 g) 

and dimensions (length, L = 3, 3.1, 2.75, and 2.8 inches with diameter of D = 31.75 mm each) 

were taken, and the correlation was established with the measured impedances. The layer-wise 

impedance distribution in a cylindrical domain was taken and the average impedances of the 

full model were correlated with fresh biomass weights and lengths of the carrots. At 5 kHz, 

more than an 85% correlation was found with weight and length of the carrots, as shown in 

Figure 5.17. The average impedance was decreased with the increase in weight and length of 

the carrot, and the carrot sample was found more conductive. In addition, an improved 

 
                               (a) 

 
(b)  

 
(c)  

 
(d)  
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correlation of more than a 90% coefficient (R2 = 0.822) was found between the average 

impedance and biomass weight of the carrot at a high frequency of 60 kHz, where R2 is the 

coefficient of determination and R is the correlation coefficient. It indicates that the biomass of 

the carrot is dependent on not only the dimensions of the sample but also the frequencies of the 

signal.  

 

Figure 5.17. Correlation between (a) average impedance and biomass weight, and (b) average impedance and 

length of the carrot at 5 kHz. A negative correlation is found between the carrot size (such as weight and length) 

and average impedance. An improved correlation is found between (c) average impedance and biomass weight of 

the sample at a high frequency of 60 kHz. Overall, the average impedance is decreased by increasing frequency 

and the correlation is improved for estimating the carrot root biomass. 

Experiment 2: In an experiment, a potato plant was grown at room temperature as shown 

in Figure 5.18, and the root of the plant species was taken as one of the samples for the analysis 

of 3D image reconstruction using the developed EIT data acquisition system. The root 

structure, dimensions, and variation of frequencies were examined on obtaining the 

tomography result of the root by measuring the electrical impedances using the designed EIT 

sensor system. The length of the root was measured as 10 inches when the shoot length of the 

plant was 16 inches. In addition, the root system of the potato species is tap root, which includes 

an old seed piece. The potato root was placed in water media of the EIT domain for the 

measurements of impedances at room temperature (20 °C) and the reconstruction was made 

using the developed EIT system as shown in Figure 5.19a.  

 
(a) 

 
(b) 

 
(c) 
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The impedances were measured for homogeneous (water) and inhomogeneous (water + 

potato root) conditions by varying frequencies from 5 to 100 kHz using an EIS tool (AD5933) 

connected to the EIT sensor. The impedances were measured at a 2 Vpp excitation in different 

layers such as top, top to bottom, and bottom layers of the electrode array. The average 

impedances obtained for the inhomogeneous media are presented in Figure 5.19b and the 

impedances were found to decrease with the increase in frequency. Layers-wise, the measured 

impedances are presented in Figure 5.19c. The boundary voltages were calculated for a 1 mA 

stimulation current and normalized. The differences of the voltages were utilized to calculate 

the changes of conductivity for the given root system in the EIT domain, which represents the 

tomography. A tomography of the potato root system was made at 80 kHz and 1 mA using the 

difference method by applying the one-step GN algorithm: NOSER with the optimized 

hyperparameter value of 2.17 as shown in Figure 5.19d. A conductive behaviour of the root 

was found with the maximum changes of conductivity of 0.003 for the selected electrode 

positions at z = 1 and 0.3 vertically (including a virtual layer at z = 0.65) in the electrode array 

system. A tomography of the potato root system was made successfully using FEM modeling.  

The fresh weight of the root was measured as 46 g when it was separated from the shoot 

of the plant. During the measurements, the root sample did not suffer any physical damage and 

was active in operation. Later, the root was kept in the free space at room temperature, the root 

was dried by removing the moisture, and day-wise the weight was measured. The biomass 

weight was reduced to less than 20 g in a week, where excluding the old seed, the actual root 

was found as 2 g only in dry condition. The several plants of the same can be taken in a further 

experiment for modeling the measured impedances with fresh or dry biomass weights of the 

roots. 

 

Figure 5.18. (a) A grown potato plant, and (b) a potato root system in plant. 

 

 
(a) A grown potato plant 

 
(b) Root in plant  
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(a) (b) 

  
(c) (d)  

Figure 5.19. (a) An EIT experimental setup for the measurements of a potato root system, (b) average measured 

impedances for 5–100 kHz of an inhomogeneous media (water + root), (c) layer-wise measured impedances at 80 

kHz, and (d) reconstructed potato root (tap root) using 3D EIT measurements in water at 80 kHz, 2 Vpp, and 1 

mA stimulation current considering GN: NOSER (λ = 2.17). The obtained result shows a conductive behaviour 

of the root with maximum changes of conductivity of 0.003. 

Experiment 3: In another experiment, the root impedance of a Chinese money plant (Pilea) 

species was measured by placing the sample in the designed cylindrical EIT domain with the 

target of obtaining 3D reconstruction, as shown in Figure 5.20. The homogeneous media was 

created by filling the water in the domain and the measurements were taken without and with 

the root accordingly. The difference was used to calculate the root conductivity. The 

impedances for two different media were measured by the electrode layers of the domain using 

AD5933 from 5 to 100 kHz at room temperature (20 °C) and the corresponding boundary 

potentials were calculated at 1 mA. The changes of conductivity of the root were calculated by 

the differences of normalized boundary voltages.  

The obtained tomography results are presented at 5 kHz (Vout = 2 Vpp), and 80 kHz (Vout = 

0.4 Vpp), respectively. After optimizing, good results were found with the selected frequencies 

and excitations considering GN: NOSER (λ = 2.17) in the inverse model. The maximum 

changes of conductivity of 0.018 was obtained at 5 kHz and 2 Vpp, as shown in Figure 5.20d. 

The impedance with a low excitation of 0.4 Vpp was minimized by increasing the frequency 

to 80 kHz and the maximum changes of conductivity of the root was increased to 0.08, as 
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shown in Figure 5.20e. As a result, the tomography of the root was made successfully using 

FEM modeling. The conductivity was varied at different vertical electrode positions of z = 1, 

and 0.3 including a virtual layer of z = 0.65. A higher conductivity is found at the bottom layer 

of the electrodes’ position where the impedance is low because of distributed roots. It is 

concluded that the impedance varies by the variation of root density and distribution of the 

roots, and the variations in tomography results are obtained accordingly. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 5.20. 3D imaging of a Pilea root in a cylindrical domain using EIT measurements and considering GN: 

NOSER inverse algorithm (λ = 2.17). (a) Measuring root impedance, (b) Chinese money plant (Pilea), (c) Pilea 

root, and the reconstructed root images at 1 mA for (d) 5 kHz (2 Vpp), and (e) 80 kHz (0.4 Vpp), respectively. 

An improved conductivity of the root was found by increasing the frequency. 

The fresh weight of the root was measured as 90 g when it was separated from the plant. 

During the measurements, the root sample did not suffer any physical damage and was active 

in operation. Later, the EIS measurements of the Pilea root were carried out using two ECG 

electrodes connected to an EIS tool (AD5933) from 5 kHz to 100 kHz by varying the output 

excitation from 0.4 to 2 Vpp, as shown in Figure 5.21. The root impedance was increased with 

the increase in electrodes separation and a good positive correlation was found for 3 cm 

spacing. On the other hand, the root impedance was decreased with the increase in frequency 

and the output excitation as well. A small variation of the root impedances was found by 

varying the output excitation and the correlation was negative, as shown in Figure 5.21b. After 

optimizing, a good match was found with the selected spacing of the electrodes considering 

the output excitation of 2 Vpp, and more than a 94% correlation was found at 5 kHz.  
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The EIS measurements of the Pilea root were taken on different days and the results were 

correlated with the biomass weights. The impedances were found to increase by decreasing the 

biomass of the root. The moisture level of the root was reduced with time and, hence, the 

conductivity of the root was decreased. The biomass weight of the root was reduced from 90 

to 30 g in three weeks at room temperature (20 °C) and those were predicted by the measured 

impedances. The regression analysis was performed using the measured root biomass and 

impedances obtained in 20 days when it was kept at free space. A good correlation with R2 = 

0.983 and RMSE of 3.75 was found at 5–7 kHz considering n = 8 samples and selected features 

of k = 4 in the dataset, as shown in Figure 5.21d. A statistical analysis was performed with the 

obtained data using PrimaXL Data Analysis ToolPak [31,33]. A multiple linear regression 

analysis was performed for the obtained dataset considering the least square method [31,33] 

with the help of Equation (5.14). 

                                         �̂� = 𝜔0 + 𝜔1𝑍𝑓1 + 𝜔2𝑍𝑓2 + ⋯ + 𝜔k𝑍𝑓𝑘                           (5.14) 

where Zf1, Zf2, …., Zfk are the average impedances for k number of features of f1 to fk. The 

intercept is 𝜔0, and 𝜔1, 𝜔2, … , 𝜔𝑘 are the coefficients. 

A dataset suffers from the multicollinearity problem: (i) if the correlation coefficient (R) 

between the explanatory variables is close to one, (ii) if there is no change in the coefficient of 

determination (R2) after adding an independent variable, and (iii) if the tolerance value 

(tolerance = 1−R2) is less than 0.1 and the variance inflation factor (VIF = 1/tolerance) is greater 

than 10. At first, the highly correlated features of more than a 95% correlation coefficient were 

removed. Later, the Wrapper backward elimination method was applied considering the 

probability of rejection of the null hypothesis p ≤ 0.05 using an individual t-test. After few 

iterations, the training and validation was performed considering the overall F-test (p ≤ 0.05) 

and the features (5, 5.5, 6, and 7 kHz) were selected accordingly. Finally, a model was extracted 

for the estimation of biomass of a Pilea root, as shown in Equation (5.15). 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑃𝑖𝑙𝑒𝑎 𝑅𝑜𝑜𝑡 = 70.9851 − 0.8384𝑍5𝑘𝐻𝑧 + 0.14795𝑍5.5𝑘𝐻𝑧 + 1.49971𝑍6𝑘𝐻𝑧 −

0.8017𝑍7𝑘𝐻𝑧                                                                                                                       (5.15) 
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(a) (b) 

  
(c) (d) 

Figure 5.21. (a) EIS measurement of a Pilea root using AD5933EBZ, and (b) the corresponding correlation with 

output excitation. (c) Day-wise the biomass of the root was decreased for different measurements, and the 

corresponding impedance was increased. (d) A good correlation with R2 = 0.983 and RMSE of 3.75 was obtained 

by the predicted model at 5–7 kHz considering 2 Vpp excitation. 

5.4. Discussion 

The reconstruction performance using the developed EIT data acquisition system was 

evaluated as follows: 

Variation of inverse solvers: The reconstruction performance using 2D EIT domain was 

evaluated by varying inverse solvers. Three different solvers such as Gauss–Newton (GN): 

NOSER, back-projection (BP): naive, and total variance (TV) described in Equations (5.9)–

(5.12) were utilized for solving the EIT inverse problem. A comparative study among the 

solvers was made using a ‘c2c2’ FEM model (nodes: 313, elements: 576, and boundary: 48). 

The changes are more observable for a lower vertex density (such as c) of an FEM model. A 

carrot slice (h = 1/5-inch, and D = 25.4 mm) was placed at the centre of the domain and the 

impedances were measured using the designed EIT sensor for 80 kHz and 2 Vpp excitation. 

The reconstruction was made at 1 mA, as shown in Figure 5.22. The obtained changes of 

conductivity results are presented in Table 5.1. GN (λ = 0.17) performed well compared to the 

other solvers, whereas the reconstructed image using unfiltered BP was found noisy due to the 
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fluctuation of amplitudes, and a lower sized image was reconstructed using TV. Filtered BP 

can give linear amplitude scale with less noise. By increasing the iteration, the reconstruction 

performance was found to improve for TV. Finally, GN algorithms were chosen and utilized 

in different experiments to fulfill the objectives. 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Figure 5.22. (a) A carrot slice at the centre of the EIT domain. The corresponding reconstructed images for 

different inverse solvers of (b) GN (NOSER), (c) BP (Naive), (d) TV (Iteration = 1), and (e) TV (Iterations = 2) 

at 80 kHz, 1 mA, and 2 Vpp excitation. Overall, GN: NOSER performed well considering λ = 0.17, a better shape 

and size of the carrot were reconstructed with less noise. 

Table 5.1. Calculated mean and standard deviation (SD) of obtained changes of conductivity by varying inverse 

solvers considering a carrot slice in the EIT domain. 

 GN (NOSER) BP (Naïve) TV (Iteration = 1) 

Mean (S/m) 0.482597 0.374112 0.676118 

SD (S/m) 0.643679 0.092603 1.065166 

Variation of FEM models: The carrot slice (h = 1/5-inch, and D = 25.4 mm) at the centre 

of the EIT domain was reconstructed onto elements and nodes in the frame by varying FEM 

models. The results were observable using an ‘a2c0’ (nodes: 41, elements: 64, boundary: 16) 

or a ‘b2c0’ (nodes: 145, elements: 256, boundary: 32) model and a comparative study was 

made, as shown in Figure 5.23. The reconstruction onto elements contributed to obtaining clear 

images. On the other hand, the reconstructed image onto nodes was found blurred because of 

the lower number of calculated conductivity data than using elements of the model as shown 

in Figure 5.23c,d. The model with a higher vertex density (such as d) represented the finer 

mesh that can provide a more accurate result in reconstruction than the coarse mesh obtained 

using a lower vertex density (such as a or b). A good reconstruction of the carrot slice was 

observed by increasing the vertex density, although the overall conductivity was reduced. The 



 

110 

number of conductivity data were increased with the increased elements of the ‘b2c0’ model. 

Finally, the ‘distmesh’ model using ‘d2d4c’ (nodes: 2507, elements: 4757, boundary: 255) 

performed well compared to the other FEM models and a good reconstruction was made with 

more confined results using the optimized GN algorithm: GHPF (λ = 0.17). A good 

conductivity distribution was found by increasing the number of elements in the frame. The 

obtained changes of conductivity results are presented in Table 5.2. 

    
(a) (b) (c) (d) 

   

(e) (f) (g) 

Figure 5.23. Reconstructed images of a carrot slice at the centre of an EIT domain for different FEM models at 

80 kHz, 1 mA, and 2 Vpp excitation. (a) FEM (a2c0, 8)-elements, (b) corresponding reconstructed slices, (c) FEM 

(a2c0, 8)-nodes, (d) corresponding reconstructed slices, (e) FEM (b2c0, 8)-elements, (f) FEM (d2d4c, 8)-

elements, and (g) corresponding reconstructed slices. A blurred reconstructed image was observed for the 

reconstruction onto nodes, on the other hand, a good reconstruction was made onto elements. A clear reconstructed 

image of the carrot slice with an accurate shape was found using a ‘distmesh’ generator FEM model such as 

‘d2d4c’ considering the reconstruction onto elements. Overall, the error was decreased by increasing the number 

of elements. 

Table 5.2. Calculated mean and standard deviation (SD) of obtained changes of conductivity by varying FEM 

models considering a carrot slice in the EIT domain. 

 
FEM: a2c0 

(Elements: 64) 

FEM: b2c0 

(Elements: 256) 

FEM: d2d4c 

(Elements: 4757) 

Mean (S/m) 0.464563 0.253775 0.011742 

SD (S/m) 0.37216 0.148718 0.024548 

Variation of number of measurements in the frame: In addition, the number of 

measurements was reduced from 64 to 40 from the dataset with the target of minimizing the 

overlapping. In this case, the selected ports (3-4, 3-5, 3-6, 3-7, and 3-8 electrode pairs with 
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respect to electrode 3; 4-5, 4-6, 4-7, 4-8, and 4-1 electrode pairs with respect to electrode 4; 

and so on) are exactly the same as considered in the four-pole method. Finally, the overlapping 

was reduced fully considering 28 measurements using the selected ports (1-2, 1-3, 1-4, 1-5, 1-

6, 1-7, and 1-8 electrode pairs with respect to electrode 1; 2-3, 2-4, 2-5, 2-6, 2-7, and 2-8 

electrode pairs with respect to electrode 2; and so on). The shape, size, and conductivity of the 

inhomogeneity obtained using the NOSER, Laplace, and Tikhonov algorithms were affected 

highly for a lower number of boundary voltages data. On the other hand, the distributed 

conductivity, shape, and size of the sample obtained by the corresponding reconstructed images 

were not affected highly using GHPF. A comparative study was made between NOSER and 

GHPF considering a metal inhomogeneity in the EIT domain (shown in Figure 5.14a), and the 

obtained results for different measurements at 5 kHz and 1 mA are presented in Figure 5.24. 

Overall, GHPF performed well considering the number of measurements of 64/40/28 in the 

frame compared to the other GN algorithm. 

 
(a) 

 
(b)  

 
(c) 

 
(d)  

 
(e)  

 
(f)  

Figure 5.24. Reconstructed images of a metal inhomogeneity at the centre of EIT domain by varying the number 

of measurements of (a) 64, (b) 40, (c) 28 considering NOSER, and (d) 64, (e) 40, (f) 28 considering GHPP with 

λ = 0.17 at 5 kHz, 1 mA, and 2 Vpp excitation. The maximum conductivity changes was decreased by decreasing 

the number of measurements and a distorted reconstructed image was found for lower number of measurements 

using NOSER. The obtained maximum changes of conductivity using GHPF are 2.78, 2.57, and 1.72 S/m, 

respectively, whereas the changes are very high using NOSER. 

The designed EIT sensor system is found suitable to reconstruct and differentiate the 

conductivity levels of bio-, conductive-, and non-conductive targets with less attenuation. 

Single or mixed inhomogeneities in the domain and the corresponding positions can be 

identified successfully considering 2D or 3D EIT and the useful information can be obtained 
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by measuring impedances at different frequencies. A high-speed data acquisition using 

AD5933 is possible by the in situ measurements precisely up to 100 kHz. A successful 

evaluation on anomaly detection is made using the designed EIT sensor system as shown in 

Figure 5.14, which is very useful in the diagnosis of any abnormalities. The sensor system is 

found repeatable, and less error is found in multiple measurements for a short duration. The 

method is found robust and rapid in measurements to analyze the plant traits.  

In this work, different samples of multiple plant species were taken for the investigation 

using 2D and 3D EIT measurements. The samples of different edible plant slices such as two 

carrots, one radish, and one potato species were taken for 2D operations. In addition, a total of 

six root samples of different plant species such as four carrot roots (tap roots), one potato root 

(tap root), and one Pilea root were taken for 3D operations. The root systems of different plants 

were examined by measuring impedances using the designed EIT sensor system in a controlled 

environment. The changes in dimensions of a tap root (such as a carrot) were identified and the 

reconstructions were made successfully by the calculated conductivity from the measured 

impedances as shown in Figure 5.16. The biomass was varied with the variation of dimensions 

of the roots (such as carrot samples) and a good correlation was found with the measured 

impedances at high frequencies as shown in Figure 5.17. The root size was found highly 

correlated with the measured impedances of the root samples.  

The root distributions and density of the potato and Pilea roots were identified in different 

layers of the electrode array as shown in Figures 5.19 and 5.20, respectively. The root structures 

were reconstructed by calculating the conductivity distributed in different layers of the 

electrode array. The variations in the root systems were able to be detected with the help of 3D 

imaging. Finally, the biomass of a Pilea root was estimated using EIS measurements with the 

help of AD5933 and a good correlation with R2 = 0.983 was found considering eight samples 

in the dataset by the day-wise measurements as shown in Figure 5.21. A model for root biomass 

estimation was predicted by selecting features in different frequencies, as shown in Equation 

(5.15). It is evident that the tomographic results can be utilized considering multi-electrodes 

measurements in different layers of the array for monitoring root growth and biomass 

estimation of the roots in future. The root growth can be monitored in hydroponics or soil media 

in further experiment. In addition, more useful information of the roots can be obtained by 

increasing the number of layers of electrodes. 

Overall, the output excitation and frequency played an important role in reconstruction 

analysis. The output of AD5933 was found stable at a 2 Vpp excitation and the samples were 

found more conductive at the high frequencies. The selection of frequency and the 



 

113 

hyperparameter value depended on the type of inhomogeneity in the domain. The conductivity 

was improved with a lower value of the hyperparameter. The designed electrode array system 

has a good current carrying capability and is suitable for measuring impedances in a large range 

of frequencies. The data measured using the sensor system were found suitable for the 

estimation performance. The developed EIT data acquisition system was tested by the 

experiments and found suitable for real-time high-precision multifrequency measurements and 

monitoring in plant phenotyping.  

The EIS tools such as the Agilent 4284A LCR meter in addition with Agilent34970A 

digital multimeter for measuring boundary voltage/current data [1], and the QuadTech 7600 

impedance analyzer for measuring bioimpedance [11] utilized in different experiments are very 

expensive and heavier in weight. On the other hand, a portable, lightweight, and low-cost EIS 

tool: EVAL-AD5933EBZ, is proposed in this work for developing an automated, reliable, high-

precision with good accuracy, and rapid EIT data acquisition system applicable for plant 

phenotyping. A comparative study was made with the previous research works on the 

development of the EIT data acquisition system, as shown in Table 5.3.  

Table 5.3. A comparison of the features of proposed EIT data acquisition system with the previous research 

works. 

Features 
Zamora-Arellano et al. 

[23] 
Aris et al. [24] Singh et al. [10] 

Proposed EIT 

System 

Imaging system 
2D EIT 

(16 electrodes) 

2D EIT  

(16 electrodes) 

2D EIT  

(16 electrodes) 

2D, and 3D EIT 

(16 electrodes) 

Source frequency 4–80 kHz 20 kHz 1–1000 kHz 1–100 kHz 

Data acquisition and 

CPU 

Arduino Mega, Raspberry 

Pi4 

Arduino Uno, 

Raspberry Pi3 

MCP3008, Raspberry 

Pi 2 

Arduino Uno,  

PC 

Sample rate (kSPS) 30 (24 bit ADC) 0.86 (16 bit ADC) - (10 bit ADC) 1000 (12 bit ADC) 

Multiplexers ADG1406 (4) AD506AKNZ (4) CD4067BE (1) CD74HC4067 (2) 

Software for image 

Reconstruction 
EIDORS (MATLAB) Python EIDORS (MATLAB) EIDORS (MATLAB) 

Applications Health monitoring Anomaly detection  Clinical imaging Plant root imaging  

5.5. Conclusions 

In this work, a multifrequency EIT data acquisition system is developed for applications 

in plant phenotyping with the target of evaluation and 2D/3D reconstruction of the 

inhomogeneities by measuring impedances in a non-destructive manner. The developed EIT 

system is portable, low-cost, and radiation-free. The reconstruction performance is evaluated 

by several algorithms and a comparative study is made. The tomography results of multiple 

plant roots using the EIT sensor system are obtained successfully in the 3D plane considering 

the GN: NOSER algorithm. The designed electrode array sensor system is found suitable for 
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in situ measurements and the developed EIT system can be utilized in the field scale for future 

study. 
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Chapter 6: An In Situ Electrical Impedance Tomography Sensor System for 

Biomass Estimation of Tap Roots 

    The growth, and development of the plant roots are the key considerations for the 

characterization in plant phenotyping. The root system contributes to photosynthesis of the 

plant. Monitoring the root health and estimating the root biomass are very essential to study 

the plant response to environmental change. Root architecture and the corresponding 

characteristics are highly correlated with the most relevant root parameter like biomass. In this 

work, a novel, dynamic, and adjustable EIT sensor system is designed and utilized for 3D 

imaging and assessing the growth of the plant roots. A portable and in situ EIT data acquisition 

system is developed, and the system is found capable of monitoring the changes in root growth 

by obtaining the 3D images. A real-time monitoring of the roots is possible by the non-

destructive evaluation considering impedance imaging technique. A comparative study is made 

with the other research works and the proposed sensor system is found cost-effective and 

capable of performing in a wide range of frequencies. A detail on modeling for the estimation 

of plant root biomass is presented in this chapter. 

    The biomass of tap roots was estimated by measuring impedances using an EIS tool at 

frequencies ranging from 1kHz to 100kHz. The root system was characterized and monitored 

by the sensor in a controlled environment at room temperature, and a non-invasive 3D imaging 

was made in both water and soil media with the help of an open-source software EIDORS. The 

biomass of the root was found highly correlated with the measured impedances. The changes 

in conductivity contributed to obtaining tomography results for different root samples with 

various biomass weights. The root samples were classified for different biomass and identified 

successfully. New EIS models for estimating the root biomass were predicted at multiple 

frequencies and validated with less error using non-destructive measurements. The proposed 

sensor is found capable for the further applications in the experiments of field setting.  

    The detail analysis and findings of this chapter is available in the following published 

manuscript. R.B. (first author) performed the experiments, analyzed the data, and wrote the 

draft of the manuscript. K.A.W. suggested for the experiments and data analysis and edited the 

draft. K.A.W. secured funding for this work. 

    Basak, R.; Wahid, K.A. An In Situ Electrical Impedance Tomography Sensor System for Biomass Estimation 

of Tap Roots. Plants 2022, 11, 1713. 

 
 

 



 

117 

An In Situ Electrical Impedance Tomography Sensor 

System for Biomass Estimation of Tap Roots 

Rinku Basak * and Khan A. Wahid 

Department of Electrical and Computer Engineering, University of Saskatchewan,  

Saskatoon, SK S7N 5A9, Canada; khan.wahid@usask.ca 

* Correspondence: rib595@mail.usask.ca 

Abstract: Root biomass is one of the most relevant root parameters for studies of plant 

response to environmental change. In this work, a dynamic and adjustable electrode array 

sensor system is designed for developing a cost-effective, high-speed data acquisition system 

based on electrical impedance tomography (EIT). The developed EIT system is found to be 

suitable for in situ measurements and capable of monitoring the changes in root growth and 

development with three-dimensional imaging by measuring impedances in multiple 

frequencies with the help of an EIT sensor. The designed EIT sensor system is assessed and 

calibrated by the inhomogeneities in both water and soil media. The impedances are measured 

for multiple tap roots using an electrical impedance spectroscopy (EIS) tool connected to the 

sensor at frequencies ranging from 1 kHz to 100 kHz. The changes in conductivity are 

calculated by obtaining the boundary voltages from the measured impedances for a given 

stimulation current. A non-invasive imaging method is utilized, and the spectral changes are 

observed accordingly to evaluate the growth of the roots. A further root analysis helps us 

estimate the root biomass non-destructively in real-time. The root size (such as, weight, length) 

is correlated with the measured impedances. A regression analysis is performed using the least 

square method, and more than 97% correlation is found for the biomass estimation of carrot 

roots with an RMSE of 4.516. The obtained models are later validated using a new and separate 

set of carrot root samples and the accuracy of the predicted models is found to be 93% or above. 

A complete electrode model is utilized, and the reconstruction analysis is performed and 

optimized by utilizing the impedance imaging technique in difference method. The tomography 

of the root is reconstructed with finite element method (FEM) modeling considering one-step 

Gauss–Newton (GN) algorithm which is carried out using an open source software known as 

electrical impedance and diffuse optical tomography reconstruction software (EIDORS).  

Keywords: electrical impedance tomography; image reconstruction; plant phenotyping; root 

growth; root biomass 
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6.1. Introduction 

EIT is a non-invasive imaging technique by which the changes in conductivity 

distributions are reconstructed. Electrical conductivity images of any closed domain under test 

can be reconstructed by knowing the boundary potentials [1–3]. The sensor system consists of 

an electrode array with a single layer for two-dimensional (2D) or multiple layers for three-

dimensional (3D) matter. The current density is distributed inside the medium based on the 

stimulated current through the electrodes. Current excitation and voltage acquisition are 

repeated continuously and rapidly until all the independent electrode combinations are 

deployed. The data obtained by measuring all possible impedances are used to reconstruct an 

image, which provides qualitative and quantitative information of the matter.  

A multifrequency EIT (MFEIT) system gives more useful information about biological 

matters because the electrical voltage appearing across the matter is frequency dependent [4–

6]. Significant information of the matter can be obtained by injecting currents in multiple 

frequencies. A good conductivity distribution of an object can be mapped in the domain under 

test by measuring the electrical impedances through the multiple electrodes at various 

frequencies. The image of the object can be reconstructed by calculating the boundary 

potentials for homogeneous and inhomogeneous conditions of the domain. EIT problems can 

be solved numerically using finite element method (FEM) modeling [3,7]. In forward solve, 

the boundary potentials are calculated by the injected current and known conductivity in the 

EIT domain. On the other hand, the unknown conductivity changes are calculated in the inverse 

solve by knowing the differences in boundary potentials for the given stimulation current in 

the domain. EIT has high temporal resolution, but poor spatial resolution, so this technique is 

sensitive to noise [7]. The spatial resolution can be improved by increasing the number of 

electrodes in the EIT sensor system and by choosing the correct drive pattern upon selection of 

electrode pairs for current and voltage stimulation [8,9] 

A multifrequency impedance imaging technique considers multi-electrode array (eight or 

more electrodes) in a system. The estimation performance can be potentially improved by 

considering multispectral impedance imaging using an EIT system [4–6]. EIT is a radiation 

free and cost-effective alternative to other laboratory-based radiative imaging methods such as 

magnetic resonance imaging (MRI), computed tomography (CT), and positron emission 

tomography (PET) [10–12]. The physiological information of the matter can be obtained from 

EIT images non-destructively, which can be used for real-time monitoring [9]. Due to its 

unique advantages, EIT has become useful in applications in the area of biomedical imaging, 

biotechnology, nanotechnology, and plant physiology [4–6,8–12]. Previously, several EIT data 
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acquisition systems were developed for medical applications; 2D imaging was performed and 

utilized in health monitoring [13], diagnosis of human body diseases [14], and clinical imaging 

[15]. EIT image reconstruction was studied, and successful evaluation was made considering 

different algorithms [7,16–19]. An efficient multi-task structure for multifrequency EIT [7], 

brain imaging [20], anomaly detection [21,22], and cell imaging [23] using EIT were studied. 

EIT was also used for crop root systems in agriculture in a limited capacity [10–12]. 

The root system is complex as it provides water and nutrients which are required for 

photosynthesis to the plant stems and leaves by absorbing them from soil. An investigation into 

crop root traits, and the growth, development, and biomass of the root is very important in plant 

phenotyping. The investigation can be made by varying the electrical parameters, such as 

capacitance, resistance, or impedance. Identifying the size, shape, and structure of the roots is 

very important in biological study of the plant characteristics, and their electrical parameters 

were measured [24–27]. Analyses of root growth [24], recovery of the root body of a plant 

system in water [25], and the estimation of root biomass [26] were made previously by 

measuring the electrical capacity. Newill et al. imaged the water distribution in the root zone 

using the capacitively coupled impedance measurement technique which was acquired at 

excitation frequencies from 10 Hz to 13 MHz using a Hewlett Packard 4192A impedance 

analyzer [27]. The measurements were made on laboratory-scale rhizotron containers with a 

static array of 60 electrodes in a soil media and recovered 2D information only. In addition, the 

required instrumentation for the experiments was found to be very costly.  

In several experiments, the dependency of electrical impedance on plant characteristics 

was evaluated by varying multiple frequencies and the tomography results were obtained [10–

12]. Weigand and Kemna utilized a multifrequency EIT in a laboratory for characterizing and 

monitoring an oilseed root system in a water-filled rhizotron [10]. Imaging and characterization 

of the oilseed root using spectral EIT considering polarization effects were also carried out 

using water [11]. The measurements were limited to water media with a maximum operating 

frequency of 45 kHz. The method only recovered 2D information of the root system in a 

rhizotron container with a static array of 38 electrodes at the laboratory scale. In addition, the 

method required expensive instrumentation. On the other hand, Corona-Lopez et al. visualized 

the developing root system of oilseed rape plants in a compost-filled container using EIT [12]. 

Some 3D information of the root system in a container with a static array of 32 electrodes was 

recovered in a limited capacity with a low operating frequency of 5–10 kHz. No information 

was found about the high spectral reconstructions. During growth and development, the 

changes in root characteristics can be evaluated by the measured impedances considering 
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frequency difference and time difference EIT [7,22,28]. More information of the roots can be 

obtained using 3D imaging.  

A new non-invasive, cost-effective, and high spectral range 3D EIT system, along with the 

existing measurement methods, is still a constant requirement in the field of root study. The 

ability to characterize the root in both water and soil media, to perform non-invasive imaging 

using 3D at the laboratory and field scale, to monitor growth in dimensions, and to estimate the 

biomass is still lacking in the EIT system. EIT using a multiple electrode array with the 

capability of in situ measurements seems to be a promising method to fulfill the scope of further 

research on plant root tomography. Hence, a new EIT sensor system with dynamic and 

adjustable electrode array is designed in this work for developing a low-cost, in situ 3D EIT 

data acquisition system with the target of rapid biomass estimation of tap roots by non-

destructive impedance measurements in multiple frequencies.  

6.2. Materials and Methods 

6.2.1. Design of EIT Sensor System 

A new EIT sensor system was designed using an electrode array considering three-layer 

of electrodes for in situ measurements. Eight plastic sticks of 8 inches in length and 0.25 inches 

in diameter were taken. A total of 24 electrodes with 3 electrodes per stick were configured in 

three different layers of top, middle, and bottom positions as shown in Figure 6.1. The 

electrodes were numbered sequentially in the three layers of array and the measurements were 

carried out in the 3D domain. The type and size of the electrodes were optimized by several 

experiments considering previous research works [15,29,30]. Steel electrodes were found to be 

suitable with good current carrying capability and a good correlation was found between the 

measured impedances and dimensions (length, diameter) of the electrodes. Steel material is 

comparatively less expensive than highly conductive materials such as silver, copper, or 

aluminum. In this work, a low-cost sensor was designed by using the steel electrodes in the 

array.  

The selected metal electrode length was 2 inches with a diameter of 0.0625 inches each. 

The spacing between the two adjacent layers of electrodes in the stick was considered 1 inch. 

Three layers of electrodes were connected to three different wires to establish the probe 

connection for the measurements. A good conductivity distribution was found with the 

optimized dimensions of the electrodes and the electrode array system was found to be suitable 

for utilization in both water and soil media considering a planar-aligned electrode placement 

configuration [30]. The designed electrode array is dynamic and adjustable which increased 
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the suitability for the in situ measurements. In different experiments of this work, the spacing 

between two adjacent sticks was optimized as 2.5 inches for placing in a circle of the water or 

soil media. 

 

 
(a) 

 
(b) 

Figure 6.1. (a) Electrode array for designing an in situ 3D EIT system using 24 electrodes in eight plastic sticks 

of three layers each, and (b) distributed electrodes in three layers (top, middle, and bottom) of a plastic stick.  

6.2.2. Development of EIT Data Acquisition System 

An automated EIT data acquisition system is developed for 3D operations as shown in 

Figure 6.2. An EIS tool (EVAL-AD5933EBZ) was interfaced with the designed EIT electrode 

array system, in addition with two electrode switching multiplexers (CD74HC4067), Arduino 

Uno (ATmega328P), EIS data storage (PuTTY), and PC, respectively. AD5933 with on-board 

frequency generator is a high precision impedance converter system, and it has a programmable 

graphic user interface with frequency sweep capability and serial I2C interface [31,32]. At first, 

the current carrying capability of the electrodes was checked by injecting current through the 

driving electrodes at different frequencies using a 15 MHz DDS signal generator (JDS6600). 

A four-pole method was applied, and the ac sensing voltages were measured by the sensing 

electrodes using a multimeter. The current and voltage levels in multiple electrodes of the array 
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were examined by varying stimulation methods. Once the functionality of the sensor was tested 

it was utilized for the measurements in different experiments. 

The impedance in the EIT domain was measured by the current injected through the 

multiple electrodes with an automated and appropriate EIS measurement setting using Arduino 

Uno programming. A two-pole method was applied and the measured impedances by the 

electrodes in the array were stored in the data storage for different frequencies of 1 kHz to 100 

kHz. The measurements were made using the output excitations of 0.2 to 2 Vpp controlled by 

the EIS tool (AD5933). The measured impedances of the electrodes were found to be very 

sensitive to the two-pole measurements for any given object in the EIT domain. Finally, the 

data stored using the acquisition system was analyzed for EIT image reconstruction using 

EIDORS [3,13,15]. 

 

Figure 6.2. A developed EIT data acquisition system using the designed electrode array for 3D imaging. 

6.2.3. Modeling and Calculating Conductivity  

EIT problems were solved numerically considering a finite element method (FEM) 

modeling using an open source software, EIDORS in MATLAB. The flowchart of EIDORS 

operation is presented in Figure 6.3. In addition, a Netgen cylindrical model of 

‘ng_mk_cyl_models’ was considered for modeling in a 3D domain. The model consisted of 

4020 nodes, 17,284 elements, and 4034 boundaries considering 24 electrodes distributed in 

three layers of the array (8 electrodes per layer). The Netgen FEM mesh for the reconstruction 

in a cylindrical domain of 3D EIT is presented in Figure 6.4. The spatial resolution of EIT can 

be improved by selecting the correct drive pattern in the model. The current/voltage stimulation 

was made by selecting the electrode ports appropriately in the array. The model was tested with 

different drive patterns and the reconstruction results were evaluated. 
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Figure 6.3. Flowchart of EIDORS operation with the target of image reconstruction by calculating conductivity 

using 3D EIT. 

 

Figure 6.4. Netgen 3D FEM mesh for three layers of electrode array—a cylindrical domain to reconstruct the 

image using EIDORS in MATLAB. 

A complete electrode model was used to relate the internal conductivity distribution to the 

boundary voltage measurement by the injected current through the electrodes of an EIT system. 

The conductivity distribution 𝜎 is known by the electric potential V in the EIT domain 𝛺 for L 

number of electrodes. The EIT governing equation can be described by Laplace’s equation 

(derived from Maxwell’s equation) as [2,9] 

                                         ∇ · (𝜎∇𝑉) = 0    in domain 𝛺                                               (6.1) 
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The conductivity map of an object in a single step can be calculated by knowing the 

boundary voltage difference for the given injected current as [2,9,20] 

                                       ∆𝜎 = (𝐽𝑇𝑊𝐽 + 𝜆2𝑅)−1𝐽𝑇𝑊∆𝑉                                              (6.2) 

where λ is the hyperparameter that controls the trade-off between resolution and noise 

attenuation, W is the inverse of the covariance of measurements, R is an estimation of the 

inverse of the noise covariance, and J is the Jacobian which is a determinant for the 

measurement of voltage sensitivity. The calculation of the Jacobian matrix depends on the 

current injection in a 3D electrode array system. The optimum conductivity change is 

calculated by the voltage difference, ∆𝑉 = 𝑉𝑖 − 𝑉ℎ, where Vh and Vi are the boundary voltages 

for homogeneous and inho mogeneous media. 

The changes in conductivity were obtained by the following steps: (i) model selection, (ii) 

stimulation, (iii) loading experimental data, and (iv) calculating the conductivity using one-

step Gauss–Newton (GN) algorithm such as prior NOSER (Newton’s one-step error 

reconstructor). In difference imaging, the Gauss–Newton method can be used to minimize the 

differences between homogeneous and inhomogeneous data. The GN method was employed 

as an inverse solver to reconstruct the internal conductivity distribution for 3D modeling. GN: 

NOSER performed well, and good observations were made from the tomography results 

compared to the other regularization methods such as Tikhonov, Laplacian, and Gaussian high-

pass filtering (GHPF), respectively. A satisfactory result was also found using Tikhonov but 

with a limited capacity. On the other hand, no satisfactory result was found using Laplacian, 

and GHPF was not able to generate 3D models.  

In the forward solution, the experimental data obtained from homogeneous and 

inhomogeneous measurements for the given 3D EIT domain were utilized in the cylindrical 

FEM mesh using EIDORS with an appropriate stimulation, and a difference method of 

reconstruction was applied using an optimized model in the inverse solution. The size of the 

domain, inhomogeneity position and size, stimulation current/voltage (I/V), frequency (f), and 

noise controlled hyperparameter (λ) values were optimized for calculating the changes in 

conductivity and reconstructing the image of the given inhomogeneity in the domain. 

6.2.4. Sensor Characterization 

After designing, the EIT sensor was tested and characterized by the injected current. The 

conductivity distribution was evaluated for multiple inhomogeneities in the domain. The 

current distribution through the electrodes was checked for different voltage levels at multiple 

frequencies. Different sensing methods were applied, and the dimensional dependency on the 
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measurements of the inhomogeneity was evaluated. Later, the stimulation current was fixed at 

1 mA and the boundary voltages were calculated by measuring impedances in homogeneous 

and inhomogeneous media at different frequencies, and the difference of those was used to map 

the conductivity of the inhomogeneity in the domain. 

The EIS measurements of the samples were carried out at room temperature (20 °C) in a 

controlled environment using the designed EIT sensor system and the reconstruction analysis 

was performed. Carrot (Daucus carota L.) root was used in the measurements as a sample of 

tap root system. Carrot is a widely cultivated edible plant species with a variety of shapes, 

sizes, and colors. The carrot roots have good storage ability and contain abundant biologically 

active substances. The carrot root is reach in minerals and antioxidants and is a good source of 

carotenoids (natural pigments of photosynthetic organisms). Carrots are becoming more 

popular due to their abundant nutrients and benefits for medical applications. In addition, carrot 

root has a good conductivity distribution in a wide range of frequencies and has been found to 

be suitable for the study of the growth and development in plant biology. Hence, the carrots 

were chosen as a biological material instead of other root plants. The electrical impedance (Z) 

of a sample measured by the sensor connected to EIS tool (AD5933) is related to the DFT 

magnitude of √𝑅2 + 𝑋2 and gain factor as follows [31,32]: 

                                  𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) =
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟×√𝑅2+𝑋2
                                   (6.3) 

where the gain factor is calibrated by a known resistance of 7.5 kΩ. The gain factor varies with 

the variation of output voltage excitation (Vout) and physical frequency (f) for a given sample. 

Here, R and X are the DFT real and imaginary outputs registered at different frequency codes 

generated by the physical frequency, 𝑓 = 𝑓𝑐𝑙𝑘 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐶𝑜𝑑𝑒/229, where fclk is the master 

clock frequency of 16.776 MHz for the internal oscillation [31].  

Initially, the functionality of AD5933 was examined in a controlled environment at room 

temperature by employing the two-electrode method. A pair of electrocardiogram (ECG) 

electrodes connected to the EIS tool were separated by d distance and the capacitive reactance, 

Xc of a sample was calculated as 𝑋𝑐 = 1/2𝜋𝑓𝐶, the sample capacitance, 𝐶 = 휀𝐴/𝑑, where A 

is the cross-sectional area, and ε is the medium constant. The reactance is related to the 

impedance of the sample as 𝑋𝑐 = 𝑍 sin 𝜃, where θ is the phase of the electrical impedance. In 

this work, the magnitude of impedance obtained from AD5933 was taken for analysis in 

different experiments. The influence of the impedance magnitude in determining the sample 

characteristics and modeling was found to be significantly higher than the phase. The 

impedance of a sample is dependent on frequency, and the spectroscopy used to determine the 
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sample characteristics can be obtained for a wide range of frequencies. The EIS characteristics 

of the sample were obtained by varying frequencies up to 100 kHz using the EIS tool.  

The impedances for a carrot slice of 0.2 inches in length and 1 inch in diameter were 

measured by varying the output excitation from 0.2 to 2 Vpp and spacing between two 

electrodes from 0.3 to 1.5 cm. A good correlation with a stable output was found for 2 Vpp 

excitation and 1 cm spacing of the electrodes as shown in Figure 6.5 and Figure 6.6, 

respectively. More than 97% correlation was found, and the impedance profile indicated a good 

conductivity distribution with the optimized output excitation and spacing of the electrodes.  

 

(a) 

 

(b) 

Figure 6.5. (a) EIS of a carrot slice using the two-electrode method by varying output excitation, and (b) the 

corresponding correlation at 5 kHz. No variation was observed below 0.4 Vpp excitation because of saturated 

output. A good correlation with a stable output was found for 2 Vpp excitation considering 1 cm spacing of the 

electrodes. 
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(a) 

 

(b) 

Figure 6.6. (a) EIS of a carrot slice using the two-electrode method by varying separation of the electrodes, and 

(b) the corresponding correlation at 5 kHz. A good correlation was found for 1 cm spacing of the electrodes 

considering 2 Vpp excitation. 

The sample impedance was decreased with the increase of output excitation, on the other hand, 

the impedance was increased with the increase of electrodes separation. In addition, the sample 

was found to be more conductive at the high frequencies. It was observed that the impedance 

was not significantly varied at 0.2 Vpp excitation, hence, in further experiments the output 

excitation was not taken below 0.4 Vpp. 

Next, the designed EIT sensor system was characterized using a tap root system such as 

carrot root in water media. The electrode sticks were placed in a black cylindrical plastic 

domain of 7 inches in height and 6 inches in diameter as shown in Figure 6.7. The adjacent 

spacing between the sticks was 2.5 inches. The homogeneous media was created by filling the 

domain with water. The top layer could not be fully immersed in water because of the greater 

height of the stick, but the middle and bottom layers of electrodes were fully immersed. A 
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planar-aligned electrode placement configuration was chosen for 3D EIT imaging where the 

electrodes were placed vertically in the same line of the domain and the measurement method 

with this arrangement was found to be robust in obtaining tomography with less noise. The 

electrodes were configured and numbered sequentially in different layers, and the 

measurements were taken with the target of obtaining tomography of a carrot of 6.5 inches in 

length. The sensor system with AD5933 was characterized by varying the excitation from 0.4 

to 2 Vpp at different frequencies. The impedances were measured with and without the carrot, 

and a difference was applied to obtain the conductivity of the carrot. Although a partial 

immersion of the carrot is shown in Figure 6.7b to make the sample visible, the carrot was fully 

immersed in water when the inhomogeneous measurements were taken.  

 

 
(a) 

 
(b) 

Figure 6.7. (a) EIT electrode array sensor system, and (b) experimental setup for EIT sensor characterization 

using electrodes in water media and a carrot of 6.5 inches in length. During the measurements the carrot was fully 

immersed in water. The visibility of the sample may vary based on the length of the sample with respect to domain 

height.  

The EIS measurements were taken at different frequencies of 5 kHz to 100 kHz. A total of 

64 measurements (1–1, 1–2, 1–3, 1–4, 1–5, 1–6, 1–7, and 1–8 with respect to electrode 1; 2–1, 

2–2, 2–3, 2–4, 2–5, 2–6, 2–7, and 2–8 with respect to electrode 2, and so on) were taken from 

eight electrodes in one layer. Similarly, the measurements were taken in other layers of the 

array. The variation of impedances was found to be sinusoid at different electrode positions as 

shown in Figure 6.8. The output excitation was varied at different frequencies for the 

measurements in the top to bottom layers of the EIT electrode array. The impedance was 

decreased with the increase of frequency. The measured impedance was high at a low excitation 

of 0.4 Vpp when the frequency was fixed, and an oscillated output was observed due to the 
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oscillation of gain and DFT outputs at a given stimulation current. A high oscillation was found 

at low frequency of 5 kHz, and the effect was reduced at the high frequencies. On the other 

hand, the output with lower impedances was found to be stable at a higher excitation of 2 Vpp 

for low or high frequencies and all the measurements in the further experiments of this work 

were carried out accordingly. 

A trade-off between output excitation and gain factor was found on obtaining stable output 

for the given frequency and operating voltage of 2.7–5.5 V of AD5933. The impedance was 

decreased by increasing the output excitation and frequency as shown in Figure 6.8. A more 

stable output was found at a high excitation of 2 Vpp. Although the measurements were taken 

from top to bottom layers of the electrode array, the measured data obtained from middle and 

bottom layers of electrodes were only taken to reconstruct the image of the carrot 

inhomogeneity. A Netgen 3D FEM mesh for two layers of electrode array was generated using 

EIDORS as shown in Figure 6.8c. The model consisted of 3287 nodes, 14,296 elements, and 

3198 boundaries considering 16 electrodes distributed in two layers of the array (8 electrodes 

per layer). A tomography of the carrot was obtained at 5 kHz, and 1 mA considering GN: 

NOSER (λ = 2.17) in the inverse model as shown in Figure 6.8d. A total of 208 boundary 

voltages obtained from the individual measurement of homogeneous and inhomogeneous 

media were utilized to obtain the reconstructed conductivity image of the sample. A conductive 

behavior of the carrot was found for the given stimulation current and frequency. After 

normalizing the boundary voltages, the maximum change in conductivity of 0.05 was 

calculated. The changes in conductivity for the given sample were varied using Tikhonov and 

optimized by varying hyperparameter value. Overall, 3D information of the sample was 

obtained showing the variation in conductivity level at different positions according to the 

shape and size of the sample. Similarly, the observation can be made in other frequencies and 

the spectral variations can be studied. To overcome the limitations in obtaining good 

tomography a new plastic domain of longer height can be chosen in further experiments.  
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(a) 

 
(b) 

 
(c) Netgen 3D FEM Mesh (2-layer electrode array)  

 
(d) NOSER (λ = 2.17) 

 
(e) Tikhonov (λ = 2.17) 

 
(f) Tikhonov (λ = 0.078) 

Figure 6.8. Impedance spectroscopy for an inhomogeneous media (water + carrot) in the domain by varying (a) 

output excitation (0.4–2Vpp), and (b) frequency (5–100 kHz) obtained from bottom layer of the electrode array. 

(c) Netgen 3D FEM mesh for two layers of electrode array. A tomography of 6.5 inch carrot at 5 kHz, 1 mA, and 

2 Vpp excitation considering (d) GN: NOSER (λ = 2.17), (e) Tikhonov (λ = 2.17), and (f) Tikhonov (λ = 0.078). 

(d)–(f) The scale represents the changes in conductivity. The reconstructed result was obtained by measuring the 

impedances from middle and bottom layers of the electrode array.  

Later, a new plastic container of 8 inches in height and 10 inches in diameter was taken 

for the sensor characterization in soil media with the target of obtaining better reconstructed 
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results by improving the accuracy in the shape and size of the root samples and to fulfill the 

main objective of the work. The container was filled with 10.8 L soil (contains a combination 

of humus, peat moss, sand, and perlite) and the designed EIT electrode array was placed in the 

soil in a circle of 6 inches in diameter as shown in Figure 6.9. In the soil–electrode continuum, 

the measurements in the soil are dependent on the position and distance of the electrodes from 

each other, and insertion depth into the soil. The spacing between two adjacent sticks was 

optimized as 2.5 inches and the electrodes in three different layers were configured for the 

measurements sequentially. A planar-aligned electrode configuration was made for 3D 

imaging. In order to obtain the uniform distribution of impedances, the electrodes facings of 

the sticks in the array were maintained with appropriate alignment. 

 

 
(a) Homogeneous (Soil) 

 
(b) Inhomogeneous (Soil + Carrot) 

 
(c) EIT measurement setup for carrot root biomass 

Figure 6.9. (a) Homogeneous media, (b) inhomogeneous media, and (c) 3D EIT experimental setup for biomass 

estimation of tap roots in soil. Z11–Z88 are the self-impedances measured from the electrode ports 1–1 to 8–8, and 

I is the current injected through the arrangement of circular electrodes. 
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The EIT sensor system was tested and characterized by the injected current in soil media. 

Different sensing methods were applied, and the distributed conductivity in the 3D EIT domain 

was calculated by the obtained boundary voltages in multiple frequencies. The voltages were 

obtained from the measured electrical impedances considering 1 mA current at the boundary. 

During the characterization, it was found that the impedance pattern may vary (i) if the 

electrode position changes horizontally, (ii) if the electrode position changes vertically, and 

(iii) if the diameter of the circle in soil media of the domain changes. Layer-wise from top to 

bottom of the electrode array, the EIS measurements were taken for different frequencies of 5 

kHz to 100 kHz by varying the output excitation from 0.4 Vpp to 2 Vpp. The measurements 

were taken for homogeneous (soil) and inhomogeneous (soil + carrot) media using a new carrot 

sample of 6.75 inches in length, and the results obtained from the top layer of the electrode 

array are presented in Figure 6.10. The impedance was decreased by increasing the excitation 

and frequency. The result was found to be more stable at the high excitation of 2 Vpp.  

Soil moisture is one of the most important factors which may affect the measured 

impedances and that was taken in consideration. Electrical impedance measurements are very 

sensitive to the soil moisture content [27]. Hence, a difference was made between 

inhomogeneous and homogeneous measurements to obtain the actual impedance of the carrot. 

A tomography result of the carrot sample was obtained by measuring impedances from top to 

bottom layers of the electrode array and obtaining the normalized voltage difference. A total 

of 504 boundary voltages obtained from the individual measurement of homogeneous and 

inhomogeneous media were utilized to obtain the reconstructed conductivity image of the 

sample. The maximum changes in conductivity of 0.24 was obtained at 5 kHz, and 1 mA 

considering GN: NOSER (λ = 2.17) in the inverse model as shown in Figure 6.10c. An 

optimized conductivity result was obtained using Tikhonov also by varying the hyperparameter 

value. In overall, a good tomography was found with better shape and size of the sample 

considering 1 mA stimulation current for three layers of electrode array. EIDORS operation 

was made to obtain the reconstructed results, and similar considerations for modeling, framing, 

and scaling using Netgen FEM mesh were made for further experiments in this work. The 

confinement in the EIT domain was improved with higher numbers of nodes, elements, and 

boundaries considering 24 electrodes distributed in three layers of the array (8 electrodes per 

layer) and the error in size obtained by the reconstructed image against the real carrot size was 

reduced. The error in size of the sample can be further minimized by increasing the number of 

layers of electrodes in the sensor array.  
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(a) 

 
(b) 

 
(c) NOSER (λ = 2.17) 

 
(d) Tikhonov (λ = 2.17) 

 
(e) Tikhonov (λ = 0.09) 

Figure 6.10. (a) Measured impedances from the top layer of soil electrodes by varying output excitation at 5 kHz. 

Impedance was decreased by increasing the output excitation and a more stable output impedance was found at 2 

Vpp excitation. (b) Top layer impedances for an inhomogeneous media (soil + carrot) by varying frequencies (5 

to 100 kHz) at 2 Vpp excitation. The impedance was decreased by increasing frequency. A tomography of 6.75 

inch carrot at 5 kHz, 1 mA, and 2 Vpp excitation considering (c) GN: NOSER (λ = 2.17), (d) Tikhonov (λ = 2.17), 

and (e) Tikhonov (λ = 0.09). (c–e) The scale represents the changes in conductivity. A good reconstruction of the 

carrot was made by measuring the impedances from top, middle, and bottom layers of the electrode array. 
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6.2.5. Data Process and Analysis 

The biomass estimation of tap roots was made at room temperature (20 °C) in a controlled 

environment. Multiple carrot roots were taken in different experiments as the samples of tap 

roots and their EIS measurements were carried out. The EIS data taken in multiple ports of the 

EIT electrode array sensor were stored using an open source software PuTTY (interfaced with 

Arduino Uno COM3 port). A statistical analysis was performed with the obtained data using 

PrimaXL Data Analysis ToolPak [32]. A multiple linear regression analysis was carried out 

considering the least square method (the most common method of estimation in machine 

learning) using Equation (6.4). 

                                  �̂� = 𝜔0 + 𝜔1𝑍𝑓1 + 𝜔2𝑍𝑓2 + ⋯ + 𝜔k𝑍𝑓𝑘                                    (6.4) 

where Zf1, Zf2, …, Zfk are the measured average impedances for k number of features of f1 to fk. 

The intercept is 𝜔0, and 𝜔1, 𝜔2, … , 𝜔𝑘 are the coefficients. 

Seven features of 5, 15, 25, 40, 60, 80, and 100 kHz were taken in the dataset. First, the 

multicollinearity problem was examined. A dataset suffers from multicollinearity: (i) if the 

correlation coefficient (R) between the explanatory variables is close to 1, (ii) if there is no 

change in coefficient of determination (R2) after adding an independent variable, and (iii) if the 

tolerance value (TV = 1 − R2) is less than 0.1 and the variance inflation factor (VIF = 1/TV) is 

greater than 10. The highly correlated features of more than 95% correlation coefficient were 

removed. Later, the Wrapper backward elimination method was applied considering the 

probability of rejection of null hypothesis p ≤ 0.05 using an individual T-test [32]. After several 

iterations, the training and validation was performed considering the overall F-test (p ≤ 0.05) 

and the features were selected accordingly.  

In addition, layer-wise mean (m) and standard deviation (SD) of the measured impedances 

were taken and the models were evaluated for different frequencies. The obtained data suffered 

from multicollinearity and ridge regression was applied with the help of Equation (6.5). 

       �̂� = 𝜔0 + 𝜔1𝑍𝑙1𝑚 + 𝜔2𝑍𝑙1𝑆𝐷 + 𝜔3𝑍𝑙2𝑚 + 𝜔4𝑍𝑙2𝑆𝐷 + 𝜔5𝑍𝑙3𝑚 + 𝜔6𝑍𝑙3𝑆𝐷             (6.5) 

where the intercept is 𝜔0, and 𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6 are the coefficients. Zl1m, Zl2m, Zl3m are the 

mean values, and Zl1SD, Zl2SD, Zl3SD are the standard deviation of impedances in layer one, two, 

and three, respectively. 

Ridge regression addresses some of the problems of ordinary least squares by imposing a 

penalty on the size of coefficients with the target of minimizing the cost function. The ridge 

coefficients minimize a penalized residual sum of squares, min
𝜔

‖𝑦 − 𝑍𝜔‖2
2 + 𝛼‖𝜔‖2

2. Here, 

𝛼 ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of 
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α, the greater the amount of shrinkage and thus the coefficients become more robust to 

collinearity. The ridge includes all the predictors in the final model which are more relevant 

and useful. The method utilized the regularization technique to prevent the multicollinearity. 

The model complexity was reduced by reducing the variance of the model significantly.  

6.3. Results 

6.3.1. Fresh Weight Biomass Estimation 

The root system of a carrot is tap root and to evaluate the growth of the root in different 

days of the growing stage four different carrot samples of various fresh biomass weights 

(W = 63, 78, 93, and 142 g) and lengths (L = 5.5, 6.75, 7.25, and 8.5 inches) were inserted 

in a given area of soil. The impedances were measured using the designed electrode array 

sensor system with and without the carrot in soil for 2 Vpp excitation, and the difference 

was taken to obtain the actual impedance of the carrot. The impedances were measured at 

different positions of the soil electrodes from top to bottom layers by varying frequency 

from 5 kHz to 100 kHz. The average impedance for the lower sized carrot (sample 1) in 

soil was found to be very high, on the other hand, a lower impedance was found for the 

higher sized carrot (sample 4) in soil as shown in Figure 6.11. The actual average 

impedances of the carrots were correlated with the fresh biomass weights and lengths of 

the carrots at different frequencies. The impedance was decreased with the increase of 

biomass weight and length of the carrot as shown in Figure 6.11c and Figure 6.11d, 

respectively. A maximum correlation (negative) of more than 90% coefficient was found 

in both cases at 100 kHz. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 6.11. (a) Carrot samples, (b) the EIS of four different carrot samples in soil, and correlation with (c) 

biomass weights, (d) lengths of the samples at 100 kHz. A more than 90% correlation was found between the 

actual average impedance and the root size (weight and length) of the samples. 

To visualize the developing root system and associated changes in soil conductivity, 3D 

reconstructions of the samples were performed. The impedance tomography of the samples 

was obtained using the difference method applying one-step GN algorithm as shown in Figure 

6.12. The boundary voltages were obtained from the measured impedances in homogeneous 

and inhomogeneous conditions of the EIT domain, and those were utilized to obtain the 

reconstructed images of the samples. The changes in conductivity were calculated from the 

difference of normalized boundary voltages at 100 kHz and 1 mA using NOSER (λ = 2.17). 

The adjacent tomography results represent the variation of changes in conductivity by varying 

the sample size (weight and length). The conductivity was increased by increasing the biomass 

weight and length of the samples. Hence, it is evident that the increases in conductivity with 

the increase of sample size indicates the growth and development of the root system in soil 

with time.  
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In addition, the biomass of the root samples can be classified as very low, low, medium, 

and high from the obtained maximum conductivity changes of 0.017, 0.038, 0.07, and 0.11, 

respectively, as shown in Figure 6.12. The measured average impedance considering sample 1 

in the soil media was found to be much higher than the other samples (Figure 6.11b). Hence, 

the calculated conductivity changes for sample 1 was found to be much lower than the others. 

On the other hand, the obtained results show the highest conductivity changes for sample 4.  

 
(a) Sample 1 at 100 kHz 

(W = 63 g, L = 5.5 inch) 

 
(b) Sample 2 at 100 kHz  

(W = 78 g, L = 6.75 inch) 

 
(c) Sample 3 at 100 kHz  

(W = 93 g, L = 7.25 inch) 

 
(d) Sample 4 at 100 kHz  

(W = 142 g, L = 8.5 inch) 

Figure 6.12. Tomography of four different carrot samples in soil media at 100 kHz, 1 mA, and 2 Vpp excitation 

considering NOSER (λ = 2.17) in the inverse model. (a–d) The scale represents the changes in conductivity. The 

conductivity for the lower sized carrot (sample 1) was found to be very low, on the other hand, a highest 

conductivity was found for the higher sized carrot (sample 4). 

The shape of a root sample can also be represented by the variation in conductivity in top to 

bottom layers of the tomography. A noisy and deteriorated shape in the reconstructed image 

was found for sample 1 (Figure 6.12a), and comparatively less noise with better shape in the 

reconstructed image was found for sample 4 (Figure 6.12d). A moderate conductivity and a 

satisfactory result in shape was found for sample 2 (Figure 6.12b), and sample 3 (Figure 6.12c), 
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respectively. Therefore, the EIT sensor is found to be capable of evaluating the growth and 

development of the plant root by obtaining the changes in conductivity and other associated 

information from tomography results. 

6.3.2. Dry Weight Biomass Estimation 

The carrot samples were then oven dried at 110 °C for six hours and the biomass weights 

were reduced to 8, 9, 15, and 27 g, respectively, along with the dimensions. By measuring 

impedances an improved correlation with R2 = 0.845 at 100 kHz was found for dry weight 

biomass estimation of the samples as shown in Figure 6.13. Biomass in terms of fresh weight 

shows variations in weight due to seasonal moisture differences whereas in terms of dry weight 

it remains unaffected, and the model is considered more accurate. 

 

Figure 6.13. Correlation between dry weight biomass and the actual average impedance of the carrot samples at 

100 kHz. An improved correlation with R2 = 0.845 was found by removing the moisture of the samples. 

6.3.3. Modeling and Estimation of Actual Biomass Weight  

In another experiment, the actual biomass weight and the length of a carrot root were taken 

in different days. The impedances were measured in soil with and without the carrot using three 

different layers of the designed electrode array. From the difference the carrot impedance (Z) 

was calculated at different frequencies of 5, 15, 25, 40, 60, 80, and 100 kHz, respectively. The 

fresh weight and length of the carrot were 115 g and 7.5 inches, and after drying at room 

temperature (20 °C) for 10 days those were reduced to 62 g and 6.75 inches, respectively. The 

actual average impedance was found to increase with the decrease of biomass weight of a carrot 
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as shown in Figure 6.14. A good correlation was found at different frequencies, and a maximum 

correlation of 97.2% (R2 = 0.945) was obtained at 5 kHz (Figure 6.14b).  

 

(a) 

 

(b) 

Figure 6.14. (a) The EIS of a carrot in soil for different biomass weights. (b) Correlation between actual biomass 

and average impedances (Z) of a carrot, and a maximum correlation of 97.2% (R2 = 0.945) was obtained at 5 kHz. 

The multiple linear regression was employed for predicting the carrot biomass as shown 

in Figure 6.15. A strong correlation with R2 = 0.947 and RMSE of 4.516 was found for n = 9 

samples, and a model was extracted as shown in Equation (6.6). Two features (k) of 15, and 80 

kHz contributed high correlation. The calculated carrot impedances were then normalized (Zn), 

and a new model was extracted as shown in Equation (6.7). Later, layer-wise mean and standard 

deviation of the normalized impedances were taken to obtain the regression models for 
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predicting the carrot root biomass weight at different frequencies. The models obtained for 

frequencies of 5 kHz to 100 kHz and those are presented in Equations (6.8)–(6.14) considering 

ridge regression analysis.  

                          �̂� = 134.398 − 0.0446Z15kHz + 0.03822Z80kHz                                   (6.6) 

                          �̂� = 243.513 − 2836.9𝑍𝑛15kHz + 2037.23𝑍𝑛80kHz                             (6.7) 

�̂�5kHz = −96.087 − 233.21𝑍𝑛𝑙1𝑚 − 128.67𝑍𝑛𝑙1𝑆𝐷 + 49.9868𝑍𝑛𝑙2𝑚 − 129.91𝑍𝑛𝑙2𝑆𝐷 +

1450.2𝑍𝑛𝑙3𝑚 − 1368.9𝑍𝑛𝑙3𝑆𝐷                                                                                              (6.8) 

�̂�15kHz = −55.906 − 169.66𝑍𝑛𝑙1𝑚 − 206.4𝑍𝑛𝑙1𝑆𝐷 + 51.861𝑍𝑛𝑙2𝑚 − 150.46𝑍𝑛𝑙2𝑆𝐷 +

1159.67𝑍𝑛𝑙3𝑚 − 1298.9𝑍𝑛𝑙3𝑆𝐷                                                                                           (6.9) 

�̂�25kHz = −33.322 − 279.12𝑍𝑛𝑙1𝑚 − 201.35𝑍𝑛𝑙1𝑆𝐷 + 67.6375𝑍𝑛𝑙2𝑚 − 159.93𝑍𝑛𝑙2𝑆𝐷 +

1112.1𝑍𝑛𝑙3𝑚 − 1301.1𝑍𝑛𝑙3𝑆𝐷                                                                                            (6.10) 

�̂�40kHz = 126.109 + 26.5157𝑍𝑛𝑙1𝑚 − 11.87𝑍𝑛𝑙1𝑆𝐷 + 73.5124𝑍𝑛𝑙2𝑚 − 135.26𝑍𝑛𝑙2𝑆𝐷 −

133.24𝑍𝑛𝑙3𝑚 − 780.57𝑍𝑛𝑙3𝑆𝐷                                                                                            (6.11) 

�̂�60kHz = 98.7354 − 126.86𝑍𝑛𝑙1𝑚 − 49.358𝑍𝑛𝑙1𝑆𝐷 + 38.4318𝑍𝑛𝑙2𝑚 − 120.8𝑍𝑛𝑙2𝑆𝐷 +

209.306𝑍𝑛𝑙3𝑚 − 966.06𝑍𝑛𝑙3𝑆𝐷                                                                                         (6.12) 

�̂�80kHz = 120.781 + 17.849𝑍𝑛𝑙1𝑚 − 43.993𝑍𝑛𝑙1𝑆𝐷 + 3.395𝑍𝑛𝑙2𝑚 − 98.86𝑍𝑛𝑙2𝑆𝐷 −

18.32𝑍𝑛𝑙3𝑚 − 838.4𝑍𝑛𝑙3𝑆𝐷                                                                                                (6.13) 

�̂�100kHz = 110.897 + 126.187𝑍𝑛𝑙1𝑚 − 89.055𝑍𝑛𝑙1𝑆𝐷 − 3.9723𝑍𝑛𝑙2𝑚 − 94.445𝑍𝑛𝑙2𝑆𝐷 −

61.193𝑍𝑛𝑙3𝑚 − 885.88𝑍𝑛𝑙3𝑆𝐷                                                                                                 (6.14) 

All the models were trained and validated using F-test considering p-value less than 5%. 

The average RMSE was found to be less than 4 with high correlation of R2 = 0.98 or above and 

adjusted R2 = 0.94 or above as shown in Table 6.1. The tomography results of the carrot of 6.75 

inches in length and with a weight of 62 g in a given area of soil for different frequencies of 5 

kHz to 100 kHz, 1 mA, and 2 Vpp excitation are presented in Figure 6.16. A good image 

reconstruction at different frequencies was made by the impedance measurements using the 

developed EIT data acquisition system. More useful information about the root sample can be 

obtained by the measured impedances in multiple frequencies. Although a close approximation 

result in conductivity was found, the variations can be evaluated by the predicted models in 

different frequencies. In addition, the layer-wise changes in conductivity along with any 

variation in dimensions of the sample can also be evaluated by making frequency difference.  
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Figure 6.15. The regression results for predicting the biomass of carrot roots at frequencies of 5 kHz to 100 kHz. 

More than 97% correlation was obtained with RMSE of 4.516 by selecting the features of 15, and 80 kHz in the 

model. 

Table 6.1. Regression performance for predicting carrot root biomass in different frequencies (probability of 

rejection, p ≤ 0.05). 

Features R2 Adj. R2 RMSE p-Value 

5 kHz 0.994 0.976 2.58 0.017 

15 kHz 0.986 0.945 3.94 0.04 

25 kHz 0.987 0.949 3.81 0.037 

40 kHz 0.99 0.963 3.26 0.027 

60 kHz 0.988 0.951 3.72 0.035 

80 kHz 0.988 0.954 3.61 0.033 

100 kHz 0.989 0.959 3.43 0.03 

 

 
(a) 5 kHz 

 
(b) 15 kHz 

 
(c) 25 kHz (d) 40 kHz 

 
(e) 60 kHz 

 
(f) 80 kHz 

 
(g) 100 kHz 

 

 

 

 

 

 

Figure 6.16. Tomography of the reconstructed carrot of 6.75 inches in length using 3D EIT measurements at 5 

kHz to 100 kHz, 1 mA, and 2 Vpp excitation considering NOSER (λ = 2.17) in the inverse model. (a–g) The scale 

represents the changes in conductivity. 
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The obtained models were then validated as shown in Table 6.2. Seven new carrot samples 

of different biomass weights, W = 142, 115, 99, 96, 90, 87, and 62 g were inserted in a given 

area of soil, and their impedances were measured using the designed EIT sensor system. A 

difference was made from the obtained homogeneous and inhomogeneous results and after 

normalizing those were fitted in the obtained models. The biomass results of the samples were 

predicted, and the calculated accuracy of the obtained models was found to be 93% or above. 

The models have frequency dependency, and those were satisfied by the measurements at 

different frequencies.  

Table 6.2. Validation of EIT regression models for predicting carrot actual biomass weight in a given area of soil. 

New Carrot Samples 
Actual Biomass Weight 

(gram) 

Predicted Biomass Weight 

(gram) 
Absolute Error (%) 

Sample 1 142 132.034 7.01 

Sample 2 115 119.217 3.66 

Sample 3 99 102.587 3.62 

Sample 4 96 94.67 1.38 

Sample 5 90 84.17 6.47 

Sample 6 87 84.9 2.41 

Sample 7 62 64.68 4.32 

6.4. Discussion 

Electrical impedance imaging is a highly nonlinear and ill-posed inverse problem in which 

a minimization algorithm is used to obtain its approximate solution [15,16]. The common EIT 

inverse algorithms for finite element method (FEM) modeling are Gauss–Newton (GN), 

Shefield back-projection (BP), and total variation (TV), respectively [15,16,33]. GN is an 

iterative algorithm to solve nonlinear least square problems, being computationally 

inexpensive and supporting a high frame rate [15]. One-step GN is a direct linear reconstruction 

method commonly used for real-time imaging with a very short computation time and is one 

of the most widely used reconstruction approaches [16]. BP is a linear reconstruction algorithm 

which is capable of producing images of changes in conductivity, but the method is known to 

blur image contrasts [33]. TV is a regularization-based algorithm which allows image 

reconstruction using edge preservation, but the method is more complex to implement [16]. 

Several machine learning algorithms such as the artificial neural network (ANN), least angle 

regression (LARS), and elastic net were investigated previously to solve EIT inverse problem 

in real-time [34–36]. A long training time and relatively long reconstruction time are required 
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when using ANN. On the other hand, LARS and elastic net seem to be less accurate, especially 

for real measurement data, but they are much faster than ANN [34]. A good reconstruction was 

made using the modified ANN compared to the modified LARS and elastic net. All the 

algorithms were found to be suitable for 2D imaging, but most of them have some limitations 

in obtaining 3D images. GN: NOSER was found to be faster in computation and suitable for 

3D image reconstruction with less noise and high accuracy. 

The EIS characteristics for a root inhomogeneity in water/soil media and the corresponding 

tomography results were examined as shown in Figure 6.8 and Figure 6.10, respectively. The 

reconstruction results of the inhomogeneity were found to be satisfactory using the one-step 

Gauss–Newton algorithm. Three-dimensional modeling was possible using NOSER and 

Tikhonov regularizations with an optimized hyperparameter in addition with appropriate 

stimulations. The overfitting in data can be removed to obtain the smooth characteristics using 

the regularization techniques. A good tomography for a 6.75 inch carrot root in soil was found 

using NOSER (λ = 2.17) for 5 kHz and 1 mA as shown in Figure 6.10c. 

The growth and development of a root system was evaluated by measuring impedances 

using the EIT sensor. Layer-wise changes in conductivity were obtained for a given carrot root 

as shown in Figure 6.12. The shape of different sized root samples and the corresponding 

variation in conductivity were obtained by the tomography results. The increase in changes in 

conductivity with the increase of dimensions of the root indicated the possible growth of the 

root. Impedance was found to be a good indicator in estimating the root biomass in different 

conditions with a good correlation as shown in Figure 6.11, Figure 6.13, Figure 6.14, and 

Figure 6.15, respectively. The predicted models were found to be highly correlated with R2= 

0.98 or above with lower RMSE (less than 4) at 5–100 kHz as shown in Table 6.1 and the 

models were validated with 7% or less absolute error as shown in Table 6.2. 

In the soil–root–electrode continuum, the impedance may vary by the variation of root 

distribution in soil, root density, and the electrodes position from the root. The conductivity of 

soil particles depends on soil texture and structure, compaction, and moisture content. A 

difference in impedance measurements was observed between wet and dry soil. In dry soil 

conditions, the impedance spectra fluctuate. The test was then made using wet or high-salinity 

soil conditions and a solution was reached by obtaining the similar shape of the EIS spectra 

with a uniform impedance distribution. To enable the EIT current to pass between electrodes, 

the moisture was controlled in the soil media by irrigating the container before the 

measurements. A set of measurements was taken in an hour and the measurement accuracy was 
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evaluated. A proper and careful irrigation is required to obtain the satisfactory results, and all 

the measurements were taken in similar way.  

The electrode polarization may occur at the soil–electrode interface which may be resistant 

to flow the current freely depending on frequency [24]. The uses of insulated electrodes may 

reduce the polarization effects. The measurement using the EIT sensor system is found to be 

reliable, flexible, and repeatable. In a measurement, multiple EIS readings were taken for a 

time duration and the average was considered with less error. The measurement method using 

an EIS tool (AD5933) connected to the sensor was found to be rapid, and less time was required 

for computation. The proposed models were found to be robust and applicable for a wide range 

of frequencies. EIT is found to be very sensitive to the physiological process of the root. The 

multifrequency EIT performed well compared to resistance or capacitance tomography for 

achieving a detail information of the root [10–12]. In addition, more useful information of the 

root can be obtained considering time difference or frequency difference EIT [7,22]. 

An additional investigation into the evaluation of tap root growth was made considering 

time-difference EIT (tdEIT) in line with the results obtained in Figures 6.11 and 6.12. Another 

tap root of potato plant species was grown from tuber in soil at room temperature (20 °C) in a 

controlled environment. Day-wise the impedances were measured using the EIS tool connected 

to the designed EIT sensor by varying frequencies (5–100 kHz) considering an experimental 

setup similar to Figure 6.9c. The variation in root impedance and the corresponding 

conductivity was found during growth depending on root length and weight. Initially, the root 

conductivity was low when it was expanded horizontally, and in vegetative stage the 

conductivity was improved by increasing the surface area and weight when the root was 

expanded vertically. The observation was found to be similar to the results concluded in Figures 

6.11 and 6.12. In addition, a good observation was made from the results obtained using tdEIT. 

Significant changes in calculated conductivity over time were observed and found to increase 

with time. The results indicated the growth of the potato tap root and the method was validated. 

Also, the method for biomass estimation can be extended to multiple potato roots or the roots 

of other plant species and further investigation can be made in obtaining the models. 

The developed EIT system is found to be less expensive, and suitable for in situ 

measurements in both water and soil media, which shows an advancement of the previous 

works [10–12]. In addition, the designed sensor is capable for obtaining 3D information of the 

roots using a lower sized electrode array. In another work, Postic et al. proposed a rapid 

estimation of root biomass for wheat plants by measuring capacity using a handheld LCR meter 

(up to 20 kHz) [26]. The method was required an expensive instrumentation and obtained 𝑅2 <
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90% for soil media. A comparative study was made with other EIT sensor systems for root 

analysis and shown in Table 6.3. 

Table 6.3. Comparison with other EIT sensor systems for root analysis. 

 
Weigand and Kemna  

[10,11] 

Corona-Lopez et al.  

[12] 

Proposed EIT Sensor 

(This Work) 

Sensor design media Water-filled container Compost-filled container 
Water- and soil-filled 

container 

Type and size of 

electrode array 
Static with 38 electrodes Static with 32 electrodes  

Dynamic and adjustable 

with 24 electrodes  

Operating frequency 

(kHz) 
0.00046–45 5–10 1–100 

Imaging capability Two-dimensional Three-dimensional Three-dimensional 

Measurement sensitivity 
Characterize and monitor 

the tap roots (oilseed)  

Visualize the development of 

tap roots (oilseed)  

Evaluate the growth and 

estimate the biomass of  

tap roots (carrot)  

6.5. Conclusions 

A novel, dynamic, and adjustable EIT electrode array sensor system is designed for 

developing a rapid, cost-effective, and radiation-free multifrequency 3D EIT data acquisition 

system. The EIT system can be applied in both controlled settings and in the field. A non-

destructive evaluation of biomass estimation of tap roots is carried out by measuring 

impedances using the designed EIT sensor system. The root system is characterized and 

monitored by the sensor in a controlled environment at room temperature, and non-invasive 

3D imaging is performed in both water and soil media. The EIT sensor is found to be capable 

of evaluating the growth of the root by calculating the changes in conductivity and obtaining 

the associated information from tomography. A strong correlation is found between the 

biomass and measured impedance of the root and several models are developed for biomass 

estimation of the carrot roots. The obtained models are validated with less error, and the 

tomographic images of the root systems are generated in high spectral ranges to obtain more 

useful information on the growth and development of the roots. The proposed EIT sensor 

system can be explored further in a field setting for estimating root biomass in different growth 

stages. 

6.6 References 

[1] Wang, H.; Liu, K.; Wu, Y.; Wang, S.; Zhang, Z.; Li, F.; Yao, J. Image Reconstruction for Electrical Impedance 
Tomography Using Radial Basis Function Neural Network Based on Hybrid Particle Swarm Optimization 
Algorithm. IEEE Sens. J. 2021, 21, 1926–1934. 

[2] Kim, B.S.; Khambampati, A.K.; Jang, Y.J.; Kim, K.Y.; Kim, S. Image reconstruction using voltage–current 
system in electrical impedance tomography. Nucl. Eng. Des. 2014, 278, 134–140. 

[3] Bera, T.K.; Nagaraju, J. A MATLAB-Based Boundary Data Simulator for Studying the Resistivity 
Reconstruction Using Neighbouring Current Pattern. J. Med. Eng. 2013, 2013, 193578. 

[4] Malone, E.; dos Santos, G.S.; Holder, D.; Arridge, S. Multifrequency Electrical Impedance Tomography Using 
Spectral Constraints. IEEE Trans. Med. Imaging 2014, 33, 340–350. 



 

146 

[5] Bera, T.K.; Nagaraju, J.; Lubineau, G. Electrical impedance spectroscopy (EIS)-based evaluation of biological 
tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J. Vis. 2016, 
19, 691–713. 

[6] Malone, E.; dos Santos, G.S.; Holder, D.; Arridge, S. A Reconstruction-Classification Method for 
Multifrequency Electrical Impedance Tomography. IEEE Trans. Med. Imaging 2015, 34, 1486–1497. 

[7] Liu, S.; Huang, Y.; Wu, H.; Tan, C.; Jia, J. Efficient Multi-Task Structure-Aware Sparse Bayesian Learning 
for Frequency-Difference Electrical Impedance Tomography. IEEE Trans. Ind. Inform. 2021, 17, 463–472. 

[8] Russo, S.; Nefti-Meziani, S.; Carbonaro, N.; Tognetti, A. A Quantitative Evaluation of Drive Pattern Selection 
for Optimizing EIT-Based Stretchable Sensors. Sensors 2017, 17, 1999. 

[9] Loyola, B.R.; Saponara, V.L.; Loh, K.J.; Briggs, T.M.; O’Bryan, G.; Skinner, J.L. Spatial Sensing Using 
Electrical Impedance Tomography. IEEE Sens. J. 2013, 13, 2357–2367. 

[10] Weigand, M.; Kemna, A. Multi-frequency electrical impedance tomography as a non-invasive tool to 
characterize and monitor crop root systems. Biogeosciences 2017, 14, 921–939. 

[11] Weigand, M.; Kemna, A. Imaging and functional characterization of crop root systems using spectroscopic 
electrical impedance measurements. Plant Soil 2019, 435, 201–224. 

[12] Corona-Lopez, D.D.J.; Sommer, S.; Rolfe, S.A.; Podd, F.; Grieve, B.D. Electrical impedance tomography as 
a tool for phenotyping plant roots. Plant Methods 2019, 15, 49. 

[13] Zamora-Arellano, F.; López-Bonilla, O.R.; García-Guerrero, E.E.; Olguín-Tiznado, J.E.; Inzunza-González, 
E.; López-Mancilla, D.; Tlelo-Cuautle, E. Development of a Portable, Reliable and Low-Cost Electrical 
Impedance Tomography System Using an Embedded System. Electronics 2021, 10, 15. 

[14] Aris, W.; Endarko. Design of low-cost and high-speed portable two-dimensional electrical impedance 
tomography (EIT). Int. J. Eng. Technol. 2018, 7, 6458–6463. 

[15] Singh, G.; Anand, S.; Lall, B.; Srivastava, A.; Singh, V. A Low-Cost Portable Wireless Multi-frequency 
Electrical Impedance Tomography System. Arab. J. Sci. Eng. 2019, 44, 2305–2320. 

[16] Liu, S.; Jia, J.; Zhang, Y.D.; Yang, Y. Image Reconstruction in Electrical Impedance Tomography Based on 
Structure-Aware Sparse Bayesian Learning. IEEE Trans. Med. Imaging 2018, 37, 2090–2102. 

[17] Liu, D.; Khambampati, A.K.; Du, J. A Parametric Level Set Method for Electrical Impedance Tomography. 
IEEE Trans. Med. Imaging 2018, 37, 451–460. 

[18] Yang, Y.; Jia, J. An Image Reconstruction Algorithm for Electrical Impedance Tomography Using Adaptive 
Group Sparsity Constraint. IEEE Trans. Inst. Meas. 2017, 66, 2295–2305. 

[19] Ren, S.; Wang, Y.; Liang, G.; Dong, F. A Robust Inclusion Boundary Reconstructor for Electrical Impedance 
Tomography with Geometric Constraints. IEEE Trans. Instrum. Meas. 2019, 68, 762–773. 

[20] Shi, X.; Li, W.; You, F.; Huo, X.; Xu, C.; Ji, Z.; Liu, R.; Liu, B.; Li, Y.; Fu, F.; et al. High-Precision Electrical 
Impedance Tomography Data Acquisition System for Brain Imaging. IEEE Sens. J. 2018, 18, 5974–5984. 

[21] Sapuan, I.; Yasin, M.; Ain, K.; Apsari, R. Anomaly Detection Using Electric Impedance Tomography Based 
on Real and Imaginary Images. Sensors 2020, 20, 1907. 

[22] Bai, X.; Liu, D.; Wei, J.; Bai, X.; Sun, S.; Tian, W. Simultaneous Imaging of Bio- and Non-Conductive 
Targets by Combining Frequency and Time Difference Imaging Methods in Electrical Impedance 
Tomography. Biosensors 2021, 11, 176. 

[23] Yang, Y.; Jia, J.; Smith, S.; Jamil, N.; Gamal, W.; Bagnaninchi, P. A Miniature Electrical Impedance 
Tomography Sensor and 3D Image Reconstruction for Cell Imaging. IEEE Sens. J. 2017, 17, 514–523. 

[24] Ozier-Lafontaine, H.; Bajazet, T. Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 2005, 
277, 299–313. 

[25] Liao, A.; Zhou, Q.; Zhang, Y. Application of 3D electrical capacitance tomography in probing anomalous 
blocks in water. J. Appl. Geophys. 2015, 117, 91–103. 

[26] Postic, F.; Doussan, C. Benchmarking electrical methods for rapid estimation of root biomass. Plant Methods 
2016, 12, 33. 

[27] Newill, P.; Karadaglic, D.; Podd, F.; Grieve, B.D.; York, T.A. Electrical impedance imaging of water 
distribution in the root zone. Meas. Sci. Technol. 2014, 25, 055110. 

[28] Tan, C.; Liu, S.; Jia, J.; Dong, F. A Wideband Electrical Impedance Tomography System based on Sensitive 
Bioimpedance Spectrum Bandwidth. IEEE Trans. Instrum. Meas. 2020, 69, 144–154. 

[29] Chowdhury, R.I.; Basak, R.; Wahid, K.A.; Nugent, K.; Baulch, H. A Rapid Approach to Measure Extracted 
Chlorophyll-a from Lettuce Leaves using Electrical Impedance Spectroscopy. Water Air Soil Pollut. 2021, 
232, 73. 

[30] Graham, B.M.; Adler, A. Electrode placement configurations for 3D EIT. Physiol. Meas. 2007, 28, 29–44. 
[31] Matsiev, L. Improving Performance and Versatility of Systems Based on Single-Frequency DFT Detectors 

Such as AD5933. Electronics 2015, 4, 1–34. 
[32] Basak, R.; Wahid, K.A.; Dinh, A. Estimation of the Chlorophyll-A Concentration of Algae Species Using 

Electrical Impedance Spectroscopy. Water 2021, 13, 1223. 
[33] Putensen, C.; Hentze, B.; Muenster, S.; Muders, T. Electrical Impedance Tomography for Cardio-Pulmonary 

Monitoring. J. Clin. Med. 2019, 8, 1176.  
[34] Rymarczyk, T.; Kłosowski, G.; Kozłowski, E.; Tchórzewski, P. Comparison of Selected Machine Learning 

Algorithms for Industrial Electrical Tomography. Sensors 2019, 19, 1521. 

https://www.researchgate.net/journal/IEEE-Sensors-Journal-1530-437X
https://pubmed.ncbi.nlm.nih.gov/?term=Graham+BM&cauthor_id=17664643
https://pubmed.ncbi.nlm.nih.gov/?term=Adler+A&cauthor_id=17664643


 

147 

[35] Fernández-Fuentes, X.; Mera, D.; Gómez, A.; Vidal-Franco, I. Towards a Fast and Accurate EIT Inverse 
Problem Solver: A Machine Learning Approach. Electronics 2018, 7, 422. 

[36] Kłosowski, G.; Rymarczyk, T.; Niderla, K.; Rzemieniak, M.; Dmowski, A.; Maj, M. Comparison of Machine 
Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical 
Tomography. Energies 2021, 14, 7269. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

148 

Chapter 7: Conclusion and Suggestions for Future Work                                      

7.1. Conclusion           

    In this research, a rapid, in situ, and cost-effective multifunctional EIS system is developed 

for the characterization in plant phenotyping with the target of higher crop yields. Non-

destructive measurement methods are applied for the assessment on achieving efficient 

phenotyping of the plants considering EIS technique which are used as alternative to optical 

spectroscopy methods. An EIS tool (AD5933) with frequency ranges from 1kHz to 100kHz is 

considered for measuring the electrical impedances of different plants and plant-like 

organisms. The potential use of the impedance as an indicator for plant characterization is 

explored and more robust models are developed. Non-invasive measurements of the samples 

are carried out using the designed portable sensors. The overall findings and achievements of 

this research work are summarized and concluded as follows:   

    Chapter 2 represents the investigation on the determination of plant leaf nitrogen 

concentrations using EIS method in vegetative growth stage of the plants. The impedances of 

four different crop leaves like canola, wheat, soybeans, and corn are measured using the EIS 

tool in the frequency range of 5 to 15 kHz. A strong correlation is found between leaf nitrogen 

concentrations and the measured impedances using EIS by employing multiple linear 

regression analysis. After a comparative analysis among the four different crops, the best 

multiple regression results are found for canola with an overall correlation coefficient of 0.99, 

a coefficient of determination of 0.98, and RMSE of 0.54%. New EIS models are developed, 

and the proposed models are significantly sensitive to the nitrogen concentrations of the plant 

leaves. The performance of the EIS sensor in comparison with SPAD is assessed for the 

estimation of plant leaf nitrogen status. A high correlation with lower RMSE is obtained using 

the EIS sensor for the same number of observations. The developed EIS system is found a 

simple, inexpensive, and effective instrument for determining the crop leaf nitrogen. 

    Chapter 3 describes the investigation on the determination of the leaf water contents using 

EIS method under different water stress conditions of the plants in vegetative growth stage. 

The leaf relative water contents of four different crops: canola, wheat, soybeans, and corn are 

determined by measuring electrical impedances using the EIS tool at frequencies of 5 to 15 

kHz. A strong correlation between leaf water contents and leaf impedances is obtained using 

multiple linear regression analysis. A comparative analysis among the four different crops is 

made, and a maximum correlation of 0.99 with coefficient of determination of 0.98 and rmse 

of 0.30% is obtained for canola compared to the other crops. A new set of EIS models are 
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developed for estimating the leaf water contents of multiple crops. The developed EIS system 

is found low-cost and effective tool for determining the leaf water contents rapidly and 

efficiently in multiple crops. 

    Chapter 4 includes the investigation on the usefulness of EIS method for the determination 

of plant-like organisms such as algae species. EIS is used to detect and categorize the algae 

species by estimating Chlorophyll-a concentrations which is the most significant 

photosynthetic pigment of the species. Significant observations are identified by measuring 

impedances using the EIS tool within 1 to 3.5 kHz for multiple algae species. A positive 

correlation is found between the Chlorophyll-a and the measured impedance of algae species 

at different frequencies. New EIS models for the Chlorophyll-a of multiple algae species are 

developed and more than 90% correlation is found employing multiple linear regression 

analysis. The corresponding coefficients of determination are obtained as 0.9, 0.885, and 0.915, 

respectively for 49 samples of Spirulina, 41 samples of Chlorella, and 26 samples of mixed 

algae species. The proposed sensor utilized in the developed EIS system is performed well with 

high accuracy in estimating Chlorophyll-a of algae species and found capable in detecting the 

species. The proposed method using EIS sensor is found very useful for water quality 

monitoring. 

    Chapter 5 represents an investigation on the usefulness of EIS method for 3D imaging of 

plant roots. The more useful information of the samples is obtained along with the anomaly 

detection by non-destructive measurements using a designed multi-electrode EIT sensor in the 

measurement system. A rapid, cost-effective, and automated multifrequency EIT data 

acquisition system is developed for plant phenotyping with the target of assessment of the 

growth and development of the plant roots using impedance imaging technique. A non-invasive 

imaging of the samples is carried out in multiple frequencies by measuring impedances in 1kHz 

to 100kHz using a rapid and low-cost EIS tool. 3D reconstructions of multiple plant roots along 

with 2D reconstructions of different edible plant slices are examined by measuring impedances 

of the samples. FEM modeling is utilized for image reconstruction which is carried out using 

EIDORS and the reconstruction is made successfully with the optimized results obtained using 

GN algorithms. The developed EIT system is found portable and radiation free, and the 

proposed sensor is found capable in examining the root architecture by the in situ 

measurements. 

    Chapter 6 describes the biomass estimation of plant roots using a portable and in situ EIT 

sensor system. A novel, dynamic, and adjustable electrode array sensor system is designed for 

developing a cost-effective, radiation free, and high-speed data acquisition system based on 
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EIT. The developed EIT system is found capable of monitoring the changes in root growth 

with non-invasive 3D imaging by measuring impedances in multiple frequencies. The 

impedances are measured for multiple tap roots using EIS tool at frequencies ranging from 

1kHz to 100kHz. It is found that the root biomass is highly correlated with the measured 

impedances. Impedance imaging technique is applied and the tomography of multiple roots are 

obtained using FEM modeling considering one-step GN algorithm which is carried out using 

EIDORS. Suitable tomography results are obtained by measuring the root impedances in both 

water and soil media. New EIS models for the estimation of root biomass are extracted in 

multiple frequencies and those are validated with high accuracy by the regression analysis. The 

proposed EIT sensor system is found capable in estimating the root biomass in real-time non-

destructively.  

    The estimated results using the EIS measurements obtained by the designed lightweight 

sensors are highly correlated with the ground truth values. The research goals are achieved 

successfully by fulfilling the objectives of this work. The developed multifunctional EIS 

system overcomes the shortcomings of the existing methods for the applications in plant 

phenotyping. The EIS models obtained by the proposed sensors are found suitable for the plant 

characterization and performed well with good accuracy.      

7.2. Suggestions for Future Work 

    The suggestions for further investigations on the utilizations and improvements to the 

designed EIS/EIT sensor systems are recommended as follows: 

    1. The determination of leaf nitrogen concentrations and water contents is limited to the 

vegetative stage of the crops. In future, the effectiveness of the EIS method can be explored 

further in multiple growth stages of the crops in determining the nutrients and water contents. 

    2. The estimation of Chlorophyll-a concentrations of algae species is limited to two-electrode 

EIS sensor system. In future, the estimation performance in determining multiple algae species 

can be explored further by considering multispectral impedance imaging using a multi-

electrode EIT sensor system for any potential improvement.  

    3. The root system is characterized and monitored, and the biomass is estimated by the 

designed EIT sensor in a controlled environment at room temperature. In future, the proposed 

sensor system can be explored further in a field setting for monitoring the root growth and 

estimating the root biomass in different growth stages.  

    4. A limited number of root samples are taken for the proposed models in obtaining root 

biomass. In future, the analysis can be made further by increasing the number of root samples 
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in the dataset for obtaining more generalized and robust models and for improving the accuracy 

of the models.   

    5. 3D information of the roots is obtained by measuring impedances up to 100 kHz. In future, 

the analysis can be made further by exploring at frequencies over 100 kHz for obtaining the 

more useful 3D information of the plant root systems.  

    The above suggestions can be considered in future work to explore the new possibilities for 

the characterization in plant phenotyping. 
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