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Abstract

RNAs are biomolecules ubiquitous in all living cells. Usually, they fold into
complex molecular structures, which often mediate their biological function. In
this work, models of RNA folding have been studied in detail. While an analysis
of the three-dimensional, or tertiary, structure of RNAs is difficult, a close
approximation is achieved by resorting to the notion of secondary structures. In
this model, each nucleobase may engage in at most one base pair; and any two
base pairs must be either “parallel” to, or nested into each other. “Crossing”
base pairs are not allowed. Every structure is assigned a Gibbs free energy
quantifying its stability using the nearest-neighbor energy model. The set of all
possible structures of a given sequence is called its ensemble.

One can distinguish two fundamentally different approaches to RNA folding.
The first one is the thermodynamic approach, which yields information about the
distribution of structures in the ensemble in its equilibrium. Since elementary
folding reactions of RNA structures happens on the microsecond timescale, this
assumption is often reasonable. The second approach, which is required to
study the dynamics of folding during the course of time, is the kinetic folding
analysis. It is much more computationally expensive, but allows to incorporate
changing environmental parameters as well as time-dependent effects into the
analysis.

In the thermodynamic framework, the structures of a given RNA sequence
are assumed to follow a Boltzmann distribution. Even for long RNA molecules,
their partition function – the sum of all structures’ Boltzmann weights – can
efficiently be computed using dynamic programming. The probability Pr[Y ] of
any set Y of structures can thus easily be determined and is also referred to as
the coverage of Y with respect to the ensemble. It measures to which extent
the structures of Y cover those of a random sample from the full ensemble, and
thus how representative Y is.

Kinetic simulations, on the other hand, consider the transitions between
structural states. Since the number all possible structures is enormous even
for short sequences, it is necessary to greatly reduce the number of states.
This can be achieved by various established methods that discard supposedly
unimportant structures, or aggregate multiple structures into a smaller set
of macrostates. However, a major problem with these heuristics is that it is
unclear to which extent they alter the results of the simulation. To alleviate
this issue, the concept of coverage was employed to predict the quality of the
models after the application of the heuristics. This method offers researchers a
reliable criterion for choosing parameters and to quantify the credibility of the
computation.

Building on the methods above, the BarMap framework (Hofacker, Flamm,
et al., 2010) allows to chain several pre-computed models and thus simulate
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folding reactions in a dynamically changing environment, e. g., to model co-
transcriptional folding. However, there is no obvious way to identify spurious
output, let alone assessing the quality of the simulation results. Additionally,
the implementation of BarMap is prototypical, simplistic, and very general,
such that it is laborious and cumbersome to apply and to evaluate the results.
As a remedy, BarMap-QA, a semi-automatic software pipeline for the analysis
of cotranscriptional folding, has been developed. For a given input sequence,
it automatically generates the models for every step of the RNA elongation,
applies BarMap to link them together, and runs the simulation. Post-processing
scripts, visualizations, and an integrated viewer are provided to facilitate the
evaluation of the unwieldy BarMap output. Three novel, complementary quality
measures are computed on-the-fly, allowing the analyst to evaluate the coverage
of the computed models, the exactness of the computed mapping between the
individual states of each model, and the fraction of correctly mapped population
during the simulation run. In case of deficiencies, the output is automatically
re-rendered after parameter adjustment. The pipeline is provided for download
as free and open source software. A Docker image including BarMap-QA and all
required dependencies is publicly available via Docker Hub for zero configuration
deployments.

Statistical evidence is presented that, even when coarse graining the ensemble,
kinetic simulations quickly become infeasible for longer RNAs. One reason is
that, to compute the macrostates of the coarse graining, all secondary structures
up to a global enumeration threshold have to be generated first. However, within
the individual gradient basins, most high-energy structures only have a marginal
probability and could safely be excluded from the analysis. To tell relevant and
irrelevant structures apart, a precise knowledge of the distribution of probability
mass within a basin is necessary. Both a theoretical result concerning the shape
of its density, and possible applications like the prediction of a basin’s partition
function are given.

To demonstrate the applicability of computational folding simulations to
a real-world task of the life sciences, we conducted an in silico design process
for a synthetic, transcriptional riboswitch responding to the ligand neomycin.
Riboswitches are small, regulatory RNAs located in the 5′ untranslated region
of some genes. The designed riboswitch was then transfected into the bacterium
Escherichia coli by a collaborative partner and could successfully regulate a
fluorescent reporter gene depending on the presence of its ligand. Additionally,
it was shown that the sequence context of the riboswitch could have detrimental
effects on its functionality, but also that RNA folding simulations are often
capable to predict these interactions and provide solutions in the form of
decoupling spacer elements.

Taken together, this thesis offers the reader deep insights into the world
of RNA folding. It provides statistical analyses and results concerning the
distributions of energies and probabilities of structures. Existing methods to
conduct in silico RNA folding analyses were extended, and novel approaches to
quantify the quality of folding simulations were developed and implemented for
immediate application. They were then applied to design a synthetic biomolecule,
which was shown to successfully regulate the expression of a reporter gene.
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Zusammenfassung

RNAs sind universelle, in allen lebenden Zellen anzufindende Biomoleküle. In
der Regel falten sie sich zu komplexen molekularen Strukturen auf, welche
dann ihre biologische Funktion vermitteln. In der vorliegenden Arbeit wur-
den Modelle der RNA-Faltung gründlich untersucht. Während eine Analyse
der dreidimensionalen, oder tertiären, Struktur einer RNA im Allgemeinen
schwierig ist, kann eine gute Näherung erreicht werden, indem man sich auf das
Konzept der Sekundärstrukturen bezieht. In diesem Modell kann jede Nukleo-
base nur Bestandteil eines einzigen Basenpaars sein, und je zwei Basenpaare
müssen entweder „parallel“ oder ineinander verschachtelt sein. Sich „kreuzen-
de“ Basenpaare sind nicht gestattet. Jeder Struktur wird durch Anwendung
des „Nächste-Nachbarn“-Energiemodells (Mathews, Turner und Zuker, 2007)
eine Gibbs-Energie zugeordnet, welche ihre Stabilität bemisst. Die Menge aller
möglichen Strukturen einer gegebenen RNA-Sequenz wird als ihr Ensemble
bezeichnet.

Man kann zwei grundverschiedene Herangehensweisen zur Modellierung der
RNA-Faltung unterscheiden. Die erste ist der thermodynamische Ansatz, welcher
Informationen über die Verteilung der Strukturen im Ensemble liefert, sofern
sich letzteres in seinem Gleichgewichtszustand, oder Equilibrium, befindet. Da
die elementaren Faltungsreaktionen von RNA-Strukturen auf der Zeitskala von
Mikrosekunden stattfinden, ist diese Annahme oftmals gerechtfertigt. Der zweite
Ansatz ist die kinetische Analyse der RNA-Faltung, welcher angewendet werden
muss, wenn die Dynamik des Faltungsprozesses über einen bestimmten Zeitraum
studiert werden soll. Derartige Methoden sind wesentlich rechenintensiver, er-
lauben dafür aber die Berücksichtigung veränderlicher Umgebungsbedingungen
sowie weiterer zeitabhängiger Effekte in der Analyse.

Im thermodynamischen Kontext wird angenommen, dass die Strukturen
einer gegebenen RNA-Sequenz einer Boltzmann-Verteilung folgen. Die Zustands-
summe – also die Summe der Boltzmann-Gewichte aller Strukturen – kann
dann durch die Anwendung dynamischer Programmierung selbst für lange
RNA-Moleküle effizient berechnet werden. Die Wahrscheinlichkeit Pr[Y ] einer
beliebigen Menge Y von Strukturen kann somit einfach bestimmt werden und
wird in dieser Arbeit auch als Abdeckung von Y bezüglich des Ensembles bezeich-
net. Sie misst, zu welchem Grad die Strukturen aus Y die aus einer zufälligen
Stichprobe aus dem Ensemble abdecken, und somit wie repräsentativ Y für das
Ensemble ist.

Kinetische Simulationen hingegen betrachten die Übergänge zwischen ein-
zelnen strukturellen Zuständen. Da jedoch selbst kurze Sequenzen eine enorme
Anzahl möglicher Strukturen aufweisen, ist es für eine Simulation notwendig,
die Anzahl der Zustände drastisch zu reduzieren. Das kann durch die Anwen-
dung verschiedener etablierter Methoden erreicht werden, welche vermeintlich
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unwichtige Strukturen aussortieren oder mehrere Strukturen zu einer kleineren
Menge von Makrozuständen zusammenfassen. Ein erhebliches Problem bei der
Anwendungen solcher Heuristiken ist jedoch der Umstand, dass unklar ist, in
welchem Ausmaß sie Auswirkungen auf den Ausgang der Simulation haben.
Um Abhilfe zu schaffen wurde in dieser Arbeit das Konzept der Abdeckung
eingesetzt, um die Qualität der durch die Anwendung der Heuristiken erzeugten
Modelle zu beurteilen. Diese Vorgehensweise bietet dem Forscher die Möglich-
keit, geeignete Modellparameter zu wählen und die Validität der durchgeführten
Berechnung zuverlässig zu quantifizieren.

Aufbauend auf den beschriebenen Methoden erlaubt BarMap (Hofacker,
Flamm u. a., 2010) die Verkettung mehrerer zuvor berechneter Modelle und
ermöglicht dadurch die Simulation von Faltungsreaktionen unter sich dynamisch
verändernden Umgebungsbedingungen, z. B. zur Modellierung von kotranskrip-
tionellem Falten. Es bietet jedoch keinerlei Möglichkeiten, um fehlerhafte Er-
gebnisse zu erkennen oder gar die Qualität der Simulation genauer beurteilen
zu können. Hinzu kommt, dass die Implementierung von BarMap eher prototy-
pischer Natur und sehr allgemein gehalten ist, sodass sowohl die Anwendung
als auch die Auswertung der Ergebnisse aufwendig und umständlich ist. Zur
Lösung dieser Probleme wurde BarMap-QA entwickelt, eine halbautomatische
Software-Pipeline zur Analyse der kotranskriptionellen Faltung von RNA. Für
eine gegebene RNA-Sequenz erzeugt sie automatisch je ein Modell für jeden
Schritt der RNA-Elongation, wendet BarMap zu deren Verknüpfung an und
führt dann die Simulation durch. Skripte zur Nachbearbeitung und Visualierung
der Daten werden ebenso mitgeliefert wie ein integrativer Ergebnis-Betrachter,
wodurch die Auswertung der umfangreichen Ausgaben von BarMap erheblich
erleichtert wird. Drei neuartige, sich gegenseitig ergänzende Qualitätsmaße
werden automatisch berechnet und erlauben dem Analysten, die Abdeckung der
generierten Modelle, die Exaktheit der konstruierten Abbildungen zwischen den
einzelnen Zuständen der Modelle, sowie den Anteil der während der Simulation
korrekt abgebildeten Populationen zu bewerten. Im Falle von Defiziten werden
die Ergebnisse nach einer Anpassung der Simulationsparameter automatisch
regeneriert. Die Pipeline wird als freie, quelloffene Software zum Download
angeboten. Ein Docker-Image, welches BarMap-QA und alle notwendigen Ab-
hängigkeiten enthält, wurde auf Docker Hub öffentlich verfügbar gemacht und
ermöglicht eine konfigurationslose Bereitstellung auf den meisten gängigen
Plattformen.

Es werden statistische Nachweise erbracht die zeigen, dass kinetische Si-
mulationen für längere RNAs selbst bei der Anwendung von Methoden zur
Vergröberung des Ensembles oft nicht mehr durchführbar sind. Ein Grund
dafür ist die Tatsache, dass zur Berechnung der Makrozustände im Zuge der
Vergröberung zunächst alle Sekundärstrukturen bis hinauf zu einem globalen
Enumerierungsschwellwert erzeugt werden müssen. Da die meisten hochenerge-
tischen Strukturen innerhalb eines einzelnen Gradientenbassins nur mit äußerst
geringer Wahrscheinlichkeit auftreten, könnten sie problemlos von der Ana-
lyse ausgeschlossen werden. Um jedoch wichtige von unwichtigen Strukturen
unterscheiden zu können, sind genaue Kenntnisse der Verteilung der Wahr-
scheinlichkeitsmasse innerhalb eines Bassins vonnöten. Sowohl ein theoretisches
Resultat zur Form dieser Verteilung, als auch mögliche Anwendungen wie die
Schätzung der Zustandssumme eines Bassins werden vorgestellt.
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Um die Anwendbarkeit computergestützter Faltungssimulationen auf eine
realistische Problemstellung der Lebenswissenschaften zu demonstrieren, wurde
in silico ein synthetischer, transkriptioneller Riboswitch entworfen, der durch
den Liganden Neomycin gesteuert wird. Riboswitche, oder RNA-Schalter, sind
kleine regulatorische RNAs, welche in der untranslatierten Region (UTR) am
5′-Ende mancher Gene zu finden sind. Der entworfene Riboswitch wurde durch
einen Kollaborationspartner in einen Stamm des Bakteriums Escherichia coli
transfiziert und konnte dort erfolgreich ein fluoreszierendes Reportergen abhän-
gig von der Anwesenheit seines Liganden regulieren. Zusätzlich wurde gezeigt,
dass der Sequenzkontext des RNA-Schalters seine Funktionsfähigkeit erheblich
vermindern kann, jedoch auch, dass Faltungssimulationen diese Interaktionen
oft vorhersagen können und dabei helfen, Lösungen in Form von entkoppelnden
Trennelementen zu entwickeln.

Alles in allem gewährt diese Arbeit dem Leser tiefe Einblicke in die Welt
der RNA-Faltung. Sie beinhaltet statistische Analysen und Resultate zu Vertei-
lungen von Energien und Wahrscheinlichkeiten von Strukturen. Existierende
Methoden zur Durchführung von RNA-Faltungssimulationen wurden erweitert,
und neuartige Wege zur Quantifizierung der Simulationsqualität wurden erdacht
und zur direkten Anwendung implementiert. Sie wurden dann genutzt, um ein
synthetisches Biomolekül zu entwerfen, welches nachweislich in der Lage war,
die Expression eines Reportergens zu steuern.
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2 Chapter 1. Introduction

If there is one thing that has been pushing humanity forward, it is the natural
curiosity that keeps us exploring the world around us, looking for the answers
to all questions that can possibly be asked. For a long time, our ability to
explore the world was limited by what our senses could perceive. With the
advent of new technologies, however, we were able to push the boundaries of
what can be observed, and the unravelling of previously inexplicable mysteries
came into reach. While the invention of telescopes in the early 17th century
enabled us to catch a glimpse of an endless universe, in 1665 the precursor of
the modern microscope allowed Robert Hooke, for the first time, to see the
elementary building block of life, for which he coined the term cell. Ever since,
microbiology seeks to answer the question how the astonishing complexity of
life as we know it can emerge from a structure this tiny. Today, we know that
the entire hereditary information of a cell – the blueprint of life – is stored in
the form of DNA, the double-helical shape of which has become iconic even
in popular culture. We know that genes encode for various biomolecules like
RNAs and proteins, each serving a specific purpose, thus keeping up the cell’s
metabolism. However, many details remain in the dark, and there is still so
much we do not know yet.

One aspect that seems especially paradoxical is that, despite their obvious
dissimilarity, almost all cells of complex organisms share the exact same genetic
material. If proteins are the major players driving so many cellular processes, one
could expect that cells with the same set of genes exhibit the same phenotype.
This paradox can be explained by the existence of a vast number of diverse
mechanisms that, in concert, tightly control the expression of each and every
gene. As a result of this gene regulation, the proportions of the individual
gene products are precisely balanced to enable the cell to efficiently perform
specific tasks, to proliferate and also to cope with ever-changing environmental
conditions. Examples for gene-regulatory mechanisms include methylation of
DNA (Singal and Ginder, 1999), and variable rates of transcription initiation,
translation, and degradation of transcripts (Timmers and Tora, 2018). In
eukaryotes, there are even more regulatory mechanisms: various chemical
modifications of histones, onto which the DNA is rolled up, are known to
promote or inhibit the expression of proximal genes (Bannister and Kouzarides,
2011). Alternative splicing allows the cell to produce different proteins from the
same gene depending on the presence or absence of regulating proteins (Kelemen
et al., 2013). As a concluding example, microRNAs, in conjunction with the
RNA-induced silencing complex (RISC), cleave specific target transcripts and
thus silence the corresponding gene (Tijsterman and Plasterk, 2004).

Obviously, the surroundings of a cell may vary rapidly, e. g., due to changes
in temperature, the availability of nutrients or oxygen, or external signals
in multicellular organisms (Hancock, 2017). To survive and prosper, living
organisms must adapt to those changes quickly. On the level of the cell, this
often means that a different set of gene products is required to be expressed, e. g.,
heat shock proteins when the temperature rises, or lactase when the glucose
level is low but lactose is available as a nutrient. Under normal conditions,
the expression of these specialised proteins would be a waste of resources at
best, and at worst they would even have detrimental effects. Thus, the rates
of transcription and, in the case of proteins, translation of the respective gene
products must be able to immediately respond to environmental stimuli. Also, if
a very quick response is needed, there may be no time to start transcription only



Chapter 1. Introduction 3

when the gene product is required; the transcript should possibly be synthesized
already, but its translation should be delayed.

A specific example of how this can be achieved is the synthesis of the
above-named heat shock proteins. Their mRNA transcripts often contain so-
called ROSE elements in their 5′ untranslated region (UTR). ROSE stands
for “repression of heat shock gene expression”, and as the name suggests,
these elements prevent the transcript from being translated, suppressing the
expression of the protein encoded by the open reading frame downstream
(Krajewski and Narberhaus, 2014). ROSE elements consist of several structural
components called hairpin loops, the last of which is believed to sequester the
ribosomal binding site (RBS) and thus prevent the initiation of translation.
These hairpins are sensitive to temperature changes. If the cell heats up, they
destabilize and the RBS becomes accessible to the ribosome, which in turn starts
the translation of the heat shock protein now required. ROSE elements belong
to a bigger class of regulatory elements referred to as RNA thermometers, which
are characterized by their structural response to temperature changes leading
to a change in the expression of a gene. The existence of RNA thermometers
stresses the importance of RNA secondary structure for gene regulation. It
is thus obvious that a thorough understanding of the RNA folding process is
required to fully comprehend at least some of the regulatory mechanisms.

While RNA thermometers can only respond to changes in temperature, other
classes of RNAs are capable to recognize other stimuli as well. Riboswitches
are small regulatory elements that are able to regulate the expression of a
specific gene in response to the presence or absence of another small molecule,
referred to as its ligand. Exploiting the fact that many substances can bind to
RNA, a binding pocket specifically matching the ligand is formed, which is then
stabilized if it is actually bound. In the absence of the ligand, the riboswitch
adopts an alternative structural conformation, which will in turn regulate the
controlled gene. This simple yet effective mechanism allows the cell to quickly
respond to either internal or external signals as soon as the concentration of the
ligand in the cell rises. In fact, natural riboswitches are abundant in bacteria,
and their diverse ligands show the flexibility of this way to affect gene expression.
Also note that, as in the case of ROSE elements, the change of structure of
the RNA is mediating its function. Thus, a thorough knowledge and powerful
tools for simulating RNA folding are they key to understanding the underlying
mechanism of action not only of riboswitches, but for many classes of non-coding
RNAs.

While the study of natural riboswitches is highly interesting by itself, in-
depth knowledge of their mechanics gives rise to even more exciting opportunities:
using both natural and artificially designed components, synthetic riboswitches
can be engineered to respond to almost any ligand and to control any gene of
interest. By choosing multiple foreign, non-toxic ligands, orthogonal switches
can be constructed, controlling multiple genes independently, which can then be
regulated by the researcher by simply changing the ligand concentration in the
medium. Beside possible applications in research, riboswitches may also be used
as detector for various substances. If the riboswitch is coupled with a fluorescent
reporter gene, the presence of the ligand can readily be observed visually. Such
systems could be used in situations where the laboratory equipment required
for other means of detection are not available, e. g., during a field study in a
remote area (Sahu, Roy, and Anand, 2022).
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Reflecting on these examples, the central role of RNA structure to mediate its
function on many different levels becomes obvious. This work will therefore focus
on explaining techniques that empower researchers to elucidate the mysteries of
RNAs. To this end, the realm of RNA structures will be analyzed thoroughly,
and models and criteria characterizing their behaviour will be presented. It will
also be shown how these techniques can be applied in practice to design novel
molecules in an effective an cost-efficient manner, minimizing laborious and
expensive trial-and-error procedures by precise computational predictions. This
way, the author hopes to contribute a tiny piece to the huge puzzle that mankind
tries to solve ever since the dawn of our species: the quest for understanding
the world we live in. It is a long journey we are on; a journey that will never
end, but which defines who we are.

This thesis is organized as follows. The reader is familiarized with the biology
of RNA folding, its thermodynamic and kinetic properties, and important
existing models in Chapter 2. In Chapter 3, results concerning the quality
control of RNA folding simulations are presented. Then, Chapter 4 presents
an in-depth statistical analysis of the distributions of structures, energies, and
their probabilities. In Chapter 5, finally, the techniques presented previously
are applied to design synthetic riboswitches and predict their behaviour in the
cell.
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6 Chapter 2. Background

This chapter introduces the reader to the basic concepts and terminology used
in the remainder of the thesis. The topics include genetics, the chemistry of
biomolecules, the thermodynamics of RNA structures, the kinetics of RNA
folding, and important models and algorithm for them.

Serving as an introduction to readers not familiar with the matter of the
following chapters, this part of the thesis does not present original research of
the author. The presented information is mostly common knowledge as found
in standard text books and current reviews of the life sciences and its journals.
If a passage of text is based on information from a single reference, it is cited
only once.

2.1 The biology of nucleic acids

This section provides general biological information about DNA and RNA
that is referred to, explicitly or implicitly, in the other parts of this work. The
presented information is, to a great extent, common knowledge and can be found
in any standard text book of the field, e. g., in Alberts, B. (2022). Molecular
biology of the cell. Seventh edition. New York: W. W. Norton & Company.
isbn: 978-0-393-88482-1.

2.1.1 DNA: information storage of living beings
Deoxyribonucleic acid, commonly referred to as DNA, is probably the most
renowned biomolecule and found in all known forms of live. It can be considered
as a storage of blueprints that organisms use to make all the components
required to keep up their metabolism and to proliferate. More precisely, the
DNA comprises the genome of a cell, i. e., the sum of all its genetic make-
up. It encodes for proteins and functional RNAs, both of which fulfill and
assist numerous important tasks such as catalysis and regulation of biochemical
reactions, signalling, transport etc., or serve as building block for cellular
compartments. In the cell, DNA occurs as a stable double helix consisting
of two strands storing complementary information in the form of different
nucleotides. Specific locations (loci) on these strands that encode for a certain
RNA product are called genes. These serve as templates for the synthesis of
RNA molecules, as we will see in the next section. Each cell of an organism has
an exact copy of the same DNA. When a cell divides, the DNA is replicated
with extremely low error rates. This precise replication and the stability are the
properties that make DNA so well-suited to safely store the genome of a cell.

2.1.2 RNA: both messengers and workhorses
Ribonucleic acids, or RNAs, fulfill at least two critical tasks in a cell. Firstly, as
mRNA, they act as a “messenger” to transport information from a gene to the
ribosome, which translates them into proteins, which are the major workhorses
of the cell fulfilling numerous tasks. Secondly, RNAs may, directly or indirectly,
act in the cell without being translated. These are referred to as non-coding
RNAs. The most prominent examples of this abundant and versatile class
include ribosomal RNAs, which constitute, together with other proteins, the
ribosome that translates mRNAs to proteins; tRNAs, which match amino acids
to their respective nucleotide triplet during translation; ribozymes, which act
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Figure 1: Three-dimensional crystal structure of the DNA double helix of the 12-mer
1BNA (Berman et al., 2000; Drew et al., 1981). The two strands are colored orange
and green. The flat bands represent the backbone, and the individual nucleotides are
depicted as polygonal shapes.

as catalysts; and small RNAs as well as long non-coding RNAs, which beside
other tasks regulate the transcription and translation of mRNAs. While the
aforementioned types are usually transcribed from dedicated loci referred to as
RNA genes, there are also smaller functional elements that are part of other
transcripts. For example, riboswitches and RNA thermometers are usually
found at the beginning of mRNA transcripts and regulate their expression, i. e.,
transcription and translation, in response to external stimuli.

RNAs are the major topic of this work. In the following sections, their
properties and behaviour will be introduced thoroughly.

2.1.3 The sequence of RNA molecules

RNA is a chain-like molecule consisting of ribose (i. e., sugar) molecules linked
together by phosphate groups, comprising the ribose–phosphate backbone of
molecule. In RNA, the D-ribose occurs in its β-furanose form, i. e., as a ringlike
molecule of five carbon atoms, which are consecutively numbered and referred
to as 1′ to 5′. The phosphate group always links a 5′ with a 3′ carbon; the
RNA chain thus has a direction: it is read from its 5′ to its 3′ end, cf. Figure 2.

To each ribose molecule, exactly one of the four nucleobases adenine, uracil,
guanine, or cytosine – abbreviated as A, U, G, and C, respectively – is attached.
A nucleobase and the ribose it is bound to are together referred to as a nucleoside.
A nucleoside including a phosphate group, as in the backbone of an RNA
molecule, is called a nucleotide. By reading the attached bases of an RNA
molecule in 5′ to 3′ direction, one obtains the sequence information.

2.1.4 The synthesis of RNA molecules

RNAs are transcribed, i. e., synthesized from a DNA template, by a group of
enzymes referred to as RNA polymerases (RNAPs). To this end, an RNAP
attaches to a region at the beginning of the gene called the promoter, and
unwinds a short section of the DNA double helix to form the transcription



8 Chapter 2. Background

(a)

(b)

Figure 2: The chemical structure of RNA and base pairs. (a) Two ribose molecules
(pentagonal rings) molecules connected by a phosphate group (P). For the lower ribose
molecule, the nucleobase is drawn, too – the purine guanine (two connected aromatic
rings) in this case. (b) A Watson–Crick base pair of adenine (A) and thymine (T) as
found in DNA. It consists of two hydrogen bonds (H).

(a): en.wikipedia.org/wiki/File:RNA_chemical_structure.GIF [2022-05-09]
(b): commons.wikimedia.org/wiki/File:Hoogsteen_Watson_Crick_pairing-en.svg [2022-05-09]

bubble. This process is referred to as the initiation of transcription. Next, the
elongation of the RNA molecule begins: RNAP starts to slide over the DNA
template (or antisense) strand in 3′ to 5′ direction. It reads one of the four
nucleobases – adenine, thymine, guanine, and cytosine – from the template,
and for each it appends a complementary nucleotide to the newly synthesized
molecule in 5′ to 3′ direction. The complement of guanine is cytosine and vice
versa; the complement of thymine is adenine, and thymine is replaced by uracil
and thus not present in RNAs. The synthesized RNA thus matches the other
(coding or sense) strand, except for the exchange of thymine by uracil. This
process continues until the termination is triggered, and the DNA template,
RNAP, and the newly synthesized RNA dissociate. In bacteria, termination
can either be mediated by a protein called ρ factor, or triggered by a signal
in the sequence itself. The latter case is called intrinsic termination, and is of
great importance for the synthetic RNAs designed in Chapter 5. In eukaryotes,
i. e., organisms whose cell have a nucleus, termination is not yet understood
very well (Nielsen, Yuzenkova, and Zenkin, 2013). Well-known, however, is
that they extensively post-process their transcripts by splicing, capping, and
polyadenylation.

While in prokaryotes – i. e., bacteria and archaea – the DNA is located
directly in the cytoplasm, it is enclosed by the nucleus in eukaryotes. Conse-
quently, a prokaryotic transcript can interact with other molecules of the cell
while it is still being synthesized, but a eukaryotic transcript needs to be fully
transcribed, processed and exported from the nucleus first. These specifics have,
again, consequences for the design of synthetic RNAs discussed later.

en.wikipedia.org/wiki/File:RNA_chemical_structure.GIF
commons.wikimedia.org/wiki/File:Hoogsteen_Watson_Crick_pairing-en.svg


Chapter 2. Background 9

2.1.5 Base pairs structure RNAs

Inside the cell, RNA molecules are in an aqueous solution. Under these condi-
tions, they exhibit a strong tendency to coil up into compact conformations.
Many of the nucleobases engage in base pairing: both adenine and uracil, and
guanine and cytosine are capable of forming hydrogen bonds between each other,
thus constituting Watson–Crick base pairs. This is similar to the base pairing
in DNA, with the exception that adenine pairs with uracil instead of thymine,
cf. Figure 2. To some extent, guanine may also pair with uracil, forming a weak
wobble base pair. Consecutive base pairs then stack on top of each other, hiding
the less hydrophilic nucleobases inside a helical structure, the negatively charged
sugar–phosphate backbone pointing to the outside, and thus greatly stabilize
the molecule. Due to the polar backbone, DNA exhibits a good solubility in
water. The stabilizing effect of stacking is attributed to the London dispersion
forces arising from the interaction of the π-bonds of the aromatic rings in the
nucleobases; the contribution of the hydrogen bonds is considered less relevant
as they could also be formed with the solvent (Riley and Hobza, 2013). Like
other physical systems, RNAs try to attain a stable, low-energy state, and since
increasing the number of base pairs tends to stabilize the molecule, they usually
exhibit quite compact structures with as many pairs as possible. In fact, a
theoretical study found the expected distance of the 5′ to the 3′ end to be less
than 6.8 steps along the backbone or any present base pair, even for very long
RNAs (Clote, Ponty, and Steyaert, 2012).

Since each nucleobase can engage in a Watson–Crick pair with at most one
other base, almost all RNA molecules will have both single-stranded (i. e., un-
paired) and double-stranded (i. e., paired) regions under physiological condition.
Consecutive double-stranded regions are also called stems; in the cell, they
take the form of a helix. The length of a stem is the number of base pairs it
consists of. A single-stranded region enclosed by a stem is referred to as hairpin
loop, and the number of single-stranded nucleotides enclosed by the stem is the
hairpin’s loop length. A stem may be interrupted by a single-stranded region on
one side (a bulge) or both sides (an interior loop) of the same base pair. A loop
region exhibiting more than two stems is referred to as multi-loop. The regions
of the molecule that are not enclosed by any base pair make up the so-called
exterior loop; a term that is figurative in the sense that these nucleotides do
not actually form a closed loop. Examples of these structural elements are
presented in Figure 3.

Beside the standard Watson–Crick base pairs, there are also other, non-
canonical types such as Hogsteen or chemically modified base pairs. The various
non-modified base pair types arise because the nucleobases possess three edges,
namely the Watson–Crick, Hogsteen and sugar edges, and can potentially base
pair with each other in various combinations of these (Halder and Bhattacharyya,
2013). Though these may play a role in special cases like RNA triplex formation
(Devi et al., 2015) and tRNA functionality (Suzuki, 2021), respectively, they are
of minor importance for RNA folding in general and will thus not be considered
here.

It should also be noted that other factors like the temperature, metal
ions, certain enzymes (e. g., RNA chaperones) or ligands etc. may have a
dramatic effect on the ability of RNA to form base pairs. For example, varying
the magnesium ion concentration can completely change the structure of an



10 Chapter 2. Background

A
C U G U

A

U

C

U
C

A

U
G

A

U

G
G

ACAG
A

10

20

A
C

U
G

U
A

U
C

U C
A

UG
A

U
A

C
A

G

A

10

20

A C
U

G
U

A
U

C

U

G

G

A

G

U

G
C

C

A

C

U

C

C
C

A G G G G
A

A

G

GC

CCCCU
AU

G
A

U
A

C
A

G

A

10

20

30

40

A C U G U

A
A

A

A U C
U

C

A
U

GAU
GG

ACAG
A

10

20

A

C

B

D

Figure 3: Examples of the various structural elements found in RNA secondary
structures. Each letter in a circle denotes a nucleotide. The sequences are given in 5′

to 3′ direction as indicated by the numbers. (A) A double-stranded stem of seven base
pairs (green) encloses a single-stranded tetraloop, i. e., a loop of length four (blue).
Together, these form a hairpin loop. The two dangling nucleotides at position one and
20 (orange) belong to the exterior loop. (B) The same stem is now disrupted by an
interior loop (yellow) consisting of three nucleotides on the 5′ side and two nucleotides
on the 3′ side of the loop. (C) Here, the 5′ part of the interior loop in (B) has been
removed to form a bulge. Bulges can be interpreted as a special interior loops where
either the 5′ or the 3′ part has length zero. (D) The loop region of the hairpin loop in
(A) has been extended by two additional hairpin structures to form a multi-loop (red).
A multi-loop may branch into arbitrarily many, possibly complex substructures.

RNA molecule (Onoa and Tinoco Jr, 2004). When describing the behaviour
of biological systems in this work, it is thus assumed that they act under
physiological conditions.

2.2 The thermodynamics of RNA folding

After characterizing important biological properties of nucleic acids, we will now
put emphasis of how RNAs and their structures can be formalized. Important
models and algorithms will be introduced, and the distribution of structures of
equilibrated RNAs is described.

2.2.1 Of primary, secondary and tertiary structures

The sequence of an RNA molecule is also referred to as its primary structure.
It can easily be written as a string over the alphabet {A, U, G, C}, where the
letters denote the base at the corresponding position starting at the 5′ end.
Beside its central role in protein biosynthesis – the sequence encodes the order
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and type of amino acids of the protein to be synthesized –, it also determines
to a great extent the spatial structure of the transcribed RNA molecule: since
only some base pairs are energetically feasible, the sequence shapes the space of
possible conformations. Thus, it is up to some point possible to reliably predict
RNA folding by only analyzing the sequence of the molecule. To that end, a
formal representation of RNA structures is necessary.

For a fixed RNA sequence of length n, we can think of an RNA structure x as
a set of (valid) base pairs {p1, . . . , pm}, where pk = {(i, j) | 1 ≤ i + ϵ < j ≤ n}
are pairs of indices marking the positions of the nucleobases that pair with each
other in the sequence for all k = 1..m. ϵ is a parameter defining the minimal
loop length, i. e., number of nucleotides enclosed by (i, j). It accounts for the
fact that the sugar–phosphate backbone cannot be bend beyond a defined angle
and is commonly set to 3 nt. The fact that each base pairs with at most one
other implies for any two base pairs (i, j), (k, l) ∈ x that i, j, k and l are pairwise
distinct. Note that this representation of structures as a set is succinct in that
it only captures the base pairing information and not, e. g., the exact spatial
positions of the molecules. In the most cases, however, it describes the function
of the molecule well enough (Fontana, Konings, et al., 1993), and it significantly
reduces the degrees of freedom for modelling and computing possible structures.

Even when limiting the representation of structures to sets of base pairs, the
number of possible structures for a given RNA sequence grows exponentially
with its length n (Stein and Waterman, 1979). Already for a moderate n, this
makes many computations entirely infeasible. Further restricting the space of
structures is therefore necessary. This goal can be achieved by introducing the
notion of secondary structures. Intuitively, these are the structures which can
be drawn in two dimensions without any base pairs crossing each other or the
backbone. More formally, we require for any two base pairs (i, j), (k, l) ∈ x with
i < k that either i < k < l < j or j < k holds. In the first case, (k, l) is nested
into (i, j), while in the second two cases, both base pairs are non-overlapping.
Secondary structures can conveniently be represented as a dot–bracket string,
i. e., in the order of the sequence, each base pair is denoted by a matching pair
of parentheses, while unpaired bases are marked with a period.

Structures not adhering to the “no crossing” constraint are said to have
tertiary interactions or pseudo-knots. Tertiary structures are three-dimensional
representations of the molecule, cf. Figure 4. While there are examples of
biologically relevant tertiary interactions like, e. g., kissing hairpins (Chang and
Tinoco, 1997), the function of RNAs can be explained within the secondary
structure model in many cases because it often depends on the presence of
certain structural features that are well represented by it. One important thing
that should be kept in mind, however, is the fact that the physical distance
between two nucleotides is not necessarily related to their “distance” in the
secondary structure, which can be defined e. g., in terms of path lengths on
a graph representation of the structure. Still, the secondary structure model
greatly reduces the number of structures to consider while retaining many of
their important features. And even though there are still exponentially many
secondary structures (Clote, Kranakis, et al., 2009), the imposed constraints
allows for very powerful prediction algorithms, as we shall see in the next
sections.
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Figure 4: Secondary (left) and tertiary (right) structures of the manganese bound
M-box RNA from Bacillus subtilis. The tertiary structure was originally obtained
from an X-ray crystallography experiment (Ramesh, Wakeman, and Winkler, 2011)
listed in the RCSB Protein Data Bank (Berman et al., 2000) as entry 3PDR. The
secondary structure representation is part of the CompaRNA RNA structure prediction
benchmark (Puton et al., 2013) and was drawn using Forna (Kerpedjiev, Hammer,
and Hofacker, 2015).

2.2.2 Quantifying stability: the Gibbs free energy
The secondary structure model for RNAs can be interpreted as a partition of all
possible three-dimensional structures. Each secondary structure is thus a class
of this partition possessing a configurational entropy, which is a measure for
the number of possible states of a system. Still, when assuming equilibration
within these classes as well as a constant temperature, secondary structures can
be considered as microscopic states. Their stability can thus be quantified in
terms of their Gibbs free energy ∆G (Cooksy, 2014), where

∆G = ∆H − T∆S.

Here, ∆H is the enthalpy, i. e., the sum of all energy stored in the bonds
and interactions of the molecule, ∆S is the entropy, and T is the (absolute)
temperature. ∆G is a real number, and a lower value of implies a more stable
molecule. According to the SI standard, the Gibbs free energy – or free energy
for short – is given in units of J (joule). However, in the context of nucleic
acid biochemistry, it is common to give its values in kcal mol−1 (kilocalories per
mole). We will adhere to this convention in this work.

An import aspect of the free energy is that it is a relative quantity. It is
always given as a difference (thus the symbol ∆) to a defined reference value.
For RNA conformations, the reference is the open chain, i. e., the molecule
without any base pairs, which is defined to have a free energy of 0 kcal mol−1. As
the open chain is usually a very unstable state for RNAs, stable conformations
have a negative free energy.

From the definition of the free energy above, it follows that the stability of an
RNA is temperature-dependent. Often, free energies are given for a temperature
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of 37 ◦C, which is the average temperature in the human body, but other values
such as 25 ◦C (i. e., room temperature) are also common. Therefore, care has
to be taken when comparing free energies from various sources.

Utilizing the concept of free energy, the problem of predicting the stability
of an RNA structure becomes equivalent to the prediction of its free energy.
Amongst others, Turner and Mathews (2010) have measured the free energy of
various small oligonucleotides with a specific structure using melting experiments.
Grounded on these values, an additive nearest-neighbor energy model can
be derived, which assigns free energies to arbitrary secondary structures by
adding up the individual contributions of its base pairs as well as the entropic
contributions of specific substructures such as hairpin and interior loops. Such
a model is implemented, e. g., in the program RNAeval from the Vienna RNA
package (Lorenz, Bernhart, et al., 2011).

2.2.3 The minimum free energy structure
In nature, all systems strive to attain a state of minimal energy. Thus, for any
RNA molecule, the structure of minimum free energy (MFE) is the most likely
of all and thus of great interest. Often, the MFE structure is referred to as
the structure of a given RNA, despite the fact that other structures may be
functionally relevant as well.

Given the significance of the MFE structure, an obvious question is how to
predict it for a given sequence. Unfortunately, the energy minimization problem
is hard for arbitrary structures. While the efficient (i. e., polynomial-time)
prediction of secondary structures as well as some simple classes of pseudo-knots
is possible (Akutsu, 2000), the general problem is NP-complete (Lyngsø and
Pedersen, 2000). In this work, we will therefore restrict to the prediction of
secondary structures only.

The precursor of all RNA folding procedures was Nussinov’s algorithm
(Nussinov et al., 1978), which uses a recursive decomposition scheme to maximize
the number of base pairs for a given sequence. Implemented by means of
dynamic programming, it has a space and time complexity of O(n2) and O(n3),
respectively. By extending the decomposition scheme such as to distinguish
between all energetically different components appearing in RNA structures,
Zuker and Stiegler (1981) were able to implement the full nearest-neighbor
energy model into the recursion and thus compute the MFE structure for
arbitrary sequences. The time complexity is O(n4), but can be reduced to
O(n3) by bounding the length of interior loops. Zuker’s folding algorithm is
implemented in modern RNA folding software such as the ViennaRNA package
(Lorenz, Bernhart, et al., 2011) or mFold (Mathews, Turner, and Zuker, 2007).
ViennaRNA also offers a comprehensive script language interface and is used
heavily throughout this work.

2.2.4 The equilibrium probabilities of structures
While the MFE structure is the most stable of all observed structures for a
given sequence, it tells little about possible structural variation. There are
known examples of bistable structures, which adopt different structures during
their lifetime or may even remain in a non-MFE folding state, and it is common
knowledge that structural features like stems undergo small structural changes
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over time (“helix breathing”). While these effects can only be properly described
by considering the kinetics of RNA folding – a topic that will be covered in
Section 2.3 –, their mere existence shows that alternative structures of RNAs
play an important role and cannot be neglected. While the MFE is most stable,
less stable structures can be observed as well. This leads to the question how
exactly the stability of an RNA structure is related to its probability.

To answer this question, we will assume that the RNA is in its equilibrium.
Theoretically, this is only the case after an infinite amount of time, but since the
opening and closing of base pairs of an RNA molecule are reactions happening
on a timescale of microseconds (Pörschke, Uhlenbeck, and Martin, 1973), this
assumption is reasonable in practice for many cases. We consider the set X
of all possible (secondary) structures of a given RNA sequence. X is called
the structure ensemble of that sequence. As explained in Section 2.2.2, any
structure x ∈ X can be assigned a Gibbs free energy ∆G(x), which quantifies
its stability. By the laws of thermodynamics, the probabilities of the structures
in X follow a Boltzmann distribution. In this discrete probability distribution,
each state (i. e., structure) is assigned a probability mass Z[x] depending only
on its free energy:

Z[x] = exp
(

−∆G(x)
RT

)
,

where T is the absolute temperature in kelvin, and R ≈ 1.987 17 cal K−1 mol−1

is the universal gas constant. The exact value of R in this work has been chosen
to match that used by the ViennaRNA package (Lorenz, Bernhart, et al., 2011).
Z[x] is called the Boltzmann weight or Boltzmann factor of x. The term (RT )−1
is also called the inverse temperature and mediates the temperature dependence
of the probability of RNA structures. For convenience, we will also write Z[η]
to denote the Boltzmann weight exp(−η/(RT )) associated with an arbitrary
free energy η. For a set of structures Y ⊆ X, its partition function is defined as

Z[Y ] =
∑
y∈Y

Z[y],

i. e., as the sum of the Boltzmann weights of the individual structures in Y .
With Z := Z[X], we can express the probability Pr[x | X] of a structure x in the
ensemble X as

Pr[x] := Pr[x | X] = Z[x]
Z ,

which can be generalized to arbitrary sets of structures Y1 ⊆ Y2:

Pr[Y1 | Y2] = Z[Y1]
Z[Y2] .

Of course, to compute these probabilities, the partition function has to
be determined first. Since the number of structures in X is huge, an explicit
enumeration is infeasible even for short sequences. An efficient approach
relying on dynamic programming was provided by McCaskill (1990), who
derived it from Zuker’s algorithm for MFE folding. To this end, the structure
decomposition scheme was improved such that, for each structure, there is
exactly one decomposition path. The dynamic programming matrices no longer
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store minimum free energies of subsequences, but partition functions of all
possible substructures; and in each decomposition step, the products of the
partition functions of every possible pair of subsequences are summed up. The
time complexity of the approach is in O(n3), just like the Zuker algorithm.

Partition functions of the ensemble X can thus be computed efficiently even
for big molecules. Modern implementations like RNAfold from the ViennaRNA
package also allow the computation of partition functions for certain subsets
of X, characterized, e. g., by a specific substructure or the presence or absence
of a particular base pair. To this end, a versatile way of specifying structural
constraints is available (Lorenz, Hofacker, and P. F. Stadler, 2016), providing
the analyst with a powerful and flexible tool set.

2.2.5 Numerical considerations for the computation of partition
functions

Due to the exponential change in the value of the Boltzmann weight even for
a moderately varying argument, the computation of partition functions can
easily lead to numerical instabilities. This section will discuss implications and
countermeasures to alleviate these issues.

As a first step, a scaled energy function ∆G∗ : x 7→ ∆G(x) − c∆G with some
scaling constant c∆G ∈ R can be used for the computation of the Boltzmann
weights. Note that this will not change the probability Pr[x] of any structure
x ∈ X because

exp(−β(∆G∗(x)))∑
y∈X exp(−β(∆G∗(y))) = exp(−β(∆G(x) − c∆G))∑

y∈X exp(−β(∆G(y) − c∆G))

= exp(−β∆G(x)) exp(βc∆G)∑
y∈X exp(−β∆G(y)) exp(βc∆G)

= exp(−β∆G(x))∑
y∈X exp(−β∆G(y))

= Z[x]
Z

= Pr[x] ,

where β is the inverse temperature. Consequently, the free energies of a set of
structures can freely be scaled by a constant value. It is often useful to rescale
by the MFE, such that the MFE structure has a Boltzmann weight of 1.

Another technique comes in useful especially when multiplying partition
functions of sets of structures Y1, Y2. Such operations arise frequently when
the total number of states of two independent, non-interacting molecules or
parts of one molecule shall be computed. Since partition functions may differ
dramatically in their value, their direct multiplication Z[Y1] Z[Y2] is prone to
numerical issues. The problems get even worse for more than two partition
functions. To avoid these, Z[Y1] and Z[Y2] are first computed as usual by
summing over individual Boltzmann weights. Then, a logarithm is applied such
that the product can be expressed as a sum since ln(ab) = ln(a) + ln(b). Finally,
the exponential function is applied to the sum to invert the logarithm. Thus,
by using Z[Y1] Z[Y2] = exp(ln Z[Y1] + ln Z[Y2]), the error-prone multiplications
are avoided.
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For similar reasons, the free energy of a set of structures Y is sometimes
used in place of the actual partition function value Z[Y ]. It is defined as
∆G(Y ) := −RT ln Z[Y ], i. e., the inverse of the operator Z is applied to parti-
tion function of Y . With the same argument as above, the product of the two
partition functions of Y1 and Y2 can then be expressed as the sum of their free en-
ergies, because Z[Y1] Z[Y2] = Z[∆G(Z[Y1] Z[Y2])] = Z[∆G(Z[Y1]) + ∆G(Z[Y2])].
The ensemble energy, i. e., the free energy of the ensemble X, is often used as a
characterizing value, as it is more manageable than the corresponding partition
function.

2.2.6 Suboptimal RNA structures
As pointed out before, the MFE structure is the most stable and most likely
of all structures. However, other structures may be comparably stable, and
there may even be multiple structures sharing the same MFE. In the nearest-
neighbor energy model, this effect can be observed frequently because the energy
parameters used to predict structures in practice are only precise to some point,
after which they are usually truncated, leading to a quantized co-domain of the
energy function. The parameters of Turner and Mathews (2010), for instance,
are given in full decacalories. Therefore, depending on the exact sequence and
its length, there are usually many structures sharing the same energy. However,
this observation is not merely an artifact of the employed energy model, as
is emphasized by the fact that there are numerous examples of multi-stable
RNAs, i. e., RNAs that adapt multiple stable structures (Linnstaedt et al., 2006;
Møller-Jensen, Franch, and Gerdes, 2001; Napierala and Krzyzosiak, 1997). A
comprehensive structure analysis of a sequence should therefore not be limited
to determining the MFE structure – or one of them –, but should include other
stable structures as well.

This immediately leads to the question how to determine not only the most
stable structure, but also other suboptimally stable structures – suboptimal
structures for short. Zuker (1989) developed a concept of suboptimal structures
by selecting, for each possible base pair, the most stable structure including this
pair. Another approach is to enumerate all saturated structures, i. e., secondary
structures to which no further valid base pair can be added, with a given number
of base pairs (Clote, 2006). The set of all saturated structures is exactly the
set of local minima in the simple Nussinov energy model, where each base pair
contributes −1 to the structure’s energy. A slight variation of this concept
presented by Evers and Giegerich (2001) was termed base stacking energy model,
where each stacked (i. e., non-isolated) base pair contributes −1 to the energy of
the structure. Their contribution also includes a dynamic programming structure
to enumerate the local minima with respect to this model. Yet another possibility
to obtain relevant suboptimal structures is statistical or Boltzmann sampling.
This can be achieved by randomly backtracking substructures according to their
probability in the dynamic programming matrices generated by McCaskill’s
algorithm (McCaskill, 1990).

Most relevant to this work, Wuchty et al. (1999) developed an algorithm
to efficiently enumerate all secondary structures of an RNA sequence with
an energy not exceeding a threshold ∆Genum above the MFE. The procedure
employs a branch and bound approach during the backtracking phase of the
MFE folding algorithm (Zuker and Stiegler, 1981). While this usually yields so
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many structures that the output is too verbose for manual analysis, it allows
to extract only the significant part of the structure ensemble, which can then
be further processed with other techniques. The parameter ∆Genum is critical
to balance between the number of generated structures and the fraction of the
ensemble that is to be analyzed.

2.3 Structure in motion: the folding kinetics of RNA

The previous section characterized static properties of RNAs as well as the
distribution of structures in equilibrium. Now, we will focus on the behaviour
of these biomolecules before their equilibration. As explained in Section 2.1.4,
RNAs are synthesized base by base from a DNA template by RNAP and thus do
not exhibit any structure initially. While this open chain remains the favorable
state for the first few nucleotides transcribed, the possibility to fold into much
more stable structures arises quickly as transcription proceeds. The molecule is
now out of equilibrium, and a dynamic refolding process begins. In this section,
this process is modelled under varying conditions.

2.3.1 Refolding as a sequence of elementary transition reactions
The thermodynamic approach to RNA folding can easily be misinterpreted in
the way that folding was some finite process after which the molecule attained
a specific, permanent conformation with a defined probability. This is not the
case. In fact, even an equilibrated RNA is permanently refolding, changing
from one conformation to another. Only on average will the distribution of its
structures match the computed equilibrium probabilities.

During refolding, a direct transition from one structure to another one will
not happen between arbitrarily different structures. It is highly unlikely that,
e. g., a sequence of three stable, adjacent hairpins immediately refolds into a
multi-loop structure. Instead, microscopic rearrangements happen randomly
all over the molecule and, in sum, may lead to a partial change of the global
structure. The reactions considered elementary in this process, i. e., those
consisting of “a single step”, are usually the opening and closing of a single base
pair. Sometimes, base pair shifts are also considered elemental. A shift of a
base pair (i, j) in structure x results in the new structure1 x \ (i, j) ∪ (i′, j) or
x \ (i, j) ∪ (i, j′) for some i′ ̸= i or j′ ̸= j, respectively. Obviously, any structural
rearrangement can be expressed as a series of elementary transitions. Also,
these reactions are reversible by another elementary transition.

2.3.2 RNA energy landscapes
Now, we can define a basic model to capture the properties of the previously
described RNA folding process in a formal representation. For such a model,
one needs, in addition to the secondary structures given as the ensemble X, a
notion of neighborhood to define which structures a given structure x ∈ X can
refold into within an elementary simulation step. Here, the set of adjacent or

1The common set operations are used to describe the addition (∪) and removal (\) of base
pairs. For a clearer presentation, the braces around singleton sets are left off, e. g., x \ (i, j) is
used instead of x \ {(i, j)}.



18 Chapter 2. Background

neighbor structures N(x) of x is defined as the set of all structures obtained by
applying an elementary transition (cf. Section 2.3.1) to x. The set of allowed
elementary transitions is also referred to as the move set. In this work, we
usually consider only insertion and deletion as allowed moves, but shift moves
could also be allowed. Note that, since the elementary transitions are reversible,
adjacency is a symmetric property, i. e., ∀x, y ∈ X : x ∈ N(y) ⇐⇒ y ∈ N(x).
Together with the Gibbs free energy, these ingredients define the RNA energy
landscape L := (X, N, ∆G) (Flamm, Hofacker, P. F. Stadler, et al., 2002).

As the term “energy landscape” suggests, L can be imagined – strongly
simplified – as a natural landscape, where adjacent structures of X correspond
to positions in that landscape that are close to each other, and the free energy
measures the altitude of that positions. Thus, local minima correspond to
valleys, maxima correspond to peaks, and transitions to adjacent structures
can be interpreted as “walking” through the landscape. An example is given in
Figure 6. This analogy, however, should not be over-interpreted as that may
lead to wrong conclusions. One specific issue with the comparison to objects
in the real world is the fact that L is very high-dimensional, since the number
of neighbors is usually high for the most sequences. In general, it is thus not
straightforward to generate a representative, two-dimensional plot of L. A
proper visualization requires a high degree of abstraction, for example using
barrier trees as discussed in Section 2.3.4. Another unintuitive fact is that, as
shown in Chapter 4, the vast majority of all possible structures is unstable,
and the tiny fraction of stable, low-energy structures thus form deep holes and
gorges in the landscape.

2.3.3 The transition rates of RNA folding

Chemical reactions occur at a specific rate. Especially when modelling a system
of multiple reactions, their differing rates must be accounted for. This also
applies to the elementary transition reactions of RNA folding. To this end, a
transition rate coefficient rx→y ≥ 0 is assigned to the refolding of x to y for
any two structures x, y ∈ X. A high rate coefficient implies a quick refolding,
and rx→y = 0 means that a (direct) transition is not possible at all. Since in
nature, all systems strive to attain a state of low energy, the rate coefficient
rx→y should depend on the free energies of x and y, and rx→y should be higher
than ry→x if ∆G(x) < ∆G(y).

For this work, the transition rate coefficients were obtained by applying the
rule of Metropolis et al. (1953):

rx→y :=
{

max
{

1, exp(− ∆G(y)−∆G(x)
RT )

}
if y ∈ N(x),

0 otherwise.

As discussed by Flamm and Hofacker (2008), this form corresponds to the Arrhe-
nius equation r = A exp(−β∆Ga) with pre-exponential factor A = 1 and inverse
temperature β, where the activation energy ∆Ga of the reaction is assumed to be
0 if ∆G(x) ≥ ∆G(y), and ∆Ga = ∆G(y) − ∆G(x) otherwise. The same authors
also discuss the symmetric Kawasaki rule r′ = A exp(− 1

2 β[∆G(y) − ∆G(x)])
and conclude that the choice of the rate constant rule does not qualitatively
change the outcome of the folding simulation.
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The pair L := (X, r·→·), which implicitly determines N(x) (because y ∈ N(x)
if and only if rx→y ̸= 0), represents the Markov process induced by the Metropolis
rule on the energy landscape L. L can also be interpreted as a graph where each
structure is a node, labelled by its energy, and a weighted, directed edge connects
each pair of adjacent structures (x, y) such that the edge weight corresponds
to the rate coefficient rx→y. The weighted graph L is connected since each
structure can refold into any other one, e. g., by first opening all of its base
pairs, and then closing all base pairs of the target structure, one after another.
The Markov process L is thus ergodic, i. e., starting from any state, every other
state will eventually be visited.

A property that a reaction systems composed of elementary reactions is
often supposed to have is so-called detailed balance (Kampen, 2007). A system is
said to be in detailed balance if, in its equilibrium, the rate of every elementary
reaction is matched by the rate of its reverse reaction. For the folding reaction
of an RNA, that means that ∀x, y ∈ X : Pr[x] rx→y = Pr[y] ry→x. It is easy to
show that this assumption holds for the Metropolis rate constants.

Proof. Assume first that y /∈ N(x). Then, x /∈ N(y) and thus rx→y = ry→x = 0
and detailed balance holds. Now, assume y ∈ N(x) and thus x ∈ N(y). If
∆G(x) ≤ ∆G(y), then exp(−β[∆G(y) − ∆G(x)]) ≤ 1 and the rate coefficients
are rx→y = exp(−β[∆G(y) − ∆G(x)]) = exp(−β∆G(y)) exp(β∆G(x)) and, for
the reverse reaction, ry→x = 1. It follows that

Pr[x] rx→y = exp(−β∆G(x)) Z−1 exp(−β∆G(y)) exp(β∆G(x))
= Z−1 exp(−β∆G(y)) = Pr[y] · 1 = Pr[y] ry→x,

and thus detailed balance holds, too. The opposite case, ∆G(x) > ∆G(y), is
symmetric and the claim follows analogously.

2.3.4 Coarse graining energy landscapes
Despite the reduction of structures achieved by applying Wuchty’s algorithm,
even for short RNAs the number of secondary structures is still far too high
to use them directly as state set when performing kinetic folding simulations.
One option to significantly remove the number of simulation states is to use the
program barriers (Flamm, Hofacker, P. F. Stadler, et al., 2002), which performs
a coarse graining of the structure ensemble X. It processes the sorted list of
low-energy states X ′ := {x ∈ X | ∆G(x) ≤ ∆Genum} generated by RNAsubopt
(Lorenz, Bernhart, et al., 2011) and extracts (i) the representative set X̃ of
local minima in X ′ and (ii) the energy barriers between them. Together, they
comprise a tree-like structure called the barrier tree, which can readily be
visualized, cf. Figure 5. barriers also (implicitly) assigns each x ∈ X ′ to the
local minimum Γ(x) that is reached by performing a gradient descent in the
energy landscape L. A gradient descent (Day et al., 2016) is a path following
the steepest descent of free energy. Γ(x) can be defined recursively as

Γ(x) =
{

x if ∆G(x) ≤ miny∈N(x) ∆G(y),
Γ(arg miny∈N(x) ∆G(y)) otherwise,

i. e., the final structure of the gradient descent is x if x is already a local
minimum in L. Otherwise, the procedure continues at the neighbor structure
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Figure 5: Visualization of the barrier tree for the five lowest-energy minima of
sequence 5′-AGCUCAAACCCUGACGUCGGCUUCCCUGCG-3′, generated by barriers. The leaves
of the tree represent the five local minima. The axis on the left-hand side shows
the free energy of the minima and saddles in kcal mol−1. The labels on the vertical
edges denote the barrier height between siblings, and the length of the lines scale
proportionally with it. For any two minima, their barrier heights can be determined
by adding up the barrier heights on the path from the respective minimum to the
least common ancestor with the other minimum.

of x that has the lowest free energy. For Γ(x) to be defined uniquely, it is
necessary that for all x ∈ X, its neighbors N(x) have mutually different energies.
Flamm, Hofacker, P. F. Stadler, et al. (2002) call energy landscapes with this
property locally invertible. In practice, this formal requirement may be relaxed
by employing a deterministic tie breaker rule that defines a total order on
the adjacent structures, e. g., by using a lexicographic comparison on their
dot–bracket representation if their energies are equal.

By assigning each x ∈ X ′ to the local minimum Γ(x), the structures are
binned into well-defined macrostates. These are therefore simply sets of mi-
crostates, i. e., individual RNA structures. The macrostates can be interpreted
as equivalence classes of the equivalence relation x RΓ y :⇐⇒ Γ(x) = Γ(y),
each uniquely represented by its local minimum, which together form a parti-
tion of the ensemble. Thus, the macrostate containing the structure x ∈ X is
defined as [x] = {y ∈ X | Γ(y) = Γ(x)}, and [x] = [y] if and only if y ∈ [x] for
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Figure 6: Schematic and strongly simplified visualization of an RNA energy landscape
to which a coarse graining is applied. left: Individual structures are denoted as black
squares, each being adjacent to its left and right neighbor. The y-axis displays their
free energies. The MFE structure is marked with a blue asterisk. right: Coarse-grained
version of the same energy landscape. The individual structures have been binned into
gradient basins, denoted α, β, and γ (hatched in green, blue, and yellow, respectively).
Due to the enumeration threshold ∆Genum (horizontal, dashed line), the upper part
of the landscape (hatched in gray) is not part of the coarse-grained representation.
As a result, γ is disconnected from the remaining basins.

all x, y ∈ X. We also refer to these macrostates as (gradient) basins because of
their “shape” in the energy landscape. Figure 6 shows the result of applying
the described procedure to an example.

It should be noted that the definition of macrostates in terms of the gradient
descent operator Γ(·) is not indisputable. As B. M. R. Stadler and P. F. Stadler
(2010) point out, a gradient descent is not necessarily the most likely folding
path. Instead of always following the steepest descent, they consider arbitrary
adaptive walks – i. e., walks where the free energy of the current structure reduces
with each step –, and calculate probabilities for the resulting trajectories. A
structure can thus be assigned to the minimum it is most likely to refold
into. This is desirable especially when considering that the Metropolis rule
(cf. Section 2.3.3) assigns a rate coefficients of 1 to all transitions to adjacent
structures of lower energy, regardless of how much lower their energy is.

There are also alternative approaches to coarse graining. For example,
Giegerich, Voß, and Rehmsmeier (2004) describe an approach to represent
secondary structures by more abstract classes referred to as RNA shapes.
Depending on the selected granularity, this approach removes more or less
details from the secondary structure, e. g., the exact number of consecutive base
pairs in a stem, the size of a loop, bulges, interior loops etc., until only a coarse
representation of important features remains. These shapes can conveniently be
represented as a dot–bracket string just as usual secondary structures. This is
a handy tool to visualize the basic structural features of a set of structures. A
problem with such broad classes in the context of kinetic simulations, however,
poses the required equilibrium within each macrostate discussed in the next
section. While this assumption seems reasonable for gradient basins, the
same shape class may contain structures separated by high energy barriers,
e. g., two overlapping, mutually exclusive hairpin structures. Such a class will
usually be far from equilibrium, and using such a state set may thus introduce
significant errors into a simulation. Another method to reduce the number of
simulation states, which is better suited for kinetic folding simulations, was
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proposed by Tang et al. (2008). Instead of the full ensemble, it considers only a
Boltzmann sample, i. e., a random sample of structural conformations drawn
with a probability proportional to their Boltzmann weight. To further reduce
the number of transitions, only the k closest (with respect to the number of
differing base pairs) neighbor conformation were considered. The transition
rates are also computed using the Metropolis rate. Yet another approach is
taken by the basin hopping graph framework (Kucharík et al., 2014). It also
takes a Boltzmann sample from the ensemble, but applies gradient walks to
the sampled structures to obtain a list of local minima. Direct paths between
the minima are then computed both to discover more minima between the
ones already known and to estimate the energy barriers for transitions between
individual minima.

2.3.5 Transition rates for macrostates

To model RNA folding based on such a coarse-grained ensemble, it is necessary
to lift the definition of transition rate constants for structures to basins of
structures. For every pair of macrostates α, β ⊆ X, the rate coefficient for
the transition from α to β is thus computed as a weighted sum over the rate
coefficients of each pair of microstates x ∈ α and y ∈ β:

r̃α→β :=
∑
x∈α

∑
y∈β

Pr[x | α] rx→y,

where Pr[x | α] is the probability that the Markov process L is in state x given
we know that it is in the macrostate α to which x belongs. Assuming that
basins are steep, the Markov process will approximately equilibrate within α
before leaving the basin, justifying the approximation Pr[x | α] = Z[x]/ Z[α].
The approximation fails in particular for large, shallow basins, which are
likely to appear in landscapes of sequences with extremely biased nucleotide
distributions and unusually large fractions of unpaired bases in their ground
state. The rate constants r̃α→β define a Markov process on the set of basins,
which again can be seen as a graph L̃ := (X̃, r̃·→·) whose neighborhoods are
given by Ñ(α) :=

{
β ∈ X̃ \ {α} | ∃y ∈ β : y ∈ N(x)

}
. Thus, two basins α, β are

considered adjacent if and only if there are two adjacent structures x ∈ α and
y ∈ β. The neighbor-generating function N thus naturally extends to gradient
basins. Note that, just as in the microscopic case, the graph L̃ is connected
when partitioning the full ensemble X. If, however, only a part of the ensemble
is processed, e. g., when using Wuchty’s algorithm to generate low-energy, paths
connecting the remaining states may be removed and the graph falls apart into
multiple components. In this case, the Markov process L is no longer ergodic;
some basins can no longer be accessed. Since disconnected states are useless and
hinder a further analysis, they should be removed before proceeding. This can
easily be achieved by performing a breadth-first search on the graph L̃, starting
at the MFE basin, i. e., the basin represented by the global MFE structure.
Any basin that is not reached during the graph traversal can then be deleted.

Along with the basins and the corresponding rate matrix, barriers computes
several statistics on the number of structures and the partition functions Z[α]
for the basins α ∈ X̃.
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2.3.6 Simulating first-order reaction kinetics for RNA folding
Assuming n different species of RNA R1, . . . , Rn, representing the individual
microscopic or macroscopic folding states of the molecule, the folding reac-
tion can be expressed as a system of elementary reactions Ri −→ Rj for all
i, j ∈ {1, . . . , n} , i ̸= j. Elementary reactions during which, at a time, a sin-
gle molecule of a single reactant is converted to the reaction product are
said to be of first order. The kinetics of such reactions are governed by the
law of mass action and obey the first-order ordinary differential equation

˙[Ri] = d
dt [Ri] = −rRi→Rj

[Ri], where [Ri] is the concentration of species Ri, and
rRi→Rj

is the rate coefficient for the elementary transition from species Ri to
species Rj . Thus, the change in concentration of species Ri over time due to its
conversion into species Rj is indirectly proportional to its current concentration.
Of course, species Ri can, in general, refold into many different states. Also,
other species are refolding into species Ri. To fully describe the change in
concentration for Ri, all these individual changes need to be summed over:

˙[Ri] =
∑
j ̸=i

(rRj→Ri [Rj ] − rRi→Rj [Ri])

By setting the (undefined) rate coefficient rRi→Ri
to −

∑
j ̸=i rRi→Rj

, the equa-
tion can be simplified to

˙[Ri] =
∑

j

rRj→Ri
[Rj ].

It is commonly referred to as a master equation and can be interpreted as a
Markov process as follows (Kampen, 2007).

The rate coefficients r·→· are set to either microscopic rates for individual
secondary structure simulation, or to macroscopic rates to simulate gradient
basin transitions. Given a distribution p(0) of initial states and the rate matrix
R = (rij) composed of the respective rate coefficients rxj→xi or rαj→αi , the
distribution after some time τ is simply given by p(τ) = exp(τR). It can
be computed using standard methods of linear algebra, requiring in essence
the diagonalization of R. The software Treekin (Wolfinger et al., 2004) is the
implementation used for this work. It can easily process rate matrices of a
dimension up to a few thousands. The resulting output gives, for each time
step, the population density of each state. The user can choose the length of
the simulated time period, which corresponds to setting the transcription rate.

Treekin expects a connected state space (X, r·→·). As noted above, the
full ensemble of secondary structures is always connected, but this is not
necessarily the case after the truncation of the landscape (X, N, ∆G) to low-
energy structures. The author’s software package BarMap-QA (Section 3.4)
contains the script barriers_keep_connected that truncates any disconnected
state from the rate matrix and generates Treekin-compatible input. As an
alternative, heuristic methods such as findpath from the ViennaRNA package
(Lorenz, Bernhart, et al., 2011) or RNAEAPath (Li and Zhang, 2012) could
be used to estimate energy barriers and, thus, approximate transition rates
between the components of a disconnected landscape. However, such heuristics
introduce errors into the simulation, and increasing ∆Genum (if computationally
feasible) is thus a safer method to include relevant, disconnected states.
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2.3.7 A model for cotranscriptional folding
A simulation as performed by Treekin is well capable to capture the dynamics
of RNA folding. However, the rate matrix characterizing the transition rates
and number of states – and thus many other parameters the simulation depends
on – are assumed to be fixed. These parameters include the temperature, ion
concentrations, and the sequence of the RNA molecule itself. Additionally, the
binding of other molecules may change the free energy of certain structures
significantly. One possibility to include this variation into a kinetic simulation
was introduced by Hofacker, Flamm, et al. (2010) in their BarMap framework.
The underlying idea is to overcome the limitation of having to use a single,
fixed energy landscape for the entire Treekin simulation by allowing a sequence
of coarse grained energy landscapes L̃1, . . . , L̃n and their associated transition
rate matrices as input instead, each of which may be using a different set of
parameters and states. To this end, a set of maps µ1, . . . , µn−1 is constructed
such that µi assigns each state of landscape L̃i to a state of landscape L̃i+1. The
details of this construction process are described below. For now, we assume
that the maps and landscapes are readily available. Figure 7 shows a simple
example of a single mapping step between two energy landscapes.

Given these ingredients, the simulation starts with in L̃1 with user-defined
populations p0 and runs until reaching a specific end time. Then, µ1 is employed
to map each state’s population to the corresponding state in L̃2. If multiple
states are mapped to the same state in the successor landscape, their population
is summed up. In general, the initial populations of landscape i = 1 are

x(1)
j (t0

1) = p0

and, for i = 2, . . . , n,

x(i)
j (t0

i ) =
∑

k∈µ−1
i−1(j)

x(i−1)
k (t∞

i−1),

where x(i)
j (t) is the population of the j-th state of landscape i at time t, t0

i and
t∞
i are the simulation start and end times for landscape i, respectively, and

µ−1
i−1(j) is the preimage of state j from L̃i in L̃i−1, i. e., the set of all states in

L̃i−1 that are mapped to state j. For t ∈ (t0
i , t∞

i ], the populations x(i)
j (t) are

determined by running Treekin on the rate matrix of L̃i as usual. This process
continues in the following landscapes until reaching L̃n, where the simulation
terminates at time t∞

n .
For simulations of cotranscriptional folding, the sequence of landscapes is

naturally generated from all possible prefixes of the input sequence such that
Li models folding reaction of the first i nucleotides. Of course, elongating the
sequence by more than one nucleotide per landscape is also possible, but at the
cost of accuracy of the simulation.

To construct the map µi : X̃i −→ X̃i+1, where X̃i is the set of macrostates
of L̃i, BarMap considers the representative minimum x of each basin [x] ∈ X̃i.
It then appends an unpaired nucleotide to the end of x to obtain x′ ∈ Xi+1 and
sets µi([x]) := [x′] ∈ X̃i+1, i. e., basin [x] is mapped to the basin represented by
the local minimum y = Γ(x′) in the next energy landscape.

In practice, the structure y does not necessarily represent a basin in X̃i+1,
e. g., because the low-energy part X ′

i+1 ⊆ Xi+1 was not enumerated up to
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Figure 7: Mapping of some exemplary basins for two coarse-grained, partially
enumerated RNA energy landscapes. The left landscape is mapped to the right one.
The dotted lines, again, indicate the RNA structures of the individual landscape, and
each Greek letter denotes a basin. The structure of each basins’ minimum is plotted
above. Solid arrows mark exact mappings while dashed arrows are approximate ones.
Basin β from the left-hand landscape is mapped to the equivalent basin β′ in the
right-hand landscape, which has a lower local minimum due to the extension of the 3′

hairpin by one base pair. Since the enumeration threshold (grey, horizontal, dashed
line) of the right landscape is lower, the saddle between α′ and β′ is not enumerated.
Thus, α′ and γ′, the equivalent basins of α and γ, are now disconnected and removed
from the landscape. Instead, α and γ are mapped to a new basin δ due to their low
base pair distance to the local minimum of γ.

sufficiently high energies to recover all previously connected minima, cf. Figure 7.
barriers may also apply heuristics to remove small shallow minima. In both
cases, y /∈ X ′

i+1 may be the consequence. To handle these degenerate conditions,
BarMap uses an approximate approach and maps [x] to another [z] ∈ X̃i+1
such that the distance of minima x and z is minimal among all macrostates in
X̃i+1. To this end, the base pair distance dbp(x, z) = |(x \ z) ∪ (z \ x)| is used,
i. e., the number of base pairs present in one structure, but not in the other.
If multiple structures with minimal distance exist, a lexicographic comparison
is used as a tie breaker. While this rule ensures that µi is defined on every
state of L̃i, there is no guarantee that the mapping is an adequate choice. For
example, a minimum containing two adjacent hairpins may be mapped to a
structure containing a single, central hairpin if the former structure is not
enumerated in the successor landscape. As a basic quality indicator, BarMap
therefore characterizes its mappings either as exact or approximately, depending
on whether the base pair distance between the minima of the mapped and the
target basin is zero or greater. In the following sections, we will reconsider this
definition and relax it to make it more applicable in practice. Also, the problem
to quantify the quality of the generated landscapes, maps, and simulations will
be treated much more thoroughly.

Note that in the BarMap framework the choice of the landscapes L̃0, . . . , L̃n

is, in principal, arbitrary as long as suitable mappings µ1, . . . , µn−1 are pro-
vided. Apart from cotranscriptional folding, the approach may as well be used
other scenarios like, e. g., varying temperature, transcription rates, structural
constraints; or a mixture of any of these.
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2.3.8 Stochastic simulations of folding kinetics

For the sake of completeness, we will briefly discuss an alternative class of
approaches to the simulation of RNA folding kinetics based on stochastic
sampling. They can be based on the same notions and models as the previously
described, global approach. In contrast to them, however, they compute
individual trajectories through the space of RNA structures, i. e., a finite
sequence of structures x0, . . . , xn, such that xi is a neighbor of xi−1 for all
i = 1, . . . , n. Often, moves much more complex than the elementary opening
and closing of single base pairs are used, e. g., insertion or removal of entire
helices, allowing rapid simulations even for bigger molecules at the cost of
precision. The initial structure x0 can be specified by the user or chosen
randomly. The next structure in the sequence is determined by randomly
choosing one of all possible neighbors. To obtain a realistic prediction and
maintain the property of detailed balance, the sampling procedure needs to
correctly consider the probabilities to transition to any possible neighbor and
accordingly select the next structure. This can be achieved by utilizing the
Gillespie algorithm (Gillespie, 1977). In each step and for n possible transitions
with rate coefficients r1, . . . , rn, the algorithm randomly chooses one transition
to perform, and the probability of choosing the i-th transition is ri/

∑
j rj (i. e.,,

it is proportional to the respective transition rate). Note that this algorithm
also keeps track of the (continuous) time τ that passes with each transition.
Specifically, at each transition, τ is increased by −(

∑
j rj)−1 log(ϱ), where ϱ

is a random number sampled uniformly from the interval [0, 1]. Finally, the
computation of the trajectory is terminated according to one of many possible
criteria, e. g., a given simulation time, a given number of steps, the first (or
k-th) passage of a specified target structure etc. While a single trajectory may
not be very informative, a bigger number of them will likely draw an accurate
picture of the folding process.

There are numerous examples of algorithms and programs to compute folding
trajectories. Examples include kinfold (Flamm, Fontana, et al., 2000), kinefold
(Xayaphoummine, Bucher, and Isambert, 2005), kinwalker (Geis et al., 2008)
and others. They differ in the type of transitions they allow (e. g., insertion or
deletion of single base pairs in kinfold, or addition of entire helices in a single
step in kinwalker), the type of permitted structures (e. g., kinefold also allows
structures containing pseudo-knots), and the employed sampling procedure
(e. g., rejection or Gillespie sampling).

A general advantage of these methods is that, in comparison to global
simulations like Treekin, they simulate more explicitly the behaviour of an RNA
as it happens in the living cell. The computed trajectory directly corresponds
to an actual folding pathway of the molecule. This way, funnels and kinetic
traps in the energy landscape can be detected efficiently. They are also trivial to
parallelize as the individual, computed trajectories are independent of each other.
The performance for each individual trajectory, however, strongly depends on
the transitions allowed and the length of the sequence. Changing individual
base pairs may be the most precise transition, but quickly becomes infeasible
as the sequence length increases. More coarse transitions like helix insertions,
on the other hand, model the folding process only approximately and thus less
precisely. It is, in theory, also easy to implement structural constraints on the
intermediate structures.
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On the downside, one needs a huge amount of trajectories to make valid
claims about the behaviour of the input RNA molecule. Additionally, one needs
sophisticated methods to generate interpretable results from a set of computed
trajectories. Another problem is that a sensible stop criterion needs to be
defined, and the trajectories generated may strongly depend on that choice.

All in all, trajectory-based methods are an interesting alternative to other
folding models, but require the choice of some delicate, additional parameters
and an increased amount of post-processing to obtain interpretable results.

2.4 The RNA design problem

The previous sections described various models for the folding process of a
given RNA sequence. The motivation was the observed emergence of biological
function from the structure of these molecules. Being able to predict their
structure thus often allows to answer the question for their biological function
and is therefore a valuable tool for the analysis of novel genes. One can, however,
also reverse this question and ask how a sequence needs to be composed if
it is supposed to preferably fold into a given structure (and thus perform
a specific function). This problem is referred to as inverse folding problem
for RNA. While obtaining an optimal solution for it is NP-hard (Schnall-
Levin, Chindelevitch, and Berger, 2008), practice has shown that, for the most
instances, sufficiently good approximations can easily be found, e. g., by using
a program like RNAinverse (Hofacker, Fontana, et al., 1994) that starts at
a random sequence and changes it by applying single-nucleotide mutations
until a good result is achieved. The reason that such simple procedures can
effectively solve this complex problem is elaborated in a study of (Schuster
et al., 1994). Its key observations include that, at a given sequence length,
the number of possible sequences is much higher than the number of possible
secondary structures, and that huge neutral networks are embedded into the
sequence space, i. e., networks of adjacent structures that fold into the same
structure. This also means that sequences with specific structures can easily
arise as a result of evolutionary processes if the resulting biological function is
advantageous to the organism.

Inverse folding can be generalized to the task of finding a sequence that
exhibits arbitrary properties, a highly interesting problem known as RNA
design. It is long known that bistable sequences, i. e., sequences with two
stable structural conformations, can easily be found (Flamm, Hofacker, Maurer-
Stroh, et al., 2001). While there are always sequences that can fold into
any two given structures, this is not necessarily the case for three or more
structures. In the same work, these authors present a result that precisely
characterizes the cases in which compatible sequences exist for a given set of
target structures. To this end, a single graph G representing all target structures
is constructed, and a compatible sequences exists if and only if G is bipartite.
A uniform sampling procedure for the space of compatible sequences was
implemented in the software RNAdesign Höner zu Siederdissen et al. (2013) and
was improved especially for cases with many complex constraints in the library
RNAblueprint (Hammer, Tschiatschek, et al., 2017). Still, the computational
complexity of these methods grows exponentially with the sequence lengths.
Later, Hammer, Ponty, et al. (2018) have shown that this complexity is inevitable
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when counting all sequences compatible with the given constraints, which is a
requirement for uniform sampling. Instead, they followed a different strategy
and implemented a Boltzmann-weighted sampling for generalized energy models
in the RNARedPrint framework, which permits efficient sampling from sequence
populations with specific free energies or GC contents.

For specific applications, an explicit construction of suitable candidate
sequences according to a set of rules and patterns may be an alternative strategy.
For example, to design cognate transcriptional riboswitches from a given aptamer
sequence known to specifically bind the ligand theophylline, Wachsmuth, Findeiß,
et al. (2013) devised a design approach that used such patterns to ensure the
resulting sequences exhibit the required biological features. As the capability of
an aptamer to bind its ligand tends to be sensitive to mutations, changing its
sequence was not desirable. Furthermore, a transcriptional riboswitch requires
a small, stable hairpin followed by a poly-U stretch to be able to trigger
transcription termination, and this hairpin must overlap with the aptamer to
make the terminator formation dependent on the binding of the ligand. These
constraints left so few degrees of freedom that an explicit construction of the
riboswitch candidates with only a few random spacer and loop sequences became
possible. Some of the candidates were then successfully tested a laboratory
experiment.

To conclude, RNA design can be a challenging problem in the presence of
many complex constraints, but can also be solved efficiently for many cases that
often arise in practice. A set of feature-rich, flexible and performant software
tools is available to tackle these problems, and allow for exciting applications
in the field of synthetic biology.
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In many cases, the structure of a transcript and its dynamic rearrangements
are crucial properties that mediate the function of the molecule in the cell.
In Chapter 2, many powerful methods to simulate RNA folding using both
thermodynamic and kinetic approaches have been introduced. It has also
been mentioned in various situations that exact computations on the full
ensemble are usually infeasible especially for kinetic folding simulations, and
that various heuristics have to be employed to reduce the number of individual
simulation states. The effect of these simplifications is analyzed and discussed
in this chapter, which focuses on the evaluation of quality measures for given
folding models. The author’s software BarMap-QA, a comprehensive package
providing quality measures for the simulation of cotranscriptional folding, will
be presented.

3.1 Coverage: representative subsets of structures

The number of possible secondary structures grows exponentially with the length
of an RNA (Stein and Waterman, 1979). As a consequence, even moderately
sized RNA molecules have so many possible structures that it becomes infeasible
to construct them all, let alone performing costly computations on them. The
probability of a structure in equilibrium, however, decreases exponentially
with its Gibbs free energy. Thus, while a sequence’s ensemble is usually huge,
most of the structures are so unstable they are biologically irrelevant at least
in equilibrium. In practice, it is therefore both necessary and reasonable
to only consider structures that are “stable enough” in folding simulations or
thermodynamic analyses of the ensemble. While it easy to enumerate suboptimal
structures (cf. Section 2.2.6), it is not immediately clear how many structures
are required to adequately describe the full ensemble. To this end, we introduce
the notion of ensemble coverage.

Let X be the structure ensemble of a fixed RNA sequence, and Y ⊆ X an
arbitrary subset of structures. As explained in Section 2.2.4, the probability
that an equilibrated RNA is folded into any structure y ∈ Y is determined by
the fraction of their respective partition functions:

Pr[Y ] = Z[Y ]
Z ,

where Z = Z[X]. We also call this probability the coverage of Y with respect
to X, because it measures the fraction of the probability mass of X that is
preserved when only considering Y instead of the full ensemble. Note also that
an efficient computation of this probability is often possible in practice, since Z
can be determined in O(n3) using partition function folding (McCaskill, 1990).
The much smaller set Y can often be explicitly constructed, e. g., by using
Wuchty’s algorithm (Wuchty et al., 1999), such that the Boltzmann weights
of the individual structures can be summed over. Alternatively, Y could also
be modelled using structural constraints, and the partition function could then
be computed using dynamic programming as implemented in the ViennaRNA
package (Lorenz, Bernhart, et al., 2011). Scaling the individual energies using
the MFE as described in Section 2.2.5 helps to avoid numerical instabilities.

While computing probabilities of subsets of the ensemble is not very exciting
by itself, the application as a measure for completeness of this subset is very
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useful and available in many situations. The concept of coverage will be used
throughout this section.

3.2 The coverage of low-energy bands

One of the simplest possible applications of the concept of coverage is to measure
the completeness of a low-energy band of structures as generated by Wuchty’s
algorithm. This enumeration method has an enumeration threshold ∆Genum as
single main parameter, which determines up to which energy value all structures
should be generated. Note that in the actual implementation, RNAsubopt from
the ViennaRNA package, this parameter is given as an energy range instead,
i. e., as the difference to the global MFE. Here, however, we will assume ∆Genum
to be the difference to the open chain.

3.2.1 Methods
We denote by X≤∆Genum = {x ∈ X | ∆G(x) ≤ ∆Genum} the subset of all struc-
tures of the ensemble X with a free energy at most ∆Genum. RNAsubopt emits
all structures x ∈ X≤∆Genum in dot–bracket notation as well as their respective
free energies in the specified energy range. The order of the structures is deter-
mined by the scheme used to backtrack the dynamic programming matrices,
and thus in general not sorted. Since we only aim to sum up the Boltzmann
weights Z[x], this is not a concern. That is advantageous compared to other
methods like barriers, which require a prior sorting of the structure list. By
summing up the Z[x], we obtain Z[X≤∆Genum ]. Since the full partition function
Z can be efficiently computed using dynamic programming, e. g., using the
RNAlib library of the ViennaRNA package, the coverage Pr[X≤∆Genum ] can
readily be computed. A technical peculiarity that had to be considered was
the fact that ViennaRNA internally applies a smoothing of the energy function
during the partition function computation. This makes the partition function
differentiable with respect to the parameters of the used energy model and
thus allows, e. g., to incorporate experimental data into the computational
structure prediction (Washietl, Hofacker, P. F. Stadler, and Kellis, 2012). This
smoothing, however, introduces a small bias into the computation of Z that
produces spurious results when used together with summed, non-smoothed
Boltzmann weights. Thus, a new option pf_smooth was added to the md (model
detail) class of the library interface, which allows the user to disable smoothing
if required. This contribution of the author is now part of the official release
and thus also available to other users. The computed partition function value
can then be used to precisely determine the probability Pr[X≤∆Genum ].

3.2.2 Results
The coverage achieved by enumerating random sequences of varying length
is shown in Figure 8. While an energy range of 10 kcal mol−1 is sufficient to
achieve high coverages of 96–100% for sequences of lengths up to 160 nt, the
coverage rapidly drops for longer sequences. For sequences up to length 80 nt,
comparable coverage values can already be achieved by only enumerating up
to 8 kcal mol−1. While enumerating 10 kcal mol−1 is a matter of seconds for
sequences up to 100 nt, it may become computationally challenging for sequences
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Figure 8: Coverage of low-energy bands for varying sequence lengths. The energy
range is the difference between the enumeration threshold ∆Genum and the sequences’
MFE. The coverage achieved with a given energy range generally reduces with growing
sequence length. For the sequence of 180 nt, however, the coverage is worse than for
the longest sequence, which is 200 nt long.

as long as 200 nt, depending on the specific sequence. The computation for
the chosen sequence of length 200 took about 11 minutes but, contrary to the
expectation, 7 hours where required to enumerate the 180 nt long sequence.

3.2.3 Discussion

An enumeration of 10 kcal mol−1 usually achieves high coverages for sequences
up to 160 nt and is recommended. For shorter sequences, a smaller energy range
may be sufficient, but since enumeration usually fast anyway in these cases, a
range of 10 kcal mol−1 may serve as a good default value.

The required computation times impressively demonstrate that the number
of structures may vary dramatically even for sequences of the same length, and
that specific sequences may have a much lower coverage than expected. In the
challenging cases, increasing the enumeration threshold to compensate for a low
coverage is thus not always an option. The application of Wuchty’s algorithm
to extract a significant part of the ensemble is therefore limited to RNAs of
a length of approximately 160 nt. Since the following processing steps in a
kinetic folding simulations are usually much slower than the generation of the
secondary structures, a quick analysis of the coverage of the selected energy
band gives useful information concerning a good choice of ∆Genum at almost
no additional cost and should therefore be a standard procedure.

3.3 Canonical energy landscapes

This section deals with the concept of canonical structures, a heuristic to
significantly reduce the number of structures in the ensemble of an RNA by
neglecting supposedly unstable conformations. As the structure ensemble is
huge even for short sequences, this method is of great interest when performing
kinetic folding simulations. The effect of the restriction to canonical structures
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on selected sequences is demonstrated, and a score to estimate its impact on
folding simulations is discussed.

This section is based on the following literature:

S. Findeiß, S. Hammer, M. T. Wolfinger, F. Kühnl, C. Flamm, and I. L. Hofacker
(2018). “In silico design of ligand triggered RNA switches”. In: Methods 143.
Methods and advances in RNA characterization and design, pp. 90–101. doi:
10.1016/j.ymeth.2018.04.003.

It will not be cited individually in the text.

3.3.1 Background
The great number of secondary structures renders their complete analysis
infeasible even for small sequences. Coarse graining techniques, cf. Section 2.3.4,
significantly reduce the number of states, but usually require the computation
of the microstates (i. e., the individual structures) at first. Wuchty’s algorithm,
cf. Section 2.2.6, still emits very many structures depending on the choice of
∆Genum. Additional methods to reduce the number of structures are therefore
very useful and allow faster analyses, or the analysis of bigger molecules using
the same computational resources.

The --noLP option of RNAsubopt achieves a considerable speed-up by ne-
glecting structures containing so-called isolated or lonely base pairs, i. e., base
pairs which are not directly surrounded by – or surround themselves – an-
other base pair (Bompfünewerer et al., 2007). Formally, for some structure
x, (i, j) ∈ x is a lonely pair if and only if {(i − 1, j + 1), (i + 1, j − 1)} ∩ x = ∅.
Put differently, this option enforces a minimal helix length of two base pairs.
The biological motivation of this optimization is that lonely base pairs usu-
ally destabilize a secondary structure and thus would open up again quickly.
Structures not containing any lonely pairs are called canonical structures.

Considering only canonical structures significantly reduces the resources
required for conducting the analysis, but may also bias its results. Therefore,
when analyzing a new sequence, the question arises whether applying this
heuristics will, in this specific case, yield accurate results or not. Here, we derive
a measure that helps to answer this question on a per-sequence basis. More
statistical analysis on the subject of canonical structures is also presented in
Section 4.2.

3.3.2 Methods
To compute the coverage of canonical structures for a given sequence with
ensemble X, we first calculate the partition function Z of the full ensemble using
partition function folding (McCaskill, 1990). Like in the previous section, the
set of all structures X≤∆Genum with energy at most ∆Genum can be enumerated
efficiently and, along with it, also the associated partition function Z≤∆Genum .
For each enumerated structure, one can easily check whether it is canonical and,
if so, sum over their Boltzmann weights to obtain Zcan

≤∆Genum
. As ∆Genum is

increased, Z≤∆Genum approaches Z and the coverage of X≤∆Genum approaches 1.
Thus, it becomes possible to estimate the coverage of all canonical structures

https://doi.org/10.1016/j.ymeth.2018.04.003
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Figure 9: Coverage of canonical structures within the full ensemble for random
sequences of different length. The median of each group is denoted by a vertical line.
The coverage decreases significantly as the sequence length increases.

Xcan in the ensemble by the coverage of the enumerated, low-energy canonical
structures, i. e., Pr[Xcan] ≈ Pr[Xcan

≤∆Genum
].

To analyze the distribution of canonical coverage, random RNA sequences
of lengths 30, 60, and 90 have been generated, 1000 of each length. For each
of the sequences, its partition function Z as well as all structures X≤∆Genum

within an energy band of ∆Genum = 10 kcal mol−1 have been enumerated using
RNAsubopt. All sequences for which the ensemble coverage Z[X≤∆Genum ]/ Z
was smaller than 99% have been excluded from the analysis. For the remaining
sequences, X≤∆Genum can be considered as representative for the entire ensemble,
covering at least 99% of its probability mass.

3.3.3 Results
Density plots of the coverage of canonical structures, grouped by sequence
length, can be seen in Figure 9. Two obvious trends can be observed when
increasing the sequence length: firstly, the coverage of canonical structures
decreases, and secondly, the variance increases. While for sequences of length
30, the canonical ensemble of every other random sequence has more than 85%
coverage, this number drops to only 47% for sequences of length 90. For this
length, the observed coverage values range from 0.02% to 95%. Even for shorter
sequences, the range is so big that one cannot sensibly make predictions by
only looking at the length.

3.3.4 Discussion
The coverage of the canonical ensemble varies greatly with the sequence length,
but also for multiple sequences of the same length. The longer the sequence, the
more uniform is the distribution of the coverage. This implies that this parameter
should be calculated for any sequence for which a – kinetic or thermodynamic
– folding analysis limited to canonical structures is to be performed. Though
a considerable speedup may be achieved by limiting the analysis to canonical
structures, this should only be done if the excluded fraction of probability mass
is not too big, or a significant error may be introduced.
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As a technical side node, it is arguable that, instead of the lengthy enumer-
ation process described, the ensemble energy of the canonical ensemble could
be directly computed using partition function folding via RNAfold -p --noLP
from the ViennaRNA package. However, due to current technical limitations,
the returned (canonical) ensemble energy is only an upper bound of the ac-
tual value and may dramatically over-predict the fraction of canonical struc-
tures. This was also confirmed by personal communication with the leading
developer of the ViennaRNA package. As an example, we consider a 30 nt
sequence1, which has a full ensemble energy of ∆G(Z) = −8.62 kcal mol−1

and a canonical ensemble energy of ∆G(Zcan) = −8.37 kcal mol−1, and so
Pr[Xcan] = Z[−8.37 + 8.62] ≈ 67%. RNAfold, on the other hand, reports a
significantly higher canonical ensemble energy of Ẑcan = −8.60 kcal mol−1. Con-
sequently, Pr[X̂can] ≈ 96%, i. e., it erroneously predicts the fraction of canonical
structures to be 29% higher than the explicit summation method. While the
difference in the prediction is usually much smaller than in this rather extreme
case, this still demonstrates that reliable results cannot be achieved using the
current implementation of partition function folding in ViennaRNA for this
specific application.

Due to the enormous number of structures even for small sequences, this
fact may seem like a major obstacle. In practice, however, despite the required
explicit construction of low-energy structures, the required computation time is
usually small compared to any following kinetic analysis. For thermodynamic
analyses, it is sufficient to enumerate the energy range that contributes signifi-
cantly to the ensemble of the sequence. Additionally, when enumerating only
a part of the ensemble, the coverage of this subset of structures may be more
relevant than the coverage of all canonical structures.

The described measure provides effective means to avoid situations in which
highly probable structures are accidentally excluded from further analyses when
restricting the ensemble to canonical structures. The proposed check is easy to
perform and the required computational effort is modest. The method is thus a
practical addition to the bioinformatician’s tool set and should be a standard
procedure whenever the exclusion of non-canonical structures is considered.

3.4 BarMap-QA: cotranscriptional folding with quality assur-
ance

Structural changes in RNAs are an important contributor to controlling gene
expression not only at the post-transcriptional stage but also during transcrip-
tion. A subclass of riboswitches and RNA thermometers located in the 5′ region
of the primary transcript regulates the downstream functional unit – usually an
ORF – through premature termination of transcription. Such elements not only
occur naturally but they are also attractive devices in synthetic biology. The
possibility to design such riboswitches or RNA thermometers is thus of consider-
able practical interest. Since these functional RNA elements act already during
transcription, it is important to model and understand the dynamics of folding
and, in particular, the formation of intermediate structures concurrently with
transcription. Cotranscriptional folding simulations are therefore an important

1GGCCCUACGCCACGCAAUAGUUGAGGCGUG
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step to verify the functionality of design constructs before conducting expensive
and labour-intensive wet lab experiments.

Section 2.3.7 describes all necessary components to model the dynamic,
possibly cotranscriptional, folding process for small to medium-sized RNA
molecules up to about 100 nucleotides using the BarMap framework. The quality
of the obtained results, however, strongly depends on the threshold ∆Genum
used to enumerate the low-energy structures of each landscape. While it is fairly
obvious that not considering relevant states and transitions will lead to imprecise
or even completely wrong predictions, it is non-trivial to determine which values
of ∆Genum yield reasonably accurate results without raising the computational
cost of the simulation to an unacceptable level. Using BarMap, ∆Genum can
be chosen for each landscape individually. As such a simulation run may
easily involve more than fifty landscapes, it becomes obvious that a systematic
approach of choosing ∆Genum is necessary. The key to solving this problem is to
efficiently measure how “complete” a partially enumerated landscape actually is
and how good important states are mapped into the next landscape. This has
been achieved by developing the software package BarMap-QA, which wraps
the original BarMap scripts to aid the user in their application. To this end, we
applied the idea of ensemble coverage to devise multiple quality metrics for the
conducted simulation, and generalize the definition of exact and approximate
mappings. Building on these concepts, BarMap-QA automates many steps of
the folding analysis and constantly presents the computed quality scores to the
user, who can then precisely adjust the simulation parameters to obtain the
best possible results at minimal computational cost. It also provides powerful
tools for post-processing and analyzing the generated output, including the
generation of clean plots visualizing the entire simulation run. BarMap-QA is
free and open source software, and provided to the user as a highly portable,
ready-to-run Docker container hosted at Docker Hub, which can be installed
using a single command.

This section is based on the following literature:

F. Kühnl, P. F. Stadler, and S. Findeiß (2019). “Assessing the Quality of
Cotranscriptional Folding Simulations”. In: RNA Design. Ed. by R. Lorenz.
Methods in Molecular Biology. Manuscript accepted for publication. Berlin:
Springer Nature.

It will not be cited individually in the text.

3.4.1 Background

RNA folding is an inherently dynamic process and the details of the folding
trajectory are at least occasionally biologically relevant. Metastable states, for
example, are sometimes the functional ones, as in the example of the Hok/Sok
host killing system (Gerdes and Wagner, 2007). In living cells, a nascent
RNA starts folding into stable structures while it is transcribed by an RNA
polymerase. The structures formed in cotranscriptional folding have decisive
functions, e. g., in the case of transcriptional riboswitches, where they decide
whether the transcription is terminated or continued to produce a full-length
RNA transcript. The structures formed cotranscriptionally are transient and
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will continue to refold as the transcript is elongated. The mechanisms underlying
the biological function of such RNA elements thus can only be understood in
terms of dynamics of the folding process.

Riboswitches and RNA thermometers that act on the level of transcription
are of practical interest in synthetic biology. They form a class of fast-acting
regulators for gene expression that can react to the presence of small molecules
via suitable aptamer components or respond to environmental changes in
temperature or ion strength that physically affect RNA structure formation.
The rational design of such devices, however, requires not only a detailed
understanding of the folding process but also computationally efficient methods
to model and evaluate the folding dynamics. The size of RNA sequences and
the time scales involved preclude 3D molecular dynamics simulations.

Since the standard Turner model assigns an energy to every RNA secondary
structure, it is, in principle, possible to simulate the dynamics of RNA at this
level (Flamm, Fontana, et al., 2000). The calculation and analysis of a large
number of trajectories is, however, computationally expensive and is infeasible
at this level when folding processes with time scales of seconds or even hours are
to be studied. To be of practical use, e. g., in design applications, furthermore,
computational models not only need to provide reasonably reliable predictions,
but they also must be much faster and cheaper than experimental approaches.
One such method is barriers, cf. Section 2.3.4. It generates a coarse-grained
representation of the underlying high-dimensional energy landscape using the
notion of gradient basins, and approximates the folding dynamics of the RNA
by a dynamical system on the coarse-grained landscape.

However, cotranscriptional folding cannot be modeled by a single energy
landscape since the underlying RNA sequence changes with the addition of
each nucleotide. The idea of BarMap (Section 2.3.7) is to use a sequence of
(coarse-grained) landscapes, one for each step of transcriptional elongation. The
refolding dynamics between elongation steps are then modeled as a Markov pro-
cesses on fixed landscapes. Upon elongation, the populations of the macrostates
in the current landscape are transferred to the next one using specifically con-
structed maps. This yields an approximate time-course of the occupancy of
coarse grained macrostates for cotranscriptional folding without the need for
expensive simulations of individual trajectories. The separation of computations
on individual landscapes and the transition between them, furthermore, makes
it easy to explore the effects of variations in the speed of transcription on the
formation of intermediate structures.

The BarMap software accompanying the publication of the method (Ho-
facker, Flamm, et al., 2010) is a collection of scripts to facilitate the kinetic
analysis of several related RNA landscapes, for example under changing en-
vironmental parameters such as temperature, or, more relevant here, for a
step-wise elongated transcript. It makes use of barriers (Flamm, Hofacker,
P. F. Stadler, et al., 2002) to coarse grain the given RNA landscape, and
Treekin (Wolfinger et al., 2004) to compute the folding dynamics at the level of
macrostates represented by gradient basins of secondary structures. The script
then stitches together the output of these tools to obtain a result for the full
process. In contrast to other simulation tools, BarMap does not rely on the
sampling of individual trajectories, but offers an analytical solution based on
the enumeration of representative states.
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Despite its flexibility and extensibility, the original version of BarMap is a
proof-of-concept rather than a ready-to-use tool. Its major drawbacks are:

i) The user has to call multiple scripts to get initial results, making the
method unattractive for batch processing even for short input sequences.

ii) The output is spread across multiple files, some of which are hardly
human-readable, making the interpretation of the results a tedious and
error-prone task.

iii) There is no feedback that would allow the user to judge the quality of the
produced results or help to improve on them.

iv) Required software dependencies, in particular barriers and Treekin, are
developed for Linux. Although they can be compiled for other operating
systems, this excludes many potential users.

v) There is no comprehensive documentation that guides the user step by step
through a typical run, so getting started with the software is unnecessarily
complicated.

It therefore takes considerable effort to use BarMap in the context of cotran-
scriptional folding. Its practical applications there have remained limited.

The intention of this contribution is to alleviate all of the mentioned deficien-
cies. We provide a pre-configured working environment including all required
software to immediately jump into a cotranscriptional folding analysis. It is
deployed inside a highly portable Docker image that can be loaded with a single
command and requires no setup apart from a standard Docker installation,
which is available on Windows, macOS and Linux. The included scripts can
produce preliminary output with just a single command and an input sequence,
generating a full cotranscriptional folding simulation and post-processed plots in
various graphics formats including PDF and SVG. In addition, quality statistics
are computed that allow the user, together with powerful helper scripts, to
semi-automatically improve the simulation results if necessary. Finally, an
integrating command line viewer for the output files is available that greatly
simplifies the interpretation of the results and, together with the generated
plots, provides a deep insight into the folding process. Detailed instructions to
analyze a real-world example that the reader can easily reproduce on an average
desktop computer have been provided by the author (Kühnl, P. F. Stadler, and
Findeiß, 2019).

3.4.2 Theory
Measuring simulation quality

A major problem of the original BarMap pipeline is that one cannot easily
assess the quality of the produced output. To tackle this issue, our software
provides rich statistics to evaluate . . .

i) the ensemble coverage for each generated coarse-grained ensemble X̃i,
i = 1, . . . , n, to ensure all highly probable (i. e., important) structures are
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contained in the simulation:

Pr
[
X̃i | Xi

]
=
∑

α∈X̃i

Z[α]
Z[Xi]

,

ii) the summed probability density of all exactly mapped (as defined in
Section 3.4.2) macrostates – exact coverage for short – for each mapping
step from X̃i to X̃i+1 to ensure correctness of the mapping in the case of
an equilibrated RNA: ∑

α∈X̃i,

α is mapped exactly to X̃i+1

Z[α]
Z[Xi]

,

and

iii) the fraction of exactly mapped population for the mapping from X̃i to
X̃i+1 during the kinetics simulation to ensure highly populated states are
mapped correctly to the next landscape independent of their free energy:∑

α∈X̃i,

α is mapped exactly to X̃i+1

x(i)
α (t∞

i ).

Here, (i) measures the quality of the individual energy landscapes generated
by barriers, (ii) measures the quality of the macrostate mapping generated by
BarMap, and (iii) measures the quality of the entire kinetics simulation. The
coverage of a macrostate α is Pr[α]. The total coverage of all enumerated basins
is the ensemble coverage (i), which is directly controlled by the enumeration
threshold of Wuchty’s algorithm and serves as a measure of completeness of
the coarse-grained landscape. The exact coverage of the mapping (ii) is the
sum of coverage of all macrostates that are mapped exactly to the next energy
landscape by BarMap. Low values indicate that probable structures present in
the previous landscape have not been enumerated in the next energy landscape.
In such a case, the enumeration threshold needs to be increased for the next
landscape and the mapping has to be recomputed. Finally, the fraction of
exact population (iii) of a mapping step is given by the sum of the populations
of exactly mapped macrostates at the end of this simulation step. Here, a
low value also shows that an important state was not enumerated in the next
energy landscape, which has to be re-enumerated with a higher threshold. The
difference is that the approximately mapped state could as well have a very
low coverage, but is highly populated for another reason (e. g., because it is an
important transient state, or a kinetic trap).

Definition of exact and approximate mappings

As explained previously (Section 2.3.7), BarMap cannot always map every
macrostate [x] from the current landscape to some macrostate µ[x] = [y] in the
next landscape, e. g., because the local minimum y has been disconnected from
the next landscape by one of the heuristics applied to keep the number of states
tractable. In such cases, [x] is then mapped to another macrostate [y′] such
that the minima y and y′ have minimal base pair distance dbp(y, y′) = d. By
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default, BarMap characterizes mappings as exact if d < 1, and as approximate
otherwise. For the proposed quality measures “exactly mapped coverage” and
“exactly mapped population”, this characterization is critical to distinguish
“good” from “bad” mappings.

However, in practical application it became obvious that this definition
is too strict. The prime example is a minimum ..___., where . denotes an
unpaired nucleotide and ___ is some arbitrary substructure. During mapping,
a new unpaired nucleotide is appended at the 3′ end and a gradient walk is
performed on the resulting structure. Since ___ is already of minimal energy,
the only option is to add either of the two base pairs .(___). or (.___.)
denoted by matching pairs of parentheses. If both possible base pairs destabilize
the structure, then ..___.. is still a minimum in the next landscape, but
((___)) may be, too. Now, the heuristics of barriers are likely to remove
..___.., because ((___)) will usually be more stable and the barrier to the
other minimum is often very small. Then, the mapping of minimum ..___.
to minimum ((___)) will be considered approximate even though this is the
naturally correct mapping in this case. Another source of similar cases is
due to the dangling end energy contributions in the Turner energy model: an
additional unpaired nucleotide may stabilize an adjacent base pair. In effect,
a previously unstable base pair at the second-to-last nucleotide may suddenly
become energetically feasible, and the basin minimum changes slightly.

To account for such subtle changes in the structure that prevent exact
mappings, but which do not correspond to an actual error, the definition of
approximate mappings is relaxed. A mapping is called d-exact if the base pair
distance of the mapped minimum to the target minimum is less than d. Exact
mappings in the strict sense are thus 1-exact mappings.

In the scripts barmap_exact_coverage and barmap_exact_population
shipped with BarMap-QA, the value of d can be set using the -d switch.
In practice the choice d = 3 has proven to minimize the occurrence of both false
mappings considered as exact and correct mappings considered as approximate,
and is thus the default value in BarMap-QA.

3.4.3 Implementation

Parallelization

To speed up the possibly lengthy computations of BarMap, our extension
BarMap-QA implements a parallelization of the computation of the energy
landscapes, their associated rate matrices, and the diagonalization of the latter.
To achieve this, several steps and adaptations in the pipeline were necessary.

To parallelize the coarse graining of the energy landscapes, each instance
of barriers had to be run in its own subdirectory, because hard-coded file
names like rates.out are used to store the generated rate matrix. Running
multiple instances within the same directory would overwrite these files in
an undefined manner. In individual subdirectories, however, the generation
of the n individual energy landscapes can trivially be distributed to up to n
worker threads. Note however that running multiple instances of barriers on
long sequences requires a lot of main memory because of the huge hash data
structure storing all encountered structures. We recommend keeping an eye on
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the spawned threads using a system monitor and setting a per-process memory
limit if supported by the operating system.

The final folding simulation on the sequence of precomputed landscapes
is a linear process, where the initial condition of the simulation on the next
landscape depends on the results of the previous step. A parallelization is
thus not possible. By default, however, the simulation on each landscape as
performed by Treekin consists of two steps. First, the respective rate matrix R is
diagonalized, i. e., its eigenvalues and the respective eigenvectors are determined,
to allow for an efficient computation of the matrix exponential p(τ) = exp(τR),
and then the actual populations p(τ) are computed for the requested time τ .
Indeed, the first step is independent of the initial population, and can thus
be factored out. This is already supported by Treekin through the options
--dumpE and --recoverE, which allow writing and reading of the computed
eigenvectors and eigenvalues to files evecs.bin and evals.bin, respectively.
The pipeline thus pre-computes the eigenvalues and -vectors and stores them
along with the energy landscapes and rate matrices. Now, a patch was applied
to the original BarMap code that creates file links evecs.bin and evals.bin
to the stored eigenvalues and -vectors of the current landscape before Treekin
is called with the --recoverE option. Thus, the diagonalization of the rate
matrices can be parallelized along with the landscape computation, and it is
also not repeated when the simulation is re-run on the same set of landscapes,
e. g., with a different initial population.

In the implementation, the script barmap_rebar allows to set the number of
threads to launch via the parameter -t. The same parameter is also supported
by barmap_gen_barmapfile, which performs a fully automated, complete sim-
ulation run and passes the option on to all other scripts it is calling.

Libraries for input and output file handling

BarMap-QA is a collection of scripts that repeatedly have to parse, query or
transform one or more of the following file types:

• coarse-grained energy landscapes computed by barriers (barriers files)

• rate matrices characterizing the transitions between the states computed
by barriers (rate files)

• population data time series computed by Treekin (Treekin files)

• mappings between macrostates of consecutive energy landscapes computed
by BarMap (mapping files)

• aggregated time series of population data from multiple landscapes com-
puted by BarMap via multiple calls of Treekin (multi-Treekin files)

To avoid code duplication and ensure a consistent syntax across all parts of the
package, it was thus required to outsource the functionality to handle these file
types into external libraries. Since BarMap-QA is largely written in Perl, three
Perl distributions have been developed:

Bio::RNA::Barriers provides support for parsing and writing barriers and
rate files. The number of macrostates and their individual properties can
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be queried, e. g., the basin free energy, the father minimum, connectedness,
barrier heights and many more. Minima can be pruned by restricting the
their total number or by removing all disconnected states. Rate files can
be converted between their binary and text representation; their rows and
columns can be transformed and pruned with high-level functions, and of
course querying individual rates for given states is possible. Removal of
disconnected states is supported for rate matrices, too.

Bio::RNA::Treekin allows to parse and write both regular (single-)Treekin
files and multi-Treekin files. The Record class represents a complete time
series of population data, which can be queried for specific states or time
points, for the maximum population of a specific state etc. It can be
spliced to a certain set of minima, re-arranged in a specific order, or new
states can be added. For multi-Treekin files, the MultiRecord wrapper
class allows to retrieve individual record objects from a multi-Treekin file.

Bio::RNA::BarMap implements parsing and writing for mapping files. The
mapped landscape files and their respective minima can be queried, and
both files and minima can be mapped by one or multiple steps. Inverse
mapping is also supported, i. e., for a given macrostate in a specific
landscape, all macrostates in the previous landscape that map to it
are reported. The package also properly manages the type (exact or
approximate) of individual or sequences of mappings, as well as their
conversion to and from the symbolic notation used by BarMap.

The libraries have been designed following an object-oriented paradigm and are
implemented using the Moose object system. Beside the provided functional-
ity, all three distributions include comprehensive unit test suites as well as a
complete feature documentation. To make the libraries available to the scien-
tific community, they have been uploaded to the Comprehensive Perl Archive
Network (CPAN), and can thus be installed on any computer running Perl
by using a single command (e. g., cpanm Bio::RNA::Barriers using the Perl
package manager cpanminus). The package documentation is also available via
MetaCPAN. The libraries are free and open source software distributed under
GNU General Public License, and their source code is publicly available via
GitHub.

Analyzing the simulation results

It has already been mentioned that it is hard to analyze the raw output of
BarMap by hand. Here we will describe more precisely which difficulties arise
and how BarMap-QA helps to overcome them.

The first important output file of BarMap is the mapping file, which stores all
constructed maps µi, i = 1, . . . , n − 1 for the n input landscapes. It is formatted
as a plain-text, fixed-width table where the column j denotes the landscape, and
each row i consists of (possibly empty) integer entries ei,j encoding the mapping
of the macrostates as follows. Let αj

k be the k-th basin of the j-th landscape.
Then any two consecutive entries ei,j , ei,j+1 in one row of the mapping file
mean that µj(αj

ei,j
) = αj+1

ei,j+1
. For example, a row with entries 5, 9, 7 in the

first three columns means that minimum 5 of the first landscape is mapped to
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minimum 9 in the second one, and minimum 9 is mapped to minimum 7 in the
third landscape.

This way of storing the maps has a number of issues. Firstly, the fixed-
width format limits the maximum number of macrostates to 9999. Secondly,
if no state is mapped to a basin αj

ei,j
, then all previous entries ei,1, . . . , ei,j−1

in that respective line are empty. Due to the fixed-width format, they have
to be filled up with space characters, which occupy a significant fraction of
the total file size. Thirdly, the mapping file often contains a large fraction of
redundant data. The reason is that the constructed maps are in general not
injective, i. e., different basins αj

k, αj
k′ in one landscape k could be mapped to

the same basin αj+1
ℓ in the next landscape k + 1. In the mapping file, this

will be encoded as entries ei,j , ei,j+1 and ei′,j , ei′,j+1 in two distinct rows i and
i′, such that ei,j = k, ei′,j = k′, and ei,j+1 = ei′,j+1 = ℓ. But whenever two
entries in the same column are equal, so are the remaining entries of the two
rows of these entries, since otherwise the mapping would be ambiguous. Thus,
ei,j+2 = ei′,j+2, . . . , ei,n = ei′,n. Since mappings of more than one state to the
same target arise regularly, the mapping file is full of partially duplicated lines.
Fourthly, the minima in each column are in general not sorted. Since, for a
given set of maps, the first entry of each row determines the remaining entries
of that row and the maps usually do not conserve the order of the mapped
states, this is simply not possible with this encoding. As a consequence of the
described issues, the mapping file of any non-trivial simulation is usually so
bloated that it is almost impossible to analyze by hand.

The second important file generated by BarMap contains the concatenated
output of the n individual runs of Treekin, i. e., the population data for each
landscape. We refer to it as the kinetics file. Each Treekin output consists of
some header lines containing metadata, and a time series of populations for
each macrostate. The last line (i. e.,, time point) of each time series provides
the populations at the end time of that respective simulation and serves as
initial population for the next landscape.

What makes the kinetics file so hard to interpret manually is (i) the sheer
number of macrostates and time points, (ii) that the populations are given in a
plain-text table format, where the position of the value encodes the macrostate
it describes, while the structures of the minima are stored in n different files,
and (iii) that the order of the macrostates of each landscape depends on the
free energy of their minima, and is thus not related to the mappings used to
transfer the populations from one energy landscape to the next. To trace the
population of a single structural conformation of interest through the course
of the simulation, the user thus has to look up the index i of the macrostate
of interest in the input file of the current landscape j, identify column i in the
time series of landscape j in the kinetics file, track the numbers until the end of
the time series, consult the mapping file on how to map state i in landscape j
to the corresponding state i′ in landscape j + 1, and finally look up macrostate
i′ in the input file for landscape j + 1 to see whether its structure has changed.
This process has to be repeated for every added nucleotide. It is needless to say
that it is impossible to quickly analyze the behaviour of the input RNA using
such a laborious and error-prone procedure.

To alleviate these deficiencies, BarMap-QA provides a convenient viewer for
the computed simulation run. The command line tool integrates the kinetics time
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# '18.bar' [...]
# CAUGACUUGAACCCAUGG
90.45% <= 61.86% 1 ((((.........)))). [...] -> 1 <= {1}
6.12% <= 31.26% 2 .................. [...] -> 2 <= {2}
1.25% <= 2.67% 4 .....(.((....)).). [...] -> 6 <= {4}
0.71% <= 3.65% 5 ((.....))......... [...] -> 7 <= {3}

Listing 1: Shortened output of the results viewer for a folding simulation of RNA
sequence CAUGAC..., showing the change in population of four states (labelled 1, 2, 4,
and 5) in energy landscape 18.bar. State 3 was filtered out because its population
was too low. While the open chain (state 2) has a population of 31% at the beginning,
it has only 6% population remaining at the end time of this landscape. A stable
hairpin (state 1) gains up to 90% of population. The last columns show mapping
information for each state. The last line, for instance, indicates that state 3 from
the previous landscape is mapped to state 5 in this landscape, and state 5 is in turn
mapped to state 7 in the next landscape.

series with the macrostate maps and the barriers files describing the landscapes,
and thus can show population data along with structural conformations as well
as mapping information for each state. It also offers filtering options to remove
unimportant conformations. Used in conjunction with the kinetic plot, it is the
main tool to analyze the results of the folding simulation. Exemplary output is
shown in Listing 1.

Post-processing and visualization

According to a well-known saying, a picture is worth a thousand words. Thus,
BarMap-QA includes functionality to generate a kinetics plot from the data of
a given simulation run. These are line plots of the population time series in the
multi-Treekin, where each line denotes the population (y-axis) of a macrostate
during the course of time (x-axis). One line per macrostate is drawn. This type
of plot provides an overview of the entire folding process. It allows to quickly
judge the overall behaviour of the molecule, e. g., to answer whether there are
one or multiple populated states at a given time, or at which points in time one
macrostate dominates another one. Unfortunately, the plot does not contain
the actual conformations of the plotted states. Since these are permanently
changing with every added nucleotide, this is not easily possible in general. The
kinetics plot therefore has to be analyzed in conjunction with the command line
viewer discussed in Section 3.4.3, as the latter provides the structure and exact
population of each macrostate. The kinetics plots are generated using the Grace
data visualization package (The Grace contributors, 2015). The output of PDF
files, SVG vector graphics, and lossless PNG pixel graphics is supported.

The raw kinetics file as generated by BarMap contains lots of data points,
many of which are not relevant to the overall behavior of the RNA. To achieve
pleasing results when plotting the data, it is therefore necessary to apply some
post-processing steps to it. As a first step, macrostates with very low populations
are removed. To this end, the user selects a threshold (by default, 0.5%), and
any macrostate with a maximum attained population below the threshold is
removed. This will significantly reduce the number of plotted lines and thus
make the plot cleaner and easier to interpret. Next, the user can define an end
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point for the data if the quality metrics indicate unreliable results beginning
at a specific point in time. Any data beyond the defined end point is then
truncated.

Finally, a merging procedure can be applied that joins all population time
series of the individual landscapes from the kinetics file into a single time series
record. This solves the problem that the individual population data time series
provide no information about the mapping of individual macrostates to the next
landscape. When only considering the raw kinetics file, it is not possible to track
the course of a single macrostate across multiple energy landscapes, and thus
one cannot, e. g., assign a common color to all segments of the corresponding
curve in all landscapes. After merging, this task becomes trivial. To join two
consecutive population data time series, the procedure has to rearrange the
columns of states that are mapped onto each other and then concatenate the
time series. If the second time series contains a state that no states of the first
time series are being mapped to, a new columns has to be created for it. Its
population values are initialized with 0.

An example of a generated kinetics plot is shown in Figure 11 and discussed
in Section 3.4.4.

Software

The following scripts are provided to the end user by our software package:

barmap_gen_barmapfile automatically performs a full cotranscriptional fold-
ing simulation for a given input sequence. Supports multi-threading.

barmap_rebar is used to re-enumerate individual energy landscapes up to a
given energy threshold. It also re-renders the transition rate matrices
and pre-computes eigenvalues and -vectors, cf. Section 3.4.3. Supports
multi-threading.

barmap_remap recomputes the macrostate mapping for the (updated) energy
landscapes and optionally re-runs the final kinetics simulation.

barmap_filter_treekin is a post-processing tool that filters the simulation
data to remove states with low population, cf. Section 3.4.3.

barmap_merge_treekin is a post-processing tool that joins all records of the
given multi-Treekin (simulation data) file into a single record to improve
the plotting results, cf. Section 3.4.3.

barmap_show_run is a command line viewer for the generated kinetics file,
which also integrates the data of the macrostate maps and the structural
conformations, cf. Section 3.4.3.

barriers_coverage computes coverage and connectedness statistics for the
barriers files of the energy landscapes, cf. Section 3.4.2.

barmap_exact_coverage computes exactly mapped coverage for each gener-
ated map between two consecutive energy landscapes, cf. Section 3.4.2.

barmap_exact_population computes the fraction of exactly mapped popula-
tion for each mapping step between two consecutive energy landscapes,
cf. Section 3.4.2.



46 Chapter 3. Assessing the Quality of RNA Folding Models

barmap_plot_treekin generates the kinetics plot from the (post-processed)
multi-Treekin file, cf. Section 3.4.3.

The software accompanying this work is deployed inside the Docker image
xilef1337/barmap-qa hosted on Docker Hub. It can thus be downloaded by
issuing the command docker pull xilef1337/barmap-qa. The only prerequi-
sites are an installation of Docker (Community Edition) and at least 8 GB of
main memory. Docker currently supports Microsoft Windows 10 (Pro, Enterprise
and Education edtitions), Apple macOS as well as many Linux distributions
(e. g., Ubuntu, Debian, Fedora, etc.). As an additional convenience, a wrapper
script run_barmap-qa.sh for the Bash shell is provided, which takes care of
updating the local Docker image, running the container and mounting the
working directory. It is available via the official BarMap-QA homepage1.

Alternatively, a source distribution for Linux is offered for download. It has
been tested on the distributions Fedora 27 and 30 as well as Ubuntu 18.04 LTS.
The user is responsible for providing all external dependencies as explained in
the README file. Afterwards, the shell script install.sh performs all necessary
setup steps. We highly recommend to run the test suite by executing the
command make test inside the distribution directory after the setup script
completed successfully to ensure the environment properly configured.

3.4.4 Application
Typical analysis work flow

Assume that a cotranscriptional folding analysis is to be conducted for a
given sequence. Here, we will describe shortly how to proceed to do so with
BarMap-QA. The following steps are to be executed in order, unless explicitly
stated otherwise, cf. Figure 10.

i) Run barmap_gen_barmapfile to perform a fully automated cotranscrip-
tional folding simulation for the given input sequence, including elongation,
energy landscape generation, rate computation, landscape mapping, and
output file filtering. A low enumeration threshold should be chosen (e. g.,
∆Genum = 5 kcal mol−1) to quickly get preliminary results. This step
supports multi-threading.

ii) Assess the quality of the simulation run:

a) Use barriers_coverage to check for sufficient coverage of the indi-
vidual energy landscapes.

b) Use barmap_exact_coverage to check for a sufficiently exact map-
ping of coverage.

c) Use barmap_exact_population to check for a sufficiently exact map-
ping of populations during the folding simulation.

If the simulation quality is good, go to (v).

iii) Employ barmap_rebar to re-enumerate individual energy landscapes up to
a higher enumeration threshold ∆G′

enum > ∆Genum. This also re-renders
1https://www.bioinf.uni-leipzig.de/Software/BarMap_QA/

https://www.bioinf.uni-leipzig.de/Software/BarMap_QA/
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Figure 10: Flowchart of a typical work flow for performing a cotranscriptional
folding analysis with BarMap-QA. After a quick, initial simulation run with a low
energy range parameter, the three quality criteria landscape coverage, exactly mapped
coverage and exactly mapped population are computed for each landscape and map,
respectively. If any value is found to be too low, the user can adjust the enumerated
energy ranges for the problematic energy landscapes. The model is then regenerated
and the quality scores are re-computed. This is repeated until the model performs
well. Now, the results of the folding simulation may be evaluated.
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the transition rate matrices of the updated landscapes, and re-computes
their eigenvalues and -vectors. This step supports multi-threading.

iv) Use barmap_remap to re-compute the macrostate mappings and, option-
ally, to re-run the folding simulation after the energy landscapes have
been changed in the previous step. Go back to (ii).

v) Analyze the generated output using the command line viewer and the
generated kinetics plot.

vi) If necessary, use barmap_merge_treekin with adapted filter settings to im-
prove the kinetics plot. Re-compute the plot with barmap_plot_treekin.

Already the first step runs the entire simulation and creates all required files.
The choice of a low enumeration threshold ensures that this initial run terminates
quickly. However, the results will usually be bad. Now the analyst can iteratively
refine individual landscapes by increasing the respective enumeration thresholds
until the quality is sufficiently high. If the coverage of an energy landscape is
low, only step (iii) has to be performed before re-evaluating the quality score.
If the fraction of exactly mapped coverage is low, both step (iii) and step (iv)
have to be executed, but re-running the folding simulation is not necessary until
the quality metric has improved.

As soon as all quality scores are sufficiently high, the results of the simula-
tion can be evaluated and the folding kinetics of the RNA may be be studied.
Optionally, the simulation can be repeated with varying simulation time param-
eters to assess the effect of a varying transcription rate to the folding process.
This can be achieved efficiently by running barmap_remap with the option to
disable the re-computation of the macrostate mappings. Changing the energy
landscapes, rate matrices and mappings is not required in this case.

Output files

A table describing all output files generated by a full run of BarMap-QA can
be found in Appendix B.

Usage example

To demonstrate the usage of BarMap-QA for a specific example, the cotran-
scriptional folding kinetics of a riboswitch shall be analyzed. Riboswitches in
general are described in more detail in Chapter 5. Wachsmuth, Findeiß, et al.
(2013) engineered multiple synthetic, transcriptional riboswitches responding to
the ligand theophylline, and verified their in vivo functionality by transfection
into Escherichia coli (E. coli). Of six tested candidates, the 68 nt long sequence
RS102 performed best, showing a 3-fold activation ratio in in an ONPG test (cf.
Section 5.1.4). A cotranscriptional folding analysis of RS10 should thus show
an interesting switching behavior between at least two dominant states: (i) the
binding-competent aptamer state, which is able to sense the ligand theophylline,
and (ii) the terminator state, which disrupts the aptamer conformation and
triggers transcription termination.

25′-AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGAAAUCUCUGAAGUGCUGUUUUUUUU-3′
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file_name [ ... ] fulRangeNrg EnsembleNrg [ ... ] fulCovr lowCv
[ ... ] [ ... ]
21.bar [ ... ] -1.654210 -1.665671 [ ... ] 98.16% **
22.bar [ ... ] -2.003425 -2.050692 [ ... ] 92.62% ****
23.bar [ ... ] -2.003425 -2.061808 [ ... ] 90.96% ****
24.bar [ ... ] -2.003425 -2.074347 [ ... ] 89.13% *****
25.bar [ ... ] -2.003425 -2.458591 [ ... ] 47.78% *****
26.bar [ ... ] -5.368760 -5.372944 [ ... ] 99.32% *

[ ... ]

Listing 2: Energies of the enumerated range (fulRangeNrg) and the full ensemble
(EnsembleNrg), and the corresponding coverage values (fulCovr) for the first 21 to
26 nt of RS10. Asterisks (*) mark landscapes with low coverage values.

Initial landscape generation. After running and connecting to the BarMap-QA
Docker container using the command ./run_barmap-qa.sh ., the software
provided by BarMap-QA becomes available and the current working direc-
tory “.” is mounted. In the following, it is assumed that the sequence
of RS10 is available in a variable of the same name. Next, the initial se-
quence of energy landscapes can be generated by executing the command
barmap_gen_barmapfile -t 8 -E 5 $RS10. Here, multi-threading with up
to eight threads (-t 8) is combined with a small energy range of 5 kcal mol−1

(-E 5) to quickly finish this first run.

Coverages of the landscapes. The coverage of the generated energy land-
scapes is automatically computed, but can also be recomputed using the script
progname, as shown in Listing 2. Besides other statistics not shown here, the
ensemble free energy (EnsembleNrg), the total energy of all explored basins
(fulRangeNrg), and the resulting coverage values are shown for each energy
landscape n.bar, where n ∈ {21, . . . , 26} is the current length of the RNA
molecule. While the coverage is as high as 98% for 21.bar, it starts to de-
crease in the following landscapes and drops to only 48% in 26.bar. The next
landscape has a high coverage of 99% again, and its ensemble energy has more
than doubled, indicating that a new low-energy conformation became available
with the addition of the 26th nucleotide. These abrupt changes in coverage
once more stress the importance of quality criteria to ensure a reliable model
performance.

To improve on the low coverage detected in some of the landscapes, the
explored energy range needs to be increased. In this example, it suffices to
increase the range to 8 kcal mol−1 for all energy landscapes by re-running the
barmap_gen_barmapfile script with argument -E 8. The re-evaluation of the
resulting energy landscapes now shows that each has a coverage of at least 97%,
i. e., the structures disregarded by the analysis correspond to less than 3% of
the probability mass of the entire ensemble.

Exactly mapped coverage. We now proceed to the evaluation of the quality
of the “bar map”, i. e., the mapping from each coarse-grained energy landscape
to the next one. As before, the quality measures for the mapping are generated
automatically by barmap_gen_barmapfile. To manually recompute the scores,
the script barmap_exact_coverage -a may be used. The option -a enables
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from_file to_file #exact #basin %exactBsn %%exactCov %totalCov %exactCov lowCv
------------------------------------------------------------------------------
[ ... ]
25.bar -> 26.bar 21 61 34.43% 50.44% 99.97% 50.42% *****

43.89%: 1 (((((((......)))).))).... -1.70 0 8.00 saddle: -1.70
~> 4 .......................... 0.00 1 2.70 dist: 7 bp

3.95%: 4 ...((((......))))........ 0.10 1 0.40 saddle: 0.50
~> 4 .......................... 0.00 1 2.70 dist: 4 bp

[ ... ]

Listing 3: Approximately mapped minima of the mapping between landscapes
25.bar and 26.bar. Minimum 1 of 25.bar, represented by a hairpin loop containing
a bulge, is mapped to the open chain in 26.bar despite a distance of seven base pairs.
The reason is that the saddle structure at −1.7 kcal mol−1 was not enumerated in
landscape 26.bar, and the – now disconnected – corresponding minimum was thus
removed. This results in 44% of the coverage of landscape 25.bar to be mapped to
the wrong state. Another 4% of coverage is lost due to the erroneous mapping of
minimum 4 to the open chain.

the output of individual miss-mapped minima. An excerpt of the result is shown
in Listing 3.

The first significant problem is encountered when mapping landscape 25.bar
to 26.bar. Specifically, minimum 1 of 25.bar is mapped to the open chain in
26.bar despite a distance of seven base pairs. The reason is that the saddle
structure at −1.7 kcal mol−1 was not enumerated in landscape 26.bar, and the
– now disconnected – corresponding minimum was thus removed. This results
in 44% of the coverage of landscape 25.bar to be mapped to the wrong state.
Again, this and similar deficiencies can be solved by increasing the explored
energy range for all landscapes; this time we choose a range of 9 kcal mol−1,
which is still a modest value for the given RNA length. As a result, the fraction
of exactly mapped coverage increases up to at least 97% for all mapping steps.

Exactly mapped population. Now, the third quality criterion measuring the
fraction of exactly mapped population can be optimized for the given landscapes.
The computation of the scores is performed by barmap_exact_population -a.
Again, only the first significant issue reported is shown, cf. Listing 4.

The result looks quite similar to Listing 3, as the same conformation, this
time corresponding to minimum 4 in landscape 26.bar, is miss-mapped to
the open chain in the next landscape. This minimum, however, no longer
has a significant coverage in its landscape, because other, more stable states
now dominate the equilibrium distribution. It is thus not detected by the
criterion based solely on the coverage of the mapped states. But due to the
dominance of the corresponding conformation in the previous landscape, a
high fraction of population is mapped to minimum 4 anyway, and remains
there due to a high energy barrier of 5.2 kcal mol−1. The exact population
criterion successfully detects this mapping error and demonstrates that an
enumeration up to 3.5 kcal mol−1 is necessary to include the saddle structure
required to connect the corresponding minimum to the global minimum in
landscape 27.bar. Otherwise, a loss of more than 54% of the population will
occur, and the simulation results should be considered unreliable.



Chapter 3. Assessing the Quality of RNA Folding Models 51

from_file to_file %exactPop lowPop
-----------------------------------
[ ... ]
26.bar -> 27.bar 40.02 *****

54.80%: 4 (((((((......)))).)))..... -1.70 1 5.20 saddle: 3.50
~> 4 ........................... 0.00 1 2.70 dist: 7 bp

4.87%: 6 ...((((......))))......... 0.10 4 0.40 saddle: 3.50
~> 4 ........................... 0.00 1 2.70 dist: 4 bp

[ ... ]

Listing 4: Approximately mapped population of the simulation between landscapes
26.bar and 27.bar. Minimum 4 of 24.bar, represented by a hairpin loop containing
a bulge, is mapped to the open chain in 27.bar despite a distance of seven base pairs.
While this situation seems similar to the one in Listing 3, it shows that the exact
population criterion successfully detects relevant miss-mappings during the simulation
even if the coverage of the mapped minimum is low in equilibrium.

As a remedy, one may ponder to repeat the previous strategy and simply
enumerate all energy landscapes up to the saddle point at 3.5 kcal mol−1. When
considering the very low global MFE of −27.6 kcal mol−1 for the full-length
sequence, however, it becomes apparent that this is not a feasible option. A
– quite lengthy – run of RNAsubopt enumerating all structures in the energy
range of 31.1 kcal mol−1 above the MFE reports a total of about 4.9 billions
of structures; by far too many to serve as input to barriers. But, as the
population of an unstable minimum is going to decrease during the simulation,
an alternative strategy is to only increase the enumerated energy range for
landscape 27.bar and the following ones, e. g., up to 30.bar. A partial re-
enumeration is achieved by using the script barmap_rebar on selected. In this
vein, the energy ranges of the remaining landscapes is carefully increased step by
step until proper quality scores are achieved. The full details of the procedure
for this sequence are presented to the reader in a dedicated publication (Kühnl,
P. F. Stadler, and Findeiß, 2019).

Evaluating the simulation results. The kinetics plot of the final simulation is
presented in Figure 11. It can be analyzed in conjunction with the text-based
output of the result viewer barmap_show_run, and shows three distinct phases
during the folding process. These are (A) the transcription and formation of
the theophylline aptamer, (B) the ligand sensing phase, and (C) the terminator
formation. If the sensing phase was too short, the ligand could not bind well
to the aptamer and thus not switch on the gene expression. If it was too long,
in contrast, the formation of the terminator would not happen in time and it
could not stop the RNA polymerase from transcribing the RNA even in absence
of the ligand.

3.4.5 Discussion
The simulation of RNA folding kinetics is a powerful tool for the in silico
analysis of these biomolecules. Models incorporating cotranscriptional folding
are especially well suited to study RNAs whose function critically depends
on the timing of their structural rearrangements after transcription like, e. g.,
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Figure 11: Final results of the cotranscriptional folding simulation of RS10 with
BarMap-QA. The line plot can be split into three functional phases: (A) the tran-
scription and formation of the theophylline aptamer, (B) the ligand sensing phase,
and (C) the terminator formation. Although curves may appear and disappear within
the same phase, it can be verified using the result viewer that they represent similar
conformations, here the binding-competent aptamer conformation at the 5′ end, or the
terminator hairpin at the 3′ end of the transcript in (B) and (C), respectively. The
switching between ligand sensing and terminator formation happens at time 47 000
(given in arbitrary units).

transcriptional riboswitches. BarMap is an – in theory – elegant framework
to simulate a folding process on a sequence of dynamically changing energy
landscapes. In practice, however, its application is difficult and requires a lot of
manual steps. Analyzing the output is cumbersome and it is not easily possible
to verify the integrity.

Our software BarMap-QA dramatically improves on this situation. The
entire process of constructing energy landscapes for the transcription intermedi-
ates of the input sequence, associated transition rate matrices, the computation
of the macrostate mappings, and finally the orchestration of the simulation run
can now be performed using a single command. We provide theoretically well-
grounded criteria to assess the simulation quality of the different components
of the model. This allows the analyst to perform a guided improvement only of
those parts of the simulation where it is really necessary, which helps to avoid
unnecessary computations. Still, the computational cost of this method is high
and may quickly become very challenging for RNAs longer than 100 nt.

Apart from the length of the input sequence, the feasibility of a BarMap anal-
ysis also depends on the sequence’s folding characteristics. An RNA molecule
with a smooth energy landscape with a dominant global minimum will be much
easier to simulate than bistable sequences exhibiting highly probable alternative
conformations or “folding traps”. The reason is that persistent intermediate
folding states require an enumeration up to a constant energy level during the
entire elongation process, leading to a combinatorial explosion of the number of
secondary structures. In contrast, if the most likely folding paths quickly lead to
the global minimum, only a small number of structures need to be enumerated
to obtain high quality simulation results even for long RNA sequences.

BarMap is designed to be applicable to a broad range of problems and
thus very flexible. Due to the semi-automatic architecture of BarMap-QA,
this flexibility is transparently propagated despite the added functionality. For
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instance, the user can provide custom rate matrices accounting for ligand binding
or changing environmental temperatures, and may still compute the quality
statistics as described above. pourRNA, a memory efficient and parallelized
alternative to barriers, has been published recently (Entzian and Raden, 2020).
Integrating this new tool into BarMap-QA may be an interesting option for a
future release.

Apart from facilitating cotranscriptional folding analysis by providing a
highly portable Docker container of BarMap-QA, we also provide flexible yet
robust Perl libraries to ease the processing of many file types commonly used
for folding simulations. Thus, we hope to encourage our fellow scientists to
write and publish their software building on the same powerful tool set, making
the analysis of RNA folding even easier and better.

3.5 Conclusion

The simulation of their folding kinetics is a promising approach to study the
structural rearrangements of RNAs at a resolution which is hardly accessible
through wet lab experiments. The combinatorial explosion of the number
of possible structures with increasing sequence length, however, precludes
modelling the folding process at the level of microscopic transitions on the
full ensemble. Thus, an array of heuristics, simplifications and coarse graining
approaches has to be employed to be able to analyze even moderately sized
molecules. Their application has to be paid with the price of a reduced model
accuracy. While an overwhelming majority of all possible structures is irrelevant
to the biological function of any RNA and can safely be excluded from a folding
analysis, it is not obvious a priori how to precisely and automatically tell
important and unimportant conformations apart, or more generally, how to
judge the impact of any such heuristic that reduces the number of states or
transitions in an RNA energy landscape.

Therefore, this chapter was dedicated to the development of methods for
assessing the quality of various models for RNA folding. A key idea was to
interpret the probability of a set of structures in thermodynamic equilibrium
as the coverage of that set with respect to the ensemble. This concept was
then be applied to various different cases. The coverage of low-energy bands as
simplest case was studied for various enumeration thresholds. Such an analysis
is quickly performed for given sequence, and the obtained results are very
informative. It should therefore be a standard procedure before continuing with
the construction of an energy landscape.

Furthermore, the concept of coverage was applied to canonical structures
to analyze the impact of neglecting structures containing isolated base pairs.
Surprisingly, it was found that a significant fraction of non-canonical structures
only has isolated base pairs that are in fact stable within the Turner energy
model. The idea to generally exclude non-canonical structures from analysis
should therefore be considered very carefully only be an option if it is really
necessary.

The theoretically elegant BarMap framework has proven to be difficult
to apply in practice. Therefore, the software package BarMap-QA has been
developed, which does not only simplify and automate the application of
BarMap for cotranscriptional folding, but also introduces several novel criteria



54 Chapter 3. Assessing the Quality of RNA Folding Models

to assess the quality of the folding simulation. Again, the concept of coverage
was employed to judge the reliability of the different components of the model.
While cotranscriptional folding simulations remain computationally challenging
tasks, the availability of these quality scores allows a guided adjustment of
the enumeration threshold for each individual energy landscape and thus helps
to avoid unnecessary calculations. The easy installation of BarMap-QA via a
portable Docker image significantly lowers the burden to apply the method in
practice. It can thus be expected to have a significant impact on the ability
of the research community to conduct high quality cotranscriptional folding
analyses.
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In Chapter 3, secondary structures have been formally described and energy
landscapes have been introduced as a flexible and powerful model for RNA
folding kinetics. Additionally, the coarse graining of energy landscapes based on
gradient walks was explained, which partitions their states into a set of gradient
basins, each of which is represented by a local minimum. This chapter presents
statistical analyses of data generated by applying these models, characterizing
their universal properties. Insights about the distribution of probability mass in
the landscape are extremely helpful to predict the quality of simulation results
and to guide the exploration of huge landscapes. This allows to effectively
reduce the number of structures that have to be considered while controlling
the error introduced by this simplification.

Various existing studies have analyzed statistical aspects of RNAs and their
structures. Fontana, Konings, et al. (1993) analysed the properties of random
RNAs up to a length of 100 nt and compared them to natural RNA sequences.
Their findings include the mostly linear dependence of the mean number of loops
as well as stacks from the sequence length, a quick convergence of the mean
size of stacks and loops, and a linear increase of the number of components
(i. e., closed substructures in the exterior loop) after an initial “lag phase”
until a minimum sequence length required to fold into stable substructures
is reached. Beside the biophysical alphabet {A, U, G, C}, these authors also
analyzed sequences derived from other alphabets and found them to exhibit
significantly different properties. On the other hand, it was shown that many
of these properties are not sensitive to the specific choice of the energy model
parameters or the folding algorithm (Tacker et al., 1996). Properties of GC- and
AU-sequences were analyzed, e. g., the number of MFE structures for varying
sequence length as well as their frequencies at fixed sequence lengths, which
was shown to follow a power law distribution (Grüner et al., 1996). Another
work shows that for almost all MFE structures, a sequence with that MFE can
be found within a small distant to any initial sequence (Fontana, P. F. Stadler,
et al., 1993). Wolfsheimer and Hartmann (2010) have analysed the distribution
of minimum free energies for given sequence lengths and found the distribution
to be slightly skewed. Some of their results will be revisited in the first section
of this chapter.

4.1 The distribution of minimum free energies of random
sequences

As a first step towards the subject, this section will discuss the distribution
properties of minimum free energies of random RNA sequences of a given length.
The results are useful in contexts where many sequences with specific energetic
properties are analyzed, e. g., in the design of RNAs. A sound knowledge of
the energetic properties of sequences also allowed to make smarter choices in
the following analyses, e. g., because the expected MFE or their variance was
known and considered.

4.1.1 Methods
For each of various sequence lengths ranging from 20 nt to 300 nt, 10 000
random sequences were generated using a custom Perl script, invoking a
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Mersenne twister (Matsumoto and Nishimura, 1998) implemented in the mod-
ule Math::Random::MT::Auto for random number generation. The MFE for
each sequence was determined using RNAfold from the ViennaRNA Package
(Lorenz, Bernhart, et al., 2011). Statistical analyses and visualizations were
performed in R using several additional packages: genefilter for mode com-
putations, e1071 for skewness analyses, truncnorm, sn, evd, ExtDist, and
GeneralizedHyperbolic for probability density and cumulative distribution
functions of the truncated normal, skew normal, generalized extreme value,
Burr, and generalized hyperbolic distributions, respectively; goftest for the
Cramér–von Mises statistic, and ggplot2 for plot generation. The MASS package
was used to fit the data to the cognate distributions.

The sample skewness of sample x1, . . . , xn with n observations has been cal-
culated as b1 = m3/s3, where m3 = n−1∑

i(xi − x̄)3 with mean x̄ = n−1∑
i xi

is the sample third central moment, and s =
√

(n − 1)−1∑
i(xi − x̄)2 is the

sample standard deviation.
The adjusted skewness of x was calculated by computing the skewness b1

of the filtered vector x≥2x̄ instead, which contains only those values of x that
are equal to 2x̄ or greater. The idea here is to symmetrize the values of x
around their mean, such that the calculation of the third central moment only
considers values in the left tail for which there are equally distant values in the
right tail before the point of truncation. This way, the “missing information”
due to truncation is not interpreted as skewness. Of course, this procedure
underestimates the skewness and thus serves as a lower bound.

To determine the p-value for the skewness b1(x) of a sample x of size k,
10 000 samples y(i), i ∈ {1, . . . , 10 000}, of size k were drawn from a normal
distribution with the same mean and standard deviation as x. Their skew-
nesses b = (b1(y(1)), . . . )T have been calculated. These values follow a normal
distribution, as has been verified using a Q–Q plot (data not shown). The
p-value of the skewness of x was then estimated as Pr[X ≤ b1(x)], using the
cumulative distribution function of a normal distribution with mean 0 (as the
normal distribution is not skewed) and the sample standard deviation of the
vector of observed skewnesses b.

Distributions were fitted using the maximum-likelihood approach, i. e., by
maximizing their log-likelihood functions giving the observed data. The op-
timisation was carried out using the Nelder–Mead (Nelder and Mead, 1965),
BFGS (Fletcher, 2008) and L-BFGS-B (Zhu et al., 1997) procedures for trun-
cated distributions, and distributions with unbounded or bounded parameters,
respectively.

The goodness of fit of the various distribution families was compared us-
ing both the Akaike information criterion (AIC) and the Cramér–von Mises
(CvM) statistic. The AIC is defined as 2k − 2 ln(maxθ L(θ | x)), where L is
the likelihood of the (vector of) parameters θ of the distribution given the
sample x, and k is the number of degrees of freedom of the distribution, i. e.,
the number of components of θ (Akaike, 1974). For comparing multiple se-
quence lengths, the difference of the AICs of each distribution family to the
minimum AIC for this sequence length was computed. This was done because
the AIC is a relative criterion, and the absolute values for models of differ-
ent sequence lengths – fitted to different data – thus cannot be compared.
The CvM statistic T for comparing a single, ordered sample x1 ≤ · · · ≤ xn
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of n observations against a theoretical probability distribution function F is
T = (12n)−1 +

∑
i[(2i − 1)/(2n) − F (xi)]2 (Csörgő and Faraway, 1996).

4.1.2 Results
Especially for longer sequences of 100 nt or more, the distribution of MFEs
looks – at a first glance – much like a normal distribution (Figure 12a), i. e., it
is a continuous, unimodal, bell-shaped curve. As discussed below, it is mostly,
but not completely symmetric. The mean and variance of the MFE linearly
depend on the number of nucleotides, cf. Figure 12. To determine the precise
relation of the quantities, linear models were fitted to the data, yielding

µ = −0.3 kcal mol−1 · ℓ + 6.3

and

σ2 = 0.31 kcal mol−1 · ℓ − 1.9,

where ℓ is the sequence length, µ is the mean and σ2 is the variance. This shows
that for every additional 10 nt of sequence length, the mean MFE decreases by
about 3 kcal mol−1, while its variance increases by the same amount (Figure 12b).
This is consistent with previous estimates given by Wolfsheimer and Hartmann
(2010). This functional relation of sequence length and expected stability can,
e. g., be used to increase the efficiency of sequence sampling in an RNA design
problem: if a specific stability of the RNA is required, a sequence length with a
mean MFE close to the required value should be chosen. This ensures a high
number of candidates and thus efficient sampling. The increasing variance,
however, also means that, for longer sequences, no assumptions about stability
should be made based solely on its length. It should also be noted that, for
every sequence length, there are sequences with an MFE of 0 kcal mol−1, e. g.,
a sequence consisting exclusively of adenine.

Despite the seeming normality observed for longer sequences, the shape
of the distribution deserves further attention. By definition, the MFE of an
RNA molecule cannot be higher than 0 kcal mol−1, which is the free energy of
the open chain. Therefore, especially short sequences, having a mean MFE
just below zero, exhibit an obvious truncation of their right-hand tail at zero
(Figure 13). For sequences longer than about 70 nt, no significant truncation
can be observed anymore.

But even for longer sequences, the distribution is not perfectly normal,
especially in its tails. This becomes apparent when considering a Q–Q plot
of the data against the theoretical quantiles of the normal distribution (Fig-
ure 14). Both tails deviate significantly from the diagonal towards the theoretical
quantiles, i. e., the right tail is shorter and the left tail is longer than expected.

In addition, a slight skewness can be observed, supporting the indication
from the Q–Q plot. To verify this visual impression, the skewness b1 of the
MFE distributions has been computed for sequence lengths from 20 to 300 nt.
All were negative, in a range from −1.47 to −0.075, were the skewness reduces
as the sequence length increases. Of course, the truncation of the distribution at
0 kcal mol−1 is one obvious source of skewness. This, however, does not explain
the observed skewness for longer sequences, where the truncated probability
mass is close to zero. Additionally, an attempt has been made to to compensate
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Figure 12: Histograms of MFE samples and their means and variances for sequences
of various lengths. As the sequence length increases, the mean MFE decreases and
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to the left of the mode. The density to the right of the mode is “thicker”, while the
left-hand side is “thinner” and longer.
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for the effect of the confounding truncation, yielding an adjusted skewness value
for each sequence length, serving as a lower bound to the true skewness. As
Figure 15 demonstrates, this significantly reduces skewness for short sequences,
but skewness is still present. Starting from lengths of 70 nt, the regular and
adjusted skewness are more and more approaching each other and are almost
identical starting at 100 nt. This is congruent with the observed absence of
truncation beginning at 70 nt.

Even though the observed skewness values are close to zero especially for
longer sequences, they are significantly different from those expected for samples
drawn from a normal distribution. The longest sampled sequences (300 nt) show
the (absolutely) smallest skewness of −0.0751. For a sample of size 10 000 as in
our case, the corresponding p-value is 0.001, which is an order of magnitude
below the commonly expected significance threshold of 0.05.

Given the above results, it is clear that though a normal distribution may
fit the data to a reasonable degree for many applications, a better fit may be
achieved by using another distribution that can model the described properties.
Any relevant distribution should be continuous, skewed, and have a support that
is either unbounded, or bounded from either above or below. For distributions
bounded from below, the sign of the energy values has to be changed to obtain
non-negative energies. As cognate distribution families, the normal distribution
as a baseline, the truncated normal distribution, the skew normal distribution,
the gamma distribution, the generalized extreme value distribution (which
generalizes the Weibull, Gumbel, and Fréchet distributions), the Burr (type
XII) distribution, and generalized hyperbolic distribution were selected. The
observed MFE values were fitted to the distributions using maximum likelihood
procedures. Then, the goodness of fit was assessed using two independent
criteria. The AIC is based on the likelihood of the observations and additionally
accounts for the number of parameters in the model. The CvM statistic considers
the quadratic differences of the cumulative distribution function of the fitted
distribution to the empirical distribution function of the sample. Together, they
provide a complete picture of the quality of the models to the observed data.

The goodness of fit statistics of the different distribution families for different
sequence lengths are shown in Figure 16. Generally, the distributions fit the
data of very short sequences below 50 nt worse than for longer sequences. The
generalized extreme value distribution shows the worst overall fit. The Burr
distribution works well in the range of 50–140 nt, but from there is inferior
to the family of normal distributions. In the same range, however, the skew
normal distribution performs better still, and from 140 nt on it is level with
the normal distribution. The truncated normal distribution performs equal
to the normal distribution starting at 60 nt, and is better below. Explicitly
modelling the cut-off at 0 kcal mol−1, it is the best distribution for very short
sequences below 40 nt. Since the cut-off is known a priori, it has only two free
parameters just as the normal distribution, compared to which it performs
better. The skew normal distribution does, however, clearly outperforms the
truncated normal distribution, though it has one more free parameter. Finally,
the generalized hyperbolic distribution shows the best fit of all distributions,
except for the shortest sequences of length below 40 nt. However, the difference
to the next-best contestant, the skew normal distribution, is not too big, and it
has four free parameters. Generally, the more parameters a model has, the more
susceptible it is to overfitting. Thus, among multiple models with comparable
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Figure 14: Q–Q plots of the MFE sample for sequences of length 100 against the
theoretical quantiles of various fitted distributions. The tails of the normal, gamma
and generalized extreme value distributions deviate significantly from the sample
quantiles. The skew normal and the Burr distributions fit the data better, and the
best fit is obtained when using the generalized hyperbolic distribution.
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Figure 15: Regular (reg.) and adjusted (adj.) skewness of MFE distributions,
depending on the sequence length. A black, vertical line marks a sequence length of
70 nt, at which the energy distributions no longer exhibit an obvious truncation of
their right tails. From there, both skewness measures approach each other closely.
All observed skewness values are negative. After a significant drop in the beginning,
which can be attributed to the truncation at 0 kcal mol−1, the skewness decreases only
very slowly with increasing sequence length.

performance, the model with the lowest number of free parameters is usually
the best choice.

4.1.3 Discussion

While the distribution of MFEs of long sequences can be assumed to be ap-
proximately normal, this assumption is less precise for shorter sequences, which
exhibit a slightly negative skewness. The deviation from the normal distribu-
tion occurs mostly in the tails, especially in the left one. If a very tight fit is
required, a generalized hyperbolic distribution is a good choice, as it shows the
best performance of all candidates. The skew normal distribution is a good
alternative, having one free parameter less. For sequences above a length of
140 nt, a normal distribution with two free parameters may be used as well.
Only for very short sequences below 40 nt, the truncated normal distribution
should be preferred over the other options. One should consider, however, that
the precision of MFE folding models in general is limited for very long sequences,
thus the limit of 300 nt for the sequences examined here.

From the length of a sequence, a reasonable estimate for its expected MFE
can be made. With increasing sequence length, however, the linearly increasing
variance widens the MFE distribution, and more and more outliers have to be
expected. Also, there are sequences with an MFE of zero for any length.

An aspect that was not considered explicitly in this analysis was the effect
of other sequence properties beside the length. To name the most prominent
example, the GC content of a sequences, i. e., the fraction of G and C bases
w. r. t. all nucleotides, is known to significantly impact the stability (Washietl,
Hofacker, and P. F. Stadler, 2005). A higher GC content increases the stability
of the sequence, as GC and CG pairs are usually more stable than other
base pairs. Also, varying dinucleotide contents have an affect on stability for
the same reason. Tools like RNAz (Gruber et al., 2010) therefore judge the
stability of sequences by comparison to typical values for sequences having
similar properties.
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Figure 16: Goodness of fit of various distribution families and sequence lengths
(30–300 nt), measured using the difference in AIC (top) and the CvM statistic (bottom).
Both y-axes are logarithmic. For both criteria, “lower is better”, i. e., a lower value
means the fitted distribution is better-suited to describe the observed energy values.
The abbreviated distribution names in the legend stand for the Burr, generalized
extreme value, generalized hyperbolic, normal, skew normal, and truncated normal
distributions, respectively. The hyperbolic distribution describes the data best; the
normal, skew normal, and truncated normal distributions also show a good fit especially
for longer sequences.

Taken together, these results provide insights about the statistics of MFEs,
which can be used as a guide when sampling random sequences subject to a
specific stability constraint. This facilitates an efficient design process providing
many suitable candidates for further processing steps.

4.2 The statistics of canonical structures

In Section 3.3, canonical structures were introduced, i. e., RNA secondary
structures that do not contain any isolated base pairs. In that section, the
concept of coverage was applied to assess the relevance of canonical structures in
the structure ensemble of a sequence. Here, we will revisit canonical structures
and analyse their frequencies for different sequence lengths. We will also
distinguish the subclass of stable canonical structures. Furthermore, the analysis
will focus on the low-energy part of the structure ensemble, which contains the
stable structures most relevant for kinetic simulations.
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4.2.1 Methods

Random sequences of lengths of 20–100 nt in steps of 10 nt, and sequences of
lengths 100–200 nt in steps of 20 nt have been sampled using a custom Perl script,
invoking a Mersenne twister (Matsumoto and Nishimura, 1998) implemented
in the module Math::Random::MT::Auto for random number generation. For
each length, five sequences were selected for further processing. While five
sequences per length is a quite small sample size, many different sequence
lengths have been tested, and the observed overall trends seem quite stable. For
each of these sequences, the energy range containing the lowest 10 000 gradient
basins has been determined using an iterative approach: from an initial flooding
level of 2 kcal mol−1, the level was increased by 1 kcal mol−1 per iteration. In
each iteration, all the secondary structures within the current flooding level
above the MFE have been computed using RNAsubopt. These were partitioned
using the coarse graining tool barriers, which computes a list of local minima
representing the gradient basin macrostates. If at least 10 000 minima were
found, the procedure was stopped. The procedure was also stopped if no new
minima were found in two iterations to properly handle sequences having less
than 10 000 minima.

The determined flooding levels were then used to enumerate all structures
within, and for each it was determined whether it was canonical or non-canonical,
and in the latter case, also if it was stable or unstable. For some structure x,
a base pair (i, j) ∈ x is referred to as unstable if ∆G(x \ (i, j)) < ∆G(x), i. e.,
the free energy of x decreases when removing (i, j), otherwise it is stable. A
canonical structure is called stable if all of its isolated base pairs are stable.
The fractions of structures with these properties were then calculated.

4.2.2 Results

For all sequences consisting of at least 60 nt, more than 10 000 minima were
found. The required flooding levels were 8–17 kcal mol−1 for sequence lengths
60–100 nt, and 4–9 kcal mol−1 for lengths 90–200 nt. This effectively limits the
analysis to very stable structures with equilibrium probabilities.

While the overall fraction of non-canonical structures is increasing from
about 75% to over 90% for short sequences from a length of 20–40 nt, it is
then constantly dropping with increasing sequence length, until reaching about
65% for sequences of length 200 nt, Figure 17. Notably, with the length, the
range of the observed values increases: sequences of this length had 44–98% of
non-canonical structures. So for longer sequences, depending on the sequence,
totally different fractions of lonely pairs have to be expected.

The fraction of unstable and stable non-canonical structures has been
computed, where the question of stability of the individual lonely base pairs
has been assessed with respect to their free energy contribution in the Turner
energy model (Turner and Mathews, 2010) as implemented by the ViennaRNA
software package. As Figure 17 shows, in many cases, only about half of the
non-canonical structures consist solely of unstable base pairs. Only for short
sequences of 60 nt or less, most non-canonical structures fall in this class. On
the other hand, the number of stable non-canonical structures is, with less than
2%, very small for short sequences, but constantly increasing up to about 13%
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Figure 17: Fractions of different types of non-canonical structures with respect
to all enumerated structures. The blue line represents all non-canonical structures,
whereas the green (red) line shows the fractions of structures that are non-canonical
and for which all lonely base pairs are unstable (stable). Vertical error bars denote
the observed range of values at each point, and the lines run through the means of
the observations.

of all structures for sequences of length 200 nt. This corresponds to about 20%
of the non-canonical structures.

As expected, most of the stable lonely pairs are CG or GC pairs, which
contribute the highest energy bonus of all possible pairs in the Turner energy
model. There are, however, also stable lonely AU pairs, and even stable GU
wobble pairs can be observed in an isolated position, though their frequency is
significantly lower.

4.2.3 Discussion
The concept of canonical structures, i. e., the exclusion of lonely pairs, is an
optimization that is supposed to prune the structure ensemble of a given sequence
by removing structures which are not occurring in practice. The rationale is
that many isolated base pairs are unstable and open up again immediately,
and thus need not to be considered (Bompfünewerer et al., 2007). In the light
of the results of this section, this assumption is at least debatable. While
the restriction to canonical structures does significantly reduce the number of
possible structures, only half of the non-canonical structures consist exclusively
of unstable base pairs. And even worse, a constantly increasing fraction of
the non-canonical structures does not have any unstable lonely pairs at all.
Excluding them from a simulation or analysis cannot reasonably be justified
with the argument above. Therefore, care has to be taken when applying this
heuristic. Since it can massively speed up computations, it may enable the
analysis of larger molecules which would otherwise be out of reach with the
available resources, but it should not become a default that is used all the time
even if it is not necessary.

4.3 The statistics of low-energy minima

As the sequence length increases, the number of structures grows exponentially
and quickly becomes inaccessible to analyses relying on explicit construction
of the ensemble (Stein and Waterman, 1979). Even when employing sensible
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heuristics like a restriction to low-energy structures and a gradient-based coarse
graining, the huge number of macrostates makes simulations with medium-sized
RNA molecules up to 100 nt challenging, and usually their number has to
be restricted, too. Therefore the question arises to which extent the energy
landscape is still covered when limiting the maximum number of macrostates
to a fixed number. Here, 10 000 minima will be considered, as this number
still permits an explicit diagonalization of a quadratic transition rate matrix, a
technique used, e. g., by the program Treekin to analyse the reaction kinetics of
the specified system.

4.3.1 Methods
Random sequences of lengths of 20–100 nt in steps of 10 nt (1 000 sequences
per length), and sequences of lengths 100–200 nt in steps of 20 nt (400 se-
quences per length) have been sampled using a custom Perl script, invoking a
Mersenne twister (Matsumoto and Nishimura, 1998) implemented in the module
Math::Random::MT::Auto for random number generation. For each of these
sequences, the energy range containing the lowest 10 000 gradient basins has
been determined as described in Section 4.2. The energy differences between
the global and the 10 000th minimum of each sequence have then been used
to conduct the statistical analyses. This has been done with R; the package
evd was used for fitting the generalized extreme value (GEV) distribution, and
ggplot2 has been used to create the visualizations.

The correlation has been computed according to Pearson’s definition (Becker
et al., 2016), i. e., for two paired samples (x1, y1), . . . , (xn, yn) of size n, the
correlation coefficient was calculated as

rxy =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2∑

i(yi − ȳ)2
, (4.1)

where x̄ and ȳ are the respective sample means. The skewness has been
computed as in Section 4.1.

4.3.2 Results
For sequences of a fixed length, the distribution of energy ranges of the first
10 000 minima is positive, unimodal and asymmetric. It has a long right-hand
tail, and skewness values ranging from 0.3 to 0.9 have been observed for different
samples. There is, however, no trend in skewness with respect to the length of
the observed sequences. A GEV distribution fits the data very well, Figure 18.

Given the above characteristics, the median and standard deviation seem to
be good descriptors for the distribution of energy ranges at a given sequence
length. Figure 19 displays their values for lengths from 20 to 200 nt. Its
axes are logarithmic, so a straight line indicates an exponential change in
value. Starting at 50 nt (40 nt), the median (standard deviation, respectively)
decreases exponentially with the sequence length. The observed median energy
ranges span values from 13 to 4.7 kcal mol−1, with standard deviations from
2.8 to 1 kcal mol−1. The initial, exponential increase happens because small
sequences simply do not have 10 000 minima; the range computed as described
in the methods section is thus small, even though the entire ensemble has been
observed.
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Figure 18: Distribution of energy ranges of the first 10 000 minima for a sequence
length of 80 nt. A GEV distribution has been fitted to the data. Both a histogram of
the observed values with a curve depicting the fitted density (left), and a Q–Q plot of
the sample quantiles against the theoretical quantiles of the fitted distribution (right)
proof that it describes the data very well.
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Figure 19: Median and standard deviation of the energy range (in kcal mol−1)
covered by the first 10 000 minima for samples of random sequences of various lengths.
Both axes are logarithmic. Starting at 50 nt (40 nt), the median (standard deviation,
respectively) decreases exponentially with the sequence length. The initial increase
happens because small sequences simply do not have 10 000 minima; the computed
range is thus small.

As shown before, the expected MFE of a random sequence decreases linearly
with its length. Therefore the question arises whether the observed decrease in
covered energy range of the first 10 000 minima is directly linked to the decrease
of the MFE. However, as Figure 20 demonstrates, the correlation between the
MFE and the covered energy range reduces rapidly with increasing sequence
length, from a value of −0.86 at 50 nt to only −0.33 at 200 nt.

4.3.3 Discussion

These results indicate that the – well-known – exponential increase of the number
of minima w. r. t. the sequence length cannot be circumvented by exploring only
the lower parts of the landscape. Especially for longer sequences, the number
of minima does not seem to depend so much on their MFE, but mostly on their
length. Also, the deviation of the ranges from their expected value becomes
smaller and smaller, so for long sequence lengths, the landscapes of all sequences
are more or less equally hard to explore.
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Figure 20: Scatter plots (top) and correlation (bottom) of MFEs and energy ranges
covered by the first 10 000 minima for samples of various sequence lengths. While
both properties are strongly negatively correlated for short sequences, the correlation
drops rapidly as the sequences get longer.

The consequence is that, for very long sequences, it is not even worth
trying to enumerate their energy landscapes even when using a coarse graining
approach based on gradient walks. Instead, one has to resort to other methods
to perform a kinetic analysis.

4.4 The distribution of free energies within gradient basins

In this chapter, the distribution of global MFEs of random sequences as well
as the distribution of (low-energy) gradient basins have been analysed. Here,
these results are complemented by a study of the distribution of free energies
of the structures within the same basin. In this context, we will also derive
properties of the local MFE of the basin, the corresponding structure of which
is usually considered as the representative of the basin. These results will serve
as a foundation for the results concerning the distribution of Boltzmann weights
in gradient basins in the next section.

4.4.1 Methods
The open source program pourRNA (Entzian and Raden, 2020) implements
a local flooding algorithm for RNA energy landscapes. The source code was
modified to allow the output of all enumerated structures within a single basin,
and to significantly increase the memory efficiency. The latter was achieved
by, firstly, removing a hash data structure storing all encountered structures,
which is not necessarily required, and secondly, by applying a space-efficient
ternary encoding for dot–bracket strings of secondary structures (“structure
packing”) as implemented in the ViennaRNA package (Lorenz, Bernhart, et al.,
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2011). Using the modified version of pourRNA, basins of several random RNA
sequences have been enumerated. The energy distribution of the structures
generated has been analyzed in R, the visualizations have been generated using
the package ggplot2.

The k-th order statistic of an ordered sample x1 ≤ · · · ≤ xn of size n is simply
the k-th value xk. The first order statistic is thus the minimum. Expected
values for normal order statistics, i. e., order statistics of samples drawn from a
(standard) normal distribution, can be obtained naively by numerical integration
of the density function, or better by using specialized algorithms (Royston,
1982). There are also effective approximations; here, the heuristic

E(X) ≈ Φ−1
(

1 − α

n − 2α + 1

)
,

as proposed by Blom (1958) was used to obtain the expected first order statistic
for a given sample size n . It uses a constant α = 0.375 and resorts to the
quantile function Φ−1 of the standard normal distribution. The rationale is
that the lowest value of a sample of size n will, on average, lie close to the

1
n+1 -th quantile of the distribution.

In her course notes, Jenny Baglivo1 gives an approximation for the variance
of (arbitrary) k-th order statistics as

Var(X(k)) ≈ p(1 − p)
(n + 2)(f(θ))2 ,

where p = k/(n + 1), θ = F −1(p) is the p-th quantile, and f is the probability
density function of the distribution. To obtain the variance of the first order
statistic, we set k = 1. Of course, an estimate for the standard deviation of
the respective order statistic can be obtained by taking the square root of the
estimated variance.

4.4.2 Results
The distribution of free energies in gradient basins

As Figure 21 shows, the distribution of free energies within a gradient basin is
mostly normal. There is a small deviation especially in the left tail as observed
for other energy distributions in this chapter, but the overall fit of a normal
distribution is relatively good. Since the choice of the normal distribution will
greatly simplify further the analysis of the distribution of structure probability
mass in the basin, we will settle with this small compromise here.

The expected minimum free energy of gradient basins

In the previous section, we have shown that the free energies in a basin approxi-
mately follows a N (µ, σ2) distribution, i. e., a normal distribution with mean µ
and variance σ2. Since the support of the density of the normal distribution is R,
there is a non-zero probability of observing arbitrarily small free energies when
drawing from this distribution. In practice, however, there is a clearly defined
minimum free energy; and also only a finite number of structures n within a

1Mathematical Statistics, Notebook 4. Boston College, Fall 2017 Course.
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Figure 21: Distribution of free energies of a single gradient basin for a sequence
length of 50 nt. A normal distribution has been fitted to the data. Both a histogram of
the observed values with a curve depicting the fitted density (left), and a Q–Q plot of
the sample quantiles against the theoretical quantiles of the fitted distribution (right)
show a good fit, though especially the left tail deviates slightly from the theoretical
quantiles.

basin. Thus, the question arises how exactly the underlying distribution of free
energies is related to the basin’s MFE.

To shed light on this matter, we change our perspective and consider the
set of all structures in the given gradient basin to be a sample of size n from
the underlying normal distribution. This view reflects the fact that secondary
structures represent selected structures from a much larger, three-dimensional
space. From this perspective, the local MFE X becomes the minimum of a
sample of size n, drawn from a N (µ, σ2) distribution. This is, again, a random
variable; and one can thus ask for its expected value E(X) and variance Var(X).

X is also referred to as the first order statistic (Becker et al., 2016). Its
cumulative distribution function is given by FX(x) = 1 − (1 − FN (x))n, i. e.,
the probability that the smallest of n energies is at most x equals the prob-
ability that not all of n drawn energies are greater than x. The probability
density function can readily be obtained by differentiating FX ; it is given by
fX(x) = nfN (x)(1 − FN (x))n−1. As a statistic of a random sample is, again,
a random variable, one can also compute expected values and variances of
(normal) order statistics. Approaches to do so are described in the methods
section.

A distribution of first order statistics as well as plots of the mean and
standard deviation for various basin sizes have been computed. The results
are given in Figure 22. The distribution of first order statistics is continuous,
unimodal and skewed to the left. For basins of of size 100 000, the local minimum
is, on average, located −4.4σ to the left of the mean of the underlying normal
distribution (Figure 22a). The average MFE and its standard deviation for
basin sizes ranging from 10 to 109 structures have been analysed (Figure 22b).
Basins with 1 000 to 106 structures have an average local MFEs of −4σ to −5σ,
and very big basins with 106 to 109 structures exhibit local MFEs as low as
−6σ. The standard deviation drops rapidly with increasing structure counts,
and is as low as 0.3 even for small basins with only 1 000 structures. With
106 structure, standard deviation reduces to 0.2 and approaches 0.15 for huge
basins with 109 structures.
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Figure 22: Distribution and moments of the first order statistic of a standard normal
distribution. (a) Histogram of minima, obtained from normally distributed samples
of size 100 000. The mean is marked with a vertical bar. The distribution is highly
skewed to the left. (b) Mean and standard deviation (sd) of the normal first order
statistic for various sample sizes (logarithmic scale), given in multiples of the standard
deviation (sigma) of the underlying normal distribution.

4.4.3 Discussion
While the mean MFE stays relatively stable over a large range of structure
counts, the standard deviation drops quickly to very small values. For a normal
distribution, more than 99% of the probability density lie within a range of ±2σ
around the mean. This means that, for example, more than 99% basins of size
10 000 (mean: −4σ, standard deviation: 0.25σ) will have an MFE that is located
at (−4±0.5)σ, relative to the mean of the underlying basin distribution. As this
example illustrates, quite precise predictions about the expected local MFE of
a basin can be made using this approach. These insights are also interesting by
themselves because they reveal a tight connection of the underlying distribution
of a gradient basin with the seemingly independent local MFE and the number
of structures in a basin. They may thus be of great value for further analyses.

4.5 The distribution of probability mass in gradient basins

Closely related to the distribution of free energies is the question for the
distribution of probability mass of the structures within a gradient basin. In
the gradient basin abstraction, the distribution of structures within each basin
is assumed to be in equilibrium. Furthermore, the equilibrium is assumed to
follow a Boltzmann distribution, and thus the probability mass of each structure
is given by its Boltzmann weight, Section 2.2.4. Hence, the distribution of
probability mass is a (scaled) product of the distribution of energies and the
Boltzmann distribution. This distribution is of high interest for the exploration
of a basin in a landscape, because it gives valuable information about which
structures are influential for the behaviour of the basin in a kinetic simulation.

Depending on the sequence and the selected minimum, a gradient basin may
contain thousands or even millions of structures. Their free energies usually
span a range of tens of kilocalories. When enumerating such a basin, e. g., to
compute transition rates for a kinetic simulation, usually only structures with
a high Boltzmann weight (i. e.,, with a low energy) contribute significantly to
the result. On the other hand, there are many more structures with a higher
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Figure 23: Combined histogram of the counts (blue) and the Boltzmann weights
(green) of the structures of a single gradient basin. The left panel zooms in on the gray
area marked in the full data panel on the right-hand side. The selected basin belongs
to a sequence of length 50. Almost the entire Boltzmann weight is located closely to
the minimum at −2.4 kcal mol−1. Thus, the vast majority of the (blue) structures do
not contribute significantly to the partition function.

energy, so it is not clear a priori whether their greater number may outweigh
their lower individual Boltzmann weight. This section therefore aims to analyze
the contribution of structures of a given free energy to the partition function.

4.5.1 Results
Before evaluating the statistics of Boltzmann weights in a basin, a few nu-
merical considerations should be made. The explicit computation of partition
functions involves the summation of a great number of Boltzmann weights,
and due to the exponential change in their value with respect to their energy,
this may lead to numerical instabilities. As a counter measure, a re-scaling
with the local MFE as described in Section 2.2.5 should be performed. This
ensures that the local minimum has a Boltzmann weight of 1. As comput-
ers perform calculations with a limited precision, there is a smallest value ϵ
with 1 + ϵ > 1 that can be stored exactly by a program. ϵ is also commonly
referred to as machine epsilon, e. g., in the float.h header of the C pro-
gramming language. Thus, there is also a maximum energy ∆Gmax such that
1 + Z[∆Gmax] > 1, where Z[∆Gmax] is the Boltzmann weight of energy ∆Gmax.
When computing the partition function with double precision according to the
“IEEE Standard for Floating-Point Arithmetic” (2019), ϵ = 2−53, and conse-
quently ∆Gmax ≈ 22.64 kcal mol−1. Therefore, 22.7 kcal mol−1 may serve as a –
very coarse – upper bound for the flooding of any basin.

Using pourRNA, the structures of several gradient basins have been enu-
merated and analysed. In Figure 23, both the number of structures and their
(accumulated) Boltzmann weight is shown for the range of energies within a
single gradient basin. The green bars mark energies with significant contribu-
tions to the partition function. This is only a tiny fraction of the full energy
range; only the left-most tail of the distribution of structures is relevant. The
results are similar for other basins (data not shown).

The presented results indicate that the exponential decrease in Boltzmann
weight with increasing free energies within a gradient basin dominates the
increase in the number of structures in the higher-energy range. Only a small,
low-energy tail of the distribution of free energies is required to be enumerated
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to cover the partition function to a high degree. In the next section, this
observation is put on a solid theoretical basis.

Theoretical distribution of probability mass in gradient basins

In Section 4.4, it was shown that the free energies within a gradient basin are
approximately normally distributed. Thus, if X is the free energy of a randomly
chosen secondary structure of some gradient basin, then X ∼ N (µ, σ2), i. e.,
X is a random variable following a normal distribution with expected value
E(X) = µ and variance Var(X) = σ2. Its probability density function is thus

fN (x) = 1
σ

√
2π

exp
(

−1
2

(
x − µ

σ

)2
)

. (4.2)

It was also mentioned that structures within a gradient basin are assumed to be
equilibrated (cf. Section 2.3.5) and their probabilities thus follow a Boltzmann
distribution. To model the distribution of the Boltzmann weight in a basin, one
thus needs to multiply the density of the energies with their respective Boltzmann
weight Z[x] = exp(−βx), where β = (RT )−1 is the inverse temperature. By
doing so, we obtain the following result.

Theorem 1. Let Y be the energy of a secondary structure from a gradient
basin with N (µ, σ2)-distributed free energies, chosen randomly according to their
equilibrium distribution. Then

Y ∼ N
(
µ − βσ2, σ2) .

Proof. We construct the cognate density fY of Y by multiplying the density
of the normal distribution (Equation 4.2) with Z[x], and then show that it is
indeed a proper probability density function:

fY (x) = c · Z[x − c∆G] · fN (x)

= c exp (β(c∆G − x)) 1
σ

√
2π

exp
(

−1
2

(
x − µ

σ

)2
)

(4.3)

for some normalization constant c and an energy scaling constant c∆G. Ob-
viously, the product of two strictly positive functions is positive. Next, we
consider the indefinite integral of fY :∫

fY (x)dx = c

2 exp
(

β(βσ2

2 − µ + c∆G)
)

erf
(

x − (µ − βσ2)
σ

√
2

)
using the Gauß error function erf : C −→ (−1, 1). Since limx→±∞ erf(x) = ±1,
we can easily calculate the value of the improper integral∫ ∞

−∞
fY (x)dx = c exp

(
β(βσ2

2 − µ + c∆G)
)

!= 1,

which converges to a constant. fY is thus a proper probability density. By
solving for c, inserting it into Equation 4.3 and rearranging terms, we finally
obtain

fY (x) = 1√
2πσ

exp
(

−1
2

(
x − (µ − βσ2)

σ

)2)
,

i. e., the density of Y is normal with a mean of µ − βσ2 and a variance of σ2.
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As a direct consequence of the theorem, the cumulative distribution function
of Y can be written as

FY (x) = Pr(Y ≤ x) =
∫ x

−∞
fY (u) du = 1

2 + 1
2 erf

(
x − (µ − βσ2)

σ
√

2

)
.

The probability Pr(Y ≤ x) is exactly the probability that a structure from
the equilibrated gradient basin has an energy of at most x. It can thus be
interpreted as the fraction of the partition function covered when enumerating
the basin up to an energy value of x.

Also, note that the energy scaling constant c∆G was cancelled and is not part
of the final form of fY . Consequently, the partition function can be rescaled
freely without changing the distribution of Boltzmann weight within a basin.

Predicting the partition function of a gradient basin

Theorem 1 has further implications: it tells us that the mean of the weight
distribution – which is equal to the median and mode in the case of normal
distributions – lies βσ2 to the left of the mean µ of the underlying distribution
of the free energies. For physiological temperatures from 0 to 50 ◦C, β is in the
range of 1.842 to 1.557 mol kcal−1, and at 37 ◦C, β ≈ 1.623 mol kcal−1. From
Figure 22, we recall that basins with at most 109 (i. e., all that are feasible to
explore) have an expected MFE not lower than µ − 6σ. Thus, for all basins
with σ > 6/1.557 ≈ 3.85, the mode of the Boltzmann weight distribution is
smaller than the expected MFE of the basin, since in that case −βσ2 < −6σ.
This assumption holds for the most basins of non-trivial sizes even for short
sequences of 30 nt; for sequences of 50 nt, basins with 106 to 107 usually have a
σ of 6 to 6.5 (data not shown).

It follows that the bigger part of the (full) Boltzmann weight density fY is
actually located outside of the basin. Since the partition function sums over
the secondary structures of the basin, the part of fY that is left of the basin
MFE has to be truncated, and only the right tail has to be kept to properly
model the partition function. The density of the truncated distribution can be
calculated as

f≥θ
Y (x) =

{
fY (x)

1−FY (θ) x ≥ θ,

0 x < θ

for a cut-off point θ by rescaling the truncated density to 1. The truncated
cumulative distribution function is obtained similarly as

F ≥θ
Y (x) =

{
FY (x)−FY (θ)

1−FY (θ) x ≥ θ,

0 x < θ.

An example, where this approach has been applied to predict the coverage
of a basin with about 5 million structures with a MFE of −7.3 kcal mol−1, a
mean energy of 24.3 kcal mol−1 and a standard deviation of 6.1 kcal mol−1, is
presented in Figure 24. There, the value of F ≥θ

Y (x) is compared to the first 40
partial partition functions Zk, k = 1, . . . , 40, where Zk := Z[{x1, . . . , xk}] is the
partition function of the k lowest energies x1 ≤ · · · ≤ xk of the basin. Starting
at k = 15, the values of Zk and F ≥θ

Y (xk) differ by less than 1%.
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Figure 24: Comparison of the coverage predicted using the cumulative distribution
function F ≥θ

Y (x) of the Boltzmann weight distribution (weight cdf ) with the values
obtained by summing up all structures’ Boltzmann weight up to the given energy level
(part. func.)). The curves converge against each other starting at the 15th structure
at an energy of −4.8 kcal mol−1. θ was chosen to be 0.4 kcal mol−1 smaller than the
basin’s MFE.

A remaining difficulty is the choice of the cut-off point θ. Choosing the basin’s
MFE x1 leads to a slight underestimate of the coverage since F ≥x1

Y (x1) = 0 < Z1.
In the above example, θ = x1 − (x2 − x1) was chosen to compensate for this
effect, i. e., θ was shifted to the left by the distance of x1 to the second-smallest
energy x2, corresponding to 0.4 kcal mol−1 in this specific case. But even when
θ = x1, the values of F ≥x1

Y (xk) and Zk converge quickly, allowing to use this
choice to obtain a lower bound on the coverage of the partial partition functions.

4.5.2 Discussion

As mentioned in the beginning of this section, the distribution of probability
mass within gradient basins is of high relevance for the efficient exploration
of energy landscapes. The reason is that the transition rates between the
macrostates are usually defined in terms of weighted sums over the contained
structures, where the weights are the equilibrium probabilities of the structures
in their respective basin, which in turn is determined by its Boltzmann weight
and the partition function of the basin (Wolfinger et al., 2004). If the distribution
of Boltzmann weights in the basin was known a priori, an informed choice of an
energy threshold for energy landscape exploration by the means of local flooding
could be made, allowing to significantly reduce the number of enumerated
structures with a precise knowledge of the error introduced.

It has been shown that the structures contributing significantly to the
partition function are, as expected, located at the low-energy part of the
basin. This is similar to the behavior of the entire structure ensemble of
the sequence, where a small fraction of low-energy structures as computed
using Wuchty’s algorithm (Wuchty et al., 1999) accounts for almost the entire
partition function. It is still interesting to see how tiny the relevant fraction
of structures really is, and that this behaviour is universal to gradient basins,
even when their local minima lie high above the global MFE. As a consequence,
the exploration of huge basins would remain feasible for much longer sequences
when restricting enumeration of structures to those with a relevant contribution
to the partition function. To estimate the observed fraction of the partition



76 Chapter 4. Statistics of Free Energies for Sequences, Structures, and Gradient Basins

function while flooding up to a specific energy threshold, however, required a
deeper understanding of the underlying distribution of the Boltzmann weight.

This goal was achieved by Theorem 1. It provides a powerful tool to estimate
the coverage of a basin when enumerating it up to arbitrary energy values once
the parameters of the underlying distribution of free energies are known. This
allows to efficiently enumerate a specific quantile of the partition function,
skipping over the vast majority of statistically unimportant structure and thus
dramatically improving the performance of local flooding procedures.

The last remaining obstacle that prevents the application of the presented
results in practice is that µ and σ are unknown. Thus, to use the proposed
methods, both parameters need to be estimated first. Of course, enumerating
all structures in a basin is impracticable for huge basins, and for small basins
the partition function can be computed explicitly. One possible approach would
be to sample structures from the basin first to estimate µ and σ, and then to
use them to predict the partition function. It is, however, non-trivial to obtain
unbiased samples from a gradient basin, as usually only the local MFE structure
is known a priori, and other structures are generated iteratively from it by
explicitly constructing its neighbor structures. The structures generated by this
approach are thus mostly located in the energetically lower part of the basin,
too. Designing effective strategies to solve this problem will be an interesting
field for future work.

4.6 Conclusion

Though the energetic properties of RNA sequences and structures vary greatly,
they often follow specific patterns and rules. These have been studied in this
chapter, and the results provide deep insights that lay the foundation for solving
more specific tasks like the design of RNA sequences or the kinetic analysis of
a given molecule efficiently. The distribution of MFEs of random sequences has
been analyzed and shown to be mostly, but not entirely, normal. Linear models
to predict the mean and variance of MFEs for a given sequence length have
been given, which can guide the choice of the right number of nucleotides for a
design problem when a specific stability is required. The other sections focus on
various aspects relevant in the context of RNA energy landscapes and folding
kinetics. The effect of the restriction to canonical structures was analyzed, and
was shown to be a possible source of error especially for longer sequences, for
which many non-canonical structures actually consist exclusively of stable base
pairs. The energy range of a coarse-grained landscape that is accessible when
restricting the number of gradient basins to a fixed number was analysed. Both
its median and standard deviation were shown to decrease exponentially with
increasing sequence length, making computations of folding kinetics for longer
sequences a hard task, and showing that, at high lengths, almost all sequences
are equally hard to analyze. It was shown that the free energies of the structures
within a single gradient basin are very well described by a normal distribution.
From this normal distribution and the number of structures, expected values
and standard deviations for the basin’s MFE can be derived. Finally, the
distribution of Boltzmann weights within a gradient basin has been analyzed.
The probability mass has been shown to be located exclusively in the leftmost
tail of the distribution of free energies. Theorem 1 formally describes this



Chapter 4. Statistics of Free Energies for Sequences, Structures, and Gradient Basins 77

distribution as similar to that of the underlying distribution of free energies,
but shifted to left by βσ2, where β is the inverse temperature.
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This chapter describes the design, optimization, and experimental validation
of transcriptional riboswitches. Though the work is centered on constructing
riboswitches responding to the antibiotic neomycin, the described techniques
are universal and can be applied to any small molecule that could potentially
bind to a specific part of an RNA molecule.

This chapter is based on the following literature:

C. Günzel∗, F. Kühnl∗, K. Arnold, S. Findeiß, C. E. Weinberg, P. F. Stadler,
and M. Mörl (2020). “Beyond Plug and Pray: Context Sensitivity and in
silico Design of Artificial Neomycin Riboswitches”. In: RNA Biology, pp. 1–
11. doi: 10.1080/15476286.2020.1816336.

It will not be cited individually in the text.

5.1 Biological background

Riboswitches are small cis-regulatory sequences located in the 5′-UTR of some
protein-coding genes, predominantly in prokaryotes (Nahvi et al., 2002; Serganov
and Nudler, 2013). They control the expression of the gene located downstream
in response to the presence of a specific small molecule called the ligand. It
may be of extra- or intracellular origin and may belong to any of such different
groups of molecules such as nucleobases, amino acids, antibiotics, metal ions
and many more (Montange and Batey, 2008; Wallis et al., 1995). This allows
in principle to construct orthogonal switches that, for instance, force a gene
to respond to any cell-permeable and non-toxic substance (Etzel and Mörl,
2017) and thus to create functional biosensors that respond to both intracellular
signals and environmental conditions. The relatively small size of riboswitches
facilitates their design and optimization (Fowler, Brown, and Li, 2008; Weigand,
Sanchez, et al., 2008), which makes them attractive for numerous applications
in synthetic biology. The practicality of such an approach, however, finally
depends on how easily engineered riboswitches can be embedded in an arbitrary
sequence context without resorting to a labor-intensive trial-and-error procedure
to ensure their functionality.

In this section, the common properties of riboswitches will be revisited to
introduce the reader to this matter to a degree necessary to understand the
following steps to design and validate artificial riboswitches. There is also an
enormous variety of naturally occurring riboswitches (Roth and Breaker, 2009)
in most living organisms, but their description is beyond the scope of this work.

5.1.1 Structure and function of riboswitches
Riboswitches consist of two overlapping sequence parts, which are referred to
as the sensor and the actuator domain, respectively (Findeiß et al., 2015). The
sensor is capable to specifically recognize and bind the ligand molecule. The
actuator domain mediates the regulatory effect of the riboswitch depending on
the state – bound or unbound – of the sensor domain.

The sensor domain is usually a so-called aptamer, i. e., a defined sequence
that a given ligand can bind to. To do so, the aptamer folds into a specific,

∗The authors share first authorship.

https://doi.org/10.1080/15476286.2020.1816336
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(a) Theophylline (b) Caffeine

Figure 25: Skeletal formulas of theophylline and caffeine. Both molecules
are identical up to the replacement of a hydrogen by an additional methyl
group (blue, dashed box) bound to the seventh nitrogen atom (N) of caffeine.

Adapted from:
https://en.wikipedia.org/wiki/File:Theophylline.svg

https://en.wikipedia.org/wiki/File:Caffeine_structure.svg
on 2021/07/23.

binding-competent structure, which often exhibits a pocket-like shape and
wraps around the ligand molecule upon binding (cf. (Jenison et al., 1994;
Jucker et al., 2003)). Some aptamers are capable to recognize their ligand
with extraordinarily high affinity and specificity. For example, a theophylline
aptamer reported by Jenison et al. (1994) has a dissociation constant of only
100 nM, but is still capable to distinguish its actual ligand from the similar
metabolite caffeine, which only differs by an additional methyl group attached
to the seventh nitrogen atom, cf. Figure 25.

The actuator domain can take many different forms and determines the
mechanism of action of that specific riboswitch. Transcriptional riboswitches
regulate gene expression by stopping the transcription process. Specifically,
intrinsic (ρ-independent) termination is triggered as the nascent, transcribed
actuator forms a hairpin structure by intra-molecular base pairing, which is
then interacting with the proximal RNAP. Additionally, a uridine-rich region
follows downstream of the hairpin structure. This so called poly-U stretch is
known to stall RNAP and thus constitutes a transcription pause site (Gusarov
and Nudler, 1999; Peters, Vangeloff, and Landick, 2011). In conjunction,
these two sequence elements force RNAP to release the DNA template strand
(Wilson and Hippel, 1995). Translational riboswitches, in contrast, modulate
the accessibility of the RBS located in the expression platform of the switch such
that the ribosome binds the messenger RNA (mRNA) transcript with a higher
or lower affinity, thus regulating the expression of the gene. The modulation
of the accessibility is, again, mediated by intramolecular base pairs within the
transcript, e. g., by forming a roadblock close to or including the RBS (Picard
et al., 2009). Yet another type of actuator domains are self-cleaving ribozymes
like the hammerhead ribozyme (Wieland and Hartig, 2006), i. e., sequences
that mediate the decay of their own transcript by self-cleavage. Eukaryotic
riboswitches fall into yet another class as they mostly control their regulated
gene by altering the splicing process (Wachter, 2010).

Importantly, the sensor and the actuator domains are overlapping in a way
that the binding of the ligand to the sensor enables or disables the actuator and
thereby couples the regulatory effect on expression to the ligand concentration.
Mechanistically, this happens because, firstly, the binding of the ligand stabilizes

https://en.wikipedia.org/wiki/File:Theophylline.svg
https://en.wikipedia.org/wiki/File:Caffeine_structure.svg


82 Chapter 5. The Design of Artificial Cotranscriptional Riboswitches

the aptamer’s secondary structure, and secondly, each nucleobase can only
engage in a regular Watson–Crick base pair with at most one other nucleobase.
Thus, the overlap of both domains leads to a competition between mutually
exclusive structural conformations, and the binding of the ligand shifts their
balance depending on its stabilizing effect and its concentration (Breaker, 2012).
The stability granted to the aptamer’s structure by binding the ligand can be
quantified by assigning it a free energy value. This value can be determined
experimentally by procedures such as isothermal titration calorimetry (Jones,
Piszczek, and Ferré-D’Amaré, 2019).

5.1.2 Classes of riboswitches
Since the term “riboswitch” is used for many different regulatory elements, it is
often useful to classify them by their properties. There are various approaches
to do so:

i) by origin: natural or synthetic. While natural riboswitches have evolved
in living organism, synthetic riboswitches were designed and synthesized
in a laboratory.

ii) by taxon: eukaryotic, prokaryotic, bacterial etc. Here, we are mostly
concerned with bacterial riboswitches.

iii) by ligand: riboswitches responding to the same ligand(s) are considered to
belong to one class. For example, there are entire families of riboswitches
responding to the metabolite S-adenosyl-L-methionine (SAM), making it
the most abundant ligand class of all natural riboswitches (Price, Grigg,
and Ke, 2014).

iv) by response: on or off. With on riboswitches, the expression of the
regulated gene is increased in the presence of the ligand, and reduced in
its absence. The opposite is the case for off riboswitches. Riboswitches
responding to multiple ligands may model any of various logical functions
such as AND and NAND (e. g. Sharma, Nomura, and Yokobayashi, 2008)
or (negated) implications (e. g. Ausländer et al., 2014).

v) by mechanism: transcriptional or translational, ribozymes, switches alter-
ing the splicing process

Depending on the context, each way of classification is useful, and all of them
are used in this work.

A related extension of regular riboswitches are the so-called tandem ri-
boswitches. They consist of several independent, transcriptional riboswitches
that are arranged sequentially within a single 5′ UTR. Since the transcription
is inhibited if and only if any of the chained riboswitches is inhibiting it, a
tandem riboswitch acts like a logical conjunction (i. e., an AND gate) for on
switches, and like a NOR gate for off switches, on the response of the individual
switches. Examples include a natural tandem riboswitch from Bacillus clausii
(B. clausii) composed of two individual off riboswitches responding to SAM and
coenzyme B12, respectively, (Sudarsan et al., 2006) as well as a synthetic tandem
riboswitch created by combining a theophylline riboswitch and a tetracycline
riboswitch in E. coli (Domin et al., 2017). Note that tandem riboswitches differ
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from multi-ligand AND riboswitches in that they are composed of consecutive
but independent single-ligand riboswitches whereas, in the multi-ligand switch,
the domains of the riboswitch are interleaved and interact with each other (e. g.
Mandal et al., 2004; Sharma, Nomura, and Yokobayashi, 2008).

5.1.3 Identifying aptamers for novel ligands

While many substances have a natural binding affinity for RNA, finding an
RNA sequence capable of specifically identifying and tightly binding a given
ligand in silico is challenging . A promising experimental procedure, however, is
systematic evolution of ligands by exponential enrichment (SELEX) (Ellington
and Szostak, 1990; Tuerk and Gold, 1990). It is an iterative in vitro procedure
that determines aptamer sequences for a given ligand by starting with a pool
of random RNA molecules, subsequently removing unsuitable candidates from
it, and then amplifying the remaining ones. This procedure is repeated until
only high-affinity aptamers remain. The initial RNA pool contains a vast
number of unbiased random oligonucleotides of a length of about 100 nt. The
removal of unsuitable candidates is then achieved by applying an affinity
chromatography: the ligand is fixated onto a solid medium (the affinity column),
and the solution containing the RNA pool is added. A buffer is then used to
wash off unsuitable candidates while binding-competent RNAs remain bound to
their ligand and thus on the column. Then, an elution buffer is used to dissociate
and recover the RNAs from their ligands. A reverse transcriptase is used to
obtain complementary DNA strands of the remaining aptamer candidates, which
can then be amplified using several cycles of polymerase chain reaction (PCR).
Adding an RNAP, the amplified DNA is transcribed into RNA again, which
can be used for another cycle of the procedure.

Wallis et al. (1995) applied the described procedure to the antibiotic
neomycin. Building on these results, Weigand, Sanchez, et al. (2008) further ana-
lyzed the identified aptamer N1 with varying stem sequences, and demonstrated
its ability to act as a translational roadblock if neomycin is bound. Using the
shortest stem M7, we selected the aptamer N1M7 as foundation for our designs of
transcriptional riboswitches. M7 consists of five base pairs and comprises the P1
helix of the aptamer. It is followed by an interior loop, which acts as the binding
pocket for a single neomycin molecule. From that loop region, another hairpin
loop branches off, forming the P2 helix of the 27 nt long aptamer (Figure 26).
N1M7 has a dissociation constant of Kd = (9.2 ± 1.3) nM, corresponding to
a stabilizing Gibbs free energy contribution of ∆G = (−11.4 ± 0.1) kcal mol−1

(Weigand, Schmidtke, et al., 2011).

5.1.4 Measuring riboswitch activity

Due to the enormous complexity of living organisms, an error-free prediction
of the exact behaviour of an arbitrary synthetic biomolecule is impossible.
Therefore, it was inevitable to experimentally validate the riboswitch candidates
we designed here to be able to make reliable claims about their functionality.
There are several ways to do so, and the advantages and disadvantages of these
choices will be discussed in this section.
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Figure 26: Sequence and secondary structure of the aptamer N1M7 (Weigand,
Sanchez, et al., 2008). Note that the MFE structure predicted by the ViennaRNA
package contains an additional GC pair at position 9 and 22 (colored red, energy
difference ∆∆G = −0.7 kcal mol−1).

On in vivo and in vitro experiments

When experimenting with biomolecules in a laboratory, there are two funda-
mentally different approaches to do so. The first one is to observe the molecule
in the living cell, which is referred to as an “in vivo” experiment, while the
second one is to analyze the molecule in an artificial buffer solution, which is
commonly called an “in vitro” setting. While in vitro analyses exclude the
effects of known and unknown confounders and thus allow a more precise study
of a specific aspect of the system, only an in vivo experiment draws a realistic
image of the actual behaviour of the molecule in the cell. In this study, we
opted for the latter option, as explained in the following section. Therefore, the
presented results are not only of theoretical interest, but can be readily applied
in practice, which stresses their high relevance.

A suitable host organism

To test the constructed riboswitch candidates in vivo, a suitable host organism is
required. Of course, transcriptional riboswitches are only found in prokaryotes
(Wachter, 2010), where the DNA is located directly in the cytoplasm and, thus,
the nascent mRNA transcript can immediately be accessed by RNAP. We thus
opted to use E. coli, a gram-negative bacterium and one of the most widely
used model organisms of all prokaryotes, as a host for our constructs.

The ligand neomycin, which our aptamer is sensitive to, is as antibiotic,
i. e., it is toxic to many bacteria including E. coli (Waksman and Lechevalier,
1949). Its mechanism of action is the binding to the 30S subunit of the bacterial
ribosome, interfering with translation and thus stopping the synthesis of proteins
in the cell, which ultimately leads to its death (Mehta and Champney, 2003).
Given the fact that the ribosome consists of about 65% ribosomal RNA (rRNA)
(Kurland, 1960), this explains the potential of neomycin to act as a riboswitch
ligand: it has a high affinity to bind RNA.

The obvious drawback, however, is that a neomycin-resistant strain of E. coli
is required to test the synthetic riboswitch candidates. Specifically, we used
the E. coli SQ171 containing the plasmids ptRNA67 and pKK3535 (A1408G),
derived from E. coli MG1655 (Quan et al., 2015), which was kindly provided
by Kurt Fredrick, Columbus, OH. The resistance is achieved by the deletion of
some of the seven rrn operons, which encode for the rRNA that neomycin binds
to. While these modification have only a moderate impact on cell proliferation,
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they do not influence the neomycin concentration within the cell, as would be
the case with a resistance mediated by an increased neomycin efflux.

Measuring on RNA or on protein level

For translational riboswitches, the natural method of analyzing their activity is
to measure the amount of protein translated from the gene downstream of the
riboswitch. Since the regulatory function of bacterial riboswitches is based on a
local interaction with the polymerase or the ribosome, the regulated gene can
be exchanged more or less freely without influencing the behaviour of the switch
itself. Therefore, one can choose from many well-established reporter genes
and methods of measurement to conduct the analysis. Examples of popular
reporters include the enhanced green fluorescent protein (eGFP) (Green et al.,
2014) or the yellow fluorescence protein (YFP) (Chen et al., 2013), and their
emitted luminosity can be measured using image or flow cytometry. Another
popular method is the ONPG test, which uses β-galactosidase as a reporter
(Smale, 2010).

For transcriptional riboswitches, one can apply the same approach as for
translational riboswitches. The measurement will, however, be more indirect,
because the switch regulates the amount of mRNA available to the ribosome,
and not the translation directly. On the other hand, when the aim is to assess
the actual outcome of the regulatory effect on the entire cell, this is still the
most reliable option. This is why this approach was chosen as the main method
of measurement in our work.

Additionally, the activity of transcriptional riboswitches can be measured
directly on RNA level. A classical method to proof the presence of a specific
RNA is the northern blot (Trayhurn, 1996). It requires extracting the RNA
from the cell, denaturing it and blotting it to a membrane after determining
its size by applying a gel electrophoresis. Our collaboration partners used it
in this work to verify that our riboswitch candidates are in fact regulating the
amount of RNA in the cell, and not just the level of synthesized protein. A
more direct approach is using so-called light-up aptamers (Ouellet, 2016). These
systems consist of a specific RNA aptamer, often folded into a G-quadruplex
structure, and a ligand binding to it. Once the ligand, which is also referred
to as fluorogen, binds to its aptamer, it starts emitting light of a specific color.
Thus, a light-up aptamer gives direct visual feedback about the amount of
transcribed RNA it is located on. This would not only be easier, faster, and
cheaper than a northern blot, but also allows to easily measure reporter gene
expression, too. At the time of the experiments with our synthetic riboswitches,
the available light-up aptamer systems were not yet bright enough for reliable in
vivo detection, but this might change soon. Determining both protein and RNA
levels of the same sample would yield valuable information about the designed
candidates and may thus become an interesting option for future experiments.

Measuring riboswitch activity using fluorescence measurements

To measure fluorescence intensity to verify riboswitch activity, the riboswitch
candidate is cloned into the 5′ UTR of a reporter gene encoding for a protein
exhibiting fluorescent activity, e. g., eGFP. The resulting gene cassette is then
transfected into the host organism, which is allowed to proliferate. Samples are
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taken once the culture reaches a specified optical density, making the signals of
multiple experiments comparable. Both in the presence and in the absence of
the ligand, the brightness of the emitted light after excitation with radiation
of a specific wavelength is measured. By comparing the measured fluorescence
intensity values, the difference in concentration of the reporter gene is estimated.

5.2 Design and analysis of transcriptional neomycin-dependent
riboswitches

Based on the aptamer N1M7, we constructed a riboswitch that controls gene
expression in E. coli. To this end, we focused on transcriptional regulation me-
diated by Rho-independent termination, a mechanism common in prokaryotes.

We used the in silico pipeline developed previously for designing theophylline
and tetracycline riboswitches (Domin et al., 2017; Wachsmuth, Findeiß, et al.,
2013) to integrate the N1M7 aptamer with artificial terminator hairpins. The
designed neomycin riboswitches indeed increase the transcription level of the
reporter mRNA in presence of neomycin in vivo. A detailed analysis of the
constructs, however, shows that their function in vivo is context-dependent. In
particular, we identify a 5′ leader hairpin as essential element for the function
of these neomycin riboswitches. On the other hand, leader sequences may also
abrogate the function by interfering with the riboswitch. We demonstrate here
that folding simulations predict the interference and thus can be used to identify
functional constructs in silico.

5.3 Materials and methods

5.3.1 Biochemical experiments
The paper this chapter is based on was a joint work of the author, his supervisors,
and collaborators from the Biochemistry Group of Leipzig University. Since
the author of the thesis mainly contributed the bioinformatic methods and the
evaluation of data, the details of the conducted laboratory experiments shall be
omitted here, and only a short overview is given in the following.

The designed riboswitch constructs where tested in vivo in cells of bacterium
E. coli. Since the aptamer N1M7 (Weigand, Sanchez, et al., 2008) used in the
riboswitch candidates responds to the antibiotic neomycin, a special strain resis-
tant to this bactericide (Quan et al., 2015) was used to conduct the experiments.
Together with the araBAD promotor and one of the well-known reporters the en-
hanced green fluorescent protein gene (egfp) or the β-galactosidase gene (bgaB),
the candidates were inserted into a plasmid and thus transferred into the cells.
The expression of the constructs was then tested using either a fluorescence
measurement (for eGFP), an ONPG test (for β-galactosidase (BgaB)), or a
northern blot as described in the previous sections.

5.3.2 Probabilities of RNA conformations
As explained in Section 2.2.4, the probabilities of specific structures or sets
of structures with specific properties can computed efficiently by the means
of partition function folding algorithms. The ViennaRNA package provides a
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versatile way of specifying structural constraints and was thus used to compute
partition functions and probabilities for RNA structures with the desired struc-
tural features, e. g., a terminator hairpin or a binding pocket for a certain ligand
(Lorenz, Bernhart, et al., 2011; Lorenz, Hofacker, and P. F. Stadler, 2016).

5.3.3 Simulation of cotranscriptional folding

While initial folding intermediates of RNA form at time-scales of tens of mi-
croseconds, the formation of native hairpins appears at millisecond time-scales
(Bevilacqua and Blose, 2008; Melnykov et al., 2015; Mohan et al., 2009; Pörschke,
Uhlenbeck, and Martin, 1973), and the refolding of secondary structure elements
may take even longer. In comparison, RNA is transcribed by E. coli RNAP
with a rate of 30 nt s−1 to 90 nt s−1 (Ryals, Little, and Bremer, 1982; Vogel and
Jensen, 1994). Thus, RNA folding forms intermediate structures long before the
entire molecule is transcribed, i. e., while only part of the transcript is available
to form structures. The structures formed initially thus may refold as transcrip-
tion proceeds. This process of cotranscriptional folding (Lai, Proctor, and Meyer,
2013) plays an important role in particular for transcriptional riboswitches,
since incomplete, metastable intermediate structures may be quite different
from the thermodynamic ground state (Lutz et al., 2014). Cotranscriptional
folding can be assessed either by stochastic sampling of folding trajectories
(Flamm, Fontana, et al., 2000; Geis et al., 2008; Xayaphoummine, Bucher, and
Isambert, 2005) or by analyzing the energy landscapes for each elongation step
(Hofacker, Flamm, et al., 2010). We opted for the latter method.

For each length of the nascent transcript, we enumerated all secondary
structures in an energy band above the ground state with RNAsubopt (Wuchty
et al., 1999), also a component of the ViennaRNA package. Then we used
Barriers (Flamm, Hofacker, P. F. Stadler, et al., 2002) to produce a coarse-
grained representation of the energy landscape comprising the low energy minima
as well as the saddle points between them. Barriers assigns each structure to
a basin of attraction. The individual landscapes were then integrated using
BarMap (Hofacker, Flamm, et al., 2010). In brief, BarMap determines the
correspondence of energy basins in the landscapes of consecutive transcriptional
elongation steps. This allows to efficiently simulate the folding dynamics.
To determine the energy thresholds for the enumeration of structures with
RNAsubopt in the individual landscapes, we used the quality scores for both
the enumeration and the simulation provided by BarMap-QA (Kühnl, P. F.
Stadler, and Findeiß, 2019). We set a simulation stop time of 1 000 au (arbitrary
time units) for BarMap. Simulation results were plotted with Grace (The
Grace contributors, 2015). Candidate riboswitches were screened to satisfy the
following criteria: (i) the leader sequence does not interfere with the formation of
the aptamer’s binding pocket, (ii) the binding pocket is significantly populated
during the transcription of the spacer and the 5′ part of the terminator, and (iii)
the terminator hairpin dominates the structure ensemble as soon as it is fully
transcribed. For a precise description of the preparation steps, quality metrics,
and the post-processing, we refer to (Kühnl, P. F. Stadler, and Findeiß, 2019).
To allow for easy reproduction, the entire simulation pipeline was packaged into
a self-contained and publicly available Docker image.1

1https://www.bioinf.uni-leipzig.de/Software/BarMap_QA/

https://www.bioinf.uni-leipzig.de/Software/BarMap_QA/
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Figure 27: Flowchart of the design process used to create neomycin-dependent
riboswitches and to include them into regulatory 5′ UTRs. Starting from a given
aptamer sequence and structure, riboswitch candidates are generated and selected as
described in the text.

5.3.4 Design of transcriptional riboswitches

The design process consists of two separate phases. First, the riboswitch itself
is designed from the given aptamer sequence. Second, for a set of designed
riboswitch constructs, a decoupling leader (dL) is constructed, which isolates
the riboswitches from the original leader (oL) sequence found upstream on the
plasmid. This second step may become necessary if oL has the potential to inter-
fere with the structure formation of the designed riboswitches (cf. Section 5.4.1).
The full process is depicted as a flowchart in Figure 27.

To engineer the switch, a software pipeline similar to the one described
by Wachsmuth, Findeiß, et al. (2013) including updated filter rules has been
used. Briefly, this software is given the aptamer sequence and its ligand-binding
structure as input, generates riboswitch candidates according to a specified
pattern (generation step), and then applies a set of filters to remove unsuitable
candidates (filtering step).

The generation step appends a random spacer sequence of varying length to
the aptamer sequence. Then, the reverse complement of the last k nucleotides
of the aptamer sequence is appended, forming a stable hairpin loop with the
aptamer and disrupting the formation of the ligand-binding structure. The
value of k varies from two to half of the aptamer length among the candidates.
In addition, a U-stretch consisting of eight uracil residues is added, completing
the structure of an intrinsic terminator (Ray-Soni, Bellecourt, and Landick,
2016).

To remove potentially faulty constructs, the filtering step applies a set
of filters as described in Wachsmuth, Findeiß, et al. (2013), removing each
sequence that violates any of the filter rules. The rules ensure correct terminator
formation in the MFE structure and scan for possibly interfering intermediate
structures by the means of thermodynamic folding simulations of a set of
subsequences of the full switch. Additionally, we added a probability-based
filter ensuring that, for the full sequence, the terminator structure forms with a
probability of at least 95%. Also, it was ensured that at least two base pairs of
the terminator hairpin can form despite the presence of the binding-competent
aptamer structure. These seed base pairs facilitate the rapid formation of the
terminator hairpin when the ligand is not present since the zippering of a helix
happens at a higher rate than the nucleation of the first base pair (Mohan et al.,
2009; Pörschke, Uhlenbeck, and Martin, 1973). Finally, promising candidates
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resulting from this selection process were analyzed using cotranscriptional
folding simulations as described in the previous section.

5.3.5 Designing a decoupling leader sequence
To prevent the predicted interference of the oL located upstream in the 5′ UTR
with the designed riboswitches, a sequence insert that effectively decouples
leader and riboswitch has been designed. To this end, we defined an objective
function F as described below and optimized a sequence with respect to F .
The sequence with the best score was then cloned into the vector immediately
upstream of the riboswitch, cf. Figure 33 in Section A.1. To keep the required
experimental effort as low as possible, only one optimized leader suitable for all
riboswitch constructs was designed.

Let ℓ denote the oL, and R = {r1, . . . , rn} be a set of n riboswitches. The
goal is to construct an insert xm ∈ {A, U, G, C}m of length m that minimizes
the objective function F (xm | ℓ, R) measuring the interference of the upstream
sequence ℓxm with each of the riboswitches, subject to a constant length m. A
natural measure for the isolation of ℓxm and the riboswitches is the probability

punpaired(ℓxm, R) =
∏
r∈R

Z[ℓxm] · Z[r]
Z[ℓxmr] ,

that all base pairs occur either in the upstream part ℓxm of the sequence
(structures in Z[ℓxm]) or within the riboswitches (structures in Z[r]), but not
between the two substructures. Using ∆G(x) = −RT ln Z[x], it can be expressed
equivalently in terms of Gibbs free energies, with the added benefit of numerical
stability. We therefore use the following objective function:

F (xm | ℓ, R) =
∑
r∈R

∆G(ℓxm) + ∆G(r) − ∆G(Z[ℓxmr]) −→ min .

The optimization of xm was carried out using a standard simulated anneal-
ing procedure (Kirkpatrick, Gelatt, and Vecchi, 1983), starting at a random
sequence and applying single nucleotide mutations to the insert to generate
new candidates. A proposal sequence x′

m was always accepted if it performed
better than the current state xm (i. e., if F (x′

m) < F (xm)), and otherwise with
a probability of exp((F (xm)−F (x′

m))/τ), where the “annealing temperature” τ
was slowly decreased with time. More specifically, we set the initial temperature
to τ0 = 1000 and, after each mutation, cooled it down by letting τn+1 = 0.97 ·τn.
We used the rejection of 3m consecutive proposals as stopping criterion, where
3m is the number of neighbor sequences which can be obtained by applying a
single point mutation to the candidate insert of length m. This ensures that,
on average, about two thirds of its neighbors are sampled before terminating
the optimization run. During the optimization, m was fixed because longer
sequences generally have a higher potential to form stable structures fulfilling
the objective, which could cause degenerate optimization runs with candidates
of ever-growing sequence length.

5.4 Results

Many of our results are presented as bar plots of fluorescence intensity. The
numerical values and raw data used to generate these can be found in Sec-
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Figure 28: Influence of the 5′ oL, which is predicted to interfere with the used
aptamer in silico, on the kinetics of riboswitch N1M7-D. The individual curves show
the population of different macrostates during the elongation of the transcript. The
most stable structure of highly populated states is shown in the respective color.
Important sub-structures are shaded.
In essence, oL forms two distinct, stable structures: a small hairpin of four base pairs
(green) that is compatible with the aptamer’s binding pocket (orange), and a larger
hairpin (brown) incorporating an interior loop that is extended later (light and dark
purple) and interferes with the aptamer region. Both structural shapes are equally
populated with about 40%, which means that the aptamer is not available for binding
the ligand in about every other transcribed molecule. The terminator (cyan) forms
immediately after it has been transcribed. This explains the permanent off state that
has been observed for Lpl-N1M7-D experimentally, cf. Figure 36.

tion A.2, Table 1. Sequence data is available as a supplementary spreadsheet
file accompanying the publication.

5.4.1 Design of artificial neomycin riboswitches

Using computational predictions of ligand-induced differences in RNA secondary
structure formation, we designed a set of transcription-regulating riboswitches
based on the well-characterized neomycin aptamer N1M7, Figure 26. These
were evaluated in vivo in E. coli strain SQ171 using eGFP as reporter. This
strain is neomycin-resistant, as all endogenous rrn operons were deleted and
replaced by a plasmid-borne version carrying the mutated neomycin target site
A1408G (Quan et al., 2015).

The plasmid used for assaying our riboswitch constructs contained a leader
sequence we termed oL immediately downstream of the promoter. Since its
effect on transcription was unknown, it was not attempted to delete it. In silico
analysis of the constructs suggested, however, that the oL sequence interferes
with the structure formation of the N1M7 aptamer and thereby prevents the
correct folding of its ligand binding pocket, Figure 28. To remedy this issue,
we designed a dL with a length of 15 nt that reduces the probability that base
pairs form between oL and the riboswitch domain to less than 1%. It does so
by forming the stable hairpin LH1, i. e., LH1 = oL + dL (cf. Figure 33).
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Figure 29: Design and analysis of N1M7 riboswitch constructs. (A) Schematic
overview of the riboswitch constructs for the eGFP assay. The riboswitches are flanked
upstream by leader hairpin (lH)1 and downstream by the terminator downstream
region (TDR), RBS and egfp. (B) Fluorescence intensity of the measured N1M7
constructs in the absence (black) and presence (grey) of neomycin. The positive
control, a transcript consisting of a single adenosine residue followed by a poly-U
stretch and the TDR, shows the fluorescence intensity without leader and riboswitch
sequence. The terminator efficiency was verified with construct lH1-term-N1M7-D.
Here, the 5′ part of the aptamer sequence that is not overlapping with the intrinsic
terminator was deleted, such that the terminator forms irrespective of the presence
of neomycin. If not indicated otherwise, measurements were performed using three
independent replicates. (C ) Schematic presentation of a neomycin riboswitch construct
for northern blot analysis. Downstream of the riboswitch, the construct carries the
BgaB reporter gene (bgaB) including the RBS published in Wachsmuth, Findeiß, et al.
(2013). Due to the design strategy, this construct does not carry a TDR. (D) Northern
blot with 10 µg of total RNA of E. coli strain SQ171 per lane regulated by LH1-N1M7-
D, in the absence and presence of neomycin. 5S rRNA was used as internal standard.
(E) Northern blot quantification of bgaB expression of three independent samples.

Four candidates prefixed with LH1 were selected for in-depth analysis, Fig-
ure 34. Fluorescence measurements of reporter gene expression (cf. Figure 29A–
B) showed that LH1-N1M7-C and LH1-N1M7-D function as on-switches, i. e.,
the ligand causes up-regulation of the reporter. In contrast, LH1-N1M7-A
remains in a permanent off state while LH1-N1M7-B exhibits a permanent on
state. As a representative example, northern blots in the presence and absence
of neomycin were used to validate that LH1-N1M7-D regulates the amount of
transcripts in the cell, Figure 29C–E. Blotting experiments targeting egfp mRNA
resulted in a low signal-to-noise ratio. Hence, the reporter gene was replaced by
the well-established BgaB reporter that our collaboration partners have used
successfully for detection in northern blot analyses of theophylline-dependent
riboswitches before (Wachsmuth, Findeiß, et al., 2013).
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Figure 30: Fluorescence intensity of the riboswitch N1M7-D in conjunction with two
different leader hairpins LH1 and LH2. (A) Sequence and secondary structure of LH1
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intensity of the two leaders LH1 and LH2 placed upstream of N1M7-D. Legend as
described in Figure 29.

5.4.2 Riboswitch N1M7-D requires a 5′ hairpin structure

Instead of designing a decoupling sequence for oL with a complicated optimiza-
tion method as described in the previous section, the more obvious approach
seems to simply remove oL from the plasmid and place the riboswitch candidates
directly downstream of the transcription start site (TSS) represented by an
adenosine residue. It turns out, however, that the removal of all leader sequences
from the functional riboswitch LH1-N1M7-D yields a non-functional construct
termed N1M7-D, which is no longer sensitive to neomycin (Figure 30C).

The riboswitch function was rescued by inserting a second, computationally
designed leader hairpin LH2 (Figure 30A) resulting in the functional riboswitch
LH2-N1M7-D, Figure 30C.

To rule out that the rescue is the consequence of a changed TSS, or a
direct interaction of the leader hairpin with the riboswitch domain, we tested
two short unstructured leader sequences U1 and U2, 12 nt and 14 nt in length,
Figure 31A. In the computational design of U1 and U2, base pairing interactions
with the riboswitch domain were avoided. Both constructs, U1-N1M7-D and
U2-N1M7-D, were functional with a fold change of 1.6 and 1.4 (respectively),
however, their fluorescence intensity was significantly reduced, resembling the
off state of the functional construct LH1-N1M7-D, Figure 31C.

Next, the leader hairpin LH1 was re-added to the 5′ ends of these impaired
riboswitches, Figure 31B. As a result, fluorescence activity similar to the
original constructs was restored for both LH1-U1-N1M7-D and LH1-U2-N1M7-
D, Figure 31C.
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Figure 31: Fluorescence intensity of the N1M7-D riboswitch with short unstruc-
tured leaders. (A) Schematics showing the position of the unstructured sequences
unstructured region (U)1 and U2 as leaders upstream of N1M7-D and (B) as aptamer
upstream region (AUR) between lH1 and N1M7-D. (C ) Fluorescence intensity of the
constructs shown in (A) and (B). Legend as in Figure 29, p-values for the paired t-tests
are given in Table 3. (D) Northern blot of 10 µg of total RNA per lane from E. coli
strain SQ171 regulated by U1-n1m7-D or lH1-U1-n1m7-D, in the presence of 275 µM
neomycin. Herein, egfp was used as reporter gene and 5S rRNA as internal standard.
A 1100 nucleotide (nt) egfp in vitro transcript was used as positive control. Note that
the band of in vivo egfp is located about 100–200 nt higher due to the additional rrnB
T1 and T2 terminator length, which was not a factor in size calculation for the in
vitro transcribed control.

5.4.3 Destabilizing the leader hairpin decreases reporter gene ex-
pression

Since unstructured leader regions abrogated the switching behavior, we inves-
tigated whether the stability of the leader hairpin has a systematic effect on
the riboswitch. To this end, destabilizing point mutations were introduced into
the leader hairpin LH1. Thus, two new leaders LM1 and LM2 were obtained
(Figure 32A), each lacking two base pairs. The destabilization was reverted by
compensatory mutations in LM1C and LM2C, restoring the stem of LH1. We
found that none of these mutations significantly affected the functionality of the
riboswitch N1M7-D. The activation ratios of these constructs range between
2.8-fold to 3.4-fold, comparable to LH1-N1M7-D, cf. Table 2.

There is, however, a trend in the overall fluorescence intensity: most stable
hairpins lead to a higher eGFP expression, both in presence and absence of
neomycin (Figure 32B). Constructs lacking the riboswitch domain, i. e., those
consisting of a leader hairpin and the positive control (Figure 32C), show the
same trend in the overall fluorescence intensity.

Similarly, the alternative leader hairpin LH2 was destabilized to obtain
hairpins LM3, LM4 and LM5, Figure 35A. The construct LM3-N1M7-D, con-
taining the least stable leader hairpin with MFE of ∆G = −5.5 kcal mol−1,
exhibits a constitutive on state (Figure 35B) but still shows a moderate ac-
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Figure 32: Impact of point mutations in the leader hairpin lH1. Fluorescence
intensity of the modified leader LM1, LM1C, LM2 and LM2C (A) in conjunction with
N1M7-D (B) or positive control (Pos) (C ), along with the controls lH1-N1M7-D or
lH1-Pos. Legend as described in Figure 29. Mutation details and MFE are given in
Table 2.

tivation rate of about 1.5. Two compensatory mutations restore the hairpin
(LM3C, ∆G = −13.9 kcal mol−1) to almost the same folding energy as LH2
(∆G = −13.1 kcal mol−1) and rescue the function of the riboswitch. LM4-
N1M7-D, with ∆G = −10.1 kcal mol−1, shows almost no difference in the
activation rate or fluorescence intensity compared to LH2-N1M7-D or LM3C-
N1M7-D. The fluorescence intensity of LM5-N1M7-D was decreased compared
to LM4-N1M7-D, while the activation ratio virtually remained unchanged.

In summary, we observe that (i) a sufficiently stable leader hairpin appears
to be required for functional constructs and (ii) the stability of the leader hairpin
correlates with the constructs’ fluorescence intensity.

5.4.4 Upstream sequence context may impair riboswitch function

As mentioned before, we predicted that oL interferes with the aptamer N1M7
using in silico simulations. To verify this finding experimentally, oL was
inserted between the leader hairpins and the riboswitch domains, resulting in
the constructs LH1-oL-N1M7-D and LH2-oL-N1M7-D. In addition, oL-N1M7-
D was analyzed without any lH. All three constructs showed no neomycin-
dependent regulation of eGFP expression in vivo, cf. Figure 36, even though
the corresponding constructs without oL between lH1 and N1M7-D (namely
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LH1-N1M7-D, LH1-U1-N1M7-D, and LH1-U2-N1M7-D) were functional, cf.
Section 5.4.2.

The expression level of LH1-oL-N1M7-D or LH2-oL-N1M7-D resembles the
off state of the functional switch LH1-N1M7-D with a fluorescence intensity
of 200–400 RFU (relative fluorescence unit (RFU)). Without a leader hairpin
upstream of oL, the fluorescence reached an intensity of about 150 RFU. These
low fluorescence intensities combined with the disturbed switching behaviour
is in accordance with the predicted interaction of the oL with the neomycin
binding pocket of the aptamer sequence N1M7. According to the simulations,
this interaction not only prevents the formation of the neomycin binding pocket,
but also facilitates the emergence of the terminator hairpin.

5.5 Discussion

In this work, we combined a synthetic neomycin aptamer with computationally
designed terminator hairpins that abrogate transcription in the absence of the
aptamer-specific ligand. The design process followed our earlier successful con-
struction of theophylline- and tetracycline-dependent, transcription-regulating
riboswitches (Domin et al., 2017; Wachsmuth, Findeiß, et al., 2013). Here,
we employed the neomycin aptamer N1M7, exhibiting an extraordinarily high
binding affinity of Kd = (9.2 ± 1.3) nM (Weigand, Schmidtke, et al., 2011), as
ligand sensor. Of the four computationally designed constructs that were tested
in vivo, LH1-N1M7-C and LH1-N1M7-D were functional neomycin riboswitches.
Northern blot analysis proved that LH1-N1M7-D acts as a transcriptional
regulator, as intended. This demonstrates that our in silico approach can be
successfully applied to novel aptamers.

The function of our artificial neomycin riboswitches depends on a stable 5′

hairpin structure. A plausible explanation for this requirement is an increased
resistance to mRNA degradation: the half-life of a mutant ompA transcript
increases 3–4-fold when such a hairpin is added upstream of its single-stranded
5′ UTR sequence (Emory, Bouvet, and Belasco, 1992). ROSE elements –
RNA thermometers in the 5′ UTR controlling many small heat shock genes in
E. coli – consist of at least two consecutive hairpins, and only the last one is
thermosensitive and regulating the mRNA’s translation rate (Krajewski and
Narberhaus, 2014). Interestingly, similar hairpins are occasionally also located
upstream of naturally occurring riboswitches. For example, Roth, Winkler, et al.
(2007) analyzed a preQ1-dependent riboswitch exhibiting a small 5′-located
hairpin that was shown not to be required for ligand binding. Its function
might be to fine-tune the half-life of the transcript. In gram-negative bacteria
including E. coli, mRNA degradation is carried out by the degradosome, a
complex of several proteins including ribonuclease E (RNase E), supported by
RNA 5′ pyrophosphohydrolase (RppH) (Jiang, Diwa, and Belasco, 2000; Mackie,
1998). Stable 5′ structures are known to effectively obstruct the enzymatic
activity of RppH and, thus, of the degradosome, explaining mRNA stabilization
(Deana, Celesnik, and Belasco, 2008). Our data show that the effect of the 5′

hairpin depends on its thermodynamic stability rather than its sequence, lending
support to the hypothesis that stable 5′ hairpins play a general protective role
in the process of mRNA degradation. An increased life-time of the mRNA
would also explain the observed correlation between thermodynamic stability
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and fluorescence intensity. In the positive control, we observed no dependence
of fluorescence intensity on the leader hairpin. However, this construct forms
a very stable hairpin (instead of the flexible aptamer structure), which likely
explains its stability.

While the leader hairpin is crucial for our neomycin riboswitch, no cor-
responding structure was required for similar theophylline or tetracycline ri-
boswitches (Domin et al., 2017; Wachsmuth, Findeiß, et al., 2013), cf. Figure 37
for an overview of their thermodynamic ground states. We suspect that this
is the consequence of differences in aptamer stability. While the neomycin
aptamer has MFE of ∆G = −6.2 kcal mol−1 (Weigand, Schmidtke, et al., 2011),
both the theophylline aptamer used by Wachsmuth, Findeiß, et al. (2013)
(∆G = −12.1 kcal mol−1) and the tetracycline aptamer used by Domin et al.
(2017) (∆G = −19.8 kcal mol−1) are considerably more stable. We therefore
hypothesize that, in the presence of the ligand, a highly stable aptamer–ligand
complex sufficiently protects the transcript from degradation. In absence of the
ligand, the terminator hairpin forms rapidly and leaves the transcript with an
unstructured 5′ end, facilitating its quick degradation and thus contributing
to a high activation ratio. The observed change in fluorescence activity upon
ligand binding is therefore a result of two independent effects: an increased
transcription rate due to the suppression of the terminator hairpin formation,
and a reduced transcript degradation due to the stabilization of the aptamer
structure located at its 5′ end.

Synthetic biology is concerned with solving sophisticated design problems
with minimal expenditure of time, effort and money and thus strives to construct
complex genetic circuits as a combination of fully modular, independently
optimized components. Natural biological systems, however, have not evolved
to adhere to the paradigm of engineering. It is well-documented, therefore, that
the embedding of engineered circuits into living organisms faces a multitude
of problems, mostly from unintended and often unexpected interaction with
the natural context. Orthogonal systems attempt to avoid or at least minimize
this problem (Villa et al., 2019). Some quite spectacular success stories, e. g.,
the construction of re-engineered versions of secondary metabolite biosynthetic
pathways (Medema et al., 2011) or the assembly of artificial operons (Basitta
et al., 2017) have raised the hope for a “plug-and-play” synthetic biology that
allows the usage of pre-fabricated components in a combinatorial fashion. Even
within an orthogonal system, however, it appears that this goal will remain
elusive in many cases, at least in the strict sense of devising context-independent
components (Karamasioti, Lormeau, and Stelling, 2017).

Our data show that already conceptually very simple devices such as tran-
scriptional riboswitches are more than a simple concatenation of building blocks.
This is not surprising, given that the function of a transcriptional riboswitch
is not just determined by the properties of aptamer and terminator, but de-
pends on a delicate balance of mutually exclusive structural features and a
carefully orchestrated time course of folding and refolding during its transcrip-
tion (Quarta, Sin, and Schlick, 2012). As a consequence, prefabricated modules
require adaptation and partial re-design to properly function in combination.
In the case of RNA devices, the intrinsically global nature of RNA structure
formation, in which base pairs are not restricted to local interaction, explains
the imperfect modularity. At the same time, computational models of RNA
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folding are capable of capturing the undesired side effects and make it possible
to algorithmically optimize novel designs based on existing components.

In previous work, for example, we observed that only one of two terminator
hairpins functioned properly in the synthetic theophylline riboswitch RS10
(Wachsmuth, Domin, et al., 2015). Using a cotranscriptional folding algorithm,
we found that the inactive construct harbored an intermediate structure that
likely acted as a kinetic trap, delaying the formation of the terminator hairpin
sufficiently to render it inactive.

The adaptation of the interaction between the modular components is, by
itself, not necessarily sufficient, as the presented work shows. The neomycin
switches depend on an obligatory 5′ leader hairpin, presumably because the
riboswitch itself is not sufficiently stable in itself to protect the mRNA from
degradation. In addition, it needs to be adapted to the sequence context of
the transcript to avoid interference of the leader sequence with the riboswitch
domain – again an effect that can be captured by the RNA secondary structure
model and remedied by adapting the constructs in silico.

Taken together, we conclude that complex RNA devices cannot be engineered
by simply combining pre-optimized components in a plug-and-play fashion.
Modular components can be combined and put into a functional context,
however, with the help of in silico simulation techniques. We can therefore do
better than “plug and pray”: computationally, we can adapt the modules to
function in context and optimize the constructs as a whole. We are confident that
the reliability of the computational predictions will continue to improve as our
understanding of the individual components and their underlying mechanisms
of action evolves.
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RNAs are ubiquitous biomolecules found in every living cell. They serve many
different purposes, including the transmission of genetic information in protein
biosynthesis as messenger RNAs, catalytic and other metabolic functions as
ribozymes, the regulation of gene expression as both small and long non-coding
RNAs, and even as genomic defense mechanism via the RNA interference
pathway. In many of these cases, the structural conformation of the RNA
molecule plays a major role by mediating or modifying its biological function.
For example, small structural elements like riboswitches or RNA thermometers
are located in the 5′ UTR of an mRNA transcript and regulate its expression
by interacting with either the RNA polymerase during transcription or the
ribosome during translation.

Remarkably, these examples do not only demonstrate the relevance of a
specific, stable conformation, but show how dynamic structural rearrangements
follow a precise schedule to achieve the desired regulatory effect. This em-
phasizes the necessity to understand the RNA folding process as a whole in
order to make reliable predictions about the behaviour of a given RNA. While
experimental approaches to gathering equilibrium structure data exist, e. g.,
in the form of SHAPE analyses or X-ray crystallography, a high-resolution
analysis of the refolding process in real time is hardly possible. Therefore, the
development of computational methods for kinetic folding analyses of RNAs is
a worthwhile endeavour. This includes the assessment and refinement of RNA
folding simulations as well as the underlying models.

This thesis tackles this challenge at various levels. Multiple criteria to assess
the quality of folding simulations have been invented. A comprehensive software
package called BarMap-QA to conduct cotranscriptional folding analyses has
been developed. The statistical properties of free energies and probabilities of
RNA structures have been studied in detail. Finally, the described methods were
applied in practice to design a synthetic, transcriptional riboswitch responding to
the antibiotic neomycin. The obtained construct was transfected into bacterial
host cells by a collaborative partner and proved to be functional in vivo. In
follow-up experiments, the interaction of the designed RNA device with its
sequence context has been analyzed and was in accordance with the predictions
of the computational models.

In this final chapter, the major findings of this work will highlighted again.
Afterwards, an outlook of related topics and areas for potential future work is
presented. Some final remarks close this thesis.

6.1 Summary

As described in Chapter 2, this work uses the abstraction of secondary structures
as tractable model of RNA structures, i. e., structural conformations of a given
RNA molecule are described as a set of non-crossing base pairs. The stability
of a secondary structure x can be quantified in terms of its Gibbs free energy
∆G(x), and this energy can be predicted using the nearest-neighbor model and
a set of energy parameters. Here, the parameters of Turner and Mathews (2010)
were used. The secondary structure model allows to efficiently compute the
MFE structure (Zuker and Stiegler, 1981) as well as the partition function of the
structure ensemble (McCaskill, 1990) – and thus the equilibrium probabilities
of arbitrary structures – with a polynomial time complexity of O(n3) using
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dynamic programming. Specifically, this work relies on the ViennaRNA software
package as implementation of the aforementioned algorithms. In equilibrium,
the probability of an RNA structure x follows a Boltzmann distribution, i. e., it
is proportional to its Boltzmann weight exp(−β∆G(x)), where β is the inverse
temperature, a (temperature-dependent) constant. With the availability of
the partition function, equilibrium probabilities of arbitrary structures can be
computed easily.

While this thermodynamic approach to RNA folding is efficient and suffi-
ciently precise in many cases, the above-mentioned examples show that the
assumption of the RNA being in a state of equilibrium is not always justified.
In these cases, it is thus necessary to explicitly model the kinetics of the folding
process. In this work, this is achieved by employing the concept of the RNA
energy landscape (Flamm, Hofacker, P. F. Stadler, et al., 2002), which defines
the neighborhood of a structure based on elementary transitions like the opening
or closing of a single base pair. Adjacent structures are then assigned transition
rate coefficients based on the difference of their free energies via the Metropolis
rule (Metropolis et al., 1953). The folding reaction can then be considered as
a continuous-time Markov process, for which the possible structures serve as
the set of states. The population of the states at a given time τ can then be
computed by determining the matrix exponential exp(τR), which is achieved
by a diagonalization of the rate matrix R.

As the number of structures grows exponentially with the sequence length
of an RNA (Stein and Waterman, 1979), a kinetic simulation including all
possible structures is usually infeasible even for short molecules. To reduce
the number states, several heuristics are used. The algorithm of Wuchty et
al. (1999) is used to restrict the enumeration to structures with low energy
and thus high stability. It is also possible to exclude structures containing –
putatively unstable – isolated base pairs to obtain an ensemble of canonical
structures. While these methods significantly cut down the number of structural
conformations, their abundance still renders kinetic simulations intractable for
all but the shortest molecules. To achieve another significant reduction in the
number of states, a coarse graining based on the notion of gradient basins is
applied to the structure ensemble (Flamm, Hofacker, P. F. Stadler, et al., 2002).
To this end, a gradient descent is applied to the individual structures, following
the steepest path down to a local minimum. All structures with an identical
associated local minimum are then binned together in a single gradient basin,
serving as macrostates for the kinetic simulation. Transition rate coefficients
between the macrostates states are then calculated as weighted sums over the
microscopic rate coefficients of the individual structures they contain. Using
this coarse graining approach together with the proposed heuristics for structure
reduction, kinetic folding simulations become feasible for RNA of lengths up to
about 100 nt.

A disadvantage of the described model for RNA folding kinetics is the fact
that the transition rate matrix – and thus the underlying energy landscape –
is fixed. To be able to incorporate dynamic effects like temperature changes
or sequence elongation, Hofacker, Flamm, et al. (2010) developed the BarMap
framework, which allows to run folding simulation across a sequence of energy
landscapes. This is achieved by constructing maps that allow to transfer the
population of a macrostate in one landscape to a corresponding macrostate in
the next one. The corresponding state is chosen such that its representing local
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minimum has a minimal base pair distance to the minimum of the mapped
state.

Building on the described concepts, this thesis continues with the quality
analysis of RNA folding models in Chapter 3. To do so, the concept of ensemble
coverage is proposed. Let X be the structure ensemble of a given RNA sequence,
i. e., the set of all possible secondary structures. As the partition function
Z = Z[X] of X can be computed efficiently, the probability Pr[Y ] of any set
of structures Y ⊆ X can be calculated easily as Pr[Y ] = Z[Y ]/ Z if only the
partition function Z[Y ] is known. If, for example, the individual structures in
Y are explicitly constructed, Z[Y ] can simply be computed by summing over
their individual Boltzmann weights. In this work, the probability Pr[Y ] is also
referred to as the coverage of Y with respect to X because it measures to which
extent a random sample from the equilibrium distribution of X is represented
by the structures in Y . As the probability of a structure decreases exponentially
with increasing free energy, high-energy structures can often be disregarded
during folding analyses without impairing the quality of the results. Thus, it is
interesting to construct a set of structures Y with a coverage close to 1, but
|Y | ≪ |X|.

One possibility to do so is the algorithm of (Wuchty et al., 1999), which
constructs a set X≤∆Genum ⊆ X containing all structures with an energy of at
most ∆Genum. Now, an obvious question is how to choose ∆Genum to obtain a
high coverage with as few structures as possible. Therefore, Section 3.2 analyzes
the coverage obtained by enumerating various energy ranges for random RNAs
of differing sizes. A value of 10 kcal mol−1 above the sequence MFE was found
to produce high coverages of 96–100% for sequences up to a length of 160 nt.
With increasing sequence length, the coverage in a given energy range decreases.
Additionally, the computation time required to enumerate all structures becomes
unbearable at some point, as the number of structures increases exponentially.
Increasing ∆Genum is thus often not an option for very long sequences, which
limits the application of Wuchty’s algorithm to sequences of the aforementioned
sizes. Also, the coverage within a fixed energy range may vary significantly even
for sequences of the same size. It should thus be checked for any given sequence
if Wuchty’s algorithm or a similar method is used to construct a representative
set of structures for folding analyses.

An approach to further reduce the number of conformations in the ensemble
is the restriction to canonical structures, i. e., structures with isolated base pairs
are excluded, as these structures are putatively unstable. To assess whether
this simplification excludes a significant fraction of likely structures as well,
the distribution of coverage for canonical structures of random sequences was
analyzed for multiple sequence lengths in Section 3.3. It has been shown that,
with increasing sequence length, the median coverage of canonical structures
decreases, while the variance of coverages significantly. For very short sequences
of 30 nt, canonical structures have a coverage of more than 85% for half of the
random sequences. For sequences of length 90 nt, this number reduces to only
47%. At this sequence length, the observed coverage values range from 0.02%
to 95%. But even for sequences of length 30 nt, the canonical structures may
exhibit a coverage of only a few percent in some cases. The consequence is that,
whenever the ensemble is to be restricted to canonical structures, their coverage
should be analyzed first to prevent unexpected, spurious results.
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Section 3.4, finally, presents the author’s software package BarMap-QA. It
builds on the BarMap framework of Hofacker, Flamm, et al. (2010) to enable
the user to conduct high-quality cotranscriptional folding analyzes of RNA
molecules. The original, prototypical implementation of BarMap is very general
and thus requires many manual steps to prepare and conduct this type of
analysis. Its direct and indirect dependencies require a manual compilation.
The generated output is verbose and hardly readable to humans, such that an
evaluation of the results is cumbersome. Most significantly, it is not possible
evaluate the reliability of the generated results. BarMap-QA alleviates these
issues by providing a semi-automatic pipeline that guides the user through the
process of model generation, runs the simulation, and provides tools to evaluate
the results, including the automatic generation of plots of the entire simulation
run. Importantly, three novel quality criteria measuring the simulation quality
at different levels were proposed. BarMap-QA computes each of these scores for
each component of the model (i. e., for each energy landscape, each representing
the input sequence at a given length, and for each mapping step between any
two consecutive landscapes), thus allowing the user to selectively adjust the
simulation parameters to obtain optimal results with minimal computational
effort. The developed package is distributed as free and open source software.
To allow for an easy deployment and reproducible results in a predefined
environment, it was packaged into a Docker image released at Docker Hub. The
use of the Docker container technology allows to install BarMap-QA on any
major platform with the use of a single command.

Chapter 4 deals with the statistics of free energies of random RNA sequences
and gradient basins as well as with the distribution of Boltzmann weight within
these. A thorough understanding of these is useful for modelling RNA folding
as well as for the design of RNA sequences exhibiting a given set of features.
Section 4.1 analyses the distribution of MFEs for random RNA sequences of
different lengths. It reproduces the linear dependence of the expected MFE
and its variance from the sequence length as well as the slight negative skew
in the distribution of MFEs, which has already been shown by other studies
(Wolfsheimer and Hartmann, 2010). Additionally, it is shown that a part of
the skewness of the distributions for short sequence lengths can be explained
by the truncation of the distribution at 0 kcal mol−1, which occurs because
the open RNA chain is defined to have a free energy of zero. Furthermore,
several families of distributions have been fitted to the MFE distributions of
the various sequence lengths and their goodness of fit has been evaluated. For
long sequences of 140 nt and more, a normal distribution was found to be
a reasonable approximation. Very short sequences below 40 nt, a truncated
normal distribution is the best choice as it can explicitly model the cutoff at
0 kcal mol−1. For sequence lengths in between, the skew normal distribution
clearly outperforms the (regular) normal distribution. It has one more free
parameter to adjust the skew of the distribution. The best fit for all lengths
except the shortest sequences was obtained by fitting a generalized hyperbolic
distribution, which has four free parameters and thus one more than the skew
normal distribution. The goodness of fit was evaluated using both the Akaike
information criterion and the Cramér–von Mises criterion.

In Section 4.2, canonical structures were revisited to analyze their abundance
in the low-energy part of the structure ensemble. Canonical structures are
defined as structures not containing any isolated base pairs. Excluding non-
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canonical structures from a kinetic folding simulation is an effective way to
significantly reduce the number of structures under consideration. To which
extend this approach will succeed, however, depends on the fraction of non-
canonical structures in the ensemble of random sequences. In the analysis, it
was found that the fraction of non-canonical structures in the low-energy part
of the ensemble is decreasing with the sequence length for sequences of more
than 40 nt. The average fraction reduces from over 90% to only 65% of the
non-canonical structures for long sequences of length 200 nt. Notably, the spread
of the distribution of fractions also increases: for the long sequences, fractions
of non-canonical structures ranging from 44% to 98% have been observed.

The justification for restriction to canonical structures is the claim that
isolated base pairs are mostly unstable and thus refold into another conformation
immediately. To assess whether this is indeed a well-grounded assumption, the
two subclasses of non-canonical structures that only have stable or unstable
isolated pairs, respectively, have been computed as well. If all isolated base
pairs of a non-canonical structure are unstable, then that structure can safely be
excluded. A base pair is considered stable if its presence reduces the free energy
of the structure. If all isolated base pairs are stable, then an exclusion can hardly
be justified. It was shown that in the low-energy part of the ensemble random
sequences, the fraction of non-canonical structures that only contain unstable
isolated base pairs reduces with increasing sequence length. For sequence length
200 nt, only half of the canonical structures fall into this category. The second
category, non-canonical structures with only stable isolated pairs, shows a
reverse trend: it increases with the sequence length. While the fraction of these
structures is not too big, it is as high as 13% percent of all low-energy structures
for sequences of length 200 nt, which corresponds to a fraction of 20% of the
non-canonical structures. This shows that every fifth structure excluded by
the restriction to canonical pairs is actually stable and should be included in
the analysis. In this light, the removal of non-canonical structures should be
considered carefully and only be applied if really necessary.

Section 4.3 continues with an analysis of the lowest 10 000 minima of the
energy landscapes of sequences of different lengths. As described above, the
coarse graining algorithm implemented in barriers (Flamm, Hofacker, P. F.
Stadler, et al., 2002) assigns each structure to the local minimum reached by
applying a gradient descent to it, and the resulting gradient basins can then serve
as macrostate in a kinetic simulation. The selected threshold of 10 000 minima
was chosen as this size can still be processed using the simulation tool Treekin
(Wolfinger et al., 2004) within a reasonable time. The energy range covered
by the selected minima was then analyzed and found to follow a generalized
extreme value distribution for a fixed sequence length. For increasing sequence
lengths, the median covered energy range as well as the standard deviation
of the range decrease exponentially. This means that, for long sequences, the
explorable energy range is almost always very small. It is thus hard to analyze
them. This length-dependent effect is not closely tied to the actual MFE of a
given random sequence. This was demonstrated by analyzing the (negative)
correlation between sequence MFE and explorable energy range, which rapidly
approaches zero with increasing sequence length and is as low as −0.33 for
sequences of length 200 nt.

In Section 4.4, it is shown that the distribution of energies within a single
gradient basin approximately follows a normal distribution, with a slight de-



Chapter 6. Conclusion 105

viation in the lower tail. Additionally, it is discussed how estimators of the
first order statistic, i. e., the minimum of a sample of a given size, can be
used to predict the MFE of a gradient basin if the parameters of the energy
distribution and the number of structures are known. If the set of all structures
in a gradient basin is considered a normal-distributed sample, then the MFE
can be considered to be the first order statistic of the basin, which matches the
data.

In addition to the distribution of energies, the distribution of probability
mass in gradient basins is discussed too. Section 4.5 first shows empirical
data demonstrating that the vast majority of the structures does not have
any relevant probability mass. Only very few low-energy states dominate
the basin’s partition function. Secondly, a theoretical result concerning the
distribution of Boltzmann weight in the basin is presented. Specifically it is
shown that, if the energies of a basin follow a normal distribution with mean
µ and variance σ2, then the Boltzmann weight in the gradient basin follows a
normal distribution with the same variance, but with mean µ − βσ2, where β
is the inverse temperature. In other words, the distribution is shifted to the left
by an amount of βσ2. Using the truncated and rescaled cumulative distribution
function of this distribution, the partition function of an example basin is then
successfully predicted.

In Chapter 5, finally, the described models and approaches are put to use
to design synthetic transcriptional riboswitches. To this end, a previously de-
scribed RNA aptamer called N1M7 with a high binding affinity for the antibiotic
neomycin (Weigand, Sanchez, et al., 2008) was used as input for an in silico
design pipeline similar to that of Wachsmuth, Findeiß, et al. (2013). In previous
studies, it was shown that riboswitches are not perfectly modular, and their
regulatory function may be impaired depending on the genomic context they
are used in (Domin et al., 2017). Using the RNA folding simulation techniques
described in this work, it was shown that these detrimental effects on the func-
tionality of the switch can often be explained by structural interactions with
the surround sequences. Using an objective function based on thermodynamic
criteria measuring the interaction of the riboswitch candidates with their sur-
roundings, an optimization procedure was used to design a decoupling sequence
insert to be placed upstream of the riboswitch candidates. The constructs where
then combined with the fluorescent reporter gene eGFP and transfected into
a neomycin-resistant strain of E. coli. Thus it was shown that the designed
putative riboswitches are indeed functional, but need to be combined with the
designed decoupling insert to prevent disrupting interactions with the sequence
context. Furthermore, it was found that a stable hairpin structure is required at
the 5′ end of the transcript to ensure proper switching. The reason was assumed
to be the increased resistance of the 5′ end against dephosphorylation mediated
by RppH (Deana, Celesnik, and Belasco, 2008). This enzymatic reaction is a
necessary requirement for the degradation of the transcript by the endonuclease
RNase E (Jiang, Diwa, and Belasco, 2000) in E. coli. Thus, a stable 5′ hairpin
may be necessary to prolong the lifetime of the transcript such that a sufficiently
high readout is attained during the fluorescence measurements.
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6.2 Outlook

While a comprehensive set of results has been presented in this work, there is
always more to do than can possibly be done, and so some tasks and challenges
had to be postponed for future projects. Some especially interesting open
questions that arose during the author’s studies shall be elaborated here.

The methodology used to perform kinetic folding simulations in this work is
based on the coarse graining of the underlying energy landscape into gradient
basins. It was also mentioned that the number of macrostates that can be
considered in such a simulation is bounded due to the required computation time.
It is thus an interesting question whether an even coarser state representation
can be found, which still preserves the results of the simulation at least on a
qualitative level. One possibility to do so could be the application of flow-based
clustering or community detection methods, such that gradient basins connected
by high transition rates a grouped into new macrostates. Another option is
to repeat the application of the gradient-based coarse graining on the level of
macrostates. This requires a formally clean definition of gradient descents on
macrostates.

For the author’s pipeline BarMap-QA, there are some advanced features
that need yet to be. For example, the combination of cotranscriptional folding
with ligand interactions is sensible next development step. Additionally, the
ability to vary the transcription rate during cotranscriptional folding simulations
is a new feature about to be released.

Concerning the distributions of free energies and Boltzmann weight within
gradient basins, an important next step is the development of an effective,
low-bias sampling procedure for basins. The method has to be significantly
faster than a full enumeration, e. g., by means of local flooding (Entzian and
Raden, 2020), and produce samples suitable for estimation of the mean and
variance of the underlying normal distribution. If this can be achieved, partition
function of the basin could be estimated, too, and it would be possible to
effectively limit local flooding to the energy level required for the requested
coverage. This would make the exploration of energy landscapes much more
effective.

In the field of RNA design, there are numerous possible applications for the
methods presented in this work. One specifically interesting task would be to
create a dual-ligand riboswitch implementing an exclusive or (XOR) logic for
controlling gene expression.

6.3 Concluding remarks

The simulation of RNA folding is a highly complex and versatile bioinformatical
problem. In this thesis, it has been approached from many different perspectives
with the goal to gain a deeper understanding of the behaviour of RNA molecules.
While this versatility was a challenge on the one hand, it was a great opportunity
to learn on the other. With the presented results, the author hopes to contribute
a little piece to the big puzzle of life; a puzzle that is still far from being complete,
and that will continue to challenge generations of researchers to come.
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APPENDIX A
Supplemental Information: Design

of Artificial Cotranscriptional
Riboswitches

The content presented in this appendix has been published as supplemental
information for the following article:

Günzel, C. et al. (2020). “Beyond Plug and Pray: Context Sensitivity and
in silico Design of Artificial Neomycin Riboswitches”. In: RNA Biology,
pp. 1–11. doi: 10.1080/15476286.2020.1816336

https://doi.org/10.1080/15476286.2020.1816336
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A.1 Supplemental figures
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Figure 34: Secondary structure of the riboswitch constructs with the aptamer N1M7
used for the eGFP assay in Figure 29.
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Figure 35: Impact of point mutations in the leader hairpin LH2. Fluorescence
intensity of the modified leaders LM3, LM3C, LM4 and LM5, folded into their
predicted secondary structure (A), in conjunction with N1M7-D (B). LH2-N1M7-D
and LH1-Pos were used as control. Legend as described in Figure 29.
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Figure 36: Influence of a sequence predicted to interfere with N1M7-D by in silico
methods. The fluorescence intensity of N1M7-D with oL in conjunction with LH1 or
LH2 is shown. Legend as described in Figure 29.



Appendix A. SI: Design of Artificial Cotranscriptional Riboswitches 113

A

G

C

G

GCC
U

A
A

AA
C

A

U

A

C

C

A

G

A

U
CGC

CA

C

C
C

G C G

C
U U

U

A
A

U

C

U

G

G A
G

A G G U
G

A
A

G
A A U A C G A C C A C C U A G

G
C

C

G
A

C

A

G
U

G
G

C
CUAGGUGGUCGUAUU

C
U

U
U

U

U

U

U

U
U U

10

20

30

40

50

60

70

80

90

100

A

G

C
A

A
GU

GA
U

A

C

C A
G

C

A

U

C

G
U C

U

UG

A

U

G

C

C

C
U

U
G G

C
A

G
C

A
C

U
U

C

A

G

A

A
A

U

C
U

C

U

G

A
A

G
U

G
C

U
G

U
U

U
U U U U

U

10

20

30

40

50

60

70

N1M7-D

Tetra-RS2

Theo-RS10

A

G

A

C
U

G
C U

U

G

U

C
C

U
U U

A

A

U

G

G

U

C

C

A

G

U

C

G

A

A
A

U

C
U

C

G

A

C

U

G

G

A

C

C

A

U

U

A

U
U U U U U U U

10 20

30

40

50

Figure 37: Minimum free energy secondary structures of the neomycin riboswitch
N1M7-D, the theophylline riboswitch RS10 (Wachsmuth, Findeiß, et al., 2013), and
the tetracycline riboswitch RS2 (Domin et al., 2017) drawn with forna (Kerpedjiev,
Hammer, and Hofacker, 2015). Colors mark different structural features (hairpin loops
in blue, interior loops and bulges in light brown, stems in green, and exterior loops in
red). All riboswitches display a long terminator hairpin followed by an 8 nt poly-U
stretch at their 3′ end. In contrast to the other constructs shown, N1M7-D exhibits a
remarkably small structure at its 5′ end.
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A.2 Supplemental data

Table 1: Overview of all constructs analysed in this work and which figures they
appear in, along with their corresponding fluorescence intensity data (mean, standard
deviation (SD), and the number of repetitions (N)). Sequence data can be found in a
supplementary spreadsheet file.

mean SD N mean SD N

Figure 4B Pos 493.32 133.42 6

LH1-N1M7-A 54.77 2.96 3 63.86 4.61 3

LH1-N1M7-B 712.27 100.31 3 812.05 109.73 3

LH1-N1M7-C 528.68 108.21 3 963.45 83.19 3

LH1-N1M7-D 342.28 21.67 3 899.39 121.33 3

LH1-Term-N1M7-D 207.54 29.29 3 207.92 19.49 3

Figure 5C Pos 703.90 33.10 3 676.98 33.92 3

LH1-Pos 724.84 65.92 6 779.09 56.16 6

N1M7-D 467.18 132.07 3 504.81 101.70 3

LH1-N1M7-D 214.95 18.29 3 704.86 24.39 3

LH2-N1M7-D 304.37 54.78 3 739.21 57.94 3

Figure 6C Pos 662.93 79.58 3

U1-N1M7-D 121.50 4.84 3 189.22 24.45 3

U2-N1M7-D 213.61 25.92 3 296.02 21.88 3

LH1-U1-N1M7-D 525.68 153.12 3 880.53 195.61 3

LH1-U2-N1M7-D 609.89 176.20 3 903.36 185.90 3

Figure 7B LH1-Pos 691.41 19.95 3 762.86 55.21 3

LH1-N1M7-D 214.95 18.29 3 704.86 24.39 3

LM1-N1M7-D 193.40 4.10 3 665.74 144.60 3

LM1C-N1M7-D 275.94 51.94 3 876.00 171.67 3

LM2-N1M7-D 82.61 10.98 3 229.10 34.66 3

LM2C-N1M7-D 244.70 3.76 3 803.76 248.15 3

Figure 7C LH1-Pos 758.27 84.34 3 795.33 63.61 3

LM1-Pos 690.96 46.96 3 707.80 50.35 3

LM1C-Pos 855.49 90.97 3 835.45 76.11 3

LM2-Pos 392.54 19.53 3 403.31 18.43 3

LM2C-Pos 800.75 192.71 3 801.90 206.77 3

Figure A.3 LH1-Pos 595.96 134.81 6 638.34 163.03 6

LH2-N1M7-D 304.37 54.78 3 739.21 57.94 3

LM3-N1M7-D 574.30 60.17 3 833.45 116.35 3

LM3C-N1M7-D 266.00 46.67 3 759.79 57.27 3

LM4-N1M7-D 240.69 57.47 3 747.31 112.81 3

LM5-N1M7-D 170.10 18.16 3 502.81 60.70 3

Figure A.4 LH1-N1M7-D 321.31 78.80 7 818.07 161.59 7

oL-N1M7-D 102.61 16.15 3 114.33 17.41 3

LH1-oL-N1M7-D 408.52 25.88 3 382.05 56.92 3

LH2-oL-N1M7-D 218.60 23.81 3 194.26 27.54 3

- neomycin + neomycin
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Table 2: Effects of mutations on the stability of leader hairpins LH1 and LH2. The
stability is given as MFE of the entire (mutated) hairpin. Activities of the resulting
constructs are shown in Figure 32 and Figure 35.

Hairpin Mutations MFE (kcal mol−1)

LH1 none −15.9
LM1 G28C, A29U −10.9
LM1C G28C, A29U, U6A, U7G −18.5
LM2 U21C, C22G, −9.7
LM2C U21G, C22G, G13C, G14C −18.3

LH2 none −13.1
LM3 C17G, G18C −5.5
LM3C C17G, G18C, C3G, G4C −13.9
LM4 G13C, A14U −10.1
LM5 G13C, A14U, G15C −5.3
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Table 3: p-values of fluorescence activity in the presence and absence of neomycin for
the riboswitch candidates with unstructured leaders depicted in Figure 31. They were
calculated using a paired t-test from three biological replicates. The false discovery
rate (FDR) for the four constructs was determined using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995).
With p-values well below 3%, the difference between on and off state is statistically
significant for the first three riboswitches. Only LH1-U2-N1M7-D has a p-value of
5.6% that is slightly above the commonly accepted significance threshold of 5%. Since
the very similar LH1-U1-N1M7-D shows significant activity, however, we do believe
that the construct acts as a neomycin-sensitive switch and that the high p-value is only
a consequence of the low number of replicates. Since our conclusions follow already
from the results for LH1-U1-N1M7-D, we refrained from further experiments.

Riboswitch p-value FDR

U1-N1M7-D 0.0272 0.0363
U2-N1M7-D 0.0061 0.0193
LH1-U1-N1M7-D 0.0097 0.0193
LH1-U2-N1M7-D 0.0561 0.0561
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APPENDIX B
Supplemental Information:

Assessing the quality of
cotranscriptional folding models
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B.1 Table of output files

Table 4 provides a list of all files generated by running the all-in-one pro-
cessing script barmap_gen_barmapfile, which automatically performs a full
BarMap-QA analysis without user interaction.

Table 4: Files that are generated when running barmap_gen_barmapfile. Curved
arrows (↷) indicate line wraps introduced to make the table fit to the page. The
notation .[a|b] means the file exists with both extensions a and b.

File Description
*.bar Standard output of Barriers containing informa-

tion about the respective coarse-grained land-
scape, e. g., representative structure and the
barrier height.

*.bar.log Log file that summarizes the Barriers run.
*.rates.bin Binary rate matrix of the respective landscape

generated by Barriers.
*.evals.bin
*.evecs.bin

Eigenvalues and -vectors of the respective rate
matrix stored in a binary format. They are
used in the final simulation step to speed up
the calculation.

*.rates.bin.log Log file of the diagonalization process performed
by Treekin.

barmap.out BarMap’s state mapping indicating exact (->)
and approximate (~>) mappings between con-
secutive landscapes.

barmap.out.kin_t8_1e3 Full kinetics simulation output generated by
multiple consecutive Treekin simulations over
all landscapes.

barmap.out.kin_t8_1e3↷
.filt

Kinetics simulation output filtered only for
highly populated states.

barmap.out.kin_t8_1e3↷
.filt.[pdf|svg]

Plot of the filtered Treekin simulation in SVG
and PDF format.

barmap.out.kin_t8_1e3↷
.merge

Filtered and merged (cf. above) kinetics simu-
lation output.

barmap.out.kin_t8_1e3↷
.merge.[pdf|svg]

Plot of the merged Treekin simulation in SVG
and PDF format.
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List of Abbreviations

B. clausii Bacillus clausii.

E. coli Escherichia coli.

bgaB the β-galactosidase gene.

egfp the enhanced green fluorescent protein gene.

AIC Akaike information criterion.

AUR aptamer upstream region.

BgaB β-galactosidase.

CvM Cramér–von Mises.

dL decoupling leader.

eGFP the enhanced green fluorescent protein.

GEV generalized extreme value.

lH leader hairpin.

MFE minimum free energy.

mRNA messenger RNA.

nt nucleotide.

oL original leader.

PCR polymerase chain reaction.

Pos positive control.

RBS ribosomal binding site.

RFU relative fluorescence unit.

RNAP RNA polymerase.
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RNase E ribonuclease E.

RppH RNA 5′ pyrophosphohydrolase.

rRNA ribosomal RNA.

SAM S-adenosyl-L-methionine.

SELEX systematic evolution of ligands by exponential enrichment.

TDR terminator downstream region.

TSS transcription start site.

U unstructured region.

UTR untranslated region.

YFP the yellow fluorescence protein.
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