
On the entire functions from the Laguerre–Pólya class
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List of symbols

The following symbols have been frequently used throughout the thesis.
CZDS : the set of complex zero decreasing sequences, i.e. the set of real

sequences (γk)∞k=0, such that for any real polynomial P (x) = ∑n
k=0 akx

k the
number of non-real zeros of P does not exceed the number of non-real zeros
of the polynomial ∑n

k=0 γkakx
k.

ga(x) = ∑∞
k=0

xk

ak2 , a > 1 : the partial theta function.
HP : the set of univariate hyperbolic polynomials, i.e. the set of real

univariate polynomials having only real zeros.
HP+ : the set of univariate hyperbolic polynomials with all positive

coefficients.
L − P : the Laguerre–Pólya class of entire functions, i.e. the closure in

the topology of the uniform convergence on compacts of the set of hyperbolic
polynomials.
L − PI : the Laguerre–Pólya class of type I of entire functions, i.e. the

closure in the topology of the uniform convergence on compacts of the set of
hyperbolic polynomials with all positive coefficients.
MS : the set of multiplier sequences, i.e. the set of real sequences (γ)∞k=0,

such that for any hyperbolic polynomial P (x) = ∑n
k=0 akx

k the polynomial∑n
k=0 γkakx

k is also hyperbolic.
pn(f) = an−1

an
, n ≥ 1 : the first quotients of Taylor coefficients of an entire

function f(x) = ∑∞
k=0 akx

k.
qn(f) = a2

n−1
an−2an

, n ≥ 2 : the second quotients of Taylor coefficients of an
entire function f(x) = ∑∞

k=0 akx
k.

q∞ ≈ 3.23363666 : the absolute constant which was found by O. Katkova,
T. Lobova and A. Vishnyakova. For more details, see the corresponding
theorems.

Sn(x, f) = ∑n
k=0 akx

k : the n-th partial sum of an entire function f(x) =∑∞
k=0 akx

k.
Rn(x, f) = ∑∞

k=n akx
k : the n-th remainder of an entire function f =∑∞

k=0 akx
k.
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ZC(P ) : the number of non-real zeros of a real polynomial P counting
multiplicities.

ZR(P ) : the number of real zeros of a real polynomial P counting multi-
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Introduction

We investigate the famous Laguerre–Pólya class of entire functions and its
subclass, the Laguerre–Pólya class of type I. The functions from these classes
can be expressed in terms of the Hadamard Canonical Factorization (see
Chapter 1, Definition 1.2 and 1.3). The prominent theorem by E. Laguerre
and G. Pólya gives a complete description of the Laguerre–Pólya class and the
Laguerre–Pólya class of type I, showing that these classes are the respective
closures in the topology of uniform convergence on compact sets of the set of
real polynomials having only real zeros (that is, the set of so-called hyperbolic
polynomials) and the set of real polynomials having only real negative zeros.
Both the Laguerre–Pólya class and the Laguerre–Pólya class of type I play an
essential role in complex analysis. For the properties and characterizations of
these classes, see, for example, [31] by A. Eremenko, [40] by I.I. Hirschman
and D.V. Widder, [43] by S. Karlin, [57] by B.Ja. Levin, [66, Chapter 2] by
N. Obreschkov, and [74] by G. Pólya and G. Szegó.

To highlight the importance of the Laguerre–Pólya class we would like to
mention the connection between this class and one of the most famous open
problems in modern mathematics, the Riemann hypothesis, which was posed
by Bernhard Riemann in 1859 (see [76]). The conjecture states that a special
meromorphic function known as the Riemann zeta function has (apart from
trivial zeros at the negative even integers) only zeros with real parts equal to
1/2. The relation between the Riemann zeta function and the Laguerre–Pólya
class can be found in works [24] by G. Csordas, T.S. Norfolk and R.S. Varga,
[25] and [26] by G. Csordas and R.S. Varga, [22] by G. Csordas, [28] by
G. Csordas and C.-C. Yang, and [29] by D.K. Dimitrov. In particular, the
Riemann hypothesis can be reformulated as a statement that a special entire
function, the so-called Ξ-function, belongs to the Laguerre–Pólya class. This
approach of proving the Riemann Hypothesis is known as the Hilbert–Pólya
Conjecture. Although very little is known about its origin, a sketch of the
idea can be found, for example, in the paper by O. Katkova, [46].

There are many works devoted to functions from the Laguerre–Pólya
class. We mention here only a few of them. In the works [21] by T. Craven,

viii



INTRODUCTION ix

G. Csordas and W. Smith, and [42] by H. Ki and Y. Kim, Pólya’s conjecture
is proved which states that for a real entire function of order less than two
with a finite number of nonreal zeros the derivative of a sufficiently high
order belongs to the Laguerre–Pólya class. In the papers [7] by W. Bergweiler
and A. Eremenko and [8] by W. Bergweiler, A. Eremenko and J. Langley
the Wiman conjecture is proved concerning the number of nonreal zeros of
derivatives of a real entire function of order greater than two.

Among a plenty of recent works devoted to the functions from the Laguerre–
Pólya class, we only mention [5] by A. Baricz and S. Singh, [10] by A. Bo-
hdanov, [11] by A. Bohdanov and A. Vishnyakova, [12] by P. Brändén, [14]
and [13] by D. Cardon, [16] and [23] by T. Craven and G. Csordas, [23] by
G. Csordas and T. Forgácz, [27] by G. Csordas and A. Vishnyakova, [38] by
B. He, [56] by M. Lamprecht and [80] by A.D. Sokal.

The question of whether an entire function belongs to the Laguerre–Pólya
class (or the Laguerre–Pólya class of type I) can be very difficult. In this
thesis, we have found some necessary and sufficient conditions, in terms of
its Taylor coefficients, for an entire function to belong to the Laguerre–Pólya
class (and Laguerre–Pólya class of type I ). We restrict our investigations
to the set of entire functions from the Laguerre–Pólya class having positive
Taylor coefficients and an increasing sequence of their second quotients. The
main purpose of this thesis is to study the properties of the coefficients and
the location of the zeros of these functions.

Structure of the thesis. The thesis is organized as follows. Chapter 1 is
devoted to the brief historical overview of the existing results. The definitions
of the Laguerre–Pólya class and the Laguerre–Pólya class of type I, the
multiplier sequence and the complex zero decreasing sequence, the partial
theta function and other important objects are provided. A short historical
overview of the study of the partial theta function is given. Some previously
known results on the functions from the Laguerre–Pólya class are indicated.

In Chapter 2 we describe a necessary condition for an entire function with
positive coefficients and with the increasing sequence of second quotients of
Taylor coefficients to belong to the Laguerre–Pólya class (see Theorem 2.1).

In Section 2.2, we investigate a special function Fa defined by

Fa(z) = 1 +
∞∑
k=1

zk

(ak + 1)(ak−1 + 1) · . . . · (a+ 1)

which is related to the partial theta function and and is also known as the
q-Kummer function 1φ1(q;−q; q,−z), where q = 1/a. The question is, for
which a > 1, this function belongs to the Laguerre–Pólya class, and the
answer is given by Theorem 2.10 and Theorem 2.11.
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In Chapter 3 we present some necessary conditions for entire functions to
belong to the Laguerre–Pólya class in terms of their roots with the smallest
modulus. For entire function f(z) = ∑∞

k=0 akz
k with positive coefficients

we prove that, if f belongs to the Laguerre–Pólya class and the quotients
qk(f) satisfy the condition q2(f) ≤ q3(f), then f has at least one zero in the
segment [−a1

a2
, 0]. Some necessary and sufficient conditions of the existence of

such a zero in terms of the quotients qk(f) for k = 2, 3, 4 are obtained (see
Theorem 3.2, Theorem 3.4, and Theorem 3.6).

In Chapter 4, it is proved that if f(x) = ∑∞
k=0 akx

k, ak > 0, is an entire
function such that the sequence of its second quotients of Taylor coefficients
is non-decreasing and q2(f) ≥ 2 3

√
2, then all but a finite number of zeros of f

are real and simple (see Theorem 4.1 and Theorem 4.3).
We further provide a criterion for entire functions with the non-decreasing

sequences of their second quotients of Taylor coefficients for belonging to the
Laguerre–Pólya class of type I in terms of the closest to zero roots under
additional assumptions on the regularity of increasing of the sequences of the
second quotients of Taylor coefficients.

In Chapter 5 we present some necessary conditions for entire functions with
the non-decreasing sequences of the second quotients of Taylor coefficients
for belonging to the Laguerre–Pólya class of type I (see Theorem 5.1 and
Theorem 5.4).

Finally, Chapter 6 includes the remaining problems for future research.





Chapter 1

Background of research

This chapter begins with a short literature overview concerning hyperbolic
polynomials of one variable, the Laguerre–Pólya class, linear operators, pre-
serving real-rootedness, properties of the partial theta-function, apolar poly-
nomials, and other topics connected to our investigations. We define necessary
notions and formulate some important theorems to which we refer in this
thesis.

1.1 Hyperbolic polynomials and the La-
guerre–Pólya class

The study of zero distribution of entire functions, their sections and tails has
always been one of the central questions in complex analysis, see, for example,
detailed reviews on this topic in works by A. A. Goldberg and I.V. Ostrovskii
[33], I.I. Hirschman and D.V. Widder [40], B.Ja. Levin [57] and I.V. Ostrovskii
[68].

We start with the definition of a hyperbolic polynomial.

Definition 1.1. A real univariate polynomial is said to be hyperbolic if all
its zeros are real. The set of hyperbolic polynomials is denoted by HP . The
set of hyperbolic polynomials with only negative zeros is denoted by HP+.

Entire functions which can be uniformly approximated in a neighbourhood
of zero by hyperbolic polynomials found important applications in other fields,
for example, in the theory of integral transforms [40] by I.I. Hirschman and
D.V. Widder, approximation theory [78], the theory of total positivity and
probability theory [43] and [44] by S. Karlin.

One of the important classes of entire functions is the Laguerre–Pólya class.
We give the definitions of the Laguerre–Pólya class and the Laguerre–Pólya

1



CHAPTER 1. BACKGROUND OF RESEARCH 2

class of type I.

Definition 1.2. A real entire function f is said to be in the Laguerre–Pólya
class, written f ∈ L − P , if it can be expressed in the form

f(z) = czne−αz
2+βz

∞∏
k=1

(
1− z

xk

)
ezx
−1
k , (1.1)

where c, α, β, xk ∈ R,xk 6= 0, α ≥ 0, n is a nonnegative integer and ∑∞k=1 x
−2
k <

∞.

Definition 1.3. A real entire function f is said to be in the Laguerre– Pólya
class of type I, written f ∈ L − PI, if it can be expressed in the following
form

f(z) = czneβz
∞∏
k=1

(
1 + z

xk

)
, (1.2)

where c ∈ R, β ≥ 0, xk > 0, n is a nonnegative integer, and ∑∞k=1 x
−1
k <∞.

The product on the right-hand sides in both definitions can be finite or
empty (in the latter case, the product equals 1).

Various important properties and characterizations of the Laguerre–Pólya
class and the Laguerre–Pólya class of type I can be found in works by I.I. Hir-
shman and D.V. Widder [40], B.Ja Levin [57], G. Pólya and G. Szegö [74],
G. Pólya and J. Schur [73], monograph by N. Obreschkov [66, Chapter II]
and many other works. These classes are essential in the theory of entire
functions since it appears that the polynomials with only real zeros (or only
real and nonpositive zeros) converge locally uniformly to these and only these
functions. The following prominent theorem provides an even stronger result.

Theorem A (E. Laguerre and G. Pólya, see, for example, [40, p. 42–46] and
[57, chapter VIII, §3]).

(i) Let (Pn)∞n=1, Pn(0) = 1, be a sequence of hyperbolic polynomials which
converges uniformly on the disc |z| ≤ A,A > 0. Then this sequence
converges locally uniformly in C to an entire function from the L − P
class.

(ii) For any f ∈ L − P there exists a sequence of hyperbolic polynomials,
which converges locally uniformly to f .

(iii) Let (Pn)∞n=1, Pn(0) = 1, be a sequence of hyperbolic polynomials having
only negative zeros which converges uniformly on the disc |z| ≤ A,A > 0.
Then this sequence converges locally uniformly in C to an entire function
from the class L − PI.
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(iv) For any f ∈ L − PI there is a sequence of hyperbolic polynomials with
only negative zeros which converges locally uniformly to f .

For a real entire function (not identically zero) of the order less than 2 the
property of having only real zeros is equivalent to belonging to the Laguerre–
Pólya class. Similarly, for a real entire function with positive coefficients of
the order less than 1 having only real negative zeros is equivalent to belonging
to the Laguerre–Pólya class of type I. Strikingly, the situation changes for the
functions of order 2. For instance, the entire function f(x) = e−x

2 belongs to
the L − P class while the entire function g(x) = ex

2 does not.
On the interesting properties and various characterizations of the Laguerre–

Pólya class and the Laguerre–Pólya class of type I, see, for example, [31] by
A. Eremenko, [40] by I.I. Hirschman and D.V. Widder, [43] by S. Karlin, [57]
by B.Ja. Levin, [66, Chapter 2] by N. Obreschkov, and [74] by G. Pólya and
G. Szegó. Among plenty of recent works devoted to the functions from the
Laguerre–Pólya class, we only mention here [5] by A. Baricz and S. Singh, [10]
by A. Bohdanov, [11] by A. Bohdanov and A. Vishnyakova, [12] by P. Brändén,
[14] and [13] by D. Cardon, [16] and [23] by T. Craven and G. Csordas, [23]
by G. Csordas and T. Forgácz, [27] by G. Csordas and A. Vishnyakova, [38]
by B. He, [56] by M. Lamprecht and [80] by A.D. Sokal.

1.2 The first and second quotients of Taylor
coefficients

Let f(z) = ∑∞
k=0 akz

k be an entire function with real nonzero coefficients. We
define the first quotients of Taylor coefficients pn and the second quotients of
Taylor coefficients qn as follows.

pn = pn(f) := an−1

an
, n ≥ 1,

qn = qn(f) := pn
pn−1

= a2
n−1

an−2an
, n ≥ 2.

From these definitions it follows straightforwardly that one can express
coefficients of f in terms of pn or qn.

an = a0

p1p2 · . . . · pn
, n ≥ 1,

an = a1

(
a1

a0

)n−1 1
qn−1

2 qn−2
3 · . . . · q2

n−1qn
, n ≥ 2.
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One can see that the second quotients of Taylor coefficients are independent
parameters that define a function up to multiplication by a constant and
changing z → λz.

1.3 A simple sufficient condition for an entire
function to have only real zeros

The problem of understanding whether a given entire function (or polynomial)
has only real zeros is considered subtle and complicated. A simple verified
description of this class, in terms of the coefficients of a series, is impossible
since it is determined by an infinite number of discriminant inequalities.
In 1926, J.I. Hutchinson found quite a simple sufficient condition for an
entire function with positive coefficients to have only real zeros, which was a
generalization of the results by M. Petrovitch [71] and G. Hardy [36], or [37,
pp. 95 - 100].

Theorem B (J.I. Hutchinson, [41]). Let f(z) = ∑∞
k=0 akz

k,ak > 0 for all
k, be an entire function. Then qn(f) ≥ 4, for all n ≥ 2, if and only if the
following two conditions are fulfilled:

(i) The zeros of f are all real, simple and negative, and

(ii) The zeros of any polynomial ∑n
k=m akz

k,m < n, formed by taking any
number of consecutive terms of f , are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [15, §4].

1.4 Multiplier sequences and complex zero
decreasing sequence

Since it is very difficult problem to define whether or not a given real polyno-
mial (or a real entire function) belongs to the class HP (to the class L − P)
the important role play linear operators that preserve the class HP (the class
L − P). Now, we need the definition of multiplier sequences.

Definition 1.4. A sequence (γk)∞k=0 of real numbers is called a multiplier
sequence if, whenever the real polynomial P (x) = ∑n

k=0 akz
k has only real

zeros, the polynomial ∑n
k=0 γkakz

k has only real zeros. The class of multiplier
sequences is denoted by MS.
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The following theorem by G. Pólya and I. Schur (1914) fully describes
multiplier sequences.

Theorem C (G. Pólya and J.Schur, see [73], and [66, pp. 29–47]). Let (γk)∞k=0
be a given real sequence. The following three statements are equivalent.

(i) (γk)∞k=0 is a multiplier sequence.

(ii) For every n ∈ N the polynomial Pn(z) = ∑n
k=0

(
n
k

)
γkz

k has only real
zeros of the same sign.

(iii) The power series Φ(z) := ∑∞
k=0

γk
k! z

k converges absolutely in the whole
complex plane and the entire function Φ(z) or the entire function Φ(−z)
admits the representation

Ceσzzm
∞∏
k=1

(1 + z

xk
), (1.3)

where C ∈ R, σ ≥ 0,m ∈ N ∪ {0}, 0 < xk ≤ ∞, and ∑∞k=1
1
xk
<∞.

In other words, a sequence (γk)∞k=0, γ0 > 0, is a multiplier sequence if and
only if one of the following two entire functions Φ(z) := ∑∞

k=0
γk
k! z

k or Φ(−z)
belongs to the Laguerre–Pólya class of type I.

In 1977, T. Craven and G. Csordas extended the definition of multiplier
sequences investigating and characterizing them for more general fields (see
[17]).

For further details about multiplier sequences see the original paper on
the subject by G. Pólya and I. Schur [73], B.Ja. Levin [57, pp. 340-347],
N. Obreshkov [66, Chapter 2], T. Craven and G. Csordas [19], [16], [20], and
G. Csordas and T. Forgács [23].

For a real polynomial P we denote by ZR(P ) the number of real zeros
of P counting multiplicities and by ZC(P ) the number of nonreal zeros of P
counting multiplicities. Now, we define complex zero decreasing sequences.

Definition 1.5. A sequence (γk)∞k=0 of real numbers is said to be a complex
zero decreasing sequence (we write (γk)∞k=0 ∈ CZDS), if

ZC

(
n∑
k=0

γkakz
k

)
≤ ZC

(
n∑
k=0

akz
k

)
, (1.4)

for any real polynomial ∑n
k=0 akz

k.
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Obviously, we have
CZDS ⊂MS.

In addition, the sequence γk ≡ 1, k = 0, 1, 2, . . ., or the sequence γk =
2k, k = 0, 1, 2, . . . are (trivial) complex zero decreasing sequences. The
existence of nontrivial complex zero decreasing sequences is a consequence of
the following remarkable theorem proved by E. Laguerre and extended by
G. Pólya.
Theorem D (E. Laguerre, see [66, p. 3.2] and [72]).

• Let P (x) = ∑n
k=0 akx

k be an arbitrary real polynomial of degree n ∈ N
and let Q(x) be a polynomial with only real zeros, none of which lie in
the interval (0, n). Then ZC(∑n

k=0 Q(k)akxk) ≤ ZC(f).

• Let P (x) = ∑n
k=0 akx

k be an arbitrary real polynomial of degree n ∈ N,
let ϕ ∈ L − P and suppose that none of the zeros of ϕ lie in the interval
(0, n). Then the inequality ZC(∑n

k=0 ϕ(k)akxk) ≤ ZC(P ) holds.

• Let ϕ be an entire function from the Laguerre–Pólya class having only
negative zeros. Then (ϕ(k))∞k=0 ∈ CZDS.

As it follows from the theorem above,(
a−k

2)∞
k=0
∈ CZDS, a ≥ 1,

( 1
k!

)∞
k=0
∈ CZDS. (1.5)

In the 19th century, E. Laguerre (see [55]) suggested a problem to charac-
terize complex zero decreasing sequences. This problem is also known as the
Karlin-Laguerre problem (see [43]). This famous problem is still open. Some
important results connected with this problem were obtained by A. Bakan,
T. Craven, G. Csordas, and A. Golub in [4], A. Bakan and A. Golub in [3],
by T. Craven and G. Csordas in [15] and [18]. In particular, the following
theorem is valid.
Theorem E (A. Bakan, T. Craven, G. Csordas and A. Golub, [4, Theorem
2]). Let (γk)∞k=0, γk > 0, be a complex zero decreasing sequence. If

lim sup
k→∞

γ
1/k
k > 0,

then there exists a function ϕ ∈ L − P of the form

ϕ(z) = βeαz
∞∏
n=1

(
1 + z

xn

)
,

where α, β ∈ R, xn > 0 and ∑∞
n=1

1
xn

< ∞, such that ϕ interpolates the
sequence (γ)∞k=0, that is, γk = ϕ(k) for k = 0, 1, 2, . . ..
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During the research connected to the zero distribution of entire functions,
T. Craven and G. Csordas faced some interesting new open problems (see,
for example, Problem 1.1. and Problem 1.2. in [18]), which involve a set of
multiplier sequences. We state here one of these problems.

Problem 1.6 (Problem 1.1 of [18]). Characterize the meromorphic functions
F which interpolate the multiplier sequences, namely such that the polynomial∑n
k=0 F (k)akxk has only real zeros whenever the polynomial ∑n

k=0 akx
k has

only real zeros.

The specific entire functions from the class of the generalized Fox–Wright
functions, which have a significant role in different mathematical areas, was
studied by many authors. The Fox–Wright function is defined as follows

pψq(a1, . . . , ap, b1, . . . , bq;x) :=
∞∑
k=0

(a1)k · . . . · (ap)k
(b1)k · . . . · (bq)k

xkk!,

where p, q ∈ N∪ {0}, a1, . . . , ap, b1, . . . , bq ∈ C, the Pochhammer or ascending
factorial symbol for a ∈ C is defined as (a)0 = 1, (a)k := a(a+ 1)(a+ 2) · . . . ·
(a+ k − 1) = Γ(a+ k)/Γ(a), k = 1, 2, 3 . . . .

For instance, in case when p = 1 and q = 1, we get the entire functions
defined as

1ψ1(x) :=
∞∑
k=0

Γ(ak + 1)
Γ(ck + 1)

xk

k! , c ≥ a ≥ 0,

and with the parameter values a = 1 and c = α > 0, we get that 1ψ1(x) is the
classical Mittag-Leffler function (see, for example, [6, vol. 3, Chapter XVIII]
by A. Erdélyi, et al.)

Eα :=
∞∑
k=0

xk

γ(αk + 1) , α > 0.

The function Eα is known as a generalization of the exponential functions of
finite order. Moreover, if α ≥ 2, then it is known that this entire function (of
order 1/α) has only real negative zeros, i.e. Eα ∈ L − PI (see [69, Corollary
3] by I.V. Ostrovskii, I. Peresyolkova).

Remark 1.7. The generalized Mittag-Leffler function Eα,β(x) plays an im-
portant role in analysis where it is used in the theory of integral transforms,
fractional calculus, and other areas.
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1.5 Apolar polynomials and the Grace Apo-
larity Theorem

An essential technique in our investigations is related to the Schur composition
of polynomials, apolar polynomials, and the Grace Apolarity Theorem. We
provide a brief description of Laguerre’s Separation Theorem and Grace’s
Apolarity Theorem, which are often implemented in the proofs of composition
theorem for polynomials. For additional citations see P. Borwein and T.
Erdélyi [70], M. Marden [58] and N. Obreschkov [66], and the references
contained therein.

We define a circular domain as an open or closed disk, an open or closed
exterior of a disk, or an open or closed half-plane. The set of circular domains
is invariant under Möbius transformations. The following theorem is the
invariant form of the Gauss-Lucas Theorem (see also [70, p. 20] by P. Borwein
and T. Erdélyi, [58] by M. Marden, [66] by N. Obreschkov).
Theorem F (Laguerre’s Separation Theorem, see [58, §13] or [66, §14]). Let
P (z) = ∑n

k=0 akx
k be a complex polynomial of degree n ≥ 2.

1. Suppose that all zeros of P lie in a circular domain D. For ζ /∈ D, all
of the zeros of the polar derivative Pζ(z) := nP (z) + (ζ − z)P ′(z) lie in
D.

2. Let α be any complex number such that P (α)P ′(α) 6= 0. Then any circle
C passing through the points α and α− nP (α)

P ′(α) either passes through all
the zeros of P or separates the zeros of P in the sense that there is at
least one zero of P in the interior of C and at least one zero of P in
the exterior of C.

Some extensions of Laguerre’s theorem and some of its more recent ap-
plications in terms of the notion of a generalized center of mass is given by
E. Grosswald [35] (see also G. Pólya and G. Szegö [74, Vol. II, Problems
101-120]).

Further, we give the definition of apolar polynomials in order to state
Grace’s Apolarity Theorem (see [74, Chapter 2, $ 3, Problem 145] by G. Pólya
and G. Szegö, [58, p.61] by M. Marden, [66, p. 23] by N. Obreschkov, [70] by
P. Borwein and T. Erdélyi, or [34] by A. Goodman and I.J. Schoenberg).
Definition 1.8 (see, for example [74, Chapter 2, §3, p. 59]). Two complex
polynomials P (x) = ∑n

k=0

(
n
k

)
akx

k and Q(x) = ∑n
k=0

(
n
k

)
bkx

k of degree n are
called apolar if their coefficients satisfy the relation

n∑
k=0

(−1)k
(
n

k

)
akbn−k = 0. (1.6)
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The following famous theorem due to J.H. Grace states that the complex
zeros of two apolar polynomials cannot be separated by a straight line or by
a circumference.

Theorem G (J.H. Grace, see for example [74, Chapter 2, $ 3, Problem
145], [58, p.61], [66, p. 23], [70], or [34]). Suppose P and Q are two apolar
polynomials of degree n ≥ 1. If all the zeros of P lie in a circular domain
K, then Q has at least one zero in K. (A circular region is a closed or open
half-plane, disk or exterior of a disk).

The Grace Apolarity Theorem can be derived by repeated applications
of Laguerre’s Separation Theorem (see [58, p. 61] by M. Marden). It is
a fundamental result that gives information about the relative location of
the zeros of two apolar polynomials and has far-reaching consequences. An
example of such a consequence is the following composition theorem.

Theorem H (The Malo-Schur-Szegö Theorem, see [58], [66, §7]). Let A(x) =∑n
k=0

(
n
k

)
akx

k and B(x) = ∑n
k=0

(
n
k

)
bkx

k are complex polynomials and set

C(x) :=
n∑
k=0

(
n

k

)
akbkx

k.

1. If all the zeros of A lie in a circular domain K, and if β1, β2, . . . , βn
are all the zeros of B, then every zero of C is of the form ζ = −wβj,
where 1 ≤ j ≤ n, and w ∈ K (G. Szegö, [81]).

2. If all the zeros of A lie in a convex region K containing the origin and
if the zeros of B lie in the interval (−1, 0), then all the zeros of C also
lie in K (I. Schur, [79]).

3. If all the zeros of A lie in the interval (−a, a) and all the zeros of B lie
in the interval (−b, 0) (or in (0, b)), where a, b > 0, then all the zeros
of C lie in (−ab, ab).

4. If all the zeros of a polynomial P (x) = ∑µ
k=0 akx

k are real and all the
zeros of Q(x) = ∑ν

k=0 bkx
k are real and of the same sign, then all the

zeros of the polynomials H(x) = ∑m
k=0 k!akbkxk and L(x) = ∑m

k=0 akbkx
k

are also all real, where m = min(µ, ν) (E. Malo [66, p. 29], I. Shur
[79]).

For variations and generalizations of The Malo-Schur-Szegö Theorem, see
[58] by M. Marden, [66] by N. Obreschkov and the references included in these
monographs, and the more recent works of A. Aziz [1], [2] and Z. Rubinstein
[77].
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Note that from the point (4) of Theorem H it follows that if a real
polynomial ∑n

k=0 bkx
k has only real negative zeros, then the sequence (bk)∞k=0

is a multiplier sequence, where we put bk = 0 if k > n.

1.6 The partial theta function and its history
overview

A special entire function

ga(z) =
∞∑
k=0

a−k
2
zk, a > 1,

known as the partial theta function (the classical Jacobi theta function is
defined by the series θ(z) := ∑∞

k=−∞ a
−k2

zk, |a| > 1), was investigated by
many mathematicians (see, for example, the work by E.T. Whittaker [88]),
it has many interesting properties and plays an important role in Complex
Analysis. Note that for the second quotients of Taylor coefficients for this
function we have qn(ga) = a2 for all n ≥ 2.

The partial theta function has a long and fascinating history of its study.
We give a brief overview of an interesting survey which was made by S.O. War-
naar in [86]. Initially, S. Ramanujan (see [75]) contributed extensively to the
theory of theta functions. G.E. Andrews discovered Ramajuan’s lost notebook
in 1976. In The Lost Notebook S. Ramanujan stated numerous identities
for functions that closely resemble ordinary theta functions. Unfortunately,
his notes did not contain any proofs of the partial theta function formulae,
making it impossible to determine how S. Ramanujan actually discovered
them. Proofs of many of Ramanujan’s partial theta function identities were
found by G.E. Andrews, whose proofs were based on some identities for basic
hypergeometric series. G.E. Andrews was the first to name the function as
the “partial theta function”, and his student, S.O. Warnaar, made a research
[86], containing the history of investigation of the partial theta function and
some of its main properties.

The first occurrence of the partial theta function can be found in 1844 in
the papers of G. Eisenstein (see [30]). He gave a continues fraction expansion
for ga. The previous result was generalized by E. Heine in 1846 ([39]). Later
on, G. Eisenstein’s result for ga was sharpened by F. Bernstein and O. Szász
([9]). L. Tschakaloff (see [82] and [83]) established linear independence results
for values of partial theta function.

Besides, the history of investigating the zeros of the partial theta function
has arisen our interest. The main question for us is, for which a > 1, the partial
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theta function belongs to the Laguerre–Pólya class. In 1904, G.H. Hardy [36]
studied the zeros of entire functions and showed that the roots of ga for a2 ≥ 9
are real and negative with exactly one root in the interval (−a2n ,−a2n−1).
M. Petrovitch [71] considered real rooted entire functions f all of whose finite
sections are real rooted. J.I. Hutchinson has received a sufficient condition
(see Theorem B). He improved Hardy’s lower bound on a2 for the roots of the
partial theta function to be real and negative from 9 to 4. The paper [47] of
O.M. Katkova, T. Lobova, A.M. Vishnyakova gives the exhaustive answer to
the question: for which a > 1 the entire function ga belongs to the Laguerre–
Pólya class. Moreover, the paper [48] deals with the stability of Taylor sections
of the partial theta function. Note that, since

(
a−k

2
)∞
k=0
∈ CZDS for a ≥ 1,

in the paper [47] it was explained that for every n ≥ 2, there exists a constant
cn > 1 such that for each n ∈ N, Sn(z, ga) := ∑n

j=0 a
−j2
zj ∈ L − P if and

only if a2 ≥ cn. The notation of the constants cn having this property will be
further used.

Theorem I (O. Katkova, T. Lobova, A. Vishnyakova, [47]). There exists a
constant q∞ (q∞ ≈ 3.23363666) such that:

1. ga ∈ L − P ⇔ a2 ≥ q∞;

2. ga ∈ L − P ⇔ there exists z0 ∈ (−a3,−a) such that ga(z0) ≤ 0

3. if there exists z0 ∈ (−a3,−a) such that ga(z0) < 0, then a2 > q∞;

4. for a given n ≥ 2 we have Sn(z, ga) ∈ L − P ⇔ there exists zn ∈
(−a3,−a) such that Sn(zn, ga) ≤ 0;

5. if there exists zn ∈ (−a3,−a) such that Sn(zn, ga) < 0, then a2 > cn;

6. 4 = c2 > c4 > c6 > · · · and limn→∞ c2n = q∞;

7. 3 = c3 < c5 < c7 < · · · and limn→∞ c2n+1 = q∞.

Calculations show that c4 = 1 +
√

5 ≈ 3.23607, c6 ≈ 3.23364 and c5 ≈
3.23362, c7 ≈ 3.23364.

The partial theta function is of interest to many areas such as statistical
physics and combinatorics, see [80] by A. Sokal, Ramanujan type q-series, see
[87] by S.O. Warnaar, asymptotic analysis and the theory of (mock) modular
forms and problems related to hyperbolic polynomials, see, for example, [36]
by G.H. Hardy, [41] by J.I. Hutchinson, [47] by O. Katkova, T. Lobova and
A. Vishnyakova, [52] by V.P. Kostov, [54] by V.P. Kostov and B. Shapiro,
[68] by I.V. Ostrovskii, [71] by M. Petrovitch, [85] by J.L. Walsh, [45] by
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I. Karpenko and A. Vishnyakova, etc. There is a series of works by V.P. Kostov
dedicated to various properties of zeros of the partial theta function and
its derivative (see [51, 53] and the references therein). For example, in [52]
V.P. Kostov studied the so called spectrum of the partial theta function, i.e.
the set of values of a > 1 for which the function ga has a multiple real zero.

Theorem J (V.P. Kostov, [52]).

1. The spectrum Γ of the partial theta-function consists of countably many
values of a denoted by ã1 > ã2 > . . . > ãk > . . . > 1, limj→∞ ãj = 1.

2. For ãk ∈ Γ the function gãk has exactly one multiple real zero which is
of multiplicity 2 and is the rightmost of its real zeros.

3. For a ∈ (ãk+1, ãk) the function ga has exactly k complex conjugate pairs
of zeros (counted with multiplicities).

In [49], V.P. Kostov shown that for any fixed value of the parameter a,
the partial theta function ga has only finite number of multiple zeros. For
a ∈ (1,+∞), there exists a sequence of values of this parameter which tends
to 1 such that ga has double negative zeros which tend to −eπ (see [50]).

The paper [54] by V.P. Kostov and B. Shapiro among the other results
explains the role of the constant q∞ in the study of the set of entire functions
with positive coefficients having all Taylor sections with only real zeros.

Theorem K (V.P. Kostov and B. Shapiro, [54]). Let f(z) = ∑∞
k=0 akz

k be an
entire function with positive coefficients and Sn(z) = ∑n

j=0 ajz
j be its sections.

Suppose that there exists N ∈ N, such that for all n ≥ N the sections Sn
belong to the Laguerre–Pólya class. Then lim infn→∞ qn(f) ≥ q∞.

A.D. Sokal in [80] studies the leading roots of the partial theta-function.
A formal power series

f(x, y) =
∞∑
n=0

αnx
nyn(n−2)/2,

is considered as a formal power series in y whose coefficients are polynomials
in x. A.D. Sokal defines the ”leading root” of f as a unique formal power
series x0(y) which satisfies the equation f(x0(y), y) = 0. The coefficientwise
positivity of −x0(y) was proved. Moreover, all the coefficients of 1/x0(y)
and 1/x0(y)2 after the constant term 1 are strictly negative, except for the
vanishing coefficient of y3 for the latter case.

In [67] by O. Katkova, T. Lobova and A. Vishnyakova, some entire
functions with a convergent sequence of second quotients of coefficients are
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investigated. The main question of [67] is whether the Taylor sections of the
function

∞∏
k=1

(
1 + z

ak

)
,a > 1, and ∑∞k=0

zk

k!ak2 , a ≥ 1, belong to the Laguerre–
Pólya class of type I. In [11] by A. Bohdanov and A. Vishnyakova and [10] by
A. Bohdanov, some important special functions with non-decreasing sequence
of the second quotients of Taylor coefficients are studied.

B. He in [38] considers the entire function as follows

A(α)
q (a;x) =

∞∑
k=0

(a; q)kqαk
2
xk

(q; q)k
,

where α > 0, 0 < q < 1, and

(a; q)n =


1, n = 0
n−1∏
j=1

(1− aqj), n ≥ 1,

is the q-shifted factorial. The entire function A(α)
q (a;x) defined as above

is the generalization of Ramanujan entire function and the Stieltjes-Wigert
polynomial which have only real positive zeros. The paper [38] gives a partial
answer to Zhang’s question: under what conditions the zeros of the entire
function A(α)

q (a;x) are all real.
A. Baricz and S. Singh in [5] investigated the Bessel functions. The

Hurwitz theorem on the exact number of nonreal zeros was extended for
the Bessel functions of the first kind. In addition, the results on zeros of
derivatives of Bessel functions and the cross-product of Bessel functions were
obtained.

1.7 The entire functions with the decreasing
second quotients of Taylor coefficients

In the paper [62] by T.H. Nguyen and A. Vishnyakova, sufficient conditions
for some special entire functions to have only real zeros were found.

Theorem L (T.H. Nguyen, A. Vishnyakova, [62]). Let f(z) = ∑∞
k=0 akz

k,ak >
0 for all k, be an entire function. Suppose that the second quotients of Taylor
coefficients qn(f) are decreasing in n, i.e. q2(f) ≥ q3(f) ≥ q4(f) ≥ . . . , and
lim
n→∞

qn(f) = b ≥ q∞. Then all the zeros of f are real and negative, in other
words f ∈ L − P.
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It is easy to see that, if only the estimation of qn(f) from below is given and
the assumption of monotonicity is omitted, then the constant 4 in qn(f) ≥ 4
is the smallest possible to conclude that f ∈ L − P .

The following function is a generalization of the classical Mittag-Leffler
function and was studied by I.V. Ostrovskii and I. Peresyolkova in 1997 in
[69]

Eρ(z, µ) =
∞∑
k=0

zk
Γ(µ+ k/ρ) , ρ > 0, µ ∈ C.

It plays a fundamental role in the theory of integral transforms and representa-
tions created by Dzhrbashyan and other topics of Analysis. Note that qk(Eρ)
are decreasing in k. I.V. Ostrovskii and I. Peresyolkova found non-asymptotic
results on the distribution of zeros of Eρ(z, µ). In particular, they obtained
that this function belongs to the L − P class for ρ ∈ (0, 1/2].

1.8 The study of the entire functions with the
increasing second quotients

The function ϕa(z,m) = ∑∞
k=0

zk

ak2 (k!)m, a > 1,m > 0 has the increasing
second quotients of Taylor coefficients. Indeed, we can observe that

qk(ϕa) = ((k − 1)!)2ma(k−2)2
ak

2

a2(k−1)2((k − 2)!)m(k!)m =
(
k − 1
k

)m
a2

is increasing in k. A. Bohdanov in [10] studied the function above and found
the estimations on a > 1 and m ∈ (0, 1) for which ϕa(z,m) and its Taylor
sections belong to the Laguerre-Pólya class. In addition, for the case m = 0,
it is the partial theta function which described in details in [47] and [67] by
O. Katkova, T. Lobova and A. Vishnyakova. The case m > 1 was investigated
in [11] by A. Bohdanov and A. Vishnyakova, where necessary and sufficient
conditions were found for ϕa(z,m) to belong to the Laguerre–Pólya class.
The question is remained open for the case of negative m.



Chapter 2

A necessary condition for an
entire function with the
increasing second quotients of
Taylor coefficients to belong to
the Laguerre–Pólya class

In this chapter, we study the entire functions with the increasing second
quotients of Taylor coefficients. For an entire function f(x) = ∑∞

k=0 akx
k, ak >

0, we show that f does not belong to the Laguerre–Pólya class if the quotients
qn(f) = a2

n−1
an−2an

are increasing in n, and c := lim
n→∞

a2
n−1

an−2an
is smaller than

an absolute constant q∞ (q∞ ≈ 3.23363666). In [62] by T.H. Nguyen and
A. Vishnyakova, it was shown that if qn(f) are decreasing in n and they tend
to a constant which is greater than or equal to the constant q∞, then the
function f has only real and negative zeros, or, in other words, f belongs to
the Laguerre–Pólya class. As it was proved in [47] by O. Katkova, T. Lobova
and A. Vishnyakova, if only the estimation of qn(f) from below is given, and
the assumption of monotonicity is omitted, then the constant 4 in the sufficient
condition qn(f) ≥ 4 is the smallest possible to conclude that f ∈ L − P . The
main result of this chapter is the following theorem.

Theorem 2.1 (T.H. Nguyen, A. Vishnyakova, [60]). Let f(x) = ∑∞
k=0 akx

k,
where ak > 0 for all k, be an entire function. Suppose that the quotients qn(f)
are increasing in n, and lim

n→∞
qn(f) = c < q∞. Then the function f does not

belong to the Laguerre–Pólya class.

The theorem above provides the following necessary condition for an entire

15



CHAPTER 2. INCREASING SECOND QUOTIENTS 16

function with positive coefficients and with the increasing second quotients of
Taylor coefficients to belong to the Laguerre–Pólya class.

Corollary 2.2 (T.H. Nguyen, A. Vishnyakova, [60]). Let f(x) = ∑∞
k=0 akx

k,
where ak > 0 for all k, be an entire function such that the quotients qn(f) are
increasing in n. If f belongs to the Laguerre–Pólya class, then lim

n→∞
qn(f) ≥

q∞.

Note that, by Theorem C (see Chapter 1), every entire function from the
L − P class generates a new multiplier sequence. So, we obtain the following
direct corollary of Theorem 2.1.

Corollary 2.3. Suppose that a real positive sequence (ak)∞k=0 has the following
property: the sequence of its second quotients

(
a2
k−1

ak−2ak

)∞
k=2

is increasing in k.

Then if (k!ak)∞k=0 ∈MS, then lim
n→∞

a2
k−1

ak−2ak
≥ q∞.

2.1 Proof of Theorem 2.1
Without loss of generality, we can assume that a0 = a1 = 1, since we can
consider a function g(x) = a−1

0 f(a0a
−1
1 x) instead of f , due to the fact that

such rescaling of f preserves its property of having real zeros and preserves
the second quotients of Taylor coefficients: qn(g) = qn(f) for all n. During
the proof we use notation pn and qn instead of pn(f) and qn(f). So, we can
write

f(x) = 1 + x+
∞∑
k=2

xk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

.

For convenience in solving inequalities, we further consider the function

ϕ(x) = f(−x) = 1− x+
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

instead of f .
Since the quotients qn are increasing in n, and, under our assumptions,

lim
n→∞

qn = c < q∞, we conclude that q2 < q∞ < 4. The following lemma shows
that for q2 < 3, the functions ϕ does not belong to the class L − P .

Lemma 2.4 (T.H. Nguyen, A. Vishnyakova, [60]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function, and qk = qk(ϕ) are increasing in

k, i.e. 0 < q2 ≤ q3 ≤ q4 ≤ . . . If ϕ ∈ L − P, then q2(ϕ) ≥ 3.
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Proof. Suppose that ϕ ∈ L − P, and denote by 0 < x1 ≤ x2 ≤ x3 ≤ . . . the
real roots of ϕ. We use the Vieta’s polynomials

σr =
∑

1≤i1<i2<···<ir
x−1
i1 x

−1
i2 · . . . · x

−1
ir , r ∈ N,

and the general Newton power sums

sr =
∞∑
i=1

x−ri , r ∈ N.

Therefore, since s2 = σ2
1 − 2σ2, we can observe that

0 ≤
∞∑
k=1

1
x2
k

=
( ∞∑
k=1

1
xk

)2

− 2
∑

1≤i<j<∞

1
xixj

=
(
a1

a0

)2
− 2a2

a0
,

whence a2
1 ≥ 2a0a2, or q2 ≥ 2. According to the Cauchy-Schwarz inequality,

we obtain

( 1
x1

+ 1
x2

+ . . .)( 1
x3

1
+ 1
x3

2
+ . . .) ≥ ( 1

x2
1

+ 1
x2

2
+ . . .)2,

or s1s3 ≥ s2
2. Since σ1 = −a1

a0
, σ2 = a2

a0
, σ3 = a3

a0
, and using s3 = σ3

3 − 3σ1σ2 +
3σ3, we get

σ1(σ3
1 − 3σ1σ2 + 3σ3) ≥ (σ2

1 − 2σ2)2,

or

a2
1a2

a3
0

+ 3a1a3

a2
0
− 4a

2
2
a2

0
≥ 0.

Since a0 = a1 = 1 and a2 = 1
q2
, a3 = 1

q2
2q3

, we obtain

q3(q2 − 4) + 3 ≥ 0.

Under our assumptions, since q2 ≤ q3, supposing q2 < 4, we conclude that

q2(q2 − 4) + 3 ≥ 0.

Therefore, q2 ≥ 3.

Further, we assume that 3 ≤ q2 < q∞. In order to prove Theorem 2.1, we
need the following lemma.
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Lemma 2.5 (T.H. Nguyen, A. Vishnyakova, [60]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function. Suppose that q2 ≥ 2, and qk =

qk(ϕ) are increasing in k, i.e. q2 ≤ q3 ≤ q4 . . ., lim
n→∞

qn = c < q∞. Then for
any x ∈ [0, q2] we have ϕ(x) > 0, i.e. there are no real roots of ϕ in the
segment [0, q2].

Proof. For x ∈ [0, 1] we have

1 ≥ x >
x2

q2
>

x3

q2
2q3

>
x4

q3
2q

2
3q4

>
x5

q4
2q

3
3q

2
4q5

> · · · ,

whence

ϕ(x) = (1− x) +
(
x2

q2
− x3

q2
2q3

)
+ (2.1)(

x4

q3
2q

2
3q4
− x5

q4
2q

3
3q

2
4q5

)
+ . . . > 0 for all x ∈ [0, 1].

Suppose that x ∈ (1, q2]. Then we obtain

1 < x ≥ x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

> · · · (2.2)

For an arbitrary m ∈ N we have

ϕ(x) = S2m+1(x, ϕ) +R2m+2(x, ϕ),

where

S2m+1(x, ϕ) := 1− x+
2m+1∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

,

and

R2m+2(x, ϕ) :=
∞∑

k=2m+2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

.

By (2.2) and the Leibniz criterion for alternating series, we obtain

R2m+2(x, ϕ) = ∑∞
k=m+1

(
x2k

q2k−1
2 q2k−2

3 ·...·q2
2k−1q2k

− (2.3)

x2k+1

q2k
2 q2k−1

3 ·...·q2
2kq2k+1

)
> 0 for all x ∈ (1, q2],

or

ϕ(x) > S2m+1(x, ϕ) for all x ∈ (1, q2], m ∈ N. (2.4)
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It remains to prove that there exists m ∈ N such that

S2m+1(x, ϕ) > 0

for all x ∈ (1, q2]. We have

S2m+1(x, ϕ) = (1− x) +
(
x2

q2
− x3

q2
2q3

)
+
(

x4

q3
2q

2
3q4
− x5

q4
2q

3
3q

2
4q5

)
(2.5)

+ . . .+
(

x2m

q2m−1
2 q2m−2

3 · . . . · q2
2m−1q2m

− x2m+1

q2m
2 q2m−1

3 · . . . · q2
2mq2m+1

)
.

Under our assumptions, qk are increasing in k, and lim
n→∞

qn = c < q∞. We
prove that for any m ∈ N, any fixed k = 1, 2, . . . ,m, and any x ∈ (1, q2] the
following inequality holds

x2k

q2k−1
2 q2k−2

3 · . . . · q2k
− x2k+1

q2k
2 q

2k−1
3 · . . . · q2

2kq2k+1

≥ x2k

c2k−1 · c2k−2 · . . . · c
− x2k+1

c2k · c2k−1 · . . . · c2 · c
.

For x ∈ (1, q2] and k = 1, 2, . . . ,m, we define the following function

F (q2, q3, . . . , q2k, q2k+1) := x2k

q2k−1
2 q2k−2

3 · . . . · q2k
− x2k+1

q2k
2 q

2k−1
3 · . . . · q2

2kq2k+1
.

We observe that
∂F (q2, q3, . . . , q2k, q2k+1)

∂q2
= − (2k − 1)x2k

q2k
2 q

2k−2
3 · . . . · q2k

+ 2kx2k+1

q2k+1
2 q2k−1

3 · . . . · q2
2kq2k+1

< 0⇔ x <
(

1− 1
2k

)
q2q3 · . . . · q2kq2k+1.

The right-hand side of the last inequality is strictly increasing in k, so the
inequalities for all k = 1, 2, . . . ,m are valid if the inequality for k = 1 is valid,
or x <

(
1− 1

2

)
q2q3 = 1

2q2q3. Thus, under our assumptions that q2 ≥ 3 and
x ≤ q2, the function F (q2, q3, . . . , q2k, q2k+1) is decreasing in q2. Since q2 ≤ q3,
we have

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1) =

x2k

q4k−3
3 q2k−3

4 · . . . · q2k
− x2k+1

q4k−1
3 q2k−2

4 · . . . · q2k+1
.
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In particular, if k = 1 we obtain

F (q2, q3) = x2

q2
− x3

q2
2q3
≥ x2

q3
− x3

q3
3
. (2.6)

Further, if k ≥ 2, we have
∂F (q3,q3,q4,...,q2k,q2k+1)

∂q3
= − (4k−3)x2k

q4k−2
3 q2k−3

4 ·...·q2k
+ (4k−1)x2k+1

q4k
3 q2k−2

4 ·...·q2k+1
< 0

⇔ x < 4k−3
4k−1q

2
3q4 · . . . · q2k+1.

The right-hand side of the last inequality is strictly increasing in k, so the
inequalities for all k = 2, 3, . . . ,m are valid if the inequality for k = 2 is valid,
or x < 5

7q
2
3q4q5. Hence, under our assumptions, F (q3, q3, q4, . . . , q2k, q2k+1) is

decreasing in q3, and since q3 ≤ q4, we obtain

F (q3, q3, q4, q5, . . . , q2k, q2k+1) ≥ F (q4, q4, q4, q5, . . . , q2k, q2k+1).

Analogously, since

F (q2k, q2k, . . . , q2k, q2k+1) = x2k

q2k2−k
2k

− x2k+1

q2k2+k−1
2k q2k+1

,

its partial derivative with respect to q2k is

∂F (q2k, q2k, . . . , q2k, q2k+1)
∂q2k

= −(2k2 − k)x2k

q2k2−k+1
2k

+ (2k2 + k − 1)x2k+1

q2k2+k
2k q2k+1

< 0

⇔ x <

(
2k2 − k

2k2 + k − 1

)
q2k−1

2k q2k+1,

or, equivalently,

x <

(
1− 2k − 1

2k2 + k − 1

)
q2k−1

2k q2k+1.

Therefore, under our assumptions, F (q2k, q2k, . . . , q2k, q2k+1) is decreasing
in q2k, and since q2k ≤ q2k+1, we get

F (q2k, q2k, . . . , q2k, q2k+1) ≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1),

where

F (q2k+1, q2k+1, . . . , q2k+1, q2k+1) = x2k

q2k2−k
2k+1

− x2k+1

q2k2+k
2k+1

.
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Consequently, we obtain the following chain of inequalities

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1)
≥ F (q4, q4, q4, q5, . . . , q2k, q2k+1) ≥ . . . ≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1).

Next, we consider the partial derivative of F (q2k+1, q2k+1, . . . , q2k+1, q2k+1)

∂F (q2k+1, q2k+1, . . . , q2k+1, q2k+1)
∂q2k+1

= −(2k2 − k)x2k

q2k2−k+1
2k+1

+ (2k2 + k)x2k+1

q2k2+k+1
2k+1

< 0

⇔ x <
2k2 − k
2k2 + k

q2k
2k+1,

or, equivalently,

x <

(
1− 2k

2k2 + k

)
q2k

2k+1.

Thus, F (q2k+1, q2k+1, . . . , q2k+1, q2k+1) is decreasing in q2k+1. Besides, since
qk are increasing in k, and lim

n→∞
qn = c, we conclude that

F (q2k+1, q2k+1, . . . , q2k+1, q2k+1) ≥ F (c, c, . . . , c, c)

= x2k

ck(2k−1) −
x2k+1

ck(2k+1) .

Substituting the last inequality in (2.5) for every x ∈ (1, q2] and k =
1, 2, . . . ,m, we get

S2m+1(x, ϕ) ≥ (1− x) +
(
x2

c
− x3

c3

)
+
(
x4

c6 − x5

c10

)
+ . . . (2.7)

+
(

x2m

cm(2m−1) − x2m+1

cm(2m+1)

)
= ∑2m+1

k=0
(−1)kxk

(
√
c)k(k−1) = S2m+1(−

√
cx, g√c),

where ga is the partial theta function and S2m+1(y, ga) is its (2m+1)-th partial
sum at the point y. Since, by our assumptions, qk(g√c) = (

√
c)2 = c < q∞,

using the statement (7) of Theorem I that 3 = c3 < c5 < c7 < · · · and
limn→∞ c2n+1 = q∞ (see Chapter 1), we obtain that there exists m ∈ N such
that S2m+1(y, g√c) /∈ L − P (or, equivalently, S2m+1(−

√
cx, g√c) /∈ L − P).

Let us choose and fix such m. By the statement (5) of Theorem I (it
states that for a given n ≥ 2, Sn(x, ga) ∈ L − P if and only if there exists
xn ∈ (−a3,−a) such that Sn(xn, qa) ≤ 0), we obtain that for every x such
that

√
c <
√
cx < (

√
c)3, we have S2m+1(−

√
cx, g√c) > 0. It means that for

every x : 1 < x < c we have S2m+1(
√
cx, g√c) > 0, and, using (2.7) and (2.4),

we obtain

ϕ(x) > S2m+1(x, ϕ) > 0 for all x ∈ (1, q2) ⊂ (1, c).
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It remains to prove that ϕ(q2) > 0. We have

ϕ(q2) =
(

1− q2 + q2 −
q2

q3

)
+
(
q2

q2
3q4
− q2

q3
3q

2
4q5

)

+
(

q2

q4
3q

3
4q

2
5q6
− q2

q5
3q

4
4q

3
5q

2
6q7

)
+ . . . > 0,

by our assumptions on qj.

The lemma below has a key value in our research. We further provide its
generalization in Chapter 3. As we mentioned before, the function ϕ can be
presented in the following form

ϕ(x) = S4(x, ϕ) +R5(x, ϕ),

where

S4(x, ϕ) = 1− x+ x2

q2
− x3

q2
2q3

+ x4

q3
2q

2
3q4

,

and

R5(x, ϕ) :=
∞∑
k=5

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
.

In the following lemma, we estimate the 4-th partial sum of ϕ from below
and set a := q2, b := q3, c := q4.

Lemma 2.6 (T.H. Nguyen, A. Vishnyakova, [60]). Let P (x) = 1− x+ x2

a
−

x3

a2b
+ x4

a3b2c
be a polynomial, 3 ≤ a < 4, and a ≤ b ≤ c. Then

min
0≤θ≤2π

|P (aeiθ)| ≥ a

b2c
.

Proof. By direct calculation, we have

|P (aeiθ)|2 = (1− a cos θ + a cos 2θ − a

b
cos 3θ + a

b2c
cos 4θ)2

+ (−a sin θ + a sin 2θ − a

b
sin 3θ + a

b2c
sin 4θ)2

= 1 + 2a2 + a2

b2 + a2

b4c2 − 2a cos θ + 2a cos 2θ − 2a
b

cos 3θ

+ 2 a

b2c
cos 4θ − 2a2 cos θ + 2a

2

b
cos 2θ − 2 a

2

b2c
cos 3θ

− 2a
2

b
cos θ + 2 a

2

b2c
cos 2θ − 2 a

2

b3c
cos θ.
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Next, set t := cos θ, t ∈ [−1, 1]. Applying that cos 2θ = 2t2 − 1, cos 3θ =
4t3 − 3t, and cos 4θ = 8t4 − 8t2 + 1, we get

|P (aeiθ)|2 = 16a
b2c

t4 +
(
−8a
b
− 8a2

b2c

)
t3 +

(
4a− 16a

b2c
+ 4a2

b
+ 4a2

b2c

)
t2

+
(
−2a+ 6a

b
− 2a2 + 6a2

b2c
− 2a2

b
− 2a2

b3c

)
t

+
(

1 + 2a2 + a2

b2 + a2

b4c2 − 2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
.

In the following step, we want to show that min0≤θ≤2π |P (aeiθ)|2 ≥ a2

b4c2 ,
or, equivalently, to prove the inequality min0≤θ≤2π |P (aeiθ)|2− a2

b4c2 ≥ 0. Using
the last expression, we see that the inequality we want to get is equivalent to
the following statement: for all t ∈ [−1, 1] the inequality below holds

16a
b2c

t4 − 8a
b

(
1 + a

bc

)
t3 + 4a

(
1− 4

b2c
+ a

b
+ a

b2c

)
t2 − 2a

(
1− 3

b
+ a− 3a

b2c
+

a

b
+ a

b3c

)
t+

(
1 + 2a2 + a2

b2 − 2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.

Set y := 2t, where y ∈ [−2, 2]. We rewrite the last inequality as the following
a

b2c
y4 − a

b

(
1 + a

bc

)
y3 + a

(
1− 4

b2c
+ a

b
+ a

b2c

)
y2

− a
(

1− 3
b

+ a− 3a
b2c

+ a

b
+ a

b3c

)
y

+
(

1 + 2a2 + a2

b2 − 2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.

Let us consider the coefficients of the polynomial on the left hand side: the
coefficient of y4 is a

b2c
> 0, and the coefficient of y3 is −a

b

(
1 + a

bc

)
< 0. It is

easy to show that the other coefficients are also sign-changing. For y2, since
a, b and c are positive, it follows that

b2c > 4.

Then we have

1− 4
b2c

> 0.

Thus, the coefficient of y2 is

1 + a

b
+ a

b2c
− 4
b2c

=
(

1− 4
b2c

)
+ a

b
+ a

b2c
> 0.
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As for the coefficients of y, we have

1 + a− 3
b
> 0⇔ ab+ b > 3,

and
a

b
− 3a
b2c

> 0⇔ a

b
>

3a
b2c
⇔ abc > 3a,

since 3 ≤ a ≤ b ≤ c. Therefore, it follows from the inequalities above that

1 + a+ a

b
+ a

b3c
− 3
b
− 3a
b2c

=
(

1 + a− 3
b

)
+
(
a

b
− 3a
b2c

)
+ a

b3c
> 0,

Finally, we observe that

1− 2a+ a2 = (a+ 1)2 ≥ 0,

which holds for any a, and

a2 − 2a
2

b
> 0⇔ a2b > 2a2 ⇔ b > 2,

which is true under our assumptions that 3 ≤ a ≤ b.
Also,

a2

b2 − 2 a
2

b2c
> 0,

follows from
a2

b2 > 2 a
2

b2c
⇔ a2c > 2a2 ⇔ c > 2,

which is true under our assumptions that 3 ≤ a ≤ b ≤ c. Therefore, we have

1 + 2a2 + a2

b2 − 2a− 2a
2

b
− 2 a

2

b2c
+ 2 a

b2c

= (1 + a2 − 2a) + (a2 − 2a
2

b
) + (a

2

b2 − 2 a
2

b2c
) + 2 a

b2c
> 0.

Consequently, the inequality we need holds for any y ∈ [−2, 0], so it
remains to prove it for y ∈ [0, 2]. Multiplying our inequality by b2c

a
, we get

y4 − (bc+ a)y3 + (b2c+ abc+ a− 4)y2 − (b2c+ ab2c+ abc+ a

b
− 3bc− 3a)y
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+(b
2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2) =: ψ(y),

and we want to prove that ψ(y) ≥ 0 for all y ∈ [0, 2].
Let χ(y) := ψ(y)− 1

b
(b− a)y, then

χ(y) = y4 − (bc+ a)y3 + (b2c+ abc+ a− 4)y2

−(b2c+ ab2c+ abc+ a

b
− 3bc− 3a)y

+
(
b2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2

)
− 1
b

(b− a)y

= y4 − (bc+ a)y3 + (b2c+ abc+ a− 4)y2

−
(
b2c+ ab2c+ abc+ a

b
− 3bc− 3a+ 1

b
(b− a)

)
y

+
(
b2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2

)
= y4 − (bc+ a)y3 + (b2c+ abc+ a− 4)y2

−(b2c+ ab2c+ abc− 3bc− 3a+ 1)y

+
(
b2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2

)
.

Since, under our assumptions, a ≤ b and y ∈ [0, 2], we have χ(y) ≤ ψ(y)
for all y ∈ [0, 2]. Therefore, it is sufficient to prove that χ(y) ≥ 0 for all
y ∈ [0, 2]. To begin with, we have

χ(0) = ψ(0) = b2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2 ≥ 0,

as it was previously shown. Next, we observe that χ(2) = ψ(2)− 2
c
(b−a) ≥ 0,

since

ψ(2) = −2bc− 2a
b

+ b2c

a
+ ac+ 2

= 1
b

(
2(b− a) + b2c

a
(b− a)− bc(b− a)

)

= 1
b

(b− a)
(

2 + bc

a
(b− a)

)
≥ 2
b

(b− a) ≥ 0.

Now we consider the following function

ν(y) := ∂2χ(y)
∂y2 = ∂2ψ(y)

∂y2 = 12y2 − 6(bc+ a)y + 2(b2c+ abc+ a− 4).
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The vertex point of this parabola is

yv = bc+ a

4 ≥ 3.

Accordingly, we can observe that ν(y) decreases for y ∈ [0, 2]. We have

ν(0) = 2(b2c+ abc+ a− 4) > 0,

and

ν(2) = 2abc+ 2b2c− 12bc− 10a+ 40.

We want to show that ν(2) is positive, which follows from

abc+ b2c− 6bc− 5a+ 20 = (20− 5a) + (b2c− 3bc) + (abc− 3bc)

= 5(4− a) + bc(c− 3) + bc(a− 3) > 0,
due to our assumptions. We conclude that ν(y) is nonnegative for y ∈ [0, 2],
and it follows that χ′(y) increases for y ∈ [0, 2].

Next, we prove that χ′(y) ≤ 0 for y ∈ [0, 2], and it is sufficient to show
that χ′(2) ≤ 0. Under our assumptions that 3 ≤ a ≤ b ≤ c, it follows

χ′(2) = ψ′(2)− b− a
b

= 15− 9bc− 5a+ 3b2c+ 3abc− ab2c

= 5(3− a) + bc(−9 + 3b+ 3a− ab) = 5(3− a) + bc(a− 3)(3− b) ≤ 0,
since 3− a < 0, 3− b < 0. Thus, χ(y) decreases in y and χ(2) ≥ 0, we can
conclude that it is positive for y ∈ [0, 2]. Since χ(y) ≤ ψ(y), it follows that
ψ(y) is positive for y ∈ [0, 2].

By Lemma 2.6, since a = q2, b = q3, and c = q4, we have

min
0≤θ≤2π

|S4(q2e
iθ, ϕ)| ≥ q2

q2
3q4

. (2.8)

Now we need the estimation on |R5(q2e
iθ, ϕ)| from above. The following

lemma is technical.

Lemma 2.7 (T.H. Nguyen, A. Vishnyakova, [60]). Let qn be a sequence in-
creasing in n with lim

n→∞
qn(f) = c < q∞, and let R5(x, ϕ) := ∑∞

k=5
(−1)kxk

qk−1
2 qk−2

3 ·...·qk
.

Then

max
0≤θ≤2π

|R5(q2e
iθ, ϕ)| ≤ q2

q3
3q

3
4 − q2

3
.
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Proof. We have

|R5(q2e
iθ, ϕ)| ≤

∞∑
k=5

qk2
qk−1

2 qk−2
3 · . . . · qk

=
∞∑
k=5

q2

qk−2
3 · . . . · qk

= q2

q3
3q

2
4q5

+ q2

q4
3q

3
4q

2
5q6

+ q2

q5
3q

4
4q

3
5q

2
6q7

+ . . .+ q2

qk−2
3 qk−3

4 qk−4
5 · . . . · qk

+ · · ·

= q2

q3
3q

2
4q5

(
1 + 1

q3q4q5q6
+ 1
q2

3q
2
4q

2
5q

2
6q7

+ · · ·

+ 1
qk−5

3 qk−5
4 qk−5

5 qk−5
6 qk−6

7 qk−7
8 · . . . · qk

+ . . .
)

≤ q2

q3
3q

2
4q5

(
1 + 1

q3q4q5q6
+ 1
q2

3q
2
4q

2
5q

2
6

+ · · ·+ 1
qk−5

3 qk−5
4 qk−5

5 qk−5
6

+ . . .
)

≤ q2

q3
3q

3
4
· 1

1− 1
q3q4q5q6

≤ q2

q3
3q

3
4
· 1

1− 1
q3q3

4

= q2

q3
3q

3
4 − q2

3
,

where we use the fact that q2 ≤ q3 ≤ q4 ≤ . . ..

In the next step of our proof, we check that

min
|x|=q2

S4(x, ϕ) > max
|x|=q2

R5(x, ϕ).

It follows from Lemma 2.6 and Lemma 2.7, that it is sufficient to prove that
q2

q2
3q4

>
q2

q3
3q

3
4 − q2

3
,

which is equivalent to

q3q
3
4 − 1 > q4.

The last inequality obviously holds under our assumptions. Therefore, ac-
cording to Rouché’s theorem, the functions S4(x, ϕ) and ϕ(x) have the same
number of zeros inside the disk {x : |x| < q2} counting multiplicities.

It remains to prove that S4(x, ϕ) has zeros in the disk {x : |x| < q2}.
We present the following lemma.

Lemma 2.8 (T.H. Nguyen, A. Vishnyakova, [60]). Let S4(z, ϕ) = 1 − z +
z2

q2
− z3

q2
2q3

+ z4

q3
2q

2
3q4

be a real polynomial and 3 ≤ q2 ≤ 4. Then S4(z, ϕ) has at
least one root in the disk {z ∈ C : |z| ≤ q2}.

Proof. Firstly, we rewrite S4 in the form

S4(z, ϕ) =
(

4
0

)
+
(

4
1

)
(−z4) +

(
4
2

)
z2

6q2
+
(

4
3

)
(− z3

4q2
2q3

) +
(

4
4

)
z4

q3
2q

2
3q4

.
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Let

Q(z) =
(

4
2

)
b2z

2 +
(

4
3

)
b3z

3 +
(

4
4

)
z4

be a complex polynomial. Then the condition for S4(z, ϕ) and Q(z) to be
apolar is the following(

4
0

)
−
(

4
1

)(
−1

4

)
b3 +

(
4
2

)
1

6q2
b2 = 0,

or, equivalently,

1 + b3 + b2

q2
= 0.

Further, we choose
b3 = q2 − 6

2 ,

and, by the condition of apolarity,

b2 = −q2(1 + q2 − 6
2 ).

Therefore, we have

Q(z) = −6q2

(
1 + q2 − 6

2

)
z2 + 4

(
q2 − 6

2

)
z3 + z4

= z2
(
−3q2(q2 − 4) + 2(q2 − 6)z + z2

)
.

As we can see, the zeros of Q are

z1 = 0, z2 = 0, z3 = q2, z4 = −3(q2 − 4).

To show that z4 lies in the closed disk centered in the origin and of radius q2,
we solve the inequality

| − 3(q2 − 4)| ≤ q2 ⇔ −q2 ≤ 3(q2 − 4) ≤ q2 ⇔ 3 ≤ q2 ≤ 6.

Hence, by our assumptions 3 ≤ q2 ≤ 4, all the zeros of Q are in the disk
{z : |z| ≤ q2}. Since all the zeros of Q are in the disk {z : |z| ≤ q2}, by
Grace’s Apolarity theorem (see Theorem G in Chapter 1), we obtain that
S4(z, ϕ) has at least one zero in the disk {z : |z| ≤ q2}.
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Thus, S4(z, ϕ) has at least one zero in the disk {z : |z| ≤ q2}, and, by
Lemma 2.6 applying to S4(z, ϕ), we obtain that S4(z, ϕ) does not have zeros
on {z : |z| = q2}. So, the polynomial S4(z, ϕ) has at least one zero in the open
disk {z : |z| < q2}. By Rouché’s theorem, the functions S4(z, ϕ) and ϕ(z)
have the same number of zeros inside the disk {z : |z| < q2}, whence ϕ has at
least one zero in the open disk {z : |z| < q2}. If ϕ is in the Laguerre–Pólya
class, this zero must be real, and, since coefficients of ϕ are sign-changing,
this zero belongs to the real interval (0, q2). However, by Lemma 2.5 we
have ϕ(x) > 0 for all x ∈ [0, q2]. This contradiction leads to the fact that
ϕ /∈ L − P .

Theorem 2.1 is proved.

2.2 On the conditions for a special entire func-
tion related to the partial theta-function
and the q-Kummer functions to belong to
the Laguerre–Pólya class

This chapter is based on [59]. We discuss the conditions for the function
Fa(x) = ∑∞

k=0
xk

(a+1)(a2+1)·...·(ak+1) , a > 1, to belong to the Laguerre–Pólya
class, or, equivalently, to have only real zeros.

To begin with, the following function is known as the second q-exponential
function Eq(x) with q = 1/a (see [32], formula (1.3.6.)). We write ha(x)
instead of E1/a(x).

ha(x) = 1 +
∞∑
k=1

xk

(ak − 1)(ak−1 − 1) · . . . · (a− 1) =
∞∏
k=1

(
1 + x

ak

)
, a > 1,

Remark 2.9. Note that the function ha has only real negative zeros, namely,
−a,−a2,−a3, etc., since

∞∏
k=1

(
1 + x

ak

)
= 0⇔ x = −ak.

We study the following companion of ha(x), which is known as the q-
Kummer function 1φ1(q;−q; q,−x), where q = 1/a (see [32], formula (1.2.22)).
Further, we use the notation Fa(x), where

Fa(x) = 1 +
∞∑
k=1

xk

(ak + 1)(ak−1 + 1) · . . . · (a+ 1) , (2.9)
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and we address the question, for which a > 1 this function belongs to
the Laguerre–Pólya class. This problem was posed in the problem list of
the workshop “Stability, hyperbolicity, and zero localization of functions”
(American Institute of Mathematics, Palo Alto, California, 2011, see [84,
Problem 8.2]).

Note that we have

qn(Fa) =

(
(an−1 + 1)(an−1 + 1) · . . . · (a+ 1)

)2

(an−2 + 1)(an−3 + 1) · . . . · (a+ 1)

× 1
(an + 1)(an−1 + 1) · . . . · (a+ 1) = an + 1

an−1 + 1 ,

which is an increasing sequence in n for a > 1, with the limit value given by
a.

The following two theorems are the main results concerning the function
Fa.

Theorem 2.10 (T.H. Nguyen, [59]). The entire function Fa, a > 1, belongs to
the Laguerre–Pólya class if and only if there exists x0 ∈ (−(a2 + 1),−(a+ 1))
such that Fa(x0) ≤ 0.

The following result estimates the corresponding values of the parameter a.

Theorem 2.11 (T.H. Nguyen, [59]).

(i) If Fa, a > 1, belongs to the Laguerre–Pólya class, then a ≥ 3.90155;

(ii) If a ≥ 3.91719, then Fa belongs to the Laguerre–Pólya class.

The question, for which a > 1 the entire function Fa belongs to the
Laguerre–Pólya class, has attracted our interest. Unfortunately, up to now we
can not prove the following statement, and we leave it as an open problem.

Conjecture 2.12 (T.H. Nguyen, [59]). There exist a constant

a0 ∈ [3.90155, 3.91719]

such that the function Fa belongs to the Laguerre–Pólya class if and only if
a ≥ a0.

As we have mentioned earlier, by Theorem C and Theorem D (see Chap-
ter 1), every new entire function from the L − P class generates a new
multiplier sequence and a new complex zero decreasing sequence. So, we
obtain the following direct corollary of Theorem 2.11.
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Corollary 2.13. For a ≥ 3.91719, we have(
k!

(a+ 1)(a2 + 1) · . . . · (ak + 1)

)∞
k=0
∈MS

and
(Fa(k))∞k=0 ∈ CZDS.

If (
k!

(a+ 1)(a2 + 1) · . . . · (ak + 1)

)∞
k=0
∈MS,

then a ≥ 3.90155.

2.3 Proof of Theorem 2.10
Previously, in Lemma 2.4 from Chapter 2 (also, see [60, Lemma 2.1]), we have
shown that for an entire function f(x) = ∑∞

k=0 akx
k, if its second quotients

qk(f) are increasing in k, and f belongs to the Laguerre–Pólya class, then
q2(f) ≥ 3. Therefore, if q2(Fa) < 3, we can conclude that Fa /∈ L − P .

Let us consider the function F̃a(x) := Fa((a+ 1)x), where

F̃a(x) :=
∞∑
k=0

(a+ 1)kxk
(ak + 1)(ak−1 + 1) · . . . · (a+ 1) ,

and note that

qn(F̃a) = (a+ 1)2(n−1)(
(an−1 + 1)(an−2 + 1) · . . . · (a+ 1)

)2

×

(
(an−2 + 1)(an−1 + 1) · . . . · (a+ 1)

)
·
(
(an + 1)(an−1 + 1) · . . . · (a+ 1)

)
(
(a+ 1)n−2

)
·
(
(a+ 1)n

)
= (a+ 1)2n−1

(a+ 1)2n−2×(
(an−2 + 1)(an−1 + 1) · . . . · (a+ 1)

)
·
(
(an + 1)(an−1 + 1) · . . . · (a+ 1)

)
(
(an−1 + 1)(an−2 + 1) · . . . · (a+ 1)

)2

= (an−1 + 1)(an + 1)
(an−1 + 1)2 = an + 1

an−1 + 1 = qn(Fa),
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for all n ∈ N, n ≥ 2. Moreover, the statement that Fa ∈ L − P is equivalent
to the statement F̃a = Fa(−(a + 1)x) ∈ L − P. Therefore, by Lemma 2.4,
q2(F̃a) = q2(Fa) ≥ 3. If q2(Fa) ≥ 4, then for any j ≥ 2 we have qj(Fa) ≥ 4,
thus, according to the Hutchinson’s theorem (see Theorem B from Chapter 1),
Fa ∈ L − P. Therefore, it remains to consider the case q2(Fa) ∈ [3, 4).
Consequently, if Fa(x) ∈ L − P, and q2(Fa) = a2+1

a+1 , then we have the
following condition on a

3 ≤ a2 + 1
a+ 1 < 4.

On the one hand,

a2 + 1
a+ 1 ≥ 3⇔ a2 + 1 ≥ 3(a+ 1),

which is equivalent to the quadratic inequality

a2 − 3a− 2 ≥ 0.

Since we consider a > 1, the solution is

a ≥ (3 +
√

17)/2 ≈ 3.56155281 ≥ q∞.

Besides, note that lim
n→∞

qk(Fa) = a > q∞. On the other hand, if q2(Fa) < 4,
then we have

a2 + 1
a+ 1 < 4⇔ a2 + 1 < 4(a+ 1),

or, equivalently,

a2 − 4a− 3 < 0.

The solution of the quadratic inequality above in case when a > 1 is

1 < a < 2 +
√

7 ≈ 4.64575131.

Consequently, we look at

a ∈
(

3 +
√

17
2 , 2 +

√
7
)
.

Further, during the proof we need inequalities related to the roots of the
function Fa. So, for convenience of dealing with inequalities, we are going to
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consider the positive roots. Thus, instead of Fa we study the entire function
with sign-changing coefficients

fa(x) = Fa(−x) =
∞∑
k=0

(−1)kxk
(ak + 1)(ak−1 + 1) · . . . · (a+ 1) ,

where qk(fa) are increasing in k, and lim
n→∞

qk(fa) = a > q∞. In addition, we
further use the denotation Sn,a and Rn,a for the nth partial sum and the nth
partial remainder of fa consequently. Applying Rouché’s theorem, we prove
that the function fa has the same number of zeros in {z : |z| < a2 + 1} as
S2,a. In the following lemma we find the minimum value of S2,a on the disk
of radius a2 + 1.

Lemma 2.14 (T.H. Nguyen, [59]). We have min|z|=a2+1 |S2,a(z)| = 1.

Proof. For the sake of brevity, we further write q2 instead of q2(fa). Note
that

q2 = a2 + 1
a+ 1 ,

hence, we have∣∣∣S2,a
(
(a2 + 1)eiθ

)∣∣∣2 =
∣∣∣1− q2e

iθ + q2e
2iθ
∣∣∣2

= (1− q2 cos θ + q2 cos 2θ)2 + (−q2 sin θ + q2 sin 2θ)2

= 1 + q2
2 cos2 θ + q2

2 cos2 2θ − 2q2 cos θ + 2q2 cos 2θ
− 2q2

2 cos θ cos 2θ + q2
2 sin2 θ + q2

2 sin2 2θ − 2q2
2 sin θ sin 2θ

= 1 + 2q2
2 − 2q2 cos θ + 2q2 cos 2θ − 2q2

2(cos θ cos 2θ + sin θ sin 2θ)
= 1 + 2q2

2 − 2q2 cos θ + 2q2 cos 2θ − 2q2
2 cos θ

= 1 + 2q2
2 − 2q2(1 + q2) cos θ + 2q2 cos 2θ.

Set t := cos θ, and applying that

cos 2θ = 2 cos2 θ − 1 = 2t2 − 1,

we get ∣∣∣S2,a
(
(a2 + 1)eiθ

)∣∣∣2 = 1 + 2q2
2 − 2q2(1 + q2) cos θ + 2q2 cos 2θ

= 2q2(2t2 − 1)− 2q2(1 + q2)t+ 1 + 2q2
2

= 4q2t
2 − 2q2(1 + q2)t+ 1− 2q2 + 2q2

2 =: ξ(t).
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Next, we calculate the discriminant and get

Dξ

4 = (q2(1 + q2))2 − 4q2(1− 2q2 + 2q2
2)

= q4
2 − 6q3

2 + 9q2
2 − 4q2 = q2(q2 − 1)2(q2 − 4).

Since, under our assumptions, q2 < 4, the discriminant Dξ is negative. Hence,
we conclude that ξ(t) is positive and has no zeros for all t ∈ [−1, 1]. The
vertex point of the parabola is

tv = 1 + q2

4 ≥ 1,

since q2 ≥ 3. Consequently,

min
t∈[−1,1]

ξ(t) = ξ(1) = 4q2 − 2q2(1 + q2) + 1− 2q2 + 2q2
2

= 4q2 − 2q2 − 2q2
2 + 1− 2q2 + 2q2

2 = 1.

Thus, min|x|=a2+1 |S2,a(x)| = 1.

As the next step of the proof of Theorem 2.10, since we want to show
that the function fa has the same number of zeros in {z : |z| < a2 + 1} as
S2,a, by Rouché’s theorem, we obtain an upper bound for the modulus of
R3,a(x) := fa(x)− S2,a(x).

Lemma 2.15 (T.H. Nguyen, [59]). We have

max
|z|=a2+1

|R3,a(z)| ≤ (a2 + 1)2(a4 + 1)
a2(a+ 1)(a3 + 1)(a2 − 1) .

Proof. We observe that

R3,a(z) =
∞∑
k=3

(−1)kzk
(ak + 1)(ak−1 + 1) · . . . · (a+ 1) ,
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then we obtain the following estimation of |R3,a| from above:

max
|z|=a2+1

|R3,a(z)| ≤
∞∑
k=3

(a2 + 1)k
(a+ 1)(a2 + 1) · . . . · (ak + 1)

=
∞∑
k=3

(a2 + 1)k−1

(a+ 1)(a3 + 1) · . . . · (ak + 1)

= (a2 + 1)2

(a+ 1)(a3 + 1) + (a2 + 1)3

(a+ 1)(a3 + 1)(a4 + 1)

+ (a2 + 1)4

(a+ 1)(a3 + 1)(a4 + 1)(a5 + 1) + · · ·

= (a2 + 1)2

(a+ 1)(a3 + 1)

(
1 +

∞∑
k=1

(a2 + 1)k
(a4 + 1)(a5 + 1) · . . . · (ak+3 + 1)

)

≤ (a2 + 1)2

(a+ 1)(a3 + 1)

(
1 +

∞∑
k=1

(a2 + 1)k
(a4 + 1)k

)

= (a2 + 1)2

(a+ 1)(a3 + 1) ·
1

1− (a2 + 1)/(a4 + 1) = (a2 + 1)2(a4 + 1)
a2(a+ 1)(a3 + 1)(a2 − 1) ,

which establishes the claim.

We observe that, under the assumption a ≥ (3 +
√

17)/2, we have

(a2 + 1)2(a4 + 1)
a2(a+ 1)(a3 + 1)(a2 − 1) < 1,

or, after simplifying,

a7 − 3a6 − 2a4 − a2 − 1 > 0.

The numerical calculations show that this inequality valid for all a ≥ 3.2051,
so it is valid for a ≥ (3 +

√
17)/2. Hence, by Lemmas 2.14 and 2.15 we have

max
|z|=a2+1

|R3,a(z)| < max
|z|=a2+1

|S2,a(z)| = 1.

Consequently, by Rouché’s theorem, the functions fa and S2,a have the
same number of zeros (counted with multiplicities) on the open disk Da2+1 :=
{z ∈ C : |z| < a2 + 1}. Since q2(fa) < 4, we conclude that S2,a has two
conjugate zeros of modulus

√
(a+ 1)(a2 + 1) < a2 +1, so that S2,a has exactly

two zeros on Da2+1 for all a such that q2(fa) ∈ [3, 4). Thus, if fa ∈ L − P
(or Sn,a ∈ L − P for n ≥ 2), then these two zeros are real, and there exists
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x0 ∈ (0, a2 + 1) such that fa(x0) ≤ 0. Since fa(−x) (and Sn,a(−x)) has
positive Taylor coefficients, the functions fa (and Sn,a) does not have zeros
on [−(a2 + 1), 0]. For x ∈ [0, a+ 1] we have

xk

(a+ 1)(a2 + 1) · . . . · (ak + 1) >
xk+1

(a+ 1)(a2 + 1) · . . . · (ak+1 + 1)

for all nonnegative integers k, whence

fa(x) > 0 for all x ∈ [0, a+ 1], (2.10)

and
Sn,a(x) > 0 for all x ∈ [0, a+ 1], n ≥ 2. (2.11)

We obtained that if fa ∈ L − P (or Sn,a ∈ L − P for n ≥ 2), then
there exists x0 ∈ (a + 1, a2 + 1) such that fa(x0) ≤ 0 (also, there exists
xn ∈ (a+ 1, a2 + 1) such that Sn,a(xn) ≤ 0).

It remains to prove the converse statement: if there exists x0 ∈ (a+1, a2+1)
such that fa(x0) ≤ 0, then fa ∈ L − P . We need the following lemma.

Lemma 2.16 (T.H. Nguyen, [59]). Define ρj(fa) := q2(fa)q3(fa) · . . . ·
qj(fa)

√
qj+1(fa) for j being a positive integer. Then, for sufficiently large j,

the function fa(x) has exactly j zeros on the disk Dρj(fa) = {z : |z| < ρj(fa)}.

Proof. For brevity, we write pn and qn instead of pn(fa) and qn(fa). Then

fa(x) =
∞∑
k=0

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
,

where the sequence q2, q3, . . . is strictly increasing with the limit a > (3 +√
17)/2. We now dissect the above sum as

fa(x) =
( j−3∑
k=0

+
j+2∑

k=j−2
+

∞∑
k=j+3

)
(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
=: Σ1,j(x) + gj(x) + Σ2,j(x).

We further dissect gj(x) = g̃j(x) + ξj(x), where

g̃j(x) :=
 j+1∑
k=j−2

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
+ (−1)j+2xj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

 ,
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and

ξj(x) := (−1)j+2xj+2

qj−3
2 qj−4

3 · . . . · qj−2

(
1

q4
2q

4
3 · . . . · q4

j−1q
3
j q

2
j+1qj+2

− 1
q4

2q
4
3 · . . . · q4

j−1q
4
j q

2
j+1

)
.

Since ρj(fa) = q2q3 · . . . · qj
√
qj+1, we have

q2q3 · . . . · qj < ρj < q2q3 · . . . · qjqj+1.

We get

(−1)j−2gj(ρjeiθ) = ei(j−2)θq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1×(
1− eiθqj

√
qj+1 + e2iθqjqj+1 − e3iθqj

√
qj+1 + e4iθqjq

−1
j+2

)
= ei(j−2)θq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1×(
1− eiθqj

√
qj+1 + e2iθqjqj+1 − e3iθqj

√
qj+1 + e4iθ

)
+ ei(j+2)θq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
qjq
−1
j+2 − 1

)
= g̃j(ρjeiθ) + ξj(ρjeiθ).

Our aim is to show that for every sufficiently large j the following inequality
holds:

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|fa(ρjeiθ)− g̃j(ρjeiθ)|,

so that the number of zeros of fa on the open disk {x : |x| < ρj} is equal to
the number of zeros of g̃j on the same disk. Later in the proof we also find
the number of the zeros. First, we find min0≤θ≤2π |g̃j(ρjeiθ)| :

g̃j(ρjeiθ) = eijθq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

×
(
e−2iθ − e−iθqj

√
qj+1 + qjqj+1 − eiθqj

√
qj+1 + e2iθ

)
= eijθq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

×
(
2 cos 2θ − 2 cos θqj

√
qj+1 + qjqj+1

)
=: eijθq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 · ψj(θ).

We consider ψj(θ) defined as follows

ψj(θ) = ψ̃j(t) := 4t2 − 2qj
√
qj+1t+ (qjqj+1 − 2),
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where t := cos θ, and where we have used that cos 2θ = 2t2 − 1.
The vertex of the parabola is tj = qj

√
qj+1
4 . Under our assumptions, tj > 1.

Hence,

min
t∈[−1,1]

ψ̃j(t) = ψ̃j(1) = 2− 2qj
√
qj+1 + qjqj+1 = qj(

√
qj+1 − 1)2 − qj + 2.

If qj ≥ 4, then qj+1 ≥ 4, and

qj(
√
qj+1 − 1)2 − qj + 2 ≥ qj − qj + 2 > 0.

If qj < 4, then, since qj ≥ q2 ≥ 3, we have (√qj+1 − 1)2 ≥ (
√

3 − 1)2 > 0.5.
Therefore, we get

qj(
√
qj+1 − 1)2 − qj + 2 > qj · 0.5− qj + 2 = qj · (−0.5) + 2 > 0.

Thus, ψ̃j(t) > 0 for all t ∈ [−1, 1]. Consequently, we have obtained the
estimate from below

min
0≤θ≤2π

|g̃j(ρjeiθ)| ≥ q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 ×
(
2− 2qj

√
qj+1 + qjqj+1

)
.

(2.12)

Next, we bound the modulus of Σ1 from above. We have

|Σ1(ρjeiθ)| ≤
j−3∑
k=0

(q2 · . . . · qj)kq
k
2
j+1

qk−1
2 qk−2

3 · . . . · qk
= (we rewrite the sum from right to left)

= q2q
2
3 · . . . · q

j−4
j−3(qj−2qj−1qj)j−3q

j−3
2

j+1 + q2q
2
3 · . . . · q

j−5
j−4(qj−3qj−2qj−1qj)j−4q

j−4
2

j+1

+ q2q
2
3 · . . . · q

j−6
j−5(qj−4qj−3qj−2qj−1qj)j−5q

j−5
2

j+1 + · · ·

= q2q
2
3 · . . . · q

j−4
j−3(qj−2qj−1qj)j−3q

j−3
2

j+1×(
1 + 1

qj−2qj−1qj
√
qj+1

+ 1
qj−3(qj−2qj−1qj

√
qj+1)2 + · · ·

)

≤ q2q
2
3 · . . . · q

j−4
j−3(qj−2qj−1qj)j−3q

j−3
2

j+1 ·
1

1− 1
qj−2qj−1qj

√
qj+1

(where we have bounded the finite sum from the above by the sum of the
infinite geometric progression). Finally, we obtain

|Σ1(ρjeiθ)| ≤ q2q
2
3 · . . . · q

j−4
j−3(qj−2qj−1qj)j−3q

j−3
2

j+1 ·
1

1− 1
qj−2qj−1qj

√
qj+1

.
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Next, the upper bound of |Σ2(ρjeiθ)| can be found by a completely analo-
gous computation

|Σ2(ρjeiθ)| ≤
∞∑

k=j+3

qk2q
k
3 · . . . · qkj q

k
2
j+1

qk−1
2 qk−2

3 · . . . · qk
=

q2q
2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

·
(

1 + 1
√
qj+1qj+2qj+3qj+4

+ 1
(√qj+1)2q2

j+2q
2
j+3q

2
j+4qj+5

+ . . .

)
.

The latter can be estimated from above by the sum of the geometric
progression, so, we obtain

|Σ2(ρjeiθ)| ≤
q2q

2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

· 1
1− 1√

qj+1qj+2qj+3qj+4

.

Note that

|ξj(ρjeiθ)| = q2q
2
3 · · · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
qjq
−1
j+2 − 1

)
.

Therefore, the desired inequality

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|fa(ρjeiθ)− g̃j(ρjeiθ)|

follows from

q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 ·
(
2− 2qj

√
qj+1 + qjqj+1

)
> q2q

2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 ·
1

1− 1
qj−2qj−1qj

√
qj+1

+
q2q

2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

· 1
1− 1√

qj+1qj+2qj+3qj+4

+ q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
qjq
−1
j+2 − 1

)
.

After reducing by q2q
2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 we get

qj−1qj
√
qj+1

(
2− 2qj

√
qj+1 + qjqj+1

)
>

1
1− 1

qj−2qj−1qj
√
qj+1

(2.13)

+
qj−1q

2
j

q2
j+2qj+3

· 1
1− 1√

qj+1qj+2qj+3qj+4

+ qj−1qj
√
qj+1(qjq−1

j+2 − 1).
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To prove the inequality above for sufficiently large j, we first consider the
limiting inequality for j →∞. Since, under our assumptions, limj→∞ qj = a,
we obtain

a2√a(2− 2a
√
a+ a2) > 1

1− 1
a3√a

+ 1
1− 1

a3√a
+ a2√a · 0. (2.14)

Equivalently,

2− 2a
√
a+ a2 >

2a
a3√a− 1 .

Set
√
a =: b. Then we obtain (2− 2b3 + b4)(b7 − 1) > 2b2, or

b11 − 2b10 + 2b7 − b4 + 2b3 − 2b2 − 2 > 0.

We have found the roots of the polynomial on the left-hand side of the
inequality using numerical methods, and its largest real root is less than 1.47.
Thus, the inequality is fulfilled for b > 1.47, and, therefore, for a > 2.17.
Under our assumptions, a > 3.57, so the inequality (2.14) is valid under our
assumptions on a. Consequently, the inequality (2.13) is valid under our
assumptions on a and for j being sufficiently large.

Therefore, we have proved that for all sufficiently large j,

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|fa(ρjeiθ)− g̃j(ρjeiθ)|,

so the number of zeros of fa on the open disk {z : |z| < ρj} is equal to the
number of zeros of g̃j on this disk.

In the next stage of the proof, it remains to find the number of zeros of g̃j
on the open disk {z : |z| < ρj}. We have

g̃j(z) =
j+1∑

k=j−2

(−1)kzk

qk−1
2 qk−2

3 · . . . · qk
+ (−1)j+2zj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

.

Denote w = zρ−1
j , so that |w| < 1. This yields

g̃j(ρjw) = (−1)j−2wj−2q2q
2
3 · · · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

× (1− qj
√
qj+1w + qjqj+1w

2 − qj
√
qj+1w

3 + w4).

It follows from (2.12) that g̃j does not have zeros on the circle {z : |z| = ρj},
whence g̃j(ρjw) does not have zeros on the circle {w : |w| = 1}. Since
Pj(w) = 1 − qj

√
qj+1w + qjqj+1w

2 − qj
√
qj+1w

3 + w4 is a self-reciprocal
polynomial in w, we conclude that Pj has exactly two zeros on the open disk
{w : |w| < 1}. Hence, g̃j(x) has exactly j zeros on the open disk {z : |z| < ρj}
counting multiplicities, and we have proved the statement of Lemma 2.16.
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Further we need the following lemma.
Lemma 2.17 (T.H. Nguyen, [59]). Denote by ρk(fa) := q2(fa)q3(fa) · . . . ·
qk(fa)

√
qk+1(fa), k ∈ N, k ≥ 2. If a ≥ 3 then for every k ≥ 2 the following

inequality holds:
(−1)kfa(ρk) ≥ 0.

Proof. For the sake of brevity, we further write qn and ρn instead of qn(fa)
and ρn(fa). Then the function takes the following form

fa(x) =
∞∑
j=0

(−1)jxj

qj−1
2 qj−2

3 · . . . · qj
,

where the sequence q2, q3, . . . is strictly increasing with the limit a ≥ 3.
Since ρk ∈ (q2q3 · . . . · qk, q2q3 · . . . · qkqk+1), we have

1 < ρk <
ρ2
k

q2
< · · · < ρkk

qk−1
2 qk−2

3 · · · qk
,

and
ρkk

qk−1
2 qk−2

3 · . . . · qk
>

ρk+1
k

qk2q
k−1
3 · . . . · q2

kqk+1
>

ρk+2
k

qk+1
2 qk3 · . . . · q3

kq
2
k+1qk+2

> · · · .

Therefore, we get for k ≥ 2

(−1)kfa(ρk) =
k−4∑
j=0

+
k+3∑
j=k−3

+
∞∑

j=k+4

 (−1)j+kρjk
qj−1

2 qj−2
3 · . . . · qj

=: m1(ρk) + µk(ρk) +m2(ρk).
We note that the terms in m1(ρk) are alternating in sign and increasing in
moduli, and the largest term in modulus is positive, whence m1(ρk) ≥ 0.
Analogously, the summands in m2(ρk) are alternating in sign and their
moduli are decreasing, and the term of the greatest modulus is positive, thus,
m2(ρk) ≥ 0. Therefore,

(−1)kfa(ρk) ≥ µk(ρk).
Thus, it is sufficient to prove that for every k ≥ 2 we have µk(ρk) ≥ 0. After
factoring out (ρk−3

k )(qk−4
2 qk−5

3 · · · qk−3), the desired inequality takes the form

− 1 + ρk
q2q3 · . . . · qk−3qk−2

− ρ2
k

q2
2q

2
3 · . . . · q2

k−2qk−1
+ ρ3

k

q3
2q

3
3 · . . . · q3

k−2q
2
k−1qk

− ρ4
k

q4
2q

4
3 · . . . · q4

k−2q
3
k−1q

2
kqk+1

+ ρ5
k

q5
2q

5
3 · . . . · q5

k−2q
4
k−1q

3
kq

2
k+1qk+2

− ρ6
k

q6
2q

6
3 · . . . · q6

k−2q
5
k−1q

4
kq

3
k+1q

2
k+2qk+3

≥ 0,
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or, using that ρk = q2q3 · . . . · qk
√
qk+1,

νk(ρk) := −1 + qk−1qk
√
qk+1 − 2qk−1q

2
kqk+1

+ qk−1q
2
kqk+1

√
qk+1 + qk−1q

2
k

√
qk+1q

−1
k+2 − qk−1q

2
kq
−2
k+2q

−1
k+3 ≥ 0.

After rearranging we get

νk(ρk) = qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1

+ qk−1qk
√
qk+1

(
1 + qk

qk+2

)
−
(

1 + qk−1q
2
k

q2
k+2qk+3

)
≥ 0.

It is easy to check that the sequence
(

qk
qk+2

)∞
k=2

is increasing in k and
limk→∞

qk
qk+2

= 1, so we have

qk
qk+2

≥ q2

q4
= (a2 + 1)(a3 + 1)

(a+ 1)(a4 + 1) = a5 + a3 + a2 + 1
a5 + a4 + a+ 1 ≥ 0.8

for a ≥ 0. In addition,

qk−1q
2
k

q2
k+2qk+3

< 1,

so it is sufficient to prove the following inequality

qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1 · 1.8− 2 ≥ 0.

Since

2 < 2
9qk−1qk,

we have

qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1 · 1.8− 2

≥ qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1 · 1.8− 2

9qk−1qk.

Next, we need to check that for all k ≥ 2

qkqk+1
√
qk+1 − 2qkqk+1 + 1.8√qk+1 −

2
9

= qkqk+1 (√qk+1 − 2) + 1.8√qk+1 −
2
9 ≥ 0.
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If qk+1 ≥ 4, then √qk+1−2 ≥ 0 and 1.8√qk+1− 2
9 ≥ 0, and the last inequality

is valid. In case when qk+1 < 4, since qk increases in k, if we set √qk+1 = t,
t > 0, then we obtain the inequality

qkqk+1
√
qk+1 − 2qkqk+1 + 1.8√qk+1 − 2

9

≥ q2
k+1
√
qk+1 − 2q2

k+1 + 1.8
√
qk + 1− 2

9
= t5 − 2t4 + 1.8t− 2

9 ≥ 0.

The inequality above holds for t ≥ 1.57685, since 1.57685 is greater than the
largest real root of the polynomial on the left-hand side (we used numerical
methods here to find the roots of the polynomial), so it follows that it holds
for qk+1 ≥ 2.48646.

Lemma 2.17 is proved.

Suppose that there exists x0 ∈ (a+ 1, a2 + 1), such that fa(x0) ≤ 0. Then,
by Lemma 2.17 we have for every k ≥ 2 :

fa(0) > 0, fa(x0) ≤ 0, fa(ρ2) ≥ 0, fa(ρ3) ≤ 0, . . . , (−1)kfa(ρk) ≥ 0.

So, for every k ≥ 2 the function fa has at least k − 1 real zeros on the open
disk {x : |x| < ρk}. By Lemma 2.16 the function fa has exactly k zeros on
the open disk {x : |x| < ρk} for sufficiently large k . Thus, if there exists
x0 ∈ (a+ 1, a2 + 1), such that fa(x0) ≤ 0, then all the zeros of fa are real.

Theorem 2.10 is proved.

2.4 Proof of Theorem 2.11
In order to bound the values of a from below such that fa belongs to the
Laguerre–Pólya class, we consider its section S3,a. We have proved that if
fa ∈ L − P , then there exists x0 ∈ (a+ 1, a2 + 1) such that fa(x0) ≤ 0. Note
that, for every x ∈ (a+ 1, a2 + 1) we have S3,a(x) < fa(x), which follows that
S3,a(x0) < 0.

Lemma 2.18 (T.H. Nguyen, [59]). If there exists x0 ∈ (a+ 1, a2 + 1) such
that S3,a(x0) ≤ 0, then a ≥ 3.90155.

Proof. Set y0 := x0/(a+ 1), where 1 < y0 <
a2+1
a+1 = q2. Hence, we get

S3,a(x0) = S3,a((a+ 1)y0) = 1− y0 + y2
0
q2
− y3

0
q2

2q3
, 3 ≤ q2 < q3.
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For the sake of brevity, set b := q2, c := q3. Then we obtain

S3,a((a+ 1)y0) = 1− y0 + y2
0
b
− y3

0
b2c

=: K(y0).

We would like to find the minimal point of K(y) in the interval y ∈ (1, b).
First, we find the roots of the derivative. The derivative of K(y) is

K ′(y) = − 1
b2c

(3y2 − 2bcy + b2c).

We consider the discriminant of the quadratic polynomial K ′

D/4 = b2c2 − 3b2c = b2c(c− 3) > 0,

since under our assumptions, c > 3. Thus, the roots of derivative are

y± =
bc± b

√
c(c− 3)
3 .

Now we check if y− or y+ lie in (1, b). We consider the following inequality

1 <
bc− b

√
c(c− 3)
3 < b. (2.15)

The left-hand side of this inequality is

bc− 3 > b
√
c(c− 3),

or, equivalently,

b2c2 − 6bc+ 9 > b2c(c− 3).

The inequality is fulfilled under our assumptions

b2c− 2bc+ 3 = bc(b− 2) + 3 > 0.

Now we consider the right-hand side of (2.15). It is equivalent to

bc− b
√
c(c− 3) < 3b,

or

c2 − 6c+ 9 < c2 − 3c.
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Under our assumptions, c− 3 > 0, so the inequality is fulfilled. Therefore, we
have verified that y− ∈ (1, b). In the next step, we check that y+ > b, or,

bc+ b
√
c(c− 3)
3 > b,

or, equivalently,

c+
√
c(c− 3) > 3,

which is true under our assumptions for c.
Therefore, y− is the minimal point of K(y) in the interval 1 < y < q2.

Thus, if there exists y0 such that 1 < y0 < q2, and K(y0) ≤ 0, then K(y−) ≤ 0.
After substituting y− into K(y), we obtain the following expression

K(y−) = 1−
bc− b

√
c(c− 3)
3 +

(bc− b
√
c(c− 3))2

9b

−
(bc− b

√
c(c− 3))3

27b2c
.

We require K(y−) ≤ 0, or

27− 9bc+ 9b
√
c(c− 3) + 3bc2 − 6bc

√
c(c− 3) + 3bc(c− 3)− bc2

+ 3bc
√
c(c− 3)− 3bc(c− 3) + b(c− 3)

√
c(c− 3) ≤ 0.

We rewrite the above and get√
c(c− 3)(6b− 2bc) + (27− 9bc+ 2bc2) ≤ 0. (2.16)

We have

6b− 2bc = 2b(3− c) < 0,

since c > 3. Thus, √
c(c− 3)(6b− 2bc) < 0.

Now we show that the following inequality is fulfilled

27− 9bc+ 2bc2 ≥ 0.

We substitute b = q2 = (a2 + 1)(a+ 1), c = q3 = (a3 + 1)(a2 + 1). We have

27− 9a
2 + 1
a+ 1 ·

a3 + 1
a2 + 1 + 2a

2 + 1
a+ 1 ·

(
a3 + 1
a2 + 1

)2

≥ 0.
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Equivalently,

2a6 − 9a5 + 22a3 + 18a2 + 27a+ 20 ≥ 0,

or
(a+ 1)2(2a4 − 13a3 + 24a2 − 13a+ 20) ≥ 0.

It remains to prove that

2a4 − 13a3 + 24a2 − 13a+ 20 ≥ 0.

Since a ≥ 3, set a = 3 + x, x ≥ 0. We obtain

2(3 + x)4 − 13(3 + x)3 + 24(3 + x)2 − 13(3 + x) + 20 ≥ 0,

or
2x4 + 11x3 + 15x2 − 4x+ 8 ≥ 0,

which is true for all x ≥ 0. Consequently, the inequality

27− 9bc+ 2bc2 ≥ 0

is verified. Thus, we rewrite (2.16) in the form

27− 9bc+ 2bc2 ≤
√
c(c− 3)(2bc− 6b).

We can observe that both sides of the inequality are positive. After straight-
forward calculations we get

b2c2 − 4b2c+ 18bc− 4bc2 − 27 ≥ 0.

We substitute

b = q2 = a2 + 1
a+ 1 , c = q3 = a3 + 1

a2 + 1 ,

and obtain
(a3 + 1)2

(a+ 1)2 − 4(a3 + 1)(a2 + 1)
(a+ 1)2 + 18a

3 + 1
a+ 1 − 4 (a3 + 1)2

(a+ 1)(a2 + 1) − 27 ≥ 0,

or, equivalently,

a8 − 8a7 + 15a6 + 12a5 − 21a4 − 28a3 − 43a2 − 40a− 16 ≥ 0.

We used numerical methods to find the roots of the polynomial on the left-
hand side of the inequality. It is valid when a ≥ 3.90155, since 3.90155 is
greater than the largest real root of the polynomial above. Lemma 2.18 is
proved.
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Further, it is known that for any x0 ∈ (a+ 1, a2 + 1) and for any n ∈ N,
S2n+1,a(x0) ≤ fa(x0) ≤ S2n,a(x0). Thus, if there exists x0 ∈ (a + 1, a2 + 1)
such that S6,a(x0) ≤ 0, then fa(x0) ≤ 0.

Lemma 2.19 (T.H. Nguyen, [59]). If a ≥ 3.91719, then there exists x0 ∈
(a+ 1, a2 + 1) such that S6,a(x0) ≤ 0.

Proof. We choose

x0 = 2
3(a+ 1)q2 = 2

3(a2 + 1) ∈ (a+ 1, a2 + 1).

After substituting x0 into S6,a, we get

S6,a

(2
3(a+ 1)q2

)
= 1− 2

9q2 −
8
27
q2

q3
+ 16

81
q2

q2
3q4
− 32

243
q2

q3
3q

2
4q5

+ 64
729

q2

q4
3q

3
4q

2
5q6

.

We need the inequality S6,a(x0) ≤ 0 to be fulfilled. Hence, we rewrite the
inequality using

qj = aj + 1
aj−1 + 1 ,

and after direct calculation we obtain the following inequality

729(a+ 1)(a3 + 1)(a4 + 1)(a5 + 1)(a6 + 1)− 162(a2 + 1)(a3 + 1)
× (a4 + 1)(a5 + 1)(a6 + 1)− 216(a2 + 1)2(a4 + 1)(a5 + 1)(a6 + 1)
− 144(a2 + 1)3(a5 + 1)(a6 + 1)− 96(a2 + 1)4(a5 + 1)
+ 64(a2 + 1)5 ≤ 0.

Equivalently,

162a20 − 513a19 − 567a18 + 594a17 − 567a16 − 1134a15 − 918a14

− 822a13 − 846a12 − 228a11 − 1927a10 − 1125a9 − 1142a8 − 750a7

− 1030a6 − 966a5 − 1360a4 − 567a3 + 226a2 − 729a− 463 ≥ 0.

We have used numerical methods to find the roots of the polynomial on the
left-hand side of the inequality. The inequality above is valid for a ≥ 3.91719,
which is greater than the value of its largest real root.

Lemma 2.19 is proved.

Theorem 2.11 is proved.
To conclude this chapter, we studied entire functions with positive Taylor

coefficients and with the increasing second quotients of Taylor coefficients.
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We have found some necessary conditions for such entire functions to belong
to the Laguerre–Pólya class. It occurs that, if the quotients qn(f) = a2

n−1
an−2an

are increasing in n, and c := lim
n→∞

a2
n−1

an−2an
is smaller than the absolute constant

q∞ (q∞ ≈ 3.2336), then f /∈ L − P. Moreover, we studied a special entire
function Fa(x) = ∑∞

k=0
xk

(ak+1)(ak−1+1)···(a+1) , a > 1, which has strictly increasing
second quotients of Taylor coefficients, and found the conditions under which
Fa belongs to the Laguerre–Pólya class.



Chapter 3

Closest to zero roots and the
second quotients of Taylor
coefficients of entire functions
from the Laguerre–Pólya I class

This chapter deals with the zero location of entire functions with positive
Taylor coefficients. For an entire function f(x) = ∑∞

k=0 akx
k, ak > 0, we show

that if f belongs to the Laguerre–Pólya class, and the quotients qk(f), k =
2, 3, . . . satisfy the condition q2(f) ≤ q3(f), then f has at least one zero in the
segment

[
− a1

a2
, 0
]
. We also give necessary conditions and sufficient conditions

of the existence of such a zero in terms of the quotients qk(f) for k = 2, 3, 4.
Let us consider the entire function f(x) = ex = ∑∞

k=0
xk

k! = 1 + x + x2

2! +
x3

3! + x4

4! + x5

5! + · · · , which belongs to the Laguerre–Pólya class of type I. We
can observe that its second quotients are qk(f) = a2

k−1
ak−2ak

= k
k−1 , k ≥ 2.

The following statement is the analogue (for entire functions) of the
Newton inequalities which are necessary conditions for real polynomials with
positive coefficients to have only real zeros (or, equivalently, to belong to the
Laguerre–Pólya class). This fact is well-known to experts, but it is a kind of
folklore: it is easier to give the proof than to find an appropriate reference.

Statement 3.1. Let f(x) = ∑∞
k=0 akx

k,ak > 0 for all k, be an entire function
from the Laguerre–Pólya class of type I. Then qn(f) ≥ n

n−1 , for all n ≥ 2.
Moreover, if there exists m = 2, 3, . . ., such that qm(f) = m

m−1 , then f(x) =
ceαx, for some c > 0, α > 0.

49
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3.1 Proof of Statement 3.1
Proof. We give the proof by induction on k.

Base case: k = 2. If f does not have any real roots, then, since the order
of f is not greater than 1, we conclude that f(x) = ceαx, i.e. the statement is
fulfilled (see (1.2) in Definition 1.3). If f has at least one real root, we denote
by {xk}αk=1, α ∈ N ∪ {∞} the set of roots of f . Thus,

0 < −
α∑
k=1

1
xk

<∞,

which follows that
α∑
k=1

1
x2
k

<∞,

whence
α∑
k=1

1
x2
k

= a2
1 − 2a0a2 > 0.

Consequently, q2(f) ≥ 2, and if q2 = 2, then f(x) = ceαx.
Inductive step: Suppose that the statement is true for k − 1, k = 3, 4, . . ..

Obviously, if f ∈ L − PI, then f (s) ∈ L − PI, for any s ∈ N. Hence,

f (k−2)(x) = ak−2(k − 2)! + ak−1(k − 1)!x+ ak
k!
2!x

2 + · · · ∈ L − PI.

Then,

q2(f (k−2)) = a2
k−1

ak−2ak

2((k − 1)!)2

(k − 2)!k! = a2
k−1

ak−2ak

2(k − 1)
k

≥ 2,

whence

qk(f) ≥ k

k − 1 .

It follows that

qk−1(f ′) = k − 1
k − 2 ,

and, by the induction conjecture,

f ′(x) = ceαx.

Therefore,

f(x) = c

α
eαx + λ,

where λ is a constant. Since f ∈ L − PI, then λ = 0, and we are done.
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The following theorem is a necessary condition for an entire function to
belong to the Laguerre-Polýa class of type I in terms of the closest to zero
roots.

Theorem 3.2 (T.H. Nguyen, A. Vishnyakova, [61]). Let f(x) = ∑∞
k=0 akx

k,
where ak > 0 for all k, be an entire function. Suppose that the quotients qn(f)
satisfy the following condition: q2(f) ≤ q3(f). If the function f belongs to
the Laguerre–Pólya class of type I, then there exists x0 ∈ [−a1

a2
, 0] such that

f(x0) ≤ 0.

The following example shows that the entire function f(x) = ∑∞
k=0 akx

k,
ak > 0 for all k, from the Laguerre–Pólya class of type I (without the
additional condition q2(f) ≤ q3(f)) can be positive in the whole segment
[−a1

a2
, 0].

Example 3.3. For α > 0 we consider the entire function

fα(x) =
(

1 + x

α + 3

)3
e
αx
α+3 ∈ L − PI.

We have

fα(x) =
(

1 + 3x
α + 3 + 3x2

(α + 3)2 + x3

(α + 3)3

)
·
(

1 + αx

α + 3+

α2x2

2(α + 3)2 + α3x3

6(α + 3)3 + · · ·
)

= 1 + x+ (α2 + 6α + 6)
2(α + 3)2 x2+

(α3 + 9α2 + 18α + 6)
6(α + 3)3 x3 + · · · =:

∞∑
k=0

ak(α)xk.

We observe that
q2(fα) = 2(α + 3)2

(α2 + 6α + 6) ,

q2(fα) < 3 for all α > 0, and limα→0 q2(fα) = 3. We also observe that

q3(fα) = 3(α2 + 6α + 6)2

2(α + 3)(α3 + 9α2 + 18α + 6) ,

q3(fα) < 3 for all α > 0, and limα→0 q3(fα) = 3. The only root (of multiplicity
3) of fα is x0(α) = −(α + 3), and it is easy to check that

|x0(α)| = α + 3 > a1(α)
a2(α) = 2(α + 3)2

(α2 + 6α + 6) .
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Figure 3.1: The relationship between q2 and q3.

The following theorem gives a necessary condition for an entire function to
belong to the Laguerre–Polýa class of type I in terms of the second quotients
of its Taylor coefficients qn.

Theorem 3.4 (T.H. Nguyen, A. Vishnyakova, [61]). If f(x) = ∑∞
k=0 akx

k,
ak > 0 for all k, belongs to the Laguerre–Pólya class, q2(f) < 4 and q2(f) ≤
q3(f), then

q3(f) ≤
−q2(f)(2q2(f)− 9) + 2(q2(f)− 3)

√
q2(f)(q2(f)− 3)

q2(f)(4− q2(f)) . (3.1)

The figure (3.1) illustrates the set of solutions for the inequality (3.1).
The following statement is a simple corollary of Theorem 3.4.

Corollary 3.5 (T.H. Nguyen, A. Vishnyakova, [61]). Suppose that a real
positive sequence (ak)∞k=0 has the following properties: a2

1
a0a2

< 4 and a2
1

a0a2
≤

a2
2

a1a3
. Then if (k!ak)∞k=0 ∈MS, then

q3(f) ≤
−q2(f)(2q2(f)− 9) + 2(q2(f)− 3)

√
q2(f)(q2(f)− 3)

q2(f)(4− q2(f)) .

In the proof of Theorem 3.2, using the Hutchinson’s idea, we show that if
q2(f) ≥ 4 (and qj > 1, j = 3, 4, . . .), then there exists a point x0 ∈ [−a1

a2
, 0]

such that f(x0) ≤ 0. We present the sufficient condition for the existence of
such a point x0 for the case q2(f) < 4.
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Figure 3.2: The relationship between q2, q3 and q4.

Theorem 3.6 (T.H. Nguyen, A. Vishnyakova, [61]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0 for all k, be an entire function and 3 ≤ q2(f) < 4, q3(f) ≥ 2, and
q4(f) ≥ 3. If

q3(f) ≤ 8
d(4− d) , (3.2)

where d = min(q2(f), q4(f)), then there exists x0 ∈ [−a1
a2
, 0] such that f(x0) ≤

0.

The figure (3.2) illustrates the set of solutions for the inequality (3.2).

3.2 Proof of Theorem 3.2
Without loss of generality, we can assume that a0 = a1 = 1, since we can
consider a function g(x) = a−1

0 f(a0a
−1
1 x) instead of f(x), due to the fact that

such rescaling of f preserves its property of having real zeros and preserves the
second quotients: qn(g) = qn(f) for all n. During the proof we use notation
pn and qn instead of pn(f) and qn(f).

We consider a function

ϕ(x) = f(−x) = 1− x+
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

instead of f .
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To begin with, we consider the simple case when q2 ≥ 4 (and qj > 1,
where j = 3, 4, . . ., by Statement 3.1, since ϕ belongs to the Laguerre–Pólya
class of type I). We use the idea of J. I. Hutchinson, see [41].

Suppose that x ∈ (1, q2). Then we obtain

1 < x >
x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 · · · q2
k−1qk

> · · · .

Thus, for x ∈ (1, q2) we have

ϕ(x) =
(

1− x+ x2

q2

)
−
(
x3

q2
2q3
− x4

q3
2q

2
3q4

)

−
(

x5

q4
2q

3
3q

2
4q5
− x6

q5
2q

4
3q

3
4q

2
5q6

)
− · · ·

<

(
1− x+ x2

q2

)
.

Note that, ϕ(0) = 1 > 0, and for x0 = √q2 we obtain

ϕ(x0) < 1−√q2 + 1 = 2−√q2 ≤ 0,

under our assumptions that q2 ≥ 4. Consequently, ϕ has a zero x0 ∈ (0; q2).
Thus, for q2 ≥ 4, Theorem 3.2 is proved.

In the next step of our proof, we consider the case when q2 < 4 and
q2 ≤ q3. By Lemma 2.4 from Chapter 2 (also, see [60, Lemma 2.1]), if f(x) =∑∞
k=0 akx

k, ak > 0, belongs to L − PI, then q3(q2 − 4) + 3 ≥ 0. In particular,
if q3 ≥ q2, then q2 ≥ 3. Therefore, we suppose that q2 ∈ [3, 4), q3 ≥ q2 and,
applying Statement 3.1, q4 ≥ 4

3 (since ϕ belongs to the Laguerre–Pólya class
of type I).

The following lemma (from [60, Lemma 2.3]) plays a key role in the proof
of Theorem 3.2. It is a generalisation of Lemma 2.6 from Chapter 2. Besides,
the first version of this lemma for the simplest case a = b = c ≥ 3 was proved
in [47] by O. Katkova, T. Lobova and A. Vishnyakova (see [47, Lemma 1]).

Lemma 3.7 (T.H. Nguyen, A. Vishnyakova, [61]). Let

P (x) = 1− x+ x2

a
− x3

a2b
+ x4

a3b2c

be a polynomial, where 3 ≤ a < 4, b ≥ a, and c ≥ 4/3. Then

min
0≤θ≤2π

|P (aeiθ)| ≥ a

b2c
.
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Proof. By direct calculation, we have

|P (aeiθ)|2 = (1− a cos θ + a cos 2θ − a

b
cos 3θ + a

b2c
cos 4θ)2

+ (−a sin θ + a sin 2θ − a

b
sin 3θ + a

b2c
sin 4θ)2

= 1 + 2a2 + a2

b2 + a2

b4c2 − 2a cos θ + 2a cos 2θ − 2a
b

cos 3θ

+ 2 a

b2c
cos 4θ − 2a2 cos θ + 2a

2

b
cos 2θ − 2 a

2

b2c
cos 3θ

− 2a
2

b
cos θ + 2 a

2

b2c
cos 2θ − 2 a

2

b3c
cos θ.

Set t := cos θ, t ∈ [−1, 1]. Using that

cos 2θ = 2t2 − 1,
cos 3θ = 4t3 − 3t,
cos 4θ = 8t4 − 8t2 + 1,

we get

|P (aeiθ)|2 = 16a
b2c

t4 +
(
−8a
b
− 8a2

b2c

)
t3 +

(
4a− 16a

b2c
+ 4a2

b
+ 4a2

b2c

)
t2

+
(
−2a+ 6a

b
− 2a2 + 6a2

b2c
− 2a2

b
− 2a2

b3c

)
t

+
(

1 + 2a2 + a2

b2 + a2

b4c2 − 2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
.

Further, we want to show that

min
0≤θ≤2π

|P (aeiθ)|2 ≥ a2

b4c2 ,

or to prove the inequality

min
0≤θ≤2π

|P (aeiθ)|2 − a2

b4c2 ≥ 0.

Using the last expression, we see that the inequality we want to get is
equivalent to the following: for all t ∈ [−1, 1] the next inequality holds:

16a
b2c

t4 − 8a
b

(
1 + a

bc

)
t3 + 4a

(
1− 4

b2c
+ a

b
+ a

b2c

)
t2

−2a
(
1− 3

b
+a− 3a

b2c
+ a

b
+ a

b3c

)
t+
(
1+2a2 + a2

b2 −2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.
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Set y := 2t, y ∈ [−2, 2]. We rewrite the last inequality in the form
a

b2c
y4 − a

b

(
1 + a

bc

)
y3 + a

(
1− 4

b2c
+ a

b
+ a

b2c

)
y2 − a

(
1− 3

b

+a− 3a
b2c

+ a

b
+ a

b3c

)
y +

(
1 + 2a2 + a2

b2 − 2a+ 2a
b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.

Let us observe the coefficients of the polynomial on the left hand side: the
coefficient of y4 is a

b2c
> 0. Since

a

b

(
1 + a

bc

)
> 0,

the coefficient of y3 is negative. It is easy to show that the other coefficients
are also sign-changing. For y2, since a, b and c are positive, it follows that
b2c > 4. Then we have

1− 4
b2c

> 0.

Thus, the coefficient of y2 is

1 + a

b
+ a

b2c
− 4
b2c

=
(

1− 4
b2c

)
+ a

b
+ a

b2c
> 0.

As for the coefficients of y, we have

1 + a− 3
b
> 0⇔ ab+ b > 3,

and

a

b
− 3a
b2c

> 0⇔ a

b
>

3a
b2c
⇔ abc > 3a⇔ bc > 3,

since b ≥ 3 and c ≥ 4/3 > 1. Therefore, it follows from the inequalities above
that

1 + a+ a

b
+ a

b3c
− 3
b
− 3a
b2c

=
(

1 + a− 3
b

)
+
(
a

b
− 3a
b2c

)
+ a

b3c
> 0.

Finally, we have

1 + 2a2 + a2

b2 − 2a− 2a
2

b
− 2 a

2

b2c
+ 2 a

b2c

= (1 + a2 − 2a) + (a2 − 3a
2

b
) + (a

2

b
− 2 a

2

b2c
) + a2

b2 + 2 a

b2c
> 0,



CHAPTER 3. THE CLOSEST TO ZERO ROOTS 57

since

1− 2a+ a2 = (a+ 1)2 ≥ 0,

which, obviously, holds for any a,

a2 − 3a
2

b
≥ 0⇔ a2b ≥ 3a2 ⇔ b ≥ 3,

which is true under our assumptions that 3 ≤ a ≤ b, and

a2

b
− 2 a

2

b2c
> 0⇔ 1 > 2

bc
,

which holds by our assumptions.
Consequently, the inequality we need holds for any y ∈ [−2, 0], and it is

sufficient to prove it for y ∈ [0, 2]. Multiplying our inequality by b2c
a

, we get

y4 − (bc+ a)y3 + (b2c+ abc+ a− 4)y2 − (b2c+ ab2c+ abc+ a

b
− 3bc− 3a)y

+(b
2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2) =: ψ(y),

and we want to prove that ψ(y) ≥ 0 for all y ∈ [0, 2].
At first, we consider the case b ≥ a ∈ [3, 4), c ≥ 5

3 . Let

χ(y) := ψ(y)− 1
b

(b− a)y,

whence χ(y) ≤ ψ(y) for all y ∈ [0, 2]. It is sufficient to prove that χ(y) ≥ 0
for all y ∈ [0, 2]. We have

χ(0) = ψ(0) = b2c

a
+ 2ab2c+ ac− 2b2c− 2abc− 2a+ 2 ≥ 0,

as it was previously shown. Moreover, note that

χ(2) = ψ(2)− 2
b

(b− a) ≥ 0,

since

ψ(2) = −2bc− 2a
b

+ b2c

a
+ ac+ 2

= 1
b

(
2(b− a) + b2c

a
(b− a)− bc(b− a)

)

= 1
b

(b− a)
(

2 + bc

a
(b− a)

)
≥ 2
b

(b− a) ≥ 0.
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Now we consider the following function

ν(y) := χ′′(y) = ψ′′(y) = 12y2 − 6(bc+ a)y + 2(b2c+ abc+ a− 4).

The vertex point of this parabola is

yv = bc+ a

4 ≥ 2

for b ≥ a ≥ 3, c ≥ 5
3 . Therefore,

ν(y) ≥ ν(2) for all y ∈ [0, 2].

We have

ν(2) = 48− 12(bc+ a) + 2b2c+ 2abc+ 2a− 8
= 40− 12bc− 10a+ 2b2c+ 2abc
= 2bc(a− 3) + 2bc(b− 3) + 10(4− a) ≥ 0,

under our assumption. Thus, χ′(y) is increasing for y ∈ [0, 2]. Besides,

χ′(y) = 4y3 − 3(bc+ a)y2 + 2(b2c+ abc+ a− 4)y

− (b2c+ ab2c+ abc+ a

b
− 3bc− 3a)− 1

b
(b− a).

We want to prove that χ′(y) ≤ 0 for all y ∈ [0, 2]. Since χ′ is an increasing
function, it is sufficient to show that χ′(2) ≤ 0. We have

χ′(2) = 32− 12(bc+ a) + 4(b2c+ abc+ a− 4)

− (b2c+ ab2c+ abc+ a

b
− 3bc− 3a)− 1 + a

b
= 15− 9bc− 5a+ 3b2c+ 3abc− ab2c

= (15− 5a)− bc(a− 3)(b− 3)
= 5(3− a)− bc(a− 3)(b− 3) ≤ 0,

under our assumption that b ≥ a ≥ 3.
Thus, we have proved that χ is decreasing for y ∈ [0, 2]. Hence, the

fact that χ(y) ≥ 0 for all y ∈ [0, 2], is equivalent to χ(2) ≥ 0, that was
proved above. We obtain ψ(y) ≥ χ(y) ≥ 0 for all y ∈ [0, 2]. So, for the case
b ≥ a ∈ [3, 4), c ≥ 5

3 Lemma 3.7 is proved.
It remains to consider the case 3 ≤ a < 4, b ≥ a, 4

3 ≤ c < 5
3 . We want to

prove that

ψ′′(y) = χ′′(y) = 12y2 − 6(bc+ a)y + 2(b2c+ abc+ a− 4) ≥ 0
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for all y ∈ [0, 2]. If the vertex point of this parabola yv = bc+a
4 is not less than

2, then we have proved that

ψ′′(y) ≥ ψ′′(2) ≥ 0.

Suppose that

0 < yv = bc+ a

4 < 2.

Then we want to show that ψ′′(yv) ≥ 0. We have

ψ′′(yv) = 12
(
bc+ a

4

)2

− 6(bc+ a)
(
bc+ a

4

)
+ 2(b2c+ abc+ a− 4) (3.3)

= −1
4
(
3b2c2 − (2ab+ 8b2)c+ (3a2 − 8a+ 32)

)
=: −1

4ha,b(c).

We want to show that, under our assumption, ha,b(c) ≤ 0. We can observe
that

3a2 − 8a+ 32 > 0

for all a, and the expression 3a2 − 8a+ 32 is increasing for a ∈ [3, 4), which
follows that

3a2 − 8a+ 32 ≤ 3 · 16− 8 · 4 + 32 = 48.

Thus, to prove that the function ha,b(c) from (3.3) is negative, it is sufficient
to show that

3b2c2 − (2ab+ 8b2)c+ 48 ≤ 0.

Since a ≥ 3, it is sufficient to prove that

ηb(c) := 3b2c2 − (6b+ 8b2)c+ 48 ≤ 0.

The vertex point of this parabola is

cv = 6b+ 8b2

6b2 = 1
b

+ 4
3 ∈

(4
3 ,

5
3

)

for b ≥ 3. Thus, to prove that ηb(c) ≤ 0 for all c ∈
[

4
3 ,

5
3

)
, we need to show

that ηb(4
3) ≤ 0 and ηb(5

3) ≤ 0. We have

ηb(
4
3) = −16

3 b
2 − 8b+ 48 ≤ −16

3 · 9− 8 · 3 + 48 = −24 < 0,
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and

ηb(
5
3) = −5b2 − 10b+ 48 ≤ −45− 30 + 48 = −27 < 0.

Consequently, we have proved that ψ′′(y) ≥ 0 for all y ∈ [0, 2]. The rest
of the proof is the same as in the previous case. Lemma 3.7 is proved.

Further, we need the following technical lemma to obtain the estimation
of R5(x, ϕ) from above.

Lemma 3.8 (T.H. Nguyen, A. Vishnyakova, [61]). If qj > 1 for all j ≥ 2,
let R5(x, ϕ) := ∑∞

k=5
(−1)kxk

qk−1
2 qk−2

3 ·...·qk
. Then

max
0≤θ≤2π

|R5(q2e
iθ, ϕ)| ≤ q2q6

q3
3q

2
4q5q6 − q2

3q4
.

Proof. We have

|R5(q2e
iθ, ϕ)| ≤

∞∑
k=5

qk2
qk−1

2 qk−2
3 · . . . · qk

=
∞∑
k=5

q2

qk−2
3 qk−3

4 · . . . · qk
= q2

q3
3q

2
4q5

+ q2

q4
3q

3
4q

2
5q6

+ · · ·+ q2

qk−2
3 · . . . · qk

+ · · ·

= q2

q3
3q

2
4q5

(1 + 1
q3q4q5q6

+ 1
q2

3q
2
4q

2
5q

2
6q7

+ · · · )

≤ q2

q3
3q

2
4q5
· 1

1− 1
q3q4q5q6

= q2q6

q3
3q

2
4q5q6 − q2

3q4
.

Let us check that
q2

q2
3q4

>
q2q6

q3
3q

2
4q5q6 − q2

3q4
,

which is equivalent to

q3q4q5q6 > q6 + 1.

The last inequality obviously holds under our assumption. Therefore, accord-
ing to the Rouché’s theorem, the functions S4(x, ϕ) and ϕ(x) have the same
number of zeros inside the disk {x : |x| < q2} counting multiplicities.

It remains to prove that S4(x, ϕ) has zeros in the disk {x : |x| < q2}. We
apply Grace’s theorem about the complex zeros of apolar polynomials (see
Theorem G in Chapter 1).
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We consider

S4(x, ϕ) =
(

4
0

)
+
(

4
1

)
(−1

4)x+
(

4
2

)
1

6q2
x2

+
(

4
3

)
(− 1

4q2
2q3

)x3 +
(

4
4

)
1

q3
2q

2
3q4

x4.

Let

Q(x) =
(

4
2

)
b2x

2 +
(

4
3

)
b3x

3 +
(

4
4

)
x4.

Then the condition for S4(x, ϕ) and Q(x) to be apolar is the following:(
4
0

)
−
(

4
1

)(
−1

4

)
b3 +

(
4
2

)
1

6q2
b2 = 0.

If q2 ≥ 3, then all the zeros of Q are in the disk {x : |x| ≤ q2}. Therefore,
by Grace’s theorem, we obtain that S4(x, ϕ) has at least one zero in the disk
{x : |x| ≤ q2}.

Thus, S4(x, ϕ) has at least one zero in the disk {x : |x| ≤ q2}, and, by
Lemma 3.8 applying to S4(x, ϕ),S4(x, ϕ) does not have zeros in {x : |x| =
q2}. Hence, the polynomial S4(x, ϕ) has at least one zero in the open disk
{x : |x| < q2}. By Rouché’s theorem, the functions S4(x, ϕ) and ϕ(x) have
the same number of zeros inside the disk {x : |x| < q2}, whence ϕ has at least
one zero in the open disk {x : |x| < q2}. If ϕ is in the Laguerre–Pólya class,
this zero must be real, and, since the coefficients of ϕ are sign-changing, this
zero belongs to (0, q2).

Theorem 3.2 is proved.

3.3 Proof of Theorem 3.4
In the proof of Theorem 3.2, using the Hutchinson’s idea (see [41]), we
show that if q2(f) ≥ 4 (and qj > 1, j = 3, 4, . . .), then there exists a point
x0 ∈ [−a1

a2
, 0] such that f(x0) ≤ 0. In Theorem 3.4, we prove the sufficient

condition for the existence of the point x0 for the case when q2(f) < 4.

Proof. According to theorem 3.2, if ϕ(x) = 1 − x + ∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
∈

L − PI, and q3 ≥ q2 ≥ 3, then there exists x0 ∈ (0, q2) such that ϕ(x0) ≤ 0.
For x ∈ [0, 1] we have

1 ≥ x >
x2

q2
>

x3

q2
2q3

>
x4

q3
2q

2
3q4

> · · · ,
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whence

ϕ(x) > 0 for all x ∈ [0, 1]. (3.4)

Suppose that x ∈ (1, q2]. Then we obtain

1 < x ≥ x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

> · · · (3.5)

For an arbitrary m ∈ N we have

ϕ(x) = S2m+1(x, ϕ) +R2m+2(x, ϕ).

By (3.5) and the Leibniz criterion for alternating series, we obtain that
R2m+2(x, ϕ) > 0 for all x ∈ (1, q2], or

ϕ(x) > S2m+1(x, ϕ) for all x ∈ (1, q2], m ∈ N. (3.6)

Analogously,

ϕ(x) ≤ S2m(x, ϕ) for all x ∈ (1, q2], m ∈ N. (3.7)

As the next step of our proof, we consider

S3(x, ϕ) = 1− x+ x2

q2
− x3

q2
2q3

.

For the sake of brevity, set a := q2, b := q3. Then we obtain

S3(x) := 1− x+ x2

a
− x3

a2b
, b ≥ a ≥ 3.

Therefore, if there exists x0 ∈ (0, a) such that ϕ(x0) ≤ 0, then S3(x0) ≤ 0.
First, we find the roots of the derivative. We have

S ′3(x) = − 1
a2b

(3x2 − 2abx+ a2b).

We consider the discriminant of the quadratic polynomial S ′3 :

DS′3

4 = a2b2 − 3a2b = a2b(b− 3).

Under our assumption, b ≥ 3, so
DS′3

4 ≥ 0. Thus, the roots of S ′3 are

x1 =
ab− a

√
b(b− 3)

3
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and

x2 =
ab+ a

√
b(b− 3)

3 .

It is easy to check that if b ≥ a ≥ 3, then the following conditions hold:
x1 ∈ (0, a] and x2 ≥ a. Therefore, we can conclude that x1 is the minimal
point of S3(x) in the interval (0, a). Now we check if S3(x1) ≤ 0.

After substituting x1 into S3(x), we obtain the following expression

S3(x1) = 1−
ab− a

√
b(b− 3)

3 +
(ab− a

√
b(b− 3))2

9a −
(ab− a

√
b(b− 3))3

27a2b
.

We want S3(x1) ≤ 0, or, equivalently,

27− 9ab+ 9a
√
b(b− 3) + 3ab2 − 6ab

√
b(b− 3) + 3ab(b− 3)− ab2

+3ab
√
b(b− 3)− 3ab(b− 3) + a(b− 3)

√
b(b− 3) ≤ 0.

We rewrite and get√
b(b− 3)(6a− 2ab) + (27− 9ab+ 2ab2) ≤ 0. (3.8)

We observe that

6a− 2ab = 2a(3− b) ≤ 0,

since b ≥ 3, under our assumption. Thus,√
b(b− 3)(6a− 2ab) ≤ 0.

Now we consider the expression

27− 9ab+ 2ab2 =: y(b)

as a quadratic function of b. Its discriminant

D = 81a2 − 216a = 27a(3a− 8)

is positive under our assumption that a ≥ 3. The roots of y(b) are

b1 =
9a− 3

√
3a(3a− 8)
4a and b2 =

9a+ 3
√

3a(3a− 8)
4a .
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It is easy to check that

b1 <
9
4 < 3 ≤ b2.

For

b ∈ [3,
9a+ 3

√
3a(3a− 8)
4a ],

we have y(b) ≤ 0, and (3.8) is fulfilled. Further, we consider the case when

b >
9a+ 3

√
3a(3a− 8)
4a .

Then, (3.8) is equivalent to

27− 9ab+ 2ab2 ≤
√
b(b− 3)(2ab− 6a),

or

a2b2 − 4a2b− 4ab2 + 18ab− 27 ≥ 0.

We rewrite the inequality above in the following way:

b2a(4− a) + 2a(2a− 9)b+ 27 ≤ 0. (3.9)

We note that the coefficient of b2 is positive, since, under our assumption,
a < 4. Then, its discriminant

D/4 = a2(2a− 9)2 − 27a(4− a)
= 4a4 − 36a3 + 108a2 − 108a
= 4a(a− 3)3 ≥ 0.

We obtain the roots of the left-hand side of (3.9):

β1 =
−a(2a− 9)− 2(a− 3)

√
a(a− 3)

a(4− a) ,

β2 =
−a(2a− 9) + 2(a− 3)

√
a(a− 3)

a(4− a) .

Therefore, b should be in the interval (β1, β2) for (3.9) to be fulfilled, which
is equivalent to the inequality below:

−a(2a− 9)− 2(a− 3)
√
a(a− 3)

a(4− a) < b <
−a(2a− 9) + 2(a− 3)

√
a(a− 3)

a(4− a) .

(3.10)
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Next, we show that the following inequality is fulfilled under our assumption
that b ∈ [3, 9a+3

√
3a(3a−8)
4a ]:

−a(2a− 9)− 2(a− 3)
√
a(a− 3)

a(4− a) ≤
9a+ 3

√
3a(3a− 8)
4a .

It is equivalent to

a2 < 8(a− 3)
√
a(a− 3) + 3(4− a)

√
3a(3a− 8),

or

a3 < 64(a− 3)3 + 27(4− a)2(3a− 8) + 48(a− 3)(4− a)
√

3(a− 3)(3a− 8).

After straightforward calculation we get

3(a3 − 10a2 + 33a− 36) + (a− 3)(4− a)
√

3(a− 3)(3a− 8) ≥ 0,

or

3(a− 3)2(a− 4) + (a− 3)(4− a)
√

3(a− 3)(3a− 8) ≥ 0.

Divided by (a− 3)(4− a), the inequality takes the form:√
3(a− 3)(3a− 8) ≥ 3(a− 3).

It is simple to verify that the equation above is fulfilled for any a ≥ 3.
Consequently, we obtain the following condition for b :

3 ≤ b ≤
−a(2a− 9) + 2(a− 3)

√
a(a− 3)

a(4− a) . (3.11)

Theorem 3.4 is proved.

Remark 3.9. From Lemma 2.6, we have b(a− 4) + 3 ≥ 0, or b ≤ 3
4−a . It is

easy to check that the following inequality holds:

b ≤
−a(2a− 9) + 2(a− 3)

√
a(a− 3)

a(4− a) ≤ 3
4− a. (3.12)

Let us consider the right hand side of the inequality (3.12). Since under
our assumptions 3 ≤ a < 4, we multiply it by a(4− a) and obtain

−a(2a− 9) + 2(a− 3)
√
a(a− 3) ≤ 3a,
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or, equivalently,

2a(a− 3) ≥ 2(a− 3)
√
a(a− 3).

As a > 3, we can divide the inequality above by 2(a− 3) and get

a ≥
√
a(a− 3).

After squaring both sides of the inequality, we have

a2 ≥ a2 − 3a,

which is valid under our assumptions on a.

3.4 Proof of Theorem 3.6
Proof. Note that, for every x0 ∈ (0, q2) and for any n ∈ N : ϕ(x0) ≤ S2n(x0, ϕ)
(see (3.7)). Hence, if there exists x0 ∈ (0, q2) such that S4(x0, ϕ) ≤ 0, then
ϕ(x0) ≤ 0.

Let

P (x) := 1− x+ x2

a
− x3

a2b
+ x4

a3b2c
, a ≥ 3, b ≥ 2, c ≥ 3.

First, if a ≤ c, then

P (x) ≤ 1− x+ x2

a
− x3

a2b
+ x4

a4b2 =: P̃ (x).

Thus, if there exists x0 ∈ (0, a) such that P̃ (x0) ≤ 0, then P (x0) ≤ 0.
Next, if a ≥ c, then we consider

P (x) = (1− x) +
(
x2

a
− x3

a2b

)
+ x4

a3b2c
.

Since (
x2

a
− x3

a2b

)′
a

= −x
2

a2 + 2x3

a3b

is negative for any x ∈ (0, a), it follows that P (x) decreases monotonically
for any x ∈ (0, a). Therefore,

P (x) ≤ 1− x+ x2

c
− x3

c2b
+ x4

c4b2 =: ˜̃P (x).
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Analogously to the previous case, if there exists x0 ∈ (0, a) such that ˜̃P (x0) ≤
0, then P (x0) ≤ 0.

Thus, we can set d := min(a, c), and consider the following polynomial

T (x) = 1− x+ x2

d
− x3

d2b
+ x4

d4b2 .

We substitute x = d
√
by, then y = x

d
√
b
, y ∈ (0, 1√

b
). We have

Q(y) := T (d
√
by) = y2

((
1
y2 + y2

)
− d
√
b

(
1
y

+ y

)
+ db

)
.

Let us set w(y) = y + y−1, then((
1
y2 + y2

)
− d
√
b

(
1
y

+ y

)
+ db

)
= w2 − d

√
bw + db− 2.

If we find a point w0 ∈
(√

b+ 1√
b
,∞

)
, such that

w2
0 − d

√
bw0 + db− 2 ≤ 0,

then we find y0, 0 < y0 <
1√
b
< 1, such that Q(y0) ≤ 0.

The vertex of the quadratic function w2 − d
√
bw + db− 2 is in the point

wv = d
√
b

2 , and, by our assumption,

d
√
b

2 ≥
√
b+ 1√

b
.

Therefore, the existence of a point w0 ∈ (
√
b+ 1√

b
,∞), such that w2

0−d
√
bw0 +

db− 2 ≤ 0, is equivalent to the condition that its discriminant is non-negative:

D = d2b− 4db+ 8 ≥ 0.

Then, (4− d)db ≤ 8, or (since 3 ≤ d < 4)

b ≤ 8
d(4− d) .

Theorem 3.6 is proved.

To summarise this chapter, we studied the zero location of entire functions
f(x) = ∑∞

k=0 akx
k with positive coefficients, such that their second quotients

of Taylor coefficients qk(f) = a2
k−1

ak−2ak
, k = 2, 3, . . . satisfy the condition q2(f) ≤

q3(f). We have shown that if f belongs to the Laguerre–Pólya class of type
I, then it has at least one zero in the segment

[
− a1

a2
, 0
]
. Moreover, we have

obtained necessary and sufficient conditions for existence of such a zero in
terms of the second quotients qk, for k = 2, 3, 4.





Chapter 4

Entire functions from the
Laguerre–Pólya I class having
the increasing second quotients
of Taylor coefficients

We show that if f(x) = ∑∞
k=0 akx

k, ak > 0, is an entire function such that
the sequence of its second quotients of Taylor coefficients is non-decreasing in
k and q2(f) ≥ 2 3

√
2, then all but a finite number of zeros of f are real and

simple. We also present a criterion in terms of the closest to zero roots for
such a function to have only real zeros (in other words, for belonging to the
Laguerre–Pólya class of type I) under additional assumption on the regularity
of increasing for the sequence qk(f).

Theorem 4.1 (T.H. Nguyen, A. Vishnyakova, [64]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0, k = 0, 1, 2, . . ., be an entire function such that

2 3
√

2 ≤ q2(f) ≤ q3(f) ≤ q4(f) ≤ . . .

(2 3
√

2 ≈ 2.51984). Then all but a finite number of zeros of f are real and
simple.

In connection with the theorem above, we formulate the following conjec-
ture.

Conjecture 4.2 (T.H. Nguyen, A. Vishnyakova, [64]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0, k = 0, 1, 2, . . ., be an entire function such that 1 < q2(f) ≤ q3(f) ≤
q4(f) ≤ . . . Then all but a finite number of zeros of f are real and simple.

69
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As the second result of this chapter, we present the following criterion
for belonging to the Laguerre–Pólya class of type I for real entire functions
with the regularly non-decreasing sequence of second quotients of Taylor
coefficients.

In order to clarify the statement of the next theorem, we apply Lemma 2.4
from Chapter 2 (also, see Lemma 1.2 from [61], cf. Lemma 2.1 from [60]). Thus,
if f(x) = ∑∞

k=0 akx
k, ak > 0, belongs to L − PI, then q3(f)(q2(f)−4)+3 ≥ 0.

In particular, if q3(f) ≥ q2(f), then q2(f) ≥ 3. Hence, if we investigate
whether a real entire function with the non-decreasing sequence of second
quotients of Taylor coefficients belongs to the Laguerre–Pólya class of type I,
then the necessary condition is q2(f) ≥ 3. Our main result of this chapter is
the following theorem.

Theorem 4.3 (T.H. Nguyen, A. Vishnyakova, [64]). Let f(x) = ∑∞
k=0 akx

k,
where ak > 0 for all k, be an entire function. Suppose that:

1. 3 ≤ q2(f) ≤ q3(f) ≤ q4(f) ≤ . . . ;

2. In the case when there is an integer j0 ≥ 2 such that qj0(f) < 4, and
qj0+1(f) ≥ 4, one of the following conditions holds true:
(i) qj0−1(f)/qj0+1(f) ≥ 0.525;
(ii) qj0(f) ≥ 3.4303.

Then f ∈ L − PI if and only if there exists x0 ∈ [−a1/a2, 0] such that
f(x0) ≤ 0.

Remark 4.4. Unfortunately, at the moment we do not know whether the
additional assumptions in the theorem above are essential.

4.1 Proof of Theorem 4.1
Proof. To prove Theorem 4.1 we need the following lemma.
Lemma 4.5 (T.H. Nguyen, A. Vishnyakova, [64]). Let f(x) = ∑∞

k=0(−1)kakxk,
where ak > 0 for all k, be an entire function such that 2 3

√
2 ≤ q2(f) ≤ q3(f) ≤

q3(f) ≤ . . . For an arbitrary integer j ≥ 2 we define

ρj(f) := q2(f)q3(f) · . . . · qj(f)
√
qj+1(f).

Then, for all sufficiently large j, the function f has exactly j zeros on the
disk {z : |z| < ρj(f)} counting multiplicities.
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Proof. For simplicity, we will write qj instead of qj(f) and ρj instead of ρj(f).
We have

f(x) =
∞∑
k=0

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
,

where the sequence q2, q3, . . . is non-decreasing. We now dissect the above
sum as
∞∑
k=0

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
=
( j−3∑
k=0

+
j+2∑

k=j−2
+

∞∑
k=j+3

)
=: Σ1,j(x) + gj(x) + Σ2,j(x).

We represent the term (−1)j+2xj+2

qj+1
2 qj3·...·q

2
j+1qj+2

in the form

(−1)j+2xj+2

qj+1
2 qj3 · . . . · q4

j−1q
3
j q

2
j+1qj+2

= (−1)j+2xj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

+ (−1)j+2xj+2

qj+1
2 qj3 · . . . · q4

j−1q
3
j q

2
j+1qj+2

− (−1)j+2xj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

.

Hence,

gj(x) =
 j+1∑
k=j−2

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
+ (−1)j+2xj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

 (4.1)

+ (−1)j+2xj+2

qj−3
2 qj−4

3 · . . . · qj−2

(
1

q4
2q

4
3 · . . . · q4

j−1q
3
j q

2
j+1qj+2

− 1
q4

2q
4
3 · . . . · q4

j−1q
4
j q

2
j+1

)
=: g̃j(x) + ξj(x).

By the definition of ρj, we have q2q3 · . . . · qj < ρj < q2q3 · . . . · qjqj+1. We
get

(−1)j−2gj(ρjeiθ) = (−1)j−2ei(j−2)θq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 (4.2)

×
(

1− eiθqj
√
qj+1 + e2iθqjqj+1 − e3iθqj

√
qj+1 + e4iθqjq

−1
j+2

)

= (−1)j−2
(
ei(j−2)θq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

×
(
1− eiθqj

√
qj+1 + e2iθqjqj+1 − e3iθqj

√
qj+1 + e4iθ

)
+ ei(j+2)θq2q

2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
qjq
−1
j+2 − 1

))

= (−1)j−2
(
g̃j(ρjeiθ) + ξj(ρjeiθ)

)
.
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Our aim is to show that for every sufficiently large j the following inequality
holds:

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|f(ρjeiθ)− g̃j(ρjeiθ)|,

so that the number of zeros of f in the disk {z : |z| < ρj} is equal to the
number of zeros of g̃j in the same disk. Later in the proof, we also find the
number of zeros of g̃j in this disk. First, we find min0≤θ≤2π |g̃j(ρjeiθ)|. We
have

g̃j(ρjeiθ) = eijθq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 (4.3)

×
(
e−2iθ − e−iθqj

√
qj+1 + qjqj+1 − eiθqj

√
qj+1 + e2iθ

)

= eijθq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

×
(

2 cos 2θ − 2 cos θqj
√
qj+1 + qjqj+1

)

=: eijθq2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 · ψj(θ).

We consider ψj(θ) as follows

ψj(θ) = ψ̃j(t) := 4t2 − 2qj
√
qj+1t+ (qjqj+1 − 2),

where t := cos θ, and where we have used that cos 2θ = 2t2 − 1.
The vertex of the parabola is tj = qj

√
qj+1/4. Under our assumptions,

2 3
√

2 ≤ q2 ≤ q3 ≤ . . . ,

so that

qj
√
qj+1/4 ≥ q2

√
q2/4 ≥ 2 3

√
2×

√
2 3
√

2/4 = 1,

therefore, we have tj ≥ 1. Hence,

min
t∈[−1,1]

ψ̃j(t) = ψ̃j(1) = 2− 2qj
√
qj+1 + qjqj+1 = qj

√
qj+1(√qj+1 − 2) + 2.

If qj+1 ≥ 4, then

qj
√
qj+1(√qj+1 − 2) + 2 > 0.

If qj+1 < 4, then

qj
√
qj+1(√qj+1 − 2) + 2 ≥ qj+1

√
qj+1(√qj+1 − 2) + 2

= q2
j+1 − 2qj+1

√
qj+1 + 2.
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We set y = √qj+1 ≥ 0, and obtain

g(y) = y4 − 2y3 + 2.

It is easy to calculate that

min
y≥0

g(y) = g(3
2) = 5

16 > 0.

Therefore, we get

2− 2qj
√
qj+1 + qjqj+1 > 0.

Thus, ψ̃j(t) > 0 for all t ∈ [−1, 1]. Consequently, we have obtained the
estimation of g̃j(ρjeiθ) from below

min
0≤θ≤2π

|g̃j(ρjeiθ)| ≥ q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 ×
(

2− 2qj
√
qj+1 + qjqj+1

)
.

(4.4)

Further, we estimate the modulus of Σ1 from above. We have

|Σ1(ρjeiθ)| ≤
j−3∑
k=0

qk2q
k
3 · . . . · qkj q

k
2
j+1

qk−1
2 qk−2

3 · . . . · qk
= (4.5)

(we rewrite the sum from right to left)

=
(
q2q

2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 + q2q
2
3 · . . . · q

j−5
j−4q

j−4
j−3q

j−4
j−2q

j−4
j−1q

j−4
j q

j−4
2

j+1

+ q2q
2
3 · . . . · q

j−6
j−5q

j−5
j−4q

j−5
j−3q

j−5
j−2q

j−5
j−1q

j−5
j q

j−5
2

j+1 + · · ·
)

= q2q
2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1

×
(

1 + 1
qj−2qj−1qj

√
qj+1

+ 1
qj−3q2

j−2q
2
j−1q

2
j (
√
qj+1)2 + · · ·

)

≤ q2q
2
3 · · · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 ·
1

1− 1
qj−2qj−1qj

√
qj+1

(we estimate the finite sum from above by the sum of the infinite geometric
progression). Finally, we obtain

|Σ1(ρjeiθ)| ≤ q2q
2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 ×
1

1− 1
qj−2qj−1qj

√
qj+1

. (4.6)
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Next, the estimation of |Σ2(ρjeiθ)| from above can be made analogously.

|Σ2(ρjeiθ)| ≤
∞∑

k=j+3

qk2q
k
3 · . . . · qkj q

k
2
j+1

qk−1
2 qk−2

3 · . . . · qk
=
q2q

2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

×
(

1 + 1
√
qj+1qj+2qj+3qj+4

+ 1
(√qj+1)2q2

j+2q
2
j+3q

2
j+4qj+5

+ · · ·
)
.

The latter can be estimated from above by the sum of the geometric progres-
sion, so, we obtain

|Σ2(ρjeiθ)| ≤
q2q

2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

× 1
1− 1√

qj+1qj+2qj+3qj+4

. (4.7)

Note that

|ξj(ρjeiθ)| = q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
1− qjq−1

j+2

)
.

Therefore, the desired inequality

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|f(ρjeiθ)− g̃j(ρjeiθ)|

follows from

q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1 ·
(

2− 2qj
√
qj+1 + qjqj+1

)

> q2q
2
3 · . . . · q

j−4
j−3q

j−3
j−2q

j−3
j−1q

j−3
j q

j−3
2

j+1 ×
1

1− 1
qj−2qj−1qj

√
qj+1

+
q2q

2
3 · . . . · q

j−1
j q

j−3
2

j+1

q2
j+2qj+3

× 1
1− 1√

qj+1qj+2qj+3qj+4

+ q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

(
1− qjq−1

j+2

)
.

Or, equivalently,

qj−1qj
√
qj+1

(
2− 2qj

√
qj+1 + qjqj+1

)
(4.8)

>
1

1− 1
qj−2qj−1qj

√
qj+1

+
qj−1q

2
j

q2
j+2qj+3

1
1− 1√

qj+1qj+2qj+3qj+4

+ qj−1qj
√
qj+1(1− qjq−1

j+2).
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Since, under our assumptions q2 ≤ q3 ≤ q4 ≤ . . ., the sequence (qj)∞j=2 has
the limit, that is finite or infinite. At first, we consider the case when this
limit is finite and put limj→∞ qj =: a, a ≥ 2 3

√
2. We firstly investigate the

limiting inequality

a2√a(2− 2a
√
a+ a2) > 1

1− 1
a3√a

+ 1
1− 1

a3√a
+ a2√a · 0. (4.9)

Equivalently,

2− 2a
√
a+ a2 >

2a
a3√a− 1 .

Set
√
a =: b, then we obtain (2− 2b3 + b4)(b7 − 1) > 2b2, or

b11 − 2b10 + 2b7 − b4 + 2b3 − 2b2 − 2 > 0.

We have found the roots of the polynomial on the left-hand side of the
inequality using the computer, and its greatest real root is less than 1.47.
Thus, the inequality is fulfilled for b > 1.47, and, therefore, for a > 2.17.
Under our assumptions, a ≥ 2 3

√
2 > 2.51, so the inequality (4.9) is valid.

Whence, for the case when the sequence (qj)∞j=2 has the finite limit, the
inequality (4.8) is valid for all j being large enough.

Now we consider the case when limj→∞ qj = +∞. The inequality (4.8)
follows from

qj−1qj
√
qj+1

(
2− 2qj

√
qj+1 + qjqj+1

)
(4.10)

>
1

1− 1
qj−2qj−1qj

√
qj+1

+ 1
1− 1√

qj+1qj+2qj+3qj+4

+ qj−1qj
√
qj+1,

or

2− 2qj
√
qj+1 + qjqj+1 >

1
qj−1qj

√
qj+1

× 1
1− 1

qj−2qj−1qj
√
qj+1

+ 1
qj−1qj

√
qj+1

× 1
1− 1√

qj+1qj+2qj+3qj+4

+ 1.

The left-hand side of the inequality above tends to infinity, and the right-hand
side tends to 1. So, the last inequality is valid for all j being large enough.
Whence, for the case when the sequence (qj)∞j=2 has the infinite limit, the
inequality (4.8) is valid for all j being large enough. Consequently, we have
proved that for all j being large enough

min
0≤θ≤2π

|g̃j(ρjeiθ)| > max
0≤θ≤2π

|f(ρjeiθ)− g̃j(ρjeiθ)|,
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so the number of zeros of f in the disk {z : |z| < ρj} is equal to the number
of zeros of g̃j in this disk.

In the next stage of the proof, it remains to find the number of zeros of g̃j
in the disk {z : |z| < ρj}. We have

g̃j(x) =
j+1∑

k=j−2

(−1)kxk

qk−1
2 qk−2

3 · . . . · qk
+ (−1)j+2xj+2

qj+1
2 qj3 · . . . · q5

j−2q
4
j−1q

4
j q

2
j+1

.

Let us set w = xρ−1
j , so that |w| < 1. This yields

g̃j(ρjw) = (−1)j−2wj−2q2q
2
3 · . . . · q

j−3
j−2q

j−2
j−1q

j−2
j q

j−2
2

j+1

× (1− qj
√
qj+1w + qjqj+1w

2 − qj
√
qj+1w

3 + w4).

It follows from (4.4) that g̃j does not have zeros on the circumference {z : |z| =
ρj}, while g̃j(ρjw) does not have zeros on the circumference {w : |w| = 1}.
Since

Pj(w) = 1− qj
√
qj+1w + qjqj+1w

2 − qj
√
qj+1w

3 + w4

is a self-reciprocal polynomial in w, we can conclude that Pj has exactly two
zeros in the disk {w : |w| < 1}. Hence, g̃j(x) has exactly j zeros in the disk
{x : |x| < ρj}, and we have proved the statement of Lemma 4.5.

Theorem 4.1 is a simple corollary of Lemma 4.5.

4.2 Proof of Theorem 4.3
Without loss of generality, we can assume that a0 = a1 = 1, since we can
consider the function

ψ(x) = a−1
0 f(a0a

−1
1 x)

instead of f , due to the fact that such rescaling of f preserves its property of
having real zeros and preserves the second quotients of Taylor coefficients:
qn(ψ) = qn(f) for all n. For brevity, during the proof we write pn and qn
instead of pn(f) and qn(f). Then, we have

f(x) = 1 + x+
∞∑
k=2

xk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

.
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Further, during the proof, we need the inequalities related to the roots of
the function f . So, for the convenience of dealing with inequalities, we are
going to consider the positive roots. Thus, we consider the entire function

ϕ(x) = f(−x) = 1− x+
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

instead of f .
In the previous section, it was proved that if ϕ ∈ L − PI and q2(f) ≤

q3(f), then there exists x0 ∈ (0; a1/a2] = (0, q2] such that ϕ(x0) ≤ 0 (see
Theorem 3.2). We want to prove the inverse statement. In order to do this,
we need the following lemma.

Lemma 4.6 (T.H. Nguyen, A. Vishnyakova, [64]). According to Lemma 4.5,
we denote by

ρk = ρk(ϕ) := q2(ϕ)q3(ϕ) · . . . · qk(ϕ)
√
qk+1(ϕ),

for k ∈ N. Under the assumptions of Theorem 4.3, for every k ≥ 2 the
following inequality holds:

(−1)kϕ(ρk) ≥ 0.

Proof. Since ρk ∈ (q2q3 · . . . · qk, q2q3 · . . . · qkqk+1), we have

1 < ρk <
ρ2
k

q2
< · · · < ρkk

qk−1
2 qk−2

3 · . . . · qk
,

and

ρkk
qk−1

2 qk−2
3 · . . . · qk

>
ρk+1
k

qk2q
k−1
3 · . . . · q2

kqk+1
>

ρk+2
k

qk+1
2 qk3 · . . . · q3

kq
2
k+1qk+2

> · · · .

Therefore, we get for k ≥ 2

(−1)kϕ(ρk) ≥
k+3∑
j=k−3

(−1)j+kρjk
qj−1

2 qj−2
3 · . . . · qj

=: µk(ρk),

and it is sufficient to prove that for every k ≥ 2 we have µk(ρk) ≥ 0. After
factoring out ρk−3

k

qk−4
2 qk−5

3 ·...·qk−3
the desired inequality is expressed in the following
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form

− 1 + ρk
q2q3 · . . . · qk−3qk−2

− ρ2
k

q2
2q

2
3 · . . . · q2

k−2qk−1
+ ρ3

k

q3
2q

3
3 · . . . · q3

k−2q
2
k−1qk

− ρ4
k

q4
2q

4
3 · . . . · q4

k−2q
3
k−1q

2
kqk+1

+ ρ5
k

q5
2q

5
3 · . . . · q5

k−2q
4
k−1q

3
kq

2
k+1qk+2

− ρ6
k

q6
2q

6
3 · . . . · q6

k−2q
5
k−1q

4
kq

3
k+1q

2
k+2qk+3

≥ 0,

or, using that ρk = q2q3 · . . . · qk
√
qk+1,

νk(ρk) := −1 + qk−1qk
√
qk+1 − 2qk−1q

2
kqk+1

+qk−1q
2
kqk+1

√
qk+1 +

qk−1q
2
k

√
qk+1

qk+2
− qk−1q

2
k

q2
k+2qk+3

≥ 0.

We observe that

νk(ρk) = (qk−1qk
√
qk+1 − 1) + qk−1q

2
kqk+1(√qk+1 − 2)

+
qk−1q

2
k

√
qk+1

qk+2

(
1− 1
√
qk+1qk+2qk+3

)
.

Firstly, we consider the case when qk+1 ≥ 4. Thus, we have

qk−1qk
√
qk+1 − 1 > 0,

qk−1q
2
kqk+1(√qk+1 − 2) ≥ 0,

and
qk−1q

2
k

√
qk+1

qk+2

(
1− 1
√
qk+1qk+2qk+3

)
> 0.

Therefore, in the case qk+1 ≥ 4 the desired inequality νk(ρk) ≥ 0 is proved.
Next, we consider the case when qk+1 < 4 and either qk+2 < 4 (so that

qk
qk+2
≥ 3

4 ≥ 0.525), or qk+2 ≥ 4 and qk
qk+2
≥ 0.525.

After rearranging we get

νk(ρk) = qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1

+qk−1qk
√
qk+1

(
1 + qk

qk+2

)
−
(

1 + qk−1q
2
k

q2
k+2qk+3

)
≥ 0.

Since qk is non-decreasing in k, it is easy to see that

qk−1q
2
k

q2
k+2qk+3

≤ 1,
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hence, it is sufficient to prove the following inequality

qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1

(
1 + qk

qk+2

)
− 2 ≥ 0.

Under our assumptions that qk are non-decreasing in k and q2 ≥ 3, we
have 2 < 2

9qk−1qk, and we can observe that

qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1 · 1.525− 2

≥ qk−1q
2
kqk+1

√
qk+1 − 2qk−1q

2
kqk+1 + qk−1qk

√
qk+1 · 1.525− 2

9qk−1qk.

So, we need to check that for all k ≥ 2

qkqk+1
√
qk+1 − 2qkqk+1 + 1.525√qk+1 −

2
9

= qkqk+1 (√qk+1 − 2) + 1.525√qk+1 −
2
9 ≥ 0.

Since qk is non-decreasing in k, we get

qkqk+1
√
qk+1 − 2qkqk+1 + 1.525√qk+1 −

2
9

≥ q2
k+1
√
qk+1 − 2q2

k+1 + 1.525√qk+1 −
2
9 .

Set √qk+1 = t, t ≥ 0, then we obtain the following inequality

t5 − 2t4 + 1.525t− 2
9 ≥ 0.

This inequality holds for t ≥ 1.73051 (we used numerical methods to find
that the greatest real root of the polynomial on the left-hand side is less than
1.73051), so it follows that it holds for qk+1 ≥ 2.99466. Thus, in the case
qk+1 < 4 and either qk+2 < 4, or qk+2 ≥ 4 and qk/qk+2 ≥ 0.525 the desired
inequality νk(ρk) ≥ 0 is proved.

It remains to consider the case when qk+1 < 4, qk+2 ≥ 4, and qk+1 ≥ 3.4303.
We have

νk(ρk) := (qk−1qk
√
qk+1 − 1) + qk−1q

2
kqk+1(√qk+1 − 2)

+
qk−1q

2
k

√
qk+1

qk+2

(
1− 1
√
qk+1qk+2qk+3

)
≥ (qk−1qk

√
qk+1 − 1)

+ qk−1q
2
kqk+1(√qk+1 − 2) ≥

(
qk−1qk

√
qk+1 −

qk−1qk
9

)
+ qk−1q

2
kqk+1(√qk+1 − 2)

= qk−1qk

((√
qk+1 −

1
9

)
+ qkqk+1(√qk+1 − 2)

)
.
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We want to show that(√
qk+1 −

1
9

)
+ qkqk+1(√qk+1 − 2) ≥ 0.

Since √qk+1 − 2 < 0, and qk ≤ qk+1, the last inequality follows from(√
qk+1 −

1
9

)
+ q2

k+1(√qk+1 − 2) ≥ 0.

Set t = √qk+1, then we get the inequality

t5 − 2t4 + t− 1
9 ≥ 0.

We have found the roots of the polynomial on the left-hand side of the
inequality using the computer, and its greatest real root is less than 1.8521.
Thus, this inequality is valid for qk+1 ≥ 3.4303. So, in the case when qk+1 < 4,
qk+2 ≥ 4, and qk+1 ≥ 3.4303 the desired inequality νk(ρk) ≥ 0 is also proved.
Thus, Lemma 4.6 is proved.

Suppose that there exists x0 ∈ (1, q2), such that ϕ(x0) ≤ 0. Then, by
Lemma 4.6, we have for every k ≥ 2

ϕ(0) > 0, ϕ(x0) ≤ 0, ϕ(ρ2) ≥ 0, ϕ(ρ3) ≤ 0, . . . , (−1)kϕ(ρk) ≥ 0.

So, for every k ≥ 2 the function ϕ has at least k− 1 real positive zeros on the
disk {z ∈ C : |z| < ρk}. By Lemma 4.5, the function ϕ has exactly k zeros
on the disk {z ∈ C : |z| < ρk} for k being large enough. So, for all k being
large enough all the zeros of ϕ on the disk {z ∈ C : |z| < ρk} are real. Thus,
if there exists x0 ∈ (1, q2), such that ϕ(x0) ≤ 0, then all the zeros of ϕ are
real and positive. Therefore, ϕ ∈ L − PI.

Theorem 4.3 is proved.
To summarise this chapter, we have proved that if an entire function

f(x) = ∑∞
k=0 akx

k with positive coefficients such that its second quotients
of Taylor coefficients qk(f), k ≥ 2 is a non-decreasing in k sequence, and
q2 ≥ 2 3

√
2, then all but a finite number of zeros of f are real and simple.

Moreover, we obtained a criterion in terms of the closest to zero roots for
such a function to have only real zeros, or, in other words, to belong to the
Laguerre–Pólya class of type I under some additional assumptions on qk(f).



Chapter 5

Number of real zeros of real
entire functions with a
non-decreasing sequence of the
second quotients of Taylor
coefficients

In this chapter, we find a necessary conditions for an entire function f(x) =∑∞
k=0 akx

k, ak > 0, with a non-decreasing sequence of the second quotients
of Taylor coefficients to belong to the Laguerre–Pólya class of type I. In
addition, we estimate the possible number of non-real zeros for such functions.
Moreover, we prove that the following conditions on the second quotients of
Taylor coefficients are necessary for the function to belong to the Laguerre–
Pólya I class.

Theorem 5.1 (T.H. Nguyen, A. Vishnyakova, [65]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0, k = 0, 1, 2, . . ., be an entire function such that q2(f) ≤ q3(f) ≤ q4(f) ≤
· · · . If f ∈ L − PI, then for any k = 1, 2, 3, . . ., the following inequality holds:
q2n+1(f) > c2k+1 (the constants c2k+1 defined as in Theorem I concerning the
partial theta-function, see Chapter 1).

We prove the following interesting corollary of Theorem 5.1.

Corollary 5.2 (T.H. Nguyen, A. Vishnyakova, [65]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0, k = 0, 1, 2, . . ., be an entire function such that q2(f) ≤ q3(f) ≤
q4(f) ≤ · · · . If f ∈ L − P, then q2(f) > 3.

The following statement is a simple corollary of Theorem 5.1 and Corol-
lary 5.2.

81
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Corollary 5.3. Suppose that a real positive sequence (ak)∞k=0 has the following
property: the sequence of its second quotients

(
a2
k−1

ak−2ak

)∞
k=2

is increasing in k.
Then if (k!ak)∞k=0 ∈MS, then for any k = 1, 2, 3, . . ., the following inequality
holds: a2

2n
a2n−1a2n+1

> c2k+1 (the constants c2k+1 defined as in Theorem I con-
cerning the partial theta-function, see Chapter 1). Moreover, the inequality
a2

1
a0a2

> 3 is valid.

Our next theorem estimates the possible number of nonreal zeros for such
entire functions.

Theorem 5.4 (T.H. Nguyen, A. Vishnyakova, [65]). Let f(x) = ∑∞
k=0 akx

k,
ak > 0, k = 0, 1, 2, . . ., be an entire function such that 2 3

√
2 ≈ 2.51984 ≤

q2(f) ≤ q3(f) ≤ q4(f) ≤ · · · . If there exist j0 = 2, 3, 4, . . . and m0 ∈ N,
such that qj0 ≥ c2m0, then the number of nonreal zeros of f does not exceed
j0+2m0−2 (the constants c2k defined as in defined as in Theorem I concerning
the partial theta-function, see Chapter 1).

We recall that

4 = c2 > c4 > c6 > · · · , lim
n→∞

c2n = q∞;

3 = c3 < c5 < c7 < · · · , lim
n→∞

c2n+1 = q∞.

Calculations show that c4 = 1+
√

5 ≈ 3.23607, c6 ≈ 3.23364 and c5 ≈ 3.23362,
c7 ≈ 3.23364.

5.1 Proof of Theorem 5.1
Without loss of generality, we can assume that a0 = a1 = 1, since we can
consider a function g(x) = a−1

0 f(a0a
−1
1 x) instead of f(x), due to the fact that

such rescaling of f preserves its property of having real zeros as well as the
second quotients: qn(g) = qn(f) for all n ∈ N. During the proof instead of
pn(f) and qn(f) we use notation pn and qn. It is more convenient to consider
a function

ϕ(x) = f(−x) = 1− x+
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

instead of f .
As we proved in Theorem 3.2, if ϕ belongs to the Laguerre–Pólya class

then there exists a point x0 ∈ [0, a1
a2

] = [0, q2] such that ϕ(x0) ≤ 0. Let us
introduce some more notation.

First, we need the following lemma.
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Lemma 5.5 (T.H. Nguyen, A. Vishnyakova, [65]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function. Suppose that qk are non-decreasing

in k : 1 < q2 ≤ q3 ≤ q4 ≤ · · · . If there exists x0 ∈ [0, q2] such that ϕ(x0) ≤ 0,
then x0 ∈ (1, q2].

Proof. For x ∈ [0, 1] we have:

1 ≥ x >
x2

q2
>

x3

q2
2q3

>
x4

q3
2q

2
3q4

> · · · ,

whence
ϕ(x) > 0 for all x ∈ [0, 1]. (5.1)

Lemma 5.6 (T.H. Nguyen, A. Vishnyakova, [65]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function. Suppose that qk are non-decreasing

in k : 1 < q2 ≤ q3 ≤ q4 ≤ · · · . If there exists x0 ∈ (1, q2] such that ϕ(x0) ≤ 0,
then for any n ∈ N, S2n+1(x0) < 0.

Proof. Suppose that x ∈ (1, q2]. Then we obtain

1 < x ≥ x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

> · · · (5.2)

For an arbitrary n ∈ N we have:

ϕ(x) = S2n+1(x, ϕ) +R2n+2(x, ϕ).

By (5.2) and the Leibniz criterion for alternating series, we conclude that
R2n+2(x, ϕ) > 0 for all x ∈ (1, q2], or

ϕ(x) > S2n+1(x, ϕ) for all x ∈ (1, q2], n ∈ N. (5.3)

Consequently, if there exists a point x0 ∈ (1, q2] such that ϕ(x0) ≤ 0, then for
any n ∈ N we have S2n+1(x0) < 0.

Thus, we proved that if ϕ ∈ L − P, then there exists x0 ∈ (1, q2] such
that the inequalities S2n+1(x0) < 0 hold for any n ∈ N.

In Lemma 2.4 it was proved that if an entire function

ϕ(x) = 1− x+
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

belongs to the Laguerre–Pólya class, where 0 < q2 ≤ q3 ≤ q4 ≤ · · · , then
q2 ≥ 3. So we assume that q2 ≥ 3.
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Lemma 5.7 (T.H. Nguyen, A. Vishnyakova, [65]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function. Suppose that 3 ≤ q2 ≤ q3 ≤ q4 · · · .

Then the inequality S2n+1(x, ϕ) ≥ S2n+1(√q2n+1x, g√q2n+1) holds for any n ∈ N
and any x ∈ (1, q2] (here ga is the partial theta function and S2n+1(y, ga) is
its (2n+ 1)-th partial sum at the point y).

Proof. We have

S2n+1(x, ϕ) = (1− x) +
(
x2

q2
− x3

q2
2q3

)
+
(

x4

q3
2q

2
3q4
− x5

q4
2q

3
3q

2
4q5

)
+ · · · (5.4)

+
(

x2n

q2n−1
2 q2n−2

3 · . . . · q2
2n−1q2n

− x2n+1

q2n
2 q2n−1

3 · . . . · q2
2nq2n+1

)
.

Under our assumptions, qk are non-decreasing in k. We prove that for any
fixed k = 1, 2, . . . , n and x ∈ (1, q2], the following inequality holds

x2k

q2k−1
2 q2k−2

3 · . . . · q2
2k−1q2k

− x2k+1

q2k
2 q

2k−1
3 · . . . · q3

2k−1q
2
2kq2k+1

≥ x2k

q2k−1
2k+1q

2k−2
2k+1 · . . . · q2

2k+1q2k+1
− x2k+1

q2k
2k+1q

2k−1
2k+1 · . . . · q2

2k+1q2k+1

= x2k

q
k(2k−1)
2k+1

− x2k+1

q
k(2k+1)
2k+1

= x2k

q
k(2k−1)
2k+1

·
(

1− x

q2k
2k+1

)
.

For x ∈ (1, q2] and any fixed k = 1, 2, . . . , n, we define the following function

F (q2, q3, . . . , q2k, q2k+1) := x2k

q2k−1
2 q2k−2

3 · . . . · q2
2k−1q2k

− x2k+1

q2k
2 q

2k−1
3 · . . . · q3

2k−1q
2
2kq2k+1

.

We observe that

∂F (q2, q3, . . . , q2k, q2k+1)
∂q2

= − (2k − 1) · x2k

q2k
2 q

2k−2
3 · . . . · q2

2k−1q2k

+ 2k · x2k+1

q2k+1
2 q2k−1

3 · . . . · q3
2k−1q

2
2kq2k+1

< 0⇔ x <
(

1− 1
2k

)
· q2q3 · . . . · q2kq2k+1.

Therefore, since(
1− 1

2k

)
q2q3 · . . . · q2kq2k+1 ≥

1
2q2q3 · . . . · q2kq2k+1 ≥

1
2q2q3 > q2
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(under our assumptions q3 ≥ q2 ≥ 3), we conclude that F (q2, q3, . . . , q2k, q2k+1)
is decreasing in q2 for each fixed x ∈ (1, q2]. Since q2 ≤ q3, for k = 1 we get:

F (q2, q3) = x2

q2
− x3

q2
2q3
≥ x2

q3
− x3

q2
3q3

= x2

q3
− x3

q3
3
,

and the desired inequality is proved for k = 1. For k ≥ 2 we have

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1)

= x2k

q4k−3
3 q2k−3

4 · . . . · q2
2k−1q2k

− x2k+1

q4k−1
3 q2k−2

4 · . . . · q3
2k−1q

2
2kq2k+1

.

Further, we consider its derivative with respect to q3:

∂F (q3, q3, q4, . . . , q2k, q2k+1)
∂q3

= − (4k − 3) · x2k

q4k−2
3 q2k−3

4 · . . . · q2
2k−1q2k

+ (4k − 1) · x2k+1

q4k
3 q

2k−2
4 · . . . · q2k+1

< 0

⇔ x <
4k − 3
4k − 1q

2
3q4 · . . . · q3

2k−1q
2
2kq2k+1.

Under our assumptions,

4k − 3
4k − 1 · q

2
3q4 · . . . · q2k+1 ≥

5
7 · q

2
3q4q5 > q2,

and we obtain that F (q3, q3, q4, . . . , q2k, q2k+1) is decreasing in q3 for each fixed
x ∈ (1, q2] and, since q3 ≤ q4, we receive

F (q3, q3, q4, . . . , q2k, q2k+1) ≥ F (q4, q4, q4, q5, . . . , q2k, q2k+1).

Thus, for the lth step we have

F (ql−1, ql−1, . . . , ql−1, ql, ql+1, . . . , q2k, q2k+1)

= x2k

q
(4k−l+1)(l−2)/2
l−1 q2k−l+1

l q2k−l
l+1 · . . . · q2

2k−1q2k

− x2k+1

q
(4k−l+3)(l−2)/2
l−1 q2k−l+2

l q2k−l+1
l+1 · . . . · q3

2k−1q
2
2kq2k+1

.
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We consider its partial derivative with respect to ql−1 :

∂F (ql−1, ql−1, . . . , ql−1, ql, ql+1, . . . , q2k, q2k+1)
∂ql−1

= −
1
2(4k − l + 1)(l − 2) · x2k

q
1+(4k−l+1)(l−2)/2
l−1 q2k−l+1

l q2k−l
l+1 · . . . · q2

2k−1q2k

+
1
2(4k − l + 3)(l − 2) · x2k+1

q
1+(4k−l+3)(l−2)/2
l−1 q2k−l+2

l q2k−l+1
l+1 · . . . · q3

2k−1q
2
2kq2k+1

< 0,

which is equivalent to the inequality

x <
4k − l + 1
4k − l + 3 · q

l−2
l−1qlql+1 · . . . · q2k−1q2kq2k+1.

The inequality above is valid, since

4k − l + 1
4k − l + 3 · q

l−2
l−1qlql+1 · . . . · q2k−1q2kq2k+1

≥ 9− l
11− l · q

l−2
l−1qlql+1 · . . . · q2k−1q2kq2k+1 > q2.

Hence, the function F (ql−1, ql−1, . . . , ql−1, ql, ql+1, . . . , q2k, q2k+1) is decreasing
in ql−1. Since, under our assumptions, ql−1 ≤ ql, we obtain

F (ql−1, ql−1, . . . , ql−1, ql, ql+1, . . . , q2k, q2k+1)
≥ F (ql, ql, . . . , ql, ql+1, . . . , q2k, q2k+1).

Analogously, by the same computation, at the (2k + 1)-th step we get

F (q2k, q2k . . . , q2k, q2k+1) = x2k

q
k(2k−1)
2k

− x2k+1

q
(k+1)(2k−1)
2k · q2k+1

.

Its derivative with respect to q2k is

∂F (q2k, q2k . . . , q2k, q2k+1)
∂q2k

= −k(2k − 1) · x2k

q2k2−k+1
2k

+ (2k2 + k − 1) · x2k+1

q2k2+k
2k q2k+1

< 0⇔ x <
2k2 − k

2k2 + k − 1 · q
2k−1
2k q2k+1.

Since we assume that

2k2 − k
2k2 + k − 1 · q

2k−1
2k q2k+1 ≥

2
3 · q

2k−1
2k q2k+1 > q2,
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we conclude that the function F (q2k, q2k . . . , q2k, q2k+1) is decreasing in q2k.
While q2k ≤ q2k+1, we get

F (q2k, q2k . . . , q2k, q2k+1) ≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1).

Thus, we obtain the following chain of inequalities

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1)
≥ F (q4, q4, q4, q5, . . . , q2k, q2k+1) ≥ · · · ≥ F (q2k, q2k, . . . , q2k, q2k+1)
≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1).

Consequently,

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1)

= x2k

q
k(2k−1)
2k+1

− x2k+1

q
k(2k+1)
2k+1

.

Finally, we note that under our assumptions, the expression

x2k

q
k(2k−1)
2k+1

− x2k+1

q
k(2k+1)
2k+1

is decreasing in q2k+1 for each fixed x ∈ (1, q2], so we obtain

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ x2k

q
k(2k−1)
2k+1

− x2k+1

q
k(2k+1)
2k+1

≥ x2k

q
k(2k−1)
2n+1

− x2k+1

q
k(2k+1)
2n+1

.

Substituting the last inequality in (5.4) for every x ∈ (1, q2] and k = 1, 2, . . . , n,
we get

S2n+1(x, ϕ) ≥ (1− x) +
(

x2

q2n+1
− x3

q3
2n+1

)
+
(

x4

q6
2n+1

− x5

q10
2n+1

)
+ (5.5)

· · ·+
 x2n

q
n(2n−1)
2n+1

− x2n+1

q
n(2n+1)
2n+1

 =
2n+1∑
k=0

(−1)kxk
√
q2n+1

k(k−1)

= S2n+1(−√q2n+1x, g√q2n+1),

where ga is the partial theta function and S2n+1(y, ga) is its (2n+1)-th partial
sum at the point y.

Since we have S2n+1(x, ϕ) ≥ S2n+1(−√q2n+1x, g√q2n+1) for any n ∈ N, if
there exists a point x0 ∈ (1, q2] such that S2n+1(x0, ϕ) ≤ 0, then
S2n+1(−√q2n+1x0, g√q2n+1) < 0. Therefore for y0 = √

q2n+1x0, we have√
q2n+1 ≤ y0 ≤

√
q2n+1q2 ≤ (√q2n+1)3. Using the statement (5) of Theorem I,

we obtain that q2n+1 > c2n+1, which completes the proof of Theorem 5.1.
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5.2 Proof of Corollary 5.2
As we have proved in the previous theorem, if f ∈ L − P, then q3(f) > 3.
In Theorem 3.4 it is proved that, under the assumptions of the Corollary, if
q2(f) < 4, then

q3(f) ≤
−q2(f)(2q2(f)− 9) + 2(q2(f)− 3)

√
q2(f)(q2(f)− 3)

q2(f)(4− q2(f)) .

We have mentioned that if f ∈ L − P , then q2(f) ≥ 3. If q2(f) = 3, then the
inequality above states q3(f) ≤ 3. This contradiction proves the Corollary 5.2.
2

5.3 Proof of Theorem 5.4
As in the proof of Theorem 5.1 we assume that a0 = a1 = 1, and we consider
the function ϕ(x) = f(−x) = 1− x+∑∞

k=2
(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

instead of f . We
need the following lemma.

Lemma 5.8 (T.H. Nguyen, A. Vishnyakova, [65]). Let ϕ(x) = 1 − x +∑∞
k=2

(−1)kxk
qk−1

2 qk−2
3 ·...·q2

k−1qk
be an entire function. Suppose that 1 < q2 ≤ q3 ≤ q4 ≤

· · · . If there exist j0 = 3, 4, . . . and m0 ∈ N, such that qj0 ≥ c2m0, then for all
j ≥ j0 + 2m0 − 3, there exists xj ∈ (q2q3 · . . . · qj, q2q3 · . . . · qjqj+1) such that
the following inequality holds:

(−1)jϕ(xj) ≥ 0.

Proof. Choose an arbitrary j ≥ j0 + 2m0 − 3 and fix this j. For every
x ∈ (q2q3 · · · qj, q2q3 · · · qjqj+1) we have

1 < x <
x2

q2
<

x3

q2
2q3

< · · · < xj

qj−1
2 qj−2

3 · . . . · q2
j−1qj

,

and
xj

qj−1
2 qj−2

3 · . . . · q2
j−1qj

>
xj+1

qj2q
j−1
3 · . . . · q3

j−1q
2
j qj+1

>
xj+2

qj+1
2 qj3 · . . . · q4

j−1q
3
j q

2
j+1qj+2

> · · · .
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We observe that

(−1)jϕ(x) =
j−2m0∑
k=0

(−1)k+jxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

+
j+1∑

k=j−2m0+1

(−1)k+jxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

+
∞∑

k=j+2

(−1)k+jxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

=: Σ1(x) + h(x) + Σ2(x).

Summands in Σ1(x) are increasing in modulus and the sign of the last
(biggest) summand is positive. So, for all x ∈ (q2q3 · . . . · qj, q2q3 · . . . · qjqj+1),
we have Σ1(x) > 0. Summands in Σ2(x) are decreasing in modulus and
the sign of the first (biggest) summand is positive. Consequently, for all
x ∈ (q2q3 · . . . · qj, q2q3 · . . . · qjqj+1), we get Σ2(x) > 0. Thus, we obtain

(−1)jϕ(x) > h(x) =
j+1∑

k=j−2m0+1

(−1)k+jxk

qk−1
2 qk−2

3 · . . . · q2
k−1qk

(5.6)

= − xj+1

qj2q
j−1
3 · . . . · q2

j qj+1
+ xj

qj−1
2 qj−2

3 · . . . · q2
j−1qj

− xj−1

qj−2
2 qj−3

3 · . . . · q2
j−2qj−1

+ . . .

+ xj−2m0+2

qj−2m0+1
2 qj−2m0

3 · . . . · q2
j−2m0+1qj−2m0+2

− xj−2m0+1

qj−2m0
2 qj−2m0−1

3 · . . . · q2
j−2m0qj−2m0+1

(we rewrite the sum from the end to the beginning). After factoring out the
term

xj+1

qj2q
j−1
3 · . . . · q2

j qj+1
,
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we get

(−1)jϕ(x) > h(x) = xj+1

qj2q
j−1
3 · . . . · q2

j qj+1
· (−1+ q2q3 · . . . · qjqj+1

x
(5.7)

− (q2q3 · . . . · qjqj+1)2

x2qj+1
+ (q2q3 · . . . · qjqj+1)3

x3q2
j+1qj

− . . .

+ (q2q3 · . . . · qjqj+1)2m0−1

x2m0−1q2m0−2
j+1 q2m0−3

j · · · q2
j−2m0+5qj−2m0+4

− (q2q3 · . . . · qjqj+1)2m0

x2m0q2m0−1
j+1 q2m0−2

j · . . . · q3
j−2m0+5q

2
j−2m0+4qj−2m0+3

)

=: xj+1

qj2q
j−1
3 · . . . · q2

j qj+1
· ψ(x).

Now we introduce some more notation. Set

y := q2q3 · . . . · qjqj+1

x
,

and observe that x ∈ (q2q3 · . . . · qj, q2q3 · . . . · qjqj+1)⇔ y ∈ (1, qj+1). Further
we change the numeration of the second quotients of Taylor coefficients as
follows

s2 := qj+1, s3 := qj, s4 := qj−1, . . . , s2m0−1 := qj−2m0+4, s2m0 := qj−2m0+3.

By our assumptions, q2 ≤ q3 ≤ q4 ≤ · · · , thus, we get s2 ≥ s3 ≥ s4 ≥ · · · ≥
s2m0 > 1, and y ∈ (1, s2). In the new notation we have

ψ(y) = −1 + y −
2m0∑
k=2

(−1)kyk

sk−1
2 sk−2

3 · . . . · s2
k−1sk

. (5.8)

We want to prove that there exists a point yj ∈ (1, qj+1) = (1, s2) such
that h(yj) ≥ 0. Hence, we compare the expression in brackets with the
corresponding partial sum of the partial theta function. We have

ψ(y) = (−1 + y) +
(
−y

2

s2
+ y3

s2
2s3

)
+
(
− y4

s3
2s

2
3s4

+ y5

s4
2s

3
3s

2
4s5

)
+ · · ·+ (5.9)(

− y2m0−2

s2m0−3
2 s2m0−4

3 · . . . · s2
2m0−3s2m0−2

+ y2m0−1

s2m0−2
2 s2m0−3

3 · . . . · s2
2m0−2s2m0−1

)

− y2m0

s2m0−1
2 s2m0−2

3 · . . . · s3
2m0−2s

2
2m0−1s2m0

.
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Firstly, under our assumptions, one can see that

− y2m0

s2m0−1
2 s2m0−2

3 · . . . · s2
2m0−1s2m0

(5.10)

≥ − y2m0

s2m0−1
2m0 s2m0−2

2m0 · . . . · s2
2m0s2m0

= − y2m0

s
m0(2m0−1)
2m0

.

We prove that for any fixed k = 1, 2, . . . ,m0 − 1, the following inequality
holds

− y2k

s2k−1
2 s2k−2

3 · . . . · s2k
+ y2k+1

s2k
2 s

2k−1
3 · . . . · s2

2ks2k+1
(5.11)

≥ − y2k

s2k−1
2m0 s

2k−2
2m0 · . . . · s2m0

+ y2k+1

s2k
2m0s

2k−1
2m0 · . . . · s2

2m0s2m0

= − y2k

s
k(2k−1)
2m0

+ y2k+1

s
k(2k+1)
2m0

.

Firstly, we consider (5.11) for k = 1. Since s2 ≥ s3, we have

−y
2

s2
+ y3

s2
2s3
≥ −y

2

s2
+ y3

s3
2
.

We observe that

∂

∂s2

(
−y

2

s2
+ y3

s3
2

)
= y2

s2
2
− 3y3

s4
2
> 0⇔ y <

s2
2

3 .

The inequality above is valid if y < qj+1 = s2 and s2 > 3. We suppose that
there exist j0 = 2, 3, 4, . . . and m0 ∈ N, such that qj0 ≥ c2m0 , then we fix an
arbitrary j ≥ j0 + 2m0 − 3 and get s2 ≥ s2m0 = qj−2m0+3 ≥ qj0 ≥ c2m0 > 3.
Therefore, the function

(
−y2

s2
+ y3

s3
2

)
is increasing in s2, whence

− y2

s2
+ y3

s2
2s3
≥ −y

2

s2
+ y3

s3
2
≥ − y2

s2m0

+ y3

s3
2m0

. (5.12)

We apply analogous reasoning to prove (5.11) for every k = 1, 2, . . . ,m0 − 1.
Let us define the following function

H(s2, s3, . . . , s2k, s2k+1) := − y2k

s2k−1
2 s2k−2

3 · . . . · s2
2k−1s2k

+ y2k+1

s2k
2 s

2k−1
3 · . . . · s3

2k−1s
2
2ks2k+1



CHAPTER 5. NUMBER OF REAL ZEROS 92

for s2 ≥ s3 ≥ · · · ≥ s2k+1. Obviously,

H(s2, s3, . . . , s2k, s2k+1) ≥ H(s2, s3, . . . , s2k, s2k)

= − y2k

s2k−1
2 s2k−2

3 · . . . · s2
2k−1s2k

+ y2k+1

s2k
2 s

2k−1
3 · . . . · s3

2k−1s
3
2k
.

We have

∂H(s2, s3, . . . , s2k, s2k)
∂s2k

= y2k

s2k−1
2 s2k−2

3 · . . . · s2
2k−1s

2
2k

− 3y2k+1

s2k
2 s

2k−1
3 · . . . · s3

2k−1s
4
2k
.

Thus,
∂H(s2, s3, . . . , s2k, s2k)

∂s2k
> 0⇔ y <

s2s3 · . . . · s2k−1s
2
2k

3 .

Since y ∈ (1, s2)⇒ y < s2, we obtain that the function H(s2, s3, . . . , s2k, s2k)
is increasing in s2k, whence

H(s2, s3, . . . , s2k−1, s2k, s2k+1) ≥ H(s2, s3, . . . , s2k−1, s2k, s2k)

≥ H(s2, s3, . . . , s2k−1, s2m0 , s2m0) = − y2k

s2k−1
2 s2k−2

3 · . . . · s2
2k−1s2m0

+ y2k+1

s2k
2 s

2k−1
3 · . . . · s3

2k−1s
3
2m0

.

Now we consider the derivative of the latter function
∂H(s2, s3, . . . , s2k−1, s2m0 , s2m0)

∂s2k−1

= 2y2k

s2k−1
2 s2k−2

3 · . . . · s3
2k−1s2m0

− 3y2k+1

s2k
2 s

2k−1
3 · . . . · s4

2k−1s
3
2m0

.

Hence,

∂H(s2, s3, . . . , s2k−1, s2m0 , s2m0)
∂s2k−1

> 0⇔ y <
2s2s3 · . . . · s2k−1s2k−1s

2
2m0

3 .

The inequality above is valid since y < s2 and s2m0 > 3, therefore, we obtain
that the function H(s2, s3, . . . , s2k−1, s2m0 , s2m0) is increasing in s2k−1, whence

H(s2, s3, . . . , s2k−2, s2k−1, s2m0 , s2m0) ≥ H(s2, s3, . . . , s2k−2, s2m0 , s2m0 , s2m0)

= − y2k

s2k−1
2 s2k−2

3 · . . . · s3
2k−2s

3
2m0

+ y2k+1

s2k
2 s

2k−1
3 · . . . · s4

2k−2s
6
2m0

.
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Applying similar arguments we get the following chain of inequalities.

H(s2, s3, . . . , s2k, s2k+1) ≥ H(s2, s3, . . . , s2k−1, s2m0 , s2m0)
≥ H(s2, s3, . . . , s2k−2, s2m0 , s2m0 , s2m0) ≥ . . . ≥ H(s2m0 , s2m0 , . . . , s2m0 , s2m0).

Thus, we have proved (5.11).
We substitute the inequality (5.10) and (5.11) into (5.9) to get the following

ψ(y) ≥ −
2m0∑
k=0

(−1)kyk

s
k(k−1)

2
2m0

= −S2m0(−√s2m0y, g√s2m0
), (5.13)

where ga is a partial theta function and Sn(x, ga) := ∑n
j=0 x

ja−j
2 is its partial

sum. By our assumption (√s2m0)2 = s2m0 = qj−2m0+3 and j ≥ j0 + 2m0 − 3,
so s2m0 = qj−2m0+3 ≥ qj0 ≥ c2m0 , and we conclude that S2m0(x, gs2m0

) ∈
L − P (see Theorem I). Whence, by part (4) of Theorem I, there exists x0 ∈
(−(√s2m0)3,−√s2m0) such that S2m0(x0, gs2m0

) ≤ 0. We put −√s2m0y0 := x0,
i.e. y0 := − x0√

s2m0
∈ (1, s2m0) ⊂ (1, s2), and we have

S2m0(−√s2m0y0, g√s2m0
) ≤ 0.

Substituting the last inequality in (5.13) we obtain

ψ(y0) ≥ −S2m0(−√s2m0y0, g√s2m0
) ≥ 0. (5.14)

Using (5.14) and substituting (5.13) into (5.7), we get

(−1)jψ(x) > h(x) = xj+1

qj2q
j−1
3 · . . . · q2

j qj+1
· ψ(y0) ≥ 0,

which is the desired inequality. It remains to recall that xj := q2q3...qjqj+1
y0

, and,
since y0 ∈ (1, s2) = (1, qj+1), we have xj ∈ (q2q3 · . . . · qj, q2q3 · . . . · qjqj+1).

Now we apply Lemma 4.5, which states that if f(x) = ∑∞
k=0 akx

k, ak >
0, k = 0, 1, 2, . . ., is an entire function such that 2 3

√
2 ≤ q2(f) ≤ q3(f) ≤

q4(f) ≤ · · · , then, for all sufficiently large k, the function f has exactly
k zeros on the disk {z : |z| < q2(f)q3(f) · . . . · qk(f)

√
qk+1(f)} counting

multiplicities.
Let us choose an arbitrary k ≥ 2, being large enough to get the statement

of Lemma 4.5, and k ≥ j0 + 2m0−2. Then the number of zeros of ϕ (counting
multiplicities) in the disk {z : |z| < q2q3 · . . . · qk

√
qk+1} is equal to k. By
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Lemma 5.8 we have

sgnϕ(xj0+2m0−3) = − sgnϕ(xj0+2m0−2),
sgnϕ(xj0+2m0−2) = − sgnϕ(xj0+2m0−1),
. . .

sgnϕ(xk−2) = − sgnϕ(xk−1),

and

0 < xj0+2m0−3 < xj0+2m0−2 < · · · < xk−1 < q2q3 · . . . · qk < q2q3 · . . . · qk
√
qk+1.

Hence, the function ϕ has k − j0 − 2m0 + 3 sign changes in the interval
(0, q2q3 · . . . · qk

√
qk+1), whence the number of real zeros of ϕ in the disk

{z : |z| < q2q3 · · · qk
√
qk+1} is at least k − j0 − 2m0 + 2. Therefore, the

number of nonreal zeros of ϕ in this disk is less than or equal to j0 + 2m0− 2.
Since k is an arbitrary large enough integer, we get that ϕ has not more than
j0 + 2m0 − 2 nonreal zeros.

Therefore, Theorem 5.4 is proved.
In this chapter, we proved necessary conditions for an entire function

f(x) = ∑∞
k=0 akx

k, ak > 0, with a non-decreasing sequence of its second
quotients of Taylor coefficients to belong to the Laguerre–Pólya class of type
I. Besides, we obtained an estimation of the possible number of non-real zeros
for such functions.



Chapter 6

Further questions

We would like to formulate some open questions for further research.
Question 1. What are the conditions for an entire function with positive

coefficients to belong to the Laguerre–Pólya class in case when {qk}∞k=0 is not
a monotonic sequence?

As a first attempt, one could consider the case when the second quotients
have only 2 values, for instance, qk ∈ {a, b}. For instance, one can look at
the following entire function:

f(x) =
∞∑
k=0

xk

qk−1
2 qk−2

3 · · · q2
k−1qk

,

where

q2 = q4 = q6 = . . . = a > 1,
q3 = q5 = q7 = . . . = b > 1,

or

f(x) = 1 + x+ x2

a
+ x3

a2b
+ x4

a3b2a
+ x5

a4b3a2b
+ . . .

and identify conditions for which {a, b} the entire function f belongs to the
Laguerre-Pólya I class. Partial results for the case when a < b are obtained
by T.H. Nguyen and A. Vishnyakova (see [63]), however, the question still
remains open for the case a > b.

We recall that as a consequence of Hutchinson’s theorem (see Chapter 1,
Theorem B), it is known that if qk(f) ∈ [4,+∞), then f belongs to the
Laguerre–Pólya class.
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Question 2. Is it possible to formulate an analogue of Hutchinson’s
Theorem and to find an interval such that if qk(f) ∈ [a, b], a < 4 it follows
that f belongs to the Laguerre–Pólya class?

Question 3. Is it possible to generalize Hutchinson’s constant in Theorem B
for the cases of many variables? (The question was posed by Petter Brändén).
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Laguerre–Pólya class”. In: Computational Methods and Function Theory
18.1 (2018), pp. 35–51 (cit. on pp. ix, 3, 13, 14).

107



BIBLIOGRAPHY 108

[11] Anton Bohdanov and Anna Vishnyakova. “On the conditions for entire
functions related to the partial theta-function to belong to the Laguerre–
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In: Journal für die Reine und Angewandte Mathematik 27 (1844),
pp. 193–197 (cit. on p. 10).

[31] Alexandre Eremenko. Topics in entire functions. Lectures in Kent Uni-
versity. Mar. 2015. url: https://www.math.purdue.edu/˜eremenko/
dvi/kent.pdf (cit. on pp. viii, 3).

https://www.math.purdue.edu/~eremenko/dvi/kent.pdf
https://www.math.purdue.edu/~eremenko/dvi/kent.pdf


BIBLIOGRAPHY 110

[32] George Gasper and Mizan Rahman. Basic hypergeometric series. 2nd ed.
Encyclopedia of Mathematics and Its Applications 96. Cambridge:
Cambridge University Press, 2004 (cit. on p. 29).

[33] Anatoly A. Goldberg and Iosif V. Ostrovskĭı. Value distribution of
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