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EXTENDED ABSTRACT 

The increasing concern and awareness of the modern consumer regarding food 

including fruits and vegetables, has been oriented the research in the food industry 

to develop rapid, reliable and cost effective methods for the evaluation of food 

products including the traceability of the product history in terms of storage 

conditions. Since the conventional destructive analysis methods are time consuming, 

expensive, targeted and labor intensive, non-destructive methods are gaining 

significant popularity. These methods are being utilized by the food industry for the 

early detection of fruits defects, for the classification of fruits and vegetables on the 

basis of variety, maturity stage, storage history and origin and for the prediction of 

main internal constituents.  

Since chilling injury (CI) occurrence is a major problem for chilling sensitive 

products, as tropical and sub-tropical fruit and vegetables, prompt detection of CI is 

still a challenge to be addressed. The incorrect management of the temperature 

during storage and distribution causes significant losses and wastes in the 

horticultural food chain, which can be prevented if the product is promptly reported 

to the correct temperature, before that damages become irreversible. For this reason, 

rapid and fast methods for early detection of CI are needed.  

In the first work of this thesis, non-destructive optical techniques were applied for 

the early detection of chilling injury in eggplants. Eggplant fruit is a chilling sensitive 

vegetable that should be stored at temperatures above 12°C. For the estimation of 

CI, fruit were stored at 2°C (chilling temperature) and at 12°C (safe storage 

temperature) for a time span of 10 days. CIE L*a*b* measurements, reflectance data 

in the wavelength range 360–740 nm, Fourier Transformed (FT)-NIR spectra (800–

2777 nm) and hyperspectral images in the visible (400–1000 nm) and near infrared 

(900–1700 nm) spectral range were acquired for each fruit. Partial least square 

discriminant analysis (PLSDA), supervised vector machine (SVM) and k-nearest 

neighbor (kNN) were applied to classify fruit according to the storage temperature. 

According to the results, although CI symptoms started being evident only after the 
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4th day of storage at 2°C, it was possible to discriminate fruit earlier using FT-NIR 

spectral data with the SVM classifier (100 and 92% non-error-rate (NER) in 

calibration and cross validation, respectively, in the whole data set. Color data and 

PLSDA classification possessed relatively lower accuracy as compared to SVM. 

These results depicted a good potential of for the non-destructive techniques for the 

early detection of CI in eggplants.  

Similarly, in the second experimental part of the thesis, hyperspectral imaging in 

Vis-NIR and SWIR regions combined with chemometric techniques were used for 

the early estimation of chilling injury in bell peppers. PLSDA models accompanied 

by wavelength selection algorithms were used for this purpose, with accuracies 

ranging from 81% and 87% non-error-rate (NER) based on the wavelength ranges 

used and variables selected. PLSR models were developed for the prediction of days 

of cold storage resulting in R²CV = 0.92 for full range and R²CV = 0.79 using selected 

variables. Based on the results, it was concluded, that Vis-NIR hyperspectral 

imaging is a reliable option for on-line classification of fresh versus refrigerated fruit 

and for identifying early incidence of CI.  

Inspired by the results obtained from previous studies a third study regarded the 

use of non-destructive techniques for the estimation of freshness of eggplants using 

color, spectral and hyperspectral measurements. To this aim, fruit were stored at 

12°C for 10 days. Fruit were left at room temperature (20°C) for 1 day after sampling 

which was done with a 2-day interval, simulating one-day of shelf life in the market. 

PLSR models were developed using the spectral and hyperspectral data and the 

storage days, allowing safe assessment of the freshness of the fruits along with the 

utilization of SPA for variable reduction. The results depicted strong correlation 

between storage days, FT-NIR spectra and the hyperspectral data in the Vis-NIR 

range with accuracies as high as RC> 0.98, RCV> 0.94, RMSEC < 0.4 and RMSECV< 

0.8, followed by lower accuracies using color data. The results of this study may set 

the basis to develop a protocol allowing a rapid screening and sorting of eggplants 

according to their postharvest freshness either upon handling in a distribution center 
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or even upon the reception in the retail market. 

In the last work, as a deeper investigation, the effect of temperature and storage 

time on the FT-NIR spectra was statistically investigated using ANOVA-

simultaneous component analysis (ASCA) on eggplant fruit as a crop model. Also 

in this case, fruit were stored at 2 and 12 °C, for 10 days. Sensorial analysis, 

electrolyte leakage (EL), weight loss and firmness were used, as the reference 

measurements for CI. ASCA model proved that both temperature, duration of 

storage, and their interaction had a significant effect on the spectral changes over 

time of eggplant fruit. Followed by ASCA, PLSDA was conducted on the data to 

discriminate fruit based on the storage temperature. In this case, only the WL 

significant in the ASCA approach for temperature were considered, allowing to 

reach 87.4±2.7% as estimated by a repeated double-cross-validation procedure. The 

outcomes of all these studied manifested a promising, non-invasive, and fast tool for 

the control of CI and the prevention of food losses due to the incorrect management 

of the temperature in the horticultural food chain. 
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1. Chilling injury in horticultural commodities 

Low-temperature storage is a postharvest technique commonly applied to prolong 

the shelf-life of horticultural produce, by slowing down the metabolism; however, 

tropical and subtropical commodities, that include more than half of the species on 

the Earth, are chilling sensitive (Lukatkin et al. 2012). These products, should be 

stored a temperature of 8-12 °C depending on the specie sensitivity. Storage at 

temperature lower than the critical chilling temperature will result in the occurrence 

of different chilling injuries which will decrease the marketability and the storage 

life of the product (Chien Yi Wang 1994).  

Generally, low temperature induces membrane lipid phase transitions which 

causes a loss of membrane integrity and physiological dysfunction. It has been 

observed that the level of certain high melting phospholipids appears to be associated 

with the chill sensitivity of commodities Membranes and changes in their physical 

physiognomies are further associated as having a role in chilling injury (CI) by the 

detection that chilling stress educes an elaborate membrane retailoring response that 

leads to increased fluidity at reduced temperatures (PARKIN et al. 1989). 

CI symptoms differ with commodities. Common CI symptoms in tropical 

horticultural commodities are pitting, discoloration, water soaked appearance, 

internal breakdown, and failure to ripen, loss of flavor and aroma, and decay 

(Hardenburg, Watada, and Wang 1986) (Fig.1). Symptom development depends not 

only on species and cultivars, but also on maturity, types of tissues, and other 

environmental factors, such as storage humidity. Pitting, circular or irregular-shaped 

pits on the fruit surface, is the most common and the first CI symptom in many 

tropical horticultural commodities (Chien Yi Wang 1994).  

Particularly, flesh browning and darkening of seeds and pulp tissue, color changes 

are internal symptoms of CI in eggplant, whereas pitting in the skin and calyx 

discoloration are   that can be seen externally (Concellón, Añón, and Chaves 2007a). 

For bell peppers, the most common indications for CI are calyx browning, surface 

pitting, seed discoloration. For pomegranates, the external symptoms are the brown 
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discoloration of the skin, surface pitting, and susceptibility to decay organisms, and 

in the same manner, pale aril color and brown discoloration of the white segments 

separating the arils could happen for the internal matters (Mirdehghan et al. 2007)  

In some tropical and subtropical produce, CI may even cause failure in the 

ripening process. For instance, this disorder is a regular phenomenon in avocados, 

bananas, mangos, melons, papayas, sapodilla, and tomatoes. Moreover, there are 

more symptoms that are related to specific crops. In bananas, for example, sub 

epidermal brown streaking of vascular tissues can occur; membranous staining and 

mahogany browning are particular symptom in lemon and potatoes, respectively 

(C.Y. Wang 2010).   

 

Fig.1. Effect of discoloration (left), water soak appearance (center), and surface pitting (right) in 

banana, peach, and nectarine (photo credit: Adel Kader and Don Edwards, UC Davis)  

 

During the last decade, various researches have been conducted for diminishing 

chilling-induced injuries. Temperature conditioning, intermittent warming, 

controlled atmosphere storage, and chemical treatments, are the most frequent 

techniques that have been used regarding this purpose. 

 

Temperature conditioning 

Temperature conditioning includes two techniques: Low Temperature 

Conditioning (LTC) and High Temperature Conditioning (HTC). In LTC, chilling-

sensitive fruit and vegetables are subjected to a temperature a little above the chilling 

range. This phenomenon helps the crops to enhance the tolerance to chilling during 

successive low storage temperature. As a sequence, this technique makes an adaptive 
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response in fruit and vegetables to chilling stress resulting in several physiological 

and biochemical variations (C.Y. Wang 2010). On the other hand, HTC is a short 

term treatment with temperature above 35°C. In this case, the commodities get 

exposed to one type of stress leading to stimulation of some elements which can 

protect against another type of stress. HTC can be done by hot water dip, hot forced 

air, or vapor heat (Klein and Lurie 1991). 

 

Intermittent warming 

Intermittent warming is another alternative method interposing to the low 

temperature storage with one or more short periods of warm temperature that allow 

to increase the storage time of some chilling-sensitive produce. In order to use this 

method, the CI should be detected at the early stage in order to expose fruit to 

worming before that symptoms become irreversible (P. Li et al. 2016a).  

Intermittent warming ordinarily induces higher metabolic activities and permits 

the tissue to metabolize excess intermediates or toxic materials accumulated during 

chilling  

 

Controlled atmosphere storage 

Controlled atmosphere storage in some particular fruit inhibits the solubilization 

and depolymerization of chelator-soluble wall polyuronides and considerably 

reduced the surge in pectinesterase and β-galactosidase activities which is associated 

with CI (Alba-Jiménez et al. 2018; Ali et al. 2004; L. Li et al. 2019). In this regard, 

Lurie (1993) observed  that the exposition to 10% CO2 and 10% O2 for 6 weeks 

could prevent CI in the nectarine cultivars ‘Fantasia’, ‘Flavortop’, and ‘Flamekist’. 

On the other hand, Ketsa and Klaewkasetkorn (1995) reported that for Rambutan 

fruit, 0.3–0.7 % CO2 and 16.1–19.5 % O2  delayed the  CI development compared to 

fruit stored in  air. Moreover, Gracia (1997) compared the effect of different O2 and 

CO2 mixtures  (5% CO2 + 5% O2, 15% CO2 + 2% O2 and air) for ‘Hass’ avocado 

stored at 2°C for 30 days, founding that fruit stored in 15% CO2 with 2% O2 showed 
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less CI symptoms. 

 

Chemical treatment 

Chemical treatment such as methyl jamonate (MeJA) and salicylic acid have been 

used also for reduction of CI which leads to six different effects: 

1) Higher membrane integrity due to higher unsaturated/saturated fatty acids 

(unSFA/SFA) ratio which causes reduction in enzymatic activities during 

storage at chilling temperature and led to maintenance of membrane integrity. 

2) higher HSPs gene expression and accumulation that produce a stress-responsive 

family of proteins whose molecular weights range between 15 and 115 kDa   

3)  higher antioxidant system activity; 

4) Higher arginine pathway activity leading to higher polyamines, nitric oxide 

(NO), and proline accumulation. Arginine is a metabolically multifunctional 

amino acid that play an important role for constructing block of proteins and as 

a precursor for the biosynthesis of signaling molecules such as polyamines 

(putrescine, spermidine, spermine), proline NO) which can be fairly vital in 

enhancing the tolerance to CI. 

5)  Higher phenylalanine ammonia lyase (PAL)/polyphenol oxidase (PPO) 

enzymatic activity ratio along with higher DPPH scavenging capacity leading to 

lower browning. ParticularlyPAL activity stimulated by the CI induces an 

increase of total phenols (TP) that accumulates in vacuoles; a membrane 

selective permeability loss occurs; PPO activity increases in cytoplasm that is 

responsible for flesh or internal browning; phenolics compounds accumulated 

in vacuoles leak to cytoplasm due to loss of vacuole membrane (tonoplast) 

selective permeability and contribute to IB incidence and  

6) Higher -aminobutyric acid (GABA) shunt pathway activity. GABA is a four 

carbon, non-protein amino acid which plays a crucial role as a signaling 

molecule in response to postharvest stress such as CI. In addition to anti-chilling 

function of GABA in fruits and vegetables, GABA plays an important role in 
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human health due to its antihypertensive effects (Aghdam and Bodbodak 2013; 

Cai et al. 2011; Mae et al. 2012; Sayyari et al. 2016). 

2. Detection of chilling injury 

2.1. Conventional techniques 

 

Many methods have been conventionally applied for the detection and evaluation 

of CI. 

In general, for all chilling sensitive commodities, visual symptoms can be notices. 

Alterations in the appearance of fruit often involve changes to the chemical content 

and structure of the cell wall and plasma membrane (Liu et al. 2015), as observed 

for bell peppers. Changes in the cell walls can be detected trough firmness 

measurements; however, changes in the composition of the cell wall are caused by 

the action of hydrolytic enzymes, such as polygalacturonase (PG) and pectin methyl 

esterase (PME), which are therefore indicators of CI.  Moreover, since CI causes cell 

membrane damage and, as a consequence, affects the effectiveness of membranes as 

barriers to solute diffusion, electrolyte leakage is considered to provide an indirect 

measure of this damage (Murata 1990).  On the other hand, malondialdehyde 

content, antioxidant enzymes including catalase, peroxidase, ascorbate peroxidase 

and glutathione reductase, ascorbate-glutathione cycle, organic acid content, and 

activities and relative gene expressions of Ascorbate Peroxidase (APX) were used 

for the CI assessment in bell peppers(Endo et al. 2019; L. Liu et al. 2015; Q. Wang 

et al. 2012; Y. Wang et al. 2019) 

As, reactive oxygen species (ROS) scavengers, also the antioxidant enzymes 

activity may decline by exposing fruit to low temperature, as observed for the 

eggplant. Therefore, antioxidant enzymes activity assessment could be reference for 

CI evaluation (Zheng et al. 2008).  

Phenolic content is another parameter for CI evaluation which can be decreased 

by induction of CI in the fruit. On the other hand, ,pH, the activity and relative gene 

expression of peroxidase (POD) and catalase (CAT) are the most dominant factors 
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that are being measured  for the evaluation of CU in eggplants (Concellón et al. 2012; 

Concellón, Añón, and Chaves 2005, 2007b; Fan et al. 2016; Shi et al. 2018).  

  

2.2. Non-destructive and innovative techniques 

Non-destructive techniques are significantly advantageous over the chemical 

analysis in terms of cost, speed, time and reliability of the expected results. Most 

importantly, non-destructive techniques are not a direct replacement of the 

conventional methods, but can be a useful tool to assist these techniques. In case of 

the non-destructive methods no sample preparation is needed and upon the 

development of prediction/classification model, the prediction process becomes 

quite quicker. In order to evaluate the changes in chlorophyll content caused by CI, 

Lurie, ronen, and Meier (1994) studied Pulse Amplitude Modulated (PAM) 

fluorimeter to measure changes in photosynthetic competency (quantum yield 

(Fm/Fe), photochemical quenching (Qp), and non-photochemical quenching (Qnp)) 

associated with CI in whole green bell peppers. Similarly, Kosson's (2003) 

investigated the effect of storage at various chilling temperatures for 18 days on 

chlorophyll fluorescence parameters and CI occurrence of green pepper (Capsicum 

annuum) . Due to this purpose, the chlorophyll fluorescence parameters including 

minimum fluorescence (Fo), maximum fluorescence (Fm), variable fluorescence 

(Fv), plus Fv/Fm were measured. The results of this study showed a gradual decrease 

of Fv/Fm fluorescence (as an effective factor) from about 0.85 for fresh-harvested 

pepper to 0.55 after 3 days of storage at 1 °C and to 0.45 after 18 days of storage. 

For assessment of chlorophyll change, Hashim et al. (2013) used a different 

technique. They employed laser diodes emitting at 660 and 785 nm to acquire images 

of backscattered light from intact banana fruits to monitor chlorophyll and texture 

changes resulted by CI.  

Firmness also as an index for CI evaluation has been used in several studies. For 

instance, Verlinden, De Smedt, and Nicolaı (2004) evaluated texture changes related 

to CI by acoustic firmness measurements and ultrasonic wave propagation. Hale et 
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al. (2013) used two non-destructive instruments, an acoustic firmness sensor 

(AWETA), and a vis/NIR DA-meter to classify ‘August Fire’ nectarines into 

maturity stages based on both fruit firmness and ethylene production as result of CI. 

Nowadays, smartphones and their applications are getting popular in case of 

applying in the agricultural and horticultural researches. In this regard, Novas et al. 

(2019) developed an application for a smartphone that automates the process of CI 

and applied it to zucchini, one of the most sensitive vegetables.. The smartphone 

used in that work was a commercial Samsung Galaxy S5 G900F working in visible 

spectrum range. The built-in camera was a 16 MP (f/2.2, 31 mm, 1/ 2.600, 1, 12 

mmm). When used to extract frames from the video capture, the resolution used was 

720p at 30 fps. To demonstrate the validity, the authors compared the results to 

standard method. They also compared different varieties allowing thresholds of hue 

and saturation settings to be adapted to these different varieties. 

Among non-destructive optical-based techniques, NIR spectroscopy and 

hyperspectral imaging have shown promising results as reported in various papers. 

In the following sections, these techniques will be described. 

3. Optical-based techniques 

3.1. Spectroscopy  

3.1.1. Basic concepts 

Optical radiation covers the wavelength range of 100 nm to 1000 µm of the 

electromagnetic spectrum. This range splits into the ultraviolet (UV) region from 

100 to 380 nm, the visible (VIS) light ranging from 380 to 780 nm, and the infrared 

(IR) radiation of wavelengths above 780 nm (Fig.2).  IR region itself, is subdivided 

to the near infrared (NIR) region covers wavelengths from 780 nm up to 2500 nm, 

mid infrared (MIR) covers the region from 2500 nm to 25 µm, and far infrared (FIR) 

the contiguous region up to 1000 µm (Porep, Kammerer, and Carle 2015).  
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Fig.2. Electromagnetic spectrum 

Fundamentally, when the infrared (IR) light radiates a molecule, ta discrete 

amounts of energy at specific resonant frequencies, is absorbed causing the vibration 

of specific molecule bonds (Larkin 2017; Smith 2011). Different kind of vibrations 

are then generated, namely stretching, bending, scissoring, wagging, rocking, 

twisting or deformation modes as shown in Fig. 3 (Bureau, Cozzolino, and Clark 

2019).  

 

Fig.3. Various vibration kinds in molecules (Photo credit: (Sitarski 2017)) 

In the NIR spectroscopy, radiated NIR can be measured either in reflected or 

transmitted mode. In fact, the radiating energy penetrates the sample, and scattering 

and absorption processes affect the reflected or transmitted spectra. This 

transformation is due to the chemical composition of the product, and also on its 
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light scattering properties which are associated with the microstructure (Nicolaï et 

al. 2007a). 

Spectra obtained by NIR spectroscopy includes overlapping absorptions 

corresponding mainly to overtones and combinations of vibrational types involving 

C–H, O–H, N–H and S–H chemical bonds (Osborne 2006), and particularly C–H 

bonds and water O–H bonds controlling the hydrated material (Nicolaï et al. 2014). 

Historically, Norris (1964) was the first researcher who had applied NIR 

spectroscopy in agricultural applications by evaluating the moisture in grain. Later 

on, by soaring the importance of non-destructive techniques, NIR spectroscopy 

started to play a crucial role in postharvest technology, from the fact that numerous 

producers demanded on/in- line sorting systems using NIR technology to assess 

different quality aspects. 

 

3.1.2. Instrumentation  

 Instrumentation for near-IR (NIR) spectroscopy is comparable to instruments 

for the UV-visible and mid-IR ranges. NIR spectrophotometer consists of a light 

source which is typically a tungsten halogen light bulb, sample presentation 

accessory, monochromator, detector, and optical components, such as lenses, 

collimators, beam splitters, integrating spheres and optical fibers. 

Spectrophotometers could be categorized based on the monochromator. In a filter 

instrument, the monochromator is a wheel holding a number of absorption or 

interference filters, although, it’s spectral resolution is limited. On the other hand, 

scanning monochromator instrument consists of a grating or a prism that separate 

the specific frequencies of the radiation either entering or leaving the sample. In this 

case, the wavelength separator rotates so that the radiation of the individual 

wavelengths subsequently reaches the detector. Fourier transform NIR (FT-NIR) 

instruments use an interferometer, especially for wavelengths above ~1000 nm. 

Depending on the sample, the spectrum can be quantified in either reflection or 

transmission (Nicolaï et al. 2007a; Stratis et al. 2001).  
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Fig.4. Spectra acquiring by Multi-Purpose Analyzer (MPA) (Bruker Inc.) spectrometer and OPUS 

software 

 

3.1.3. Application 

 Fruit and vegetables are a particular group of daily food. Due to having a vast 

range of size, color, shape, and chemical composition, as well as, vary even when 

harvested at the same place and same time, grading them on the basis of their quality 

and physio-chemical aspects is very essential. Indeed, performing a conventional 

analytical technique is very time-consuming, labor intensive, and comparatively 

expensive. Nowadays, NIR spectroscopy as a non-destructive technology is suitable 

to the measurement of the aforementioned aspects. 

Regarding online application, Zude et al. (2010) investigated banana and papaya 

spectra (VIS-NIR) by utilizing optical geometry for non-invasive remittance analysis 

in-situ as well as diffuse reflectance readings with a laboratory spectrophotometer. 

Considering different maturity stages and after CI level, spectral variations were 

examined.  Spectral variations were analyzed in fruits at different maturity stages as 

well as after CI treatment. Fruit maturity was estimated by means of chlorophyll 

changes analyzed in the red and near infrared wavelength ranges of the fruit spectra. 

In another aspect of online practice, Hara et al. (2018) used Raman spectroscopy 

by applying different excitation wavelengths (532 nm, 785 nm, and 1064 nm) to 

identify an appropriate wavelength for the quantitative analysis of carotenoids in 

tomatoes. It was figured out that a regression model designed using the 785 nm-

excited Raman spectra is showing a better result than the 532 nm- and 1064 nm-
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excited Raman spectra. 

 In the offline and lab scale applications, Farneti, el al. (2012) conducted a 

research to realize the possibility of spectroscopy for detection of CI in tomatoes by 

assessing Lycopene as a factor of CI in tomatoes using remittance VIS spectroscopy 

as a test panel and HPLC as a reference. It was found to relate closely to the lycopene 

level as measured by HPLC measurements of pericarp tissue. Additionally, Huang, 

Lu, and Chen (2018) assessed the quality of tomato fruit by using a newly developed 

spatially-resolved spectroscopy (SRS) system with 30 detection optic fibers covering 

the wavelength range of 550–1650 nm and comparing its performance with two 

conventional single-point (SP) spectroscopic instruments covering the visible and 

shortwave near-infrared (Vis/SWIR) (400–1100 nm) and near-infrared (NIR) (900–

1300 nm) regions, respectively. The result of this work manifested combinations of 

two or more SR spectra resulted in better, more consistent SSC and pH predictions. 

SR predictions of pH (rp = 0.819) were better than for SP Vis/SWNIR (rp = 0.743) 

and NIR (rp = 0.741) predictions, whereas SR predictions of SSC (rp = 0.800) were 

comparable to SP NIR predictions (rp = 0.810) but better than SP Vis/SWNIR 

predictions (rp = 0.729). For estimating the prior storage period of lamb’s lettuce 

based on visible/near infrared reflectance spectroscopy, Jacobs et al. (2016) 

conducted a research.  Different variable selection techniques were combined in this 

research to improve the accuracy and robustness of the prediction model, while 

decreasing the number of used wavelengths. The final model used only 10% of the 

original wavelengths, while the root mean squared error of cross validation 

decreased from 6.0 to 3.6 days. Moreover, NIR spectroscopy is an advantageous tool 

also for authenticity and adulteration detection in agricultural produce as Wilde et 

al. (2019) used. In their research, Near and Fourier-Transform Infrared Spectroscopy 

has been combined with chemometrics to screen for the substitution of black pepper 

with papaya seeds, chili and with non-functional black pepper material such as black 

pepper husk, pinheads and defatted spent materials. Reasonable separation 

performance between black pepper and adulterated samples could be shown and after 
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running a binary classification model with an external test set an area under the 

receiver operator characteristic curve of 0.98 for both, the NIR and FT-IR model was 

obtained. 

 

3.2. Hyperspectral imaging 

3.2.1. Basic concepts 

 Hyperspectral imaging technique integrates imaging technique and 

spectroscopy simultaneously, obtaining spatial and spectral information at the same 

time. Hyperspectral images are comprised of a stack of images of the same sample 

over a large number of contiguous wavebands for each spatial position for a targeted 

study formulating a 3D data cube (Ariana and Lu 2008). The spatial dimensions of 

the hyperspectral images are contained in the x rows and y columns while the pixels 

in the z direction possess the spectral information. 

 

Fig.5. A hyperspectral image  

 

  Table 1 shows the significance of the hyperspectral imaging over 

conventional imaging and spectroscopic techniques. It can be seen that hyperspectral 

imaging possesses a lot of potentiality in terms of providing nutritional information 

non-destructively and mapping of nutritional profiles along with defect and damage 
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detection.  

 

 

 

Table 1. Overview of differences between imaging, spectroscopy and hyperspectral imaging 

Aim of analysis Spatial 

information 

Spectral 

information 

Mapping of 

chemical 

composition  

Imaging YES NO NO 

Spectroscopy NO YES NO 

Hyperspectral 

imaging 

YES YES YES 

 

 For every pixel in the hyperspectral image the whole spectrum is registered 

allowing the characterization of the internal composition of the sample in that 

specific position. The composition of the sample under consideration can be 

accessed by the spectral dimension whereas the spatial dimension represents the 

visual location of the compound in question, hence hyperspectral image as a whole 

providing information to “what and where” in the food sample the desired compound 

exists (D. Wu and Sun 2013).   

 

 

3.2.2. Components of hyperspectral imaging 

 Excitation sources (light), devices for wavelength dispersion and area 

detectors are the integral components of hyperspectral imaging systems. Light 

sources are responsible for the illumination of the sample under study hence 

constituting an essential component of the optical system. Halogen lamps, light 

emitting diodes (LEDs), lasers and tunable light sources are most significantly used. 

Halogen lamps are categorized as broadband illumination sources and are commonly 



30 

 

used in the visible and near-infrared spectral ranges. An incandescent emission is 

generated by a filament giving rise to a light source as an output. In this case, a 

smooth continuous spectrum is generated by the light in the visible and the near 

infrared regions  (Q. Wu, Xu, and Xu 2019). A few disadvantages of the halogen 

lamps are, a shorter life span, rapid heating, voltage fluctuations affecting output 

stability and sensitivity to vibrations. A newly used technology named LEDs possess 

the capability to produce a narrow band light in different wavelengths of the 

ultraviolet, visible and near infrared regions along with producing high intensity 

broadband white light. Voltage fluctuations, temperature and certain intensity issues 

have been listed as the disadvantages of the LEDs as compared to halogens, since 

LEDs have comparatively lower intensity and increasing the number of LEDs in the 

bulbs results in grainy light.  Presently, in the food research mostly halogen lamps 

are being used (Amodio et al. 2017; Ariana and Lu 2008; H. Yang, Wu, and Cheng 

2011). 

Raman and fluorescence applications mostly use monochromatic sources of light 

namely lasers (Jiménez-Carvelo et al. 2017; C.-C. Yang et al. 2012). 

Monochromaticity, directionality and coherence are considered as the major 

characteristics of laser light. In case of tunable light sources, a dispersion device is 

used between the sample and the light source which works on the basis of area scan 

mode but are considered as weak light sources for in-line or on-line food analysis 

applications.  

Wavelength dispersion devices are one of the integral part of the hyperspectral 

imaging systems and serve the purpose of dispersing the broadband light into 

different wavelengths. The most commonly used wavelength dispersion devices 

include filter wheels, imaging spectrographs, liquid crystal tunable filters, and 

Fourier transform imaging spectrographs. Two categories of image spectrographs 

are transmission gratings and reflectance gratings. The grating is superimposed on a 

transparent surface in case of transmission gratings whereas, the surface is reflective 

with a grating superimposed on it in case of the reflectance grating as indicated by 
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the name. The flowchart diagram of the components of a line scan hyperspectral 

imaging system is shown in Fig. 6 (Qin et al. 2017).  

  

Fig.6. Flow chart diagram of components of line scan hyperspectral imaging system 

 Reflectance gratings are most commonly used gratings since they have 

greater advantages over the transmission gratings such as high-quality images with 

low distortion and larger field size (Bannon and Thomas, 2005). Reflection grating 

consists of an entrance slit, two spherical mirrors that are concentric, a convex 

reflection grating that is aberration-corrected, and a detector. When the light ray 

enters the slit, it is reflected to the reflection grating by one of the two mirrors 

resulting in the dispersion of the incident beam in a way that the direction of the light 

propagation is a function of its wavelength (Sun,2010).  The second mirror reflects 

this dispersed light towards the detector forming a continuous spectrum at different 

pixels. The reflection spectrographs provide a high signal to noise ratio (S/N) and 

perform well in low light conditions.   

Detectors are responsible for converting the incident light photons into electrons 

and hence quantifying the intensity of the acquired light. The most commonly used 

area detectors in hyperspectral imaging systems are charge coupled devices (CCD) 

cameras which contain photovoltaic semiconductor devices. The semiconductor line 

or area arrays used in most spectral imaging devices are silicon (Si), indium gallium 

arsenide (InGaAs) and indium antimonide (InSb) most commonly. Since it is 

economical in terms of cost, temperature range and simple processing; silicon is 

widely used in semiconductor devices. As shown in Fig.7, silicon (Si) arrays are 

sensitive towards a wavelength range from 400-1000 nm while in case of longer 

wavelengths i.e. from 1000-5000 nm, the indium antimonide (InSb) and indium 

gallium arsenide (InGaAs) are more sensitive. Overlapping detector elements with 

cooling arrangements are used for sensitivity optimization in different wavelength 
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regions especially for the near infrared regions enhancing the efficiency of the 

hyperspectral imaging devices. 

 

Fig.7. Sensitivity ranges of detector materials over the electromagnetic spectrum 

3.2.3. Hyperspectral image acquisition mode 

 There are three different modes conventionally used for hyperspectral image 

acquisition; point scan, line scan and area scan. Fig. 8 depicts the three acquisition 

methods.  
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Fig.8. Acquisition modes of hyperspectral images (adopted from Amodio et al., 2017) 

Area scanning or staring imaging mode, also known as focal plane scanning 

imaging in which the image field of view is fixed and images are acquired 

wavelength by wavelength making it a wavelength scanning method. In case of point 

scan as known as whiskbroom method, the spectrum of a single point is measured 

and the next spectrum is acquired by moving the sample. The push broom or line 

scan method which is most commonly used in food analysis acquires a spectrum 

from a sample line which is further instantaneously recorded with the help of an 

array detector. The line scan method is highly compatible with the conveyor belt 

system and is the most used in the food industry for online applications.  

A 2D grating and detector array are used in line scan devices for scanning an 

entire line instead of a single pixel at a time. 

In this way the acquired image will be a 2D image, where scanned line will take 

place in pixel row and simultaneously on the second dimension the spectrum of each 

point is acquired. 

4. Chemometric tools 

The spectral information acquired from the food products is analyzed towards the 

formulation of prediction or classification models using multivariate and 

chemometric tools. Chemometrics is the science of extracting information from the 
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chemical systems using mathematical, statistical and other methods. NIR prediction 

models are developed with the aim of correlating spectral information of the training 

datasets to the desired quality parameters acquired using reference methods. Once 

the calibration model is developed and internally cross validated then the model 

performance is evaluated by introducing external unknown samples for prediction 

purposes of relevant parameters.  In order to extract the relevant information from 

the calibration spectral dataset, the first step aims at separating the chemical 

information from physical changes, using mathematical pre-treatments of spectral 

signals. Unwanted effects are always a part of the spectroscopic signals referred to 

as ‘noise’ which might be associated to the instrumentation for spectral acquisition, 

changes in various environmental factors and signal variations due to sample nature. 

In case of food analysis, the most commonly used pretreatment to get rid of the 

scattering and noise in the spectra, are multiplicative scatter correction (MSC), 

Standard Normal Variate (SNV), and Detrend (DT) (Martens, Naes, and Naes 1992; 

Nicolaï et al. 2007b; Roy et al. 1993) and derivatives (Savitzky and Golay 1964).  

After the spectral data has been preprocessed then the next step is the 

development of a calibration equation to correlate spectral information/signals with 

the chemical features for prediction of quality parameters of unknown samples 

(Guthrie, Liebenberg, and Walsh 2006). In order to develop this relationship between 

the spectra and the chemical features, regression techniques are used (Cozzolino et 

al. 2006, 2009; Martens, Naes, and Naes 1992; N˦s et al. 1996; Nicolaï et al. 2007b; 

Reeves, McCarty, and Meisinger 1999).  The techniques used for this purpose 

include, linear regression methods for calibration development (De Jong 1990; 

Lodder 2002)such as Multiple Linear Regression (MLR), the Principal Component 

Regression (PCR) and the Partial Least Squares (PLS) (Perez-Marin, Garrido-Varo, 

and Guerrero 2007).  

  

4.1. Principal component analysis (PCA) 

 Large multivariate data is decomposed into a limited number of independent 
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factors which are linear combinations of the original variables using the PCA models 

(Lodder 2002). PCA is a data exploration tool which provides information about the 

spectra population in terms of variables, sample distribution and trends in the data 

and abnormal sample detection. This technique is aimed to describe the maximum 

variability of the samples by reducing the information contained in all the variables 

to a limited number of principal components (PCs) which can be also used to detect 

sample outliers (samples with different spectral behavior). Each PC provides the 

direction of maximum variability in the data and all PCs are orthogonal to each other. 

Mathematical representation of a PCA model can be given as:  

 

X = TPT+E                                                                                          (Equation 1) 

Where, X is the data matrix, T represents the loadings, P depicts the scores and E 

stands for residuals/error. Indeed, achieved scores refer to the distance of the 

projected samples to the center of the new axis. On the other hand, since the 

orthogonal PCs are projected in a new space the relationship between this new axis 

and the old axis is represented by the loadings (Bro and Smilde 2014). In another 

word, the scores in a PCA model represent the samples while the loadings are 

affiliated with the variables/wavelengths under study. 

4.2. Regression models 

 Regression model is used to describe a group of methods that summarize the 

degree of association between one variable (or set of variables) and another variable 

(or set of variables). Multivariate linear regression (MLR) is very similar to the 

simple regression. The difference is that in case of simple regression one independent 

variable is correlated with one dependent variable while in case of MLR many 

independent variables attempt to correlate with one dependent variable at the same 

time utilizing the least squares method hence finding the smallest sum of squares of 

residuals. In case of MLR, the data is converted into information when the variables 

or factors are in a fewer number, possessing no significant collinearity or redundancy 

along with having good relationship to responses. Therefore, in case of MLR a linear 
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relationship (first order) is established between the measured characteristics from m 

number of independent variables (xj where j=1 - m) and a dependent variable (y) 

hence mathematically depicting the relationship as: 

𝑦 =  𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑚𝑥𝑚 + 𝑒           (Equation 2) 

Where, y is the dependent variable, x1 to xm are the independent variables, bj are 

the coefficients and e is the residual or error term. Equation 2 can therefore also be 

represented as: 

𝑦 = ∑ 𝑏𝑗𝑥𝑗
𝑚
𝑗=1 + 𝑒                        (Equation 3) 

When the number of observations are less than the number of factors, MLR might 

provide models that would fits the training data very well but will fail to provide 

good and reliable results for the prediction of the new data (unknown samples), a 

phenomenon known as overfitting. Out of a large number of measured/recorded 

factors, only a few underlying factors exist that are responsible to contribute towards 

the variation of the response to a large extent. This is the point where the partial least 

squares regression (PLSR) come into play aiming towards the extraction of these 

underlying factors, followed by the prediction of Y-scores from these extracted 

factors (X-scores). The regression model is then simplified as the relationship is 

concentrated on the smallest possible number of underlying variables. When the 

number of variables/factors is large possessing high collinearity among them, and 

when there is a need to take into account the reference value of the parameter for 

each sample along with the spectral information then PLSR is the best choice to use 

(Jansen et al. 2005). PLSR emphasizes to predict the responses rather than grasping 

the sense of the underlying relationships between these responses, which can further 

be easily extended for the prediction of several quality attributes simultaneously, in 

which case the algorithm is known as PLS2 (Lavine 2003). The mathematical 

comparison of the outer relationship can be done with the PCA in this case which in 

case of X block is:  

𝑿 = 𝑻𝑷′ + 𝑬 = ∑𝑡𝑟𝑝𝑟
′ + 𝐸                         (Equation 4) 
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Similarly, for the Y block the outer relation can be represented as:  

𝒀 = 𝑼𝑸′ + 𝑭 = ∑𝑢𝑟𝑞𝑟
′ + 𝐹                      (Equation 5) 

The goal is to provide a description of Y in the best possible way and minimizing 

||F|| along with simultaneous achievement of a meaningful relationship between X 

and Y. Plotting the scores of X block (t) and scores of Y block (u) for each 

component results in the provision of the inner relationship (linking X and Y). In 

case of a simple linear model the inner relationship can be mathematically depicted 

as:  

û =  𝑏𝑟𝑡𝑟                                    (Equation 6) 

Where, 𝑏𝑟 =  𝑢𝑟
′ 𝑡𝑟/𝑡𝑟

′ 𝑡𝑟 and is the regression coefficient in case of the PLSR 

model.  

As an additional equation Y=TBQ^'+F provides the mixed relationship where ||F|| 

is minimized. In this case the blocks receive each other’s scores using the iterative 

method resulting in the provision of a better understanding of the inner relationship. 

Weights are introduced to achieve orthogonality among the X scores (Geladi and 

Kowalski 1986). The predictive ability of a PLSR calibration model is tested by the 

application of internal/cross-validation (Shenk and Westerhaus 1995). In this case 

the calibration dataset is divided into several sub-groups (depending on the number 

of samples); upon the development of a calibration equation every validation group 

is taken one by one and is predicted by using the model built on the remaining groups 

hence preventing the possibility of overfitting (Williams and Norris 1987; Shenk and 

Westerhaus 1995). The steps to formulate a calibration model are shown in the flow 

chart depicted in Fig. 9. 

 

 



38 

 

 

  

Fig. 9. Steps involved in the development of a calibration model leading to prediction 

For the performance evaluation of the internally cross-validated calibration 

model, the statistical parameters including the standard error of calibration (SEC), 

the coefficient of determination between predicted and measured parameters (R2), 

the standard error of cross validation (SECV) and coefficient of determination for 

cross validation (R2) are compared (Williams and Norris 1987). Similar parameters 

are brought under consideration while evaluating the performance of external 

prediction. All the aforementioned errors are taken under consideration for the model 

performance analysis since errors are always associated to the chemometric methods 

due to sampling, sample preparation, and instrumental noise and can only be partially 

reduced. Sampling errors are not a function of the underlying process but they are 

the real errors, which are significant cause of deviation in the measurements. The 

sample preparation errors can occur during the various stages of the chemical 

process; errors in all these stages are often called ‘uncertainty’. Instrumental noise is 

another type of error that occurs due to the measurement process or instrument 

because of the various factors influencing instruments such as the effect of 
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fluctuating voltages on filters and lamps.  

  

4.3. Classification models 

 For the classification purposes, in case of food analysis, partial least squares 

discriminant analysis (PLSDA) is widely used which is a supervised algorithm based 

on the relationship between the sample characteristics and their recorded spectral 

intensities. In this case for calibration purposes training of the PLSDA model is done 

to compute the membership values assigning a different membership value to every 

class. The aim of the PLSDA model is to develop a precise prediction threshold, 

therefore, the sample values above this prediction threshold are assigned to a specific 

class. The PLSDA model accuracy can be evaluated using statistical parameters 

including sensitivity, true positive rate, specificity, true negative rate and non-error 

rate. Sensitivity refers to the ability of the PLSDA model to correctly classify the 

samples whereas the specificity refers to the correct identification of the samples 

belonging to another class. Once the sensitivity and the specificity of the samples are 

measured, these can lead to the development of valuable indices such as the non-

error rate (NER) which basically represents the percentage of the correctly classified 

samples and is the average of true positive rates calculated over the number of 

classes. Mathematically, the non-error rate (NER) can be depicted as:  

       𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
                                             (Equation 7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸𝐶) =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑟𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
                    (Equation 8) 

      𝑁𝐸𝑅 =
∑ 𝑆𝑒𝑛𝑠𝑛

𝑖=1

𝑛
                                                                                                         (Equation 9) 

Where, n represents the number of classes.  

5. Hyperspectral image processing 

In order to make the hyperspectral image applicable and beneficial, there are some 

common methods that should be done, as described in the process operation flow in 

Fig. 10.  
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Fig.10. Hyperspectral image processing flow chart (adopted from Chaudhry et al., 2018) 

Firstly, the hyperspectral image should be calibrated. For this purpose, mainly, 

wavelength, spatial and curvature calibration is done followed by reflectance 

calibration (Wu and Sun 2013). The major aims for the calibration of the 

hyperspectral imaging systems include the standardization of the spectral axis, 

determination of correct operation of the system, acquisition and validation of the 

spectral data and diagnosing of instrumental errors. The succeeding process is image 

segmentation which is a process of dividing the image into different parts or regions, 

in other words into sets of pixels simplifying the image. An image is, in fact, 

comprised of many pixels and each pixel can be similar to the corresponding 

neighboring pixels with respect to a particular characteristic or property as intensity, 

color values, or textural characteristics. Following the thresholded image, data of 

hyperspectral must be extracted due to the specific objective (e.g. extraction of 

averaged pixel data, pixel-based data extraction, and extraction of texture 
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information). In a hyperspectral image each pixel possesses its own spectra, which 

can be used for the characterization of the composition of that specific pa and the 

spatial images provide the surface feature information. The composition of the 

sample under consideration can be accessed by the spectral dimension whereas the 

spatial dimension helps in visualizing the location of a particular chemical compound 

or in other words, mapping the constituent concentrations. In the mapping procedure, 

hyperspectral images at the feature wavebands will be first extracted and constructed 

into a multispectral data-cube (x, y, λselected); subsequently, the data-cube is unfolded 

into a two-dimensional matrix (x×y, λselected). At this point a calibration models can 

be built, as described in par. 1.5, obtaining the regression or classification 

coefficients. The vector (x×y) are then multiplied by the coefficients and then re-

folded into a color map where the predicted parameters are represented by different 

color for each pixel, based on a concentration color scales. Therefore, 

physiochemical distribution can be visualized clearly on the color map (Pu and Sun 

2015). As example, in Fig. 11 the concentration map of soluble solids for a fennel 

slice is shown, as reported from Amodio et al. (2018). 

 

Fig. 11. Distribution map of SSC concentration over a fennel section (from Amodio et al., 2018) 
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General objectives 

 

The general objective of this thesis was to assess the potentiality of various non 

destructive optical-based techniques for early detection of chilling injury (CI) and 

freshness of fresh produce. In this regard, three optical instruments i.e. spectroscopy, 

hyperspectral imaging, and colorimeter in different spectral range were employed in 

combination with several chemometric methods to develop simplified classification 

and regression models for aforementioned objectives.  

Generally, by using eggplant and bell pepper fruit as models and testing the 

methods, this thesis was divided to following goals: 

 Evaluation of the potentiality of FT-NIR spectroscopy, hyperspectral 

imaging and colorimeter techniques coupled with supervised 

classification algorithm, for the early detection of eggplants fruit stored at 

chilling temperature; 

 Evaluation of the potentiality of hyperspectral imaging in VIS-NIR and 

SWIR range and chemometrics for early detection of chilling injury in 

green bell peppers  

 Evaluation of the potentiality of FT-NIR spectroscopy, hyperspectral 

imaging and color measurements for the assessment of eggplant fruit 

freshness 

 Characterization of the effects of storage time and temperature on spectral 

changes induced by chilling injury in eggplant fruit  
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ABSTRACT 

 Eggplant fruit is a chilling injury sensitive vegetable and should not be stored 

at lower than 12oC postharvest, although fruit are often placed in temperatures as 

low as 0- 5oC. For this reason, a rapid early detection of eggplants previously stored 

at chilling temperatures would allow early removal of those fruit from the market. 

Eggplant fruit (cv. Fantasy) were stored either at 2oC (chilling injurious temperature) 

or at 12oC (safe storage temperature) for 10 days. Every 2 days, fruit from each group 

were sampled and left at room temperature, for one additional day. Color 

measurements in the CIE L*a*b* mode and reflectance data in the wavelength range 

360-740 nm, Fourier Transform (FT)-NIR spectra (800- 2777 nm) and hyperspectral 

images at the visible (400-1000 nm) and near infrared (900-1700 nm) part of the 

electromagnetic spectrum were also acquired on each fruit. Three supervised 

algorithms; partial least square (PLS), supervised vector machine (SVM) and k-

nearest neighbor (kNN) were applied to classify fruit according to the storage 

temperature. Chilling injury (CI) was subjectively evaluated, according to the 

presence of black seeds or of brown discolored flesh area.  According to the results, 

although chilling injury symptoms started being evident only after the 4th day of 

storage at 2oC, it was possible to discriminate fruit earlier, since day 2, by processing 

the FT-NIR spectral data with the SVM classifier (100 and 92% non-error-rate 

(NER)) in calibration and cross validation, respectively) in the whole period data set. 

Color or FT-NIR spectral data classified with PLSDA permitted relatively good 

classification of fruit (>83 % accuracy) since the 4th day of storage, while L, C, Ho 

color measurements or Vis-NIR hyperspectral imaging data combined with PLSDA 

generate trustworthy models only after the 6th day of storage. On the other hand, 

NIR hyperspectral imaging technique and kNN classification algorithm were 

incapable to separate the fruit either accurately or consistently. These results indicate 

a good potential of adapting selected protocols, in terms of technique, processing of 

the raw data and supervised classification algorithm, in order to minimize 

postharvest losses induced by the improper temperature management of chilling 
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sensitive fruit, such as the eggplants.  

 

Keywords: chilling injury; supervised classification; Non-Error-Rate (NER); FT-

NIR; hyperspectral image 
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1. Introduction 

Eggplant (Solanum melongena L.) is a common annual vegetable crop grown in 

the sub-tropics and tropics, popular in Asia and some Mediterranean countries 

(Concellón et al., 2012).  

Although, storage of fruit and vegetables at low temperatures is recommended as 

an effective means for preserving quality and nutritional value, plants originating in 

tropical and subtropical regions, such as eggplant,  are prone to a physiological 

injury, known as chilling injury (CI), which is induced when they are exposed to 

temperatures below 12oC but above their freezing point (Concellón et al., 2004; 

Megías et al., 2016). 

Development of CI in eggplants can be perceived after slicing the fruit and revealing 

the internal flesh by detecting symptoms such as the darkening of seeds and pulp 

tissue (Concellón et al., 2005, 2004; Gao et al., 2015). Indeed, these symptoms 

become evident only after the produce is placed in warmer temperatures (ElMasry 

et al., 2009; Hashim et al., 2013).  Some color changes may also appear in the skin, 

but they are barely perceived (Concellon et al., 2007). Simultaneously, other changes 

such as organic acids content ratio (Kozukue et al., 1978), or 1-aminocyclopropane-

1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-1-carboxylic acid 

(MACC) and ethylene production increase (Concellón et al., 2005) may be 

considered as indication of CI development. Increases in PPO, POD, and PAL 

activities in eggplant pulp are also associated with damage caused by storage of 

eggplants at low, chilling injurious temperatures (Gao et al., 2015). As a result, the 

quality and shelf life of fruit are reduced and economic losses during transportation, 

storage and marketing occur (Carvajal et al., 2011; Hashim et al., 2013), while 

consumer acceptability is negatively affected due to unpleasant appearance and 

concomitant off-flavor development (Concellón et al., 2004; Lurie et al., 2011).  

Therefore, it would be greatly advisable to develop rapid, reliable, and 

nondestructive tools for early detection of improperly stored fruit, so as to remove 

them as fast as possible from the marketing chain and increase consumer satisfaction 
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and industry profitability (Lurie et al., 2011).  

Nondestructive optical techniques are considered as the most promising for meeting 

these requirements. Optical techniques that are based on imaging and spectroscopy 

have been widely used for quality assessment and safety inspection of fresh 

agricultural commodities (Amodio et al., 2017; Francia et al., 2007; Huang et al., 

2014; Li et al., 2016; Lorente et al., 2012). These techniques exploit the information 

that is returned after the exposure of commodities under light. In particular, the 

incident light induces interactions in which about 4 % of the photons will be reflected 

at the fruit surface while the remaining part enters the fruit tissue and is absorbed, 

transmitted, or scattered back (diffuse reflectance) from the region close to the 

incident point (Birth, 1976). Therefore, to some extent, the recording spectrum 

shows the chemical properties of the fruit and the spectra of fruit at different 

physiological statuses can thus be different (Sun et al., 2017). Unlike conventional 

spectroscopic or imaging systems, hyperspectral imaging obtains spectral 

information for each spatial pixel, producing hypercube image data which contains 

both spectral and spatial information, which are critical for reliable and 

comprehensive analysis of product properties or characteristics (Cen et al., 2016). 

According to the most recent results, hyperspectral reflectance imaging technique 

was successfully applied for the  non-destructive optical detection of chilling injury 

on peaches, apples, and cucumbers (Cen et al., 2016; ElMasry et al., 2009; Hashim 

et al., 2013; Sun et al., 2017). Other techniques, such as time-resolved reflectance 

spectroscopy have also been used in identifying chilling injured nectarines by 

detecting internal woolliness and internal browning in fruit after storage at low 

temperatures (Lurie et al., 2011), but no studies regarding detection of CI on eggplant 

fruit have been already performed. Moreover, all these studies detect CI when the 

symptoms are already fully developed, while an early detection of CI would be much 

more valuable for both consumers and distributors.  

The objective of this research was the development of an efficient non-destructive 

technique, in order to facilitate early and reliable detection of eggplant fruit stored at 



58 

 

chilling injury temperatures during postharvest operations.  In particular, the aim of 

the study was to test whether it is feasible to discriminate fruit according to their 

postharvest storage temperature by selection of the most accurate technique in terms 

of accuracy (% non-error-rate (NER) of classification) and reliability (repeatability 

within each storage day) and generate the best discriminant algorithm, in order to 

develop a complete method to be transferred to the market chain. 

 

2. Material and methods 

2.1. Plant material 

Immature eggplant fruit (cv. Fantasy) were harvested from a commercial farm 

near Lecce and were transferred within 5 hours at the Postharvest facilities of the 

University of Foggia. Fruit were stored at 12oC for 24 hours before being sorted, so 

that only sound ones were selected and divided into 11 groups with 12 fruit in each 

group. 

One group represented Day 0 fruit while the rest 10 groups of eggplant fruit were 

divided into 2 sets. Each set was stored either at 2oC (chilling injury conditions) or 

at 12oC (safe conditions) for 2, 4, 6, 8 and 10 days. After each time of storage, fruit 

were left for 24 hours at 20oC (shelf life), before measurement of external color and 

acquisition of hyperspectral images and FT-NIR spectra. Fruit were then used for 

destructive evaluation, as severity of CI and spectrophotometric reading of the peel 

methanolic extract. The extra day at 20 °C was required, in order to allow the 

symptoms to develop.  

 

2.2. Color measurements 

Color was measured on 3 sides of each fruit longwise (below the calyx, at the 

center and near the blossom-end) both in the CIE L*a*b* mode, as well as in 

reflectance scanning mode in the wavelength region 360-740 nm, with a CM-2600d 

Konica Minolta spectrophotometer and an average of the three readings was 

calculated. From primary color parameters Lightness (L*), a* and b*, Chroma (C*) 
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and Hue angle (Ho) parameters were also calculated based on the equations: C*= 

(a*2 + b*2)1/2 and H°= arctan (b*2/a*2). 

 

2.3. Acquisition of the FT-NIR spectra  

Fourier transformed- near infrared (FT-NIR) spectrometry was performed on the 

eggplant fruit at room temperature (20oC). Three scans were acquired per fruit by 

manually displacing the fruit along its longwise axis (MPA Multi-Purpose FT-NIR 

Analyzer, Bruker Optics, Ettlingen, Germany), and an average of the three spectra 

was calculated. Reflectance mode (log(1/R)) was used during spectral acquisition 

over the absorbance range of 800-2777 nm (sphere macrosample resolution 1.71 nm, 

scanner velocity 10 kHz, sample scan time 64 scans, background scan time 64 scans). 

The instrument was equipped with a high-energy air-cooled NIR source (20 W 

tungsten-halogen lamp) and a permanently aligned and highly stable ROCKSOLID 

interferometer (Bruker).  

 

2.4. Acquisition of the hyperspectral images 

A hyperspectral line scan scanner (Version 1.4, DV srl, Padova, Italy) equipped 

with two spectrographs, one in the visible-near infrared (Vis-NIR) range of 400-1000 

nm and the second in the near infrared (NIR) range of 900-1700 nm, with a spatial 

resolution of 1000×2000 pixels and a spectral resolution of 5 nm was used to acquire 

the images. 

The images were calibrated using dark and white references by closing the shutter 

as a black reference, and using a 99% Spectralon reflectance standard as a white 

reference. This process has been done by the hyperspectral scanner software 

(Version 1.4, DV srl, Padova, Italy) using Eq. 1.  

𝑅 =  
𝐻 − 𝐵

𝑊 − 𝐵
 

Where H is the raw hyperspectral image; and B and W are the acquired signals for 
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both black and white references, respectively. 

One fruit was taken for each replicate in a single image and self-developed 

MATLAB code was used for extracting the mean spectra of the fruit producing one 

spectrum per replicate. For the extraction of the mean spectrum, the original image 

was thresholded and the best contrast between the object and the background was 

found. Image thresholding was performed using the Otsu method, on the image 

depicting the best contrast between the foreground and background, corresponding 

to 795 nm for the Vis-NIR and 1495 nm for the NIR. A 2D binary image (mask) was 

obtained, with 0 value for the background and 1 for the fruit tissue. This mask was 

imposed to extract the mean spectra of the pixels corresponding to the fruit.   

 

2.5. Chilling injury evaluation 

After the acquisition of the above non-destructive optical data, fruit were halved 

for monitoring the chilling injury development during the storage time (Fig.1) 

Chilling injury was evaluated subjectively on a scale 1= no chilling injury and 2= 

chilling injured. This evaluation was performed according to either the presence of 

brown discoloration of the flesh or the blackening of the seeds (Concellón et al., 

2004). Fruit obtaining spots of brown flesh and/ or black seeds were considered as a 

chilling injured one. The CI index was calculated according to the Eq 2: 

𝐶𝐼 = ∑ (
Injury level × No of fruit at that level

𝑇𝑜𝑡𝑎𝑙 𝛮𝑜 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡
) 
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Fig. 1. Digital photos of the peel and the flesh of sound fruits (A), as well as with chilling injury 

symptoms (B). 

 

2.6. Absorbance of the methanolic peel extract  

One gram of peel was excised and extracted in 10 ml methanol 80 % acidified 

with 0.1 % (v/v) HCl, centrifuged at 10,000×g for 10 mins and the supernatant was 

placed in a cuvette and the absorbance was measured in the range 400- 700 nm, 

through scanning mode against a methanolic blank using a UV‐1700 Shimadzu 

spectrophotometer (Jiangsu, China). The difference in the absorbance between 400 

and 700 nm (ΔAbs400-700nm) is presented in the results, as a potential indication of the 

pigment content in the peel of the fruit.  
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2.7. Data analysis 

All color, spectral and image data analyses were carried out using MATLAB 

(Version R2017, the Math-works Inc., and Natick, MA, USA) and PLS_TOOLBOX 

8.6 (Eigenvector Research Inc., Manson, WA, USA). Color reflectance scanning, 

FT-NIR spectral and hyperspectral imaging data were initially preprocessed 

accordingly, in order to achieve the highest possible discrimination of fruit, 

combined with the minimal root mean square calibration and cross-validation errors.  

Three supervised classification algorithms including partial least squares- 

discriminant analysis (PLS-DA), supervised vector machine (SVM), and k-nearest 

neighbor (kNN) were used for discriminating eggplants stored for one day at ambient 

temperature after storage at chilling and non-chilling conditions. 

The partial least squares discriminant analysis (PLS-DA) model is an algorithm 

based on the relation between spectral intensity and sample characteristics. For the 

internal validation purpose, venetian blinds cross validation method was used with 

two splits of the data with 12 samples per blind. The discriminant analysis with this 

classifier is based on generated latent variables (LVs) with their number being 

dependent according to the lowest cross validation error and the highest possible 

non-error-rate, simultaneously. 

SVM is a discriminant classifier based on finding the hyperplane that gives the 

largest minimum distance to the training data set and was implemented based on the 

quadratic programming optimization using a radial basis kernel (Cen, 2016). 

kNN is a non-parametric instance-based learning algorithm based on a similarity 

measure such as distance function. The optimal value of k= 2 was chosen by first 

testing the data.  

The validity of the three classifiers was evaluated by the overall accuracy in 

discriminating each class (fruit stored at chilling and non-chilling conditions) using 

pooled data from all storage days, but most importantly by the successive accuracy 

in each day of storage. In the figures, the mean value of calibration and cross-

validation NER is presented ± standard error between the two classes (non-chilling 
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and chilling conditions). Chilling injury scores and ΔAbs400-700nm of peel extract are 

presented as the mean values of 12 fruit ± S.E. 

 

3. Results 

3.1. Chilling injury evaluation 

The chilling injury started appearing on fruit only after the 4th day of storage at 

2oC + 1 day of shelf life at 20oC. In particular, 8 out 12 fruit exhibited symptoms of 

either seeds blackening or flesh browning giving a score of 1.67, which indeed were 

aggravated since day 6 being apparent in up to 11 out of the 12 fruit, irrespectively 

of the severity of symptoms with a score of 1.92 (Fig. 2). 

 

Fig. 2. Chilling injury evaluation of eggplant fruits stored at 2 or 12 °C. The CI on fruit was scored 

as 1 = no chilling on fruit and 2 = chilling injury on the inner flesh as assessed by the presence of 

black seeds and brown discoloration of the flesh, irrespectively of the intensity of the symptom. 

Each data point represents the mean of 12 fruit ± standard error (S.E.) 

3.2. Absorbance of the methanolic peel extract 

Scanning the methanolic peel extract revealed significant differences among fruit 

previously stored at 2 or 12oC (Fig. 3). Particularly, since day 4, the ΔAbs400-700nm 

values in fruit stored at chilling injury temperature started declining until the end of 

storage, being lower hereinafter than fruit stored at 12oC, with the latter ones 

maintaining the initial levels during the whole storage period (Fig. 3).  
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Fig. 3. Absorbance of the methanolic extract (ΔAbs400-700nm) of the eggplant’s peel tissue. Each 

data point represents the mean of the ΔAbs of 12 fruit ± standard error (S.E.). 

3.3. Color measurements 

Among the color parameters, a* values followed a trend like the chilling injury 

development and indeed after day 4 there were significant differences among fruit 

that were stored in the two different temperatures (Fig. 4A). Although, a* on the peel 

of eggplant fruits that were stored at 12oC remained constant during 10 days of 

storage, followed by one extra day at 20oC, in the case of storage at 2oC a significant 

increase was observed after day 4. In the same way, the ratio 740/660 nm that was 

acquired using the spectrophotometer also exhibited different pattern among fruit 

stored in the two temperatures (Fig. 4B), allowing their discrimination after the 4th 

day of storage.  
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Fig. 4. a* color parameter (A) and the ratio 740/660 nm (B) that were collected from the fruit peel 

during storage at 2 and 12 °C followed by one day shelf life. Each data point represents the mean of 

12 fruit ± standard error (S.E.) 

When using color parameters, the optimal NER in calibration (CAL) and cross-

validation (CV) was obtained using the PLSDA classifier with lightness, chroma and 

hue angle (L, C, Ho) variables of the whole data set (from 2 up to 10 days including 

1day shelf life) reached 78 % of accuracy using 3 latent variables (LVs) (Table 1).  

 

 

 

Table 1. Number of fruit correctly classified (over 60 fruits) for each of the 2 classes (storage 

temperatures of 2 and 12 °C), using PLSDA, SVM and kNN classifier for color parameters, color 

spectra, FT-NIR spectral, as well as visNIR and NIR hyperspectral imaging data of the whole 

storage period. 

A 

B 
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12
o
C 2

o
C 12

o
C 2

o
C

Technique Classifier NER
a

NER

Color (L, C, H) PLSDA 77.5 41 52 77.5 41 52

SVM 87.5 51 54 80.0 41 52

kNN 61.7 49 25 70.8 42 43

Color spectra PLSDA 88.3 48 58 88.3 48 58

SVM 88.3 49 57 89.2 48 58

kNN 80.0 54 42 87.5 51 54

FT-NIR PLSDA 81.7 51 47 82.5 51 48

SVM 96.7 58 58 90.0 51 48

kNN 78.3 55 39 82.5 48 51

VisNIR HIS PLSDA 86.7 55 49 86.7 55 49

SVM 80.0 54 42 78.3 55 49

kNN 76.7 55 37 80.8 49 48

NIR HIS PLSDA 60.8 38 35 59.2 38 33

SVM 95.8 59 56 83.3 51 49

kNN 73.3 53 35 75.8 43 48
a
 NER: Non-Error Rate= Accuracy of classification (%)

Calibration Cross-validation

Number of fruit Number of fruit

 

 However, this discrimination was not consistent, as long as only after the 6th day 

the NER reached 83 % (Fig. 5A), with cross-validation NER among 75 and 91.7 % 

(data not shown), rendering this method not reliable. Results were somehow similar 

when the SVM classification was used, with the overall CAL and CV NER reaching 

88 and 80 %, respectively (Table 1). Although mean CAL and CV NER for each 

storage time, after the 4th day, ranged from 79 to 96 %, there was a significant 

variation in discrimination between the two classes (stored in chilling and non-

chilling temperatures) on the last day (10th), when only 9 out of the 12 fruit stored at 
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12oC were correctly classified (Fig. 5B). Even worst results were obtained when 

kNN was applied. In particular, overall mean CAL and CV NER were sustained 

below 71 % and significant variation and inconsistency was observed also during 

storage (Fig. 5C). 

 

Fig. 5. Discriminant analysis results (% classification) for calibration and cross validation of fruit 

stored at 12 °C (non-chilling storage temperature) and 2 °C (chilling storage temperature) based on 

color data (L, C, H°) that were collected from the fruit peel and processed using PLSDA (A), SVM 

(B) and kNN algorithm. Each data point represents the mean of correctly classified fruit ± standard 

error (S.E.) either for the whole period of storage or within each storage day. 

When using the reflectance scanning mode, the results were significantly 

improved applying PLSDA. In particular, color spectral data that were preprocessed 

by logarithm transformation and conversion to 1st derivative, reaching 88% CAL and 

A 

C 

B 
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CV NER using the whole data set (beyond the 2nd day of storage), and were able to 

correctly classify more than 83 % of fruit in CV starting from the 4th day of storage 

(Fig. 6A). On the other hand, although the overall CAL and CV were higher after 

SVM model implementation (Table 1), meaning that 48 out of 60 fruit in each class 

were correctly classified, the consistency of discrimination was much worst as is 

evident by the low calibration NER (Fig. 6B). When processed data were classified 

using the kNN algorithm, neither overall accuracy, neither daily consistency was 

improved (Fig. 6C). 

            

Fig. 6. Discriminant analysis results (% classification) for calibration and cross validation of fruit 

stored at 12 °C (non-chilling storage temperature) and 2 °C (chilling storage temperature) based on 

spectra reflectance data at the region 340–760 nm that were collected from the fruit peel and 

processed using PLSDA (A), SVM (B) and kNN algorithm. Each data point represents the mean of 

A 

C 

B 
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correctly classified fruit ± standard error (S.E.) either for the whole period of storage or within each 

storage day. 

3.4. FT-NIR spectral data 

The raw data acquired from FT-NIR device for fruit stored at chilling temperature 

during the storage time is depicted in Fig. 7A. FT-NIR spectral data were initially 

preprocessed by conversion of reflectance to absorbance (Trans (log (1/R)), 

multiplicative signal correction (MSC), and detrend which allowed, among other 

transformations, to achieve the highest possible discrimination of fruit either for the 

whole storage period, as well as within each storage day (Fig 7B). 

        

Fig. 7. Raw (A) and preprocessed (B) data acquired from FT-NIR reflectance spectra of fruit during 

storage at 2 or 12 °C. Each group (storage temperature) consists of 60 measurements. 

 The optimal overall calibration (CAL) and cross-validation (CV) NER for the 

whole storage period using the PLSDA classifier on spectra data was 82- 83 %, using 

3 latent variables (LVs) (Table 1). Indeed, this discrimination was quite consistent, 

as long as since day 4 the mean NER were already shifted above 83 % (Fig. 8A), 

with cross-validation NER among 75 and 100 % (data not shown), making this 

A 

B 
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method quite reliable for eggplant fruit classification. Results were substantially 

improved when the SVM classification was applied, with the overall CAL and CV 

NER climbing up to 97 and 90 %, respectively, resulting in > 51 fruit out of 60 

correctly classified (Table 1) and a simultaneous constantly reliable discrimination 

of the two classes of fruit (stored at chilling and at non-chilling temperatures) starting 

from the 2nd day of storage, with at least 11 out of the 12 fruit being correctly 

classified in both CAL and CV process (Fig. 8B). By using the kNN algorithm, 

although the overall CV NER was as high as with PLSDA (83 %) remaining high 

(>88 %) within each storage day, there was a significant variation in CAL process 

that renders this model not trustworthy (Fig. 8C). 

 

                    

A 

C 

B 
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Fig. 8. Discriminant analysis results (% classification) for calibration and cross validation of fruit 

stored at 12 °C (non-chilling storage temperature) and 2 °C (chilling storage temperature) based on 

the FT-NIR reflectance data over the absorbance range of 800–2777 nm that were collected from 

the fruit peel and processed using PLSDA (A), SVM (B) and kNN algorithm. Each data point 

represents the mean of correctly classified fruit ± standard error (S.E.) either for the whole period of 

storage or within each storage day 

3.5. Hyperspectral imaging data 

The Vis-NIR hyperspectral imaging (HSI) data were initially preprocessed by 

detrend and 2nd derivative, before being used in the discrimination analysis of fruit. 

The highest overall calibration (CAL) and cross-validation (CV) NER for the whole 

storage period using the PLSDA classifier on Vis-NIR images data was for both 87 

%, using 4 latent variables (LVs) (Table 1). Although, the consistency of fruit 

previously stored at chilling temperatures were 100 % correctly classified since day 

6 (Fig. 9A), there were 3 out of 12 fruit stored at safe temperatures that were 

misclassified in the last day of storage (data not shown). The above results were even 

worse when the SVM classification was applied, with the overall CAL NER being 

as low as 50 %, and CV NER exhibiting significant variation, in contrast to the mean 

NER using the data of the whole storage period (80 and 78 %, respectively) (Table 

1), with the most significant misclassifications observed in the 2oC stored eggplants 

(Fig. 9B). By applying the kNN algorithm, although the overall CV NER was almost 

as accurate as the SVM algorithm (77-81 %), there was a significant variation in 

each storage day’s discrimination analysis, rendering once more, this model not 

suitable for use in fruit sorting (Fig. 9C). 
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Fig. 9. Discriminant analysis results (% classification) for calibration and cross validation of fruit 

stored at 12 °C (non-chilling storage temperature) and 2 °C (chilling storage temperature) based on 

the imaging data acquired in the visible-near infrared (Vis-NIR) range of 400–1000 nm that were 

collected from the fruit peel and processed using PLSDA (A), SVM (B) and kNN algorithm. Each 

data point represents the mean of correctly classified fruit ± standard error (S.E.) either for the 

whole period of storage or within each storage day. 

The NIR hyperspectral imaging data were initially preprocessed by 2nd derivative, 

standard normal variate (SNV) normalization and detrend, before being used in the 

discrimination analysis of fruit. Irrespectively of the algorithm adopted for the 

discrimination of fruit, the misclassification of fruit in the two classes was severe 

(Fig. 10A-C). In particular, the overall calibration (CAL) and cross-validation (CV) 

NER for the whole storage period using the PLSDA classifier on NIR image data 

were as low as 59 and 61 %, respectively, using 3 latent variables (LVs) (Fig. 10A) 

A 

C 

B 
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and only fruit on the last day of storage were 83-92 % correctly classified (data not 

shown). The above results were substantially improved when the SVM classification 

was applied, with the overall CAL and CV NER being as high as 96 and 83 %, 

meaning that > 51 out of 60 fruit were correctly classified in each of the two storage 

temperatures) (Table 1), but the model was consistently accurate only after the 6th of 

storage, reaching NER >92 % (Fig. 10B). By using the kNN algorithm, results were 

in-between the two above classifiers, in the sense that although the overall CAL and 

CV NER were 73 and 76 %, there was a significant variation in the discrimination 

analysis during the storage period, not allowing this model to be adopted for eggplant 

fruit discrimination (Fig. 10C). 

 

Fig. 10. Discriminant analysis results (% classification) for calibration and cross validation of fruit 

A 

C 

B 
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stored at 12 °C (non-chilling storage temperature) and 2 °C (chilling storage temperature) based on 

the imaging data acquired in the near infrared (Vis-NIR) range of 900–1700 nm that were collected 

from the fruit peel and processed using PLSDA (A), SVM (B) and kNN algorithm. Each data point 

represents the mean of correctly classified fruit ± standard error (S.E.) either for the whole period of 

storage or within each storage day 

4. Discussion 

According to the sensory evaluation of chilling injury (CI) symptoms on the white 

inner flesh of the eggplant fruit, the deterioration of the fruit quality could be evident 

to the consumers when halving the eggplants, even since the 4th day of storage at low 

temperature, irrespectively to the intensity of the symptoms. This result is in 

agreement with Kozukue et al. (1978), which reported that eggplants previously 

stored at 1 °C, developed surface pitting of peel, as well as browning of seeds and of 

vascular bundles after 4 days at 1°C, but is in contrast to other studies when CI was 

apparent only after 6 to 10 days at 0oC (Concellón et al., 2012, 2005). Apart from 

the different degrees of chilling temperatures in the above studies, the variety and  

the growing stage of the fruit may be also responsible for the development of CI 

symptoms (Zaro et al., 2014).  

It has been suggested that chilling injury detection can be confirmed by other 

destructive techniques, such as the increases of the malic to citric acid content ratio 

in fruit flesh, of respiration and ethylene production rates (Kozukue et al., 1978), of 

1-aminocyclopropane-1-carboxylic acid (ACC) and 1-

(malonylamino)cyclopropane-1-carboxylic acid (MACC) contents (Concellón et al., 

2005) or of catalase activity and malondialdehyde and H2O2 content (Carvajal et al., 

2011), which were not evaluated in this study.  

Nonetheless, the CI symptoms since the 4th day of storage (Fig. 2) were probably 

accompanied with compositional changes on the eggplant fruit skin, as implied by 

scanning the methanolic peel extract spectrophotometrically (Fig. 3). Differences 

among fruit previously stored at 2 or 12oC regarding the absorbance of the skin 

extract probably reflect compositional alteration of pigments, mainly anthocyanins, 

a subgroup of flavonoids that are responsible for the pericarp color of eggplant fruit 
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with delphinidin-3-(p-coumaroylrutinoside)-5-glucoside (nasunin), 3-

caffeoylrutinoside-5-glucoside, delphinidin- 3-glucoside, delphinidin-3-glucosyl-

rhamnoside and petunidin being considered as the major ones in eggplant cultivars 

(Concellón et al., 2007; Dranca and Oroian, 2017).  

Indeed, consistent and reliable discrimination results based on color parameters 

were only observed after the 6th day of storage using only partial least square (PLS) 

or supervised vector machine (SVM) algorithms, as long as kNN algorithm was not 

efficient enough to classify fruit correctly according to their postharvest storage 

temperature. According to our results, L, C and Ho color data permitted fruit 

discrimination only after chilling injury initiation (Fig. 5), in contrast to Concellón 

et al. (2007) who showed that color changes are concomitant to chilling injury 

development. The same authors also state that color changes during storage are not 

following the same pattern but are dependent on the position of the measurement on 

fruit longwise axis, occurring faster near the calyx than the center of the fruit. In our 

study, only a* parameter revealed differences on fruit peel after the CI induction 

(Fig. 4A), whereas neither lightness, chroma or hue angle allowed a safe 

discrimination (data not shown). Similarly to our study, neither the color parameters 

of the external surface (peel) of apple fruit were able to classify them in two classes; 

normal and chilling injured ones, because of the absence of significant differences 

between them (ElMasry et al., 2009).  

However, the use of Konica Minolta spectrophotometer, apart from the L, C, Ho 

parameters, permitted the recording of spectra reflectance of the peel in the range 

340-760 nm which produced significantly better discrimination NER. Indeed, the 

ratio 740/660 nm exhibited significant differences among fruit after day 4 (Fig. 4B), 

while even more interesting results were obtained when this method was coupled 

with PLSDA classifier (Fig. 5A) and can therefore be safely adapted during the 

sorting of fruit, given that eggplants are previously stored for at least 2 days in low, 

chilling temperatures. 

Recording of FT-NIR spectral data using multipurpose analyzer turned out to be 



76 

 

the most suitable technique, in order to achieve the earliest possible and consistent 

detection of eggplants fruit stored at chilling injurious conditions. However, it should 

be noted that the optimal discrimination requires appropriate preprocessing of the 

spectral data, such as transmission of reflectance to absorbance, multiplicative signal 

correction (MSC) and detrend combined with SVM algorithm analysis. In this way 

the overall mean CAL and CV NERs reached 97 and 90%, being higher than 92%, 

already from the second day of storage. PLSDA algorithm performance was inferior 

to SVM in classifying fruit in terms of accuracy, while kNN classifier was 

substantially worst and therefore unsuitable to be implemented for such sorting 

purposes.  

Among the Vis-NIR (400-1000nm) and NIR (900-1700nm) hyperspectral 

imaging data, better results were obtained in the visible range. In terms of screening 

eggplant fruit according to their postharvest storage temperature regimes, Vis-NIR 

image data required preprocessing by detrend and 2nd derivative, before using the 

PLSDA, SVN and kNN classifiers (Figs. 9A-C). Indeed, PLSDA was superior in 

accuracy and consistency than SVM, contrary to the FT-NIR spectral, while kNN 

was once more inappropriate to be used. 

The preprocessed NIR hyperspectral imaging data (2nd derivative + standard 

normal variate (SNV) normalization + detrend), turned out to be extremely efficient 

(>92 %) in discriminating fruit only after the 6th day of storage, when the SVM 

supervised classification model was applied (Fig. 10B). Neither PLSDA nor kNN 

algorithm, were able to improve NIR image data acquisition efficiency in separating 

fruit (Figs. 10A, C).  

Apart from accuracy and consistency, the choice of a particular method depends 

on other factors as well, such as the nature of the problem, the size of the data set, 

the ease of implementation and the economic feasibility (ElMasry et al., 2009). For 

instance, the major disadvantage of the hyperspectral imaging technique is that 

handling the huge amount of data extracted from hyperspectral images requires extra 

time and resources, although hyperspectral imaging is considered advantageous 
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relatively to spectroscopic techniques, which acquire the spectral data from a single 

point or from an integration of a small region on the tested fruit (ElMasry et al., 2009; 

Li et al., 2016). Nonetheless, in this case HSI gave lower performance than FT-NIR 

may be due to the lower spectral range (maximum 1800 nm for HSI versus 2700 

nm), the lower spectral resolution and the acquisition method which requires a longer 

acquisition time from a higher distance between the object and the detector. Several 

studies on hyperspectral imaging or FT-NIR spectral acquisition confirm the need to 

follow various preprocessing steps of the raw extracted data, as well as various 

statistical analysis and classifiers, in order to reach promising results. Similarly to 

our study, Cen et al. (2016) applied various supervised classification algorithms, 

such as with naïve Bayes (NB), supervised vector machine (SVM), and k-nearest 

neighbor (kNN) combined with feature selection techniques, such as  mutual 

information feature selection (MIFS), max-relevance min-redundancy (MRMR) and 

sequential forward selection (SFS) for optimal wavebands selection of Vis-NIR 

hyperspectral imaging data, in order to find the most robust model that could permit 

the identification and classification of fresh and chilling injured cucumber fruit in an 

online sorting system. According to their results, the SVM classifier combined with 

the SFS spectral feature subset was proven to achieve the best classification 

performance, similarly to our study where SVM excelled in consistency and 

accuracy in comparison to PLSDA and kNN, in both vis NIR hyperspectral or FT 

NIR data. In another recent research on chilling injury detection of peach fruit, Vis-

NIR hyperspectral reflectance imaging data partial least were processed by partial 

least squares-discriminant analysis (PLSDA), artificial neural networks (ANN), and 

supervised vector machine algorithms (SVM), classified fruit according to the 

severity of CI symptoms (Sun et al., 2017). Interestingly, high classification NER 

were obtained only among chilled and non-chilled peach fruit, while the accuracy 

was reduced in calibration and cross validation NER of the three or four classes. 

Apparently, the selection of the proper non-destructive protocol, in terms of 

technique, preprocessing data method and classification algorithm is the resultant of 
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rapidness, consistency, repeatability and apparently is species specific. 

 

5. Conclusion 

Eggplant fruit developed chilling injury symptoms since the 4th day of storage at 

2oC, as revealed destructively by internal flesh browning and seed blackening and 

confirmed by measuring the absorbance of the peel extract in a photometer. In order 

to develop a non-destructive method for the earliest possible detection of stored 

eggplants at chilling injurious conditions, several techniques were applied. The 

earliest (since the 2nd day of storage at 2oC), and most consistent results (92-100 %, 

throughout the storage period) were obtained using the FT-NIR spectral data, 

generated after several preprocessing steps and classified using the SVM algorithm. 

Color or FT NIR spectral data classified with PLSDA permitted relatively good 

classification of fruit (>83 % accuracy) since the 4th day of storage, while L, C, Ho 

color measurements or Vis-NIR hyperspectral images combined with PLSDA 

generate trustworthy models only after the 6th day of storage. NIR hyperspectral 

imaging technique and kNN classification algorithm are incapable of separating the 

fruit neither accurately, neither consistently. 

Apparently, specific FT NIR wavelengths should be identified out of the whole 

region captured (800- 2777 nm), in order to optimize the models and increase speed 

of discrimination process before implementing the method in quality control during 

retail market of eggplant fruit or even developing a prototype hand held spectral 

acquisition equipment for that purpose. 
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ABSTRACT 

The feasibility of using hyperspectral imaging in the combined wavelength 

regions comprising of visible to near infrared (VIS-NIR) (400-1000 nm) and short 

wave infrared (SWIR) (1000-2500 nm) was investigated for discriminating fresh bell 

peppers from those stored under refrigeration. In addition, the technique was used 

for early detection of chilling injury (CI) in mature fruit. Supervised classification 

models were developed using Partial Least Square Discriminant Analysis (PLS-DA) 

for raw and pre-processed spectra followed by wavelength selection using VIP 

scores. Reliable classification of fresh and stored fruit was achieved using pre-

processed data in VIS-NIR range by 88 % and 84 % non-error-rate (NER) for 

calibration (Cal) and cross-validation (CV), respectively, but a slightly higher 

classification accuracy was manifested in the SWIR range using raw spectra; in this 

case, wavelength selection resulted in six wavelengths in VIS-NIR reaching to 87 

%, 83 NER for Cal, CV, respectively, and four wavelengths in SWIR range yielding 

to NER of 84 % for Cal and 81 % to satisfy the aforementioned objective. Secondly, 

classification of fruit based on days of cold storage was achieved using preprocessed 

data both for VIS-NIR and SWIR whole ranges where wavelength reduction resulted 

in 12 wavelengths in the VIS-NIR and 13 wavelengths in SWIR range without 

impressive varying model performance in case of VISNIR and decreasing model 

accuracy in SWIR range. In addition, Partial Least Square Regression (PLSR) was 

conducted on the data extracted from VIS-NIR HSI, to predict days of cold storage 

both in full spectral range and selected wavelengths obtained from VIP scores. PLSR 

models based on full range spectra yielded R²CV = 0.92, while for the PLSR model 

based on selected wavelengths R²CV = 0.79 was obtained, along with reasonable 

RMSEC and RMSECV. Conclusively, based on the results, VIS-NIR hyperspectral 

imaging is a reliable option for on-line classification of fresh versus refrigerated fruit 

and for identifying early incidence of CI.  

Key words: Green bell peppers, chilling injury, hyperspectral imaging, 

classification, PLSR, VIP scores 
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1. Introduction 

Bell pepper (Capsicum annuum L.) is an important commercial product that is 

consumed throughout the world due to its pleasant flavor. Moreover, it is a rich 

source of essential vitamins (i.e. A, B, C, and E)  and many other antioxidant 

phytochemicals (Marín et al. 2004). As bell peppers are delicate and perishable, they 

require careful postharvest handling. At storage temperatures below 7 ºC, bell 

peppers are particularly sensitive to chilling injury (CI), the extent of which can 

depend on cultivar and maturity (S Meir et al. 1995; Paull 1990). The first expression 

of CI is damaged membranes,  which reduce the membrane function (Concellón et 

al. 2005). CI symptoms of bell peppers include discoloration of calyx and seed 

cavity, surface pitting, and shriveling owing to moisture loss. The severity of these 

symptoms increases when the fruit transitions to ambient temperatures after cold 

storages (Cantwell 1999). CI is a major indicator of improper postharvest storage 

and results in 25-35 % production losses of the fruit (Cheema et al. 2018). Therefore, 

development of a rapid and reliable method for the early detection of CI would be 

valuable for the industry.  

A variety of techniques have been investigated for detecting of CI. Liu et al. 

(2015) identified pectin content, polygalacturonase (PG) and pectin methyl esterase 

(PME) activity, transmission electron microscopy and light microscopy, aroma 

volatiles, and main fatty acid content for evaluating quality degradation in bell 

peppers. Shi et al. (2018) identified sepal browning, black lesions, skin wrinkling, 

and malondialdehyde, anthocyanin, and phenolic contents as factors. Yang et al. 

(2011) measured membrane permeability, lipid peroxidation and antioxidant enzyme 

activity to assess CI in cucumbers. All of these procedures are time-consuming, 

expensive, require sample preparation and need to be done by trained personnel.  

Non-destructive techniques for evaluation of quality in agricultural products are 

gaining popularity, as recent advancements in sensor technology have made these 

techniques suitable for online inspection, reliable, and relatively inexpensive. 

Several researchers have investigated near infrared (NIR) spectroscopy for the 
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evaluation of quality attributes of fruit and vegetables including prediction of solid 

soluble content (SSC) and firmness in pears (Nicolaï et al. 2008), measurement of 

acidity, firmness, and SSC in mandarins (Gómez et al., 2006),  assessment of internal 

quality of strawberries (Amodio et al. 2017) and prediction of sugar content in sweet 

cherries (Lu 2001). 

Additionally, optical techniques based on imaging and spectroscopy are also 

being used for quality inspection of fruit and vegetables, especially during storage 

(Cen et al. 2016a). Hyperspectral imaging (HSI) allows simultaneous spectral and 

spatial information of samples under consideration. A single HS image cube 

comprises of multiple sub-images, each of which is related to the intensity 

information at a particular wavelength (ElMasry et al. 2009). As light is incident on 

a sample surface, around 4 % is reflected back causing specular reflectance, and the 

rest of the incident energy is transmitted through the surface into the cellular 

structure of the fruit where it is scattered via small interfaces within the tissue or 

absorbed by cellular constituents (Birth 1976). Each pixel spectrum of the sample 

presents a special composition characteristic as a fingerprint. The advantage of using 

this technique over spectroscopy is that the chemical composition of a sample can 

be determined, mapped and visualized.  

HSI has been tested for detection of deformities such as bruises and mechanical 

damage at early stages in pears, apples, and peaches (Lee et al. 2014; Li et al. 2018; 

Di Natale et al. 2001; Xing et al. 2005). HSI has been used to evaluate of capsaicin 

and dihydrocapsaicin concentrations and water content in chili peppers (Jiang et al., 

2018), and chlorophyll and carotenoid, total soluble solid, and ascorbic acid contents 

in bell peppers Schmilovitch et al., (2014). 

ElMasry et al. (2009) used HSI in the range of VIS-NIR (400-1000 nm) combined 

with the use of feed-forward backpropagation artificial neural networks (ANN) for 

CI detection in ‘Red Delicious’ apples. Pan et al. (2016) studied the detection of CI 

in peaches using HSI and ANN. Sun et al. (2017) analyzed peaches by HSI combined 

with chemometrics and successive projections algorithm. They classified different 
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levels of CI based on severity using Partial Least Square-Discriminant Analysis 

(PLS-DA), Support Vector Machine (SVM), and ANN. Cen et al. (2016) 

investigated the potential of HSI in reflectance (500–675 nm) and transmittance 

(675–1000 nm) modes followed by supervised classification for the detection of CI 

in cucumbers.  

Despite all these efforts to detect chilling injuries in fruit and vegetables, there is 

a lack of literature regarding the development of non-destructive techniques and 

methodologies for the early detection of such damage in bell peppers. Thus, the 

objective of this study was to discriminate fruit for temperature and storage time and 

to predict days of cold storage. To this aim, the most effective wavelengths were 

selected in order to arrive at simple computationally inexpensive models that are 

efficient for real-time implementation. 

2. Materials and methods 

2.1 Experimental design 

A total of 150 mature green bell peppers were purchased from a local fresh retailer 

market located in Winnipeg (Manitoba, Canada), just few hours after harvesting. All 

fruit were washed and visually inspected to select those free from defects and 

damage, with 126 fruit chosen for further use. Eighteen fruit were selected as fresh 

(day 0) and the rest were divided into two groups and kept in two different 

temperature and humidity controlled environmental chambers (Conviron, Controlled 

Environments Ltd., Winnipeg, MB, Canada). The first chamber was set at 4 ºC as the 

chilling temperature (Paull 1990) and 90 % relative humidity. A second chamber 

was set at 12 ºC as a safe storage temperature for bell peppers (Paull, 1990) and 90 

% relative humidity. Eighteen fruit were removed from each chamber at intervals of 

six days as shown in Fig. 1 and scanned. Prior to scanning, the fruit were left at room 

temperature (~20 ºC) for 24 h to eliminate the temperature effect and to allow the 

symptoms to further develop. All HS images were acquired in the Image Processing 

Lab of the Department of Biosystems Engineering at the University of Manitoba, 

Canada. 
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Fig. 1. Scheme of experimental design for dividing the fruit into fresh, and for fruit stored at 4 °C 

or12 °C followed by 1 d at room temperature (RT) 

2.2 Hyperspectral imaging system 

In this study, VIS-NIR and SWIR line-scanning HSI systems (SPECIM Spectral 

Imaging Ltd., Oulu, Finland) were used for image acquisition of the fruit. The VIS-

NIR system comprised of a charge coupled device (CCD) camera with 1024×896 

pixels equipped with a spectrograph (SPECIM V10E, 397.66-1003.81 nm, 2.6 nm 

spectral resolution), and a focusing lens (SPECIM OLET 15). The lighting unit 

consisted of two 150 W tungsten lamps (3900-ER, Illumination Technology, Inc., 

USA) which were located on the two sides of sample at 45°. The SWIR HSI system 

(Fig.2) included a spectrograph (SPECIM N25E, 953.36-2567.37 nm with a spectral 

resolution 5.6 nm) and a 30 mm focusing lens (SPECIM OLES 30) that allowed it 

to obtain hypercubes of 300×384×288 pixels. The system had a cryogenically cooled 

mercury-cadmium-telluride (MCT) detector array.  
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Fig. 2. An integrated SWIR hyperspectral imaging system; 1) spectrograph 2) lighting unit 

3) moving platform 4) control unit 

2.3 Image acquisition and correction 

To achieve thermal and temporal stability of the lighting system and camera, the 

system was switched on 30 min. prior to image acquisition based on previous 

research (Castorena et al. 2015; Erkinbaev et al. 2017) using the two camera systems. 

The frame rate for both the cameras was set as 20 frame per second (fps). The 

exposure time and platform speed for the VIS-NIR system were 20 ms and 7 mm/s, 

respectively, and for the SWIR system 8 ms and 7 mm/s, respectively.  The speed of 

the moving stage of 7 mm/s was chosen based on best aspect ratio of the frame rate 

and exposure time (Erkinbaev et al. 2019). After acquisition of images, the black and 

white reference correction was applied. The black reference was measured by 

closing the shutter automatically while for the white reference, a 99 % Spectralon 

reflectance standard (Labsphere, North Sutton, NH), was positioned at the top of 

each image. 

The following equation was used to calculate the relative reflectance, R: 

𝑅 =  
𝐻−𝐷

𝑊−𝐷
    Eq. 1 
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Where H represents the original hyperspectral image; and D and W are the acquired 

signals for both black and white references, respectively.  

2.4 Image Processing 

An image processing algorithm was developed to extract spectral information 

from the images. Bell peppers have a highly glossy skin, which results in sections 

within a HS image, where the incident light is dominant, creating regions where 

image becomes saturated. Such saturated regions affect the spectral profiles and 

consequently the results; therefore, elimination of these saturated regions is essential. 

It was observed, that images at wavelengths of 692 nm and 827 nm in the VIS-NIR 

range best for separated the saturated regions and whole fruit from the background, 

respectively. For each sample, grayscale images were binarized at these two 

wavelengths corresponding to the saturated regions and whole fruit, respectively. 

The algorithm also identified and removed small regions where signal-to-noise ratio 

was very low. After combining the two binary images representing the whole fruit 

and saturated regions, a logical AND operator was implemented to create one binary 

image that was without background or saturated regions. This image was considered 

as a reference to be applied for all waveband images, imposing zero values to all 224 

channels and keep only the non-saturated pixel values of the grayscale sub-images. 

Finally, the algorithm averaged all spectra from each waveband image and saved 

these mean spectral values to an excel file for further analysis as depicted in Fig. 3. 

The same technique was applied for SWIR hyperspectral images. 
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Fig. 3. Image processing flowchart for removing background, saturated parts and extracting data 

from images (for VIS-NIR images) 

2.5 Chilling evaluation  

The external appearance of fruit (shriveling and pitting) were assessed. Fruit were 

then cut one fifth from calyx and then longitudinally, and categorized into four 

classes according to the area of discolored seeds which was evaluated by a panel of 

7 experts (4 females and 3 males, personnel of the department, not affiliated with the 

experiment, semi-trained for the experiment). CI indices are shown in Fig. 4, where, 

0 = no chilling (0 % area of discolored seeds), 1= slight chilling (≤25 % area of 

discolored seeds), 2 = moderate chilling (> 25 % and ≤50 % area of discolored 

seeds), and 3 = severe chilling (> 50 % area of discolored seeds)  
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Fig.4. CI indices based on visual evaluation. A. CI 0, B. CI 1, C. CI 2, and D. CI 3 

2.6 Multivariate data analysis 

Most HSI systems have poor signal-to-noise ratios (SNR) at the two extreme 

regions of wavelengths. Therefore, spectral regions of poor SNR were eliminated 

leaving 204 wavebands in the VIS-NIR range and 250 wavebands in SWIR range 

for model development. Multivariate and chemometric methods were applied for the 

development of calibration models on the extracted datasets (De Jong 1990) .   

Prior to the application of classification and regression models, principal 

component analysis (PCA) was used as a preliminary operation to exclude outliers. 

The technique transforms a set of correlated original variables into fewer 

uncorrelated orthogonal variables called PCs, which are the linear combinations of 

the original variables. The established PCA loadings on the other hand, represent the 

relationship among variables (Eriksson et al. 2013). Combination of variables 

describe major trends in the data, and can be a used as a tool for detecting outliers 

(Bro and Smilde 2014). 

As a classifier, PLS-DA was selected. The PLS-DA classification algorithm 

works on the basis of interaction of spectral intensity and sample characteristics by 

maximizing the covariance between variables (Barker and Rayens 2003). Firstly, 

PLS-DA classification models were developed with the aim of discriminating fruit 

stored at 12 ºC and 4 ºC. In the second step, PLS-DA models were developed to 
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classify fruit based on the number of days at each temperature. The performance of 

the developed PLS-DA model was evaluated on the basis of specificity, sensitivity, 

and non-error-rate (NER), which represented true negative rate, true positive rate, 

and total correctly classified samples, respectively. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
               Eq. 2 

    

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸𝐶) =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑟𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
             Eq. 3 

 

𝑁𝐸𝑅 =
∑ 𝑆𝑒𝑛𝑠𝑛

𝑖=1

𝑛
        Eq. 4 

 

Where, n is the number of samples. The accuracy of the PLS-DA models can be 

enhanced by carefully selecting the number of latent variables (LVs) which is 

determined on the basis of minimum root mean square error of cross-validation 

(RMSECV). 

Additionally, a Partial Least Square Regression (PLSR) model was developed 

estimate the days of storage at 4 °C. PLSR is a verified multivariate calibration 

method for quantitative analysis that overcomes problems associated with 

overlapping spectral bands and collinearity of data (Barboza and Poppi 2003). To 

keep the regression models in line with the classification models and preventing 

complexity, the same number of LVs obtained from classification models was also 

selected for PLSR models. The calibration models were evaluated using coefficient 

of determination (R2) and the root mean squared error (RMSE) for both calibration 

and cross-validation 

𝑅2 = 1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−ȳ𝑖)2𝑛
𝑖=1

                 Eq. 5 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (ŷ𝑖 − 𝑦𝑖)2𝑛

𝑖=1      Eq. 6 
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where n is the number of samples, y is the storage days at chilling temperature, ȳ 

is the mean values of y, and ŷ represent days of storage predicted by HSI spectra. 

2.7 Data Pre-processing  

Even though the data extracted from the HS images of bell peppers were affected 

by baseline shift and non-linearities, such influences could be removed using 

appropriate pre-processing techniques. Commonly, these issues occur due to the fact 

that agricultural products are biological materials and light scattering occurs 

depending on their particle sizes (Rinnan et al. 2009). The spectral data in this case 

was further confounded by the shiny surface of bell peppers and unwanted noise. 

Therefore, pre-processing techniques such as mean-centering (MC), multiplicative 

scatter correction (MSC), 1st derivative (1st D), and normalization (Norm) were 

explored on the data as stand-alone methods or in different combinations.  

2.8 Wavelength selection  

To keep PLS-DA and PLSR models simple, efficient, and fast for on-line 

industrial implementation, it is imperative to select the variables with the highest 

weights. In other words, HS images can be reduced to a handful of multi-spectral 

images by selecting the most appropriate variables. Variable/wavelength selection 

was performed by calculating variable importance in projection (VIP) scores of the 

regression models(Wold, Johansson, and Cocchi 1993). Typically, VIP scores>1.0 

represent highly dominant variables, while VIP scores<0.8 represent variables that 

are less effective (Wold, Johansson, and Cocchi 1993). All the chemometric 

techniques were implemented in PLS-Toolbox software (Eigenvector Research Inc., 

USA) within the MATLAB computational environment. 

3. Results and discussion  

3.1 Chilling injury evaluation 

Fig. 5 shows the indices of CI over time for bell peppers stored at 4 °C and 

12 °C. CI symptoms were not detected until day 12 of storage (plus RT). A shelf-life 

period results in faster manifestation of CI  (Park et al. 2018; Yao et al. 2018). By 

day 12 of storage at 4 °C, external CI symptoms started to appear, and more 

importantly internally. On the last day of storage, a significant increase in the 
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incidence of internal symptoms was observed even though the external t CI remained 

at 1. Some symptoms similar to CI were also detected at 12 °C, where it is possible 

that some pitting occurred due to accelerated senescence. Therefore, based on 

external inspection alone, chilling symptoms were not easily detectable without 

cutting the fruit even after the prolonged storage period of 12 d. Similar conclusions 

were deduced by Lim et al. (2007), where it was reported that CI symptoms in bell 

peppers started to reveal after two weeks of storage at 1 °C. 

 

                                    A                                                                           B  

Fig. 5. CI index for bell peppers stored A. 12 °C and B. 4 °C for up to 18 d.  

3.2 Characteristics of hyperspectral images  

The reflectance spectra in the VIS-NIR and SWIR wavelength ranges for fresh 

bell peppers and for fruit stored for 6, 12, and 18 d at 4 °C are shown in Fig. 6. 

  

                                                  A                                                                              B 

Fig. 6. Spectra of fruit stored at 4 °C in A.VIS-NIR range and B. SWIR range  

It is speculated that cells undergo structural changes depending on CI severity and 

storage length, thereby affecting the reflectance spectra. No big differences in the 

400-700 nm range were seen between fresh and stored fruit (Fig. 6A). This indicates 
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that visible spectrum of light cannot be used to develop a precise classification model 

for CI. However, in the NIR wavelength range of 700-1000 nm, a clear distinction 

was observed between the spectra of fresh and stored fruit, and also among fruit 

stored for different time periods. Such changes may be related to the second and third 

overtone of O-H stretching vibrations associated with water, plus degradation of 

phenolic content (Siedliska et al. 2018a), which ultimately caused the reflectance of 

fruit to decrease over time. Similarly, in case of the SWIR mean spectra (Fig. 6B), 

high differences among spectra were apparent at 1140-1270 nm and 1550-1750 nm 

ranges. At these wavelengths the vibration of the first overtones of C–H and O-H 

bond stretching is reported (T. Ignat et al. 2012).  

3.3 Classification models based on the full wavelength range 

PLS-DA classification models were developed to classify bell peppers stored at 

4 °C, 12 °C and fresh fruit. A second classification approach was adopted to classify 

fruit based on storage time (6, 12, and 18 d) at 4 °C. Accordingly, classification 

models based on full wavelength ranges of VIS-NIR and SWIR modes were 

developed and compared to evaluate their performance. For industrial application 

purposes, data pre-treatments are not preferred, with model development based on 

raw data, but in the current research, different methods of data pre-processing were 

explored to ensure model reliability. The most effective data pre-processing 

combination for all VIS-NIR dataset was found to be MSC followed by MC. This 

combination of pre-processing techniques eliminated the effect of scattering in 

spectra and reduced multi-collinearity of the data (Rinnan et al. 2009). For SWIR 

HSI data, two different combinations of pre-processing methods were applied to 

optimize the best pre-processing technique that yielded superior classification results 

for each discrimination objective. To discriminate between stored and fresh fruit, 

normalization followed by mean-centering (Norm + MC) yielded the best results, 

while the 1st derivative followed by MSC and then mean-centering (1st D + MSC + 

MC) was selected for classification of storage time.       

Table 1 shows the confusion matrices for the classification performance of fresh 
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and stored fruit in the VIS-NIR and SWIR wavelength ranges. In addition to 

correctly classified samples, the confusion matrix also shows percentage of 

misclassified samples, using both raw and pre-processed data.  

 

 Table1. Confusion matrices for discrimination of fruit stored at 4 °C and 12 °C and fresh fruit based 

on the raw and pre-processed data in A. VIS-NIR and B. SWIR wavelength ranges  
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In case of VIS-NIR range, pre-processing (MSC + MC) of the data enhanced 

model performance, but no significant differences were observed in the model 

performance after data pre-processing (Norm + MC) in the SWIR range. Confusion 

matrices in both VIS-NIR and SWIR ranges indicate that fresh fruit were properly 

classified. In VIS-NIR they were discriminated from stored fruit by 88 % and 96 % 

sensitivity and specificity for calibration and 89 % and 98 % for cross-validation 

sets, respectively. The sensitivity and specificity improved to 100 % for both 

calibration and cross-validation sets after pre-treatment. The classification model 

based on raw data in VIS-NIR did not effectively discriminate among fruit stored at 

4 °C and 12 °C, but after pre-processing, sensitivity and specificity reached to almost 

100 % for the cross-validation set. As mentioned earlier, another parameter for 

evaluation of classifier performance is NER, which is the average of all sensitivities 
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of different classes. In pre-processed data for VIS-NIR range, NER was 88 % and 

84.33 % for calibration and cross-validation sets, respectively. In case of SWIR 

range, the PLS-DA model after data pre-processing yielded an NER of 81.33 % and 

80.33 % for calibration and cross-validation sets, respectively. 

Results of discrimination for days of storage of fruit kept at 4 °C are depicted in 

Table 2. 

  

Table 2. Confusion matrices for discrimination of fruit stored at 4 °C for 6, 12, and 18 d based on the raw and 

pre-processed data in A. VIS NIR and B. SWIR ranges 
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B 

 

In the VIS-NIR range, even without any pre-processing of data, the sensitivity 

and specificity were quite high, and further improved after pre-processing (i.e. 

applying MSC+MC). For both raw and pre-processed data in the VIS-NIR range, all 

periods of storage were perfectly classified with the calibration model. For the cross-

validation, pre-processing of data resulted in an increase in NER value from 88 % to 

96 %. For the raw data in the SWIR range, lower performance of the PLS-DA 

classification was found, resulting in an overall NER of 85.33 % and 81.66 % after 

pre-processing (i.e. 1st D + MSC + MC), for the calibration and cross-validation sets, 

respectively.  
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3.4 Classification models based on the selected wavelengths 

To reduce the number of wavelengths in the model classifier for on-line and real-

time purposes, the VIP method was employed. Fig. 7 shows that the most effective 

wavelengths in PLS-DA models for classification of stored and fresh fruit in VIS-

NIR and SWIR ranges. Wavelengths in the VIS-NIR range were 694, 719, 751, 813, 

886, and 973 nm, which are associated with C-H stretch and chlorophyll b, texture, 

and internal chemical composition  (T. Ignat et al. 2012; Nordey et al. 2017) 

.Chlorophyll is a key factor for evaluation of chilling sensitivity specially in green 

vegetable (Lim, Kang, and Cho 2007; Shimon Meir et al. 1997; Smillie et al. 1987). 

On the other hand, in the SWIR range 1138, 1244, 1379, 1642 nm are considered as 

the most effective wavelengths that infer the presence of ascorbic acid, water and 

sugar (Golic et al. 2003; T. Ignat et al. 2012; Timea Ignat et al. 2013). The first point 

above ‘1’ in VIP score plot of SWIR was neglected since it fell in the poor SNR 

region. After variable selection for both VIS-NIR and SWIR using the VIP scores, 

the number of variables decreased from a total of 204 to seven in the VIS-NIR range 

and from 250 to four in the SWIR range.  

 

    

A                                                                                                     B 

 Fig. 7. Variable importance in projection (VIP) scores for A. VIS NIR and B. SWIR PLS-DA models for 

discriminating the different lengths of storage (d) among bell peppers stored at 4 °C 

Table 3 shows the confusion matrices of the model (with selected wavelengths) 

and their ability to discriminate stored and fresh fruit for the two wavelength ranges. 

Table 3. Confusion matrices of stored and fresh fruit classification based on selected wavelengths and pre-
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processed data in A. VIS-NIR and B. SWIR ranges 
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After using selected wavelengths in VIS-NIR spectra with MSC+MC pre-

processing, the NER yielded to 87 % and 83 % for the calibration and cross-

validation sets, respectively. For the SWIR dataset, after pre-processing with 

Norm+MSC+MC, and using four selected wavelengths in this range, the NER 

reached to 84 % for calibration, and 81% for cross-validation, set, respectively for 
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discriminating fresh and stored fruit.  

Similar procedure using the VIP scores was used for variable reduction in PLS-

DA classification models for fruit stored at 4 °C based on storage time. For the PLS-

DA model in the VIS-NIR range, the VIP scores revealed 12 peaks which were most 

effective in the model corresponding to 457, 473, 481, 697, 700, 706, 716, 719, 727, 

748, 997, 999 nm. These wavelengths are related to carotenoid and pigment 

absorption band, carbohydrate absorption band, and second overtone O-H vibration 

association with water (Kačuráková and Mathlouthi 1996; Kodad et al. 1994; 

Siedliska et al. 2018b). Moreover, in SWIR range, 13 wavelengths (i.e. 1110, 1166, 

1233, 1312, 1390, 1676, 1905, 1967, 2051, 2247, 2252, 2308, 2420 nm) were also 

selected. Upon exploration these wavelengths were found to be related to 

carbohydrate absorption bond, C-H stretching bond, O-H stretching and O-H 

deformation linked to water, combination of  the aromatic C-H and ring C=C 

stretching vibration.(Kačuráková and Mathlouthi 1996; Kodad et al. 1994). 

 

Table 4. Confusion matrices for discrimination among fruit stored at 4 °C for 6, 12, and 18 d based on selected 

wavelengths and pre-processed data in A. VIS NIR and B. SWIR ranges.  
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The results of the PLS-DA model for the SWIR range after wavelength reduction 

show diminished performance in comparison to the whole dataset analysis; whereas 

the model in the VIS-NIR maintained the same performance level as of the full 

wavelength range that is 100 % for calibration and 96 % for cross-validation.  

3.5 Regression models  

PLSR calibration models for the prediction of days of storage at 4 °C were 

developed using the pre-processed data of VIS-NIR HSI, both in full spectra range 

and for selected wavelengths. VIS-NIR HSI data were preferred for regression model 

development, since this technique gave better results in comparison to SWIR HSI 

classification models. Prior to developing calibration models, the number of LVs 

was optimized during cross-validation of PLSR models. Six and five LVs were used 

for full range and for selected wavelength models, respectively. The results of the 

best PLSR models for predicting days of storage at 4 °C are presented in Table 5.  
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Table 5. PLSR model results for prediction of days of storage at 4°C 

 

The PLSR models yielded R²Cal= 0.95, R²CV = 0.92, RMSEC=0.23, and 

RMSECV=0.30 for full range spectra, while lower accuracy was obtained by 

reducing the number of wavelengths to 12 (R²Cal= 0.87, R²CV = 0.79, RMSEC=0.39, 

and RMSECV=0.5). Nonetheless even in this case error in CV was equal to half day 

which can be more than acceptable for fruit sorting proposal. 

Sun et al. (2017) successfully discriminated chilled peaches at different stages 

from non-chilled peaches by using VIS-NIR spectra and three different classifiers 

(PLS-DA, ANN, and SVM). Moreover, they considered first derivative spectrum for 

selection of the most effective wavelengths. In the current study, VIP scores were 

applied as a feature selection, since VIP score of a spectrum is considered as a 

weighted sum of the squared correlations between the PLS-DA components and the 

original spectrum (Banerjee et al. 2013) that could be more reliable compared with 

processed spectra. On the other hand, Cen et al. (2016) used both reflectance (500-

675 nm) and transmittance (675-1000 nm) mode combined with texture features for 

detection of CI in cucumbers. They also explored three different classifiers, support 

vector machine(SVM), artificial neural network (ANN), and Naive Bayes (NB), all 

of which are non-linear and time-consuming methods compared with PLS-DA 

classifier was used in this study. For detection of CI in peaches using HS reflectance 

imaging and ANN, Pan et al. (2016) used the normalized importance (NI) derived 

from ANN model for variable selection. No pre-processing was performed in that 

study while in the present study different pre-treatment methods and their 

combinations were investigated to see the effect on the performance of calibration 

Spectral range No. of 

Wavelengths 

LVs R² Cal R² CV RMSEC RMSECV 

Full range 204 6 0.95 0.92 0.23 0.30 

Selected wavelengths 12 5 0.87 0.79 0.39 0.51 
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models (only the best one was shown). ElMasry et al. (2009) employed HSI (400-

1000 nm) coupled with ANN classifier to identify CI in ‘Red Delicious’ apples. They 

used Importance of measure values for wavelength selection, which is a complicated 

method when compared with VIP scores. Also, they did not report the effect of pre-

processing on their models. Moreover, all of the previously conducted studies have 

dealt with the discrimination of fruit with and without CI. Our study is the first 

attempt aimed at early prediction of the CI, being able to discriminate cold stored 

fruit and to predict storage days at low temperature, so that corrective action can be 

taken to avoid further spoilage. In addition, the current study explores the entire 

visible to near-infrared spectrum from 400 nm to 2500 nm, and not only the Vis-NIR 

part. SWIR spectra allowed when used raw, better discrimination compared to SWIR 

for discrimination of fresh and stored fruit at the two temperatures, and this can be 

useful information for further transfer to industrial application. Although the 

experiment was conducted offline and under controlled lab conditions, the 

information can be easily transferred to industrial application.  

4. Conclusion  

This work used HSI in VIS-NIR (400-1000 nm) and SWIR (100-2500 nm) ranges 

combined with chemometric tools for early detection of CI in green bell peppers. No 

externally observable CI symptoms were detected even after 18 d of storage at 4 °C, 

but results of PLS-DA classifications discriminated cold stored fruit from fresh fruit 

and from fruit stored at higher temperature by using 6 variables in the VIS-NIR or 4 

variables in the NIR range. In addition, using 12 variables in the VIS-NIR was 

possible to detect fruit stored at 4 °C early.  The results of this study demonstrate the 

feasibility of HSI, in particular VIS-NIR range, for early detection of CI of green 

bell pepper. Moreover, it was proved that it is quite possible to apply these results as 

multispectral imaging for industrial purposes.  
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Abstract 

Eggplant fruit is a chilling injury sensitive vegetable, which should be stored at 

temperature of 12°C; however, at this temperature, the metabolism of the fruit is still 

intensively active and therefore significant quality deterioration may be induced. 

Since these quality losses can be difficult to detect by eyes, objective of this study 

was to develop a novel non-destructive method to estimate freshness of eggplants. 

Eggplant fruits (cv. Fantasy) were harvested from a commercial farm in Lecce, Italy, 

during July 2017. Fruits were stored at 12°C for 10 days. Every 2 days, fruits from 

were sampled and left at room temperature (20°C), for one additional day, simulating 

one-day shelf life at the market. Color spectra (360-740nm), Fourier Transform (FT)-

NIR spectra (800- 2777 nm) and hyperspectral images in the Vis-NIR range (400-

1000 nm) were also acquired on each fruit. Partial least square regression analyses 

were carried out between the data collected and the storage days and appropriate 

models were built, allowing safe assessment of the freshness of the fruits. According 

to the results based on whole wavelength ranges, storage days correlated very well 

with both the FT-NIR spectra and the hyperspectral data extracted from the Vis-NIR 

imaging system (RC> 0.98, RCV> 0.94, RMSEC < 0.4 and RMSECV< 0.8), in contrast 

to the color measurements with low RC and RCV values (0.78 and 0.71, respectively) 

and significantly high root means square errors (1.5 and 1.8, respectively). 

Moreover, after conducting SPA as a variable selection method, classification 

models could almost keep the performance. The results of this study may set the 

basis to develop a protocol allowing a rapid screening and sorting of eggplants 

according to their postharvest freshness either upon handling in a distribution center 

or even upon the reception in the retail market. 

 

 

Keywords: Eggplant fruits, freshness, non-destructive, PLS-R, SPA 
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Introduction  

Freshness of fruits and vegetables is playing a key role in relation to consumer’s 

acceptability, particularly for species that with short shelf life. Eggplants (Solanum 

melongena L.) is an annual and popular crop that can be grown in the sub-tropics 

and tropics area such as Mediterranean countries and Asia(Concellón et al. 2012). 

This produce is also an economically important and has been ranked the 25th global 

commodity crop(Shi et al. 2018).  

Due to inappropriate transportation systems from the field to the market and also 

problems in post-harvest handling, eggplant fruit suffer from different quality 

deteriorations such as shrinkage in skin, decreasing color indices, and pedicel 

dryness (Concellón et al. 2012). In addition being chilling-sensitive they may 

manifest various chilling injury (CI) symptoms if they are stored at a temperature 

below 12 °C(Concellón, Añón, and Chaves 2005). On the other side, storing them 

for a prolonged time at the safe temperature (i.e. 12°C) induce a rapid deterioration 

of its quality. Thus, detection of freshness of eggplant fruits is crucial.  

Non-destructive optical techniques have been used with different purposes for 

agricultural commodities(Amodio et al. 2017; Chaudhry et al. 2018; Giovanelli et al. 

2014; Piazzolla et al. 2013). Infrared spectroscopy technique is suitable for the 

measurement of compounds comprising polar functional groups such as -OH, C-O, 

and N-H (Blanco and Villarroya 2002) and provides substitute tool for predicting the 

presence and/or concentration of specific chemical constituents in fruit and 

vegetables without prior sample preparation, moreover, can be exploited in different 

ranges such as Near-Infra-Red (NIR), Middle-Infra-red (MIR), and Far-Infra-

Red(FIR)(Bureau, Cozzolino, and Clark 2019). Hyperspectral imaging, on the other 

hand, is one of the high efficiency computer vision system which can provide both 

spectral and spatial information of an object. One hyperspectral image is composed 

by multiple sub-images, each of them related to individual wavelength (ElMasry et 

al. 2007). As light is incident on a sample surface, around 4% of it is reflected back 

causing specular reflectance, and the rest of the incident energy is transmitted 
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through the surface into the cellular structure of the fruit where it is scattered via 

small interfaces within the tissue or absorbed by cellular constituents(Birth 1976)  

This study aimed to evaluate the potential of three different non-destructive 

optical techniques (i.e. Fourier transform-NIR spectroscopy (FT-NIR), hyperspectral 

imaging in VIS-NIR range (400-1000 nm) and color measurement (360-740nm)) for 

assessment of freshness of eggplant fruits. Partial Least Square Regression (PLSR) 

as a quantitative model, as well as, Successive Projections Algorithm (SPA) as a 

variable (wavelength) selection method were applied for this purpose. 

 

2.Materials and Methods 

2.1. Plant material  

Immature eggplant fruit (cv. Fantasy) were harvested from a commercial farm 

near Lecce (Italy) and then transported within few hours at the Postharvest 

Laboratory of the University of Foggia. Fruits were divided into six groups of 12 

samples. The first group was used for the determination on the fresh sample and the 

rest were stored at 12°C for 2, 4, 6, 8, and 10 days. Each group after storage was 

removed from cold room and was left at room temperature (~20 °C) for one 

additional day to simulate the market situation, before measurement of external color 

and acquisition of hyperspectral images and FT-NIR spectra. 

2.2. Color measurements 

Color was measured on 3 sides of each fruit longwise (below the calyx, at the 

center and near the blossom-end) in reflectance scanning mode in the wavelength 

region 360-740 nm, with a CM-2600d Konica Minolta spectrophotometer and an 

average of the three readings was calculated 

2.3. Acquisition of the FT-NIR spectra  

Fourier transformed- near infrared (FT-NIR) spectrometry was conducted on the 

eggplant fruit at room temperature (20 °C). Three points were scanned per fruit by 

manually displacing the fruit along its longwise axis (MPA Multi-Purpose FT-NIR 

Analyzer, Bruker Optics, Ettlingen, Germany), and an average of the three spectra 

was calculated. Reflectance mode was used during spectral acquisition over the 



117 

 

absorbance range of 800- 2777 nm at an interval of 1.7 nm (sphere macro sample 

resolution, scanner velocity 10 kHz, sample scan time 64 scans, background scan 

time 64 scans). The instrument was equipped with a high-energy air-cooled NIR 

source (20 W tungsten-halogen lamp) and a permanently aligned and highly stable 

ROCKSOLID interferometer (Bruker). 

 

 2.4. Acquisition of the hyperspectral images 

A hyperspectral line scan scanner (Version 1.4, DV srl, Padova, Italy) equipped 

with a spectrograph, working in the visible-near infrared (Vis-NIR) range (i.e. 400-

1000 nm) with a spatial resolution of 1000×2000 pixels and a spectral resolution of 

5 nm was employed to acquire the images. One fruit was taken for each replicate in 

a single image and self-developed MATLAB code was used for extracting the mean 

spectra of the fruit producing one spectrum per replicate. For the extraction of the 

mean spectrum, the original image was thresholded. Image thresholding was 

performed using the Otsu method, on the image depicting the best contrast between 

the foreground and background, corresponding to 795 nm. A 2D binary image 

(mask) was obtained, with 0 value for the background and 1 for the fruit tissue. This 

mask was imposed to extract the mean spectra of the pixels corresponding to the 

fruit(Tsouvaltzis et al. 2020) (Fig.1).   

 
Fig.1. Data extraction flowchart for hyperspectral images 

2.5. Multivariate data analysis 

 Multivariate and chemometric methods were applied for the development of 
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calibration models on the extracted datasets (De Jong 1990). As the first step of data 

analysis, principal component analysis (PCA) was performed on data as a 

preliminary technique to reduce data redundancy. The technique transforms a set of 

correlated original variables into fewer uncorrelated orthogonal variables called 

Principal Components (PCs), which are the linear combinations of the original 

variables. The established PCA loadings on the other hand, represent the relationship 

among variables (Eriksson et al. 2013). Combination of variables describe major 

trends in the data, and can be a used as a tool to detecti outliers (Bro and Smilde 

2014). 

For developing the predictive models to assess the freshness of eggplant fruits, 

Partial Least Square Regression (PLS-R) model were used.  In this case, the pre-

processed data were considered as independent variables (X) and days of storage as 

dependent variables (Y). Generally, the PLS-R models amend the covariance 

between X and Y by decomposing them at the same time. For evaluation of the 

developed predictive models, root mean square error for calibration (RMSEC) and 

the root mean square error for cross-validation (RMSECV) were analyzed based on 

Eq.1. 

Eq.1: RMSEC=RMSECV=
√∑ (𝑦ˆ𝑖−𝑦𝑖)²

𝑛𝑝
𝑖=1

𝑛𝑝
 

 

Where,  𝑦ˆ𝑖 is the predicted value of an attribute in fruit number i, 𝑦𝑖 is the 

measured value of an attribute in fruit number i, and 𝑛𝑝is the number of validated 

cases. The accuracy of PLSR models can be enhanced by carefully selecting the 

number of latent variables (LVs) which is determined on the basis of the minimum 

root mean square error of cross-validation (RMSECV). 

2.6. Data Pre-processing  

Even though the data extracted from the hyperspectral images of eggplants was 

affected by baseline shift and non-linearities, these kind of influences can be 

removed by conducting proper pre-processing. Commonly, these issues occur due to 

the fact that agricultural products are biological materials and the wavelengths in the 
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short-wave NIR region are comparable to their particle sizes (Rinnan, Berg, and 

Engelsen 2009). The spectral data in this case was further confounded by the shiny 

surface of eggplants and unwanted noise. Therefore, pre-processing techniques such 

as mean-centering (MC) and multiplicative scatter correction (MSC), were applied, 

after transforming reflectance to absorbance, for all data sets acquired from the 

hyperspectral images, FT-NIR spectra, and spectra taken with the colorimeter. 

 

2.7. Wavelength selection technique 

Since the data acquired from spectroscopy and hyperspectral imaging devices are 

always redundant, selection of the most effective variables/wavelengths could be a 

way to reduce the number of wavelengths and make models simpler for on-line 

applications. In this study Successive Projections Algorithm (SPA) was applied on 

the data in this regard. SPA is a forward selection method that employs simple 

operations in a vector space to minimize variable collinearity(Araújo et al. 2001). 

 

3. Results and discussions 

3.1. Spectral analysis 

Raw and average data extracted from FT-NIR spectroscopy technique is depicted 

in Fig.2.  

 
Fig.2 spectra of FT-NIR spectroscopy (a)raw spectra (b) mean spectra 

As it is noticeable in Fig.2 there are clear distinction among days of storage in the 

area of the 2 peaks 1400- 1470 nm, 1900- 2020 nm, and in the last part of the spectra 

corresponding to 2400- 2700 nm which could be related to the first overtone of O-H 

stretching vibrations associated with water, combinations of the aromatic C-H and 

ring C=C stretching vibration, and C-H stretching bond, respectively (Siedliska et 
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al. 2018). In case of Vis-NIR HSI data (not shown), a  difference can be observed in 

the range of 815-910 nm that may be related to chemical composition (C-H stretch) 

and texture of the samples, and in the ranges of  960-990 nm that could be related to 

second overtone O-H stretching vibrations associated with water (Ignat et al. 2012; 

Siedliska et al. 2018). Regarding the data extracted from colorimeter (not shown), 

there was no perceptible difference between data extracted from the samples stored 

in different days.  

 

3.2. PLS-R models for freshness assessment  

PLS-R models were conducted on the whole spectra ranges of FT-NIR, Vis-NIR 

HSI, and colorimeter to predict the days of storage (freshness). To this aim, the 

spectra were correlated to storage days (i.e. 0, 2,4,6,8, and 10 days). Table 1 shows 

the optimum models chosen according to optimal number of Latent Variables (LVs), 

allowing to have high R2and low RMSEC and RMSECV. 

Table 1. Assessment of freshness using PLS-R models by various optical techniques 

Non-

destructive 

technique 

Samples 

No. 

Wavelengths 

No. 

LVs R²  

Calibration 

RMSEC R²  

Cross-

Validation 

RMSECV  

Vis-NIR  

HSI 

60 121 13 0.98 0.40 0.96 0.60 

FT-NIR 

spectroscopy 

60 1154 12 0.98 0.40 0.94 0.80 

Colorimeter 60 34 7 0.78 1.5 0.71 1.8 

 

Using whole treated spectra range of Vis-NIR hyperspectral image and 13 LVs, 

allowed to obtain PLS-R models with R2
C 0.98 and RMSEC 0.40, as well as, R2

CV 

0.96 and RMSECV 0.60.  Similarly, model developed based on the FT-NIR 

spectroscopy utilizing 12 LVs showed R2 0.98 and 0.94 for calibration and cross-

validation, respectively along with RMSEC 0.40 and RMSECV 0.80. In contrast, 

model of colorimeter technique didn’t reveal an acceptable performance if compared 
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to the other techniques. (R2
CV 0.71 and 1.8 RMSECV with 7 LV). In other studies, 

different non-destructive methods were applied also for quality and freshness 

prediction of eggplants. N. Jha and Matsuoka (2002) used relative spectral 

reflectance and computerized spectral radiometer system to correlate surface gloss, 

stiffness, and density for the evaluation of freshness the in eggplant fruit. In their 

case, measurement of different quality indices was considered making the evaluation 

more time consuming. In another study, Ngadi, Martínez, and Schwinghamer (2016) 

applied nonlinear functions model against weight loss, peel gloss loss, surface 

stiffness loss, density ratio minus one, and storage period and they could predict very 

accurately stiffness loss (R2
adj =0.98) , but not the days of storage.   

3.3. PLS models based on selected wavelengths  

FT-NIR spectroscopy and hyperspectral images contain a big quantity of data and 

variable which make the time of analysis not appropriate for industrial purposes. So 

as to decrease the redundant information and enhance speed processing of HSI and 

FT-NIR spectroscopy data, different techniques are often applied to eliminate 

pointlessly data for selecting the most effective wavelengths. Due to this fact, SPA 

algorithm was used here. Among HIS data, 24 out of 121 wavelengths were selected 

(i.e.535, 590, 685, 710, 740, 750, 755, 765, 775, 820 855 ,870, 875 ,885, 895, 910, 

925, 930, 945, 950 ,970, 975 ,995, and 1000 nm), as well as, 10 out of 1154 

wavelengths (i.e. 1395, 1887, 2025, 2197, 2474, 2592, 2645, 2673, 2683, and 2723 

nm) were chosen for FT-NIR data.   

Table 2. Assessment of freshness using PLS-R-SPA models 

 

Non-

destructive 

technique 

Sample

s 

No. 

Wavelength

s 

No. 

LV

s 

R²  

Calibratio

n 

RMSE

C 

R²  

Cross-

Validatio

n 

RMSEC

V  

Vis-NIR  

HSI 

60 24 6 0.96 0.65 0.94 0.72 

FT-NIR 60 10 8 0.96 0.63 0.95 0.73 
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spectroscop

y 

 

As shown in Table 2, the PLS-R models by means of selected wavelengths 

retained almost analogous performance PLS-R models generated from the full 

spectra ranges (Table 1), considering a slight increasing of the RMSE for calibration 

and cross-validation in Vis-NIR HSI, and a decrease of RMSECV in FT-NIR 

spectroscopy technique. Fig.3 shows the performance of the models based on the 

selected wavelengths graphically.  

 

(a)                                                                                                 (b) 
Fig.3. Actual storage day (Y measured) vs   Predicted storage days (Y predicted) for FT-NIR 

spectroscopy (a) and Vis-NIR HIS (b) techniques  

4. Conclusion  

The results demonstrated the applicability of the integrated VIS-NIR 

hyperspectral imaging and FT-NIR spectroscopy for freshness assessment of 

eggplant fruits, whereas, the colorimeter didn’t manifest an acceptable performance. 

Moreover, Successive Projection Algorithm (SPA) was also a trustworthy technique 

for variable selection to reduce the number of wavelengths and make the models 

simpler in order to be transferred for upcoming industrial purposes. 
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ABSTRACT 

The objective of the study was to non-destructively assess the early detection of 

chilling injury (CI) which is a physiological disorder occurring in the eggplant fruit 

subjected to temperatures lower than 12°C. Reference measurements of CI were 

acquired by conducting visual appearances analysis, measuring electrolyte leakage 

(EL), weight loss and firmness evaluation resulting in the fact that even before three 

days of storage at 2°C, the CI process initiated. ANOVA-simultaneous component 

analysis (ASCA) was used for the investigation of the effect of temperature and 

storage time also on the FT-NIR spectral fingerprints. The ASCA model depicted 

that temperature, duration of storage, and their interaction had a significant effect on 

the spectra.  In addition, it was possible to highlight the main variations in the 

experimental profiles referable to the effects of the main factors and particularly in 

the case of storage time, to discover a major longitudinal monotonic trend. In 

addition to ASCA, partial least square- discriminant analysis (PLS-DA) was used as 

a supervised classification method to discriminate fruit based on the chilling and safe 

temperatures. In this case, only the spectral wavelengths which were found to be 

significantly influenced by the effect of temperature based on ASCA were utilized. 

PLS-DA prediction accuracy resulted to be 87.4±2.7% as estimated by a repeated 

double-cross-validation procedure (50 runs) and the significance of the observed 

discrimination was further proved by means of permutation tests. The outcomes of 

this study manifested a promising potential of near infrared spectroscopy for non–

invasive, rapid and reliable detection of CI in eggplants.   

 

 

Keywords: Eggplant, Chilling injury, ASCA, optical-technique, PLS-DA, rDCV 
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1 Introduction 

Various factors influence the quality of the stored fruits and vegetables among 

which temperature and time of storage hold significant importance in terms of 

chilling injury (CI)  occurrence (Kader 2013). Conventionally, most of the fruits and 

vegetables are recommended to be stored at low temperature for shelf life 

enhancement and nutritional quality retention but chilling sensitive produce is prone 

to CI when exposed to low temperatures (Fallik et al. 1995). Basically, CI induces 

damage to the cell membranes resulting in the solute diffusion and increased tissue 

permeability (Concellón, Añón, and Chaves 2005). 

 Eggplant (Solanum melongena L.) is an economical and a worldwide popular 

fruit which is non-climacteric, and which suffers severe CI when stored at 

temperatures below 12°C (Concellón, Añón, and Chaves 2005). CI in eggplants is a 

physiological disorder which leads to pitting in peel, flesh browning, blackening of 

the seeds and increased decay, particularly in the calyx, which can be more severe 

when the fruit shifts to market temperature after being exposed to chilling 

temperature (Fallik et al. 1995; Shi et al. 2018).  

Conventionally, phenolic content, anthocyanin content, malondialdehyde 

content, polyphenol oxidase, peroxidase, catalase activity, and electrolyte leakage 

are considered to be the most significant parameters related to CI (Concellón, Añón, 

and Chaves 2005; Fan et al. 2016; Shi et al. 2018). 

Due to fact that all aforementioned conventional techniques are destructive, time 

consuming, and comparatively expensive, the possibility of having non-invasive, 

accurate, and rapid techniques for evaluation and detection of the CI would be 

completely worthwhile. 

A variety of non-destructive optical techniques have been successfully applied 

for quality assessment of agricultural and horticultural commodities in the past few 

years (Amodio et al. 2017; Chaudhry et al. 2018; Cortés et al. 2017; Erkinbaev, 

Henderson, and Paliwal 2017; Munera et al. 2018).  
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In this regard, near infrared spectroscopy (NIRS) has proved to be effective for 

the estimation of compounds comprising polar functional groups such as -OH, C-O, 

and N-H (Blanco and Villarroya 2002) and serves as a substitute for predicting the 

presence of specific chemical constituents in fruit and vegetables without prior 

sample preparation. 

Recently, Cen et al. (2016) used hyperspectral imaging for detection of CI in 

cucumbers utilizing supervised classifiers and feature selection techniques. Similar 

research objectives have successfully been pursued using hyperspectral imaging on 

Red Delicious apples and peaches (ElMasry, Wang, and Vigneault 2009; Pan et al. 

2016). Moreover, Moomkesh et al. (2017) have investigated detection of freeze-

damaged sweet lemons using reflectance, half-transmittance, and full-transmittance 

VIS/SWIR spectroscopy combined with various machine learning techniques.  

Tsouvaltzis et al. (2020) successfully reported the possibility of classifying 

eggplant fruit based on temperature of storage (2°C and 12°C) using different 

optical-based techniques, and showed that Fourier-transform-near infrared (FT-NIR) 

spectroscopy was the most efficient technique to this aim.  Nonetheless, in this paper 

the effect caused by temperature and duration of storage on the spectral response was 

not investigated. Therefore, objective of this study was to characterize the effect of 

storage time and temperature (together with their possible interaction) on FT-NIR 

spectra of eggplants stored at chilling and not chilling temperature, applying 

ANOVA-simultaneous component analysis (ASCA), in order to evaluate whether 

these effects could be considered statistically significant and, if so, to associate the 

changes of the instrumental signals to the progress of the CI. Moreover, a second 

objective was to use these results to discriminate fruit stored at the different 

temperatures. 

2 Materials and methods 

2.1 Sampling  

Eggplant fruit (cv. Fantasy) were hand-harvested from a commercial farm located 
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in Molfetta, Italy (41° 12' 0" North, 16° 36' 0" East) in July 2019. After inspection 

for absence of any defects and uniformity in terms of size, 87 fruits were transported 

to Postharvest Lab of the University of Foggia within 2 hours. Upon arrival at the 

laboratory, the fruit were placed at room temperature for temperature regulation, 

after which they were divided into three groups. The first group including 15 fruit 

was categorized as fresh eggplants for initial measurements, the second group 

comprised of 36 eggplants was stored at chilling temperature and the third group of 

36 fruit at safe temperature (i.e., 2°C and 12°C, respectively). Fruits were removed 

from cold storage after 3, 6 and 10 days and were left at ambient temperature for five 

hours for temperature regulation prior to acquisition of spectra.   

2.2 Electrolytic Leakage measurement 

Electrolytic leakage (EL) was measured according to the method described by 

Fuchs et al. (1989), on six randomly selected fruit from each group. Seven discs (5 

g) of each eggplant pulp with a thickness of 10mm each were removed from the 

equatorial region of every sample using a 10-mm diameter cork-borer. The discs 

were incubated in 25 mL solution 0.3 M of mannitol at 20°C. The conductivity of 

the solution was measured using conductivity meter (CM35, Crison, Carpi, Italy) at 

time zero (C1) and after 2 hours (C2) of incubation with orbital shaking (DAS12500, 

Intercontinental equipment, Roma, Italy) at a speed of 60 cycles min-1. In case of the 

last measurement (C3), the tube including the sample and the solution was frozen 

and then defrosted after being kept at -20°C for 24h. Results were stated as a 

percentage of total electrolytes leaking out of the tissue as shown in the Eq1. 

Determinations were performed in duplicate and the results were averaged. 

 

Electrolytic Leakage (%) =  
𝐶2−𝐶1

𝐶3
× 100                 Eq.1.      

2.3 Chilling injury evaluation  

CI symptoms in eggplant fruit appear both internally and externally. Accordingly, 
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the evaluation was done based on a checklist of four external (i.e. calyx browning, 

peel discoloration, pitting, and firmness) and two internal indicators (i.e. pulp 

browning and seek blackening) by four trained panelists. For each fruit, each CI 

symptom had a score based on the severity (i.e., 0=no chilling symptoms (0% of 

indices), 1= moderate chilling symptoms (<50% of indices), and 2= severe chilling 

symptoms (>50% of the indices)).  

2.4 Firmness and weight loss evaluation 

The firmness of each fruit was measured using a Texture Analyzer (TA.XT2, 

Stable Micro Systems Ltd., England, UK) equipped with a 5-mm diameter probe 

which was used to penetrate the eggplant pulp with a loading speed of 50 mm/min 

in three positions on the equator, consequently averaged. The maximum force (N) 

obtained from the force-deformation curve was used as an indication of the fruit 

firmness. The average maximum force was used as the firmness index of the 

eggplants.  

Weight loss was measured for each fruit using an electronic balance (EU-C 7500 

DR, GIBERTINI, Italy) as percentage loss between the day 0 and the end of each 

cold storage period.  

  

2.5 FT-NIR spectroscopy  

After fruit removal from each cold storage, fruit were kept at room temperature 

for five hours for temperature regulation, prior to FT-NIR spectra acquisition. A 

Multi-Purpose FT-NIR Analyzer (MPA, Bruker Optics, Ettlingen, Germany) was 

used to acquire three scans per sample taken along its longitudinal direction, which 

were averaged to formulate a representative spectrum for that particular sample. 

Reflectance mode was utilized during spectral acquisition over the absorbance range 

of 3600-12500 cm-1 at an interval of 3.8 cm-1. The instrument was equipped with a 

high-energy air-cooled NIR source (20 W tungsten-halogen lamp) and a permanently 

aligned and highly stable ROCKSOLID interferometer (Bruker). 
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2.6 Chemometrics 

2.6.1 ANOVA-simultaneous component analysis (ASCA) 

To evaluate whether one or more controlled factors (and their interactions) have 

a significant effect on a multivariate signal, multivariate analysis of variance 

(MANOVA) is conventionally used as the generalization of ANOVA; however, this 

approach is not effective when the number of variables/wavelengths are higher than 

the number of measured samples and/or when the multivariate descriptors are highly 

correlated among one another and breaks down because it cannot handle singular 

covariance matrices (Stahle and Wold 1990). Hence, analysis of variance 

simultaneous component analysis, ANOVA-SCA or ASCA was designed as a 

multivariate exploratory technique to cope with data matrices resulting from an 

experimental design (Jansen et al. 2005; Smilde et al. 2005). In fact, ASCA combines 

a partitioning of the variability in the original data matrix X consistent with the 

scheme of the ANOVA, to the bilinear modelling of the effect sub-matrices attained 

utilizing simultaneous component analysis; a method which, under the constraints of 

the ANOVA scheme, is mathematically identical to principal component analysis 

(Smilde et al. 2005). In particular, in the case of the present study, where two factors, 

namely “temperature” and “storage time”, were controlled and, hence, the effect of 

three terms (the two factors plus their binary interaction) has to be investigated, the 

first step of ASCA involves partitioning the centered matrix Xc according to: 

 

Xc = X-1mT = Xtemperature + Xstorage time+ Xtemperature× storage time + Xres   Eq.2 

 

where 1 is a vector of ones, m is the mean spectrum of the samples, Xtemperature and 

Xstorage time are the matrices accounting for the effect of the main factors, Xtemperature× 

storage time is the effect matrix for the interaction and Xres is the residual matrix, 

assembling the variability which has not been accounted for any of the previous 
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factors. Each of the effect matrices Xi is built as follows: all the rows corresponding 

to a level of the specific factor/interaction contain identical copies of the mean 

spectrum of all the observations collected at that level. 

Successively, significance of the observed effect is evaluated by permutation 

testing and interpretation of the design terms identified as significant is carried out 

by SCA of the corresponding effect matrix. 

 

2.6.2 Partial Least Square- Discriminant Analysis (PLS-DA) 

PLS-DA was applied on the wavelengths identified by ASCA model to 

discriminate between fruit stored at the 2 temperatures. PLS-DA, as a supervised 

classification technique, results from PLS regression (PLSR) and includes forming 

a regression model between the X (data acquired from instrument) and Y (dummy 

binary vector for coded samples). Classification of the samples is then accomplished 

based on the values of the predicted Y which, differently than those of the dummy 

matrix used for model building, are real-valued. (Brereton and Lloyd 2014). 

Given the number of samples, to guarantee that validation of the predictive model 

could be carried out on external samples (i.e., individuals not used neither for model 

building nor for model selection), and, at the same time, to ensure that enough 

specimen could be used for model building and validation, a repeated double cross-

validation (rDCV) strategy was adopted. Double cross-validation (DCV) consists of 

two cross-validation loops (an inner and an outer loop) nested in one another. The 

inner cross-validation loop is used for model selection (i.e., for choosing the optimal 

preprocessing and number of latent variables), whereas the outer loop contains the 

samples which are in turn treated as external validation set (i.e., which do not take 

part in model selection). To avoid that the estimated be biased by a specific division 

of samples into the different cancelation groups, the whole procedure is repeated a 

certain number of times (in the present study, 50), hence the name repeated DCV. 

More details can be found in Filzmoser et al. (2009). In particular, different 

preprocessing methods, i.e., SNV, derivatives calculating with different number of 
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points and orders of the interpolating polynomial, and their combinations were tested 

on the data. As said, for each cancelation group in the outer cross-validation loop, 

selection of the optimal model (in terms of optimal pretreatment and number of latent 

variables) to predict the validation samples was carried out based on the minimum 

classification error in the inner CV loop. The best pretreatment was consistently 

found to be SNV + first derivative (second order polynomial and 11 points 

interpolating window) while the optimal model complexity was always selected to 

be 3 latent variables.  

3 Results and discussion 

3.1 Evaluation of chilling injury  

The CI indices during storage are shown in Fig.1. It can be clearly observed that 

the fruit stored at 12°C almost did not manifest chilling symptoms until the end of 

storage; however, fruits stored at 2°C, started to show chilling symptoms on six days 

of storage that were mostly internal. Afterwards, chilling indices continued to 

increase, depicting severe CI symptoms, including browning, wrinkles, and scalds 

in the peel and pulp browning. Observed CI indices were in agreement with the result 

reported  by Tsouvaltzis et al. (2020). In that study, the CI indices initiated to appear 

after four days, but it was quite possible also in the current work to be same, since in 

the second sampling (six days of storage) the CI indices reached almost 1.  

(A)                                                                              (B) 

Fig.1. CI evaluation of eggplant fruit externally (A) and internally (B). The CI on fruit was scored 

as 0 = no chilling on fruit, 1 = slight CI symptoms and 2 = severe CI symptoms. Each point 

represents the mean of 12 fruit ± standard error (S.E.) 
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3.2 Evaluation of electrolytic leakage  

The results of EL are shown in Fig.2. Starting from about 9 % as the initial value, 

there was a slight EL alteration for fruit stored at 12°C. On the other hand, after three 

days of storage at 2°C, EL started to increase and reached to 12% at the end of the 

storage period.  

 

Fig.2. EL percentage from pulp tissue of eggplant during storage at 10°C (blue line) and 2°C 

(orange line). Each value is the mean of six replicates 

3.3 Evaluation of weight loss and firmness  

Weight loss increased during storage at both storage temperatures, and 

particularly for fruit stored at 12°C, as expected since the metabolism is higher with 

the increase of the temperature.  As Fig. 3A depicts, at the end of storage period, the 

weight loss of fruit at safe temperature was 2.2 times higher than fruit stored at 2°C. 

Regarding firmness of eggplants, samples stored at 2°C nearly maintained the initial 

firmness, however, fruit at 12°C lost 33% of the firmness (Fig. 3B), and this can be 

directly related to firmness loss as also to the higher enzymatic activity at the higher 

temperature (Fan et al. 2016). In fact, even if recommended storage temperature is 

12°C, by storing fruit at no-chilling temperature, quality degradation is unavoidably 

faster than at low temperature, but on the other side, the occurrence of CI make the 

chilled fruit not-marketable. 
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 (A)                                                                                 (B) 

Fig.3. Firmness (A) and weight loss (B) of eggplant fruit stored at 12 °C (blue line) and 2 °C 

(orange line). Data presented are the means ± SE of 12 replicate samples  

 

3.4 ASCA on FT-NIR data  

This experiment was conducted based on a full factorial design, comprising two 

main factors (i.e. temperature and storage time). The temperature included two levels 

(2°C and 12°C) and storage time comprised of three levels (i.e. 3, 6, and 10 days). 

For investigating the effect of main factors and their interaction, a multivariate data 

analysis using ANOVA simultaneous component analysis (ASCA) was conducted 

on the data extracted from FT-NIR instrument as described at section 2.6.1. ASCA 

is a method which links the ANOVA variance separating pattern to evaluate whether 

any of the terms in the experimental design contributes significantly with bilinear 

modeling for the interpretation of the observed effects.  

The ASCA modelling was applied on the data after preprocessing to interpret the 

effects of any of main factors and their interaction on the data.  

 Consequently, the mean-centered data matrix was partitioned according to the 

ANOVA scheme into the effect matrices for the three design terms and the residual 

matrix. Then, the multivariate effect of each design term was estimated by the sum 

of squares of the elements of the corresponding matrix: to evaluate whether the effect 

of each term could be considered as statistically significant, the value of the 

corresponding sum of squares was compared to its distribution under the null 

hypothesis, which was estimated non-parametrically by a permutation test 
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(with10,000 randomizations), as shown in Fig.4. It can be clearly observed that all 

the effects were statistically significant, revealing that the spectral changes of 

eggplant fruit were affected by both temperature and storage time and that there was 

a non-negligible interaction between the two factors.  

 

 

          (A)                                                    (B)                                                         (C)  

Fig.4. Assessment of the significance of the observed effects by comparing the experimental sum of 

squares (vertical red line) to its distribution under the null hypothesis, non-parametrically estimated 

via permutation tests (blue histogram). (A) Effect of temperature; (b) effect of storage time; (c) 

effect of temperature×storage time interaction 

After proving that both the main factors and the interaction have a significant 

effect on the spectra, the next step regarding ASCA modelling is to interpret the 

observed variation using simultaneous component analysis (SCA) on the individual 

effect matrices. Initially, the effect of the temperature was explored, by computing a 

SCA model of the temperature effect matrix in which, as briefly explained in Section 

2.6.1, half of the rows contain identical copies of the mean spectrum of the samples 

stored at low temperature and the other half are made of identical copies of the mean 

spectrum of the fruit stored at high temperature, after centering.  

In order to have a visual hint for the variability related to the effect of a certain 

factor in ASCA model, residuals can be projected on the simultaneous component 

(SC) space of that design factor; in the case of temperature, for which, due to the 

reasons illustrated above, a one component model explains 100% variance in the 

effect matrix), this can be accomplished by calculating the score vector, reported 
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below (Zwanenburg et al. 2011) : 

ttemperature+res= (Xtemperature+Xres) × ptepmprature        Eq.3. 

Where ptepmprature is the loading vector of the SC model for the effect of the factor 

“temperature”. The corresponding scores plot, reported in Fig.5A, shows how (also 

considering the variability associated to the effect of the factor “temperature”) the 

difference between the scores of 2°C and 12°C can be considered statistically 

significant, as already evaluated by means of permutation tests. Fig 5 B shows the 

loadings of all the variables on SC1, together with their 95% confidence interval, 

indicating the spectral regions mostly affected by the temperature (in red). As can be 

noticed, only a reduced part of the spectral range was significantly affected by the 

temperature of storage (i.e. 3600-4555 cm-1 and 4740-5490 cm-1).  

 

 

(A)                                                                           (B) 

Fig.5. ASCA analysis on FT-NIR data: SCA model of the temperature effect. (A) Scores plot for the 

effect with projected residuals; (B) Variable loadings for SC1 (continuous line) together with their 

95% confidence interval (black dashed lines): red and blue colors indicate whether the 

corresponding wavelength contributes significantly or not to the bilinear model, respectively 

 

Due to the fact that positive and negative scores on SC1 indicate samples stored 

at 2°C and 12 °C, respectively, investigation of the loadings plot in Fig, 5B highlights 

that the significant bands (in red) are more intense (have higher pseudo-absorbance) 



138 

 

when storage takes place at higher temperatures. 

On the other hand, when considering the main effect of time, since the factor was 

controlled at three levels, the first two SC explain jointly 100% of the spectral 

variance related to the design term. Scores (after projection of the residuals) and 

loadings for SC1 are reported in fig. 6A and B, respectively; in particular, to account 

for the longitudinal trend, in panel 6A, for each level of the factor time the scores 

along SC1 of the corresponding observations are reported as mean (i.e., the score 

which would result without projection of the residuals) ± standard deviation. As it 

can be noticed, score increased with time, and almost all the range was significantly 

affected by the time of storage (3600-10000 cm-1). Nonetheless, since temperature 

and time of storage also showed a significant interaction, it may be better to 

investigate and interpret jointly the main effect of storage time and the storage 

time×temperature interaction, so to highlight not only the average effect of storage time 

on the extracted spectra, but also how the two temperatures differently affected the 

longitudinal behavior. 

 

Fig.6. ASCA analysis on FT-NIR data: SCA model of the storage time effect. (A)  Longitudinal plot 

of the scores along SC1 (expressed as mean± standard deviation after projection of the residuals) vs 

time; (B); Variable loadings for SC1 (continuous line) together with their 95% confidence interval 

(black dashed lines): red and blue colors indicate whether the corresponding wavelength contributes 

significantly or not to the bilinear model, respectively 
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To this aim, instead of analyzing each factor separately, SCA was carried out on 

the matrix Xstorage time + storage time × temperature (resulting from the addition of Xstorage time 

and Xstorage time × temperature). Accordingly, since the matrix Xstorage time + storage time × 

temperature contains identical copies of six mean spectra only, corresponding to the six 

different possibilities coming out from the combination of factor levels (3d at 2°C, 

6d at 2°C, 10d at 2°C, 3d at 12°C, 6d at 12°C, 10d at 12°C), for each component there 

will only be six different score values identifying the design cells. On the other hand, 

also in this case it is possible also to project the residual matrix onto the SC subspace 

defined by the effect matrix for visualizing the variability associated with the factor 

+ interaction levels and, consequently, to have a visual idea about the significance 

of the design terms. 
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Fig.7. ASCA analysis on FT-NIR data: SCA model of the effect of storage time + temperatures × 

time interaction (A) Longitudinal plot of the scores along SC1 (expressed as mean± standard 

deviation after projection of the residuals) vs storage time: eggplant fruit stored at 2°C and 12°C are 

indicated as blue circles and line or red circles and line, respectively; (B) Longitudinal plot of the 

scores along SC2 (expressed as mean± standard deviation after projection of the residuals) vs 

storage time: eggplant fruit stored at 2°C and 12°C are indicated as blue circles and line or red 

circles and line, respectively; (C) Variable loadings for SC1 (continuous line) together with their 

95% confidence interval (black dashed lines); (D) Variable loadings for SC2 (continuous line) 

together with their 95% confidence interval (black dashed lines). In panels (C) and (D), red and blue 

colors indicate whether the corresponding wavelength contributes significantly or not to the bilinear 

model, respectively 

 

So as to have a better perception for the storage time effects and the changes in 

longitudinal behavior allied to the storage temperatures, the scores along SC1 and 

SC2 (together with error bars representing the projected residuals) have been plotted 
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as a function of time in Fig. 7A and Fig. 7B.  

By looking at Fig. 7A and 7B, it is observable how there are two main trends 

linked to the effect of storage time. Component 1 accounted for a constant decrease 

of the score but as it is perceivable there is an inversion at day 6 which might be 

related to chemical transformation caused by CI. Therefore, the spectral bands with 

negative loadings on this component will decline their pseudo-absorbance with time 

and the contrary will happen for the bands having positive loadings. Instead, scores 

along component 2 showed a maximum in correspondence of the sixth day of storage 

and again decreasing by following storage day. This alternation in the trend could be 

recognized as a development of CI (as it was described in the first component as 

well) in the fruit, which are then further transformed as time progresses. In this 

regard, given the sign of the scores, it can be confirmed that the spectral regions 

having positive loadings along SC2 would reach their minimum pseudo-absorbance 

at sixth day of storage and later on increase to their primary values at longer times, 

while the opposite occurred for variables with negative loadings. 

It is noticeable (Fig. 7C and 7D) that storage temperature and time of storage (and 

its interaction with storage temperature) significantly affected all the FT-NIR spectra 

(all the loadings are statistically different than zero). Then, according to the 

phenomena described already for SC1, it could be confirmed that by increasing the 

storage time, there is an increase in the pseudo-absorbance of all the bands in 

possessing positive values in the loading on SC1, while the remaining variables 

decreased their signal.  

3.5 Classification model discriminating fruit stored at chilling temperature   

As ASCA model proved that temperature had a significant effect on the FT-NIR 

spectra, a classification model using the PLS-DA algorithm was conducted on the 

data for classifying the fruit stored at chilling and safe temperature. In order to check 

the validity of the ASCA model, as well as to reduce the complexity of the 

classification model, only the wavebands identified by ASCA were used to 

discriminate between fruit stored at different temperature. In this regard, 36 samples 
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stored at chilling temperature (3, 6, and 10 days of storage) and 36 samples stored at 

safe temperature (3, 6, and 10 days of storage) were labeled as chilled and healthy 

fruit, respectively. The final dataset resulted in a matrix including 72 samples × 369 

effective wavebands (those identified by ASCA and showed in Fig. 5B; the whole 

range of FT-NIR spectra comprised 2307 wavebands).  

The use of rDCV allows to repeat the external validation of the PLS-DA model 

on the outer loop samples as many times as the number of DCV runs: this allows to 

obtain not only a point estimate of the predictive ability of the model, but also a 

corresponding confidence interval, so that the classification accuracy can be more 

solidly evaluated. In particular, when considering the outer DCV loop, i.e., the one 

mimicking an external validation set, it was found that 90.2 ± 4.0 % of the healthy 

and 84.7±3.1% of the chilled fruits were correctly predicted, leading to an overall 

accuracy of 87.4±2.7% (corresponding to a value of the area under the ROC curve 

of 0.941±0.016). These results indicate a very good discrimination between the fruit 

according to the storage temperature. Moreover, to rule out the possibility that these 

outcomes could result from chance correlation, the observed values of classification 

accuracy and of the area under the ROC curve were compared to their distributions 

under the null hypothesis, which were non-parametrically estimated by means of a 

permutation test with 1000 randomization. For both classification figures of merit, 

an empirical p-value <0.001 was obtained, thus confirming that the observed 

discrimination between the classes can be considered highly statistically significant.  

 

The validity of PLS-DA results based on the spectral region introduced by ASCA 

were endorsed by comparing with the results of work performed by Tsouvaltzis et 

al. (2020). However, in their study they used full range FT-NIR spectra (3600-12500 

cm-1) of eggplant fruit for discriminating fruit stored at chilling temperature, but still 

the accuracy of the classifier (PLS-DA) was less than the current study.   

The method ASCA is getting attention nowadays for analysis of hyperspectral 

data, but still few applications can be found for postharvest handling of fruit and 
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vegetable. For instance, Leisso et al. (2016) explored ASCA for gene expression and 

metabolism preceding for soft scald, a CI of 'Honeycrisp' apple fruit, but this method 

is time- consuming and compared to spectroscopy needs expertise even for sample 

preparation.   In the field of food research such as coffee analysis (De Luca et al. 

2016), this method was utilized on HPLC-DAD, NIR data but after realizing the 

effect of varieties and roasting time, the effective wavelengths were not used as an 

input of classifier while in the current study it was tried to verify the ability of ASCA 

by putting the output of it as an input of PLS-DA classifier.  

Our study designed at to use ASCA modelling as an additional investigation tool 

to previous research (Tsouvaltzis et al. 2020) to gather information on the effect of 

temperature and time of storage on the spectral data extracted from non-invasive 

instrument.  

  

4 Conclusion  

As the chilling injury (CI) in subtropical fruit such as eggplant is a critical 

disorder, it is important to understand how the temperature and duration of storage 

may impact its quality. To this aim non-destructive techniques such FT-NIR spectra 

can be used. For the first time, in this kind of study, the effect of temperature and 

storage time on fruit spectral response was investigated.  By applying ANOVA-

simultaneous component analysis (ASCA), it was found that both the “temperature” 

and the “storage time” factors, as also their interaction significantly affected the 

spectral profile of eggplant fruit over storage. For each factor the most significant 

wavelengths were individuated.  This information could be used to build a partial 

least square-discriminant analysis (PLS-DA) for discriminating eggplant fruit based 

on the temperature. The PLS-DA model could classify fruit with high accuracy 

87.4±2.7% (90.2±4.0% for healthy and 84.7±3.1% for chilled fruit; evaluated on the 

outer loop of a repeated double cross-validation procedure). It is worth stressing that 

the proposed approach allowed the classification of chilled and healthy fruit by a 

rapid, comparatively cheap and non-invasive technique (FT-NIR), without requiring 
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any sample pretreatment and irrespectively of the days of storage. In this viewpoint, 

the results are provided very promising tool for the future industrial approach for 

discarding the unhealthy fruit and decreasing the food losses.  
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GENERAL CONCLUSIONS 

The general objective of this thesis was to study the potentiality of non-destructive 

optical techniques based on spectral information for the early detection of CI of bell 

pepper and eggplant fruit, as crop models. To this aim different instruments and 

chemiometric methods were applied to discriminate between fruit stored at chilling 

and safe temperature. This objective was reached by using eggplant and bell peppers 

as crop models. 

Both FT-NIR spectra and hyperspectral images gave promising results in term of 

possible online implementation of these techniques, allowing to make the following 

conclusions: 

 -For eggplant fruit, which developed chilling injury symptoms after 4th day of 

storage at 2°C, in the first experiment, the earliest, and most consistent result (92–

100 %, throughout the storage period) was obtained using the FT-NIR spectral data, 

and SVM algorithm. In this case, a good discrimination of chilled fruit was possible 

since the 2nd day of storage at 2°C. Color or FT-NIR spectral data classified with 

PLSDA permitted relatively good classification of fruit (>83% accuracy) since the 

4th day of storage; 

-In case of bell peppers, CI was less severe, occurring after 12 days of storage. 

HSI in VIS-NIR and NIR ranges and wavelength selection techniques were applied. 

Results of PLS-DA classifications discriminated cold stored fruit from fresh fruit 

and from fruit stored at higher temperature by using 6 variables in the VIS-NIR or 4 

variables in the NIR range.  

-Using 12 variables in the VIS-NIR range, was also possible to correctly classify 

bell peppers by days of cold storage, and to predict storage days with an error of 0.5 

days in cross validation.  

- On the same way, was also possible to correctly predict days of storage of 

eggplant fruits, by both VIS-NIR hyperspectral imaging and FT-NIR spectroscopy.  

-Finally the last experiment allowed studying the changes induced on FT-NIR 

reflectance spectra of eggplants induced by time and temperature of storage using an 
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ANOVA-simultaneous component analysis (ASCA). With this statistical analysis 

was confirmed that both temperature and storage time, as also their interaction, 

significantly affected the spectral profiles. Using this properties, a PLS-DA model 

was developed for discriminating eggplant fruit based on the temperature. The PLS-

DA model could classify fruit by 93% and 87.5% accuracy in calibration and cross-

validation sets, respectively.  

It is worth stressing that the proposed approaches consent classification among 

chilled and healthy fruit by a rapid, comparatively cheap and non-invasive technique 

that thanks to the reduction of used wavelengths can be easily transferred for a multi-

spectra prototype. The choice of using images or just FT-NIR spectra may depend 

from the final use of this prototype. If the device is intended to complement an online 

vision system for sorting, then hyperspectral imaging system, may be the first option, 

whereas for other steps of the food chain, as transport or distribution, or also for a 

new-sensor to be added on the processing or sorting line, a portable or a micro FT-

NIR instrument, may be a convenient choice.  

 


