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The early non-destructive detection of chilling injury (CI) in aubergine fruit was investi-

gated using spectroscopy. CI is a physiological disorder that occurs when the fruit is sub-

jected to temperatures lower than 12 �C. Reference measurements of CI were acquired by

visual appearance analysis, measuring electrolyte leakage (EL), mass loss and firmness

evaluations which demonstrated that even before three days of storage at 2 �C, the CI

process was initiated. An ANOVA-simultaneous component analysis (ASCA) was used to

investigate the effect of temperature and storage time on the Fourier transform e near

infra-red (FT-NIR) spectral fingerprints. The ASCA model demonstrated that temperature,

duration of storage, and their interaction had a significant effect on the spectra. In addi-

tion, it was possible to highlight the main variations in the experimental results with

reference to the effects of the main factors, and with respect to storage time, to discover

any major monotonic trends with time. Partial least squares-discriminant analysis (PLS-

DA) was used as a supervised classification method to discriminate between fruit based on

chilling and safe temperatures. In this case, only significant spectral wavebands which

were significantly influenced by the effect of temperature based on ASCA were utilised.

PLS-DA prediction accuracy was 87.4 ± 2.7% as estimated by a repeated double-cross-

validation procedure (50 runs) and the significance of the observed discrimination was

verified by means of permutation tests. The outcomes of this study indicate a promising

potential for near infra-red spectroscopy (NIRS) to provide non-invasive, rapid and reliable

detection of CI in aubergine fruit.
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Nomenclature

CI chilling injury

ANOVA-SCA or ASCA analysis of variance-

simultaneous component

analysis

SCA simultaneous component analysis

FT-NIR Fourier transform e near infra-red

PLS-DA partial least squares-discriminant analysis

NIRS near infra-red spectroscopy

VIS/SWIR visible/short wave infra-red

EL electrolyte leakage

PLSR partial least squares regression

rDCV repeated double cross-validation

DCV double cross-validation

CV cross-validation

SNV standard normal variate

C1 conductivity of the solution at time zero

C2 conductivity of the solution after 2 h of

incubation

C3 conductivity of the solution after defrosting

after being kept at �20 �C for 24 h

Xc centred matrix

mT transposed mean spectrum of the samples

Xɵ matrices accounting for the effect of

temperature (ɵ)

Xt matrices accounting for the effect of time (t)

Xres residual matrix

pɵ loading vector of the SC model for the effect of

the factor “temperature”
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1. Introduction

Various factors influence the quality of the stored fruits and

vegetables among which temperature and time of storage

holds particular importance in terms of the occurrence of

chilling injury (CI) (Kader, 2013). Conventionally, most fruits

and vegetables are recommended to be stored at low tem-

perature to enhance shelf life and improve the retention of

nutritional quality. However, when exposed to low tempera-

tures sensitive produce is prone to CI (Fallik, Temkin-

Gorodeiski, Grinberg, & Davidson, 1995). Basically, CI induces

damage to the cell membranes resulting in the solute diffu-

sion and increased tissue permeability (Concell�on, A~n�on, &

Chaves, 2005).

The aubergine, or eggplant (Solanum melongena L.) is a non-

climacteric fruit which is popular and economically important

worldwide but it suffers from severe CI when stored at tem-

peratures below 12 �C (Concell�on et al., 2005). CI in eggplants is

a physiological disorder which leads to pitting in peel, flesh

browning, blackening of the seeds and increased decay,

particularly in the calyx. This can be more severe when the

fruit is relocated to market temperatures after being exposed

to chilling temperatures (Fallik et al., 1995; Shi et al., 2018).

Therefore, the early detection of CI is crucial for the correct re-

conditioning of the fruit preventing postharvest losses.
Various conventional analytical essays may help to detect

CI before symptoms become visible, such as phenolic content,

anthocyanin content, malondialdehyde content, polyphenol

oxidase, peroxidase, catalase activity, and electrolyte leakage

(Concell�on et al., 2005; Fan et al., 2016; Shi et al., 2018). How-

ever, all the aforementioned techniques are destructive, time

consuming, and comparatively expensive. The possibility of

having non-invasive, accurate, and rapid techniques for

evaluation and detection of the CI would be worthwhile.

A variety of non-destructive optical techniques have been

successfully applied for quality assessment of agricultural and

horticultural commodities in the past few years (Amodio,

Ceglie, Chaudhry, Piazzolla, & Colelli, 2017; Chaudhry et al.,

2018; Cort�es et al., 2017; Erkinbaev, Henderson, & Paliwal,

2017; Munera et al., 2018). In this regard, near infra-red spec-

troscopy (NIRS) has proved to be effective method for the

estimation of compounds comprising polar functional groups

such as eOH, CeO, and NeH (Blanco & Villarroya, 2002) and it

can serve as a substitute for predicting the presence of specific

chemical constituents in fruit and vegetables without prior

sample preparation.

Recently, Cen, Lu, Zhu, and Mendoza (2016) used hyper-

spectral imaging for detection of CI in cucumbers utilising

supervised classifiers and feature selection techniques and

similar research has been successfully been pursued using

hyperspectral imaging on apples and peaches (ElMasry,Wang,

& Vigneault, 2009; Pan et al., 2016). Moreover, Moomkesh,

Mireei, Sadeghi, and Nazeri (2017) investigated the detection

of freeze-damaged sweet lemons using reflectance, half-

transmittance, and full-transmittance and visible/short

wave infra-red (VIS/SWIR) spectroscopy combined with

various machine learning techniques.

Tsouvaltzis, Babellahi, Amodio, & Colelli, (2020) success-

fully reported the possibility of classifying aubergine fruit

based on temperature of storage (2 �C and 12 �C) using

different optical-based techniques, and showed that Fourier-

transform-near infra-red (FT-NIR) spectroscopy was the

most efficient technique for this aim. Nonetheless, the effects

caused by temperature and the duration of storage on the

spectral response were not investigated. Therefore, objective

of this study was to characterise the effect of storage time and

temperature (together with their possible interaction) on FT-

NIR spectra of aubergine stored at chilling and above chilling

temperatures, applying ANOVA-simultaneous component

analysis (ASCA), in order to evaluate whether these effects

could be considered statistically significant and, if so, to

associate the changes of the instrumental signals to the

progress of the CI. Moreover, a secondary objective was to use

these results to discriminate fruit stored at the different

temperatures.
2. Materials and methods

2.1. Sampling

Aubergine fruit (cv. Fantasy) were hand-harvested from a

commercial farm located in Molfetta, Italy (41� 120 000 North,

16� 360 000 East) in July 2019. After inspection for absence of any

defects and uniformity in terms of size, 87 fruits were
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transported to Postharvest Laboratory of the University of

Foggiawithin 2 h of harvest. Upon arrival at the laboratory, the

fruit were placed at room temperature for temperature regu-

lation, after which they were divided into three groups. The

first group including 15 fruit was categorised as fresh egg-

plants for initial measurements, the second group comprised

of 36 eggplants was stored at chilling temperature and the

third group of 36 fruit were kept at safe temperature (i.e., 2 �C
and 12 �C, respectively). Fruits were then removed from cold

storage after 3, 6 and 10 d and were left at ambient tempera-

ture for 5 h for temperature regulation prior to acquisition of

spectra.

2.2. Electrolyte leakage measurement

Electrolyte leakage (EL) was used as a standard technique.

Measurements were carried out according to the method

described by Fuchs, Zauberman, Rot, and Weksler (1989),

based on six randomly selected fruit from each group. Seven

discs (5 g) of each aubergine pulp with a thickness of 10 mm

each were removed from the equatorial region of every sam-

ple using a 10-mm diameter cork-borer. The discs were

incubated in 25 ml solution 0.3 M of mannitol at 20 �C. The
conductivity of the solution was measured using conductivity

meter (CM35, Crison, Carpi, Italy) at time zero (C1) and after 2 h

(C2) of incubation with orbital shaking (DAS12500, Intercon-

tinental equipment, Roma, Italy) at a speed of 60 cycles min�1.

In case of the last measurement (C3), the tube including the

sample and the solution was frozen and then defrosted after

being kept at �20 �C for 24 h. Results were stated as a per-

centage of total electrolytes leaking out of the tissue as shown

in Eq (1). Determinations were performed in duplicate and the

results were averaged.

Electrolytic leakageð%Þ¼C2� C1
C3

� 100 (1)

2.3. Chilling injury evaluation

CI symptoms in aubergine fruit appear both internally and

externally. Thus, evaluation was based on a checklist of four

external (i.e. calyx browning, peel discoloration, pitting, and

firmness) and two internal indicators (i.e. pulp browning and

seek blackening) carried out by four trained panellists. For

each fruit, each CI symptom had a score based on the severity

(i.e., 0 ¼ no chilling symptoms (0% of indices), 1 ¼ moderate

chilling symptoms (<50% of indices), and 2 ¼ severe chilling

symptoms (>50% of the indices)).

2.4. Firmness and mass loss evaluation

The firmness of each fruit was measured using a Texture

Analyzer (TA.XT2, Stable Micro Systems Ltd., England, UK)

equipped with a 5-mm diameter probe which was used to

penetrate the eggplant pulp with a loading speed of

50 mm min�1 in three positions on the equator, and subse-

quently averaged. The maximum force (N) obtained from the

forceedeformation curve was used as an indication of the

fruit firmness. The average maximum force was used as the

firmness index of the aubergines. Mass loss was measured for
each fruit using an electronic balance (EU-C 7500 DR, Gibertini,

Italy) as % loss between the day 0 and the end of each cold

storage period.

2.5. FT-NIR spectroscopy

After fruit removal from each cold storage, fruit were kept at

room temperature for 5 h for temperature regulation, prior to

FT-NIR spectra acquisition. A multi-purpose FT-NIR analyser

(MPA, Bruker Optics, Ettlingen, Germany) was used to acquire

three scans per sample taken along the longitudinal direction

of the fruit and averaged to formulate a representative spec-

trum for that particular sample. Reflectance mode was uti-

lised during spectral acquisition over the absorbance range of

3600e12,500 cm�1 at an interval of 3.8 cm�1 (scanner velocity

10 kHz, sample scan time 64 scans, background scan time 64

scans). The instrument was equipped with a high-energy air-

cooled NIR source (20 W tungsten-halogen lamp) and a

permanently aligned and the highly stable ROCKSOLID inter-

ferometer (Bruker Optik GmbH, Ettlingen, Germany).

2.6. Chemometrics

2.6.1. ANOVA-simultaneous component analysis (ASCA)
To evaluate whether one or more controlled factors (and their

interactions) have a significant effect on a multivariate signal,

multivariate analysis of variance (MANOVA) is normally used

as the generalisation of ANOVA; however, this approach is not

effective when the number of variables/wavebands is great-

erthan the number of measured samples and/or when the

multivariate descriptors are highly correlated amongst each

another and breaks down because it cannot handle singular

covariance matrices (Stohle & Wold, 1990). Hence, ASCA was

designed to be a multivariate exploratory technique to cope

with data matrices resulting from an experimental design

(Jansen et al., 2005; Smilde et al., 2005). In fact, ASCA combines

a partitioning of the variability in the original data matrix X

consistent with the scheme of the ANOVA, to the bilinear

modelling of the effect sub-matrices attained utilising simul-

taneous component analysis; a method which, under the

constraints of the ANOVA scheme, is mathematically iden-

tical to principal component analysis (Smilde et al., 2005). In

particular, in the case of the present study, where two factors,

namely “temperature” and “storage time”, were controlled

and, hence, the effect of three terms (the two factors plus their

binary interaction) has to be investigated, thus the first step of

ASCA involves partitioning the centredmatrix Xc according to:

Xc ¼ X � 1mT ¼ Xɵ þ Xt þ Xɵ�t þ Xres (2)

where 1 is a vector of ones, mT is the transposed mean

spectrum of the samples, Xɵ and Xt are the matrices ac-

counting for the effect of the main factors, Xɵ�t is the effect

matrix for the interaction and Xres is the residual matrix,

assembling the variability which has not been accounted for

any of the previous factors Each of the effect matrices Xi is

built as follows: all the rows corresponding to a level of the

specific factor/interaction contain identical copies of the

mean spectrum of all the observations collected at that level.

https://doi.org/10.1016/j.biosystemseng.2020.08.008
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The significance of the observed effect was evaluated by

successively permutation testing and interpretation of the

design terms identified as significant carried out by SCA of the

corresponding effect matrix.

2.6.2. Partial least square- discriminant analysis (PLS-DA)
PLS-DA was applied to the wavebands identified by the ASCA

model to discriminate between fruit stored at the two

different temperatures. PLS-DA, is a supervised classification

technique which results from partial least squares regression

(PLSR). In case of a PLS-DA, a regression model between the X

(data acquired from instrument) and Y (dummy binary vector

for coded samples) is developed. Classification of the samples

is then accomplished based on the values of the predicted Y

which, unlike those of the dummy matrix used for model

building, are real-valued (Brereton & Lloyd, 2014).

In practice the reliability of the model is evaluated in pre-

diction using an external dataset (i.e., samples neither used

formodelling nor formodel selection), and, simultaneously, to

ensure that enough samples could be used for model devel-

opment and validation, a repeated double cross-validation

(rDCV) strategy was adopted. Double cross-validation (DCV)

consists of two cross-validation loops (an inner and an outer

loop) nested in one another. The inner cross-validation loop

was used for model selection (i.e., for choosing the optimal

pre-processing and the number of latent variables), whereas

the outer loop contains the samples which are in turn treated

as external validation sets. To avoid the estimate being biased

by a specific division of samples into the different cancelation

groups, the whole procedure was iterated for 50 times, hence

the term repeated double cross-validation (Filzmoser,

Liebmann, & Varmuza, 2009). In particular, different pre-

processing methods were tested on the data, i.e., standard

normal variate (SNV), derivatives calculated with different

number of points and orders of the interpolating polynomial,

and their combinations. As stated, for each cancelation group

in the outer cross-validation loop, selection of the optimal

model (in terms of optimal pre-treatment and number of

latent variables) was used to predict the validation samples

based on the minimum classification error in the inner CV

loop. SNVþ first derivative (i.e. a second order polynomial and

11 points interpolation window) served as the best pre-

treatment while the most optimal model consisted of three

latent variables.
Fig. 1 e CI evaluation of aubergine fruit externally (A) and interna

1 ¼ slight CI symptoms and 2 ¼ severe CI symptoms. Each poi
3. Results and discussion

3.1. Evaluation of chilling injury and quality losses

The CI indices during storage are shown in Fig. 1. It can be

clearly seen that the fruit stored at 12 �C almost did not exhibit

chilling symptoms until the end of storage. However, fruits

stored at 2 �C, started to show chilling symptoms after six days

of storage but they were mostly internal. After six days,

chilling indices continued to increase, showing severe CI

symptoms, including browning, wrinkling, and scalds in the

peel and pulp browning. Observed CI indices were in agree-

ment those reported by Tsouvaltzis et al. (2020). In that study,

the CI indices began to appear after four days. It is quite

possible that this occurred in the current work, since at the

second sampling after six days of storage the CI indices had

almost reached 1.

The results of EL measurement of aubergines revealed that

from an initial value of about 9%, there was a slight alteration

in EL for fruit stored at 12 �C, whereas there was a constant

increase of EL was observed for fruit stored at 2 �C, reaching
12% at the end of the storage period (Fig. 2). This confirmed a

higher solute diffusion for cold stored fruit as a result to

membrane damages and altered permeability (Concell�on

et al., 2005). The increase of EL observed in this study was

less pronounced than in the findings of Concell�on et al. (2005)

where after 13 d of storage a 5 times increase was observed for

fruit stored at 0 �C, but this can be due to the variety differ-

ence, since Japanese variety are known to bemore CI sensitive

than American (Concell�on et al., 2007).

Mass loss increased during storage at both storage tem-

peratures, particularly for fruit stored at 12 �C. This was ex-

pected since themetabolism is higher with the increase of the

temperature. As Fig. 3A shows, at the end of storage period

mass loss of fruit at safe temperature was 2.2 times higher

than fruit stored at 2 �C. Regarding firmness of aubergine, the

samples stored at 2 �C almost maintained their initial firm-

ness. However, fruit at 12 �C lost 33% of the firmness (Fig. 3B).

This could be directly related to firmness loss since higher

enzymatic activity occurs at the higher temperature (Fan

et al., 2016). Even if the recommended storage temperature

is 12 �C, by storing fruit at a non-chilling temperature, quality

degradation is unavoidably faster than at low temperatures.
lly (B). The CI on fruit was scored as 0¼ no chilling on fruit,

nt represents the mean of 12 fruit ± standard error (S.E.).

https://doi.org/10.1016/j.biosystemseng.2020.08.008
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Fig. 2 e EL percentage from pulp tissue of aubergine during storage at 10 �C (blue line) and 2 �C (red line). Each value is the

mean of six replicates.

Fig. 3 e Firmness (A) and weight loss (B) of aubergine fruit stored at 12 �C (blue line) and 2 �C (red line). Data presented are the

means ± SE of 12 replicate samples.
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3.2. ASCA on FT-NIR data

This experiment was conducted based on a full factorial

design, comprising the two main factors, temperature and

storage time. The temperature included two levels (2 �C and

12 �C) and storage time had three levels (i.e. 3, 6, and 10 d). To

investigate the effect of main factors and their interaction, a

multivariate data analysis using ASCA was conducted on the

data extracted fromFT-NIR instrument as described at Section

2.6.1. The ASCA modelling was applied on the data after pre-

processing to interpret the effects of any of main factors and

their interaction on the data.

Subsequently, the mean-centred data matrix was parti-

tioned according to the ANOVA scheme into the effect

matrices for the three design terms and the residual matrix.

The multivariate effect of each design term was then esti-

mated by the sum of squares of the elements of the corre-

sponding matrix. To evaluate whether the effect of each term

could be considered as statistically significant, the value of the

corresponding sum of squares was compared to its distribu-

tion under the null hypothesis, which was estimated non-

parametrically by a permutation test (with 10,000 random-

isations), as shown in Fig. 4. It can be clearly seen that all the

effects were statistically significant, revealing that the
spectral changes of aubergine fruits were affected by both

temperature and storage time and that there was a non-

negligible interaction between the two factors.

After showing that both the main factors and the interac-

tion have a significant effect on the spectra, the next step

regarding ASCA modelling was to interpret the observed

variation using simultaneous component analysis (SCA) on

the individual effect matrices. Initially, the effect of the tem-

perature was explored, by computing a SCA model of the

temperature effect matrix in which as briefly explained in

Section 2.6.1. Half of the rows contained identical copies of the

mean spectrum of the samples stored at low temperature and

the other half were made up of identical copies of the mean

spectrum of the fruit stored at high temperature, after

centring.

In order to illustrate the variability related to the effects of a

certain factor in ASCA model, residuals were projected on the

simultaneous component (SC) space for that design factor. In

the case of temperature, where a one component model

explained 100% variance in the effect matrix, this was

accomplished by calculating the score vector, as shown below

(Zwanenburg, Hoefsloot, Westerhuis, Jansen, & Smilde, 2011):

tɵþres ¼ (Xɵ þ Xres) � pɵ (3)

https://doi.org/10.1016/j.biosystemseng.2020.08.008
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Fig. 4 e Assessment of the significance of the observed effects by comparing the experimental sum of squares (vertical red

line) to its distribution under the null hypothesis, non-parametrically estimated via permutation tests (blue histogram). (A)

Effect of temperature; (B) effect of storage time; (C) effect of temperature £ storage time interaction.
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Where pɵ is the loading vector of the SCmodel for the effect

of the factor “temperature”. The corresponding scores plot,

shown in Fig. 5A, shows how the difference between the

scores from 2 �C to 12 �C can be considered statistically sig-

nificant as evaluated bymeans of permutation tests. Figure 5B

shows the loadings of all the variables on SC1, together with

their 95% confidence interval, indicating the spectral regions

mostly affected by the temperature (in red). As can be seen

that only a reduced part of the spectral rangewas significantly

affected by the temperature of storage (i.e. 5490e4740 cm�1

and 4555e3600 cm�1). These regions are related to the

stretching of OeH bonds, associated with sugars, and to the

stretching of CeH bonds (Siedliska, Baranowski, Zubik,

Mazurek, & Sosnowska, 2018). It is very possible that a

different accumulation of sugars occurred at the different

temperature as consequence of higher metabolism at the

highest temperature of storage. Moreover, some authors have

reported a reduction of sugars during aubergine storage at 5 �C
but conversely observed an increase at 10 and 20 �C (Esteban,

Molla, Villarroya, & Lopez-Andreu, 1989).

Because positive and negative scores were reported for SC1

samples stored at 2 �C and 12 �C, investigation of the loadings

plot in Fig. 5B highlights that the significant bands (shown in
red) are more intense, have higher pseudo-absorbance, when

storage takes place at higher temperatures.

On the other hand, when considering the main effect of

time, since this factor was examined at three levels, the first

two SC jointly explain 100% of the spectral variance related to

the design term. After projection of the residuals, scores and

loadings for SC1 are shown in Fig. 6A and B. To account for the

time trend, in Fig. 6A, for each level of the factor time the

scores along SC1 for the corresponding observations are re-

ported as means (i.e., the score which would result without

projection of the residuals) ± standard deviation. As it can be

seen that the scores increased with time, and almost all the

range was significantly affected by the time of storage

(10,000e3600 cm�1). Nonetheless, since temperature and time

of storage also showed a significant interaction, it may be

better to investigate and interpret jointly the main effect of

storage time and the storage time � temperature interaction,

so as to highlight not only the average effect of storage time on

the extracted spectra, but also how the two temperatures

differently affected the temporal behaviour.

Thus, instead of analysing each factor separately, SCA was

carried out on the matrix Xtþt�ɵ. Since the matrix Xtþt�ɵ con-

tained identical copiesof sixmeanspectraonly, corresponding

https://doi.org/10.1016/j.biosystemseng.2020.08.008
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Fig. 5 e ASCA analysis on FT-NIR data: SCA model of the temperature effect. (A) Scores plot for the effect with projected

residuals; (B) variable loadings for SC1 (continuous line) together with their 95% confidence interval (black dashed lines): red

and blue colours indicate whether the corresponding wavebands contributes significantly or not to the bilinear model,

respectively.

Fig. 6 e ASCA analysis on FT-NIR data: SCA model of the storage time effect. (A) Longitudinal plot of the scores along SC1

(expressed as mean ± standard deviation after projection of the residuals) vs time; (B); variable loadings for SC1 (continuous

line) together with their 95% confidence interval (black dashed lines): red and blue colours indicate whether the

corresponding wavebands contributes significantly or not to the bilinear model, respectively.
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to the six different possibilities coming out from the combi-

nation of factor levels (3d at 2 �C, 6d at 2 �C, 10 d at 2 �C, 3d at

12 �C, 6d at 12 �C, 10 d at 12 �C), for each component therewere

only six different score values identifying the design cells.

However, it is also possible in this case to project the residual

matrix onto the SC subspace defined by the effect matrix for

visualizing the variability associated with the

factor þ interaction levels and, consequently, to have a visu-

alisation of the significance of the design terms.

To have a better perception of the storage time effects and

the changes in temporal behaviour allied to the storage tem-

peratures, the scores along SC1 and SC2 (together with their
error bars representing the projected residuals) have been

plotted as a function of time in Fig. 7A and B.

Examining Fig. 7A and B, it can be seen that the two main

trends are linked to the effect of storage time. Component 1

accounted for a constant decrease of the score but an inversion

was perceived at day 6 which might be related to chemical

transformations caused by CI. Therefore, the spectral bandswith

negative loadings of this component will decrease their pseudo-

absorbance with time which is contrary to that for bands having

positive loadings. Instead, scores along component 2 showed a

maximumcorresponding to the sixthdayof storage followedbya

decrease. This alternative trend could be recognised as a

https://doi.org/10.1016/j.biosystemseng.2020.08.008
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Fig. 7 e ASCA analysis on FT-NIR data: SCA model of the effect of storage time þ temperatures £ time interaction (A)

Longitudinal plot of the scores along SC1 (expressed as mean ± standard deviation after projection of the residuals) vs

storage time: aubergine fruit stored at 2 �C and 12 �C are indicated as blue circles and line or red circles and line, respectively;

(B) longitudinal plot of the scores along SC2 (expressed as mean ± standard deviation after projection of the residuals) vs

storage time: aubergine fruit stored at 2 �C and 12 �C are indicated as blue circles and line or red circles and line, respectively;

(C) variable loadings for SC1 (continuous line) together with their 95% confidence interval (black dashed lines); (D) variable

loadings for SC2 (continuous line) together with their 95% confidence interval (black dashed lines). In panels (C) and (D), red

and blue colours indicate whether the corresponding wavebands contributes significantly or not to the bilinear model,

respectively.
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development of CI, since it was also described in the first

component, which were then further transformed as time pro-

gressed. Thus, given the sign of the scores, it can be seen that the

spectral regions having positive loadings along SC2 reached their

minimum pseudo-absorbance on the sixth day of storage and

then increased to their primary values at longer periods. The

opposite occurred for variables with negative loadings.

It is noticeable (Fig. 7C and D) that storage temperature and

time of storage (and their interaction) significantly affected all

the FT-NIR spectra since all the loadings were statistically

different to zero. Thus, according to the phenomena described

previously for SC1, it could be concluded that by increasing the

storage time, there is an increase in the pseudo-absorbance of

all the bands possessing positive values in the loading on SC1,

whilst the remaining variables decreased their signal.
3.3. Classification model discriminating fruit stored at
chilling temperature

As the ASCA model showed that temperature had a significant

effect on the FT-NIR spectra, a classification model using the

PLS-DA algorithmwas carried out on the data for classifying the

fruit stored at chilling and safe temperatures. In order to check

the validity of the ASCA model, as well as to reduce the

complexity of the classification model, only those wavebands

identified by ASCA were used to discriminate between fruit

stored at different temperatures. In this regard, 36 samples

stored at chilling temperature (3, 6, and 10 d of storage) and 36

samples stored at safe temperature (3, 6, and 10 d of storage)

were labelled as chilled and healthy fruit, respectively. The final

dataset resulted in amatrix including 72 samples� 369 effective
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Table 1 e Results of classification model for discriminating fruit stored at chilling temperature.

Class Number of LVs Inner rDCV loop Outer rDCV loop

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Healthy 3 ± 0 91.1 ± 3.2% 84.7 ± 3.7% 87.9 ± 2.1% 90.2 ± 4.0% 84.7 ± 3.1% 87.4 ± 2.7%

Chilled 84.7 ± 3.7% 91.1 ± 3.2% 84.7 ± 3.1% 90.2 ± 4.0%
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wavebands. Those identified by ASCA are shown in Fig. 5B but

the whole range of FT-NIR spectra comprised 2307 wavebands.

The use of rDCV allowed the external validation of the PLS-

DA model to be repeated on the outer loop samples as many

times as the number of DCV runs. This allowed not only a

point estimate of the predictive ability of the model to be ob-

tained, but also a corresponding confidence interval. Thus, the

classification accuracy could be more robustly evaluated. In

particular, when considering the outer DCV loop, i.e., the one

mimicking an external validation set, it was found (Table 1)

that 90.2 ± 4.0% of the healthy and 84.7 ± 3.1% of the chilled

fruits were correctly classified, leading to an overall accuracy

of 87.4 ± 2.7% (corresponding to a value of the area under the

receiver operating characteristic (ROC) curve of 0.941 ± 0.016).

Most of misclassified samples belonged to fruit after 10 d of

storage, suggesting that by this time senescence may have

had a higher impact on spectral changes than temperature

and CI. This confirms the findings of the ASCA about the

inversion of the score along SC2 when the effect of storage

time þ temperatures � time interaction was considered.

These results, nonetheless, indicate good discrimination be-

tween the fruit according to the storage temperature, partic-

ularly considering that fruit are normally transported to

market within a few days after harvest.

Moreover, to rule out the possibility that these outcomes

resulting from chance correlation, the observed values of

classification accuracy and of the area under the ROC curve

were compared to their distributions under the null hy-

pothesis, which were non-parametrically estimated by

means of a permutation test with 1000 randomisations. For

both the classification figures of merit, an empirical p-value

<0.001 was obtained, thus confirming that the observed

discrimination between the classes can be considered

highly statistically significant. The validity of PLS-DA results

based on the spectral region introduced by ASCA were

endorsed by comparing with the results of work performed

by Tsouvaltzis et al. (2020). However, in their study they

used full range FT-NIR spectra (12,500e3600 cm�1) of

aubergine for discriminating fruit stored at chilling tem-

perature, but the accuracy of the classifier (PLS-DA) was still

less than this study.

The ASCA method is receiving attention for analysis of

hyperspectral data, but few applications can be found for the

postharvest handling of fruit and vegetable. For instance,

Leisso et al. (2016) explored ASCA for gene expression and

metabolism preceding for soft scald, a CI of ‘Honeycrisp’ apple

fruit, but this method is time-consuming and compared to

spectroscopy needs expertise even for sample preparation.

For coffee analysis, De Luca et al. (2016) utilised this method

for high-performance liquid chromatography-diode-array
detector (HPLC-DAD), NIR data. However, after realising the

effect of varieties and roasting time, the effective wavebands

were not used as the input of classifier, unlike this study

where the ability of ASCA was verified by setting its output as

an input to a PLS-DA classifier.

Our study was designed at to use ASCA modelling as an

additional investigation tool (Tsouvaltzis et al., 2020) to gather

information on the effects of temperature and time of storage

on the spectral data extracted from non-invasive instrument.
4. Conclusion

As chilling injury (CI) in subtropical fruits such as aubergine is a

critical disorder, it is important to understand how the tem-

perature and duration of storage may impact on fruit quality.

To this aim non-destructive techniques such FT-NIR spectra

can be used. For the first time, in this kind of study, the effects

of temperature and storage time on fruit spectral response

were investigated. By applying ANOVA-SCA, it was found that

both the “temperature” and the “storage time” factors, as also

their interaction, significantly affected the spectral profile of

eggplant fruit over storage. For each factor the most significant

wavebands were isolated. This information could be used to

build a PLS-DA for discriminating eggplant fruit based on the

temperature. The PLS-DA model was shown to classify fruit

with high accuracy 87.4 ± 2.7% (90.2 ± 4.0% for healthy and

84.7 ± 3.1% for chilled fruit; evaluated on the outer loop of a

repeated double cross-validation procedure). It is worth

stressing that the proposed approach allowed the classification

of chilled and healthy fruit by a rapid, comparatively cheap and

non-invasive technique (FT-NIR),without requiring any sample

pre-treatment and irrespective of the days of storage. From this

viewpoint, the results achieved indicate this could be a prom-

ising tool for selecting and discarding unhealthy fruit and

decreasing commercial food losses.
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