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A B S T R A C T

A comprehensive study of the feasibility of hyperspectral imaging in visible (400–1000 nm) and near infrared
(900–1700 nm) regions was investigated for prediction and concentration mapping of Vitamin C, ascorbic acid
(AA), dehydroascorbic acid (DHAA) and phenols in wild rocket (Diplotaxis tenuifolia) over a storage span of
12 days at 5 °C. Partial least squares regression (PLSR) with different data pretreatments and wavelength se-
lection resulted in satisfactory predictions for all parameters in the NIR range except DHAA. Prediction models
were used for concentration mapping to follow changes over time. The prediction maps will be comprehensively
study to assess the pixel to pixel variation within the rocket leaves. The PLSR models for Vitamin C, AA and
phenols yielded an R2 of 0.76, 0.73 and 0.78, respectively in external prediction with root mean square errors
approximately equivalent to those of reference analysis. Conclusively, hyperspectral imaging, with the correct
mapping approach, can be a useful tool for the prediction and mapping of phytonutrients in wild rocket
(Diplotaxis tenuifolia) over time.

1. Introduction

Leafy vegetables have always served as a significant source of health
promoting elements in human diet as they are an enormous reserve of
active chemical compounds and are the cheapest and widely available
source of fiber, proteins, vitamins, phenolic compounds antioxidants
and minerals (Gibson et al., 2012). Along with aiding the consumers in
meeting their optimum nutritional requirements they also act in the
prevention of various morbid conditions (Lampe, 1999; Mann, 2001; He
et al., 2006; Webb and Villamor, 2008). Therefore, the consumption of
minimally processed ready-to-eat fruit and vegetable has significantly
boosted in the last decades (Artés et al., 2009), since they are perceived
as healthy, convenient, highly nutritive and appetizing (Oliveira et al.,
2015; Ma et al., 2017).

In the Mediterranean countries, rocket leaves (Diplotaxis tenuifolia)
with its pungent smell and strong flavour, lies among the most popular
leafy vegetables, mostly consumed as stand-alone salads or as a part of
mixed salad products. The rocket leaves are a rich source of phytonu-
trients such as fiber, Vitamin C, flavonoids and glucosinolates which are

widely known for their positive impacts on human health (Cavaiuolo
and Ferrante, 2014; Nurzyńska-Wierdak, 2015). The nutritional value
of the wild rocket leaves and its degradation with the passage of the
shelf life depends on the pre-harvest practices, postharvest handing,
processing and storage conditions (Toivonen and Brummell, 2008;
Cefola and Pace, 2015). After minimal processing operations (most
commonly in this case, washing and drying), the rocket leaves are
available packaged in plastic bags in the retail stores. Particularly,
yellowing caused by chlorophyll degradation, wilting, and the pro-
duction of off-odors are the main sources of deterioration for this pro-
duct (Koukounaras et al., 2009; Løkke et al., 2012; Chaudhry et al.,
2018).

The degradation process in fruits and vegetables also results in the
degradation of the phytonutrients and many studies have taken into
account the changes in the vitamin C, ascorbic acid (AA), phenols and
anthocyanins (Amodio et al., 2015; Derossi et al., 2016). On the other
hand, there are certain phytonutrients that increase with the passage pf
storage time in rocket leaves such as glucosinolates, isothiocyanates,
and amino acids (Bell et al., 2017). The kinetics of AA degradation is
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effected by temperature, pH, enzymes, oxygen, metallic catalysers and
light (Santos and Silva, 2008; Pérez-Balibrea et al., 2008). The effect of
storage time and temperature on vitamin C degradation of rocket leaves
has been reported by (Kim and Ishii, 2007; Spadafora et al., 2016;
Mastrandrea et al., 2017). Kim and Ishii, 2007 observed that the vi-
tamin C content was significantly affected during the storage of the
rocket leaves at both 4 °C and 15 °C and also it was reported that the
vitamin C content was higher in the leaves with and without roots in
case of 4 °C as compared to 15 °C regardless of the storage time. In the
same study it was also observed that the rocket leaves stored without
roots showed better results during storage at 4 °C in terms of freshness
and weight loss. Moreover, Spadafora et al., 2016 and Mastrandrea
et al. (2017) also reported a rapid decrease in the vitamin C content of
rocket leaves stored at high temperatures. Particularly, Mastrandrea
et al. (2017) reported that the leaves stored at 0 °C both in air and in
modified atmosphere packaging (MAP) did not show any changes in the
AA content but those stored at 5 °C air portrayed slight decrease in the
AA content with the passage of storage time while a rapid decrease was
observed in the AA content degradation at 15 °C both in case of samples
stored in air and in MAP. On the other side, other authors reported that
AA remained unaltered in rocket leaves stored in controlled atmosphere
(CA) at 4 °C, while it degraded in the leaves stored in air (Martínez-
Sánchez et al., 2006b). The phenolic content decreased with the pas-
sage of storage time regardless of the storage atmosphere. Changes in
AA content during storage of rocket leaves were also studied by
Cavaiuolo et al. (2015) which observed a slight increase in the AA
content in the initial days of storage.

All the above studies rely on chemical methods for the quantifica-
tion of the phytonutrients; these methods are time consuming, require
skilled personnel and are expensive to conduct. As an alternative, rapid
and cheaper means of measuring nutritional quality may facilitate the
access to this information also to processing companies and finally to
the consumer. Hyperspectral imaging is a technique that integrates
imaging and spectroscopy for the quantification and prediction of
physical attributes and chemical compounds in food along with the
mapping of their spatial distribution in the sample (Elmasry et al.,
2012; Pu et al., 2015b; Huang et al., 2014). Every food product has, in
fact, a specific spectral fingerprint, depending on the sample structure,
the moisture content, the particle size, the temperature of the sample
and most importantly of its chemical composition (Osorio et al., 2014).
Most commonly, during the storage period, these spectral profiles are
collected from the hyperspectral images which later integrated with
multivariate tools can be used as a powerful tool for the estimation of
the quality and shelf life of the food products during storage (Løkke
et al., 2013a,b).

Particularly, hyperspectral imaging has been widely recognized for
the prediction of various chemical constituents, contaminant, detection
of defects, safety inspection, in fresh fruits and vegetables such as
strawberries (Nagata et al., 2005; Tallada et al., 2006), apples (ElMasry
et al., 2008), cucumbers (Liu et al., 2004), lychee fruits (Pu et al.,
2015a), wheat grains; (Vigneau et al., 2011), and spinach leaves
(Everard et al., 2014a,b). Many research works have concentrated on
the non-destructive evaluation of leafy vegetables particularly spin-
aches (Diezma et al., 2013; Tewey et al., 2017; Lara et al., 2013; Zhang
et al., 2017; Cho et al., 2017; Everard et al., 2014a,b; Lunadei et al.,
2012; Yang et al., 2017), lettuce (Derossi et al., 2016; Xue and Yang,
2009), and rocket leaves (Toledo-Martín et al., 2017; Løkke et al.,
2013a,b; Giovenzana et al., 2015; Chaudhry et al., 2018). Moreover, for
rocket leaves (Løkke et al., 2013a,b) used CIELAB parameters obtained
from multispectral imaging to predict color and texture. It was observed
that a more reliable color evaluation was achieved using the CIELAB
multispectral image data whereas the selective wavelengths in the NIR
region were more reliable for prediction of textural variations. Kokalj
et al. (2016) used FTIR spectroscopy for detecting the rocket con-
tamination with the common groundsel leaves. Moreover, Chaudhry
et al. (2018) used hyperspectral imaging in the Vis-NIR range applying

multivariate accelerated shelf life testing approach (MASLT) for the
non-destructive shelf life estimation of stored rocket leaves. It was
concluded by the study, that wavelength range between 550 and
700 nm significantly contributed towards the shelf life estimation based
on appearance scores. NIRS was also employed by Villatoro-Pulido
et al. (2012) for the prediction of mineral composition of the rocket
leaves in the wavelength range of 400–2500 nm. Villatoro-Pulido et al.
(2012) also used the Vis-NIR spectroscopy for the quantification of total
phenolic content (TPC) and glucosinolates in the rocket leaves using
MPLS regression with R2 values ranging between 0.59 and 0.84 de-
picting reliable quantification results. Nevertheless, none of the studies
have attempted to quantify and predict the phytonutrient changes over
time in leafy vegetables particularly rocket leaves using hyperspectral
imaging.

One of the major drawbacks of using vis-NIR in the quantitation of
minor compounds in vegetables is the fact that the spectra is mostly
determined by water. Consequently, the contributions of less con-
centrated compounds to the signal are normally very poor. This is
normally increased when measuring hyperspectral images, where the
effect of the surface roughness is added to the low signal effect. This
manuscript studies, then, the feasibility of predicting changes in vi-
tamin C content, AA, DHAA and phenols of the surface of rocket leaves
over time by using hyperspectral images in the visible and NIR ranges
using Partial Least Squares Regression (PLSR). The results will be
mapped and a comprehensive study of the obtained results will be done.
The pixel to pixel prediction maps will show the areas in which it is
more prone to contain the compounds and how these areas evolve with
time.

2. Materials and methods

2.1. Experimental design and spectral acquisition

Washed and dried conventionally grown rocket leaves (Diplotaxis
tenuifolia) were harvested in the month of September in Puglia region of
Italy and were received in the postharvest laboratory of University of
Foggia, Italy. Representative samples were weighted, distributed into
100 g batches, packed into fifteen plastic clamshells and stored at 5 °C
under humidified air flow. Fifteen replicates (each replicate comprising
~20 leaves) were acquired on each acquisition interval over a span of
12 days of storage. Hyperspectral image acquisition and reference
analysis of the samples was done on 0, 2, 5, 7, 9 and 12 days of storage.
Prior to the hyperspectral image acquisition, the samples were kept at
room temperature for temperature regulation.

For the acquisition of the hyperspectral images, a hyperspectral line
scan scanner (Version 1.4, DV srl, Padova, Italy) equipped with two
spectrographs, one in the visible near infrared (Vis-NIR) region and the
other in the near infrared region (NIR). The spatial resolution of the Vis-
NIR spectrograph was 2000 × 1000 pixels with a spectral resolution of
5 nm over a wavelength range of 400–1000 nm, while the spatial re-
solution of NIR spectrograph was 623 × 320 pixels with a spectral
resolution of 5 nm over a wavelength range of 900–1700 nm. The HSI
cameras used were equipped with a CCD detector in case of the Vis-NIR,
and a CMOS detector for NIR line scan camera with 50 frames per
second with C-mount lenses on the cameras. Spatial resolution was
0.08 mm/pixels. The lighting system was comprised of a cooled halogen
lamp with stabilized power source. The camera interface was GigE vi-
sion and a field of view (FOV) of 37°. The Full Width at Half Maximum
of the camera was of 5 nm.

Self-developed MATLAB codes were used for image thresholding
and the extraction of the average spectra of each replicate based on the
best contrast between the object and the background followed by
masking. A total of 90 spectra both in the NIR and Vis-NIR ranges were
collected to formulate the dataset.
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2.2. Chemical analysis

2.2.1. Total phenolic content evaluation
Total phenolic content was determined according to Singleton and

Rossi (1965) with minor modifications. Three grams of leafy tissues
representing the leaves of one replicate (one image) were homogenized
in 2 mM sodium fluoride methanol:water solution (80:20) for 1 min and
centrifuged at 5 °C and 12,000 rpm for 5 min. The total phenol content
was expressed as mg of gallic acid equivalent (GAE) 100 g−1 fresh
weight (f.w).

2.2.2. Vitamin C analysis
Three grams of fresh rocket tissues representing the leaves of one

replicate (one image) were homogenized with 10 mL of MeOH/H2O
(5:95) plus citric acid (21 g L−1) with EDTA (0.5 g L−1). The homo-
genate was filtered through cheesecloth and a C18 Bakerbond SPE
column (Waters, Milford, MA, USA). AA and DHAA contents were de-
termined as described by Zapata and Dufour (1992), with some mod-
ifications. The HPLC analysis was achieved after derivatization of
DHAA into the fluorophore 3-(1,2-dihydroxyethyl) furol [3,4-b]qui-
noxaline-1-one (DFQ), with 1,2-phenylenediamine dihydrochloride
(OPDA). Samples of 20 µl were analyzed with an Agilent 1200 Series
HPLC. The HPLC system consisted of a G1312A binary pump, a G1329A
auto-sampler, a G1315B photodiode array detector from Agilent
Technologies (Waldbronn, Germany). Separations of DFQ and AA were
achieved on a Zorbax Eclipse XDB- C18 column (150 mm × 4.6 mm;
5 μm particle size; Agilent Technologies, Santa Clara, CA, USA). The
mobile phase was MeOH/H2O (5:95 v/v) containing 5 mM cetrimide
and 50 mM potassium dihydrogen phosphate at pH 4.5. The flow rate
was 1 mL min−1. AA and DHAA contents were expressed as mg of as-
corbic or dehydroascorbic acid 100 g−1 of f.w (mg 100 g−1).

2.2.3. Partial least squares regression (PLSR)
Prediction models for the desired parameters were developed using

the PLS algorithm in the PLS toolbox (Eigenvector Research Inc., ver-
sion 7.2.5) working under MATLAB 2012b (version 8.0.0.783,
MathWorks, MA, USA) as well as in HYPER-Tools (Version 2.0). The
spectral dataset was divided into calibration set and validation set
based on the 70/30 ratio with 70% of the samples in the calibration
dataset and 30% of the samples reserved for external validation from
the replicates of each acquisition interval. For the development of the
PLSR calibration models random subset internal cross-validation was
applied. The accuracy of the calibration models was accessed by vi-
sualizing the R2 in calibration, R2 cross-validation and the root mean
square error for calibration (RMSEC) and cross-validation (RMSECV).
As first approach all the wavelengths were used; then, after the for-
mulation of the best calibration models, the loading plots were used for
the selection of the most important variables in order to reduce the
number of variables used to build the prediction models. All models
were finally tested on the external data set to assess prediction per-
formance. Moreover, for the best prediction models the slope, bias and
the residual prediction deviation (RPD) were also assessed. RPD cal-
culates the ratio of the standard deviation of the response variable to
the root mean square error of prediction (RMSEP), and is considered as
a parameter that gives an indication of robustness. On the other hand,
bias shows the deviation of the predicted values form the observed
which in ideal scenarios, should not exceed above or below 0.6 times
the standard error of calibration (SEC). For a satisfactory model the
minimum slope is considered to be 0.90 (Sánchez et al., 2011).

Mapping of the internal constituents was done by introducing a
brand-new approach based on the selection of pixels in the image ac-
cording to the calibration range. PLSR models were developed within
the calibration range based on the spectra acquired from the average of
the leaves in an image, standing to the consideration that the mean
spectrum of that particular image corresponds to the averages of the
vitamin C content of all the leaves in that image. Absorbance values of

the spectra of the leaf pixels within the calibration range and those
outside the calibration range (which included both above and below the
calibration range) were first plotted against the spectra of the calibra-
tion dataset to confirm their homogeneity to the spectra used to build
the model. Nonetheless, it may be expected that PLSR calibration model
developed with the mean spectra of all the leaves of each replicate
when applied to a new image for pixel by pixel prediction, give some
pixel values outside the calibration range. Therefore, since the predic-
tion can be certain only if the obtained values are within the calibration
range, the pixels with concentrations that fall out of the calibration
range were excluded from the prediction map. Particularly, prediction
values were accepted starting from a value corresponding to the
minimum of the calibration range minus the RMSEC until the maximum
of the calibration range plus the RMSEC.

3. Results and discussion

In Table 1 are shown the mean values and respective interval range
of the main chemical constituents analyzed in this study. The variation
in the minimum and the maximum range of values for the chemical
parameters were determined over a storage span of 12 days at the in-
tervals of 0, 2, 5, 7, 9 and 12 days.

Mastrandrea et al. (2017) also found similar values of vitamin C in
fresh rocket leaves with a much higher amount of AA and a low amount
of DHAA, hence showing that the rocket leaves in the start of the sto-
rage period possess a significantly higher amount of AA as compared to
DHAA. Moreover, in a similar study regarding vitamin C content
Martínez-Sánchez et al. (2006b) also showed that the predominant form
of vitamin C at the beginning of the storage time was AA in rocket
leaves as compared to DHAA. They also confirmed that a significant
decrease in the AA content was recorded after six days of storage ulti-
mately decreasing the vitamin C content of the rocket leaves stored
both in air and in controlled atmosphere.

Fig. 1 shows the spectra obtained in the measurements. Fig. 1a and
b, represent the pre-processed (1st derivative) Vis-NIR and NIR spectra,
respectively.

The Vis-NIR peaks correspond to the color related properties of
rocket leaves and the leaf reflectance as affected by chlorophyll a,
chlorophyll b and β-carotene, in the region of 400–700 nm (Chaudhry
et al., 2018; Mishra et al., 2017). On the other hand, in case of NIR
spectra, the reflectance signal is dominated by the leaf water content.
Peaks observed between 900 and 1000 nm and 1400–1500 nm are lo-
cated in the third overtone region and the beginning of the first over-
tone region, respectively, both predominantly affected by water ab-
sorption (Workman, 2003; Sasic and Ozaki, 2011). In these regions
most of the peaks identified by Yang and Irudayaraj (2002) can be
found for vitamin C in powdered mixtures and solutions (1000, 1210,
1360, 1457, 1579 and 1651 nm); the same author also reported one
peak at 840 nm related to vitamin C. Therefore, in this regard, it can be
inferred that only one peak for vitamin C can be observed in the Vis-NIR
region while all the other peaks are located in the NIR region from 900
to 1700 nm. Moreover, the region between 1300 and 1700 nm held
great significance for the other compounds analyzed in this study, since
the correlations between the spectra and the corresponding con-
centration in this wavelength region were higher than in the Vis-NIR
region.

Table 1
Range values and statistical distribution of Chemical Parameters.

Chemical Parameter Min Max Mean Standard Deviation

Vitamin C 15.80 123.33 66.39 22.94
Ascorbic Acid (AA) 7.97 109.38 55.83 20.53
Dehydroascorbic Acid (DHAA) 5.01 19.45 11.23 3.43
Phenols 83.53 200.92 136.06 29.79
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The PLSR models yielded reliable results for the Vitamin C content,
AA, and phenols in NIR range while results obtained for DHAA were not
satisfying. After the development of these models, the most significant
variables were selected based on the loading weights for each para-
meter and simplified PLSR models were developed.

Table 2 shows the calibration results for the parameters in the NIR
range in terms of R2, root mean square error of calibration (RMSEC) and
random block cross-validation. Individual calibration models were de-
veloped for each parameter. Different preprocessing techniques were
attempted including mean centering, derivatization, SNV, MSC and
their combinations. The best models obtained resulted from the

combination of 1st derivative followed by data mean centering in the
NIR range which was also reported by Pissard et al., 2013 while mea-
suring similar parameters in apples.

In case of vitamin C, the calibration dataset comprised of 70 samples
and the external validation was done with 12 samples. Figure SM 1a
(see supplementary material (SM) section) shows the PLSR calibration
results for the vitamin C over a storage period of 12 days. The cali-
bration model developed with a total of 161 variables in the NIR range
yielded Rcal

2 of 0.80 and Rcv
2 of 0.71 with the RMSEC and RMSECV of

10.129 and 12.184 mg 100 g−1f.w, respectively which was very similar
to the laboratory error (9.179 mg 100 g−1f.w) hence confirming the
reliability of the calibration model. Optimal wavelength selection not
only simplified the calibration model but also resulted in enhancing the
performance in cross-validation with Rcv

2 of 0.74 and RMSECV of
11.727 mg 100 g−1f.w. It can be observed that the wavelength regions
from 900 to 1000 nm, 1300–1500 nm and 1650–1700 nm held the most
significant weight in the model for quantification of vitamin C and
therefore, the variable reduction resulted in substantial improvement in
the model performance.

In this model for the prediction of vitamin C in the NIR region a
total of 55 variables highlighted in green in the loadings plot were
utilized ranging from 900 to 1000 nm, 1315–1435 nm and
1650–1700 nm (see figure SM 1b in SM section). External validation
allowed to obtain Rpred

2 of 0.76 with a RMSEP of 10.905 mg 100 g−1f.w.
The RPD for the model was calculated to be 2.1, the cross-validation
bias was 0.13 and the calibration slope of the model was 0.76. The best
prediction results are summed in Table 3 for all the parameters.

Fig. 2 shows five random leaves chosen from the replicates of each
storage time in order to visualize the changes in Vitamin C over storage

Fig. 1. a) 1st Derivative of Vis-NIR spectra b) 1st Derivative of NIR spectra Day 0 (red), Day 2 (blue), Day 5 (cyan), Day 7 (pink), Day 9 (light green) and Day 12
(green).

Table 2
Calibration statistics for the PLSR modelling of the internal constituents in fresh
cut rocket leaves (Dev = derivative, MC = mean centering).

NIR range (900–1700 nm)

Parameter Pretreatment No. of
variables

LVs Rcal
2 RMSEC Rcv

2 RMSECV

Vitamin C 1st Dev + MC 161 8 0.80 10.129 0.71 12.184
1st Dev + MC 75 6 0.80 10.263 0.73 11.903
1st Dev + MC 55 5 0.80 10.149 0.74 11.727

AA 1st Dev + MC 161 6 0.82 8.301 0.77 9.615
1st Dev + MC 68 6 0.82 8.312 0.77 9.636
1st Dev + MC 39 6 0.81 8.377 0.77 9.438

DHAA 2ndDev + MC 161 2 0.17 2.978 0.10 3.119
1st Dev + MC 93 3 0.22 2.887 0.13 3.060

Phenols 1st Dev + MC 161 5 0.80 12.909 0.75 14.488
1st Dev + MC 80 7 0.79 13.261 0.72 15.344
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period, where each row represents leaves from each acquisition in-
terval. As can be observed, prediction values within the calibration
range ranged between 15.99 and 133.33 mg/100 g f.w. Each leaf in this
case is accompanied by two numbers the first one being the percentage
of pixels predicted within the calibration range and the second re-
presenting the average vitamin C concentration over these pixels. In
this case, the pixels above and below the calibration range were re-
moved. It is quite normal to have pixels predicted below or above the
calibration range when using hyperspectral images. The first reason for
this fact is the development of the PLS model itself. It is normally de-
veloped by using the mean spectrum of each replicate, which might not
contain all the expected variability of the individual leaf in the image.
The second reason can be the textural features affecting each leaf. A leaf
is far for being a homogeneous surface; it has different internal struc-
ture as well as a rough surface. Martínez-Sánchez et al. (2006a) studied
the sensory quality of stored rocket leaves and reported that the var-
iations in the texture of the rocket leaves lead to the quality losses. The
texture is usually related to the freshness perception of the rocket leaves
but in this case, it also affects the overall spectral signals at different
acquisition intervals over the storage period. For this purpose, the
spectra of the pixels of each leaf in the prediction image were plotted
against the spectra in the calibration dataset (not shown) and were
found to have similar absorbance values for a majority of pixels but it
was also observed that some of the pixels of the leaves in the prediction
image had spectra that differed substantially from the spectra of the
calibration dataset (most probably due to scattering effect).

Fig. 3a, b and c shows the pixels predicted within the calibration

range, percentage of pixels within calibration range and standard de-
viation per leaf w.r.t days of storage, vitamin C on an average over the
six image acquisition intervals, respectively. As can be observed, with
the passage of storage time the pixels within the calibration range are
decreasing as represented in Fig. 3b. It can be hypothesized that this
may be a result of changes in the leaf structure or more simply of not
having these values in the calibration model due to the fact that average
values were higher. Fig. 3c represents the variation in the average
concentration of vitamin C over the pixels within the calibration range
during the storage period for the leaves of each acquisition interval.
This trend of decrease in vitamin C content was also reported by
Mastrandrea et al. (2017) also for rocket leaves stored in air at 5 °C.

In Fig. 4 the histograms represent the number of pixels within the
calibration range associated to a certain amount of vitamin C content in
each leaf in the concentration map. On the x-axis is shown the vitamin
C concentration in mg of vitamin C 100 g−1f.w. and the y-axis re-
presents the number of pixels representing a certain quantity of vitamin
C. It can be observed that at the start of the storage period the number
of pixels representing higher values of vitamin C are higher and at the
end of the storage period the number of the pixels representing vitamin
C are lower because of the fact that vitamin C deteriorated with time
and also because a larger number of pixels at this point were located
below the calibration range.

Calibration models were also developed for AA with 70 samples in
the calibration set and 12 in case of the external validation as well. The
model performance was more reliable in the NIR range with Rcal

2 of 0.81
and Rcv

2 of 0.77 with RMSEC of 8.377 mg AA 100−1 g f.w and RMSECV

Table 3
Prediction statistics for the PLSR modelling of fresh cut rocket leaves.

Parameter Preprocessing Wavelength Range (nm) LVs Rcal
2 RMSEC Rcv

2 RMSECV Rpred
2 RMSEP

Vitamin C 1st Dev + MC 900–1000
1300–1500
1650–1700

5 0.80 10.149 mg/100 g 0.74 11.727 0.76 10.905

AA 1st Dev + MC 900–1000
1295–1480
1655–1700

6 0.81 8.377 mg/100 g 0.77 9.438 0.73 10.249

Phenols 1st Dev + MC 900–1700 5 0.80 12.909 mg gallic acid/100 g 0.75 14.488 0.78 13.816

Fig. 2. PLS prediction map for Vitamin C after removal of pixels above and below the calibration range where each row corresponds to Day 0, Day 2, Day 5, Day 7,
Day 9 and Day 12. For each leaf is indicated the percentage of pixels predicted within the calibration range and the average vitamin C concentration over these pixels.

M.M.A. Chaudhry, et al. Computers and Electronics in Agriculture 175 (2020) 105575

5



of 9.438 mg AA 100−1 g f.w with 3 LVs explaining a total co-variance of
96.91% in the data (see Figure SM 2a SM section). The loading scores
carrying the maximum weight in the model corresponded to wave-
length ranges of 900–1000 nm, 1300–1500 nm and 1650–1700 nm.
After the development of the calibration model in the wavelength range
of 900–1000 nm, 1295–1480 nm and 1655–1700 nm (shown in green
highlighted regions in figure SM 2b SM section), its performance was
evaluated with external validation yielding Rpred

2 of 0.73 with a RMSEP
of 10.249 mg 100 g−1f.w. (Table 3) and with a cross-validation bias of
−0.08. The slope and the residual prediction deviation (RPD) for the
model were 0.81 and 2.1, respectively.

Fig. 5 shows the prediction map of the variation of ascorbic acid
content in the rocket leaves during storage based on the pixel to pixel

information within the calibration range after the removal of all the
pixels predicted outside the calibration range now represented by white
pixels. Also, in this case it can be clearly observed that the percentage of
the pixels within the calibration range decreased with the passage of
time and at the same time a decrease in the average concentration of AA
on those pixels was observed which was also a major cause for the
overall vitamin C concentration decrease. This could be expected since
vitamin C content is composed mainly of AA and a minor part of it is
oxidized by DHAA (Martínez-Sánchez et al., 2006b).

Figure SM 3a (see SM section), depicts the map of the pixels lying
within (7.18 to 120.73 mg AA 100 g−1f.w.) the calibration range for
AA. Moreover, the percentage of pixels within the calibration range for
AA has been shown in figure SM 3b (see SM section) which also depicts

Fig. 3. a) Pixels within calibration range, b) percentage of pixels within calibration range and standard deviation per leaf w.r.t days of storage, c) Vitamin C on
average (time in days refers to the 6 acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12).

Fig 4. Histograms of vitamin C content of the leaves representing number of pixels with respect to vitamin C concentration (Day1, 2, 3, 4, 5, 6 refers to the 6
acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12).
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a decrease in the average percentage of the pixels within the calibration
range over time followed by a decrease in the average AA content re-
presented by these pixels as depicted in figure SM 3c (see SM section).
Furthermore, the number of pixels in each leaf associated with the
certain AA content is shown in the histograms in figure SM 4 (see SM
section) which also confirms the fact that a higher number of pixels
were associated to a higher AA content in the initial days of storage
while at the end of the storage period the number of pixels dropped due
to the fact that a larger number of pixels were below the calibration
range and also due to a drop in the AA content.

It can be observed that both average vitamin C and AA contents
slightly increased in the initial days, especially at the second acquisition
interval and then decreased with time; similar results were reported by
Cavaiuolo et al. (2015) in which the AA content increased at initial days
of storage and then decreased later during the entire storage span.
These results are also compliant to those reported by Martínez-Sánchez
et al. (2006a) and Amodio et al., 2015 which revealed that the rocket
leaves when stored in the continuous air flow tend to decrease the AA
and vitamin C content even at lower temperatures during storage time.
Moreover, the calibration models for DHAA were also developed but
the correlation between the spectra and the DHAA values was not en-
couraging which led to the conclusion that the calibration and predic-
tion models for vitamin C possessed a slightly lower accuracy as com-
pared to the PLSR models for AA because of the fact that vitamin C was
determined using both AA and DHAA.

For phenolic content the PLSR models were developed yielding an
Rcal

2 of 0.80 with RMSEC of 12.909 mg of gallic acid 100 g−1 and Rcv
2 of

0.75 with RMSECV 14.488 mg of gallic acid 100 g−1 (see figure SM 5a
in SM section) with all 161 variables (see figure SM 5b in SM section)
without any reduction in model variables. The reliability of the cali-
bration model was accessed with external validation yielding Rpred

2 of
0.78 and RMSEP of 13.816 mg of gallic acid 100 g−1. Figure SM 6 (see
SM section) shows the changes in the phenolic content of the rocket
leaves over the 12-day storage period within the calibration range
(77.37 to 229.89 mg of gallic acid 100 g−1). Moreover, in case of
phenols also the percentage of pixels detected within the calibration
range decreased with the passage of storage time and so did the average

phenolic content. In case of the best model for phenol prediction, the
bias, slope and RPD were 2.27 × 10−13, 0.70 and 2.2, respectively.

The map for the pixels within the calibration range (77.37 to
229.89 mg of gallic acid 100 g−1) for the phenolic content is re-
presented by figure SM 7a (see SM section). Additionally, the percen-
tage of the pixels within the calibration range for the phenols is shown
in figure SM 7b (see SM section) which decreases over the storage
period followed by a decrease in the average phenol content depicted
by figure SM 7c (see SM section). Furthermore, figure SM 8 (see SM
section) depicts the number of pixels in each leaf representing the
concentration of predicted phenols by each pixel in the map.

This approach can be useful for the processors to take logistic de-
cisions based not only on the visual scores but also based on the nu-
tritional values which would help better labelling the packaging in
order to enhance consumer interest and trust.

4. Conclusions

Hyperspectral images in the NIR region, together with multivariate
data analysis, has proven to be potentially useful in the mapping of
phytonutrients in fresh-cut rocket leaves. Bearing in mind the difficulty
of quantifying minor compounds in a signal mostly composed by the
water signal, this manuscript has shown how, under the correct pre-
mises of spectra homogeneity and calibration range, acceptable results
can be obtained. It was shown that the number of pixels detected within
the calibration range decreased with the passage of storage time with a
simultaneous increase in the pixels below the calibration range hence
reducing the capability of the PLSR model to predict the corresponding
phytonutrient. In this way, hyperspectral images revealed that the
central part of the leaves lose vitamin C content faster as compared to
the leaf edges or in other words the vitamin C starts degrading from the
center of the leaf. Furthermore, the PLSR models in this case were very
sensitive to the number of samples and their performance can be further
enhanced with increasing the number of the samples in the calibration
sets. Conclusively, NIR combined with hyperspectral imaging can be a
very informative tool for studying the changes in the phytonutrient
content during storage.

Fig. 5. PLS prediction map for AA with each row corresponding to Day 0, Day 2, Day 5, Day 7, Day 9 and Day 12 / For each leaf, first number: percent pixels
predicted within calibration range; second number: average concentration of AA on predicted pixels.
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