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Abstract: The aging population is rapidly increasing all over the world. This results in significant
implications for the planning and provision of health and social care. Aging is physiologically
characterized by a decrease in lean mass, bone mineral density and, to a lesser extent, fat mass. The
onset of sarcopenia leads to weakness and a further decrease in physical activity. An insufficient protein
intake, which we often observe in patients of advanced age, certainly accelerates the progression of
sarcopenia. In addition, many other factors (e.g., insulin resistance, impaired protein digestion and
absorption of amino acids) reduce the stimulation of muscle protein synthesis in the elderly, even if
the protein intake is adequate. Inadequate intake of foods can also cause micronutrient deficiencies
that contribute to the development of frailty. We know that a healthy eating style in middle age
predisposes to so-called “healthy and successful” aging, which is the condition of the absence of
serious chronic diseases or of an important decline in cognitive or physical functions, or mental
health. The Mediterranean diet is recognized to be a “healthy food” dietary pattern; high adherence
to this dietary pattern is associated with a lower incidence of chronic diseases and lower physical
impairment in old age. The aim of our review was to analyze observational studies (cohort and
case–control studies) that investigated the effects of following a healthy diet, and especially the effect
of adherence to a Mediterranean diet (MD), on the progression of aging and on onset of frailty.
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1. Introduction

Population aging is now a global phenomenon that is rapidly evolving all over the world. In the
European Union, the number of people over sixty-five is expected to increase from 85 million in 2008 to
151 million in 2060 [1]. Worldwide, people aged over 65 are estimated to increase from 461 million in
2004 to 2 billion by 2050 [2,3]. This will have important consequences for the planning and delivery of
health care and social assistance services. A greater life expectancy, in fact, leads us to reconsider not
only the condition of the elderly, but also what kind of implications aging will have in our lifetime [4,5].
That is, the ability to dedicate ourselves to our activities will be no different from that of a younger
person, wherever we spend our old age in good health. On the contrary, where the years of old age are
dominated by loss of health, cognitive decline and therefore, the loss of self-sufficiency, the implications
for individuals and for society as a whole would be much more negative [5]. Especially in high-income
countries, it is now customary for many people to spend their old age in innovative ways, such as
starting a new career or even starting new studies, or devoting oneself completely to a neglected
passion during working age [6]. It is clear, however, that the extent of these new opportunities arising
from these long years of life depends, for everyone, on maintaining health and self-sufficiency.
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Healthy behaviors in middle age predispose to so-called “healthy and successful” aging, which
is the condition of the absence of serious chronic diseases or of important decline in cognitive or
physical functions, or mental health [7]. Healthy behaviors include following a healthy diet, with an
adequate caloric restriction to the state of health and physical activity, not smoking, intake of moderate
amounts of alcohol, especially in women. Akbaraly et al. [8], and Samieri et al. [9] from the results of
the Whitehall II cohort study and of the Nurses’ Health Study, respectively, showed that a healthy
dietary pattern, like the Mediterranean Diet (MD) pattern, was associated to a lower incidence of
chronic disease and to a lower physical impairment in old age. In addition, they showed that a healthy
dietary pattern was associated to a lower cardiovascular risk and to a lower risk of premature death.

The aim of our narrative review was to analyze observational studies (cohort and case-control
studies) that investigated the effects of following a healthy diet, and especially the effect of adherence
to MD, on the progression of aging and on the onset of frailty.

2. Aging and Frailty

The frailty of the elderly is a condition characterized by an increased vulnerability to poor
homeostasis resolution after a stress event, which increases the risk of negative outcomes, including
falls, delirium and disability. Most geriatricians intuitively recognize frailty; otherwise, this is mostly
misunderstood, or confused with the presence of comorbidity and disability [10–12]. With the aim
to provide a standardized definition for frailty, Fried et al. [13] identified the “frailty phenotype”,
which is the measure most frequently used. Fried’s criteria of frailty considers five items to determine
the level of frailty: weight loss, exhaustion, low physical activity, slowness, and weakness (Figure 1).
Rockwood et al. [14] starting from the identification, through the Canadian Study on Health and Aging
(CSHA), of 70 items including signs, symptoms and abnormal tests that characterized the fragility,
built their “CSHA Clinical Frailty Scale”, which considered seven levels, form Very fit to Severely frail
(Figure 2). More correctly, frailty develops due to the greater decline, already linked to age, up to
the severe impairment and the appearance of pathological states, of the different organs and systems,
which overall, leads to a condition of greater vulnerability and reduced resilience and ultimately, to
sudden and severe health changes triggered by even mild stressors. In the frail elderly an apparently
small insult, for example, a small infection or minor surgery produces a significant worsening of the
patient’s condition. This means that the frail elderly loses all self-sufficiency, undergoes a hypokinetic
syndrome to the condition of entrapment, increases the risk of falls, and develops a state of confusion,
with a serious deterioration of cognitive functions. [15]. Frail people have several functional deficits,
which often cause falls, immobility and confusion. They are the patients who come to the hospital with
greater frequency and are the main recipients of long-term care services. [16]. About 25–50% of people
over the age of 85 are estimated to have different degrees of frailty; these are subjects at high risk of
falling, permanent disability and death, in most cases requiring long-term care [13,15]. However, if we
consider that 25–50% of people over the age of 85 are frail, we must consider that that 50% to 75% of
people over 85 years are not frail, which raises several questions, namely: How does frailty develop?
How we can prevent it? How can we reliably detect it?

Frailty must not be understood as an inevitable consequence of aging, but rather, must be
understood as a geriatric syndrome [13,17–19]. It is therefore more appropriate to speak of “frailty
syndrome”, i.e., a chronic pathological condition that results from the interaction of various factors,
including aging-related physiological alterations, poly-pathology, nutritional deficiencies up to severe
malnutrition, and the negative impact of socio-environmental factors (Figure 3).
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3. Aging, or Cellular Senescence, and Health

If we consider aging solely from the biological point of view, we refer essentially to the physiological
and progressive accumulation of senescent cells in tissues and organs, which occurs during the life
of each individual [19], with the progressive slowing down and, in some cases, loss of function. The
antagonist pleiotropic genes are a set of genes that regulate cellular senescence [20–23]; these genes play
an important role in the prevention of malignant cell degeneration in the pre-neoplastic degeneration,
i.e., eliminating cells from the cell cycle; the same genes are also involved in the mechanisms of
protection in the physiological cellular senescence processes and towards age-related diseases [24–26].

The reduction of the capacity of cell regeneration and tissue repair are the basis of the physiological
senescence process, substantially due to the slowdown process, up to the complete stop of the
cycle of growth and replication of the progenitor cells. These aging cells also produce a series of
proinflammatory and lytic molecules of the extracellular matrix in the process known as the secretory
phenotype associated to senescence (SASP). Consequently, those mechanisms normally needed to
maintain tissue homeostasis in the aging organism produce a series of alterations in the structure and
function of the cells, resulting in degeneration and pathological senescence. The aging process also
involves the immune system; in particular, the cell-mediated defense mechanism is slowed down.
Furthermore, senescent cells do not produce enough signals to activate immune cells. As a result, a few
aging senescent cells survive in the body. The senescent cells, in addition to reducing the functional
efficiency of the organs and systems during aging, make them more vulnerable, therefore subject to
further deterioration, after exposure to environmental stress factors [27].

In physiological aging, senescence is induced by the accumulation of different degenerative
factors that slowly accumulate in the cells and that are responsible for macromolecular damage [28–30],
for example, the shortening of telomeres, the addition of secondary DNA alterations to oxidative
damage, stress degeneration of the endoplasmic reticulum (ER). The disease takes place when
environmental stressors attack the tissues already in the presence of senescent cells with very low
resilience capacities [31–33]. The stress that can cause the disease can be foreign and abnormal to the
cell, as damaging DNA agents in cigarette smoke; otherwise, it can be a more intense response to a
stressor event prolonged over time by the same factors that work in physiological aging, e.g., erosion
of telomeres in lung epithelial cells chronically damaged by smoke [34]. It is therefore evident that
aging is the result of a multi-factorial interaction between local and systemic environmental factors,
and involutional factors due to cell senescence. Over time, these environmental stressors add to the
cellular changes linked to physiological aging, decreasing resistance to stress and further reducing
tissue resilience. That is, the chronic stimulation of a stressor factor on a tissue already in a condition
of cellular senescence is more likely to induce the onset of a pathological condition [27].

4. The Role of Senescence in the Progression of Diabetes Mellitus and Atherosclerosis

Under physiological conditions, the synthesis and release of insulin by pancreatic beta cells, based
on glycemic levels, allows the absorption of glucose in sensitive peripheral tissues, i.e., the liver and
skeletal muscle, with the consequent production of energy by means of aerobic glycolysis [35]. In
obese people, build-up of abdominal fat tissue, which is characterized by a chronic inflammatory
state, and the excess of free circulating fatty acids, can cause a state of peripheral tissue insulin
resistance [36,37]. Thus, what occurs is a condition of increased and abnormal prolonged demand in the
time of production and release of insulin with the consequent prolonged stimulation of pancreatic beta
cells. The increased replication activity, and consequently, the wear of telomeres, leads to premature
senescence of beta cells [38], thus reducing the efficacy of the reaction to hyperglycaemia with the
consequent aggravation of type 2 diabetes mellitus (T2DM) and the onset of insulin resistance. This
reduced ability to regulate blood glucose levels alters the metabolic processes of the cells and speeds
up the aging process. This glucose-induced cellular toxicity induces a condition of chronic stress
and consequently, pathological senescence in various cell lines, for example, fibroblasts, cells of the
renal tubules, endothelial cells, mesenchymal cells [39–42], and even neurons. Therefore, we see the
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appearance and progression of a number of diseases, such as atherosclerosis, chronic renal failure [43]
and Alzheimer’s disease. Furthermore, the accumulation of abdominal adipose tissue and the release
in circulation of excess free fatty acids can also cause the progression of atherosclerosis. During
the formation and progression of plaque, the proliferation of smooth muscles and the reduction of
endothelial nitric oxide synthase levels can lead to the shortening of telomeres and increased oxidative
stress, respectively [44,45]. Plaque progression is therefore the result of a series of interactions between
smooth muscle cells and immune system cells, modulated by the synthesis and release of cytokines and
adhesion molecules by endothelial cells, smooth muscle cells and immune cells. The complexity of the
action mechanisms of senescent cells in the atherogenesis process is evident. Paradoxically, senescence
in atherosclerosis acts as an initial protective factor by restricting and slowing the development of
plaques and minimizing plaque-disrupting apoptosis. After a limit threshold of senescence burden,
the proinflammatory matrix-degrading SASP exacerbates disease [27].

5. Caloric Restriction, Effects on Metabolism of Adipose Tissue and Increase of Longevity

It is known that overweight at young and middle age, by decreasing insulin sensitivity, can
accelerate the aging process and predispose to the onset of age-related diseases [45–48]. In experimental
models conducted both in mice and in humans, it has been observed that caloric restriction (CR)
produces significant effects in terms of weight reduction; much of the weight loss comes from the
reduction of white adipose tissue (WAT) and visceral fat deposits [45,49,50]. It is true that the common
strains of laboratory rodents all have an extended lifespan in response to CR, however, this is not a
universal effect. Interestingly, some inbred mice strains show only a modest effect on extension of the
life span after CR. In some cases, a reduction in life span has even been observed [51]. We can explain
these apparently conflicting results considering that the effect of CR on the metabolism is a decrease in
carbohydrate dependence and a greater use of fatty acid oxidation to produce energy [52]. Indeed, the
level of fat reduction following dietary restriction remains a key component of the beneficial effects of
CR. In a study conducted on 40 strains of mice, increased longevity induced by CR was more evident
in old mice (15–17 months of age) that, with a 40% CR diet, were able to retain more fat deposits,
showing that retainment of both fat mass and lean mass in aging can correlate with more longevity [53].
Subsequently, the results of a study conducted on progeroid mice showed that a caloric restriction
regimen of 30% increased its median duration and the maximum residual life expectancy by three
times. Specifically, mice subjected to caloric restriction retained 50% more neurons and maintained full
motor function, far beyond the lifespan of ad libitum-fed mice.

6. Caloric Restriction and Inflammatory State

Gene expression analysis has shown that dietary restriction increases DNA resistance to
stress-induced damage, as well as improving antioxidant defenses and metabolic processes primarily
mediated by insulin, as well as by other hormonal signaling pathways. Dietary restriction also
affects mitochondria activity, modulates apoptotic response and modifies pro-inflammatory and
anti-inflammatory cytokine production [54]. The results of further randomized human studies confirm
that caloric restriction stimulates the body to adapt to the use of any available energy substrate, both
glucose and fatty acids [55]. The term “metabolic flexibility” optimally defines this adaptation property,
which has long been linked to metabolic health and longevity [56]. Studies conducted on primates have
also shown that a strong relationship exists between CR and the reduction of the pro-inflammatory
state [57]. A subsequent study linked the reduction of the pro-inflammatory state to the inhibition
of the inflammasome, induced, in turn, by the increase in serum levels of β-hydroxybutyrate during
fasting [58]. Another suggested a mechanism through which CR could suppress the harmful activation
of the immune system, which concerns the preservation of the thyme function induced by the CR, thus
preserving the function of T cells [59], or a reduction of inflammation induced by oxidative stress [60].
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7. Caloric Restriction, Mitochondria Activity and Reactive Oxygen Species Production

Numerous experimental models conducted on animal organisms have involved mitochondrial
proteins encoded by the nucleus in the life span adjustment process [61,62]. These experiments on
genes mostly involved an alteration of the electron transport chain process with consequent impairment
of mitochondrial function; nevertheless, they have led to a greater life expectancy [48]. Conversely, in
mice models bearing significant mitochondrial genome mutations designed to significantly impair
mitochondrial function, a phenotype characterized by accelerated aging was observed [63,64]. The
seemingly contradictory results observed in these experimental models may be due to the variability of
the alteration of mitochondrial function that was obtained from time to time. Experiments conducted
on C. elegans have shown an increase in life expectancy as a result of a modest reduction of the
various components of the mitochondrial electron transport, while a significant reduction, i.e., a sign
of high mitochondrial damage, was associated with a reduction in the lifespan [65]. Evidence from
mammalian models has shown that a slight reduction in mitochondrial function is associated with
prolonging lifespan. This assumption seems to contradict the hypothesis that reactive oxygen species
(ROS) support aging [66]. In fact, although mitochondrial ROS can be dangerous for life [67], it is
equally clear that a slight stimulation of mitochondrial ROS production can stimulate the activation of
the anti-redox mechanism with protective effects in the long term.

8. Caloric Restriction, Hormesis and Mitochondria Activity during Aging

“Hormesis”, from the Greek verb “ormao” that means “to stimulate”, is described as the adaptive
function of a cell or an organism characterized by a biphasic dose-dependent response, following
exposure to a variety of stimuli, such as toxins or other stressors. The hormetic responses, generally,
show a modest stimulation of the response of the organism to low doses of a stressor, or an inhibition
of the same response to high doses [68]. “Mitochesis” is defined as the hermetic response of the
mitochondria, i.e., that the activation of a low level of stress can protect against major and subsequent
stress [69–71]. It is therefore clear that ROS levels are not the only factor responsible for mitochondrial
stress affecting life span. Another mechanism linking the aging of mitochondria is constituted by the
turnover capacity, that is, the balance between biogenesis, or the synthesis of new mitochondria, and
mitophagy, or the removal of aged and damaged mitochondria. It is now clear that all interventions,
such as CR, which result in greater longevity, act by inducing mitochondrial biogenesis through
the expression of peroxisome proliferation-activated receptor gamma (PPAR-γ), and coactivator 1
alpha (PGC-1α) [72,73]. It is equally clear that the reduction of biogenesis contributes to the onset
of age-related diseases, both through the reduced activity of PGC-1αand through other routes. [74].
A gradual reduction in autophagic activity associated with aging was also observed [75]; a similar
age-related decline is also likely to affect the more specialized process of mitophagy. On the contrary,
in experimental models, the increase in the expression of gene products that stimulate mitochondrial
activity has been observed to determine a prolongation of life expectancy [76].

9. Caloric Restriction and DNA Methylation

In addition, DNA methylation (methylation drift) is an important epigenetic modification that
involves the addition of a methyl group in the cytosine 5 position by DNA methyltransferase to
form 5-methylcyctosine (5-mC). This epigenetic mark has the power to activate or deactivate genes
and can be inherited through cell division. DNA methylation plays an important role in normal
human development, aging, tumorigenesis and other genetic and epigenetic diseases [48,77,78].
Maegawa et al. [79] found that DNA methylation drifts with age in both mice and humans and
monkeys. They also found that Methylation drift is inversely proportional to lifespan across these
three-mammalian species. In their elegant study, authors also found that a sample of 22 to 30-year-old
rhesus monkeys exposed to 30% CR since 7–14 years of age showed attenuation of age-related
methylation drift compared to ad libitum-fed controls, such that their blood methylation age appeared
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7 years younger than their chronologic age. They observed the same and more pronounced effects in
2.7–3.2-year-old mice exposed to 40% CR starting at 0.3 years of age.

10. Caloric Restriction, Metabolic Adaptation and Oxidative Damage

Readman et al., in the CALERIE Study [80]., delivered a highly controlled and intensive behavioral
trial targeting a 25% CR diet over 2 years in a sample of 53 voluntary and non-obese adults (34 CR and
19 controls); then, they measured, in a room calorimeter, the component of daily sedentary energy
expenditure, i.e., the energy metabolism during sleep. They also measured hormonal mediators of
metabolism, including leptin and thyroid hormones, along with urinary F2-isoprostane excretion as
an index of oxidative damage. After two years, subjects in the CR group experienced an average
weight loss of 8.7 Kg, whereas subjects in the control group maintained weight during the 2-year
period. In the CR group, the greater weight loss was from fat mass after two years (−3.2 Kg; p > 0.001).
In addition, the authors found a significative reduction of 24-h Energy Expenditure (−186 Kcal/day;
p < 0.05), and a significative reduction in Sleep Energy Expenditure (−160 Kcal/day; p < 0.05) in the
CR group after two years, indicating a metabolic adaptation to the CR. After adjustment for changes
in body composition, while Sleep Energy Expenditure was significantly decreased in the CR group
after two years (p < 0.05), the 24-h Energy Expenditure did not decrease significantly after two years,
compared to the control group (p > 0.55). As regards the biomarkers of Energy Metabolism and aging,
authors found a significant reduction in the CR group after two years of T3 (−0.73 ng/dl; p < 0.05), T4
(−0.16 mcg/dl; p < 0.05), and leptin (−9.3 ng/dl; p < 0.05); in addition, they observed a reduction of
fasting insulin and of nigh time core body temperature. Regarding the markers of oxidative stress,
the authors found a significative reduction of the urinary excretion of four F2-isoprostane isomers
after two years in the CR group (−0.49 ng/mg CR; p < 0.05). The authors have linked these data to the
metabolic adaptation of the 24-h Energy Expenditure after the CR. The author also linked the CR with
an improved mitochondrial function, with a decreased total body oxygen consumption, and therefore,
with a decreased reduction of Oxidative Stress.

11. Mediterranean Diet, Cardiovascular Disease and Mortality

The traditional Mediterranean Diet (MD) is characterized by a high intake of foods of plant origin
(fruit, vegetables, breads, other cereals, potatoes, beans, nuts, and seeds) and fresh fruit. Olive oil,
namely extra-virgin olive oil, is the main source of fat. Dairy products (mainly light cheeses and
yogurt), fish and poultry are consumed in medium-low quantities; particularly, fish is an excellent
source of polyunsaturated fatty acids (PUFAs), particularly omega-3 fatty acids; egg consumption is
limited to a maximum of four per week; red meat is consumed sporadically and in small quantities,
however, no more than once a week. MD has a very low saturated fat content, which represents no
more than 8–10% of the total caloric intake. Caloric intake from lipids is not more than 30% of total
caloric intake. Wine is usually consumed with meals, but always in moderate doses (1–2 glasses) [81,82].
Ancel Keys first demonstrated the health benefits derived from the MD [83]; thanks to early studies
of Ancel Keys, MD has been proposed as a healthy dietary pattern associated with a lower risk of
developing cardiovascular and metabolic diseases. The traditional MD has been proposed as a food
model to achieve or maintain optimal weight. Trichopoulou et al. [84] showed that high adherence to
the MD, assessed by the Mediterranean Diet Score (MDS), was related to a significative reduction of
total mortality [85].

Subsequently, the PREDIMED study [86] confirmed the finding above. The authors have
shown that all subjects at high cardiovascular risk who followed an MD pattern, supplemented
with monounsaturated fatty acids and antioxidants, that is, extra-virgin olive oil (EVOO), or with
omega-3 poly-unsaturated fatty acids, that is nuts, had a reduced Hazard Risk (HD) of acute myocardial
infarction, stroke or death from any cardiovascular event (MD with EVOO: HR = 0.70, 95% CI: 0.53–0.91,
p = 0.009; MD with nuts: HR = 0.70, 95% CI: 0.53–0.94, p = 0.02). They did not observe any effect on
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reduction of all-cause mortality (MD with EVOO: HR = 0.81, 95% CI: 0.63–1.05, p = 0.11; MD with nuts:
HR = 0.95, 95% CI: 0.73–1.23, p = 0.68).

The authors subsequently identified protocol deviations, including the enrolment of household
members without randomization, assignment to a study group without randomization of some
participants at one of 11 study sites, and apparent inconsistent use of randomization tables at another
site. Then, they published a new revised report, which was based on analyses that do not rely
exclusively on the assumption that all the participants were randomly assigned [87]. In their second
report, the authors confirmed the lower risk of acute myocardial infarction, ischemic stroke, or death
from all cardiovascular event among subjects who were assigned to an MD pattern respect to control
subjects who were assigned to a low-fat diet.

A subsequent meta-analysis [88] analyzed the relationship between adherence to MD and mortality
and incidence of each disease; 1,574,299 subjects were involved; they were followed for a time ranging
from three to 18 years. The authors demonstrated a significant association between greater adherence
to MD, a significant improvement in health status and a significant reduction in mortality Rate Risk
(RR) (RR = 0.91, 95% CI: 0.89–0.94; p < 0.0001). The authors have also shown that a greater adherence
to an MD pattern was associated with a significant reduction in mortality due to coronary heart disease
(CHD) (RR = 0.91, 95% CI: 0.87–0.95, p < 0.0001) and to cancer (RR = 0.94; 95% CI: 0.92–0.96; p < 0.0001).

A further meta-analysis conducted by the same authors [89] further showed that a great adherence
to MD was associated with an improvement in health status and quality of life and to a significant
reduction in overall mortality (RR = 0.92, 95% CI: 0.90–0.94, p < 0.00001). Specifically, authors showed
a significative reduction of mortality from coronary heart disease (RR = 0.90; 95% CI: 0.87–0.93;
p < 0.00001) and from cancer (RR = 0.94; 95% CI: 0.92–0.96; p < 0.00001). A high adherence to MD was
also associated with a significant reduction in the incidence of neurodegenerative diseases (RR = 0.87;
95% CI: 0.81–0.94; p < 0.00001), including Alzheimer’s disease.

Nevertheless, as already emphasized in an excellent editorial by Voelker [90], it would be simplistic
to consider the MD as a simple semi-vegan diet rich in fibers, antioxidants and proteins of vegetable
origin. We observe the benefits of the MD in its cultural context, where food is part of a lifestyle.

In 2011, the Mediterranean Diet Foundation together with the forum on Mediterranean food
cultures developed a consensus document that revised the pyramid of the Mediterranean diet, including
cultural and lifestyle elements [91]. The authors underlined the aspects of socialization, by writing,
“The aspect of conviviality is important for the social and cultural value of the meal, beyond nutritional
aspects. Cooking, sitting around the table and sharing food in company of family and friends is a social
support and gives a sense of community. Make cooking an important activity taking the proper time
and space. Cooking can be relaxing, fun and can be done with family, friends and the loved ones”. At
least 30 min of moderate exercise during the day “as a dietary supplement” and adequate rest at night
and during the day in the form of a nap after a meal are also recommended in the consent document.

Lastly, Kromhout et al. [92], further confirmed how a food model according to the features of the
MD, assessed through the Mediterranean Adequacy Index, was inversely associated with mortality
due to ischemic heart disease (r = −0.91). In particular, the authors confirmed the protective role of
cereals (r = −0.52), vegetables (r = −0.52) and legumes (r = −0.62), in addition to the intake of moderate
amounts of alcohol in the diet (r = −0.54). The authors also confirmed the association between ischemic
mortality of heart disease and dietary intake of high amounts of saturated fatty acids (r = 0.83), whole
milk (r = 0.84), confectionery preparations based on simple sugars (r = 0.69), animal meats, with the
exception of fish (r = 0.68), and preparations based on animal meats and simple sugars, for example,
processed meats (r = 0.84). Table 1 summarizes the studies we examined.
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Table 1. Mediterranean Diet adherence and risk of mortality.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Trichopoulou, 2003, [84] Population-based, prospective study 8895 men and 13,148 women

Death from any cause:
HR = 0.75 (95% CI: 0.64–0.87) for a Two-Point Increase in the Mediterranean-Diet Score

Death from coronary heart disease:
HR = 0.67 (95% CI: 0.47–0.94) for a Two-Point Increase in the Mediterranean-Diet Score

Death from cancer:
HR = 0.76 (95% CI: 0.59–0.98) for a Two-Point Increase in the Mediterranean-Diet Score

Estruch, 2013, [86] Parallel-group, multicentre, randomized
trial

1050 men and 1493 women with MD
with EVOO

1128 men and 1326 women with MD
with nuts

987 men and 1463 women with Control
Diet

Myocardial infarction, stroke, and death from cardiovascular causes:
HR = 0.70 (95% CI: 0.54–0.92, p = 0.01) for MD with EVOO vs. Control Diet
HR = 0.72 (95% CI: 0.54–0.96, p = 0.03) for MD with Nuts vs. Control Diet

Death from any cause:
HR = 0.82 (95% CI: 0.64–1.07, p = 0.15) for MD with EVOO vs. Control Diet
HR = 0.97 (95% CI: 0.74–1.26, p = 0.82) for MD with Nuts vs. Control Diet

Estruch, 2018, [87] Parallel-group, multicentre, randomized
trial

1050 men and 1493 women with MD
with EVOO

1128 men and 1326 women with MD
with nuts

987 men and 1463 women with Control
Diet

Myocardial infarction:
HR = 0.82 (95% CI: 0.52–1.30) for MD with EVOO vs. Control Diet
HR = 0.76 (95% CI: 0.47–1.25) for MD with Nuts vs. Control Diet

Stroke:
HR = 0.65 (95% CI: 0.44–0.95) for MD with EVOO vs. Control Diet
HR = 0.54 (95% CI: 0.35–0.82) for MD with Nuts vs. Control Diet

Death from cardiovascular causes:
HR = 0.62 (95% CI: 0.36–1.06) for MD with EVOO vs. Control Diet
HR = 1.02 (95% CI: 0.63–1.67) for MD with Nuts vs. Control Diet

Death from any cause:
HR = 0.90 (95% CI: 0.69–1.18) for MD with EVOO vs. Control Diet
HR = 1.12 (95% CI: 0.86–1.47) for MD with Nuts vs. Control Diet

Sofi, 2008, [88] Meta-analysis of prospective cohort
studies 1,574,299 subjects from 12 studies

Mortality from cardiovascular diseases:
RR = 0.91 (95% CI: 0.87–0.95)

Mortality from any cause:
RR = 0.91 (95% CI: 0.89–0.94

Mortality from cancer:
RR = 0.94 (95% CI: 0.92–0.96)

Incidence of Parkinson’s disease and Alzheimer’s disease:
RR = 0.87 (95% CI: 0.80–0.96)

Sofi, 2010, [89] Meta-analysis of prospective cohort
studies 508,393 subjects from 7 studies

Mortality from cardiovascular diseases:
RR = 0.90 (95% CI: 0.87–0.93)

Mortality from any cause:
RR = 0.92 (95% CI: 0.90–0.94)

Mortality from cancer:
RR = 0.94 (95% CI: 0.92–0.96)

Incidence of neurodegenerative disease:
RR = 0.87 (95% CI: 0.81–0.94)

Kromhout, 2018, [92] Prospective Cohort Study 12,763 subjects from 16 cohorts of the
Seven Countries Study

Mortality from cardiovascular diseases:
Inverse association between consumption of cereals, vegetables, legumes, and alcohol and

long-term CHD mortality rates (r = −0.52 to −0.62)
Positive association between consumption of hard fat plus sweet products, animal foods except

fish, and long-term CHD mortality rates (r = 0.68 to 0.84)
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12. Omega-3 Poly-Unsaturated Fatty Acids and Aging

The three types of n-3 fatty acids involved in human physiology are α-linolenic acid (ALA), which
is found in plant oils, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), both commonly
found in marine oils.

As summarized in Table 2, since 1999, the Gruppo Italiano per lo Studio della Sopravvivenza
nell’Infarto Miocardico (GISSI)-Prevenzione trial, [93] an open-label trial involving 11,323 survivors of
MI, reported that patients who received supplementation with omega-3 Fatty Acids (FAs) experienced
a 10% reduced risk of major cardiovascular events compared with untreated controls.

The Japan EPA Lipid Intervention Study (JELIS) trial [94] is an open-label trial involving 18,645
participants with total cholesterol of 6.3 mmol/L (243.24 mg/dL) or greater, of whom only 20% had prior
CHD. Authors showed that among patients who were given EPA treatment, major coronary events
were reduced by 19% (EPA group vs. controls: HR = 0.81; 95% CI: 0.69–0.95; p = 0.011). In patients
with a history of coronary artery disease who were given EPA treatment, major coronary events were
reduced by 19% (EPA group vs. controls: HR = 0.81; 95% CI: 0.66–1.00; p = 0.048). In patients with
no history of coronary artery disease, EPA treatment reduced major coronary events by 18%, but this
finding did not reach statistical significance (EPA group vs. controls: 0.82 (0.63–1.06) HR = 0.82; 95%
CI: 0.63–1.06; p = 0.132).

Seven large randomized trials [95–101] were conducted to compare the associations of treatment
with omega-3 FAs supplementation vs. placebo or no treatment for at least 12 months in populations
with prior CHD, stroke, or high risk of cardiovascular disease (CVD). These large trials all failed to
demonstrate a significative reduction of the incidence of major cardiovascular events.

In addition, four meta-analyses involving large trials of omega-3 FA supplements [102–105]
reported conflicting results demonstrating a significative reduction of overall mortality, of mortality
due to myocardial infarction, and of sudden death in patients with coronary heart disease.
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Table 2. Poly-unsaturated fatty acids intake and mortality.

Author and Year of Publication Study Design Sample Size Risk of Mortality

GISSI Prevention trial, 1999, [93] Prospective Cohort Study 8496 cases and 2828 controls from a cohort of 11,324
subjects

Death, non-fatal MI, and non-fatal stroke in two-way analysis:
RR = 0.90 (95% CI: 0.82–0.99, p = 0.048)

Cardiovascular death, non-fatal MI, and non-fatal stroke in two-way analysis:
RR = 0.89 (95% CI: 0.80–1.01, p = 0.053)

Death, non-fatal MI, and non-fatal stroke in four-way analysis:
RR = 0.85 (95% CI: 0.74–0.98, p = 0.023)

Cardiovascular death, non-fatal MI, and non-fatal stroke in four-way analysis:
RR = 0.80 (95% CI: 0.68–0.95, p = 0.008)

Yokoyama, 2007, [94] Prospective Randomised Open-Label
Cohort Study

9326 EPA treatments and 9319 controls from a cohort
of 18,645 subjects

Incidence of coronary events in the total study population:
HR = 0.81 (95% CI: 0.69–0.95, p = 0.011) for EPA treatments vs. controls;

Incidence of coronary events in in the primary prevention arm:
HR = 0.82 (95% CI: 0.63–1.06, p = 0.132) for EPA treatments vs. controls;

Incidence of coronary events in in the secondary prevention arm:
HR = 0.81 (95% CI: 0.66–1.00, p = 0.048) for EPA treatments vs. controls

Kromhout, 2010, [95]
Prospective Multi-centre, double-blind

trial: n−3 fatty acids EPA and DHA and
plant-derived ALA vs. placebo

1212 subjects randomized to receive EPA–DHA and
ALA;

1192 subjects randomized to receive EPA–DHA and
ALA placebo;

1197 subjects randomized to receive EPA–DHA
placebo and ALA;

1236 subjects randomized to receive EPA–DHA
placebo and
ALA placebo

Major cardiovascular events:
HR = 1.01 (95% CI: 0.87–1.17, p = 0.93) with EPA–DHA;

HR = 0.91 (95% CI: 0.78–1.05, p = 0.20) with ALA

Einvik, 2010, [96] Interventional Clinical Trial
563 Norwegian men randomized to a 3-year clinical

trial of diet with n-3 PUFA supplementation vs.
placebo (corn oil)

Mortality from any cause:
HR = 0.57 (95% CI: 0.29–1.10)

Mortality from cardiovascular diseases:
HR = 0.86 (95% CI: 0.57–1.38)

Bosch, 2012, [97] Prospective multi-centre, double-blind
trial: n−3 fatty acids vs. placebo

6281 subjects randomized to receive n−3 fatty acids;
6255 subjects randomized to receive placebo

Death from cardiovascular causes:
HR = 0.98 (95% CI: 0.87–1.10, p = 0.72)

Myocardial Infarction, Stroke, or Cardiovascular Death:
HR = 1.01 (95% CI: 0.93–1.10, p = 0.81)

Death from Any Cause:
HR = 0.98 (95% CI: 0.89–1.07, p = 0.63)

Death from Arrhythmia:
HR = 1.10 (95% CI: 0.93–1.30, p = 0.26)

Rauch, 2010, [98]
Prospective randomized,

placebo-controlled, double-blind,
multicentre trial

1919 subjects randomized to receive n−3 fatty acids;
1885 subjects randomized to receive placebo

Sudden cardiac death:
OR = 0.95 (95% CI: 0.56–1.60, p = 0.84)

Total mortality:
OR = 1.25 (95% CI: 0.90–1.72, p = 0.18)

Major adverse cerebrovascular and cardiovascular
Events:

OR = 1.21 (95% CI: 0.96–1.52, p = 0.10)
Revascularization in survivors:

OR = 0.93 (95% CI: 0.80–1.08, p = 0.34)
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Table 2. Cont.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Galan, 2010, [99] Prospective randomized,
placebo-controlled, double-blind trial

620 subjects randomized to receive B vitamins +
omega 3

fatty acids;
633 subjects randomized to receive Omega 3 fatty

acids;
622 subjects randomized to receive B vitamins;

626 subjects randomized to receive placebo

Non-fatal myocardial infarction, stroke, or death from cardiovascular disease:
HR = 1.08 (95% CI: 0.79–1.47, p = 0.64);

Total mortality:
HR = 1.03 (95% CI: 0.72–1.48, p = 0.88)

Bonds, 2014, [100] 2 × 2 factorial-designed randomized
clinical trial

1079 subjects randomized to receive lutein +
zeaxanthin and DHA + EPA;

1068 subjects randomized to receive DHA + EPA;
1044 subjects randomized to receive lutein +

zeaxanthin;
1012 subjects randomized to receive placebo

Time to First Cardiovascular Disease Mortality/Morbidity Event:
HR = 0.95 (95% CI: 0.78–1.17) for DHA + EPA vs. No DHA + EPA;

HR = 0.94 (95% CI: 0.77–1.15) for Lutein + zeaxanthin vs. No Lutein + zeaxanthin

Deepak, 2019, [101] Multicentre, randomized, double-blind,
placebo-controlled trial

4089 subjects randomized to receive 2 g of Icosapent
Ethyl twice daily;

4090 subjects randomized to receive placebo

Cardiovascular death, nonfatal myocardial infarction, nonfatal
stroke, coronary revascularization, or unstable angina:

HR = 0.75 (95% CI: 0.68–0.83, p < 0.001)

Bucher, 2002, [102] Meta-analysis from 11 case-control
studies

7951 patients in the treatment groups and 7855
patients in the control groups

Nonfatal myocardial infarction:
RR = 0.80 (95% CI: 0.5–1.2, p = 0.16) for n-3 poly-unsaturated fatty acid-enriched diets;

Fatal myocardial infarction:
RR = 0.70 (95% CI: 0.6–0.8, p < 0.001) for n-3 poly-unsaturated fatty acid-enriched diets;

Sudden death:
RR = 0.70 (95% CI: 0.6–0.9, p < 0.01) for n-3 poly-unsaturated fatty acid-enriched diets;

Overall mortality:
RR = 0.80 (95% CI: 0.7–0.9, p < 0.001) for n-3 poly-unsaturated fatty acid-enriched diets

Rizos, 2012, [103] Meta-analysis from 20 case-control
studies

34,388 patients in the treatment groups and 34,292
patients in the control groups

All-cause mortality:
RR = 0.96 (95% CI: 0.91–1.02) for n-3 poly-unsaturated fatty acids;

Cardiac death:
RR = 0.91 (95% CI: 0.85–0.98) for n-3 poly-unsaturated fatty acids;

Sudden death:
RR = 0.87 (95% CI: 0.75–1.01) for n-3 poly-unsaturated fatty acids;

Myocardial infarction:
RR = 0.89 (95% CI: 0.76–1.04)

for n-3 poly-unsaturated fatty acids;
Stroke:

RR = 1.05 (95% CI: 0.93–1.18)
for n-3 poly-unsaturated fatty acids
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Table 2. Cont.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Kwak, 2012, [104] Meta-analysis from 14 placebo-control
trials

10,226 patients in the treatment groups and 10,259
patients in the control groups

Overall cardiovascular events:
RR = 0.99 (95% CI: 0.89–1.09) for omega-3 fatty acid supplement;

All-cause mortality:
RR = 0.96 (95% CI: 0.90–1.02) for omega-3 fatty acid supplement;

Sudden cardiac death:
RR = 0.93 (95% CI: 0.66–1.30) for omega-3 fatty acid supplement;

Cardiovascular death:
RR = 0.92 (95% CI: 0.35–1.01) for omega-3 fatty acid supplement;

Myocardial infarction:
RR = 0.81 (95% CI: 0.65–1.01)

for omega-3 fatty acid supplement;
Angina and unstable angina:
RR = 0.77 (95% CI: 0.50–1.18)

for omega-3 fatty acid supplement;
Congestive heart failure:

RR = 0.92 (95% CI: 0.73–1.17)
for omega-3 fatty acid supplement;

Transient ischemic attack and Stroke:
RR = 1.13 (95% CI: 0.77–1.66)

for omega-3 fatty acid supplement

Agency for Healthcare Research and
Quality, 2016, [105]

Meta-analysis from 61 randomized
controlled trials and 37 longitudinal

observational
studies

No available data about sample sizes of cohorts
examined

All-cause death:
HR = 0.97 (95% CI: 0.92–1.03)

for EPA + DHA;
Major Adverse Cardiovascular Events:

HR = 0.96 (95% CI: 0.91–1.02)
for EPA + DHA;

Myocardial infarction:
HR = 0.88 (95% CI: 0.77–1.02)

for EPA + DHA;
Cardiovascular Disease Death:
HR = 0.92 (95% CI: 0.82–1.02)

for EPA + DHA;
Sudden Cardiac Death:

HR = 1.04 (95% CI: 0.92–1.17) for EPA + DHA;
Stroke:

HR = 0.98 (95% CI: 0.88–1.09)
for EPA + DHA
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Table 2. Cont.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Zhang, 2018, [106] Prospective cohort study
Total and cause-specific

Mortality from a cohort of 240,729 men and 180,580
women

All-cause death:
HR = 0.89 (95% CI: 0.86–0.92, p < 0.0001)

for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in men;
HR = 0.90 (95% CI: 0.86–0.94, p < 0.0001)

for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women;
Cancer death:

HR = 0.95 (95% CI: 0.90–1.00, p = 0.040)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in men;

HR = 1.01 (95% CI: 0.93–1.09, p = 0.51)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women;

Cardiovascular disease death:
HR = 0.85 (95% CI: 0.80–0.90, p < 0.0001)

for highest vs. lowest quintiles of of long-chain omega-3 PUFAs intake in men;
HR = 0.82 (95% CI: 0.75–0.90, p < 0.0001)

for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women;
Respiratory disease death:

HR = 0.73 (95% CI: 0.65–0.83, p < 0.0001)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in men;

HR = 0.74 (95% CI: 0.64–0.87, p < 0.0001)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women;

Alzheimer’s Disease death:
HR = 0.70 (95% CI: 0.54–0.89, p = 0.0008)

for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in men;
HR = 0.59 (95% CI: 0.43–0.80, p = 0.0024)

for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women;
Chronic liver disease death:

HR = 0.66 (95% CI: 0.49–0.89, p = 0.0046)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in men;

HR = 1.30 (95% CI: 0.78–2.16, p = 0.88)
for highest vs. lowest quintiles of long-chain omega-3 PUFAs intake in women
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Zhang et al. conducted a large perspective cohort study involving 240,729 men and 180,580
women [106], who were prospectively followed for 16 years to examine the associations of fish
and long chain omega-3 Poly-unsaturated Fatty Acids (LCn-3 PUFAs) intakes with total and
cause-specific mortality.

They found that comparing the highest with the lowest quintiles of fish and LCn-3 PUFAs intake,
men had lower total mortality (Fish intake Multivariable HR: 0.91, 95% CI: 0.89–0.94, p < 0.0001; LCn-3
PUFAs Multivariable HR: 0.89, 95% CI: 0.86–0.92, p < 0.0001), lower cardiovascular disease (CVD)
mortality (Fish intake Multivariable HR: 0.90, 95% CI: 0.85–0.94, p < 0.0001; LCn-3 PUFAs Multivariable
HR: 0.85, 95% CI: 0.80–0.90, p < 0.0001), lower cancer mortality (Fish intake Multivariable HR: 0.94,
95% CI: 0.90–0.99, p = 0.038; LCn-3 PUFAs Multivariable HR: 0.95, 95% CI: 0.90–1.00, p = 0.040), lower
respiratory disease mortality (Fish intake Multivariable HR: 0.80, 95% CI: 0.72–0.89, p < 0.0001; LCn-3
PUFAs Multivariable HR: 0.73, 95% CI: 0.65–0.83, p < 0.0001), lower Alzheimer’s disease mortality
(Fish intake Multivariable HR: 0.76, 95% CI: 0.61–0.95, p = 0.0028; LCn-3 PUFAs Multivariable HR: 0.70,
95% CI: 0.54–0.89, p = 0.0008), and lower chronic liver disease mortality (Fish intake Multivariable HR:
0.63, 95% CI: 0.47–0.83, p = 0.0013; LCn-3 PUFAs Multivariable HR: 0.66, 95% CI: 0.49–0.89, p = 0.0046).

Similarly, comparing the highest with the lowest quintiles of fish and LCn-3 PUFAs intake, women
had lower total mortality (Fish intake Multivariable HR: 0.92, 95% CI: 0.88–0.95, p < 0.0001; LCn-3
PUFAs Multivariable HR: 0.90, 95% CI: 0.86–0.94, p < 0.0001), lower CVD mortality (Fish intake
Multivariable HR: 0.90, 95% CI: 0.83–0.97, p = 0.0034; LCn-3 PUFAs Multivariable HR: 0.82, 95% CI:
0.75–0.90, p < 0.0001), lower respiratory disease mortality (Fish intake Multivariable HR: 0.81, 95% CI:
0.71–0.92, p < 0.0001; LCn-3 PUFAs Multivariable HR: 0.74, 95% CI: 0.64–0.87, p < 0.0001), and lower
Alzheimer’s disease mortality (Fish intake Multivariable HR: 0.62, 95% CI: 0.48–0.80, p < 0.0001; LCn-3
PUFAs Multivariable HR: 0.59, 95% CI: 0.43–0.80, p = 0.0024). Authors explained the discrepancies
with the previous studies because of the limited statistical power of those previous small-scale studies.
Moreover, another cause could be partially due to different cooking methods, as fried fish which is
common in North American and European countries, may produce trans-fatty acids, oxidation of
PUFAs, advanced glycation products (AGEs) and increase energy density, which counteract or even
reverse the beneficial effects of nutritional ingredients in fish. They found a positive correlation between
fried fish intake and mortality from all causes (P-trend = 0.011), CVD (P-trend = 0.019), respiratory
disease (P-trend = 0.031) and infections (P-trend = 0.020) in women. They did not find any significant
relationship between intakes of fish and LCn-3 PUFAs and total mortality among participants with
diabetes or BMI ≥ 30.

After examining findings from the Randomized Controlled Trials (RCT) concerning the prevention
of CHD among patients at high CVD risk, coauthors of the Science Advisory from the American Heart
Association [107] concluded that omega-3 PUFA supplements might reduce CHD death, by a reduction
of sudden cardiac death, among patients with prior CHD. Nevertheless, the treatment does not reduce
the incidence of recurrent nonfatal myocardial infarction. Because the benefit outweighs any risk of
treatment, the majority of coauthors concluded that treatment with omega-3 PUFA supplements is
reasonable for the secondary prevention of CHD death (Class IIa Recommendation); a minority of
coauthors preferred a lower strength of recommendation for treatment of patients with this indication
(Class IIb Recommendation).

In addition, coauthors examined results from the GISSI-HF RCT [108]. This RCT showed
that, among patients with chronic heart failure with reduced ejection fraction, the omega-3 PUFA
supplementation reduced the risk of total mortality (death resulting from any cause) by 9% (RR, 0.91;
95% CI, 0.833–0.998; p = 0.041) and the risk of cardiovascular-related hospitalizations or death by 8%
(RR, 0.92; 95% CI, 0.849–0.999; p = 0.009).

They concluded that, although based on a single, large RCT, treatment with omega-3 fatty acids
could be reasonable in the secondary prevention of heart failure-related hospitalizations and death
among patients with heart failure with reduced ejection fraction (Class IIA, Recommendation).
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Nevertheless, the coauthors recommended the need for additional RCTs among patients with
heart failure and preserved ejection fraction to confirm the strength of the Recommendation.

Regarding the association between the intake of omega-3 polyunsaturated fatty acids with the
reduction of the incidence of cardiovascular disease and stroke and other aging-related diseases,
Qi et al. [109] showed that treatment with alpha-linolenic acid (ALA), produced a 30% increase in mean
lifespan in Caenorhabditis elegans. Authors showed that ALA treatment enhanced the lifespan of the
wild-type worms by activating the NHR-49/PPARα and SKN-1/Nrf2 transcription factors. Specifically,
ALA activated NHR-49 to promote the expression of genes involved in the b-oxidation of lipids. ALA
exposure to air also causes oxidation of ALA in a group of compounds called oxylipins. The activation
of SKN-1 by oxylipins improves longevity. This study has shown that omega-3 fatty acids slow aging;
this effect can be due to the association of the effects of both omega-3 fatty acids and the oxylipin
metabolites. The authors suggest the hypothesis that in humans, the healthy benefits of omega-3 fatty
acids intake could also derive from the production of oxylipin.

13. Mediterranean Diet Increases Lifespan and Improves Aging

Two key points are known: firstly, that most of the factors that determine lifespan are purely
environmental, including diet; secondly, a CR that guarantees an adequate supply of all nutrients
can prolong the life span of rodents; this effect was also demonstrated in other organisms, such
as yeast, worms, flies, fish and spiders [110]. This CR paradigm has been very useful to clarify
the molecular pathways that modulate aging, including the insulin-like growth factor-1 and insulin
signaling pathway, the sirtuin pathway, the AMP-activated protein kinase pathway and the mammalian
target of rapamycin pathway, all of which interact [52,111]. Currently, there are many substantial proofs
that the combinations of CR and exercise protect against multiple molecular and cellular damages,
which are the basis of the functional decline associated with aging. On the contrary, overeating and
a sedentary lifestyle accelerate the functional decline associated with aging, increasing the risk of
diseases. CR and physical activity increase the body’s resistance to environmental stressors and allow
it to maintain its physiological function. However, in conditions of low resilience, chronic diseases,
disability and frailty certainly compromise health, and consequently, the life span. In all these cases,
CR not only has no beneficial effects, it also reduces the immune defenses, making response to infection
inefficient and delaying the healing of wounds or fractures, reducing the resilience dramatically. Only
short-term refeeding can reverse the detrimental effects of CR [112] (Figure 4). Trichopoulou et al. [84]
have first proven substantially that a dietary pattern based on the MD has positive effects on life
span in the elderly. They showed that a greater adherence to the MD leads to a significant reduction
in mortality. More precisely, the authors showed that a greater adherence to the MD, as assessed
by a semiquantitative questionnaire on food intake, was associated with a risk of death of 17% for
an increase in one unit and over 50% for an increase of four units. Further evidence confirmed the
association between lifestyle in middle age with successful aging and prevention against the onset of
disability, frailty, and other non-communicable diseases, including cancer, and dementia [113]. It is,
of course, the long-term effect of beneficial behavioral factors in middle-aged adults that contribute
to successful aging, where, by successful aging, we mean the absence of important chronic diseases,
severe disabilities and the preservation of cognitive functions, through the primary prevention of
the onset of frailty. In contrast, a “Western” food model, which is characterized by a high intake of
fried and sweet foods, processed foods and red meats, refined grains and fat-rich dairy products,
is associated with a high prevalence of diseases and aging-related disabilities [7–9,114]. The EPIC
study [115] examined the association between adherence to the MD pattern and life expectancy among
74,607 old men and women from nine European countries. The authors used a modified version of the
MDS to evaluate adherence to the MD model: to calculate the monounsaturated/saturated lipid ratio, in
the numerator, instead of monounsaturated lipids, the sum of monounsaturated and polyunsaturated
lipids was used. In this modified MDS, both monounsaturated and polyunsaturated fatty acids are
included in the numerator of the lipid ratio. The score range extends from zero (minimal adherence) to



Nutrients 2020, 12, 35 17 of 34

nine (maximal adherence). This change allowed the MDS score to be applied to the populations of
areas other than the Mediterranean Sea basin, where notably, intake of monounsaturated fatty acids
from olive oil is very low. The authors showed that for an increase of two units in the modified MDS,
a reduction of 8% (95% CI: 3% to 12%) was observed for all-cause mortality. This association was
naturally more evident in Greece and Spain, where the modified MDS corresponded to the traditional
MD, which is followed uniformly by the whole population. However, the application of the modified
MDS allowed the authors to correct any heterogeneity between countries in the association with the
overall mortality scores. In Italy, most death cases occurred in northern Italy, where the traditional diet
cannot be considered as an MD.
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Few studies have examined the association between lifestyle and mortality among the elderly in
developing countries. Shi et al. [116] analyzed data from the Chinese Longitudinal Healthy Longevity
Survey (CLHLS), which involved 8959 participants aged 80 or over, in order to evaluate an association
between eating habits, lifestyle factors and mortality for all causes. The authors showed that everyday
fruit and vegetable consumption was significantly associated with a lower risk for global mortality
(HR = 0.85; 95% CI: 0.77–0.92; p < 0.01; HR = 0.74; 95% CI: 0.66–0.83; p < 0.01, respectively). Conversely,
intake of salt-preserved vegetables was associated with a higher risk of all-cause mortality (HR = 1.10;
95% CI: 1.03–1.18; p < 0.001). Based on these results, the authors developed a “healthy lifestyle score”
based on three factors: daily intake of fruit, vegetables and regular physical activity. For each positive
response to each of the three lifestyle factors, a score of 1 was assigned, for a total maximum score of 3.
The subjects who led a healthier lifestyle, who are the subjects who totaled three points, had a median
survival of another two years, even in the presence of chronic diseases. All the studies examined above
are summarized in Table 3.
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Table 3. Mediterranean diet components and healthy aging.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Trichopoulou, 1995, [85] Prospective cohort study 91 men and 91women Mortality Rate:
RR = 0.83 (95% CI: 0.69–0.99, p = 0.04) for high adherence to MD

Britton, 2008, [7] Longitudinal cohort study 4140 men and 1823 women

Likelihood of Successful Aging for men:
OR = 1.52 (95% CI: 1.34–1.72, p < 0.001) for socioeconomic position

OR = 1.19 (95% CI: 1.06–1.33, p = 0.003) for early-life factors
OR = 1.29 (95% CI: 1.16–1.44, p < 0.001) for health behaviours
OR = 1.12 (95% CI: 1.01–1.24, p = 0.03) for psychosocial factors

Likelihood of Successful Aging for women:
OR = 1.58 (95% CI: 1.31–1.92, p < 0.001) for socioeconomic position.

OR = 1.23 (95% CI: 1.01–1.49, p = 0.04) for early-life factors
OR = 1.29 (95% CI: 1.09–1.54, p = 0.003) for health behaviours
OR = 1.10 (95% CI: 0.94–1.28, p = 0.25) for psychosocial factors

Akbaraly, 2013, [8] Longitudinal cohort study 3775 men and 1575 women

Ideal Aging with Healthy-foods diet:
OR = 1.19 (95% CI: 0.82–1.73, p = 0.35) for higher vs. lower tertile;

Non-fatal cardiovascular disease with Healthy-foods diet:
OR = 1.10 (95% CI: 0.89–1.35, p = 0.39) for higher vs. lower tertile;

Cardiovascular disease death with Healthy-foods diet:
OR = 0.66 (95% CI: 0.43–1.01, p = 0.05) for higher vs. lower tertile;

Non-cardiovascular disease death with Healthy-foods diet:
OR = 0.61 (95% CI: 0.47–0.80, p < 0.0001) for higher vs. lower tertile;

Ideal Aging with Western-type diet:
OR = 0.52 (95% CI: 0.33–0.82, p = 0.005) for higher vs. lower tertile;

Non-fatal cardiovascular disease with Western-type diet:
OR = 1.08 (95% CI: 0.83–1.41, p = 0.56) for higher vs. lower tertile;

Cardiovascular disease death with Western-type diet:
OR = 1.66 (95% CI: 0.95–2.89, p = 0.07) for higher vs. lower tertile;

Non-cardiovascular disease death with Western-type diet:
OR = 1.23 (95% CI: 0.87–1.72, p = 0.24) for higher vs. lower tertile
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Table 3. Cont.

Author and Year of Publication Study Design Sample Size Risk of Mortality

Samieri, 2013, [9] Cross-sectional observational study 1171 “Healthy agers” vs. 9499 “Usual
agers”

Healthy aging and component of healthy aging, according to Alternative Healthy Eating
Index-2010:

Healthy aging: OR = 1.34 (95% CI: 1.09–1.66, p < 0.001) for higher vs. lower quintile;
No chronic disease: OR = 1.01 (95% CI: 0.97–1.05, p = 0.26) for higher vs. lower quintile;
No cognitive impairment: OR = 0.99 (95% CI: 0.97–1.01, p = 0.09) for higher vs. lower

quintile;
No impairment of physical function: OR = 1.23 (95% CI: 1.11–1.36, p < 0.001) for higher vs.

lower quintile;
No limitation of mental health: OR = 1.13 (95% CI: 1.05–1.22, p < 0.001) for higher vs. lower

quintile;
Healthy aging and component of healthy aging, according to MD:

Healthy aging: OR = 1.46 (95% CI: 1.17–1.83, p = 0.0022) for higher vs. lower quintile;
No chronic disease: OR = 1.04 (95% CI: 1.00–1.09, p = 0.13) for higher vs. lower quintile;
No cognitive impairment: OR = 0.97 (95% CI: 0.95–1.00, p = 0.02) for higher vs. lower

quintile;
No impairment of physical function: OR = 1.14 (95% CI: 1.03–1.26, p = 0.005) for higher vs.

lower quintile;
No limitation of mental health: OR = 1.12 (95% CI: 1.04–1.20, p < 0.001) for higher vs. lower

quintile

Trichopoulou, 2005, [115] Multicentre, prospective cohort study 24,545 men and 50,062 women from the
EPIC-elderly cohort

Mortality ratios (MR) for all countries:
MR = 0.92 (95% CI: 0.88–0.97, p value for heterogeneity = 0.328) for 2 unit increase of

modified MD score;
Mortality ratios (MR) calibrated across countries:

MR = 0.93 (95% CI: 0.88–0.99, p value for heterogeneity = 0.091) for 2 unit increase of
modified MD score

Shi, 2015, [116] Longitudinal cohort study
3567 men and 5392 women from the

Chinese Longitudinal Healthy Longevity
Survey (CLHLS)

Hazard ratios for all-cause mortality:
HR = 0.73 (95% CI: 0.68–0.77, p < 0.01) for physical activity vs. no physical activity;

HR = 0.85 (95% CI: 0.77–0.92, p < 0.01) for daily fruit intake;
HR = 0.74 (95% CI: 0.66–0.83, p < 0.01) for daily vegetable intake;

HR = 1.05 (95% CI: 0.97–1.14, p > 0.05) for daily meat intake;
HR = 1.06 (95% CI: 1.00–1.13, p < 0.05) for occasionally fish intake;

HR = 1.04 (95% CI: 0.97–1.12, p > 0.05) for daily sugar intake;
HR = 1.10 (95% CI: 1.03–1.18, p < 0.01) for daily salt-preserved vegetable intake
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It has been confirmed by substantial evidence that MD reduces mortality from many chronic
diseases, such as cardiovascular diseases, neurodegenerative diseases and even cancer [117]. All this is
due to the synergistic action of the different nutritional elements of the MD. Several papers studied
the functions of the nutritive components of MD in preventing cancer, obesity, cardiovascular and
neurodegenerative diseases. Serra-Majem and Estruch [118] further confirmed these favorable effects
of the MD in a systematic review. They confirmed the favorable effects of MD in reducing cholesterol
and triglyceride levels, improving insulin resistance and increasing antioxidant capacity. In addition,
the authors confirmed the favorable effects of MD on endothelium vasodilatation, metabolic syndrome,
and on reducing myocardial and cardiovascular mortality and cancer incidence both in obese patients
and in those with previous myocardial infarction. Rees and colleagues [119], in their systematic review
of 11 randomized clinical trials in 52,044 subjects, further confirmed that the MD reduces cardiovascular
disease by reducing cholesterol levels, especially LDL levels. In a further review, Sleiman et al. [120]
confirmed that MD has favorable effects in reducing cardiovascular disease by reducing both fasting
blood sugar and HbA1c.

Bonaccio et al., analyzing data from the Moli-sani study [121], which involved 24,325 subjects
from the Molise Region, in Southern Italy, further showed that an MD pattern, that is the consumption
of healthy foods with a high content of antioxidants, vitamins and phytochemicals, was significantly
associated with a reduction of the 10-year cardiovascular risk. This favorable result was related to
lowering levels and of glucose, lipids, CRP plasma levels, and blood pressure.

From a strictly biological point of view, there is a lot of evidence that show how nutrition works
by modulating numerous interconnected cellular processes, implicated both in carcinogenesis and in
inflammatory responses, or in the production of free radicals, or in the expression of inflammatory
cytokines and the eicosanoid pathway [122], for example through the down-regulation of gene
expression of the NF-κB transcription factor. The MD can also have a positive impact on the so-called
“inflammaging” through the epigenetic mechanism (which includes chromatin remodeling, DNA
methylation and miRNAs) or through the preservation of intestinal microbiota homeostasis [117].

Regarding the relationship between eating habits and mental health [123], it has been established
that a diet with a high intake of vegetables, fruit, legumes as the main source of protein, olive oil as the
main source of lipids, fish as the main source of animal protein, grains, nuts and seeds provides a wide
range of nutrients, including vitamin B, omega-3 fatty acids and antioxidants [124]. The antioxidants
contained in foods can protect brain cells from oxidative membrane damage, which has been involved
in the pathogenesis of several psychiatric disorders, including depression [125], and in the pathogenesis
of dementia. Regarding omega-3s, docosahexaenoic acid is essential for brain development and is
highly concentrated in the brain structure. Omega-3s and vitamins are involved in a variety of brain
functions, such as neurotransmitter synthesis, the development and maintenance of neuronal cells,
and mechanisms to protect the blood–brain barrier [124].

14. Diet Patterns and “Inflammaging”

“Inflammaging” has been defined as the state of chronic activation of a low-grade inflammatory
state in the elderly [126]. It has been hypothesized that it could be prodromal at the beginning of
cognitive decline [127] and polypathology [128]. Most chronic diseases with a high prevalence in the
elderly can most likely be correlated with an alteration of the immune response and inflammation [129].
The long-term pro-inflammatory chronic condition adversely affects survival, helping to determine a
significant decline in physical performance, as well as the onset of cognitive symptoms and depression,
up to defining a condition of high risk of mortality [130,131]. The role of nutrition in these processes is of
great importance. While acute inflammation can contribute to increasing energy needs, comorbidities
and consequent chronic low-grade inflammation are key determinants of loss of appetite and reduced
nutrient intake, also known as “anorexia of aging”, thus leading to the onset of “malnutrition—related
disease” [132]. The altered metabolic balance caused by malnutrition and nutrient reduction has been
associated with the onset of loss in mass and muscle strength, frailty and functional dependency,
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resulting in disability. This creates a vicious circle between the reduced nutritional intake condition and
the resulting state of a greater energy demand, determining an unfavorable prognostic pathway [133].
This condition of hyper-catabolism becomes more evident in the presence of a pathological situation
in a critical state, characterized by a poor response to nutritional intervention [134]. In elderly
people hospitalized for acute illness or chronic disease reactivation, the degree of inflammation, more
than nutritional status, is decisive on prognosis [135]. More importantly, the low-intensity chronic
hyper-catabolism status present outside the acute phase is closely related to inflammation. This
condition, known as “anabolic resistance”, leads to non-optimal protein synthesis in skeletal muscle in
response to physiological stimuli and is one of the main causative factors of sarcopenia [136].

15. Mediterranean Diet Confers Protection Against Sarcopenia

An extensive amount of evidence showed that a Mediterranean Diet pattern, or a diet with a
predominant intake of vegetables, fruits, vegetable protein from legumes, and omega-3 fatty acids,
especially animal protein from fish, could reduce the risk of experiencing osteoporosis and sarcopenia in
the elderly. The results from a cross-sectional study involving 2570 women aged 18 to 79 years from the
United Kingdom [137], have shown that a high adherence to the Mediterranean diet was significantly
related to increased muscle mass and legs explosive power (LEP, watts/kg), with a significant difference
of 1.7% for FFM% (fat-free mass/weight × 100) and 9.6% for LEP (trend p < 0.001).

A cross-sectional study conducted on 327 subjects aged over 65 from Taipei in Taiwan [138] showed
that a high daily intake of mainly plant-based proteins is protective against the loss of muscle mass. As
for total protein intake, subjects in the lower quartile had a greater risk of losing muscle mass than those
in the upper quartile (OR = 3.03; 95% CI: 1.37–6.72). Concerning vegetable proteins intake, subjects in
the lower quartile, similarly, had a higher risk of loss of muscle mass than subjects in the higher quartile
(OR = 2.34, 95% CI: 1.14–4.83). With the aim to study the presence of relationships between nutrient
and micronutrient intake and quality of life among sarcopenic and non-sarcopenic elderly people, the
Maastricht Sarcopenia (MaSS) study [139] (227 subjects) and the PROVIDE study [140] (136 subjects)
were independently conducted on two Dutch populations. Both studies showed that sarcopenics
differed in certain nutritional assumptions and biochemical nutrient status compared to non-sarcopenic
subjects. As regard the MaSS Study, sarcopenic subjects had a low intake of protein (p = 0.048), n-3
fatty acids (p = 0.022), folic acid (p = 0.016) and magnesium (p = 0.024), respectively, and a high intake
of ALA (p = 0.018) (both dietary and supplement intakes were included in the study). In addition, the
sarcopenic subjects had a low intake of vitamin B6 from the diet (p = 0.005); no significant differences
were observed among sarcopenics and non-sarcopenics after including dietary supplements in the
analysis (p = 0679). Regarding the PROVIDE study, all the sarcopenic subjects did not practice physical
activity (p < 0.001) and had a lower quality of life compared to non-sarcopenic subjects (p < 0.001).
Compared to the non-sarcopenic group, the sarcopenic group had a lower intake of proteins (p = 0.044),
vitamin D (p = 0.007), vitamin B-12 (p = 0.011), magnesium (p = 0.015), phosphorus (p = 0.014) and
selenium (p = 0.039). Lastly, Barrea et al. [141], in their cross-sectional study conducted in a sample of
community-dwelling elderly women, evidenced a positive association between the adherence to the
MD and muscle functional capacity measured by the Hand Grip Strength (HGS), where cut-point used
for low HGS in women was <20 kg. In particular, authors showed that women with HGS < 20 Kg
had a significantly lower percentage of energy intake from protein (p < 0.001), from carbohydrate
(p < 0.001), and from unsaturated fat (p = 0.018) and n-3 PUFA (p = 0.031), and a significantly higher
total fat (p < 0.001) and cholesterol intake (p = 0.006) than women with HGS > cut-point. They reported
a strong correlation between high adherence to MD and high muscle capacity (p = 0.003).

All the evidence concerning the association between diet patterns and muscle mass and muscle
strength is summarized in Table 4.
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Table 4. Mediterranean diet pattern, muscle mass and muscle strength.

Author and Year of Publication Study Design Sample Size Muscle Mass and Muscle Strength

Kelaiditi, 2016, [137] Cross-sectional study 2570 women from the Twins UK study

Fat-free mass (%):
0.9 ± 0.4 P-trend = 0.012 for highest vs. lowest adherence to MD in women ≤ 50 years;
1.0 ± 0.4 P-trend = 0.008 for highest vs. lowest adherence to MD in women ≥ 50 years;

Grip strength (kg):
0.3 ± 1.0 P-trend = 0.912 for highest vs. lowest adherence to MD in women ≤ 50 years;
−0.1 ± 0.5 P-trend = 0.975 for highest vs. lowest adherence to MD in women ≥ 50 years;

Leg explosive power (watts/kg):
7.4 ± 3.2 P-trend = 0.010 for highest vs. lowest adherence to MD in women ≤ 50 years;
9.5 ± 3.0 P-trend = 0.005 for highest vs. lowest adherence to MD in women ≥ 50 years

Huang, 2016, [138] Cross-sectional study 327 community-dwelling elderly people

Odds ratios for total protein and vegetable protein density for Low Muscle Mass (LMM):
OR = 3.11 (95% CI: 1.42–6.84, p = 0.005) for lowest vs. highest total protein density intake;

OR = 2.50 (95% CI: 1.22–5.10, p = 0.012) for lowest vs. highest vegetable protein density intake;
Adjusted least square (LS) means for LMM vs. normal groups:

14.5 vs. 15.5, p = 0.008 for total protein density intake;
7.0 vs. 8.2, p = 0.002 for vegetable protein density intake

Ter Borg, 2016, [139] Cross-sectional study
227 community-dwelling adults aged

over 65 years from the Maastricht
Sarcopenia Study

Mean(SD) of daily dietary and supplement intake of nutrients for sarcopenic vs. nonsarcopenic
subjects:

Protein (g): 68 (22) vs. 74 (20), p = 0.048;
N-3 fatty acids (g): 1.7 (0.7) vs. 2.1 (0.8), p = 0.005;

ALA, 18:3n-3 (g): 1.47 (0.59) vs. 1.73 (0.72), p = 0.018;
Folic acid equivalents (g): 312 (160) vs. 375 (167), p = 0.016

Magnesium (mg): 305 (132) vs. 350 (125), p = 0.024;
Mean(SD) of biochemical nutrient levels for sarcopenic vs. nonsarcopenic subjects:

25-hydroxyvitamin D (nmol/l): 56.2 (31.3) vs. 70.1 (30.3), p = 0.004; EPA, 20:5n-3(%): 0.79 (0.27) vs.
0.94 (0.38), p = 0.007;

LA, 18:2n-6, %: 10.6 (1.6) vs. 9.9 (1.6), p = 0.016;
Homocysteine, mmol/l: 12.1 (4.2) vs. 15.2 (7.9), p < 0.001

Verlaan, 2017, [140] Matched case-control observational
study

66 sarcopenic older adults vs. 66
non-sarcopenic older adults from the

PROVIDE Study

Mean (SD) of daily dietary nutrient intakes for sarcopenic vs. nonsarcopenic subjects:
Protein (g): 72.5 (19.6) vs. 75.3 (20.7), p = 0.359;

Protein (g/kg): 0.99 (0.24) vs. 1.0 9 (0.29), p = 0.044
Carbohydrate (g): 212 (61) vs. 208 (76), p = 0.906;
Total Fat (g): 63.3 (19.0) vs. 65.8 (22.1), p = 0.403;
Vitamin B-12 (g): 3.9 (2.6) vs. 5.3 (3.6), p = 0.011
Vitamin D (mg): 2.6 (2.1) vs. 4.0 (3.4), p = 0.007

Magnesium (mg): 260 (96) vs. 295 (86), p = 0.015;
Phosphorus (mg): 1196 (330) vs. 1325 (338), p = 0.014

Selenium (mg): 39.1 (17.1) vs. 46.5 (21.2), p = 0.039

Barrea, 2019, [141] Cross-sectional observational study 84 not hospitalized elderly women from
the PERSSILAA project

Daily nutrients (SD, range) intake of participants according the HGS cut-point:
Protein (%): 12.24 (2.04) for HGS < 20 Kg vs. 14.75 (1.45) for HGS > 20 Kg, p < 0.001;

Carbohydrate (%): 55.1 (range 50.91–60.00) for HGS < 20 Kg vs. 56.00 (range 51.00–61.90) for HGS >
20 Kg, p < 0.001;

Total Fat (%): 32.34 (3.38) for HGS < 20 Kg vs. 29.50 (3.27) for HGS > 20 Kg, p < 0.001;
Unsaturated Fat (%): 20.98 (3.96) for HGS < 20 Kg vs. 22.83 (3.05) for HGS > 20 Kg, p = 0.018;

N-3 PUFA (g/day): 4.28 (2.85) for HGS < 20 Kg vs. 5.54 (2.42) for HGS > 20 Kg, p = 0.031;
Cholesterol (mg/day): 332.42 (34.91) for HGS < 20 Kg vs. 309.78 (38.24) for HGS > 20 Kg, p = 0.006;

Association of adherence to MD with the HGS, after adjusting for BMI:
Low adherence to MD: OR = 0.73 (95% CI: 0.61–0.86), p < 0.001;

Average adherence to MD: OR = 1.02 (95% CI: 0.95–1.09), p = 0.611
High adherence to MD: OR = 1.14 (95% CI: 1.04–1.25), p = 0.003
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It must, however, be pointed out that the above studies relate the high intake of proteins, especially
of vegetable origin, with a reduced risk of reduction in mass and muscle strength; the studies that
considered frankly sarcopenic patients showed that this category of subjects presented a reduced
protein intake, omega-3 fatty acids, and micronutrients, and a high ALA intake. It would therefore be
an exaggeration to state that the Mediterranean diet certainly reduces the risk of developing sarcopenia.

In this regard, a review by Granic et al. [142] reiterated the beneficial effects of the Mediterranean
diet towards the reduction of strength and muscle mass and towards the reduction of walking speed.
Nevertheless, the authors suggest the need to harmonize methods for defining dietary models (i.e.,
Mediterranean diet vs. Healthy Eating Index), through cross-validation, together with the need for
specially designed studies on different elderly populations with a longer follow-up to reach a higher
level of evidence.

16. Mediterranean Diet Maintains Health Status and Prevents from the Onset of Frailty

Plenty of studies showed a fact already known, namely that a decisive factor regarding the
development of frailty is represented by eating habits. It is known that protein supplementation,
combined with physical activity with resistance exercises, are an effective way to counteract muscle
weakness and physical frailty in elderly people [143].

Most authors agree that the Mediterranean diet is the best diet model that we can propose to
maintain health, or to get old with a lower incidence of frailty syndrome, or disability because of
chronic diseases and physical and cognitive impairment in old age. This is due to the daily intake of
the main components of the MD [110,144,145].

The results of the InCHIANTI study showed that high adherence to MD was associated with better
mobility performance. [146]. That is, subjects with a higher adherence to MD experienced a lower
decrease in motor performance, therefore, a lower risk of developing disabilities at 3, 6 and 9 years of
follow-up. Furthermore, in a subsequent study, older subjects with a high MD adherence presented a
lower risk of developing frailty (OR = 0.26; 95% CI: 0.07–0.98) [147]. Regarding the protective effects of
n-3 PUFA, it is known that a diet rich in n-6 PUFA, which is a precursor of arachidonic acid, which is a
substrate of the enzyme cyclo-oxygenase and lipo-oxygenase, and poor in n-3 PUFA (EPA and DHA),
determines a pro-inflammatory state harmful to muscles or other tissues. The integration of fish oil
into a group of Brazilian women involved in a randomized trial [148] produced a better performance
in lower limb strength training exercises. In the same group which was trained with supplementation
of fish oil intake in the diet, a greater improvement for chair-rising performances was observed. In a
subsequent study, fish oil supplementation improved walking speed in a group of postmenopausal
women [149]. Another study conducted on 417 old Japanese men [150] showed that a reduced dietary
EPA or DHA intake was associated with reduced motor performance. The authors therefore suggested
that fish oil supplementation has a particularly beneficial effect in training against resistance and may
represent a therapeutic strategy in the prevention of sarcopenia in frail patients.

Reduced synthesis of muscle proteins in older sarcopenic derives from various factors such as
reduced insulin or amino acid response [151,152]. Therefore, dietary interventions must be developed
with the aim to compensate the altered synthesis of muscle proteins and to help to counteract muscular
atrophy caused by periods of immobilization that are frequently observed in the elderly [153]. For
example, in everyday life, the distribution of protein intake is very heterogeneous between different
meals: usually, less than 10 g of protein is taken during breakfast, especially among frail elderly
people. [154]. This implies that for about 18 h, or the period between dinner and lunch, a frail elderly
person is not getting enough protein. This explains why the anabolic response is compromised even if
the daily protein intake is apparently adequate in people at risk. Results from a longitudinal study on
a cohort of 690 non-institutionalized old people, from the InCHIANTI Study [155], confirmed that
subjects following the traditional MD developed a significantly lower risk of frailty (OR = 0.30; 95% CI:
0.14–0.66). Authors also confirmed that a high adherence to an MD pattern was associated with a lower
risk of low physical activity (OR = 0.62; 95% CI: 0.40–0.96) and low walking speed (OR = 0.48; 95% CI:
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0.27–0.86). Furthermore, the results of the Seniors-ENRICA study [156] showed that high adherence to
a “Prudent Pattern” diet model, that is characterized by a high intake of olive oil, vegetables, legumes,
blue fish, and pasta, was related to a reduced risk of developing frailty (OR = 0.40; 95% CI: 0.20–0.81;
P-trend = 0.009). On the other hand, the high level of adherence to a “Westernized Pattern” diet, that
is, with a high intake of very refined flour bread, fat-rich dairy products, red or processed meat, and a
poor assumption of whole-grain products, of fruit, low-fat dairy products and vegetables, correlated
with a high risk of frailty (OR = 1.61; 95% CI: 0.85–3.03; P-trend = 0.14). The authors also showed that a
high adherence to the “Western Pattern” diet was associated with two of Fried’s frailty criteria [13],
namely reduction in walking speed (OR = 1.85; 95% CI: 1.19–2.87; P-trend = 0.007) and involuntary
weight loss (OR = 2.12; 95% CI: 1.22–3.70; P-trend = 0.007).

Another Chinese study conducted on a cohort of 2724 people, men and women resident in the
community, over the age of 65, examined the relationship between eating habits and the incidence of
frailty [157]. The semiquantitative FFQ-questionnaire was used to evaluate dietary intake [158,159].
The authors used the Dietetic-International Index (DQI-I) scale to evaluate the quality of the diet; in a
range between 0 and 94, a high score indicates a better quality of the diet [160,161]. To assess adherence
to the MD, the Mediterranean Diet Score (MDS) [162] was used. After adjustment for sex and age, the
authors found a 41% reduction in the risk of frailty for every increase of 10 DQI-I units (OR = 0.59;
95% CI: 0.42–0.85; p = 0.004). The model was also adjusted by Body Mass Index (BMI), energy intake,
physical activity, education level, smoking status, alcohol use, depression, cognitive impairment, living
alone and marital status at baseline. After this adjustment, the association was lower, if we consider not
only the OR value, but also the p-value (OR = 0.69; 95% CI: 0.47–1.02; p = 0.056). It is interesting to note
that the authors did not observe any association of MDS with frailty, among elderly Chinese people.

Two following studies showed the protective role of the MD from the development of frailty. The
first study [163] was conducted on a French population from the Bordeaux cohort study of Three-City
Study [164]. The semi-quantitative Food Frequency Questionnaire (FFQ) was used to evaluated food
habits, while the MDS was used to evaluate the adherence to the MD [84]. A high adherence to the MD
was associated, even in this study, with a reduced risk of developing frailty (p = 0.02). This significant
decreased risk of developing frailty was also confirmed after adjusting by age, sex, marital status,
education, BMI, diabetes, hypertension and cardiovascular disease history, polypharmacotherapy,
cognitive functions by MMSE, and depression state. (OR = 0.32; 95% CI: 0.14–0.72, p = 0.006). The
authors also demonstrated the association between high adherence to MD and a lower risk of frailty,
considering three of Fried’s criteria [13], namely poor muscle strength (OR = 0.44; 95% CI: 0.20–0.98,
p = 0.04), slowness (OR = 0.45; 95% CI: 0.20–50 0.99, p = 0.04) and low physical activity (OR = 0,
39, 95% CI: 0.18–0.82; p = 0.01). The second study [165] involved an American population from the
Osteoarthritis Initiative (OAI) [166,167], to investigate the association between the adherence to a MD
pattern and the incidence of frailty. The Block Brief 2000 food frequency (FFQ) questionnaire [168]
was used to analyze participants’ diet patterns during the baseline appointment of the OAI visit.
The Mediterranean diet score (aMED), validated by Panagiotakos et al. [169], was used to assess the
adherence of participants to an MD model, based on the results of the FFQ. After adjusting by age, sex,
race, body mass index, education, smoking habits, yearly income, physical activity level, co-morbidity
and daily energy intake, authors showed that a high adherence to an MD pattern was significantly
associated with a low risk of developing frailty (HR = 0.71; 95% CI: 0.50–0.99, p = 0.047). It is interesting
to observe the association, by the authors, of a low consumption of poultry with a greater risk of frailty
(HR = 1.34; 95% CI: 1.07–1.67, p = 0.009). All the evidence examined above are summarized in Table 5.
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Table 5. Mediterranean diet components and frailty.

Author and Year of
Publication Study Design Sample Size Risk of Frailty

Milaneschi, 2011, [146] Prospective
population-based study

935 community-living
subjects aged over 65

years from the
InCHIANTI Study

cohort

Adjusted odds of developing mobility
disability:

OR = 0.73 (95% CI: 0.41–1.28, p = 0.27)
for highest vs. lowest adherence to

MD;
Decrease in SPPB scores at 9 years of

follow up:
Average Score = 0.9 (SE = 0.41,
p = 0.03) for highest vs. lowest

adherence to MD;
Adjusted incidence of mobility

disability:
HR = 0.71 (95% CI: 0.51–0.98, p = 0.04)

for highest vs. lowest adherence
to MD

Bollwein, 2013, [147] Cross-sectional study
192 community-dwelling
volunteers aged over 75

years

Odds Ratio for Frailty:
OR = 0.19 (95% CI: 0.05–0.82,

p = 0.011) for highest vs. lowest
adherence to MD

Talegawkar, 2012, [155] Prospective
population-based study

690 community-living
subjects aged over 65

years from the
InCHIANTI Study

cohort

Odds Ratio for Frailty:
OR = 0.30 (95% CI: 0.14–0.66) for

highest vs. lowest adherence to MD

Luz, 2015, [156] Prospective cohort study

1872
non-institutionalized
subjects aged over 60

years from the
Seniors-ENRICA cohort

Study

Odds Ratio for Frailty:
OR = 0.40 (95% CI: 0.20–0.81,

p = 0.009) for highest adherence to a
“prudent pattern” diet;

0.40 (0.20–0.81) 0.009
OR = 1.61 (95% CI: 0.85–3.03, p = 0.14)

for highest adherence to a
“westernized pattern” diet

Rahi, 2017, [163] Population-based
prospective cohort study

560 non-institutionalized
subjects aged over 65

years from the cohort of
Three-City-Bordeaux

Study

Odds Ratio for Frailty:
OR = 0.32 (95% CI: 0.14–0.72,

p = 0.006) for highest vs. lowest
adherence to MD

Veronese, 2017, [165] Population-based
prospective cohort study

1857 men and 2564
women from the The

Osteoarthritis Initiative
cohort Study

Odds Ratio for Frailty:
OR = 0.71 (95% CI: 0.50–0.99,

p = 0.047) for highest vs. lowest
adherence to MD

17. Conclusion Remarks on Nutrition and Frailty

Aging is the result of an interaction between local and systemic environmental factors and
involutional factors due to cell senescence. A healthy lifestyle in middle age, which includes a correct
diet or even a slight reduction in caloric intake, predisposes to a low risk or absence of serious chronic
diseases or to the decline of cognitive or physical functions in old age. This is the consequence of
preserving the efficiency of the immune system, as well as, at the cellular level, the preservation of
mitochondrial activity and the reduction of oxidative stress.

The frailty of the elderly is a condition characterized by an increased vulnerability to poor
homeostasis resolution after a stress event, which increases the risk of negative outcomes, including
falls, delirium and disability. Frailty must not be understood as an inevitable consequence of aging,
but rather must be understood as a geriatric syndrome, or a “frailty syndrome”, that results from
the interaction of various factors, including aging-related physiological alterations, poly-pathology,
malnutrition, and the negative impact of socio-environmental factors. The clinical course of frailty
makes its association with the state of nutrition more evident (Figure 5). In physiological aging, it is
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usual to observe a decrease in lean mass and bone mineral density, while a smaller reduction in fat
mass was observed.
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Sarcopenia is the pathological aspect of reduction of strength and muscle mass, more evident in
subjects of advanced or very advanced age; this is responsible for weakness and decreased physical
activity. An inadequate protein intake, which is very common among the elderly, accelerates the
progression of sarcopenia. [170]. Older people very often reduce the consumption of animal proteins
due to difficulty in chewing due to edentulism and the reduction of the perception of taste and smell
due to polypharmacy. The expression “anorexia of aging” refers to the significant reduction in energy
intake, consequent to the loss of appetite, in elderly subjects, and with a further significant reduction
in protein intake. Several other factors, such as insulin resistance or altered protein digestion and
amino acid absorption, inhibit the stimulation of muscle protein synthesis in the elderly, even when
the dietary protein intake is adequate [171].

Reducing food intake also leads to a lack of micronutrients, contributing to the development of
frailty. Very frequently, low calcium and vitamin D values are observed in the elderly population,
because of insufficient dietary intake and poor sun exposure. Vitamin D and calcium deficiency
accelerate bone resorption. Very often, these are subjects that expose themselves little to sunlight,
thus reducing the possibility of producing vitamin D in the skin; otherwise, they show very reduced
physical activity, reducing the retention of bone calcium, stimulated mainly by physical exercise. This
type of behavior is further aggravated by loneliness and isolation of the elderly, a consequence of
depression or, in general, by the loss of health status.

Antioxidant properties of some foods play an important role in protecting or developing frailty.
Even in healthy and dwelling living elderly, a slow and gradual reduction of antioxidant defenses
has been observed [172], along with an increase in oxidative stress markers [173]. This condition was
certainly due to the aging process itself but it could also be the result of reduced antioxidants dietary
intake [173,174]. The physiological increase of oxidative stress is certainly a responsible component of
the aging process; the pathological increase of oxidative stress, resulting in reduced defense processes,
is an important causal factor in the development of specific conditions of frailty, including mainly the
reduction of mass and bone strength [175] and the reduction of mass and strength muscle [176]. In
conclusion, the cross-sectional and prospective studies described above provide further and convincing
evidence about the connection between MD adherence, or between nutrient intake with antioxidant
properties and the prevention of frailty. They also contribute to increase our understanding of the
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molecular mechanisms involved in the physiological aging process, or in the mechanisms of protection
against frailty.
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