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ABSTRACT  
Aerial triangulation (AT) has reached outstanding progress in the last decades, and now fully automated solutions for nadir and oblique 
images are available. Usually, image correspondences (tie points) are found using hand-crafted methods, such as SIFT or its variants. 
But in the last years, there were many investigations and developments to promote the use of machine and deep learning solutions 
within the photogrammetric processing pipeline. The paper explores learning-based methods for the extraction of tie points in aerial 
image blocks. Image correspondences are used to perform aerial triangulation (AT) and successively generate dense point clouds. Two 
different datasets are used to compare conventional hand-crafted detector/descriptor methods with respect to learning-based methods. 
Accuracy analyses are performed using GCPs as well as ground truth LiDAR point clouds. Results confirm the potential of learning-
based methods in finding reliable image correspondences in the aerial block, still showing space for improvements due to camera 
rotations. 
 
 

1. INTRODUCTION 
 

Photogrammetry is one of the most widely used techniques for 
the determination of 3D metric information at various scales and 
from diverse imaging platforms (satellite, aerial, drone, terrestrial 
and underwater). The typical aerial photogrammetric workflow 
consists of the identification of image correspondences via sparse 
image matching, the estimation of the unknown camera 
parameters and 3D object coordinates (image triangulation) with 
a bundle adjustment (BA) method, the generation of dense point 
clouds via dense image matching (or Multi-View Stereo - MVS) 
and the realization of by-products like mesh models or 
orthophotos. Photogrammetric methods – since ever – aim to 
provide practical, reliable, and daily-based routines and solutions 
for geospatial data generation, geometric processing, and 
semantic interpretation – even with manual intervention to keep 
accuracy as high as possible. For two decades the community has 
provided many automated algorithms, also based on Artificial 
Intelligence (AI), to speed up geospatial data generation and 
interpretation, increase efficiency as well as robustness 
(Hartmann et al., 2015; Zhu et al., 2017; Becker et al., 2018; 
Gong and Ji, 2018; Yao et al., 2018; Liu et al., 2019; Griffiths 
and Boehm, 2019; Stathopoulou et al., 2019; Heipke and 
Rottensteiner, 2020; Huang et al., 2018; Shan et al., 2020; Chen 
et al., 2020a; Oezdemir et al., 2021; Qin and Gruen, 2021; 
Remondino et al., 2021). For sure there is still a hype around deep 
learning in research activities and in the media, but these methods 
are really a treasure trove for innovation in the geospatial field.  
Following this momentum, this work aims to investigate the use 
of learning-based algorithms for the extraction of tie points in 
aerial image blocks. The work applies learning-based methods to 
full-size aerial images and highlights the performances of these 
methods in performing aerial triangulation (AT) and, 
successively, generating dense point clouds. For comparison 
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analyses, using two different datasets (Table 1), tie points are 
automatically extracted using learning-based approaches as well 
as traditional hand-crafted detector/descriptor methods. 
Accuracy analyses are performed using GCPs as well as ground 
truth LiDAR point clouds. 
 
 

2. RELATED WORK 
 
AT has achieved remarkable improvement in the last decades, 
and now fully automated solutions for both nadir and oblique 
images are available (Rupnik et al., 2013; Rupnik et al., 2015; 
Maset et al., 2021). Automated AT based on a bundle block 
adjustment moved from point-based to feature-based methods, 
including also linear features (Habib et al., 2002; Schenk, 2004; 
Triggs et al., 2000). The identification of image correspondences 
(tie points – Figure 1) is traditionally performed using hand-
crafted keypoint detectors and descriptors (Lowe, 2004; Bay et 
al., 2006; Alcantarilla et al., 2013; Bellavia et al., 2021). These 
hand-crafted approaches are based on a priori knowledge 
inspired by professional knowledge and intuitive experience 
(Yao et al., 2021). Despite their good performance, there are still 
open issues in case of large perspective or temporal differences 
as well as scale and illumination changes between the images.  
In the last years, driven by rapid developments in deep learning 
networks, researchers proposed various innovative learning-
based solutions aiming to overcome the limitations of hand-
crafted methods (Verdie et al., 2015; Jin et al., 2021). Such 
solutions include detect-then-describe approaches where the 
detector (Verdie et al., 2015; Savinov et al., 2017; Barroso et al., 
2019; Truong et al., 2020) and the descriptor (Mishchuk et al., 
2017; Tian et al., 2017; Mishkin et al., 2018; Ebel et al., 2019; 
Pautrat et al., 2020; Pultar, 2020; Parihar et al., 2021) can be both 
learned methods or a combination of hand-crafted and learning- 
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Figure 1: Some milestone methods within the evolution of image matching for tie point extraction. 

based (Bellavia and Mishkin, 2021; Bellavia et al., 2022). Other 
approaches, called end-to-end, jointly optimize the entire 
pipeline to extract sparse image correspondences, e.g., LIFT (Yi 
et al., 2016), LF-Net (Ono et al., 2019), SuperPoint (DeTone et 
al., 2018), R2D2 (Revaud, 2019), D2-Net (Dusmanu et al., 2019), 
ASLFeat (Luo et al., 2020), SuperGlue (Sarlin et al., 2020), DISK 
(Tyszkiewicz et al., 2020). End-to-end methods were 
demonstrated to increase both the keypoint repeatability and 
reliability and, consequently, the image matching success rate 
and the final pose estimation accuracy (Remondino et al., 2021). 
More recently, various researchers (Choy et al., 2016; Rocco et 
al., 2018; Li et al., 2020) proposed end-to-end detector-free local 
feature matching methods that remove the feature detector phase 
and directly produce dense descriptors or dense feature matches. 
Among these, Sun et al. (2021) created the LoFTR approach 
based on Transformer (Vaswani et al., 2017): instead of 
performing image feature detection, description, and matching 
sequentially, it establishes pixel-wise dense matches at a coarse 
level and later refines the good matches at a fine level. 
The use of learning-based methods to automatically orient image 
blocks is primarily applied to terrestrial datasets (Schonberger et 
al., 2017; Bojanić et al., 2019; Jin et al., 2021) with very few 
experiments on UAV datasets (Remondino et al., 2021; Bellavia 
et al., 2022) and aerial modern (Chen et al., 2020b) and historical 
(Ressl et al., 2020; Zhang et al., 2021) blocks. This is mainly 
because most of the existing deep architectures for tie point 
extraction are not suitable for general-purpose photogrammetric 
applications, particularly aerial blocks, due to their limitation in 
handling large image sizes, small scales and camera rotations 
among strips.  
 

3. METHODOLOGY 
 
3.1 Considered methods 
Initial analyses on state-of-the-art hand-crafted and deep learning 
methods were performed to understand rotation and scale 
invariance issues in the case of aerial views (Figure 2). RootSIFT 
(Relja and Zisserman, 2012) was chosen to represent the hand-
crafted family as it proved to be the most reliable and versatile 
solution (Schonberger et al., 2017). On the other hand, among the 
available learning-based solutions, we considered two rotation-
invariant frameworks: LF-Net (Ono et al., 2018) as end-to-end 
architecture and KeyNet (Barroso et al., 2019) coupled with 

AffNet (Mishkin et al., 2018) and HardNet (Mishchuk et al., 
2017) – available in the Kornia library (Riba et al., 2020), as a 
detect-then-describe approach. Both frameworks showed good 
performances in previous evaluations (Remondino et al., 2021; 
Bellavia et al., 2022), accommodating various scenarios and 
contexts. They also seem to be suitable for retraining processes 
to include photogrammetric scenarios. Moreover, to the best of 
authors’ knowledge, they are among the very few methods which 
are partially invariant to camera rotations.  
 
3.2 Image tiling approach 
As learning-based methods demand many computational 
resources and can generally handle only small image sizes, a 
tiling approach is proposed in order to extract tie points in the full 
resolution images. Normally keypoints are not detected along the 
perimeter of the images due to the padding used during 
convolutions. Therefore, to avoid having no keypoints in areas of 
adjacent tiles, thus obtaining a not uniform keypoints distribution 
in the entire image, tiles (2500x2500 pixel) are overlapped 
vertically and horizontally by some 30 pixels. Features are 
detected/described on these tiles then tiles are reassembled for the 
matching and verification steps. 
 
3.3 Datasets 
Two different sets of aerial images (Table 1) are employed to test 
the capabilities of learning-based methods within AT processes 
and their influence on the generation of dense point clouds: the 
ISPRS/EuroSDR Dortmund benchmark (Nex et al., 2015) and 
the Dublin benchmark (Ruano and Smolic, 2021). These urban 
datasets were chosen due to their complementarity in terms of 
acquisitions, resolution, and ground truth (GT). They both feature 
nadir and oblique images, varying GSD (and image scale), 
picturing complex urban scenarios. 
 
3.4 Processing pipeline 
The AT process consists of features detection and description 
(Section 3.1), features matching, geometric verification, and final 
bundle adjustment (BA). The number of detected keypoints was 
set to be around 10,000 per image, while descriptors consist of 
128 (rootSIFT and HardNet) and 256 (LF-Net) parameters. The 
OpenCV Brute-Force method with L2 distance is used, albeit 
slow, to handle descriptors of variable sizes and ensure a fair 
comparison between methods. Matches are then imported into 
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nadir image pair from the same strip with high overlap 
RootSIFT – 2699 valid matches LF-Net – 2098 valid matches KeyNet – 2285 valid matches 

   
nadir image pair from the same strip with low overlap 

RootSIFT – 519 valid matches LF-Net – 395 valid matches KeyNet – 469 valid matches 

   
image pair from two different strips (180 deg rotation) 

RootSIFT – 2814 valid matches LF-Net – 860 valid matches KeyNet – 236 valid matches 

   
nadir and oblique image pair  

RootSIFT – 94 valid matches LF-Net – 136 valid matches KeyNet – 168 valid matches 

   
Figure 2: Tie point extraction on image pairs using hand-crafted and learning-based methods. 

COLMAP, where first the geometric verification with RANSAC 
is performed. Ratio test thresholds of 0.80 for RootSIFT, 0.85 for 
KeyNet+HardNet, and 1.00 for LF-Net are used.   
Finally, image observations are employed within the COLMAP 
incremental BA in free network mode. The available GCP 
imagecoordinates are used as tie points to triangulate, and the 
computed 3D coordinates are then used for the accuracy 
evaluation (RMSEs) based on a Helmert transformation (7-
parameters).  
On the other hand, to evaluate the influence of AT results on 
dense point clouds, an SGM-based MVS algorithm developed at 
OSU1 is applied. The OSU-MVS is a dense image matching 
software developed for DSM true ortho-photo generation from 
aerial (nadir and oblique) frame camera images. In our analyses, 
the photogrammetric point clouds are registered with an ICP 
method to the available GT, and then a cloud-to-cloud 
comparison is performed. 

 
1 https://u.osu.edu/qin.324/msp/ 

3.5 Evaluation protocol 
In geomatic applications, it is essential to test algorithm 
performance with metrics specifically tailored for the 3D object 
space. In our evaluations, the accuracy of tie points extraction 
methods is evaluated based on: 
- RMSEs on GCPs/CPs; 
- multiplicity/redundancy (Mean Track Length – MTL); 
- cloud-to-cloud comparison with respect to LiDAR ground truth; 
- point cloud completeness/accuracy. 
 
 

4. RESULTS AND ANALYSES 
 
4.1 Dortmund dataset  
Different sets of interior parameters are used, and the available 
12 GCPs (6 targets and 6 natural points) lead to RMSEs shown 
in Table 2. 
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 Dortmund Dublin 

number of images 16 nadir (N), 43 oblique (O) 145 nadir (N), 73 oblique (O) 
camera Pentacam IGI Leica RCD30, Nikon D800E 
image resolution  6132 x 8176 px (N), 

8176 x 6132 px (O) 
9000 x 6732 px (N), 
7360 x 4912 px (O) 

focal length  50 mm (N), 80 mm (O) 53 mm (N), 50 mm (O) 
pixel size 6 µm (N), 6 µm (O) 6 µm (N), 4.8 µm (O) 
platform airborne helicopter 
overlap (N) 75/80 not constant 
average GSD 12 cm (N), 10-14 cm (O) 3.4 cm (N) 
Ground Truth (GT) 12 GCPs, LiDAR (not simultaneously acquired) LiDAR (simultaneously acquired) 

Table 1: Main characteristics of the two aerial datasets employed in this work. 
 

Features / Tie points BA Int. Param. RMSE 
[m] 

Mean reproj. 
error [px] 

MTL 3D points 

RootSIFT COLMAP f, cx, cy 0.139 1.05 2.9 98,575 
RootSIFT COLMAP f, cx, cy, k1 0.192 1.04 2.9 98,554 
RootSIFT COLMAP f, cx, cy, 

k1, k2, p1, p2 0.184 1.04 2.9 98,554 

LFNet COLMAP f, cx, cy 0.228 0.32 2.9 80,082 
LFNet COLMAP f, cx, cy, k1 0.266 0.32 2.9 79,242 
LFNet COLMAP f, cx, cy, 

k1, k2, p1, p2 0.253 0.30 2.9 77,978 

KeyNet+AffNet+HardNet COLMAP f, cx, cy 0.274 0.37 3.2 75,048 
KeyNet+AffNet+HardNet COLMAP f, cx, cy, k1 0.206 0.37 3.2 75,047 
KeyNet+AffNet+HardNet COLMAP f, cx, cy, 

k1, k2, p1, p2 0.536 0.34 3.2 75,010 

Metashape Metashape f, cx, cy 0.139 0.57 3.0 53,994 
Metashape Metashape f, cx, cy, k1 0.160 0.53 3.0 53,387 
Metashape Metashape f, cx, cy, 

k1, k2, p1, p2 0.154 0.53 3.0 53,773 

Table 2: AT results for the Dortmund dataset. 

Results show that learning-based methods are still slightly worse 
than RootSIFT. To support the BA metrics provided by 
COLMAP, Agisoft Metashape2 is also used, confirming the 
obtained values. Using the AT results (Figure 3a) with the 
smallest RMSEs, dense point clouds are derived and compared 
to the available LiDAR GT (average surface density of ca 10 
pts/sqm - Figure 3b). 
The cloud-to-cloud analyses (Figure 4 and Table 3) do not reveal 
significant variations among the dense clouds. Some differences 
(truncated to 1m) are only present, due to the older LiDAR flight, 
at the vegetation, and where some new buildings were 

constructed. Four sub-areas containing only buildings were also 
chosen, showing differences in the order of 2x the average GSD.  
 

Features Mean [m] Std [m] 
RootSIFT 0.368 / 0.270 0.205 / 0.158  

LF-Net 0.369/ 0.263 0.204 / 0.151 
KeyNet+AffNet+HardNet 0.384 / 0.262 0.206 / 0.156 

Table 3: Mean and standard deviation of the cloud-to-cloud 
differences. The second value is the average of the 4 sub-areas 
including only buildings (Figure 3b). 

a) b)   

Figure 3: Dortmund dataset - Recovered image network (a) and the available GT LiDAR (area of ca 1.3x1.3 km) with the four 
chosen built-up areas (b). 

 
2 https://www.agisoft.com/ 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-77-2022 | © Author(s) 2022. CC BY 4.0 License.

 
80



 
 

RootSIFT – 30,5 mil. pts LF-Net – 31 mil. pts KeyNet+AffNet+HardNet – 33 mil. pts 

   
Figure 4: Dortmund dataset - Cloud-to-cloud comparisons of MVS results obtained using the different ATs (RootSIFT, LF-Net, and 
Key.net). Metrics in Table 3. 

4.2 Dublin dataset  
AT results for the Dublin dataset are given in Table 4. As no 
GCPs are provided in the benchmark, metrics are only in image 
space. Interestingly, LF-Net provides much more points with 
multiplicity 2 albeit the average MTL is similar for both methods. 
 

Features / Tie points Mean 
reproj. error 

MTL 3D 
points 

RootSIFT 1.11 px 5.8 204,057 
LFNet 0.46 px 5.5 169,992 

KeyNet+AffNet+HardNet 0.71 px 6.6 173,697 
Table 4: AT results for the Dublin dataset. 

 
Successively, the images are further processed to generate dense 
point clouds. Figure 5, Table 5, and Table 6 report color-coded 
views and accuracy values of the cloud-to-cloud assessments, 
respectively. These analyses do not reveal significant differences 
originating from the different AT input data. 
 

Features Mean [m] Std [m] 
RootSIFT 0.090 0.068 

LF-Net 0.079 0.058 
KeyNet+AffNet+HardNet 0.088 0.070  

Table 5: Mean and standard deviation of the cloud-to-cloud 
differences. 
 

Features / Tie points Precision Recall F1 
RootSIFT 0.996 0.649 0.786 

LFNet 0.997 0.627 0.770 
KeyNet+AffNet+HardNet 0.989 0.660 0.792 

Table 6: Precision (accuracy), recall (completeness) and F1 
scores for tolerance τ = 0.5 m. 
 

5. CONCLUSIONS 
 
The paper presented an investigation of learning-based methods 
to extract tie points in aerial image blocks. AT and MVS results 
revealed that deep learning could be also a valuable way to find 
reliable and accurate image correspondences in aerial datasets. 
Accuracy values provide a clear message that AT could be 
performed both by hand-crafted and learning-based methods in 
common AT survey conditions, even if the real potential of these 
methods lies in managing aerial datasets with images that are 
difficult to be correctly co-registered due to strong variations in 
the appearance of the images, and in particular in multi-temporal 
datasets (Bellavia et al., 2022b; Farella et al., 2022). Moreover, 
most of these deep architectures still suffer when high camera 

rotations are present in the datasets. Researchers so far primarily 
solved the problem by manually rotating images in order to have 
the same format (Jin et al., 2020), although new methods were 
developed to match images under large camera rotations (Parihar 
et al., 2021; Bellavia et al., 2022a). 
We believe that deep learning will offer more valuable solutions 
for photogrammetry in the near future, inspiring and impacting 
research in our field through collaboration with colleagues in 
neighbouring disciplines. 
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Figure 5: Dublin dataset - Recovered image network (a) and the available LiDAR GT covering an area of ca 250x250m (b). Cloud-
to-cloud distances, histogram of point distances, recall and precision for the three MVS results obtained using the different ATs 
(rootSIFT, LF-Net and Key.net). Metrics in Table 5 and 6. 
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